1
|
Jornayvaz FR, Gariani K, Somm E, Jaquet V, Bouzakri K, Szanto I. NADPH oxidases in healthy white adipose tissue and in obesity: function, regulation, and clinical implications. Obesity (Silver Spring) 2024; 32:1799-1811. [PMID: 39315402 DOI: 10.1002/oby.24113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 09/25/2024]
Abstract
Reactive oxygen species, when produced in a controlled manner, are physiological modulators of healthy white adipose tissue (WAT) expansion and metabolic function. By contrast, unbridled production of oxidants is associated with pathological WAT expansion and the establishment of metabolic dysfunctions, most notably insulin resistance and type 2 diabetes mellitus. NADPH oxidases (NOXs) produce oxidants in an orderly fashion and are present in adipocytes and in other diverse WAT-constituent cell types. Recent studies have established several links between aberrant NOX-derived oxidant production, adiposity, and metabolic homeostasis. The objective of this review is to highlight the physiological roles attributed to diverse NOX isoforms in healthy WAT and summarize current knowledge of the metabolic consequences related to perturbations in their adequate oxidant production. We detail WAT-related alterations in preclinical investigations conducted in NOX-deficient murine models. In addition, we review clinical studies that have employed NOX inhibitors and currently available data related to human NOX mutations in metabolic disturbances. Future investigations aimed at understanding the integration of NOX-derived oxidants in the regulation of the WAT cellular redox network are essential for designing successful redox-related precision therapies to curb obesity and attenuate obesity-associated metabolic pathologies.
Collapse
Affiliation(s)
- François R Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Department of Internal Medicine, Geneva University Hospitals and University of Geneva Medical School, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Department of Internal Medicine, Geneva University Hospitals and University of Geneva Medical School, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Emmanuel Somm
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Department of Internal Medicine, Geneva University Hospitals and University of Geneva Medical School, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Vincent Jaquet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
- RE.A.D.S. Unit (Readers, Assay Development and Screening Unit), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karim Bouzakri
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Ildiko Szanto
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Department of Internal Medicine, Geneva University Hospitals and University of Geneva Medical School, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
2
|
Hagarty-Waite KA, Emmons HA, Fordahl SC, Erikson KM. The Influence of Strain and Sex on High Fat Diet-Associated Alterations of Dopamine Neurochemistry in Mice. Nutrients 2024; 16:3301. [PMID: 39408267 PMCID: PMC11479034 DOI: 10.3390/nu16193301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Objective: The objective of this study was to determine the influence of sex and strain on striatal and nucleus accumbens dopamine neurochemistry and dopamine-related behavior due to a high-saturated-fat diet (HFD). Methods: Male and female C57B6/J (B6J) and Balb/cJ (Balb/c) mice were randomly assigned to a control-fat diet (CFD) containing 10% kcal fat/g or a mineral-matched HFD containing 60% kcal fat/g for 12 weeks. Results: Intraperitoneal glucose tolerance testing (IPGTT) and elevated plus maze experiments (EPM) confirmed that an HFD produced marked blunting of glucose clearance and increased anxiety-like behavior, respectively, in male and female B6J mice. Electrically evoked dopamine release in the striatum and reuptake in the nucleus accumbens (NAc), as measured by ex vivo fast scan cyclic voltammetry, was reduced for HFD-fed B6J females. Impairment in glucose metabolism explained HFD-induced changes in dopamine neurochemistry for B6J males and, to a lesser extent, Balb/c males. The relative expressions of protein markers associated with the activation of microglia, ionized calcium binding adaptor molecule (Iba1) and cluster of differentiation molecule 11b (CD11b) in the striatum were increased due to an HFD for B6J males but were unchanged or decreased amongst HFD-fed Balb/c mice. Conclusions: Our findings demonstrate that strain and sex influence the insulin- and microglia-dependent mechanisms of alterations to dopamine neurochemistry and associated behavior due to an HFD.
Collapse
Affiliation(s)
| | | | | | - Keith M. Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (K.A.H.-W.); (H.A.E.); (S.C.F.)
| |
Collapse
|
3
|
Kim H, Kim SJ. Upregulation of peroxisome proliferator-activated receptor γ with resorcinol alleviates reactive oxygen species generation and lipid accumulation in neuropathic lysosomal storage diseases. Int J Biochem Cell Biol 2024; 174:106631. [PMID: 39038642 DOI: 10.1016/j.biocel.2024.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Neuropathic lysosomal storage diseases (NLSDs), including ceroid lipofuscinosis neuronal 3 (CLN3) disease and Gaucher disease type 2 (GD2), are typically present in adolescents; however, there are no approved therapies. CLN3 disease is the most common of the 13 types of neuronal ceroid lipofuscinosis, and Gaucher disease is the most common type of lysosomal storage disease. These NLSDs share oxidative stress and lysosomal dysfunction with Parkinson's disease. In this study, we used patient-derived cells (PDCs) and resorcinol to develop a therapeutic agent based on peroxisome proliferator-activated receptor γ (PPARγ) activation. PPARγ is a major regulator of autophagy and reactive oxygen species (ROS). Resorcinol, a polyphenolic compound, has been reported to exhibit PPARγ agonistic potential. Protein levels were analyzed by immunoblotting and immunofluorescence microscopy. Changes in cellular metabolism, including ROS levels, lipid droplet content, and lysosomal activity, were measured by flow cytometry. Resorcinol reduced ROS levels by suppressing hypoxia-inducible factor 1α levels in CLN3-PDCs. Resorcinol upregulated autophagy and reduced lipid accumulation in CLN3-PDCs; however, these effects were abolished by autophagy inhibitors. Resorcinol increased nuclear PPARγ levels in CLN3-PDCs, and PPARγ antagonists abolished the therapeutic effects of resorcinol. Moreover, Resorcinol upregulated nuclear PPARγ levels and lysosomal activity in GD2-PDCs, and reduced lipid accumulation and ROS levels. In summary, resorcinol alleviated the shared pathogenesis of CLN3 disease and GD2 through PPARγ upregulation. These findings suggest that resorcinol is a potential therapeutic candidate for alleviating NLSD progression.
Collapse
Affiliation(s)
- Hyungkuen Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan 31499, South Korea
| | - Sung-Jo Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan 31499, South Korea.
| |
Collapse
|
4
|
Henry RJ, Barrett JP, Vaida M, Khan NZ, Makarevich O, Ritzel RM, Faden AI, Stoica BA. Interaction of high-fat diet and brain trauma alters adipose tissue macrophages and brain microglia associated with exacerbated cognitive dysfunction. J Neuroinflammation 2024; 21:113. [PMID: 38685031 PMCID: PMC11058055 DOI: 10.1186/s12974-024-03107-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity increases the morbidity and mortality of traumatic brain injury (TBI). Detailed analyses of transcriptomic changes in the brain and adipose tissue were performed to elucidate the interactive effects between high-fat diet-induced obesity (DIO) and TBI. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. High-throughput transcriptomic analysis using Nanostring panels of the total visceral adipose tissue (VAT) and cellular components in the brain, followed by unsupervised clustering, principal component analysis, and IPA pathway analysis were used to determine shifts in gene expression patterns and molecular pathway activity. Cellular populations in the cortex and hippocampus, as well as in VAT, during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in selected gene expression signatures and pathways. Furthermore, combined TBI and HFD caused additive dysfunction in Y-Maze, Novel Object Recognition (NOR), and Morris water maze (MWM) cognitive function tests. These novel data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and VAT, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Thus, targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue immune cell populations, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.
Collapse
Affiliation(s)
- Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - James P Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Vaida
- Harrisburg University of Science and Technology, 326 Market St, Harrisburg, PA, USA
| | - Niaz Z Khan
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Oleg Makarevich
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, 21201, USA
| |
Collapse
|
5
|
Fraga CG, Cremonini E, Galleano M, Oteiza PI. Natural Products and Diabetes: (-)-Epicatechin and Mechanisms Involved in the Regulation of Insulin Sensitivity. Handb Exp Pharmacol 2024. [PMID: 38421444 DOI: 10.1007/164_2024_707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Type 2 diabetes (T2D) is a disease that occurs when cells do not respond normally to insulin, a condition called insulin resistance, which leads to high blood glucose levels. Although it can be treated pharmacologically, dietary habits beyond carbohydrate restriction can be highly relevant in the management of T2D. Emerging evidence supports the possibility that natural products (NPs) could contribute to managing blood glucose or counteract the undesirable effects of hyperglycemia and insulin resistance. This chapter summarizes the relevant preclinical evidence involving the flavonoid (-)-epicatechin (EC) in the optimization of glucose homeostasis, reducing insulin resistance and/or diabetes-associated disorders. Major effects of EC are observed on (i) intestinal functions, including digestive enzymes, glucose transporters, microbiota, and intestinal permeability, and (ii) redox homeostasis, including oxidative stress and inflammation. There is still a need for further clinical studies to confirm the in vitro and rodent data, allowing recommendations for EC, particularly in prediabetic and T2D patients. The collection of similar data and the lack of clinical evidence for EC is also applicable to other NPs.
Collapse
Affiliation(s)
- Cesar G Fraga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina.
- Department of Nutrition, University of California, Davis, CA, USA.
| | | | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, USA
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| |
Collapse
|
6
|
Henriquez-Olguin C, Meneses-Valdes R, Raun SH, Gallero S, Knudsen JR, Li Z, Li J, Sylow L, Jaimovich E, Jensen TE. NOX2 deficiency exacerbates diet-induced obesity and impairs molecular training adaptations in skeletal muscle. Redox Biol 2023; 65:102842. [PMID: 37572454 PMCID: PMC10440567 DOI: 10.1016/j.redox.2023.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023] Open
Abstract
The production of reactive oxygen species (ROS) by NADPH oxidase (NOX) 2 has been linked to both insulin resistance and exercise training adaptations in skeletal muscle. This study explores the previously unexamined role of NOX2 in the interplay between diet-induced insulin resistance and exercise training (ET). Using a mouse model that harbors a point mutation in the essential NOX2 regulatory subunit, p47phox (Ncf1*), we investigated the impact of this mutation on various metabolic adaptations. Wild-type (WT) and Ncf1* mice were assigned to three groups: chow diet, 60% energy fat diet (HFD), and HFD with access to running wheels (HFD + E). After a 16-week intervention, a comprehensive phenotypic assessment was performed, including body composition, glucose tolerance, energy intake, muscle insulin signaling, redox-related proteins, and mitochondrial adaptations. The results revealed that NOX2 deficiency exacerbated the impact of HFD on body weight, body composition, and glucose intolerance. Moreover, in Ncf1* mice, ET did not improve glucose tolerance or increase muscle cross-sectional area. ET normalized body fat independently of genotype. The lack of NOX2 activity during ET reduced several metabolic adaptations in skeletal muscle, including insulin signaling and expression of Hexokinase II and oxidative phosphorylation complexes. In conclusion, these findings suggest that NOX2 mediates key beneficial effects of exercise training in the context of diet-induced obesity.
Collapse
Affiliation(s)
- Carlos Henriquez-Olguin
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark; Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile.
| | - Roberto Meneses-Valdes
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark; Center for Exercise, Metabolism and Cancer, ICBM, Universidad de Chile, 8380453, Santiago, Chile
| | - Steffen H Raun
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, Copenhagen N, Denmark
| | - Samantha Gallero
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Jonas R Knudsen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Zhencheng Li
- College of Physical Education, Chongqing University, Chongqing, 400044, CN, China
| | - Jingwen Li
- School of Medicine and Nursing, Huzhou University, Huzhou, 313000, CN, China
| | - Lykke Sylow
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, Copenhagen N, Denmark
| | - Enrique Jaimovich
- Center for Exercise, Metabolism and Cancer, ICBM, Universidad de Chile, 8380453, Santiago, Chile
| | - Thomas E Jensen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark.
| |
Collapse
|
7
|
Morawietz H, Brendel H, Diaba-Nuhoho P, Catar R, Perakakis N, Wolfrum C, Bornstein SR. Cross-Talk of NADPH Oxidases and Inflammation in Obesity. Antioxidants (Basel) 2023; 12:1589. [PMID: 37627585 PMCID: PMC10451527 DOI: 10.3390/antiox12081589] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity is a major risk factor for cardiovascular and metabolic diseases. Multiple experimental and clinical studies have shown increased oxidative stress and inflammation linked to obesity. NADPH oxidases are major sources of reactive oxygen species in the cardiovascular system and in metabolically active cells and organs. An impaired balance due to the increased formation of reactive oxygen species and a reduced antioxidative capacity contributes to the pathophysiology of cardiovascular and metabolic diseases and is linked to inflammation as a major pathomechanism in cardiometabolic diseases. Non-alcoholic fatty liver disease is particularly characterized by increased oxidative stress and inflammation. In recent years, COVID-19 infections have also increased oxidative stress and inflammation in infected cells and tissues. Increasing evidence supports the idea of an increased risk for severe clinical complications of cardiometabolic diseases after COVID-19. In this review, we discuss the role of oxidative stress and inflammation in experimental models and clinical studies of obesity, cardiovascular diseases, COVID-19 infections and potential therapeutic strategies.
Collapse
Affiliation(s)
- Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (H.B.); (P.D.-N.)
| | - Heike Brendel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (H.B.); (P.D.-N.)
| | - Patrick Diaba-Nuhoho
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (H.B.); (P.D.-N.)
- Department of Paediatric and Adolescent Medicine, Paediatric Haematology and Oncology, University Hospital Münster, 48149 Münster, Germany
| | - Rusan Catar
- Department of Nephrology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Nikolaos Perakakis
- Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (N.P.); (S.R.B.)
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Christian Wolfrum
- Institute of Food, Nutrition, and Health, ETH Zürich, Schorenstrasse, 8603 Schwerzenbach, Switzerland;
| | - Stefan R. Bornstein
- Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (N.P.); (S.R.B.)
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Diabetes and Nutritional Sciences, King’s College London, Strand, London WC2R 2LS, UK
| |
Collapse
|
8
|
Pecchillo Cimmino T, Ammendola R, Cattaneo F, Esposito G. NOX Dependent ROS Generation and Cell Metabolism. Int J Mol Sci 2023; 24:ijms24032086. [PMID: 36768405 PMCID: PMC9916913 DOI: 10.3390/ijms24032086] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS) represent a group of high reactive molecules with dualistic natures since they can induce cytotoxicity or regulate cellular physiology. Among the ROS, the superoxide anion radical (O2·-) is a key redox signaling molecule prominently generated by the NADPH oxidase (NOX) enzyme family and by the mitochondrial electron transport chain. Notably, altered redox balance and deregulated redox signaling are recognized hallmarks of cancer and are involved in malignant progression and resistance to drugs treatment. Since oxidative stress and metabolism of cancer cells are strictly intertwined, in this review, we focus on the emerging roles of NOX enzymes as important modulators of metabolic reprogramming in cancer. The NOX family includes seven isoforms with different activation mechanisms, widely expressed in several tissues. In particular, we dissect the contribute of NOX1, NOX2, and NOX4 enzymes in the modulation of cellular metabolism and highlight their potential role as a new therapeutic target for tumor metabolism rewiring.
Collapse
Affiliation(s)
- Tiziana Pecchillo Cimmino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: (F.C.); (G.E.)
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore S.c.a.r.l., 80131 Naples, Italy
- Correspondence: (F.C.); (G.E.)
| |
Collapse
|
9
|
Hwang S, Kim SH, Yoo KH, Chung MH, Lee JW, Son KH. Exogenous 8-hydroxydeoxyguanosine attenuates doxorubicin-induced cardiotoxicity by decreasing pyroptosis in H9c2 cardiomyocytes. BMC Mol Cell Biol 2022; 23:55. [DOI: 10.1186/s12860-022-00454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractDoxorubicin (DOX), which is widely used in cancer treatment, can induce cardiomyopathy. One of the main mechanisms whereby DOX induces cardiotoxicity involves pyroptosis through the NLR family pyrin domain containing 3 (NLRP3) inflammasome and gasdermin D (GSDMD). Increased NAPDH oxidase (NOX) and oxidative stress trigger pyroptosis. Exogenous 8-hydroxydeoxyguanosine (8-OHdG) decreases reactive oxygen species (ROS) production by inactivating NOX. Here, we examined whether 8-OHdG treatment can attenuate DOX-induced pyroptosis in H9c2 cardiomyocytes. Exposure to DOX increased the peroxidative glutathione redox status and NOX1/2/4, toll-like receptor (TLR)2/4, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) expression, while an additional 8-OHdG treatment attenuated these effects. Furthermore, DOX induced higher expression of NLRP3 inflammasome components, including NLRP3, apoptosis-associated speck-like protein containing a c-terminal caspase recruitment domain (ASC), and pro-caspase-1. Moreover, it increased caspase-1 activity, a marker of pyroptosis, and interleukin (IL)-1β expression. All these effects were attenuated by 8-OHdG treatment. In addition, the expression of the cardiotoxicity markers, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) was increased by DOX, whereas the increase of ANP and BNP induced by DOX treatment was reversed by 8-OHdG. In conclusion, exogenous 8-OHdG attenuated DOX-induced pyroptosis by decreasing the expression of NOX1/2/3, TLR2/4, and NF-κB. Thus, 8-OHdG may attenuate DOX-induced cardiotoxicity through the inhibition of pyroptosis.
Collapse
|
10
|
Trends in Gliosis in Obesity, and the Role of Antioxidants as a Therapeutic Alternative. Antioxidants (Basel) 2022; 11:antiox11101972. [PMID: 36290695 PMCID: PMC9598641 DOI: 10.3390/antiox11101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity remains a global health problem. Chronic low-grade inflammation in this pathology has been related to comorbidities such as cognitive alterations that, in the long term, can lead to neurodegenerative diseases. Neuroinflammation or gliosis in patients with obesity and type 2 diabetes mellitus has been related to the effect of adipokines, high lipid levels and glucose, which increase the production of free radicals. Cerebral gliosis can be a risk factor for developing neurodegenerative diseases, and antioxidants could be an alternative for the prevention and treatment of neural comorbidities in obese patients. AIM Identify the immunological and oxidative stress mechanisms that produce gliosis in patients with obesity and propose antioxidants as an alternative to reducing neuroinflammation. METHOD Advanced searches were performed in scientific databases: PubMed, ProQuest, EBSCO, and the Science Citation index for research on the physiopathology of gliosis in obese patients and for the possible role of antioxidants in its management. CONCLUSION Patients with obesity can develop neuroinflammation, conditioned by various adipokines, excess lipids and glucose, which results in an increase in free radicals that must be neutralized with antioxidants to reduce gliosis and the risk of long-term neurodegeneration.
Collapse
|
11
|
Squizani S, Jantsch J, Rodrigues FDS, Braga MF, Eller S, de Oliveira TF, Silveira AK, Moreira JCF, Giovenardi M, Porawski M, Guedes RP. Zinc Supplementation Partially Decreases the Harmful Effects of a Cafeteria Diet in Rats but Does Not Prevent Intestinal Dysbiosis. Nutrients 2022; 14:3921. [PMID: 36235574 PMCID: PMC9571896 DOI: 10.3390/nu14193921] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Zinc (Zn) plays an important role in metabolic homeostasis and may modulate neurological impairment related to obesity. The present study aimed to evaluate the effect of Zn supplementation on the intestinal microbiota, fatty acid profile, and neurofunctional parameters in obese male Wistar rats. Rats were fed a cafeteria diet (CAF), composed of ultra-processed and highly caloric and palatable foods, for 20 weeks to induce obesity. From week 16, Zn supplementation was started (10 mg/kg/day). At the end of the experiment, we evaluated the colon morphology, composition of gut microbiota, intestinal fatty acids, integrity of the intestinal barrier and blood-brain barrier (BBB), and neuroplasticity markers in the cerebral cortex and hippocampus. Obese rats showed dysbiosis, morphological changes, short-chain fatty acid (SCFA) reduction, and increased saturated fatty acids in the colon. BBB may also be compromised in CAF-fed animals, as claudin-5 expression is reduced in the cerebral cortex. In addition, synaptophysin was decreased in the hippocampus, which may affect synaptic function. Our findings showed that Zn could not protect obese animals from intestinal dysbiosis. However, an increase in acetate levels was observed, which suggests a partial beneficial effect of Zn. Thus, Zn supplementation may not be sufficient to protect from obesity-related dysfunctions.
Collapse
Affiliation(s)
- Samia Squizani
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Jeferson Jantsch
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Fernanda da Silva Rodrigues
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Matheus Filipe Braga
- Acadêmico do Curso de Biomedicina, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Sarah Eller
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Tiago Franco de Oliveira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Alexandre Kleber Silveira
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| | - José Cláudio Fonseca Moreira
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| | - Marcia Giovenardi
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Marilene Porawski
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
- Programa de Pós-Graduação em Medicina: Hepatologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| |
Collapse
|
12
|
Tiedt S, Buchan AM, Dichgans M, Lizasoain I, Moro MA, Lo EH. The neurovascular unit and systemic biology in stroke - implications for translation and treatment. Nat Rev Neurol 2022; 18:597-612. [PMID: 36085420 DOI: 10.1038/s41582-022-00703-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 12/24/2022]
Abstract
Ischaemic stroke is a leading cause of disability and death for which no acute treatments exist beyond recanalization. The development of novel therapies has been repeatedly hindered by translational failures that have changed the way we think about tissue damage after stroke. What was initially a neuron-centric view has been replaced with the concept of the neurovascular unit (NVU), which encompasses neuronal, glial and vascular compartments, and the biphasic nature of neural-glial-vascular signalling. However, it is now clear that the brain is not the private niche it was traditionally thought to be and that the NVU interacts bidirectionally with systemic biology, such as systemic metabolism, the peripheral immune system and the gut microbiota. Furthermore, these interactions are profoundly modified by internal and external factors, such as ageing, temperature and day-night cycles. In this Review, we propose an extension of the concept of the NVU to include its dynamic interactions with systemic biology. We anticipate that this integrated view will lead to the identification of novel mechanisms of stroke pathophysiology, potentially explain previous translational failures, and improve stroke care by identifying new biomarkers of and treatment targets in stroke.
Collapse
Affiliation(s)
- Steffen Tiedt
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), . .,Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Alastair M Buchan
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA).,Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Martin Dichgans
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA).,Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ignacio Lizasoain
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA).,Department of Pharmacology and Toxicology, Complutense Medical School, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Maria A Moro
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA).,Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Eng H Lo
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), . .,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Aggarwal H, Pathak P, Gupta SK, Kumar Y, Jagavelu K, Dikshit M. Serum and cecal metabolic profile of the insulin resistant and dyslipidemic p47 phox knockout mice. Free Radic Res 2022; 56:483-497. [PMID: 36251883 DOI: 10.1080/10715762.2022.2133705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involvement of NOX-dependent oxidative stress in the pathophysiology of metabolic disorders as well as in the maintenance of metabolic homeostasis has been demonstrated previously. In the present study, the metabolic profile in p47phox-/- and WT mice fed on a chow diet was evaluated to assess the role of metabolites in glucose intolerance and dyslipidemia under altered oxidative stress conditions. p47phox-/- mice displayed glucose intolerance, dyslipidemia, hyperglycemia, insulin resistance (IR), hyperinsulinemia, and altered energy homeostasis without any significant change in gluconeogenesis. The expression of genes involved in lipid synthesis and uptake was enhanced in the liver, adipose tissue, and intestine tissues. Similarly, the expression of genes associated with lipid efflux in the liver and intestine was also enhanced. Enhanced gut permeability, inflammation, and shortening of the gut was evident in p47phox-/- mice. Circulating levels of pyrimidines, phosphatidylglycerol lipids, and 3-methyl-2-oxindole were augmented, while level of purine was reduced in the serum. Moreover, the cecal metabolome was also altered, as was evident with the increase in indole-3-acetamide, N-acetyl galactosamine, glycocholate, and a decrease in hippurate, indoxyl sulfate, and indigestible sugars (raffinose and melezitose). Treatment of p47phox-/- mice with pioglitazone, marginally improved glucose intolerance, and dyslipidemia, with an increase in PUFAs (linoleate, docosahexaenoic acid, and arachidonic acid). Overall, the results obtained in p47phox-/- mice indicate an association of IR and dyslipidemia with altered serum and cecal metabolites (both host and bacterial-derived), implying a critical role of NOX-derived ROS in metabolic homeostasis.
Collapse
Affiliation(s)
- Hobby Aggarwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Priya Pathak
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sonu Kumar Gupta
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Yashwant Kumar
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | | | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
14
|
Nascè A, Gariani K, Jornayvaz FR, Szanto I. NADPH Oxidases Connecting Fatty Liver Disease, Insulin Resistance and Type 2 Diabetes: Current Knowledge and Therapeutic Outlook. Antioxidants (Basel) 2022; 11:antiox11061131. [PMID: 35740032 PMCID: PMC9219746 DOI: 10.3390/antiox11061131] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by ectopic fat accumulation in hepatocytes, is closely linked to insulin resistance and is the most frequent complication of type 2 diabetes mellitus (T2DM). One of the features connecting NAFLD, insulin resistance and T2DM is cellular oxidative stress. Oxidative stress refers to a redox imbalance due to an inequity between the capacity of production and the elimination of reactive oxygen species (ROS). One of the major cellular ROS sources is NADPH oxidase enzymes (NOX-es). In physiological conditions, NOX-es produce ROS purposefully in a timely and spatially regulated manner and are crucial regulators of various cellular events linked to metabolism, receptor signal transmission, proliferation and apoptosis. In contrast, dysregulated NOX-derived ROS production is related to the onset of diverse pathologies. This review provides a synopsis of current knowledge concerning NOX enzymes as connective elements between NAFLD, insulin resistance and T2DM and weighs their potential relevance as pharmacological targets to alleviate fatty liver disease.
Collapse
Affiliation(s)
- Alberto Nascè
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - François R. Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: (F.R.J.); (I.S.)
| | - Ildiko Szanto
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland
- Correspondence: (F.R.J.); (I.S.)
| |
Collapse
|
15
|
Microglial FABP4-UCP2 Axis Modulates Neuroinflammation and Cognitive Decline in Obese Mice. Int J Mol Sci 2022; 23:ijms23084354. [PMID: 35457171 PMCID: PMC9032181 DOI: 10.3390/ijms23084354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/22/2023] Open
Abstract
The microglial fatty-acid-binding protein 4-uncoupling protein 2 (FABP4-UCP2) axis is a key regulator of neuroinflammation in high-fat-diet (HFD)-fed animals, indicating a role for FABP4 in brain immune response. We hypothesized that the FABP4-UCP2 axis is involved in regulating diet-induced cognitive decline. We tested cognitive function in mice lacking microglial FABP4 (AKO mice). Fifteen-week-old male AKO and wild-type (WT) mice were maintained on 60% HFD or normal chow (NC) for 12 weeks. Body composition was measured using EchoMRI. Locomotor activity, working memory, and spatial memory were assessed using behavioral tests (open field, T-maze, and Barnes maze, respectively). Hippocampal microgliosis was assessed via immunohistochemical staining. An inflammatory cytokine panel was assayed using hippocampal tissue. Real-time RT-PCR was performed to measure microglial UCP2 mRNA expression. Our data support that loss of FABP4 prevents cognitive decline in vivo. HFD-fed WT mice exhibited impaired long- and short-term memory, in contrast with HFD-fed AKO mice. HFD-fed WT mice had an increase in hippocampal inflammatory cytokine expression (IFNγ, IL-1β, IL-5, IL-6, KC/GRO(CXCL1), IL-10, and TNFα) and microgliosis, and decreased microglial UCP2 expression. HFD-fed AKO mice had decreased hippocampal inflammatory cytokine expression and microgliosis and increased microglial UCP2 expression compared to HFD-fed WT mice. Collectively, our work supports the idea that the FABP4-UCP2 axis represents a potential therapeutic target in preventing diet-induced cognitive decline.
Collapse
|
16
|
Liu J, Sun Q, Sun M, Lin L, Ren X, Li T, Xu Q, Sun Z, Duan J. Melatonin alleviates PM 2.5-triggered macrophage M1 polarization and atherosclerosis via regulating NOX2-mediated oxidative stress homeostasis. Free Radic Biol Med 2022; 181:166-179. [PMID: 35149217 DOI: 10.1016/j.freeradbiomed.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/20/2022]
Abstract
It is reported that oxidative stress homeostasis was involved in PM2.5-induced foam cell formation and progression of atherosclerosis, but the exact molecular mechanism is still unclear. Melatonin is an effective antioxidant that could reverse the cardiopulmonary injury. The main purpose of this study is to investigate the latent mechanism of PM2.5-triggered atherosclerosis development and the protective role of melatonin administration. Vascular Doppler ultrasound showed that PM2.5 exposure reduced aortic elasticity in ApoE-/- mice. Meanwhile, blood biochemical and pathological analysis demonstrated that PM2.5 exposure caused dyslipidemia, elicited oxidative damage of aorta and was accompanied by an increase in atherosclerotic plaque area; while the melatonin administration could effectively alleviate PM2.5-induced macrophage M1 polarization and atherosclerosis in mice. Further investigation verified that NADPH oxidase 2 (NOX2) and mitochondria are two prominent sources of PM2.5-induced ROS production in vascular macrophages. Whereas, the combined use of two ROS-specific inhibitors and adopted with melatonin markedly rescued PM2.5-triggered macrophage M1 polarization and foam cell formation by inhibiting NOX2-mediated crosstalk of Keap1/Nrf2/NF-κB and TLR4/TRAF6/NF-κB signaling pathways. Our results demonstrated that NOX2-mediated oxidative stress homeostasis is critical for PM2.5-induced atherosclerosis and melatonin might be a potential treatment for air pollution-related cardiovascular diseases.
Collapse
Affiliation(s)
- Jiangyan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qing Xu
- Core Facilities for Electrophysiology, Core Facilities Center, Capital Medical University, Beijing, 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
17
|
Wahid RM, Samy W, El-Sayed SF. Cognitive impairment in obese rat model: role of glial cells. Int J Obes (Lond) 2021; 45:2191-2196. [PMID: 34140627 DOI: 10.1038/s41366-021-00880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Obesity is a worldwide problem. Some studies revealed that it leads to deterioration of the cognitive function, regardless of age. AIM OF THE STUDY explore the effect of obesity on cognitive function in a rat model of obesity highlighting the role of glial cells. MATERIALS AND METHODS twenty adult male albino rats were assigned to two groups: group I: consumed normal diet, group II: consumed high-fat diet. Body Mass Index (BMI), serum glucose, insulin, HOMA IR and lipid profile were measured. Also, hippocampal expression of Brain derived neurotrophic factor (Bdnf), synapsin, Ionized calcium binding adaptor molecule 1 (Iba), nuclear factor erythroid -related factor 2 (Nrf2), Myelin basic protein (Mbp) were measured by real-time polymerase chain reaction. The Morris Water Maze is a test used to assess spatial learning and memory capacities of rats. RESULTS There was a high significant increase in lipid profile, serum glucose, insulin serum levels and HOMA-IR in obese groups with impaired Morris water maze performance compared to control group. There was a significant downregulation in hippocampal Bdnf and synapsin mRNA expression. In addition to decrease in Mbp mRNA expression (P < 0.001). This could be explained by oxidative stress through significant downregulation of Nrf2 mRNA, and inflammation observed in significant upregulation Iba mRNA gene expression in the obese group. CONCLUSION Many factors contribute to obesity associated cognitive impairment. In our study, we figured out the crucial roles of glial cells including microglial activation and oligodendrocytes affection with other underlying mechanisms including oxidative stress and hippocampal inflammation.
Collapse
Affiliation(s)
- Reham M Wahid
- Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Walaa Samy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sherein F El-Sayed
- Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Fiorani M, De Matteis R, Canonico B, Blandino G, Mazzoli A, Montanari M, Guidarelli A, Cantoni O. Temporal correlation of morphological and biochemical changes with the recruitment of different mechanisms of reactive oxygen species formation during human SW872 cell adipogenic differentiation. Biofactors 2021; 47:837-851. [PMID: 34260117 PMCID: PMC8597007 DOI: 10.1002/biof.1769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/29/2021] [Indexed: 12/22/2022]
Abstract
Human SW872 preadipocyte conversion to mature adipocytes is associated with time-dependent changes in differentiation markers' expression and with morphological changes accompanied by the accumulation of lipid droplets (LDs) as well as by increased mitochondriogenesis and mitochondrial membrane potential. Under identical conditions, the formation of reactive oxygen species (ROS) revealed with a general probe was significant at days 3 and 10 of differentiation and bearly detectable at day 6. NADPH oxidase (NOX)-2 activity determined with an immunocytochemical approach followed a very similar pattern. There was no evidence of mitochondrial ROS (mROS), as detected with a selective fluorescence probe, at days 3 and 6, possibly due to the triggering of the Nrf-2 antioxidant response. mROS were instead clearly detected at day 10, concomitantly with the accumulation of very large LDs, oxidation of both cardiolipin and thioredoxin 2, and decreased mitochondrial glutathione. In conclusion, the morphological and biochemical changes of differentiating SW872 cells are accompanied by the discontinuous formation of ROS derived from NOX-2, increasingly implicated in adipogenesis and adipose tissue dysfunction. In addition, mROS formation was significant only in the late phase of differentiation and was associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mara Fiorani
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Rita De Matteis
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Barbara Canonico
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Giulia Blandino
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Alessandro Mazzoli
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Mariele Montanari
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Andrea Guidarelli
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Orazio Cantoni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| |
Collapse
|
19
|
Cole KR, Yen CL, Dudley-Javoroski S, Shields RK. NIH Toolbox Cognition Battery in Young and Older Adults: Reliability and Relationship to Adiposity and Physical Activity. J Geriatr Phys Ther 2021; 44:51-59. [PMID: 31567883 PMCID: PMC7093212 DOI: 10.1519/jpt.0000000000000244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND PURPOSE Executive function in normal aging may be modulated by body habitus and adiposity, both factors modified by physical therapist prescriptions. This study measured between-day reliability of executive function metrics in young and older individuals and examined associations between cognition, adiposity, and physical activity. METHODS Forty-three young and 24 older participants underwent executive function assessment via the National Institutes of Health Toolbox Cognition Battery (Dimensional Change Card Sort, Flanker Inhibitory Control and Attention [Flanker], and List Sorting Working Memory [List Sorting]) at 7-day intervals. Between-day reliability was assessed via intraclass correlation (ICC). Responsiveness was assessed via between-day effect size and Cohen's d. Forward stepwise linear regression examined associations between cognition and age, body mass index, percent body fat, and a self-report measure of physical activity (International Physical Activity Questionnaire Short Form). RESULTS AND DISCUSSION Executive function scores were higher for young participants than for older participants (all P < .002), consistent with typical age-related cognitive decline. Reliability of cognitive metrics was higher for older participants (ICC = 0.483-0.917) than for young participants (ICC = 0.386-0.730). Between-day effect sizes were approximately 50% smaller for older participants. Percent body fat significantly correlated with the Flanker Unadjusted Scale (P = .004, R2 = 0.0772). Neither vigorous nor total physical activity correlated with any cognitive metric. CONCLUSIONS Older participants demonstrated greater between-day reliability for executive function measures, while young participants showed greater capacity to improve performance upon repeat exposure to a cognitive test (especially Flanker). Percent body fat correlated significantly with Flanker scores, while body mass index (an indirect measure of body fat) did not. Self-reported physical activity did not correlate with executive function. Cognitive response to physical therapist-prescribed exercise is a fertile ground for future research.
Collapse
Affiliation(s)
- Keith R Cole
- Department of Health, Human Function, and Rehabilitation Sciences, The George Washington University, Washington, District of Columbia
| | - Chu-Ling Yen
- Department of Neurology, Division of Cerebrovascular Diseases, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shauna Dudley-Javoroski
- Department of Physical Therapy and Rehabilitation Science, The University of Iowa, Iowa City
| | - Richard K Shields
- Department of Physical Therapy and Rehabilitation Science, The University of Iowa, Iowa City
| |
Collapse
|
20
|
β-Glucan from Lentinula edodes prevents cognitive impairments in high-fat diet-induced obese mice: involvement of colon-brain axis. J Transl Med 2021; 19:54. [PMID: 33541370 PMCID: PMC7863530 DOI: 10.1186/s12967-021-02724-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Background Long-term high fat (HF) diet intake can cause neuroinflammation and cognitive decline through the gut-brain axis. (1, 3)/(1, 6)-β-glucan, an edible polysaccharide isolated from medical mushroom, Lentinula edodes (L. edodes), has the potential to remodel gut microbiota. However, the effects of L. edodes derived β-glucan against HF diet-induced neuroinflammation and cognitive decline remain unknown. This study aimed to evaluate the neuroprotective effect and mechanism of dietary L edodes β-glucan supplementation against the obesity-associated cognitive decline in mice fed by a HF diet. Methods C57BL/6J male mice were fed with either a lab chow (LC), HF or HF with L. edodes β-glucan supplementation diets for 7 days (short-term) or 15 weeks (long-term). Cognitive behavior was examined; blood, cecum content, colon and brain were collected to evaluate metabolic parameters, endotoxin, gut microbiota, colon, and brain pathology. Results We reported that short-term and long-term L. edodes β-glucan supplementation prevented the gut microbial composition shift induced by the HF diet. Long-term L. edodes β-glucan supplementation prevented the HF diet-induced recognition memory impairment assessed by behavioral tests (the temporal order memory, novel object recognition and Y-maze tests). In the prefrontal cortex and hippocampus, the β-glucan supplementation ameliorated the alteration of synaptic ultrastructure, neuroinflammation and brain-derived neurotrophic factor (BDNF) deficits induced by HF diet. Furthermore, the β-glucan supplementation increased the mucosal thickness, upregulated the expression of tight junction protein occludin, decreased the plasma LPS level, and inhibited the proinflammatory macrophage accumulation in the colon of mice fed by HF diet. Conclusions This study revealed that L. edodes β-glucan prevents cognitive impairments induced by the HF diet, which may occur via colon-brain axis improvement. The finding suggested that dietary L. edodes β-glucan supplementation may be an effective nutritional strategy to prevent obesity-associated cognitive decline.
Collapse
|
21
|
Dionysopoulou S, Charmandari E, Bargiota A, Vlahos NF, Mastorakos G, Valsamakis G. The Role of Hypothalamic Inflammation in Diet-Induced Obesity and Its Association with Cognitive and Mood Disorders. Nutrients 2021; 13:498. [PMID: 33546219 PMCID: PMC7913301 DOI: 10.3390/nu13020498] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is often associated with cognitive and mood disorders. Recent evidence suggests that obesity may cause hypothalamic inflammation. Our aim was to investigate the hypothesis that there is a causal link between obesity-induced hypothalamic inflammation and cognitive and mood disorders. Inflammation may influence hypothalamic inter-connections with regions important for cognition and mood, while it may cause dysregulation of the Hypothalamic-Pituitary-Adrenal (HPA) axis and influence monoaminergic systems. Exercise, healthy diet, and glucagon-like peptide receptor agonists, which can reduce hypothalamic inflammation in obese models, could improve the deleterious effects on cognition and mood.
Collapse
Affiliation(s)
- Sofia Dionysopoulou
- Division of Endocrinology, Metabolism and Diabetes, Hippocratio General Hospital, 11527 Athens, Greece;
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece;
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larisa, Medical School of Larisa, University of Thessaly, 41334 Larisa, Greece;
| | - Nikolaos F Vlahos
- 2nd Department of Obstetrics and Gynecology, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - George Mastorakos
- Endocrine Unit, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Georgios Valsamakis
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larisa, Medical School of Larisa, University of Thessaly, 41334 Larisa, Greece;
- Endocrine Unit, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
22
|
Hashioka S, Wu Z, Klegeris A. Glia-Driven Neuroinflammation and Systemic Inflammation in Alzheimer's Disease. Curr Neuropharmacol 2021; 19:908-924. [PMID: 33176652 PMCID: PMC8686312 DOI: 10.2174/1570159x18666201111104509] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022] Open
Abstract
The neuroinflammatory hypothesis of Alzheimer's disease (AD) was proposed more than 30 years ago. The involvement of the two main types of glial cells microglia and astrocytes, in neuroinflammation, was suggested early on. In this review, we highlight that the exact contributions of reactive glia to AD pathogenesis remain difficult to define, likely due to the heterogeneity of glia populations and alterations in their activation states through the stages of AD progression. In the case of microglia, it is becoming apparent that both beneficially and adversely activated cell populations can be identified at various stages of AD, which could be selectively targeted to either limit their damaging actions or enhance beneficial functions. In the case of astrocytes, less information is available about potential subpopulations of reactive cells; it also remains elusive whether astrocytes contribute to the neuropathology of AD by mainly gaining neurotoxic functions or losing their ability to support neurons due to astrocyte damage. We identify L-type calcium channel blocker, nimodipine, as a candidate drug for AD, which potentially targets both astrocytes and microglia. It has already shown consistent beneficial effects in basic experimental and clinical studies. We also highlight the recent evidence linking peripheral inflammation and neuroinflammation. Several chronic systemic inflammatory diseases, such as obesity, type 2 diabetes mellitus, and periodontitis, can cause immune priming or adverse activation of glia, thus exacerbating neuroinflammation and increasing risk or facilitating the progression of AD. Therefore, reducing peripheral inflammation is a potentially effective strategy for lowering AD prevalence.
Collapse
Affiliation(s)
- Sadayuki Hashioka
- Address correspondence to these authors at the Department of Psychiatry, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan;, E-mail: and Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada; E-mail:
| | | | - Andis Klegeris
- Address correspondence to these authors at the Department of Psychiatry, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan;, E-mail: and Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada; E-mail:
| |
Collapse
|
23
|
Leonardi BF, Gosmann G, Zimmer AR. Modeling Diet-Induced Metabolic Syndrome in Rodents. Mol Nutr Food Res 2020; 64:e2000249. [PMID: 32978870 DOI: 10.1002/mnfr.202000249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Standardized animal models represent one of the most valuable tools available to understand the mechanism underlying the metabolic syndrome (MetS) and to seek for new therapeutic strategies. However, there is considerable variability in the studies conducted with this essential purpose. This review presents an updated discussion of the most recent studies using diverse experimental conditions to induce MetS in rodents with unbalanced diets, discusses the key findings in metabolic outcomes, and critically evaluates what we have been learned from them and how to advance in the field. The study includes scientific reports sourced from the Web of Science and PubMed databases, published between January 2013 and June 2020, which used hypercaloric diets to induce metabolic disorders, and address the impact of the diet on metabolic parameters. The collected data are used as support to discuss variables such as sex, species, and age of the animals, the most favorable type of diet, and the ideal diet length to generate metabolic changes. The experimental characteristics propose herein improve the performance of a preclinical model that resembles the human MetS and will guide researchers to investigate new therapeutic alternatives with confidence and higher translational validity.
Collapse
Affiliation(s)
- Bianca F Leonardi
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Grace Gosmann
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Aline R Zimmer
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
24
|
Deficiency in gp91Phox (NOX2) Protects against Oxidative Stress and Cardiac Dysfunction in Iron Overloaded Mice. HEARTS 2020. [DOI: 10.3390/hearts1020012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The role of NADPH oxidase subunit, gp91phox (NOX2) in development of oxidative stress and cardiac dysfunction due to iron (Fe)-overload was assessed. Control (C57BL/6J) and gp91phox knockout (KO) mice were treated for up to 8 weeks with Fe (2.5 mg/g/wk, i.p.) or Na-dextran; echocardiography, plasma 8-isoprostane (lipid peroxidation marker), cardiac Fe accumulation (Perl’s staining), and CD11b+ (WBCs) infiltrates were assessed. Fe caused no adverse effects on cardiac function at 3 weeks. At 6 weeks, significant declines in left ventricular (LV) ejection fraction (14.6% lower), and fractional shortening (19.6% lower) occurred in the Fe-treated control, but not in KO. Prolonging Fe treatment (8 weeks) maintained the depressed LV systolic function with a trend towards diastolic dysfunction (15.2% lower mitral valve E/A ratio) in controls but produced no impact on the KO. Fe-treatment (8 weeks) caused comparable cardiac Fe accumulation in both strains, but a 3.3-fold elevated plasma 8-isoprostane, and heightened CD11b+ staining in controls. In KO mice, lipid peroxidation and CD11b+ infiltration were 50% and 68% lower, respectively. Thus, gp91phox KO mice were significantly protected against oxidative stress, and systolic and diastolic dysfunction, supporting an important role of NOX2-mediated oxidative stress in causing cardiac dysfunction during Fe overload.
Collapse
|
25
|
Marchini T, Zirlik A, Wolf D. Pathogenic Role of Air Pollution Particulate Matter in Cardiometabolic Disease: Evidence from Mice and Humans. Antioxid Redox Signal 2020; 33:263-279. [PMID: 32403947 DOI: 10.1089/ars.2020.8096] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Air pollution is a considerable global threat to human health that dramatically increases the risk for cardiovascular pathologies, such as atherosclerosis, myocardial infarction, and stroke. An estimated 4.2 million cases of premature deaths worldwide are attributable to outdoor air pollution. Among multiple other components, airborne particulate matter (PM) has been identified as the major bioactive constituent in polluted air. While PM-related illness was historically thought to be confined to diseases of the respiratory system, overwhelming clinical and experimental data have now established that acute and chronic exposure to PM causes a systemic inflammatory and oxidative stress response that promotes cardiovascular disease. Recent Advances: A large body of evidence has identified an impairment of redox metabolism and the generation of oxidatively modified lipids and proteins in the lung as initial tissue response to PM. In addition, the pathogenicity of PM is mediated by an inflammatory response that involves PM uptake by tissue-resident immune cells, the activation of proinflammatory pathways in various cell types and organs, and the release of proinflammatory cytokines as locally produced tissue response signals that have the ability to affect organ function in a remote manner. Critical Issues: In the present review, we summarize and discuss the functional participation of PM in cardiovascular pathologies and its risk factors with an emphasis on how oxidative stress, inflammation, and immunity interact and synergize as a response to PM. Future Directions: The impact of PM constituents, doses, and novel anti-inflammatory therapies against PM-related illness is also discussed.
Collapse
Affiliation(s)
- Timoteo Marchini
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Department of Cardiology, University Heart Center Graz, Medical University Graz, Graz, Austria
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Obesity Drives Delayed Infarct Expansion, Inflammation, and Distinct Gene Networks in a Mouse Stroke Model. Transl Stroke Res 2020; 12:331-346. [PMID: 32588199 DOI: 10.1007/s12975-020-00826-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 01/11/2023]
Abstract
Obesity is associated with chronic peripheral inflammation, is a risk factor for stroke, and causes increased infarct sizes. To characterize how obesity increases infarct size, we fed a high-fat diet to wild-type C57BL/6J mice for either 6 weeks or 15 weeks and then induced distal middle cerebral artery strokes. We found that infarct expansion happened late after stroke. There were no differences in cortical neuroinflammation (astrogliosis, microgliosis, or pro-inflammatory cytokines) either prior to or 10 h after stroke, and also no differences in stroke size at 10 h. However, by 3 days after stroke, animals fed a high-fat diet had a dramatic increase in microgliosis and astrogliosis that was associated with larger strokes and worsened functional recovery. RNA sequencing revealed a dramatic increase in inflammatory genes in the high-fat diet-fed animals 3 days after stroke that were not present prior to stroke. Genetic pathways unique to diet-induced obesity were primarily related to adaptive immunity, extracellular matrix components, cell migration, and vasculogenesis. The late appearance of neuroinflammation and infarct expansion indicates that there may be a therapeutic window between 10 and 36 h after stroke where inflammation and obesity-specific transcriptional programs could be targeted to improve outcomes in people with obesity and stroke.
Collapse
|
27
|
De Luca SN, Miller AA, Sominsky L, Spencer SJ. Microglial regulation of satiety and cognition. J Neuroendocrinol 2020; 32:e12838. [PMID: 32097992 DOI: 10.1111/jne.12838] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
Microglia have been known for decades as key immune cells that shape the central nervous system (CNS) during development and respond to brain pathogens and injury in adult life. Recent findings now suggest that these cells also play a highly complex role in several other functions of the CNS. In this review, we provide a brief overview of the established microglial functions in development and disease. We also discuss emerging research suggesting that microglia are important for both cognitive function and the regulation of food intake. With respect to cognitive function, current data suggest microglia are not indispensable for neurogenesis, synaptogenesis or cognition in the healthy young adult, although they crucially modulate and support these functions. In doing so, they are likely important in supporting the balance between apoptosis and survival of newborn neurones and in orchestrating appropriate synaptic remodelling in response to a learning stimulus. We also explore the possibility of a role for microglia in feeding and satiety. Microglia have been implicated in both appetite suppression with sickness and obesity and in promoting feeding under some conditions and we discuss these findings here, highlighting the contribution of these cells to healthy brain function.
Collapse
Affiliation(s)
- Simone N De Luca
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Alyson A Miller
- Institute of Cardiovascular & Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
28
|
NADPH Oxidase 2 Mediates Myocardial Oxygen Wasting in Obesity. Antioxidants (Basel) 2020; 9:antiox9020171. [PMID: 32093119 PMCID: PMC7070669 DOI: 10.3390/antiox9020171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity and diabetes are independent risk factors for cardiovascular diseases, and they are associated with the development of a specific cardiomyopathy with elevated myocardial oxygen consumption (MVO2) and impaired cardiac efficiency. Although the pathophysiology of this cardiomyopathy is multifactorial and complex, reactive oxygen species (ROS) may play an important role. One of the major ROS-generating enzymes in the cardiomyocytes is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), and many potential systemic activators of NOX2 are elevated in obesity and diabetes. We hypothesized that NOX2 activity would influence cardiac energetics and/or the progression of ventricular dysfunction following obesity. Myocardial ROS content and mechanoenergetics were measured in the hearts from diet-induced-obese wild type (DIOWT) and global NOK2 knock-out mice (DIOKO) and in diet-induced obese C57BL/6J mice given normal water (DIO) or water supplemented with the NOX2-inhibitor apocynin (DIOAPO). Mitochondrial function and ROS production were also assessed in DIO and DIOAPO mice. This study demonstrated that ablation and pharmacological inhibition of NOX2 both improved mechanical efficiency and reduced MVO2 for non-mechanical cardiac work. Mitochondrial ROS production was also reduced following NOX2 inhibition, while cardiac mitochondrial function was not markedly altered by apocynin-treatment. Therefore, these results indicate a link between obesity-induced myocardial oxygen wasting, NOX2 activation, and mitochondrial ROS.
Collapse
|
29
|
Henríquez-Olguín C, Boronat S, Cabello-Verrugio C, Jaimovich E, Hidalgo E, Jensen TE. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxid Redox Signal 2019; 31:1371-1410. [PMID: 31588777 PMCID: PMC6859696 DOI: 10.1089/ars.2018.7678] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Skeletal muscle is a crucial tissue to whole-body locomotion and metabolic health. Reactive oxygen species (ROS) have emerged as intracellular messengers participating in both physiological and pathological adaptations in skeletal muscle. A complex interplay between ROS-producing enzymes and antioxidant networks exists in different subcellular compartments of mature skeletal muscle. Recent evidence suggests that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major source of contraction- and insulin-stimulated oxidants production, but they may paradoxically also contribute to muscle insulin resistance and atrophy. Recent Advances: Pharmacological and molecular biological tools, including redox-sensitive probes and transgenic mouse models, have generated novel insights into compartmentalized redox signaling and suggested that NOX2 contributes to redox control of skeletal muscle metabolism. Critical Issues: Major outstanding questions in skeletal muscle include where NOX2 activation occurs under different conditions in health and disease, how NOX2 activation is regulated, how superoxide/hydrogen peroxide generated by NOX2 reaches the cytosol, what the signaling mediators are downstream of NOX2, and the role of NOX2 for different physiological and pathophysiological processes. Future Directions: Future research should utilize and expand the current redox-signaling toolbox to clarify the NOX2-dependent mechanisms in skeletal muscle and determine whether the proposed functions of NOX2 in cells and animal models are conserved into humans.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Carpi S, Scoditti E, Massaro M, Polini B, Manera C, Digiacomo M, Esposito Salsano J, Poli G, Tuccinardi T, Doccini S, Santorelli FM, Carluccio MA, Macchia M, Wabitsch M, De Caterina R, Nieri P. The Extra-Virgin Olive Oil Polyphenols Oleocanthal and Oleacein Counteract Inflammation-Related Gene and miRNA Expression in Adipocytes by Attenuating NF-κB Activation. Nutrients 2019; 11:nu11122855. [PMID: 31766503 PMCID: PMC6950227 DOI: 10.3390/nu11122855] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation of the adipose tissue plays an important role in the development of several chronic diseases associated with obesity. Polyphenols of extra virgin olive oil (EVOO), such as the secoiridoids oleocanthal (OC) and oleacein (OA), have many nutraceutical proprieties. However, their roles in obesity-associated adipocyte inflammation, the NF-κB pathway and related sub-networks have not been fully elucidated. Here, we investigated impact of OC and OA on the activation of NF-κB and the expression of molecules associated with inflammatory and dysmetabolic responses. To this aim, fully differentiated Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were pre-treated with OC or OA before stimulation with TNF-α. EVOO polyphenols significantly reduced the expression of genes implicated in adipocyte inflammation (IL-1β, COX-2), angiogenesis (VEGF/KDR, MMP-2), oxidative stress (NADPH oxidase), antioxidant enzymes (SOD and GPX), leukocytes chemotaxis and infiltration (MCP-1, CXCL-10, MCS-F), and improved the expression of the anti-inflammatory/metabolic effector PPARγ. Accordingly, miR-155-5p, miR-34a-5p and let-7c-5p, tightly connected with the NF-κB pathway, were deregulated by TNF-α in both cells and exosomes. The miRNA modulation and NF-κB activation by TNF-α was significantly counteracted by EVOO polyphenols. Computational studies suggested a potential direct interaction between OC and NF-κB at the basis of its activity. This study demonstrates that OC and OA counteract adipocyte inflammation attenuating NF-κB activation. Therefore, these compounds could be novel dietary tools for the prevention of inflammatory diseases associated with obesity.
Collapse
Affiliation(s)
- Sara Carpi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2219597
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (E.S.); (M.M.); (M.A.C.)
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (E.S.); (M.M.); (M.A.C.)
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
| | - Jasmine Esposito Salsano
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Doctoral School in Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (S.D.); (F.M.S.)
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (S.D.); (F.M.S.)
| | - Maria Annunziata Carluccio
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (E.S.); (M.M.); (M.A.C.)
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
| | - Martin Wabitsch
- Division of Pediatric Endocrinology, Diabetes and Obesity, Department of Pediatrics and Adolescent Medicine, University of Ulm, 89075 Ulm, Germany;
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
31
|
Tan BL, Norhaizan ME. Effect of High-Fat Diets on Oxidative Stress, Cellular Inflammatory Response and Cognitive Function. Nutrients 2019; 11:nu11112579. [PMID: 31731503 PMCID: PMC6893649 DOI: 10.3390/nu11112579] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
Cognitive dysfunction is linked to chronic low-grade inflammatory stress that contributes to cell-mediated immunity in creating an oxidative environment. Food is a vitally important energy source; it affects brain function and provides direct energy. Several studies have indicated that high-fat consumption causes overproduction of circulating free fatty acids and systemic inflammation. Immune cells, free fatty acids, and circulating cytokines reach the hypothalamus and initiate local inflammation through processes such as microglial proliferation. Therefore, the role of high-fat diet (HFD) in promoting oxidative stress and neurodegeneration is worthy of further discussion. Of particular interest in this article, we highlight the associations and molecular mechanisms of HFD in the modulation of inflammation and cognitive deficits. Taken together, a better understanding of the role of oxidative stress in cognitive impairment following HFD consumption would provide a useful approach for the prevention of cognitive dysfunction.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-8947-2427
| |
Collapse
|
32
|
Ronis MJ, Blackburn ML, Shankar K, Ferguson M, Cleves MA, Badger TM. Estradiol and NADPH oxidase crosstalk regulates responses to high fat feeding in female mice. Exp Biol Med (Maywood) 2019; 244:834-845. [PMID: 31161785 DOI: 10.1177/1535370219853563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We previously demonstrated protection against high fat-induced obesity in female but not male p47phox−/− mice lacking NADPH oxidase NOX1/2 activity. To test the role of estradiol (E2)-NOX crosstalk in development of this sexually dimorphic phenotype, we fed diets containing 42% fat/0.5% cholesterol to intact and ovariectomized wild type female C57BL/6 mice and female p47phox−/− mice and to ovariectomized mice where the diet was supplemented with an 1 mg/kg 17β estradiol (E2) for 12 weeks from PND28. Weight gain, gonadal fat pad weight, serum leptin and adiponectin, and adipose tissue inflammation were greater in intact wild type vs. p47 mice ( P < 0.05). Genotype effects on body weight/fat mass were abolished after ovariectomized and restored in OVX + E2 mice ( P < 0.05). The mRNA of downstream PPARγ targets CD36, lipoprotein lipase, and leptin was higher in intact wild type vs. p47phox−/− mice mice ( P < 0.05). Likewise, intact high fat-fed wild type mice had higher expression of the cytokine Mcp1; the pyroptosis marker Nirp3 and matrix remodeling and fibrosis markers Mmp2, Col1A1, and Col6a3 mRNAs ( P < 0.05). These genotype effects were reversed and restored by ovariectomized and OVX + E2, respectively ( P < 0.05). These data suggest that triglyceride accumulation in adipose tissue and development of adipose tissue injury in response to feeding diets high in fat and cholesterol is regulated by the balance between NOX-dependent reactive oxygen species signaling and E2-signaling during development. Loss of estrogens post menopause may increase the risk of obesity and metabolic syndrome as the result disinhibition of reactive oxygen species signaling. Impact statement Estrogens are known to regulate body composition. In addition, reactive oxygen species (ROS) produced by the action of NADPH oxidase (NOX) enzymes have been linked to obesity development. We examined development of obesity and adipose tissue injury in response to feeding “Western” diets high in fat and cholesterol in intact, ovariectomized (OVX), and estrogen-replaced (OVX + E2) wild type and p47phox−/− female mice where NOX2 activity is inhibited. Weight gain, gonadal fat pad weight, and adipose tissue inflammation were greater in intact WT vs. p47phox−/− mice. Genotype effects on body weight/fat mass were abolished after OVX and restored in OVX + E2 mice. These data indicate adipose tissue responses to feeding the “Western” diet is regulated by negative cross-talk between NOX-dependent ROS signaling and E2-signaling during development. Loss of estrogens post menopause may increase the risk of obesity and metabolic syndrome as the result disinhibition of ROS signaling.
Collapse
Affiliation(s)
- Martin J Ronis
- 1 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,2 Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA.,3 Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michael L Blackburn
- 1 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,2 Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
| | - Kartik Shankar
- 1 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,2 Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
| | - Matthew Ferguson
- 1 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,2 Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
| | - Mario A Cleves
- 1 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,2 Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
| | - Thomas M Badger
- 1 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,2 Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
| |
Collapse
|
33
|
Han DG, Ahn CB, Lee JH, Hwang Y, Kim JH, Park KY, Lee JW, Son KH. Optimization of Electrospun Poly(caprolactone) Fiber Diameter for Vascular Scaffolds to Maximize Smooth Muscle Cell Infiltration and Phenotype Modulation. Polymers (Basel) 2019; 11:E643. [PMID: 30970611 PMCID: PMC6523610 DOI: 10.3390/polym11040643] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 12/22/2022] Open
Abstract
Due to the morphological resemblance between the electrospun nanofibers and extracellular matrix (ECM), electrospun fibers have been widely used to fabricate scaffolds for tissue regeneration. Relationships between scaffold morphologies and cells are cell type dependent. In this study, we sought to determine an optimum electrospun fiber diameter for human vascular smooth muscle cell (VSMC) regeneration in vascular scaffolds. Scaffolds were produced using poly(caprolactone) (PCL) electrospun fiber diameters of 0.5, 0.7, 1, 2, 2.5, 5, 7 or 10 μm, and VSMC survivals, proliferations, infiltrations, and phenotypes were recorded after culturing cells on these scaffolds for one, four, seven, or 10 days. VSMC phenotypes and macrophage infiltrations into scaffolds were evaluated by implanting scaffolds subcutaneously in a mouse for seven, 14, or 28 days. We found that human VSMC survival was not dependent on the electrospun fiber diameter. In summary, increasing fiber diameter reduced VSMC proliferation, increased VSMC infiltration and increased macrophage infiltration and activation. Our results indicate that electrospun PCL fiber diameters of 7 or 10 µm are optimum in terms of VSMC infiltration and macrophage infiltration and activation, albeit at the expense of VSMC proliferation.
Collapse
Affiliation(s)
- Dae Geun Han
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155 Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea.
| | - Chi Bum Ahn
- Department of Molecular Medicine, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea.
| | - Ji-Hyun Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si 31151, Korea.
| | - Joo Hyun Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155 Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea.
| | - Kook Yang Park
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774 Beon-gil, Namdong-gu, Incheon 21565, Korea.
| | - Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155 Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea.
- Department of Molecular Medicine, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea.
| | - Kuk Hui Son
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155 Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea.
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774 Beon-gil, Namdong-gu, Incheon 21565, Korea.
| |
Collapse
|
34
|
Maciejczyk M, Żebrowska E, Chabowski A. Insulin Resistance and Oxidative Stress in the Brain: What's New? Int J Mol Sci 2019; 20:ijms20040874. [PMID: 30781611 PMCID: PMC6413037 DOI: 10.3390/ijms20040874] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
The latest studies have indicated a strong relationship between systemic insulin resistance (IR) and higher incidence of neurodegeneration, dementia, and mild cognitive impairment. Although some of these abnormalities could be explained by chronic hyperglycaemia, hyperinsulinemia, dyslipidaemia, and/or prolonged whole-body inflammation, the key role is attributed to the neuronal redox imbalance and oxidative damage. In this mini review, we provide a schematic overview of intracellular oxidative stress and mitochondrial abnormalities in the IR brain. We highlight important correlations found so far between brain oxidative stress, ceramide generation, β-amyloid accumulation, as well as neuronal apoptosis in the IR conditions.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c Str., 15-222 Bialystok, Poland.
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c Str., 15-222 Bialystok, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c Str., 15-222 Bialystok, Poland.
| |
Collapse
|
35
|
Spencer SJ, Basri B, Sominsky L, Soch A, Ayala MT, Reineck P, Gibson BC, Barrientos RM. High-fat diet worsens the impact of aging on microglial function and morphology in a region-specific manner. Neurobiol Aging 2019; 74:121-134. [PMID: 30448612 PMCID: PMC6331275 DOI: 10.1016/j.neurobiolaging.2018.10.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/18/2018] [Accepted: 10/14/2018] [Indexed: 12/29/2022]
Abstract
Hippocampal microglia are vulnerable to the effects of aging, displaying a primed phenotype and hyper-responsiveness to various stimuli. We have previously shown that short-term high-fat diet (HFD) significantly impairs hippocampal- and amygdala-based cognitive function in the aged without affecting it in the young. Here, we assessed if morphological and functional changes in microglia might be responsible for this. We analyzed hippocampus and amygdala from young and aging rats that had been given three days HFD, a treatment sufficient to cause both hippocampal- and amygdala-dependent cognitive and neuroinflammatory differences in the aged. Aging led to the expected priming of hippocampal microglia in that it increased microglial numbers and reduced branching in this region. Aging also increased microglial phagocytosis of microbeads in the hippocampus, but the only effect of HFD in this region was to increase the presence of enlarged synaptophysin boutons in the aged, indicative of neurodegeneration. In the amygdala, HFD exacerbated the effects of aging on microglial priming (morphology) and markedly suppressed phagocytosis without notably affecting synaptophysin. These data reveal that, like the hippocampus, the amygdala displays aging-related microglial priming. However, the microglia in this region are also uniquely vulnerable to the detrimental effects of short-term HFD in aging.
Collapse
Affiliation(s)
- Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| | - Bashirah Basri
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Alita Soch
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Monica T Ayala
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, Melbourne, VIC, Australia; School of Science, RMIT University, Melbourne, VIC, Australia
| | - Brant C Gibson
- ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, Melbourne, VIC, Australia; School of Science, RMIT University, Melbourne, VIC, Australia
| | - Ruth M Barrientos
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
36
|
Cremonini E, Fraga CG, Oteiza PI. (-)-Epicatechin in the control of glucose homeostasis: Involvement of redox-regulated mechanisms. Free Radic Biol Med 2019; 130:478-488. [PMID: 30447350 DOI: 10.1016/j.freeradbiomed.2018.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/05/2018] [Accepted: 11/10/2018] [Indexed: 01/07/2023]
Abstract
Emerging evidence supports a beneficial action of the flavan-3-ol (-)-epicatechin (EC) on insulin sensitivity and potential impact on the development/progression of type 2 diabetes (T2D). In humans, supplementation with EC-rich foods, extracts, and pure EC improves insulin sensitivity and glucose tolerance in normal weight, overweight, obese and T2D individuals. These effects of EC are also observed in rodent models of diet-induced obesity and T2D. The events involved in the development of insulin resistance and T2D are multiple and interrelated. EC has been shown to inhibit inflammation, oxidative and endoplasmic reticulum stress, to modulate mitochondrial biogenesis and function, and to regulate events in the gastrointestinal tract and the pancreas that impact glucose homeostasis. A downregulation of oxidant production, particularly through direct inhibition or suppression of NADPH oxidase expression, and of redox sensitive signals (NF-κB, JNK1/2) that inhibit the insulin pathway, appear to be central to the beneficial actions of EC on insulin sensitivity. Overall, EC seems to have a positive role in the regulation of glucose homeostasis, however definitive answers on its importance for the management of T2D will depend on further clinical and mechanistic studies.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, USA; Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA.
| |
Collapse
|
37
|
Nox2 Activity Is Required in Obesity-Mediated Alteration of Bone Remodeling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6054361. [PMID: 30533174 PMCID: PMC6250007 DOI: 10.1155/2018/6054361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
Despite increasing evidence suggesting a role for NADPH oxidases (Nox) in bone pathophysiology, whether Nox enzymes contribute to obesity-mediated bone remodeling remains to be clearly elucidated. Nox2 is one of the predominant Nox enzymes expressed in the bone marrow microenvironment and is a major source of ROS generation during inflammatory processes. It is also well recognized that a high-fat diet (HFD) induces obesity, which negatively impacts bone remodeling. In this work, we investigated the effect of Nox2 loss of function on obesity-mediated alteration of bone remodeling using wild-type (WT) and Nox2-knockout (KO) mice fed with a standard lab chow diet (SD) as a control or a HFD as an obesity model. Bone mineral density (BMD) of mice was assessed at the beginning and after 3 months of feeding with SD or HFD. Our results show that HFD increased bone mineral density to a greater extent in KO mice than in WT mice without affecting the total body weight and fat mass. HFD also significantly increased the number of adipocytes in the bone marrow microenvironment of WT mice as compared to KO mice. The bone levels of proinflammatory cytokines and proosteoclastogenic factors were also significantly elevated in WT-HFD mice as compared to KO-HFD mice. Furthermore, the in vitro differentiation of bone marrow cells into osteoclasts was significantly increased when using bone marrow cells from WT-HFD mice as compared to KO-HFD mice. Our data collectively suggest that Nox2 is implicated in HFD-induced deleterious bone remodeling by enhancing bone marrow adipogenesis and osteoclastogenesis.
Collapse
|
38
|
Metabolically Activated Adipose Tissue Macrophages Perform Detrimental and Beneficial Functions during Diet-Induced Obesity. Cell Rep 2018; 20:3149-3161. [PMID: 28954231 DOI: 10.1016/j.celrep.2017.08.096] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/25/2017] [Accepted: 08/29/2017] [Indexed: 01/08/2023] Open
Abstract
During obesity, adipose tissue macrophages (ATMs) adopt a metabolically activated (MMe) phenotype. However, the functions of MMe macrophages are poorly understood. Here, we combine proteomic and functional methods to demonstrate that, in addition to potentiating inflammation, MMe macrophages promote dead adipocyte clearance through lysosomal exocytosis. We identify NADPH oxidase 2 (NOX2) as a driver of the inflammatory and adipocyte-clearing properties of MMe macrophages and show that, compared to wild-type, Nox2-/- mice exhibit a time-dependent metabolic phenotype during diet-induced obesity. After 8 weeks of high-fat feeding, Nox2-/- mice exhibit attenuated ATM inflammation and mildly improved glucose tolerance. After 16 weeks of high-fat feeding, Nox2-/- mice develop severe insulin resistance, hepatosteatosis, and visceral lipoatrophy characterized by dead adipocyte accumulation and defective ATM lysosomal exocytosis, a phenotype reproduced in myeloid cell-specific Nox2-/- mice. Collectively, our findings suggest that MMe macrophages perform detrimental and beneficial functions whose contribution to metabolic phenotypes during obesity is determined by disease progression.
Collapse
|
39
|
Denver P, Gault VA, McClean PL. Sustained high-fat diet modulates inflammation, insulin signalling and cognition in mice and a modified xenin peptide ameliorates neuropathology in a chronic high-fat model. Diabetes Obes Metab 2018; 20:1166-1175. [PMID: 29316242 DOI: 10.1111/dom.13210] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 01/16/2023]
Abstract
AIMS To demarcate pathological events in the brain as a result of short-term to chronic high-fat-diet (HFD) feeding, which leads to cognitive impairment and neuroinflammation, and to assess the efficacy of Xenin-25[Lys(13)PAL] in chronic HFD-fed mice. METHODS C57BL/6 mice were fed an HFD or a normal diet for 18 days, 34 days, 10 and 21 weeks. Cognition was assessed using novel object recognition and the Morris water maze. Markers of insulin signalling and inflammation were measured in brain and plasma using immunohistochemistry, quantitative PCR and multi-array technology. Xenin-25[Lys(13)PAL] was also administered for 5 weeks in chronic HFD-fed mice to assess therapeutic potential at a pathological stage. RESULTS Recognition memory was consistently impaired in HFD-fed mice and spatial learning was impaired in 18-day and 21-week HFD-fed mice. Gliosis, oxidative stress and IRS-1 pSer616 were increased in the brain on day 18 in HFD-fed mice and were reduced by Xenin-25[Lys(13)PAL] in 21-week HFD-fed mice. In plasma, HFD feeding elevated interleukin (IL)-6 and chemokine (C-X-C motif) ligand 1 at day 34 and IL-5 at week 10. In the brain, HFD feeding reduced extracellular signal-regulated kinase 2 (ERK2), mechanistic target of rapamycin (mTOR), NF-κB1, protein kinase C (PKC)θ and Toll-like receptor 4 (TLR4) mRNA at week 10 and increased expression of glucacon-like peptide-1 receptor, inhibitor of NF-κB kinase β, ERK2, mTOR, NF-κB1, PKCθ and TLR4 at week 21, elevations that were abrogated by Xenin-25[Lys(13)PAL]. CONCLUSIONS HFD feeding modulates cognitive function, synapse density, inflammation and insulin resistance in the brain. Xenin-25[Lys(13)PAL] ameliorated markers of inflammation and insulin signalling dysregulation and may have therapeutic potential in the treatment of diseases associated with neuroinflammation or perturbed insulin signalling in the brain.
Collapse
Affiliation(s)
- Paul Denver
- Centre for Molecular Biosciences, University of Ulster, Coleraine, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | - Paula L McClean
- Clinical, Translational and Research Innovation Centre (C-TRIC), University of Ulster, Derry/Londonderry, UK
| |
Collapse
|
40
|
Mukherjee R, Moreno‐Fernandez ME, Giles DA, Cappelletti M, Stankiewicz TE, Chan CC, Divanovic S. Nicotinamide adenine dinucleotide phosphate (reduced) oxidase 2 modulates inflammatory vigor during nonalcoholic fatty liver disease progression in mice. Hepatol Commun 2018; 2:546-560. [PMID: 29761170 PMCID: PMC5944572 DOI: 10.1002/hep4.1162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/10/2018] [Accepted: 02/02/2018] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a disease spectrum ranging from benign steatosis to life-threatening cirrhosis and hepatocellular carcinoma. Elevated levels of reactive oxygen species (ROS) and exacerbated inflammatory responses have been implicated in NAFLD progression. Nicotinamide adenine dinucleotide phosphate (reduced) oxidase 2 (NOX2; also known as gp91Phox), the main catalytic subunit of the nicotinamide adenine dinucleotide phosphate (reduced) oxidase complex, modulates ROS production, immune responsiveness, and pathogenesis of obesity-associated metabolic derangements. However, the role of NOX2 in the regulation of immune cell function and inflammatory vigor in NAFLD remains underdefined. Here, we demonstrate that obesogenic diet feeding promoted ROS production by bone marrow, white adipose tissue, and liver immune cells. Genetic ablation of NOX2 impeded immune cell ROS synthesis and was sufficient to uncouple obesity from glucose dysmetabolism and NAFLD pathogenesis. Protection from hepatocellular damage in NOX2-deficient mice correlated with reduced hepatic neutrophil, macrophage, and T-cell infiltration, diminished production of key NAFLD-driving proinflammatory cytokines, and an inherent reduction in T-cell polarization toward Th17 phenotype. Conclusion: Current findings demonstrate a crucial role of the NOX2-ROS axis in immune cell effector function and polarization and consequent NAFLD progression in obesity. Pharmacologic targeting of NOX2 function in immune cells may represent a viable approach for reducing morbidity of obesity-associated NAFLD pathogenesis. (Hepatology Communications 2018;2:546-560).
Collapse
Affiliation(s)
- Rajib Mukherjee
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOH45220
- Division of ImmunobiologyCincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
| | - Maria E. Moreno‐Fernandez
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOH45220
- Division of ImmunobiologyCincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
| | - Daniel A. Giles
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOH45220
- Division of ImmunobiologyCincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
- Immunology Graduate ProgramCincinnati Children's Hospital Medical Center and the University of Cincinnati College of MedicineCincinnatiOH
- Present address:
Present address for Daniel A. Giles is La Jolla Institute for Allergy and ImmunologyLa JollaCA
| | - Monica Cappelletti
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOH45220
- Division of ImmunobiologyCincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
- Present address:
Present address for Monica Cappelletti is Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at University of California, Los AngelesMattel Children's HospitalLos AngelesCA
| | - Traci E. Stankiewicz
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOH45220
- Division of ImmunobiologyCincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
| | - Calvin C. Chan
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOH45220
- Division of ImmunobiologyCincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
- Immunology Graduate ProgramCincinnati Children's Hospital Medical Center and the University of Cincinnati College of MedicineCincinnatiOH
- Medical Scientist Training ProgramCincinnati Children's Hospital Medical Center and the University of Cincinnati College of MedicineCincinnatiOH45220USA
| | - Senad Divanovic
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOH45220
- Division of ImmunobiologyCincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
- Immunology Graduate ProgramCincinnati Children's Hospital Medical Center and the University of Cincinnati College of MedicineCincinnatiOH
- Medical Scientist Training ProgramCincinnati Children's Hospital Medical Center and the University of Cincinnati College of MedicineCincinnatiOH45220USA
| |
Collapse
|
41
|
Kanuri BN, Rebello SC, Pathak P, Agarwal H, Kanshana JS, Awasthi D, Gupta AP, Gayen JR, Jagavelu K, Dikshit M. Glucose and lipid metabolism alterations in liver and adipose tissue pre-dispose p47 phox knockout mice to systemic insulin resistance. Free Radic Res 2018; 52:568-582. [PMID: 29544378 DOI: 10.1080/10715762.2018.1453136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oxidative stress due to enhanced production or reduced scavenging of reactive oxygen species (ROS) has been associated with diet (dyslipidemia) induced obesity and insulin resistance (IR). The present study was undertaken to assess the role of p47phox in IR using wild type (WT) and p47phox-/- mice, fed with different diets (HFD, LFD or Chow). Augmented body weight, glucose intolerance and reduced insulin sensitivity were observed in p47phox-/- mice fed with 45% HFD and 10% LFD. Further, body fat and circulating lipids were increased significantly with 5 weeks LFD feeding in p47phox-/- mice, while parameters of energy homeostasis were reduced as compared with WT mice. LFD fed knockout (KO) mice showed an enhanced hepatic glycogenolysis, and reduced insulin signalling in liver and adipose tissue, while skeletal muscle tissue remained unaffected. A significant increase in hepatic lipids, adiposity, as well as expression of genes regulating lipid synthesis, breakdown and efflux were observed in LFD fed p47phox-/- mice after 5 weeks. On the other hand, mice lacking p47phox demonstrated altered glucose tolerance and tissue insulin sensitivity after 5 weeks chow feeding, while changes in body weight, respiratory exchange ratio (RER) and heat production are non-significant. Our data demonstrate that lack of p47phox is sufficient to induce IR through altered glucose and lipid utilization by the liver and adipose tissue.
Collapse
Affiliation(s)
- Babu Nageswararao Kanuri
- a Division of Pharmacology , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India.,b Academy of Scientific and Innovative Research , New Delhi , India
| | - Sanjay C Rebello
- a Division of Pharmacology , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Priya Pathak
- a Division of Pharmacology , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Hobby Agarwal
- a Division of Pharmacology , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Jitendra S Kanshana
- a Division of Pharmacology , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Deepika Awasthi
- a Division of Pharmacology , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Anand P Gupta
- c Division of Pharmacokinetics and Metabolism , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Jiaur R Gayen
- c Division of Pharmacokinetics and Metabolism , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Kumaravelu Jagavelu
- a Division of Pharmacology , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Madhu Dikshit
- d Bioscience and Bioengineering , Indian Institute of Technology Jodhpur , Jodhpur , India
| |
Collapse
|
42
|
Insulin resistance in obesity: an overview of fundamental alterations. Eat Weight Disord 2018; 23:149-157. [PMID: 29397563 DOI: 10.1007/s40519-018-0481-6] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
Obesity is a major health risk factor, and obesity-induced morbidity and complications account for huge costs for affected individuals, families, healthcare systems, and society at large. In particular, obesity is strongly associated with the development of insulin resistance, which in turn plays a key role in the pathogenesis of obesity-associated cardiometabolic complications, including metabolic syndrome components, type 2 diabetes, and cardiovascular diseases. Insulin sensitive tissues, including adipose tissue, skeletal muscle, and liver, are profoundly affected by obesity both at biomolecular and functional levels. Altered adipose organ function may play a fundamental pathogenetic role once fat accumulation has ensued. Modulation of insulin sensitivity appears to be, at least in part, related to changes in redox balance and oxidative stress as well as inflammation, with a relevant underlying role for mitochondrial dysfunction that may exacerbate these alterations. Nutrients and substrates as well as systems involved in host-nutrient interactions, including gut microbiota, have been also identified as modulators of metabolic pathways controlling insulin action. This review aims at providing an overview of these concepts and their potential inter-relationships in the development of insulin resistance, with particular regard to changes in adipose organ and skeletal muscle.
Collapse
|
43
|
Sánchez G, Araneda F, Peña JP, Finkelstein JP, Riquelme JA, Montecinos L, Barrientos G, Llanos P, Pedrozo Z, Said M, Bull R, Donoso P. High-Fat-Diet-Induced Obesity Produces Spontaneous Ventricular Arrhythmias and Increases the Activity of Ryanodine Receptors in Mice. Int J Mol Sci 2018; 19:ijms19020533. [PMID: 29439404 PMCID: PMC5855755 DOI: 10.3390/ijms19020533] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/26/2018] [Accepted: 02/07/2018] [Indexed: 12/27/2022] Open
Abstract
Ventricular arrhythmias are a common cause of sudden cardiac death, and their occurrence is higher in obese subjects. Abnormal gating of ryanodine receptors (RyR2), the calcium release channels of the sarcoplasmic reticulum, can produce ventricular arrhythmias. Since obesity promotes oxidative stress and RyR2 are redox-sensitive channels, we investigated whether the RyR2 activity was altered in obese mice. Mice fed a high fat diet (HFD) became obese after eight weeks and exhibited a significant increase in the occurrence of ventricular arrhythmias. Single RyR2 channels isolated from the hearts of obese mice were more active in planar bilayers than those isolated from the hearts of the control mice. At the molecular level, RyR2 channels from HFD-fed mice had substantially fewer free thiol residues, suggesting that redox modifications were responsible for the higher activity. Apocynin, provided in the drinking water, completely prevented the appearance of ventricular arrhythmias in HFD-fed mice, and normalized the activity and content of the free thiol residues of the protein. HFD increased the expression of NOX4, an isoform of NADPH oxidase, in the heart. Our results suggest that HFD increases the activity of RyR2 channels via a redox-dependent mechanism, favoring the appearance of ventricular arrhythmias.
Collapse
Affiliation(s)
- Gina Sánchez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Felipe Araneda
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Juan Pedro Peña
- Escuela de Ciencias Veterinarias, Universidad de Viña del Mar, 2572007 Viña del Mar, Valparaíso, Chile.
| | - José Pablo Finkelstein
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494 Santiago, Chile.
| | - Luis Montecinos
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Genaro Barrientos
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Paola Llanos
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, 8380492 Santiago, Chile.
| | - Zully Pedrozo
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494 Santiago, Chile.
| | - Matilde Said
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Medicina, Universidad Nacional de La Plata, 1900 La Plata, Argentina.
| | - Ricardo Bull
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Paulina Donoso
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| |
Collapse
|
44
|
Pro-inflammatory hepatic macrophages generate ROS through NADPH oxidase 2 via endocytosis of monomeric TLR4-MD2 complex. Nat Commun 2017; 8:2247. [PMID: 29269727 PMCID: PMC5740170 DOI: 10.1038/s41467-017-02325-2] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) contribute to the development of non-alcoholic fatty liver disease. ROS generation by infiltrating macrophages involves multiple mechanisms, including Toll-like receptor 4 (TLR4)-mediated NADPH oxidase (NOX) activation. Here, we show that palmitate-stimulated CD11b+F4/80low hepatic infiltrating macrophages, but not CD11b+F4/80high Kupffer cells, generate ROS via dynamin-mediated endocytosis of TLR4 and NOX2, independently from MyD88 and TRIF. We demonstrate that differently from LPS-mediated dimerization of the TLR4–MD2 complex, palmitate binds a monomeric TLR4–MD2 complex that triggers endocytosis, ROS generation and increases pro-interleukin-1β expression in macrophages. Palmitate-induced ROS generation in human CD68lowCD14high macrophages is strongly suppressed by inhibition of dynamin. Furthermore, Nox2-deficient mice are protected against high-fat diet-induced hepatic steatosis and insulin resistance. Therefore, endocytosis of TLR4 and NOX2 into macrophages might be a novel therapeutic target for non-alcoholic fatty liver disease. Reactive species of oxygen promote the development of hepatic steatosis. Here, Kim et al. demonstrate that palmitate stimulates macrophage infiltration and increases oxidative stress during steatosis by binding to the TLR4–MD2 complex, which results in the activation of NOX2.
Collapse
|
45
|
Solas M, Milagro FI, Ramírez MJ, Martínez JA. Inflammation and gut-brain axis link obesity to cognitive dysfunction: plausible pharmacological interventions. Curr Opin Pharmacol 2017; 37:87-92. [PMID: 29107872 DOI: 10.1016/j.coph.2017.10.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
Obesity prevalence is increasing steadily throughout the world's population in most countries and in parallel the prevalence of metabolic disorders including cardiovascular diseases and type 2 diabetes is also rising, but less is reported about excessive adiposity relationship with poorer cognitive performance, cognitive decline and dementia. Some human clinical studies have evidenced that obesity is related to the risk of the development of mild cognitive impairment, in the form of short-term memory and executive function deficits, as well as dementia and Alzheimer's disease. The precise mechanisms that underlie the connections between obesity and the risk of cognitive impairment are still largely unknown but potential avenues of further research include insulin resistance, the gut-brain axis, and systemic mediators and central inflammation processes. A common feature of metabolic diseases is a chronic and low-grade activation of the inflammatory system. This inflammation may eventually spread from peripheral tissue to the brain, and recent reports suggest that neuroinflammation is an important causal mechanism in cognitive decline. This inflammatory status could be triggered by changes in the gut microbiota composition. Consumption of diets high in fat and sugar influences the microbiota composition, which may lead to an imbalanced microbial population in the gut. Thus, it has recently been hypothesized that the gut microbiota could be part of a mechanistic link between the consumption of high fat and other unbalanced diets and impaired cognition, termed 'gut-brain axis'. The present review will aim at providing an integrative analysis of the effects of obesity and unbalanced diets on cognitive performance and discusses some of the potential mechanisms involved, namely inflammation and changes in gut-brain axis. Moreover, the review aims to analyze anti-inflammatory drugs that have been tested for the treatment of cognition and obesity, recently approved anti-obesity drugs that could also have an impact on central nervous system, and bioactive food compounds that modulate gut microbiota and could have an impact through the gut-brain axis. In this era of precision nutrition medicine, it is imperative to identify the various metabolic-neurocognitive phenotypes in order to understand the processes that drive these diseases so that targeted therapeutic strategies to prevent and successfully manage these complex, multifactorial diseases could be designed and developed.
Collapse
Affiliation(s)
- Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain; CIBERobn, CIBER Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain; CIBERobn, CIBER Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, Madrid, Spain
| |
Collapse
|
46
|
Huh JY, Jung I, Piao L, Ha H, Chung MH. 8-Hydroxy-2-deoxyguanosine ameliorates high-fat diet-induced insulin resistance and adipocyte dysfunction in mice. Biochem Biophys Res Commun 2017; 491:890-896. [DOI: 10.1016/j.bbrc.2017.07.132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 02/04/2023]
|
47
|
Pepping JK, Vandanmagsar B, Fernandez-Kim SO, Zhang J, Mynatt RL, Bruce-Keller AJ. Myeloid-specific deletion of NOX2 prevents the metabolic and neurologic consequences of high fat diet. PLoS One 2017; 12:e0181500. [PMID: 28771483 PMCID: PMC5542654 DOI: 10.1371/journal.pone.0181500] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022] Open
Abstract
High fat diet-induced obesity is associated with inflammatory and oxidative signaling in macrophages that likely participates in metabolic and physiologic impairment. One key factor that could drive pathologic changes in macrophages is the pro-inflammatory, pro-oxidant enzyme NADPH oxidase. However, NADPH oxidase is a pleiotropic enzyme with both pathologic and physiologic functions, ruling out indiscriminant NADPH oxidase inhibition as a viable therapy. To determine if targeted inhibition of monocyte/macrophage NADPH oxidase could mitigate obesity pathology, we generated mice that lack the NADPH oxidase catalytic subunit NOX2 in myeloid lineage cells. C57Bl/6 control (NOX2-FL) and myeloid-deficient NOX2 (mNOX2-KO) mice were given high fat diet for 16 weeks, and subject to comprehensive metabolic, behavioral, and biochemical analyses. Data show that mNOX2-KO mice had lower body weight, delayed adiposity, attenuated visceral inflammation, and decreased macrophage infiltration and cell injury in visceral adipose relative to control NOX2-FL mice. Moreover, the effects of high fat diet on glucose regulation and circulating lipids were attenuated in mNOX2-KO mice. Finally, memory was impaired and markers of brain injury increased in NOX2-FL, but not mNOX2-KO mice. Collectively, these data indicate that NOX2 signaling in macrophages participates in the pathogenesis of obesity, and reinforce a key role for macrophage inflammation in diet-induced metabolic and neurologic decline. Development of macrophage/immune-specific NOX-based therapies could thus potentially be used to preserve metabolic and neurologic function in the context of obesity.
Collapse
Affiliation(s)
- Jennifer K. Pepping
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Bolormaa Vandanmagsar
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Sun-Ok Fernandez-Kim
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Jingying Zhang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Randall L. Mynatt
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Annadora J. Bruce-Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
- * E-mail:
| |
Collapse
|
48
|
Guillemot-Legris O, Muccioli GG. Obesity-Induced Neuroinflammation: Beyond the Hypothalamus. Trends Neurosci 2017; 40:237-253. [DOI: 10.1016/j.tins.2017.02.005] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/21/2022]
|
49
|
Cha JJ, Min HS, Kim KT, Kim JE, Ghee JY, Kim HW, Lee JE, Han JY, Lee G, Ha HJ, Bae YS, Lee SR, Moon SH, Lee SC, Kim G, Kang YS, Cha DR. APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury. J Transl Med 2017; 97:419-431. [PMID: 28165467 DOI: 10.1038/labinvest.2017.2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/15/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023] Open
Abstract
Recent studies have suggested that renal Nox is important in the progression of diabetic nephropathy. Therefore, we investigated the effect of a novel pan-NOX-inhibitor, APX-115, on diabetic nephropathy in type 2 diabetic mice. Eight- week-old db/m and db/db mice were treated with APX-115 for 12 weeks. APX-115 was administered by oral gavage at a dose of 60 mg/kg per day. To compare the effects of APX-115 with a dual Nox1/Nox4 inhibitor, db/db mice were treated with GKT137831 according to the same protocol. APX-115 significantly improved insulin resistance in diabetic mice, similar to GKT137831. Oxidative stress as measured by plasma 8-isoprostane level was decreased in the APX-115 group compared with diabetic controls. All lipid profiles, both in plasma and tissues improved with Nox inhibition. APX-115 treatment decreased Nox1, Nox2, and Nox4 protein expression in the kidney. APX-115 decreased urinary albumin excretion and preserved creatinine level. In diabetic kidneys, APX-115 significantly improved mesangial expansion, but GKT137831 did not. In addition, F4/80 infiltration in the adipose tissue and kidney decreased with APX-115 treatment. We also found that TGF-β stimulated ROS generation in primary mouse mesangial cells (pMMCs) from wild-type, Nox1 KO, and Duox1 KO mice, but did not induce Nox activity in pMMCs from Nox2 knockout (KO), Nox4 KO, or Duox2 KO mice. These results indicate that activating Nox2, Nox4, or Duox2 in pMMCs is essential for TGF-β-mediated ROS generation. Our findings suggest that APX-115 may be as effective or may provide better protection than the dual Nox1/Nox4 inhibitor, and pan-Nox inhibition with APX-115 might be a promising therapy for diabetic nephropathy.
Collapse
Affiliation(s)
- Jin Joo Cha
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Hye Sook Min
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Ki Tae Kim
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Jung Eun Kim
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Jung Yeon Ghee
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Hyun Wook Kim
- Department of Internal Medicine, Division of Nephrology, Wonkwang University, Gunpo, Korea
| | - Ji Eun Lee
- Department of Internal Medicine, Division of Nephrology, Wonkwang University, Gunpo, Korea
| | - Jee Young Han
- Department of Pathology, Inha University, Incheon, Korea
| | - Gayoung Lee
- Department of Pharmaceutical Science, College of Pharmacy, Ewha Woman's University, Seoul, Korea
| | - Hun Joo Ha
- Department of Pharmaceutical Science, College of Pharmacy, Ewha Woman's University, Seoul, Korea
| | - Yun Soo Bae
- Department of Life Science, College of Natural Sciences, Ewha Woman's University, Seoul, Korea
| | - Sae Rom Lee
- Department of Life Science, College of Natural Sciences, Ewha Woman's University, Seoul, Korea
| | | | | | - Ganghyun Kim
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Young Sun Kang
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| | - Dae Ryong Cha
- Department of Internal Medicine, Division of Nephrology, Korea University Ansan Hospital, Ansan, Korea
| |
Collapse
|
50
|
Den Hartigh LJ, Omer M, Goodspeed L, Wang S, Wietecha T, O'Brien KD, Han CY. Adipocyte-Specific Deficiency of NADPH Oxidase 4 Delays the Onset of Insulin Resistance and Attenuates Adipose Tissue Inflammation in Obesity. Arterioscler Thromb Vasc Biol 2016; 37:466-475. [PMID: 28062496 DOI: 10.1161/atvbaha.116.308749] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/16/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Obesity is associated with insulin resistance and adipose tissue inflammation. Reactive oxygen species (ROS) increase in adipose tissue during the development of obesity. We previously showed that in response to excess nutrients like glucose and palmitate, adipocytes generated ROS via NADPH oxidase (NOX) 4, the major adipocyte isoform, instead of using mitochondrial oxidation. However, the role of NOX4-derived ROS in the development of whole body insulin resistance, adipocyte inflammation, and recruitment of macrophages to adipose tissue during the development of obesity is unknown. APPROACH AND RESULTS In this study, control C57BL/6 mice and mice in which NOX4 has been deleted specifically in adipocytes were fed a high-fat, high-sucrose diet. During the development of obesity in control mice, adipocyte NOX4 and pentose phosphate pathway activity were transiently increased. Primary adipocytes differentiated from mice with adipocytes deficient in NOX4 showed resistance against high glucose or palmitate-induced adipocyte inflammation. Mice with adipocytes deficient in NOX4 showed a delayed onset of insulin resistance during the development of obesity, with an initial reduction in adipose tissue inflammation that normalized with prolonged high-fat, high-sucrose feeding. CONCLUSIONS These findings imply that NOX4-derived ROS may play a role in the onset of insulin resistance and adipose tissue inflammation. As such, therapeutics targeting NOX4-mediated ROS production could be effective in preventing obesity-associated conditions, such as insulin resistance.
Collapse
Affiliation(s)
- Laura J Den Hartigh
- From the Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, Diabetes and Obesity Center of Excellence (L.J.D.H., M.O., L.G., S.W., C.Y.H.) and Division of Cardiology (T.W., K.D.O.), University of Washington, Seattle
| | - Mohamed Omer
- From the Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, Diabetes and Obesity Center of Excellence (L.J.D.H., M.O., L.G., S.W., C.Y.H.) and Division of Cardiology (T.W., K.D.O.), University of Washington, Seattle
| | - Leela Goodspeed
- From the Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, Diabetes and Obesity Center of Excellence (L.J.D.H., M.O., L.G., S.W., C.Y.H.) and Division of Cardiology (T.W., K.D.O.), University of Washington, Seattle
| | - Shari Wang
- From the Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, Diabetes and Obesity Center of Excellence (L.J.D.H., M.O., L.G., S.W., C.Y.H.) and Division of Cardiology (T.W., K.D.O.), University of Washington, Seattle
| | - Tomasz Wietecha
- From the Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, Diabetes and Obesity Center of Excellence (L.J.D.H., M.O., L.G., S.W., C.Y.H.) and Division of Cardiology (T.W., K.D.O.), University of Washington, Seattle
| | - Kevin D O'Brien
- From the Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, Diabetes and Obesity Center of Excellence (L.J.D.H., M.O., L.G., S.W., C.Y.H.) and Division of Cardiology (T.W., K.D.O.), University of Washington, Seattle
| | - Chang Yeop Han
- From the Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, Diabetes and Obesity Center of Excellence (L.J.D.H., M.O., L.G., S.W., C.Y.H.) and Division of Cardiology (T.W., K.D.O.), University of Washington, Seattle.
| |
Collapse
|