1
|
Parichatikanond W, Duangrat R, Kurose H, Mangmool S. Regulation of β-Adrenergic Receptors in the Heart: A Review on Emerging Therapeutic Strategies for Heart Failure. Cells 2024; 13:1674. [PMID: 39451192 PMCID: PMC11506672 DOI: 10.3390/cells13201674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
The prolonged overstimulation of β-adrenergic receptors (β-ARs), a member of the G protein-coupled receptor (GPCR) family, causes abnormalities in the density and functionality of the receptor and contributes to cardiac dysfunctions, leading to the development and progression of heart diseases, especially heart failure (HF). Despite recent advancements in HF therapy, mortality and morbidity rates continue to be high. Treatment with β-AR antagonists (β-blockers) has improved clinical outcomes and reduced overall hospitalization and mortality rates. However, several barriers in the management of HF remain, providing opportunities to develop new strategies that focus on the functions and signal transduction of β-ARs involved in the pathogenesis of HF. As β-AR can signal through multiple pathways influenced by different receptor subtypes, expression levels, and signaling components such as G proteins, G protein-coupled receptor kinases (GRKs), β-arrestins, and downstream effectors, it presents a complex mechanism that could be targeted in HF management. In this narrative review, we focus on the regulation of β-ARs at the receptor, G protein, and effector loci, as well as their signal transductions in the physiology and pathophysiology of the heart. The discovery of potential ligands for β-AR that activate cardioprotective pathways while limiting off-target signaling is promising for the treatment of HF. However, applying findings from preclinical animal models to human patients faces several challenges, including species differences, the genetic variability of β-ARs, and the complexity and heterogeneity of humans. In this review, we also summarize recent updates and future research on the regulation of β-ARs in the molecular basis of HF and highlight potential therapeutic strategies for HF.
Collapse
Affiliation(s)
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Hitoshi Kurose
- Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan;
- Pharmacology for Life Sciences, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Guo B, Zhang F, Yin Y, Ning X, Zhang Z, Meng Q, Yang Z, Jiang W, Liu M, Wang Y, Sun L, Yu L, Mu N. Post-translational modifications of pyruvate dehydrogenase complex in cardiovascular disease. iScience 2024; 27:110633. [PMID: 39224515 PMCID: PMC11367490 DOI: 10.1016/j.isci.2024.110633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Pyruvate dehydrogenase complex (PDC) is a crucial enzyme that connects glycolysis and the tricarboxylic acid (TCA) cycle pathway. It plays an essential role in regulating glucose metabolism for energy production by catalyzing the oxidative decarboxylation of pyruvate to acetyl coenzyme A. Importantly, the activity of PDC is regulated through post-translational modifications (PTMs), phosphorylation, acetylation, and O-GlcNAcylation. These PTMs have significant effects on PDC activity under both physiological and pathophysiological conditions, making them potential targets for metabolism-related diseases. This review specifically focuses on the PTMs of PDC in cardiovascular diseases (CVDs) such as myocardial ischemia/reperfusion injury, diabetic cardiomyopathy, obesity-related cardiomyopathy, heart failure (HF), and vascular diseases. The findings from this review offer theoretical references for the diagnosis, treatment, and prognosis of CVD.
Collapse
Affiliation(s)
- Bo Guo
- Department of Pharmacy, Northwest Woman’s and Children’s Hospital, Xi’an, China
| | - Fujiao Zhang
- College of Life Sciences, Northwest University, Xi’an, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xingmin Ning
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zihui Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Qinglei Meng
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Ziqi Yang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Wenhua Jiang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Manling Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Lijuan Sun
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
3
|
Rubio-Tomás T, Soler-Botija C, Martínez-Estrada O, Villena JA. Transcriptional control of cardiac energy metabolism in health and disease: Lessons from animal models. Biochem Pharmacol 2024; 224:116185. [PMID: 38561091 DOI: 10.1016/j.bcp.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Cardiac ATP production is tightly regulated in order to satisfy the evolving energetic requirements imposed by different cues during health and pathological conditions. In order to sustain high ATP production rates, cardiac cells are endowed with a vast mitochondrial network that is essentially acquired during the perinatal period. Nevertheless, adult cardiac cells also adapt their mitochondrial mass and oxidative function to changes in energy demand and substrate availability by fine-tuning the pathways and mitochondrial machinery involved in energy production. The reliance of cardiac cells on mitochondrial metabolism makes them particularly sensitive to alterations in proper mitochondrial function, so that deficiency in energy production underlies or precipitates the development of heart diseases. Mitochondrial biogenesis is a complex process fundamentally controlled at the transcriptional level by a network of transcription factors and co-regulators, sometimes with partially redundant functions, that ensure adequate energy supply to the working heart. Novel uncovered regulators, such as RIP140, PERM1, MED1 or BRD4 have been recently shown to modulate or facilitate the transcriptional activity of the PGC-1s/ERRs/PPARs regulatory axis, allowing cardiomyocytes to adapt to a variety of physiological or pathological situations requiring different energy provision. In this review, we summarize the current knowledge on the mechanisms that regulate cardiac mitochondrial biogenesis, highlighting the recent discoveries of new transcriptional regulators and describing the experimental models that have provided solid evidence of the relevant contribution of these factors to cardiac function in health and disease.
Collapse
Affiliation(s)
- Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion GR-70013, Crete, Greece
| | - Carolina Soler-Botija
- ICREC (Heart Failure and Cardiac Regeneration) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBER on Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Josep A Villena
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; CIBER on Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
4
|
Tecce N, de Alteriis G, de Alteriis G, Verde L, Tecce MF, Colao A, Muscogiuri G. Harnessing the Synergy of SGLT2 Inhibitors and Continuous Ketone Monitoring (CKM) in Managing Heart Failure among Patients with Type 1 Diabetes. Healthcare (Basel) 2024; 12:753. [PMID: 38610175 PMCID: PMC11011472 DOI: 10.3390/healthcare12070753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Heart failure (HF) management in type 1 diabetes (T1D) is particularly challenging due to its increased prevalence and the associated risks of hospitalization and mortality, driven by diabetic cardiomyopathy. Sodium-glucose cotransporter-2 inhibitors (SGLT2-is) offer a promising avenue for treating HF, specifically the preserved ejection fraction variant most common in T1D, but their utility is hampered by the risk of euglycemic diabetic ketoacidosis (DKA). This review investigates the potential of SGLT2-is in T1D HF management alongside emergent Continuous Ketone Monitoring (CKM) technology as a means to mitigate DKA risk through a comprehensive analysis of clinical trials, observational studies, and reviews. The evidence suggests that SGLT2-is significantly reduce HF hospitalization and enhance cardiovascular outcomes. However, their application in T1D patients remains limited due to DKA concerns. CKM technology emerges as a crucial tool in this context, offering real-time monitoring of ketone levels, which enables the safe incorporation of SGLT2-is into treatment regimes by allowing for early detection and intervention in the development of ketosis. The synergy between SGLT2-is and CKM has the potential to revolutionize HF treatment in T1D, promising improved patient safety, quality of life, and reduced HF-related morbidity and mortality. Future research should aim to employ clinical trials directly assessing this integrated approach, potentially guiding new management protocols for HF in T1D.
Collapse
Affiliation(s)
- Nicola Tecce
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Napoli, Italy; (G.d.A.); (A.C.)
| | - Giorgio de Alteriis
- Department of Industrial Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy;
| | - Giulia de Alteriis
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Napoli, Italy; (G.d.A.); (A.C.)
| | - Ludovica Verde
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Napoli, Italy;
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Napoli, Italy; (G.d.A.); (A.C.)
- Cattedra Unesco “Educazione alla Salute e Allo Sviluppo Sostenibile”, University Federico II, 80131 Napoli, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Napoli, Italy; (G.d.A.); (A.C.)
- Cattedra Unesco “Educazione alla Salute e Allo Sviluppo Sostenibile”, University Federico II, 80131 Napoli, Italy
| |
Collapse
|
5
|
Vilariño-García T, Polonio-González ML, Pérez-Pérez A, Ribalta J, Arrieta F, Aguilar M, Obaya JC, Gimeno-Orna JA, Iglesias P, Navarro J, Durán S, Pedro-Botet J, Sánchez-Margalet V. Role of Leptin in Obesity, Cardiovascular Disease, and Type 2 Diabetes. Int J Mol Sci 2024; 25:2338. [PMID: 38397015 PMCID: PMC10888594 DOI: 10.3390/ijms25042338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Diabetes mellitus (DM) is a highly prevalent disease worldwide, estimated to affect 1 in every 11 adults; among them, 90-95% of cases are type 2 diabetes mellitus. This is partly attributed to the surge in the prevalence of obesity, which has reached epidemic proportions since 2008. In these patients, cardiovascular (CV) risk stands as the primary cause of morbidity and mortality, placing a substantial burden on healthcare systems due to the potential for macrovascular and microvascular complications. In this context, leptin, an adipocyte-derived hormone, plays a fundamental role. This hormone is essential for regulating the cellular metabolism and energy balance, controlling inflammatory responses, and maintaining CV system homeostasis. Thus, leptin resistance not only contributes to weight gain but may also lead to increased cardiac inflammation, greater fibrosis, hypertension, and impairment of the cardiac metabolism. Understanding the relationship between leptin resistance and CV risk in obese individuals with type 2 DM (T2DM) could improve the management and prevention of this complication. Therefore, in this narrative review, we will discuss the evidence linking leptin with the presence, severity, and/or prognosis of obesity and T2DM regarding CV disease, aiming to shed light on the potential implications for better management and preventive strategies.
Collapse
Affiliation(s)
- Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen del Rocio University Hospital, University of Seville, Seville 41013, Spain;
| | - María L. Polonio-González
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
| | - Josep Ribalta
- Departament de Medicina i Cirurgia, University Rovira i Vigili, IISPV, CIBERDEM, 43007 Tarragona, Spain;
| | - Francisco Arrieta
- Endocrinology and Nutrition Service, Ramón y Cajal University Hospital, 28034 Madrid, Spain;
| | - Manuel Aguilar
- Endocrinology and Nutrition Service, Puerta del Mar University Hospital, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz University (UCA), 11001 Cádiz, Spain;
| | - Juan C. Obaya
- Chopera Helath Center, Alcobendas Primary Care,Alcobendas 28100 Madrid, Spain;
| | - José A. Gimeno-Orna
- Endocrinology and Nutrition Department, Hospital Clinico Universitario Lozano Blesa, 15 50009 Zaragoza, Spain;
| | - Pedro Iglesias
- Endocrinology and Nutrition Service, Puerta de Hierro University Hospital, Majadahonda, 28220 Madrid, Spain;
| | - Jorge Navarro
- Hospital Clínico Universitario de Valencia,46011 Valencia, Spain;
| | - Santiago Durán
- Endodiabesidad Clínica Durán & Asociados,41018 Seville, Spain;
| | - Juan Pedro-Botet
- Lipids and Cardiovascular Risk Unit, Hospital del Mar, Autonomous University of Barcelona, 08003 Barcelona, Spain;
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
- Institute of Biomedicine of Seville (IBIS), Hospital Universitario Virgen del Rocío/Virgen Macarena, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
6
|
Dattani A, Singh A, McCann GP, Gulsin GS. Myocardial Calcium Handling in Type 2 Diabetes: A Novel Therapeutic Target. J Cardiovasc Dev Dis 2023; 11:12. [PMID: 38248882 PMCID: PMC10817027 DOI: 10.3390/jcdd11010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Type 2 diabetes (T2D) is a multisystem disease with rapidly increasing global prevalence. Heart failure has emerged as a major complication of T2D. Dysregulated myocardial calcium handling is evident in the failing heart and this may be a key driver of cardiomyopathy in T2D, but until recently this has only been demonstrated in animal models. In this review, we describe the physiological concepts behind calcium handling within the cardiomyocyte and the application of novel imaging techniques for the quantification of myocardial calcium uptake. We take an in-depth look at the evidence for the impairment of calcium handling in T2D using pre-clinical models as well as in vivo studies, following which we discuss potential novel therapeutic approaches targeting dysregulated myocardial calcium handling in T2D.
Collapse
Affiliation(s)
- Abhishek Dattani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester LE3 9QP, UK; (A.S.); (G.P.M.); (G.S.G.)
| | | | | | | |
Collapse
|
7
|
Li J, Richmond B, Cluntun AA, Bia R, Walsh MA, Shaw K, Symons JD, Franklin S, Rutter J, Funai K, Shaw RM, Hong T. Cardiac gene therapy treats diabetic cardiomyopathy and lowers blood glucose. JCI Insight 2023; 8:e166713. [PMID: 37639557 PMCID: PMC10561727 DOI: 10.1172/jci.insight.166713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Diabetic cardiomyopathy, an increasingly global epidemic and a major cause of heart failure with preserved ejection fraction (HFpEF), is associated with hyperglycemia, insulin resistance, and intracardiomyocyte calcium mishandling. Here we identify that, in db/db mice with type 2 diabetes-induced HFpEF, abnormal remodeling of cardiomyocyte transverse-tubule microdomains occurs with downregulation of the membrane scaffolding protein cardiac bridging integrator 1 (cBIN1). Transduction of cBIN1 by AAV9 gene therapy can restore transverse-tubule microdomains to normalize intracellular distribution of calcium-handling proteins and, surprisingly, glucose transporter 4 (GLUT4). Cardiac proteomics revealed that AAV9-cBIN1 normalized components of calcium handling and GLUT4 translocation machineries. Functional studies further identified that AAV9-cBIN1 normalized insulin-dependent glucose uptake in diabetic cardiomyocytes. Phenotypically, AAV9-cBIN1 rescued cardiac lusitropy, improved exercise intolerance, and ameliorated hyperglycemia in diabetic mice. Restoration of transverse-tubule microdomains can improve cardiac function in the setting of diabetic cardiomyopathy and can also improve systemic glycemic control.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology and Toxicology, College of Pharmacy
- Nora Eccles Harrison Cardiovascular Research and Training Institute
| | | | | | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute
| | - Maureen A. Walsh
- College of Health, Department of Nutrition and Integrative Physiology, Program in Molecular Medicine
| | - Kikuyo Shaw
- Department of Pharmacology and Toxicology, College of Pharmacy
| | - J. David Symons
- College of Health, Department of Nutrition and Integrative Physiology, Program in Molecular Medicine
- Diabetes & Metabolism Research Center, and
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute
| | - Jared Rutter
- Department of Biochemistry
- College of Health, Department of Nutrition and Integrative Physiology, Program in Molecular Medicine
- Diabetes & Metabolism Research Center, and
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- College of Health, Department of Nutrition and Integrative Physiology, Program in Molecular Medicine
- Diabetes & Metabolism Research Center, and
| | - Robin M. Shaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute
| | - TingTing Hong
- Department of Pharmacology and Toxicology, College of Pharmacy
- Nora Eccles Harrison Cardiovascular Research and Training Institute
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Mukherjee AG, Renu K, Gopalakrishnan AV, Jayaraj R, Dey A, Vellingiri B, Ganesan R. Epicardial adipose tissue and cardiac lipotoxicity: A review. Life Sci 2023; 328:121913. [PMID: 37414140 DOI: 10.1016/j.lfs.2023.121913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Epicardial adipose tissue (EAT) has morphological and physiological contiguity with the myocardium and coronary arteries, making it a visceral fat deposit with some unique properties. Under normal circumstances, EAT exhibits biochemical, mechanical, and thermogenic cardioprotective characteristics. Under clinical processes, epicardial fat can directly impact the heart and coronary arteries by secreting proinflammatory cytokines via vasocrine or paracrine mechanisms. It is still not apparent what factors affect this equilibrium. Returning epicardial fat to its physiological purpose may be possible by enhanced local vascularization, weight loss, and focused pharmacological therapies. This review centers on EAT's developing physiological and pathophysiological dimensions and its various and pioneering clinical utilities.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, 28, Sonipat 131001, India; Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
9
|
Smart CD, Madhur MS. The immunology of heart failure with preserved ejection fraction. Clin Sci (Lond) 2023; 137:1225-1247. [PMID: 37606086 PMCID: PMC10959189 DOI: 10.1042/cs20230226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) now accounts for the majority of new heart failure diagnoses and continues to increase in prevalence in the United States. Importantly, HFpEF is a highly morbid, heterogeneous syndrome lacking effective therapies. Inflammation has emerged as a potential contributor to the pathogenesis of HFpEF. Many of the risk factors for HFpEF are also associated with chronic inflammation, such as obesity, hypertension, aging, and renal dysfunction. A large amount of preclinical evidence suggests that immune cells and their associated cytokines play important roles in mediating fibrosis, oxidative stress, metabolic derangements, and endothelial dysfunction, all potentially important processes in HFpEF. How inflammation contributes to HFpEF pathogenesis, however, remains poorly understood. Recently, a variety of preclinical models have emerged which may yield much needed insights into the causal relationships between risk factors and the development of HFpEF, including the role of specific immune cell subsets or inflammatory pathways. Here, we review evidence in animal models and humans implicating inflammation as a mediator of HFpEF and identify gaps in knowledge requiring further study. As the understanding between inflammation and HFpEF evolves, it is hoped that a better understanding of the mechanisms underlying immune cell activation in HFpEF can open up new therapeutic avenues.
Collapse
Affiliation(s)
- Charles Duncan Smart
- Department of Molecular Physiology and Biophysics,
Vanderbilt University School of Medicine, Nashville, TN, U.S.A
| | - Meena S. Madhur
- Department of Molecular Physiology and Biophysics,
Vanderbilt University School of Medicine, Nashville, TN, U.S.A
- Department of Medicine, Division of Cardiovascular
Medicine, Vanderbilt University Medical Center, Nashville, TN, U.S.A
- Department of Medicine, Division of Clinical Pharmacology,
Vanderbilt University Medical Center, Nashville, TN, U.S.A
- Vanderbilt Institute for Infection, Immunology, and
Inflammation, Nashville, TN, U.S.A
| |
Collapse
|
10
|
Mendez Garcia MF, Matsuzaki S, Batushansky A, Newhardt R, Kinter C, Jin Y, Mann SN, Stout MB, Gu H, Chiao YA, Kinter M, Humphries KM. Increased cardiac PFK-2 protects against high-fat diet-induced cardiomyopathy and mediates beneficial systemic metabolic effects. iScience 2023; 26:107131. [PMID: 37534142 PMCID: PMC10391959 DOI: 10.1016/j.isci.2023.107131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/27/2023] [Accepted: 06/10/2023] [Indexed: 08/04/2023] Open
Abstract
A healthy heart adapts to changes in nutrient availability and energy demands. In metabolic diseases like type 2 diabetes (T2D), increased reliance on fatty acids for energy production contributes to mitochondrial dysfunction and cardiomyopathy. A principal regulator of cardiac metabolism is 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2), which is a central driver of glycolysis. We hypothesized that increasing PFK-2 activity could mitigate cardiac dysfunction induced by high-fat diet (HFD). Wild type (WT) and cardiac-specific transgenic mice expressing PFK-2 (GlycoHi) were fed a low fat or HFD for 16 weeks to induce metabolic dysfunction. Metabolic phenotypes were determined by measuring mitochondrial bioenergetics and performing targeted quantitative proteomic and metabolomic analysis. Increasing cardiac PFK-2 had beneficial effects on cardiac and mitochondrial function. Unexpectedly, GlycoHi mice also exhibited sex-dependent systemic protection from HFD, including increased glucose homeostasis. These findings support improving glycolysis via PFK-2 activity can mitigate mitochondrial and functional changes that occur with metabolic syndrome.
Collapse
Affiliation(s)
- Maria F. Mendez Garcia
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ryan Newhardt
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Caroline Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Shivani N. Mann
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kenneth M. Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
11
|
Su H, Chen W, Lu J, Chao H, Liang Y, Haruka S, Hsu W, Wu M, Tsai M. The effects of using Tempeh as a supplement for type 2 diabetes. Food Sci Nutr 2023; 11:3339-3347. [PMID: 37324894 PMCID: PMC10261801 DOI: 10.1002/fsn3.3319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/02/2022] [Accepted: 03/02/2023] [Indexed: 02/19/2024] Open
Abstract
Studies suggest that the consumption of Tempeh can improve abnormal blood glucose and lipid parameters, although it remains still unclear as to whether Tempeh can improve tissue damage. In our study, db/db obese diabetic mice were given Tempeh 1 (300 mg/kg) and Tempeh 2 (600 mg/kg) for 3 months. The tissue samples collected were stained using different tissue-staining methodologies and were compared with the diabetic control group that was not given any Tempeh. Our results demonstrated that consuming high-dose Tempeh for 1 month could significantly reduce serum glucose and body weight in mice whereas the tissue section of our result could validate that consuming high-dose Tempeh for 3 months effectively improves lipid droplet size and lipid accumulation in the liver, aorta, and kidney of the mice. Moreover, an indication of the recovery of the damaged tissue could be observed in the heart and pancreatic tissue when high dosage of Tempeh was given as a treatment. Thus, it can be concluded that continuous consumption of Tempeh as a treatment could improve both blood glucose and body weight of diabetic mice while also improving lipid accumulation and tissue damage.
Collapse
Affiliation(s)
- Hui‐Kan Su
- Department of Food Science, College of AgricultureNational Pingtung University of Science and TechnologyPingtungTaiwan
- Department of Pathology LaboratoryKaohsiung Veterans General Hospital Pingtung BranchPingtungTaiwan
| | - Wei‐Chao Chen
- Department of Environmental Science and Engineering, College of EngineeringNational Pingtung University of Science and TechnologyPingtungTaiwan
| | - Jian‐He Lu
- Emerging Compounds Research Center, General Research Service CenterNational Pingtung University of Science and TechnologyPingtungTaiwan
| | - How‐Ran Chao
- Department of Environmental Science and Engineering, College of EngineeringNational Pingtung University of Science and TechnologyPingtungTaiwan
- Emerging Compounds Research Center, General Research Service CenterNational Pingtung University of Science and TechnologyPingtungTaiwan
- Department of Child Care, College of Humanities and Social SciencesNational Pingtung University of Science and TechnologyPingtungTaiwan
| | - Yun‐Fang Liang
- School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Sato Haruka
- Department of Child Care, College of Humanities and Social SciencesNational Pingtung University of Science and TechnologyPingtungTaiwan
| | - Wen‐Li Hsu
- Institute of Food Safety Management, College of AgricultureNational Pingtung University of Science and TechnologyPingtungTaiwan
- Department of DermatologyKaohsiung Municipal Ta‐Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
- Regenerative Medicine and Cell Therapy Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
| | - Mei‐Li Wu
- Department of Food Science, College of AgricultureNational Pingtung University of Science and TechnologyPingtungTaiwan
| | - Ming‐Hsien Tsai
- Emerging Compounds Research Center, General Research Service CenterNational Pingtung University of Science and TechnologyPingtungTaiwan
- Department of Child Care, College of Humanities and Social SciencesNational Pingtung University of Science and TechnologyPingtungTaiwan
- Department of Oral Hygiene, College of Dental MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
12
|
Li A, Zhang Y, Wang J, Zhang Y, Su W, Gao F, Jiao X. Txnip Gene Knockout Ameliorated High-Fat Diet-Induced Cardiomyopathy Via Regulating Mitochondria Dynamics and Fatty Acid Oxidation. J Cardiovasc Pharmacol 2023; 81:423-433. [PMID: 36888974 PMCID: PMC10237349 DOI: 10.1097/fjc.0000000000001414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
ABSTRACT Epidemic of obesity accelerates the increase in the number of patients with obesity cardiomyopathy. Thioredoxin interacting protein (TXNIP) has been implicated in the pathogenesis of multiple cardiovascular diseases. However, its specific role in obesity cardiomyopathy is still not well understood. Here, we evaluated the role of TXNIP in obesity-induced cardiomyopathy by feeding wild-type and txnip gene knockout mice with either normal diet or high-fat diet (HFD) for 24 weeks. Our results suggested that TXNIP deficiency improved mitochondrial dysfunction via reversing the shift from mitochondrial fusion to fission in the context of chronic HFD feeding, thus promoting cardiac fatty acid oxidation to alleviate chronic HFD-induced lipid accumulation in the heart, and thereby ameliorating the cardiac function in obese mice. Our work provides a theoretical basis for TXNIP exerting as a potential therapeutic target for the interventions of obesity cardiomyopathy.
Collapse
Affiliation(s)
- Aiyun Li
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China; and
| | - Yichao Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China; and
| | - Jin Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China; and
| | - Yan Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China; and
| | - Wanzhen Su
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China; and
| | - Feng Gao
- Sixth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiangying Jiao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China; and
| |
Collapse
|
13
|
Ohnewein B, Shomanova Z, Paar V, Topf A, Jirak P, Fiedler L, Granitz C, Van Almsick V, Semo D, Zagidullin N, Dieplinger AM, Sindermann J, Reinecke H, Hoppe UC, Pistulli R, Motloch LJ. Effects of Angiotensin Receptor-Neprilysin Inhibitors (ARNIs) on the Glucose and Fat Metabolism Biomarkers Leptin and Fructosamine. J Clin Med 2023; 12:3083. [PMID: 37176525 PMCID: PMC10179018 DOI: 10.3390/jcm12093083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Background: Heart failure with reduced ejection fraction (HFrEF) remains a major health burden. Angiotensin-Receptor-Neprilysin-Inhibitors (ARNIs) are an established HFrEF therapy which increases natriuretic peptide levels by inhibiting neprilysin. Leptin is a lipid metabolism parameter, which is also involved in glucose metabolism and is suggested to correlate with HF burden. While the hormone also seems to interact with neprilysin, potential associations with ARNI therapy have not been investigated yet. (2) Methods: To study this issue, we measured levels of leptin and fructosamine in consecutive 72 HFrEF patients before initiation of ARNI therapy and 3-6 months after initiation of therapy in two European centers. Biomarker levels were correlated with clinical parameters including ejection fraction, LVEF, and NYHA class. (3) Results: During a follow-up of up to 6 months, clinical parameters improved significantly (LVEF: 30.2 ± 7.8% to 37.6 ± 10.0%, (p < 0.001) and a significant improvement of the mean NYHA class with initial 32 patients in NYHA III or IV and 8 patients in NYHA class III/IV during the follow up (p < 0.001). The initial NT-proBNP levels of 2251.5 ± 2566.8 pg/mL significantly improved to 1416.7 ± 2145 pg/mL, p = 0.008) during follow up. ARNI therapy was also associated with an increase in leptin levels (17.5 ± 23.4 µg/L to 22.9 ± 29.3, p < 0.001) and furthermore, affected glucose metabolism indicated by elevation of fructosamine values (333.9 ± 156.8 µmol/L to 454.8 ± 197.8 µmol/L, p = 0.013). (4) Conclusion: while in the early phase of therapy, ARNI promotes clinical improvement of HFrEF, and it also seems to affect fat and glucose parameters, indicating significant metabolic implications of this therapy regime.
Collapse
Affiliation(s)
- Bernhard Ohnewein
- Department for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Zornitsa Shomanova
- Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, 48149 Muenster, Germany (R.P.)
| | - Vera Paar
- Department for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Albert Topf
- Department for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Peter Jirak
- Department for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Lukas Fiedler
- Department of Internal Medicine, Cardiology, Nephrology and Intensive Care Medicine, Hospital Wiener Neustadt, 2700 Wiener Neustadt, Austria
| | - Christina Granitz
- Department for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Vincent Van Almsick
- Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, 48149 Muenster, Germany (R.P.)
| | - Dilvin Semo
- Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, 48149 Muenster, Germany (R.P.)
| | - Naufal Zagidullin
- Department of Internal Diseases, Bashkir State Medical University, Lenin str., 3, 450008 Ufa, Russia
| | - Anna-Maria Dieplinger
- Institute for Nursing Science and Practice, Paracelsus Medical University, 5020 Salzburg, Austria
- Medical Faculty, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Juergen Sindermann
- Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, 48149 Muenster, Germany (R.P.)
| | - Holger Reinecke
- Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, 48149 Muenster, Germany (R.P.)
| | - Uta C. Hoppe
- Department for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Rudin Pistulli
- Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, 48149 Muenster, Germany (R.P.)
| | - Lukas J. Motloch
- Department for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
14
|
Maurya SK, Carley AN, Maurya CK, Lewandowski ED. Western Diet Causes Heart Failure With Reduced Ejection Fraction and Metabolic Shifts After Diastolic Dysfunction and Novel Cardiac Lipid Derangements. JACC Basic Transl Sci 2023; 8:422-435. [PMID: 37138801 PMCID: PMC10149654 DOI: 10.1016/j.jacbts.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 01/27/2023]
Abstract
Western diet (WD) impairs glucose tolerance and cardiac lipid dynamics, preceding heart failure with reduced ejection fraction (HFrEF) in mice. Unlike diabetic db/db mice with high cardiac triglyceride (TG) and rapid TG turnover, WD mice had high TG but slowed turnover, reducing lipolytic PPAR⍺ activation. WD deranged cardiac TG dynamics by imbalancing synthesis and lipolysis, with low cardiac TG lipase (ATGL), low ATGL co-activator, and high ATGL inhibitory peptide. By 24 weeks of WD, hearts shifted from diastolic dysfunction to diastolic dysfunction with HFrEF with decreases in GLUT4 and exogenous glucose oxidation and elevated β-hydroxybutyrate dehydrogenase 1 without increasing ketone oxidation.
Collapse
Affiliation(s)
- Santosh K. Maurya
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Andrew N. Carley
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Chandan K. Maurya
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - E. Douglas Lewandowski
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
15
|
Li X, Li Z, Dong X, Wu Y, Li B, Kuang B, Chen G, Zhang L. Astragaloside IV attenuates myocardial dysfunction in diabetic cardiomyopathy rats through downregulation of CD36-mediated ferroptosis. Phytother Res 2023. [PMID: 36882189 DOI: 10.1002/ptr.7798] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
Diabetic cardiomyopathy (DCM), one of the major complications of type 2 diabetes, is a leading cause of heart failure and death in advanced diabetes. Although there is an association between DCM and ferroptosis in cardiomyocytes, the internal mechanism of ferroptosis leading to DCM development remains unknown. CD36 is a key molecule in lipid metabolism that mediates ferroptosis. Astragaloside IV (AS-IV) confers various pharmacological effects such as antioxidant, anti-inflammatory, and immunomodulatory. In this study, we demonstrated that AS-IV was able to recover the dysfunction of DCM. In vivo experiments showed that AS-IV ameliorated myocardial injury and improved contractile function, attenuated lipid deposition, and decreased the expression level of CD36 and ferroptosis-related factors in DCM rats. In vitro experiments showed that AS-IV decreased CD36 expression and inhibited lipid accumulation and ferroptosis in PA-induced cardiomyocytes. The results demonstrated that AS-IV decreased cardiomyocyte injury and myocardial dysfunction by inhibiting ferroptosis mediated by CD36 in DCM rats. Therefore, AS-IV regulated the lipid metabolism of cardiomyocytes and inhibited cellular ferroptosis, which may have potential clinical value in DCM treatment.
Collapse
Affiliation(s)
- Xin Li
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Ziwei Li
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Dong
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yu Wu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Baohua Li
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Bin Kuang
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Gangyi Chen
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Liangyou Zhang
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Balatskyi VV, Sowka A, Dobrzyn P, Piven OO. WNT/β-catenin pathway is a key regulator of cardiac function and energetic metabolism. Acta Physiol (Oxf) 2023; 237:e13912. [PMID: 36599355 DOI: 10.1111/apha.13912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The WNT/β-catenin pathway is a master regulator of cardiac development and growth, and its activity is low in healthy adult hearts. However, even this low activity is essential for maintaining normal heart function. Acute activation of the WNT/β-catenin signaling cascade is considered to be cardioprotective after infarction through the upregulation of prosurvival genes and reprogramming of metabolism. Chronically high WNT/β-catenin pathway activity causes profibrotic and hypertrophic effects in the adult heart. New data suggest more complex functions of β-catenin in metabolic maturation of the perinatal heart, establishing an adult pattern of glucose and fatty acid utilization. Additionally, low basal activity of the WNT/β-catenin cascade maintains oxidative metabolism in the adult heart, and this pathway is reactivated by physiological or pathological stimuli to meet the higher energy needs of the heart. This review summarizes the current state of knowledge of the organization of canonical WNT signaling and its function in cardiogenesis, heart maturation, adult heart function, and remodeling. We also discuss the role of the WNT/β-catenin pathway in cardiac glucose, lipid metabolism, and mitochondrial physiology.
Collapse
Affiliation(s)
- Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
17
|
Sanganalmath SK, Dubey S, Veeranki S, Narisetty K, Krishnamurthy P. The interplay of inflammation, exosomes and Ca 2+ dynamics in diabetic cardiomyopathy. Cardiovasc Diabetol 2023; 22:37. [PMID: 36804872 PMCID: PMC9942322 DOI: 10.1186/s12933-023-01755-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Diabetes mellitus is one of the prime risk factors for cardiovascular complications and is linked with high morbidity and mortality. Diabetic cardiomyopathy (DCM) often manifests as reduced cardiac contractility, myocardial fibrosis, diastolic dysfunction, and chronic heart failure. Inflammation, changes in calcium (Ca2+) handling and cardiomyocyte loss are often implicated in the development and progression of DCM. Although the existence of DCM was established nearly four decades ago, the exact mechanisms underlying this disease pathophysiology is constantly evolving. Furthermore, the complex pathophysiology of DCM is linked with exosomes, which has recently shown to facilitate intercellular (cell-to-cell) communication through biomolecules such as micro RNA (miRNA), proteins, enzymes, cell surface receptors, growth factors, cytokines, and lipids. Inflammatory response and Ca2+ signaling are interrelated and DCM has been known to adversely affect many of these signaling molecules either qualitatively and/or quantitatively. In this literature review, we have demonstrated that Ca2+ regulators are tightly controlled at different molecular and cellular levels during various biological processes in the heart. Inflammatory mediators, miRNA and exosomes are shown to interact with these regulators, however how these mediators are linked to Ca2+ handling during DCM pathogenesis remains elusive. Thus, further investigations are needed to understand the mechanisms to restore cardiac Ca2+ homeostasis and function, and to serve as potential therapeutic targets in the treatment of DCM.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nevada Las Vegas School of Medicine, Las Vegas, NV, 89102, USA.
| | - Shubham Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, University Blvd., Birmingham, AL, 35294, USA
| | - Sudhakar Veeranki
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | | | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, University Blvd., Birmingham, AL, 35294, USA
| |
Collapse
|
18
|
Hegyi B, Mira Hernandez J, Ko CY, Hong J, Shen EY, Spencer ER, Smoliarchuk D, Navedo MF, Bers DM, Bossuyt J. Diabetes and Excess Aldosterone Promote Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2022; 11:e027164. [PMID: 36416174 PMCID: PMC9851441 DOI: 10.1161/jaha.122.027164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background The pathobiology of heart failure with preserved ejection fraction (HFpEF) is still poorly understood, and effective therapies remain limited. Diabetes and mineralocorticoid excess are common and important pathophysiological factors that may synergistically promote HFpEF. The authors aimed to develop a novel animal model of HFpEF that recapitulates key aspects of the complex human phenotype with multiorgan impairments. Methods and Results The authors created a novel HFpEF model combining leptin receptor-deficient db/db mice with a 4-week period of aldosterone infusion. The HFpEF phenotype was assessed using morphometry, echocardiography, Ca2+ handling, and electrophysiology. The sodium-glucose cotransporter-2 inhibitor empagliflozin was then tested for reversing the arrhythmogenic cardiomyocyte phenotype. Continuous aldosterone infusion for 4 weeks in db/db mice induced marked diastolic dysfunction with preserved ejection fraction, cardiac hypertrophy, high levels of B-type natriuretic peptide, and significant extracardiac comorbidities (including severe obesity, diabetes with marked hyperglycemia, pulmonary edema, and vascular dysfunction). Aldosterone or db/db alone induced only a mild diastolic dysfunction without congestion. At the cellular level, cardiomyocyte hypertrophy, prolonged Ca2+ transient decay, and arrhythmogenic action potential remodeling (prolongation, increased short-term variability, delayed afterdepolarizations), and enhanced late Na+ current were observed in aldosterone-treated db/db mice. All of these arrhythmogenic changes were reversed by empagliflozin pretreatment of HFpEF cardiomyocytes. Conclusions The authors conclude that the db/db+aldosterone model may represent a distinct clinical subgroup of HFpEF that has marked hyperglycemia, obesity, and increased arrhythmia risk. This novel HFpEF model can be useful in future therapeutic testing and should provide unique opportunities to better understand disease pathobiology.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of PharmacologyUniversity of CaliforniaDavisCA
| | - Juliana Mira Hernandez
- Department of PharmacologyUniversity of CaliforniaDavisCA
- Research Group in Veterinary Medicine (GIVET), School of Veterinary MedicineUniversity Corporation Lasallista (Unilasallista)CaldasAntioquiaColombia
| | | | - Junyoung Hong
- Department of PharmacologyUniversity of CaliforniaDavisCA
| | - Erin Y. Shen
- Department of PharmacologyUniversity of CaliforniaDavisCA
| | | | | | | | - Donald M. Bers
- Department of PharmacologyUniversity of CaliforniaDavisCA
| | - Julie Bossuyt
- Department of PharmacologyUniversity of CaliforniaDavisCA
| |
Collapse
|
19
|
Ke J, Pan J, Lin H, Gu J. Diabetic cardiomyopathy: a brief summary on lipid toxicity. ESC Heart Fail 2022; 10:776-790. [PMID: 36369594 PMCID: PMC10053269 DOI: 10.1002/ehf2.14224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/30/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus (DM) is a serious epidemic around the globe, and cardiovascular diseases account for the majority of deaths in patients with DM. Diabetic cardiomyopathy (DCM) is defined as a cardiac dysfunction derived from DM without the presence of coronary artery diseases and hypertension. Patients with either type 1 or type 2 DM are at high risk of developing DCM and even heart failure. Metabolic disorders of obesity and insulin resistance in type 2 diabetic environments result in dyslipidaemia and subsequent lipid-induced toxicity (lipotoxicity) in organs including the heart. Although various mechanisms have been proposed underlying DCM, it remains incompletely understood how lipotoxicity alters cardiac function and how DM induces clinical heart syndrome. With recent progress, we here summarize the latest discoveries on lipid-induced cardiac toxicity in diabetic hearts and discuss the underlying therapies and controversies in clinical DCM.
Collapse
Affiliation(s)
- Jiahan Ke
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Jianan Pan
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Hao Lin
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Jun Gu
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| |
Collapse
|
20
|
Smith AN, Altara R, Amin G, Habeichi NJ, Thomas DG, Jun S, Kaplan A, Booz GW, Zouein FA. Genomic, Proteomic, and Metabolic Comparisons of Small Animal Models of Heart Failure With Preserved Ejection Fraction: A Tale of Mice, Rats, and Cats. J Am Heart Assoc 2022; 11:e026071. [PMID: 35904190 PMCID: PMC9375492 DOI: 10.1161/jaha.122.026071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a medical anomaly that baffles researchers and physicians alike. The overall phenotypical changes of diastolic function and left ventricular hypertrophy observed in HFpEF are definable; however, the metabolic and molecular alterations that ultimately produce these changes are not well established. Comorbidities such as obesity, hypertension, and diabetes, as well as general aging, play crucial roles in its development and progression. Various animal models have recently been developed to better understand the pathophysiological and metabolic developments in HFpEF and to illuminate novel avenues for pharmacotherapy. These models include multi‐hit rodents and feline aortic constriction animals. Recently, genomic, proteomic, and metabolomic approaches have been used to define altered signaling pathways in the heart associated with HFpEF, including those involved in inflammation, cGMP‐related, Ca2+ handling, mitochondrial respiration, and the unfolded protein response in endoplasmic reticulum stress. This article aims to present an overview of what has been learnt by these studies, focusing mainly on the findings in common while highlighting unresolved issues. The knowledge gained from these research models will not simply be of benefit for treating HFpEF but will undoubtedly provide new insights into the mechanisms by which the heart deals with external stresses and how the processes involved can fail.
Collapse
Affiliation(s)
- Alex N Smith
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Raffaele Altara
- Department of Pathology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Nada J Habeichi
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Laboratory of Signaling and Cardiovascular Pathophysiology, Inserm Unit UMR-S 1180, Faculty of Pharmacy Paris-Saclay University Châtenay-Malabry France
| | - Daniel G Thomas
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Seungho Jun
- Division of Cardiology The Johns Hopkins Medical Institutions Baltimore MD
| | - Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Cardiology Clinic Rumeli Hospital Istanbul Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS.,Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Laboratory of Signaling and Cardiovascular Pathophysiology, Inserm Unit UMR-S 1180, Faculty of Pharmacy Paris-Saclay University Châtenay-Malabry France.,The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
21
|
Manaserh IH, Bledzka KM, Junker A, Grondolsky J, Schumacher SM. A Cardiac Amino-Terminal GRK2 Peptide Inhibits Maladaptive Adipocyte Hypertrophy and Insulin Resistance During Diet-Induced Obesity. JACC Basic Transl Sci 2022; 7:563-579. [PMID: 35818501 PMCID: PMC9270572 DOI: 10.1016/j.jacbts.2022.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/04/2022]
Abstract
Heart disease remains the leading cause of death, and mortality rates positively correlate with the presence of obesity and diabetes. Despite the correlation between cardiac and metabolic dysregulation, the mechanistic pathway(s) of interorgan crosstalk still remain undefined. This study reveals that cardiac-restricted expression of an amino-terminal peptide of GRK2 (βARKnt) preserves systemic and cardiac insulin responsiveness, and protects against adipocyte maladaptive hypertrophy in a diet-induced obesity model. These data suggest a cardiac-driven mechanism to ameliorate maladaptive cardiac remodeling and improve systemic metabolic homeostasis that may lead to new treatment modalities for cardioprotection in obesity and obesity-related metabolic syndromes.
Collapse
Key Words
- AS160, Akt substrate of 160 kilodaltons
- BAT, brown adipose tissue
- GRK2
- GRK2, G protein-coupled receptor kinase 2
- HFD, high-fat diet
- HOMA-IR, homeostatic model assessment of insulin resistance
- NLC, nontransgenic littermate control
- NP, natriuretic peptide
- NPR, natriuretic peptide receptor
- RER, respiratory exchange ratio
- T2D, type II diabetes
- Tg, transgenic
- beiging
- cardioprotection
- gWAT, gonadal white adipose tissue
- mTOR, mechanistic target of rapamycin protein kinase
- metabolism
- obesity
- βARKct, cardiac restricted expression of C-terminus domain of GRK2
- βARKnt, cardiac-restricted expression of N-terminus domain of GRK2
Collapse
Affiliation(s)
- Iyad H. Manaserh
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kamila M. Bledzka
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alex Junker
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jessica Grondolsky
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sarah M. Schumacher
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
22
|
Huang L, Chen Z, Chen R, Lin L, Ren L, Zhang M, Liu L. Increased fatty acid metabolism attenuates cardiac resistance to β-adrenoceptor activation via mitochondrial reactive oxygen species: A potential mechanism of hypoglycemia-induced myocardial injury in diabetes. Redox Biol 2022; 52:102320. [PMID: 35462320 PMCID: PMC9046456 DOI: 10.1016/j.redox.2022.102320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 01/18/2023] Open
Abstract
The mechanism of severe hypoglycemia (SH)-induced cardiovascular disease in diabetes remains unknown. Our previous study found that SH inhibits cardiac function and lipid metabolism in diabetic mice. Conversely, in nondiabetic mice, SH does not induce cardiac dysfunction but promotes cardiac lipid metabolism. This study aims to clarify the effect of increased fatty acid metabolism on the resistance of cardiomyocytes to β-adrenoceptor activation during hypoglycemia in diabetes. Results revealed that cardiomyocytes with enhanced lipid metabolism were more vulnerable to damage due to β-adrenoceptor activation, which presented as decreased cell viability, disorder of mitochondrial structure, dissipation of mitochondrial membrane potential, dysfunction of mitochondrial oxidative phosphorylation, nonapoptotic damage, and accumulation of ROS and calcium from mitochondria to cytoplasm, all of which were partially reversed by mitochondrial antioxidant Mito-TEMPO. The SH-induced cardiac dysfunction, and reduction of myocardial energy metabolism in diabetic mice were rescued by Mito-TEMPO. Our findings indicate that high fatty acid metabolism crippled cardiac resistance to β-adrenoceptor hyperactivation, with mitochondrial ROS playing a pivotal role in this process. Reducing mitochondrial ROS in diabetes could disrupt this synergistic effect and prevent poor cardiac outcomes caused by SH. Fatty acid metabolism lowers cardiac resistance to β-adrenoceptor activation via mtROS. Pretreatment with mitochondrial antioxidants prevents SH-induced cardiac outcomes. This synergistic effect might explicate the progression of other CV diseases.
Collapse
Affiliation(s)
- Lishan Huang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhou Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ruiyu Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Lu Lin
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lingjia Ren
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Meilian Zhang
- Department of Ultrasound, Fujian Province Hospital for Women and Children, Fuzhou, China
| | - Libin Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
23
|
Renguet E, De Loof M, Fourny N, Ginion A, Bouzin C, Poüs C, Horman S, Beauloye C, Bultot L, Bertrand L. α-Tubulin acetylation on Lysine 40 controls cardiac glucose uptake. Am J Physiol Heart Circ Physiol 2022; 322:H1032-H1043. [PMID: 35486479 DOI: 10.1152/ajpheart.00664.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Our group previously demonstrated that an excess of nutrients, as observed in diabetes, provokes an increase in cardiac protein acetylation responsible for a reduced insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane. The acetylated proteins involved in this event have yet not been identified. α-Tubulin is a promising candidate as a major cytoskeleton component involved, among other things, in the translocation of GLUT4-containing vesicles from their intracellular pools towards the plasma membrane. Moreover, α-tubulin is known to be acetylated, Lys40 (K40) being its best characterized acetylated residue. The present work sought to evaluate the impact of α-tubulin K40 acetylation on cardiac glucose entry, with a particular interest in GLUT4 translocation. First, we observed that a mouse model of high-fat diet-induced obesity presented an increase in cardiac α-tubulin K40 acetylation level. Next, we showed that treatment of insulin-sensitive primary cultured adult rat cardiomyocytes with tubacin, a specific tubulin acetylation inducer, reduced insulin-stimulated glucose uptake and GLUT4 translocation. Conversely, decreasing α-tubulin K40 acetylation by expressing a non-acetylable dominant form of α-tubulin (mCherry α-tubulin K40A mutant) remarkably intensified insulin-induced glucose transport. Finally, mCherry α-tubulin K40A expression similarly improved glucose transport in insulin-resistant cardiomyocytes or after AMP-activated protein kinase activation. Taken together, our study demonstrates that modulation of α-tubulin K40 acetylation level affects glucose transport in cardiomyocytes, offering new putative therapeutic insights regarding modulation of glucose metabolism in insulin-resistant and diabetic hearts.
Collapse
Affiliation(s)
- Edith Renguet
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Marine De Loof
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Natacha Fourny
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Audrey Ginion
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Caroline Bouzin
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, IREC Imaging Platform (2IP), Brussels, Belgium
| | - Christian Poüs
- Université Paris-Saclay, INSERM UMR-S-1193, Châtenay-Malabry, France; AP-HP, Biochimie-Hormonologie, Hôpital Antoine Béclère, Clamart, France
| | - Sandrine Horman
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Christophe Beauloye
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.,Cliniques Universitaires Saint-Luc, Division of Cardiology, Brussels, Belgium
| | - Laurent Bultot
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Luc Bertrand
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| |
Collapse
|
24
|
Ani C, Shavlik D, Knutsen S, Abudayyeh I, Banta J, O'Brien E, Mentz RJ, Bertoni AG, Fraser G. Glycemic status, non-traditional risk and left ventricular structure and function in the Jackson Heart Study. BMC Cardiovasc Disord 2022; 22:186. [PMID: 35448969 PMCID: PMC9022283 DOI: 10.1186/s12872-022-02605-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/31/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Left ventricular structure and function abnormalities may be an early marker of cardiomyopathy among African Americans with diabetes (DM) even in the absence of coronary artery disease (CAD), arrhythmia, valvular heart disease and end-stage renal disease (ESRD). This study examined the association of prediabetes (PDM), DM and HbA1c with left ventricular structure and function among Jackson Heart Study (JHS) participants without traditional risk factors. METHODS Retrospective cross-sectional analyses of the association of PDM, DM and HbA1c with, left ventricular ejection fraction (LV EF), fractional shortening (LV FS), stroke volume index (SVI), cardiac index (CI), left ventricular end diastolic volume index (LVEDVI), left ventricular end systolic volume index (LVESVI), relative wall thickness (RWT), myocardial contraction fraction (MCF) and left ventricular mass index (LVMI). The study was conducted in 2234 adult JHS participants without preexisting CAD, arrhythmia, valvular heart disease or ESRD. Statistical analyses included descriptive, univariate and covariate adjusted linear regression analyses. Sensitivity analyses to explore the impact of hypertension on study outcomes were also carried out. RESULTS DM compared with no DM was associated with lower, SVI (- 0.96 ml/m2, p = 0.029), LVEDVI (- 1.44 ml/m2 p = 0.015), and MCF (- 1.90% p = 0.007) but higher CI (0.14 L/min/m2, p < 0.001), RWT (0.01 cm, p = 0.002) and LVMI (2.29 g/m2, p = 0.009). After further control for DM duration, only CI remaining significantly higher for DM compared with no DM participants (0.12 L/min/m2, p = 0.009). PDM compared with no PDM was associated with lower, SVI (- 0.87 ml/m2, P = 0.024), LVEDVI (- 1.15 ml/m2 p = 0.003) and LVESVI (- 0.62 ml/m2 p = 0.025). HbA1c ≥ 8.0% compared with HbA1c < 5.7% was associated with lower SVI (- 2.09 ml/m2, p = 0.004), LVEDVI (- 2.11 ml/m2 p = 0.032) and MCF (- 2.94% p = 0.011) but higher CI (0.11 L/min/m2, p = 0.043) and RWT (0.01 cm, p = 0.035). CONCLUSIONS Glycemic status is associated with important left ventricular structure and function changes among African Americans without prior CAD, arrhythmia, valvular heart disease and ESRD. Longitudinal studies may further elucidate these relationships.
Collapse
Affiliation(s)
- Chizobam Ani
- Loma Linda University (LLU), Loma Linda, USA.
- Department of Internal Medicine, Charles R Drew University of Medicine and Science (CDU), Los Angeles, USA.
- University of California Los Angeles (UCLA), Los Angeles, USA.
| | | | | | | | | | | | | | - Alain G Bertoni
- Wake Forest School of Medicine (Department of Epidemiology and Prevention), Winston-Salem, USA
| | - Gary Fraser
- Loma Linda University (LLU), Loma Linda, USA
| |
Collapse
|
25
|
Cassano V, Miceli S, Armentaro G, Mannino GC, Fiorentino VT, Perticone M, Succurro E, Hribal ML, Andreozzi F, Perticone F, Sesti G, Sciacqua A. Oxidative Stress and Left Ventricular Performance in Patients with Different Glycometabolic Phenotypes. Nutrients 2022; 14:nu14061299. [PMID: 35334956 PMCID: PMC8950717 DOI: 10.3390/nu14061299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to evaluate the possible correlation between oxidative stress and subclinical myocardial damage, assessed with speckle tracking echocardiography (STE), in normal glucose tolerance (NGT) patients with one-hour plasma glucose values ≥ 155 mg/dL (NGT ≥ 155), comparing them to NGT < 155 subjects, impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) newly diagnosed patients. We enrolled 100 Caucasian patients. All subjects underwent OGTT. The serum values of oxidative stress markers (8-isoprostane and Nox-2) were assessed with an ELISA test. Echocardiographic recordings were performed using an E-95 Pro ultrasound system. We observed significant differences, among the four groups, for fasting plasma glucose (p < 0.0001), one-hour postload (p < 0.0001), and two-hour postload plasma glucose (p < 0.0001). As compared with NGT < 155, NGT ≥ 155 exhibited significantly worse insulin sensitivity and higher values of hs-CRP. No significant differences were observed between NGT ≥ 155 and IGT patients. There was a significant increase in 8-isoprostane (p < 0.0001) and Nox-2 (p < 0.0001), from the first to fourth group, indicating an increase in oxidative stress with the worsening of the metabolic status. Serum levels of 8-isoprostane and Nox-2 were significantly increased in NGT ≥ 155 compared to the NGT < 155 group, but similar to IGT. The global longitudinal strain (GLS) appeared progressively lower proceeding from the NGT < 155 to T2DM group (p < 0.0001). For similar values of left ventricular ejection fraction (LVEF), NGT ≥ 155 exhibited reduced GLS compared to NGT < 155 (p = 0.001), but similar to IGT patients. Our study demonstrated that NGT ≥ 155 subjects exhibit early functional impairment of myocardial contractile fibres, these alterations are correlated with increased oxidative stress.
Collapse
Affiliation(s)
- Velia Cassano
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Sofia Miceli
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Giuseppe Armentaro
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Vanessa Teresa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Maria Perticone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University of Catanzaro, 88100 Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University Rome-Sapienza, 00185 Roma, Italy;
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-3694103; Fax: +39-0961-3647192
| |
Collapse
|
26
|
Jiang Z, Cui X, Qu P, Shang C, Xiang M, Wang J. Roles and mechanisms of puerarin on cardiovascular disease:A review. Biomed Pharmacother 2022; 147:112655. [DOI: 10.1016/j.biopha.2022.112655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
|
27
|
Yan A, Xie G, Ding X, Wang Y, Guo L. Effects of Lipid Overload on Heart in Metabolic Diseases. Horm Metab Res 2021; 53:771-778. [PMID: 34891207 PMCID: PMC8664556 DOI: 10.1055/a-1693-8356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Metabolic diseases are often associated with lipid and glucose metabolism abnormalities, which increase the risk of cardiovascular disease. Diabetic cardiomyopathy (DCM) is an important development of metabolic diseases and a major cause of death. Lipids are the main fuel for energy metabolism in the heart. The increase of circulating lipids affects the uptake and utilization of fatty acids and glucose in the heart, and also affects mitochondrial function. In this paper, the mechanism of lipid overload in metabolic diseases leading to cardiac energy metabolism disorder is discussed.
Collapse
Affiliation(s)
- An Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin,
China
| | - Guinan Xie
- Tianjin University of Traditional Chinese Medicine, Tianjin,
China
| | - Xinya Ding
- Tianjin University of Traditional Chinese Medicine, Tianjin,
China
| | - Yi Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin,
China
- Correspondence Yi Wang Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese Medicine300193 TianjinChina+86-22-59596555
| | - Liping Guo
- Tianjin Academy of Traditional Chinese Medicine, Tianjin,
China
- Liping Guo Tianjin Academy of Traditional Chinese Medicine300120 TianjinChina
| |
Collapse
|
28
|
Karwi QG, Sun Q, Lopaschuk GD. The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity. Cells 2021; 10:cells10113259. [PMID: 34831481 PMCID: PMC8621814 DOI: 10.3390/cells10113259] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes is a major risk factor for the development of cardiovascular disease via contributing and/or triggering significant cellular signaling and metabolic and structural alterations at the level of the heart and the whole body. The main cause of mortality and morbidity in diabetic patients is cardiovascular disease including diabetic cardiomyopathy. Therefore, understanding how diabetes increases the incidence of diabetic cardiomyopathy and how it mediates the major perturbations in cell signaling and energy metabolism should help in the development of therapeutics to prevent these perturbations. One of the significant metabolic alterations in diabetes is a marked increase in cardiac fatty acid oxidation rates and the domination of fatty acids as the major energy source in the heart. This increased reliance of the heart on fatty acids in the diabetic has a negative impact on cardiac function and structure through a number of mechanisms. It also has a detrimental effect on cardiac efficiency and worsens the energy status in diabetes, mainly through inhibiting cardiac glucose oxidation. Furthermore, accelerated cardiac fatty acid oxidation rates in diabetes also make the heart more vulnerable to ischemic injury. In this review, we discuss how cardiac energy metabolism is altered in diabetic cardiomyopathy and the impact of cardiac insulin resistance on the contribution of glucose and fatty acid to overall cardiac ATP production and cardiac efficiency. Furthermore, how diabetes influences the susceptibility of the myocardium to ischemia/reperfusion injury and the role of the changes in glucose and fatty acid oxidation in mediating these effects are also discussed.
Collapse
Affiliation(s)
- Qutuba G. Karwi
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Q.G.K.); (Q.S.)
| | - Qiuyu Sun
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Q.G.K.); (Q.S.)
| | - Gary D. Lopaschuk
- 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Correspondence: ; Tel.: +1-780-492-2170; Fax: +1-780-492-9753
| |
Collapse
|
29
|
Tadinada SM, Weatherford ET, Collins GV, Bhardwaj G, Cochran J, Kutschke W, Zimmerman K, Bosko A, O'Neill BT, Weiss RM, Abel ED. Functional resilience of C57BL/6J mouse heart to dietary fat overload. Am J Physiol Heart Circ Physiol 2021; 321:H850-H864. [PMID: 34477461 PMCID: PMC8616610 DOI: 10.1152/ajpheart.00419.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/22/2023]
Abstract
Molecular mechanisms underlying cardiac dysfunction and subsequent heart failure in diabetic cardiomyopathy are incompletely understood. Initially we intended to test the role of G protein-coupled receptor kinase 2 (GRK2), a potential mediator of cardiac dysfunction in diabetic cardiomyopathy, but found that control animals on HFD did not develop cardiomyopathy. Cardiac function was preserved in both wild-type and GRK2 knockout animals fed high-fat diet as indicated by preserved left ventricular ejection fraction (LVEF) although heart mass was increased. The absence of cardiac dysfunction led us to rigorously evaluate the utility of diet-induced obesity to model diabetic cardiomyopathy in mice. Using pure C57BL/6J animals and various diets formulated with different sources of fat-lard (32% saturated fat, 68% unsaturated fat) or hydrogenated coconut oil (95% saturated fat), we consistently observed left ventricular hypertrophy, preserved LVEF, and preserved contractility measured by invasive hemodynamics in animals fed high-fat diet. Gene expression patterns that characterize pathological hypertrophy were not induced, but a modest induction of various collagen isoforms and matrix metalloproteinases was observed in heart with high-fat diet feeding. PPARα-target genes that enhance lipid utilization such as Pdk4, CD36, AcadL, and Cpt1b were induced, but mitochondrial energetics was not impaired. These results suggest that although long-term fat feeding in mice induces cardiac hypertrophy and increases cardiac fatty acid metabolism, it may not be sufficient to activate pathological hypertrophic mechanisms that impair cardiac function or induce cardiac fibrosis. Thus, additional factors that are currently not understood may contribute to the cardiac abnormalities previously reported by many groups.NEW & NOTEWORTHY Dietary fat overload (DFO) is widely used to model diabetic cardiomyopathy but the utility of this model is controversial. We comprehensively characterized cardiac contractile and mitochondrial function in C57BL6/J mice fed with lard-based or saturated fat-enriched diets initiated at two ages. Despite cardiac hypertrophy, contractile and mitochondrial function is preserved, and molecular adaptations likely limit lipotoxicity. The resilience of these hearts to DFO underscores the need to develop robust alternative models of diabetic cardiomyopathy.
Collapse
MESH Headings
- Age Factors
- Animals
- Diabetic Cardiomyopathies/enzymology
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/physiopathology
- Diet, High-Fat
- Disease Models, Animal
- Energy Metabolism
- Female
- Fibrosis
- G-Protein-Coupled Receptor Kinase 2/genetics
- G-Protein-Coupled Receptor Kinase 2/metabolism
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/pathology
- Myocardium/enzymology
- Myocardium/pathology
- Obesity/complications
- Stroke Volume
- Ventricular Dysfunction, Left/enzymology
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
- Ventricular Remodeling
- Mice
Collapse
Affiliation(s)
- Satya Murthy Tadinada
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Eric T Weatherford
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Greg V Collins
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Gourav Bhardwaj
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Jesse Cochran
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - William Kutschke
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kathy Zimmerman
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Alyssa Bosko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Brian T O'Neill
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
| | - Robert M Weiss
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Division of Cardiology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - E Dale Abel
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
30
|
Dong S, Qian L, Cheng Z, Chen C, Wang K, Hu S, Zhang X, Wu T. Lactate and Myocadiac Energy Metabolism. Front Physiol 2021; 12:715081. [PMID: 34483967 PMCID: PMC8415870 DOI: 10.3389/fphys.2021.715081] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/29/2021] [Indexed: 12/05/2022] Open
Abstract
The myocardium is capable of utilizing different energy substrates, which is referred to as “metabolic flexibility.” This process assures ATP production from fatty acids, glucose, lactate, amino acids, and ketones, in the face of varying metabolic contexts. In the normal physiological state, the oxidation of fatty acids contributes to approximately 60% of energy required, and the oxidation of other substrates provides the rest. The accumulation of lactate in ischemic and hypoxic tissues has traditionally be considered as a by-product, and of little utility. However, recent evidence suggests that lactate may represent an important fuel for the myocardium during exercise or myocadiac stress. This new paradigm drives increasing interest in understanding its role in cardiac metabolism under both physiological and pathological conditions. In recent years, blood lactate has been regarded as a signal of stress in cardiac disease, linking to prognosis in patients with myocardial ischemia or heart failure. In this review, we discuss the importance of lactate as an energy source and its relevance to the progression and management of heart diseases.
Collapse
Affiliation(s)
- Shuohui Dong
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Linhui Qian
- Department of Colorectal and Anal Surgery, Feicheng Hospital Affiliated to Shandong First Medical University, Feicheng, China
| | - Zhiqiang Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Chang Chen
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Sanyuan Hu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiang Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia.,Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
31
|
Uryash A, Mijares A, Flores V, Adams JA, Lopez JR. Effects of Naringin on Cardiomyocytes From a Rodent Model of Type 2 Diabetes. Front Pharmacol 2021; 12:719268. [PMID: 34497520 PMCID: PMC8419284 DOI: 10.3389/fphar.2021.719268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a primary disease in diabetic patients characterized by diastolic dysfunction leading to heart failure and death. Unfortunately, even tight glycemic control has not been effective in its prevention. We have found aberrant diastolic Ca2+ concentrations ([Ca2+]d), decreased glucose transport, elevated production of reactive oxygen species (ROS), and increased calpain activity in cardiomyocytes from a murine model (db/db) of type 2 diabetes (T2D). Cardiomyocytes from these mice demonstrate significant cell injury, increased levels of tumor necrosis factor-alpha and interleukin-6 and expression of the transcription nuclear factor-κB (NF-κB). Furthermore, decreased cell viability, and reduced expression of Kir6.2, SUR1, and SUR2 subunits of the ATP-sensitive potassium (KATP) channels. Treatment of T2D mice with the citrus fruit flavonoid naringin for 4 weeks protected cardiomyocytes by reducing diastolic Ca2+ overload, improving glucose transport, lowering reactive oxygen species production, and suppressed myocardial inflammation. In addition, naringin reduced calpain activity, decreased cardiac injury, increased cell viability, and restored the protein expression of Kir6.2, SUR1, and SUR2 subunits of the KATP channels. Administration of the KATP channel inhibitor glibenclamide caused a further increase in [Ca2+]d in T2D cardiomyocytes and abolished the naringin effect on [Ca2+]d. Nicorandil, a KATP channel opener, and nitric oxide donor drug mimic the naringin effect on [Ca2+]d in T2D cardiomyocyte; however, it aggravated the hyperglycemia in T2D mice. These data add new insights into the mechanisms underlying the beneficial effects of naringin in T2D cardiomyopathy, thus suggesting a novel approach to treating this cardiovascular complication.
Collapse
Affiliation(s)
- A. Uryash
- Department of Neonatology, Mount Sinai Medical Center, Miami, FL, United States
| | - A. Mijares
- Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - V. Flores
- Department of Research, Mount Sinai Medical Center, Miami, FL, United States
| | - J. A. Adams
- Department of Neonatology, Mount Sinai Medical Center, Miami, FL, United States
| | - J. R. Lopez
- Department of Research, Mount Sinai Medical Center, Miami, FL, United States
| |
Collapse
|
32
|
Quiroz J, Yazdanyar A. Animal models of diabetic retinopathy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1272. [PMID: 34532409 PMCID: PMC8421981 DOI: 10.21037/atm-20-6737] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022]
Abstract
The retina is the posterior neuro-integrated layer of the eye that conducts impulses induced by light to the optic nerve for human vision. Diseases of the retina often leads to diminished vision and in some cases blindness. Diabetes mellitus (DM) is a worldwide public health issue and globally, there is an estimated 463 million people that are affected by DM and its consequences. Diabetic retinopathy (DR) is a blinding complication of chronic uncontrolled DM and is the most common cause of blindness in the United States between the ages 24-75. It is estimated that the global prevalence of DR will increase to 191.0 million by 2030, of those 56.3 million possessing vision-threatening diabetic retinopathy (VTDR). For the most part, current treatment modalities control the complications of DR without addressing the underlying pathophysiology of the disease. Therefore, there is an unmet need for new therapeutics that not only repair the damaged retinal tissue, but also reverse the course of DR. The key element in developing these treatments is expanding our basic knowledge by studying DR pathogenesis in animal models of proliferative and non-proliferative DR (PDR and NPDR). There are numerous models available for the research of both PDR and NPDR with substantial overlap. Animal models available include those with genetic backgrounds prone to hyperglycemic states, immunologic etiologies, or environmentally induced disease. In this review we aimed to comprehensively summarize the available animal models for DR while also providing insight to each model's ocular therapeutic potential for drug discovery.
Collapse
Affiliation(s)
- Jose Quiroz
- Medical Scientist Training Program, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amirfarbod Yazdanyar
- Department of Ophthalmology and Visual Sciences, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
33
|
KLF15 negatively regulates cardiac fibrosis by which SDF-1β attenuates cardiac fibrosis in type 2 diabetic mice. Toxicol Appl Pharmacol 2021; 427:115654. [PMID: 34310909 DOI: 10.1016/j.taap.2021.115654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a serious diabetic complication that lacks effective preventive or therapeutic approaches. Wild-type and Klf15 knockout (Klf15-KO) mice were fed with either high fat diet (HFD, 60% kcal from fat) or normal diet (ND, 10% kcal from fat) for 3 months and then injected with streptozotocin or vehicle, to induce type 2 diabetes (T2D). All T2D and age-matched control mice were treated with or without SDF-1β at 5 mg/kg body-weight twice a week and also continually received HFD or ND for 3 months. At the end of 6-month study, after cardiac functions were measured, mice were euthanized to collect heart tissue. For in vitro mechanistic study, H9c2 cells were exposed to palmitate to mimic in vivo condition of T2D. SDF-1β prevented T2D-induced cardiac dysfunction and fibrosis and T2D-down-regulated KLF15 expression in wild-type diabetic heart tissue. However, the preventive effects of SDF-1β on both KLF15 expression and fibrosis was abolished, with partial cardiac protection in Klf15-KO/T2D mice. These results demonstrate partial KLF15-dependence for SDF-1β's cardiac fibrotic protection from T2D, but not on SDF-1β's protective effects on T2D-induced cardiac dysfunction. Further study showed that SDF-1β inhibited palmitate-induced cardiomyocyte fibrosis through its receptor CXCR7-mediated activation of p38β MAPK signaling pathway.
Collapse
|
34
|
Zhang B, Li X, Liu G, Zhang C, Zhang X, Shen Q, Sun G, Sun X. Peroxiredomin-4 ameliorates lipotoxicity-induced oxidative stress and apoptosis in diabetic cardiomyopathy. Biomed Pharmacother 2021; 141:111780. [PMID: 34130124 DOI: 10.1016/j.biopha.2021.111780] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), one severe complication in the diabetes, leads to high mortality in the diabetic patients. However, the understanding of molecular mechanisms underlying DCM is far from completion. Herein, we investigated the disease-related differences in the proteomes of DCM based on db/db mice and verified the protective roles of peroxiredoxin-4 (Prdx4) in H9c2 cardiomyocytes treated by palmitic acid (PA). Fasting blood glucose (FBG) and cardiac function was detected in the 6-month-old control and diabetic mice. The hearts were then collected and analyzed by a coupled label-free and mass spectrometry approach. In vivo investigation indicated that body weight and FBG of db/db mice markedly increased, and diabetic heart exhibited obvious cardiac hypertrophy and lipid droplet accumulation, and cardiac dysfunction as is indicated by the increases of left ventricle posterior wall thickness in systole (LVPWd) and diastole (LVPWs), and reduction of fractional shortening (FS). We used proteomic analysis and then detected a grand total of 2636 proteins. 175 differentially expressed proteins (DEPs) were markedly detected in the diabetic heart. Thereinto, Prdx4 was markedly down-regulated in the diabetic heart. In vitro experiments revealed that 250 μM PA significantly inhibited viability of H9c2 cell. PA induced much accumulation of lipid droplet in cardiomyocytes and resulted in an increase of mRNA expressions of lipogenic genes (FASN and SCD1) and cardiac hypertrophic genes. Additionally, protein level of Prdx4 evidently reduced in the PA-treated H9c2 cell. It was further found that shRNA-mediated Prdx4 knockdown exacerbated PA-induced oxidative stress and cardiomyocyte apoptosis, whereas overexpressing Prdx4 in the H9c2 cells noteworthily limited PA-induced ROS generation and cardiomyocytes apoptosis. These data collectively reveal the essential role of abnormal Prdx4 in pathological alteration of DCM, and provide potentially therapeutic target for the prevention of DCM.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xiaoya Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Guoxin Liu
- Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao 266071, Shandong, China.
| | - Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Qiang Shen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| |
Collapse
|
35
|
Bowman PRT, Smith GL, Gould GW. Run for your life: can exercise be used to effectively target GLUT4 in diabetic cardiac disease? PeerJ 2021; 9:e11485. [PMID: 34113491 PMCID: PMC8162245 DOI: 10.7717/peerj.11485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
The global incidence, associated mortality rates and economic burden of diabetes are now such that it is considered one of the most pressing worldwide public health challenges. Considerable research is now devoted to better understanding the mechanisms underlying the onset and progression of this disease, with an ultimate aim of improving the array of available preventive and therapeutic interventions. One area of particular unmet clinical need is the significantly elevated rate of cardiomyopathy in diabetic patients, which in part contributes to cardiovascular disease being the primary cause of premature death in this population. This review will first consider the role of metabolism and more specifically the insulin sensitive glucose transporter GLUT4 in diabetic cardiac disease, before addressing how we may use exercise to intervene in order to beneficially impact key functional clinical outcomes.
Collapse
Affiliation(s)
- Peter R T Bowman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
36
|
Saw EL, Pearson JT, Schwenke DO, Munasinghe PE, Tsuchimochi H, Rawal S, Coffey S, Davis P, Bunton R, Van Hout I, Kai Y, Williams MJA, Kakinuma Y, Fronius M, Katare R. Activation of the cardiac non-neuronal cholinergic system prevents the development of diabetes-associated cardiovascular complications. Cardiovasc Diabetol 2021; 20:50. [PMID: 33618724 PMCID: PMC7898760 DOI: 10.1186/s12933-021-01231-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Acetylcholine (ACh) plays a crucial role in the function of the heart. Recent evidence suggests that cardiomyocytes possess a non-neuronal cholinergic system (NNCS) that comprises of choline acetyltransferase (ChAT), choline transporter 1 (CHT1), vesicular acetylcholine transporter (VAChT), acetylcholinesterase (AChE) and type-2 muscarinic ACh receptors (M2AChR) to synthesize, release, degrade ACh as well as for ACh to transduce a signal. NNCS is linked to cardiac cell survival, angiogenesis and glucose metabolism. Impairment of these functions are hallmarks of diabetic heart disease (DHD). The role of the NNCS in DHD is unknown. The aim of this study was to examine the effect of diabetes on cardiac NNCS and determine if activation of cardiac NNCS is beneficial to the diabetic heart. METHODS Ventricular samples from type-2 diabetic humans and db/db mice were used to measure the expression pattern of NNCS components (ChAT, CHT1, VAChT, AChE and M2AChR) and glucose transporter-4 (GLUT-4) by western blot analysis. To determine the function of the cardiac NNCS in the diabetic heart, a db/db mouse model with cardiac-specific overexpression of ChAT gene was generated (db/db-ChAT-tg). Animals were followed up serially and samples collected at different time points for molecular and histological analysis of cardiac NNCS components and prosurvival and proangiogenic signaling pathways. RESULTS Immunoblot analysis revealed alterations in the components of cardiac NNCS and GLUT-4 in the type-2 diabetic human and db/db mouse hearts. Interestingly, the dysregulation of cardiac NNCS was followed by the downregulation of GLUT-4 in the db/db mouse heart. Db/db-ChAT-tg mice exhibited preserved cardiac and vascular function in comparison to db/db mice. The improved function was associated with increased cardiac ACh and glucose content, sustained angiogenesis and reduced fibrosis. These beneficial effects were associated with upregulation of the PI3K/Akt/HIF1α signaling pathway, and increased expression of its downstream targets-GLUT-4 and VEGF-A. CONCLUSION We provide the first evidence for dysregulation of the cardiac NNCS in DHD. Increased cardiac ACh is beneficial and a potential new therapeutic strategy to prevent or delay the development of DHD.
Collapse
Affiliation(s)
- Eng Leng Saw
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Daryl O Schwenke
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand
| | - Pujika Emani Munasinghe
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Shruti Rawal
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand
| | - Sean Coffey
- Department of Medicine, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Philip Davis
- Department of Cardiothoracic Surgery, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Richard Bunton
- Department of Cardiothoracic Surgery, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Isabelle Van Hout
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand
| | - Yuko Kai
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Michael J A Williams
- Department of Medicine, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Yoshihiko Kakinuma
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Martin Fronius
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand.
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand.
| |
Collapse
|
37
|
Ness H, Ljones K, Pinho M, Høydal M. Acute high-intensity aerobic exercise increases gene expression of calcium-related proteins and activates endoplasmic reticulum stress responses in diabetic hearts. COMPARATIVE EXERCISE PHYSIOLOGY 2021. [DOI: 10.3920/cep200022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Regular aerobic exercise training has a wide range of beneficial cardiac effects, but recent data also show that acute very strenuous aerobic exercise may impose a transient cardiac exhaustion. The aim of this study was to assess the response to acute high-intensity aerobic exercise on properties of mitochondrial respiration, cardiomyocyte contractile function, Ca2+ handling and transcriptional changes for key proteins facilitating Ca2+ handling and endoplasmic reticulum (ER) stress responses in type 2 diabetic mice. Diabetic mice were assigned to either sedentary control or an acute bout of exercise, consisting of a 10×4 minutes high-intensity interval treadmill run. Mitochondrial respiration, contractile and Ca2+ handling properties of cardiomyocytes were analysed 1 hour after completion of exercise. Gene expression levels of key Ca2+ handling and ER stress response proteins were measured in cardiac tissue samples harvested 1 hour and 24 hours after exercise. We found no significant changes in mitochondrial respiration, cardiomyocyte contractile function or Ca2+ handling 1 hour after the acute exercise. However, gene expression of Atp2a2, Slc8a1 and Ryr2, encoding proteins involved in cardiomyocyte Ca2+ handling, were all significantly upregulated 24 hours after the acute exercise bout. Acute exercise also altered gene expression of several key proteins in ER stress response and unfolded protein response, including Grp94, total Xbp1, Gadd34, and Atf6. The present results show that despite no significant alterations in functional properties of cardiomyocyte function, Ca2+ handling or mitochondrial respiration following one bout of high intensity aerobic exercise training, the expression of genes involved in Ca2+ handling and key components in ER stress and the unfolded protein response were changed. These transcriptional changes may constitute important steps in initiating adaptive remodelling to exercise training in type 2 diabetes.
Collapse
Affiliation(s)
- H.O. Ness
- NTNU, Norwegian University of Technology and Science (NTNU), Faculty of Medicine and Health, Department of Circulation and Medical Imaging, Group of Molecular and Cellular Cardiology, Prinsesse Kristinas gate 9, Trondheim, 7489, Norway
| | - K. Ljones
- NTNU, Norwegian University of Technology and Science (NTNU), Faculty of Medicine and Health, Department of Circulation and Medical Imaging, Group of Molecular and Cellular Cardiology, Prinsesse Kristinas gate 9, Trondheim, 7489, Norway
| | - M. Pinho
- NTNU, Norwegian University of Technology and Science (NTNU), Faculty of Medicine and Health, Department of Circulation and Medical Imaging, Group of Molecular and Cellular Cardiology, Prinsesse Kristinas gate 9, Trondheim, 7489, Norway
| | - M.A. Høydal
- NTNU, Norwegian University of Technology and Science (NTNU), Faculty of Medicine and Health, Department of Circulation and Medical Imaging, Group of Molecular and Cellular Cardiology, Prinsesse Kristinas gate 9, Trondheim, 7489, Norway
| |
Collapse
|
38
|
Wang L, Cai Y, Jian L, Cheung CW, Zhang L, Xia Z. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy. Cardiovasc Diabetol 2021; 20:2. [PMID: 33397369 PMCID: PMC7783984 DOI: 10.1186/s12933-020-01188-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
The prevalence of cardiomyopathy is higher in diabetic patients than those without diabetes. Diabetic cardiomyopathy (DCM) is defined as a clinical condition of abnormal myocardial structure and performance in diabetic patients without other cardiac risk factors, such as coronary artery disease, hypertension, and significant valvular disease. Multiple molecular events contribute to the development of DCM, which include the alterations in energy metabolism (fatty acid, glucose, ketone and branched chain amino acids) and the abnormalities of subcellular components in the heart, such as impaired insulin signaling, increased oxidative stress, calcium mishandling and inflammation. There are no specific drugs in treating DCM despite of decades of basic and clinical investigations. This is, in part, due to the lack of our understanding as to how heart failure initiates and develops, especially in diabetic patients without an underlying ischemic cause. Some of the traditional anti-diabetic or lipid-lowering agents aimed at shifting the balance of cardiac metabolism from utilizing fat to glucose have been shown inadequately targeting multiple aspects of the conditions. Peroxisome proliferator-activated receptor α (PPARα), a transcription factor, plays an important role in mediating DCM-related molecular events. Pharmacological targeting of PPARα activation has been demonstrated to be one of the important strategies for patients with diabetes, metabolic syndrome, and atherosclerotic cardiovascular diseases. The aim of this review is to provide a contemporary view of PPARα in association with the underlying pathophysiological changes in DCM. We discuss the PPARα-related drugs in clinical applications and facts related to the drugs that may be considered as risky (such as fenofibrate, bezafibrate, clofibrate) or safe (pemafibrate, metformin and glucagon-like peptide 1-receptor agonists) or having the potential (sodium-glucose co-transporter 2 inhibitor) in treating DCM.
Collapse
Affiliation(s)
- Lin Wang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Yin Cai
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Liguo Jian
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
39
|
Zhao S, Liu ML, Huang B, Zhao FR, Li Y, Cui XT, Lin R. Acetylcarnitine Is Associated With Cardiovascular Disease Risk in Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:806819. [PMID: 34970228 PMCID: PMC8712495 DOI: 10.3389/fendo.2021.806819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE This study aimed to identify the association between specific short-chain acylcarnitines and cardiovascular disease (CVD) in type 2 diabetes mellitus (T2DM). METHOD We retrieved 1,032 consecutive patients with T2DM who meet the inclusion and exclusion criteria from the same tertiary care center and extracted clinical information from electronic medical records from May 2015 to August 2016. A total of 356 T2DM patients with CVD and 676 T2DM patients without CVD were recruited. Venous blood samples were collected by finger puncture after 8 h fasting and stored as dried blood spots. Restricted cubic spline (RCS) analysis nested in binary logistic regression was used to identify possible cutoff points and obtain the odds ratios (ORs) and 95% confidence intervals (CIs) of short-chain acylcarnitines for CVD risk in T2DM. The Ryan-Holm step-down Bonferroni procedure was performed to adjust p-values. Stepwise forward selection was performed to estimate the effects of acylcarnitines on CVD risk. RESULT The levels of C2, C4, and C6 were elevated and C5-OH was decreased in T2DM patients with CVD. Notably, only elevated C2 was still associated with increased CVD inT2DM after adjusting for potential confounders in the multivariable model (OR = 1.558, 95%CI = 1.124-2.159, p = 0.008). Furthermore, the association was independent of previous adjusted demographic and clinical factors after stepwise forward selection (OR = 1.562, 95%CI = 1.132-2.154, p = 0.007). CONCLUSIONS Elevated C2 was associated with increased CVD risk in T2DM.
Collapse
Affiliation(s)
- Shuo Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Human Resources Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ming-Li Liu
- Department of Sceintific Research, Dalian Runsheng Kangtai Medical Lab Co. Ltd., Dalian, China
| | - Bing Huang
- Department of Sceintific Research, Dalian Runsheng Kangtai Medical Lab Co. Ltd., Dalian, China
| | - Fu-Rong Zhao
- Department of Sceintific Research, Dalian Runsheng Kangtai Medical Lab Co. Ltd., Dalian, China
| | - Ying Li
- Department of Sceintific Research, Dalian Runsheng Kangtai Medical Lab Co. Ltd., Dalian, China
| | - Xue-Ting Cui
- Department of Sceintific Research, Dalian Runsheng Kangtai Medical Lab Co. Ltd., Dalian, China
| | - Rong Lin
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Rong Lin,
| |
Collapse
|
40
|
Haye A, Ansari MA, Rahman SO, Shamsi Y, Ahmed D, Sharma M. Role of AMP-activated protein kinase on cardio-metabolic abnormalities in the development of diabetic cardiomyopathy: A molecular landscape. Eur J Pharmacol 2020; 888:173376. [PMID: 32810493 DOI: 10.1016/j.ejphar.2020.173376] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular complications associated with diabetes mellitus remains a leading cause of morbidity and mortality across the world. Diabetic cardiomyopathy is a descriptive pathology that in absence of co-morbidities such as hypertension, dyslipidemia initially characterized by cardiac stiffness, myocardial fibrosis, ventricular hypertrophy, and remodeling. These abnormalities further contribute to diastolic dysfunctions followed by systolic dysfunctions and eventually results in clinical heart failure (HF). The clinical outcomes associated with HF are considerably worse in patients with diabetes. The complexity of the pathogenesis and clinical features of diabetic cardiomyopathy raises serious questions in developing a therapeutic strategy to manage cardio-metabolic abnormalities. Despite extensive research in the past decade the compelling approaches to manage and treat diabetic cardiomyopathy are limited. AMP-Activated Protein Kinase (AMPK), a serine-threonine kinase, often referred to as cellular "metabolic master switch". During the development and progression of diabetic cardiomyopathy, a plethora of evidence demonstrate the beneficial role of AMPK on cardio-metabolic abnormalities including altered substrate utilization, impaired cardiac insulin metabolic signaling, mitochondrial dysfunction and oxidative stress, myocardial inflammation, increased accumulation of advanced glycation end-products, impaired cardiac calcium handling, maladaptive activation of the renin-angiotensin-aldosterone system, endoplasmic reticulum stress, myocardial fibrosis, ventricular hypertrophy, cardiac apoptosis, and impaired autophagy. Therefore, in this review, we have summarized the findings from pre-clinical and clinical studies and provided a collective overview of the pathophysiological mechanism and the regulatory role of AMPK on cardio-metabolic abnormalities during the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abdul Haye
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yasmeen Shamsi
- Department of Moalejat, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Danish Ahmed
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, Uttar Pradesh, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
41
|
Radlinger B, Hornsteiner F, Folie S, Salvenmoser W, Haubner BJ, Schuetz T, Haas S, Ress C, Adolph TE, Salzmann K, Weiss B, Tilg H, Kaser S. Cardioprotective effects of short-term empagliflozin treatment in db/db mice. Sci Rep 2020; 10:19686. [PMID: 33184414 PMCID: PMC7665199 DOI: 10.1038/s41598-020-76698-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
Sodium glucose transporter (SGLT)-2 inhibitors have consistently shown cardioprotective effects independent of the glycemic status of treated patients. In this study we aimed to investigate underlying mechanisms of short-term empagliflozin treatment in a mouse model of type II diabetes. Male db/db mice were fed a western type diet with or without enrichment with empagliflozin for 7 days. While glucose tolerance was significantly improved in empagliflozin treated mice, body weight and fasting insulin levels were comparable in both groups. Cardiac insulin signaling activity indicated by reduced proteinkinase B (AKT) phosphorylation was significantly decreased in the empagliflozin treated group. Remarkably, mitochondrial mass estimated by citrate synthase activity was significantly elevated in empagliflozin treated mice. Accordingly, mitochondrial morphology was significantly altered upon treatment with empagliflozin as analysed by transmission electron microscopy. Additionally, short-term empagliflozin therapy was associated with a changed cardiac tissue cytokine expression in favor of an anti-inflammatory pattern. Our data suggest that early cardioprotection in empagliflozin treated mice is independent of a reduction in body weight or hyperinsulinemia. Ameliorated mitochondrial ultrastructure, attenuated cardiac insulin signaling and diminished cardiac inflammation might contribute to the cardioprotective effects of empagliflozin.
Collapse
Affiliation(s)
- Bernhard Radlinger
- Department of Internal Medicine I, Christian Doppler Laboratory for Metabolic Crosstalk, Medical University Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Florian Hornsteiner
- Department of Internal Medicine I, Christian Doppler Laboratory for Metabolic Crosstalk, Medical University Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Sabrina Folie
- Department of Internal Medicine I, Christian Doppler Laboratory for Metabolic Crosstalk, Medical University Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Willi Salvenmoser
- Insitute of Zoology and Center of Molecular Biosciences Innsbruck (CBMI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Bernhard J Haubner
- Department of Internal Medicine III, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Schuetz
- Department of Internal Medicine III, Medical University Innsbruck, Innsbruck, Austria
| | - Simone Haas
- Department of Internal Medicine I, Christian Doppler Laboratory for Metabolic Crosstalk, Medical University Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Claudia Ress
- Department of Internal Medicine I, Christian Doppler Laboratory for Metabolic Crosstalk, Medical University Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Karin Salzmann
- Department of Internal Medicine I, Christian Doppler Laboratory for Metabolic Crosstalk, Medical University Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard Weiss
- Department of Internal Medicine I, Christian Doppler Laboratory for Metabolic Crosstalk, Medical University Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Susanne Kaser
- Department of Internal Medicine I, Christian Doppler Laboratory for Metabolic Crosstalk, Medical University Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
42
|
Larsen TS, Jansen KM. Impact of Obesity-Related Inflammation on Cardiac Metabolism and Function. J Lipid Atheroscler 2020; 10:8-23. [PMID: 33537250 PMCID: PMC7838512 DOI: 10.12997/jla.2021.10.1.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/10/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
This review focuses on the role of adipose tissue in obese individuals in the development of metabolic diseases, and their consequences for metabolic and functional derangements in the heart. The general idea is that the expansion of adipocytes during the development of obesity gives rise to unhealthy adipose tissue, characterized by low-grade inflammation and the release of proinflammatory adipokines and fatty acids (FAs). This condition, in turn, causes systemic inflammation and elevated FA concentrations in the circulation, which links obesity to several pathologies, including impaired insulin signaling in cardiac muscle and a subsequent shift in myocardial substrate oxidation in favor of FAs and reduced cardiac efficiency. This review also argues that efforts to prevent obesity-related cardiometabolic disease should focus on anti-obesogenic strategies to restore normal adipose tissue metabolism.
Collapse
Affiliation(s)
- Terje S Larsen
- Department of Medical Biology, The Health Sciences Faculty, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kirsten M Jansen
- Department of Medical Biology, The Health Sciences Faculty, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
43
|
Wende AR, Schell JC, Ha CM, Pepin ME, Khalimonchuk O, Schwertz H, Pereira RO, Brahma MK, Tuinei J, Contreras-Ferrat A, Wang L, Andrizzi CA, Olsen CD, Bradley WE, Dell'Italia LJ, Dillmann WH, Litwin SE, Abel ED. Maintaining Myocardial Glucose Utilization in Diabetic Cardiomyopathy Accelerates Mitochondrial Dysfunction. Diabetes 2020; 69:2094-2111. [PMID: 32366681 PMCID: PMC7506832 DOI: 10.2337/db19-1057] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/25/2020] [Indexed: 12/13/2022]
Abstract
Cardiac glucose uptake and oxidation are reduced in diabetes despite hyperglycemia. Mitochondrial dysfunction contributes to heart failure in diabetes. It is unclear whether these changes are adaptive or maladaptive. To directly evaluate the relationship between glucose delivery and mitochondrial dysfunction in diabetic cardiomyopathy, we generated transgenic mice with inducible cardiomyocyte-specific expression of the GLUT4. We examined mice rendered hyperglycemic following low-dose streptozotocin prior to increasing cardiomyocyte glucose uptake by transgene induction. Enhanced myocardial glucose in nondiabetic mice decreased mitochondrial ATP generation and was associated with echocardiographic evidence of diastolic dysfunction. Increasing myocardial glucose delivery after short-term diabetes onset exacerbated mitochondrial oxidative dysfunction. Transcriptomic analysis revealed that the largest changes, driven by glucose and diabetes, were in genes involved in mitochondrial function. This glucose-dependent transcriptional repression was in part mediated by O-GlcNAcylation of the transcription factor Sp1. Increased glucose uptake induced direct O-GlcNAcylation of many electron transport chain subunits and other mitochondrial proteins. These findings identify mitochondria as a major target of glucotoxicity. They also suggest that reduced glucose utilization in diabetic cardiomyopathy might defend against glucotoxicity and caution that restoring glucose delivery to the heart in the context of diabetes could accelerate mitochondrial dysfunction by disrupting protective metabolic adaptations.
Collapse
Affiliation(s)
- Adam R Wende
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - John C Schell
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Chae-Myeong Ha
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Mark E Pepin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Oleh Khalimonchuk
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE
| | - Hansjörg Schwertz
- Division of Occupational Medicine, Molecular Medicine Program, and Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT
| | - Renata O Pereira
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Manoja K Brahma
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Joseph Tuinei
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Ariel Contreras-Ferrat
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Li Wang
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Chase A Andrizzi
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Curtis D Olsen
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Wayne E Bradley
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Louis J Dell'Italia
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | | | - Sheldon E Litwin
- Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT
- Department of Medicine, Medical University of South Carolina, Charleston, SC
- Division of Cardiology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - E Dale Abel
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
44
|
Gambardella J, Lombardi A, Santulli G. Metabolic Flexibility of Mitochondria Plays a Key Role in Balancing Glucose and Fatty Acid Metabolism in the Diabetic Heart. Diabetes 2020; 69:2054-2057. [PMID: 32958606 PMCID: PMC7506829 DOI: 10.2337/dbi20-0024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jessica Gambardella
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY
- Department of Advanced Biomedical Science, "Federico II" University, and International Translational Research and Medical Education Consortium (ITME), Naples, Italy
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY
- Department of Immunology and Microbiology, Albert Einstein College of Medicine, New York, NY
| | - Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY
- Department of Advanced Biomedical Science, "Federico II" University, and International Translational Research and Medical Education Consortium (ITME), Naples, Italy
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY
| |
Collapse
|
45
|
Palmitate-induced toxicity is associated with impaired mitochondrial respiration and accelerated oxidative stress in cultured cardiomyocytes: The critical role of coenzyme Q 9/10. Toxicol In Vitro 2020; 68:104948. [PMID: 32683093 DOI: 10.1016/j.tiv.2020.104948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 02/09/2023]
Abstract
Impaired mitochondrial function concomitant to enhanced oxidative stress-induced damage are well established mechanisms involved in hyperlipidemia-induced cardiotoxicity. Currently, limited information is available on the direct effect of myocardial lipid overload on endogenous coenzyme Q9/10 (CoQ9/10) levels in association with mitochondrial respiration and oxidative stress status. Here, such effects were explored by exposing H9c2 cardiomyocytes to various doses (0.15 to 1 mM) of palmitate for 24 h. The results demonstrated that palmitate doses ≥0.25 mM are enough to impair mitochondrial respiration and cause oxidative stress. Although endogenous CoQ9/10 levels are enhanced by palmitate doses ≤0.5 mM, this is not enough to counteract oxidative stress, but is sufficient to maintain cell viability of cardiomyocytes. Palmitate doses >0.5 mM caused severe mitochondrial toxicity, including reduction of cell viability. Interestingly, enhancement of CoQ9/10 levels with the lowest dose of palmitate (0.15 mM) was accompanied by a significantly reduction of CoQ9 oxidation status, as well as low cytosolic production of reactive oxygen species. From the overall findings, it appears that CoQ9/10 response may be crucial to improve mitochondrial function in conditions linked to hyperlipidemia-induced insult. Confirmation of such findings in relevant in vivo models remains essential to better understand the cardioprotective effects in association with improving endogenous CoQ9/10 content.
Collapse
|
46
|
Peterson LR, Jiang X, Chen L, Goldberg AC, Farmer MS, Ory DS, Schaffer JE. Alterations in plasma triglycerides and ceramides: links with cardiac function in humans with type 2 diabetes. J Lipid Res 2020; 61:1065-1074. [PMID: 32393551 PMCID: PMC7328042 DOI: 10.1194/jlr.ra120000669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
Cardiac dysfunction in T2D is associated with excessive FA uptake, oxidation, and generation of toxic lipid species by the heart. It is not known whether decreasing lipid delivery to the heart can effect improvement in cardiac function in humans with T2D. Thus, our objective was to test the hypothesis that lowering lipid delivery to the heart would result in evidence of decreased "lipotoxicity," improved cardiac function, and salutary effects on plasma biomarkers of cardiovascular risk. Thus, we performed a double-blind randomized placebo-controlled parallel design study of the effects of 12 weeks of fenofibrate-induced lipid lowering on cardiac function, inflammation, and oxidation biomarkers, and on the ratio of two plasma ceramides, Cer d18:1 (4E) (1OH, 3OH)/24:0 and Cer d18:1 (4E) (1OH, 3OH)/16:0 (i.e., "C24:0/C16:0"), which is associated with decreased risk of cardiac dysfunction and heart failure. Fenofibrate lowered plasma TG and cholesterol but did not improve heart systolic or diastolic function. Fenofibrate treatment lowered the plasma C24:0/C16:0 ceramide ratio and minimally altered oxidative stress markers but did not alter measures of inflammation. Overall, plasma TG lowering correlated with improvement of cardiac relaxation (diastolic function) as measured by tissue Doppler-derived parameter e'. Moreover, lowering the plasma C24:0/C16:0 ceramide ratio was correlated with worse diastolic function. These findings indicate that fenofibrate treatment per se is not sufficient to effect changes in cardiac function; however, decreases in plasma TG may be linked to improved diastolic function. In contrast, decreases in plasma C24:0/C16:0 are linked with worsening cardiac function.
Collapse
Affiliation(s)
- Linda R Peterson
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110. mailto:
| | - Xuntian Jiang
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ling Chen
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110
| | - Anne C Goldberg
- Division of Endocrinology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Marsha S Farmer
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Daniel S Ory
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jean E Schaffer
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
47
|
Waldman M, Arad M, Abraham NG, Hochhauser E. The Peroxisome Proliferator-Activated Receptor-Gamma Coactivator-1α-Heme Oxygenase 1 Axis, a Powerful Antioxidative Pathway with Potential to Attenuate Diabetic Cardiomyopathy. Antioxid Redox Signal 2020; 32:1273-1290. [PMID: 32027164 PMCID: PMC7232636 DOI: 10.1089/ars.2019.7989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Significance: From studies of diabetic animal models, the downregulation of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α)-heme oxygenase 1 (HO-1) axis appears to be a crucial event in the development of obesity and diabetic cardiomyopathy (DCM). In this review, we discuss the role of metabolic and biochemical stressors in the rodent and human pathophysiology of DCM. A crucial contributor for many cardiac pathologies is excessive production of reactive oxygen species (ROS) pathologies, which lead to extensive cellular damage by impairing mitochondrial function and directly oxidizing DNA, proteins, and lipid membranes. We discuss the role of ROS production and inflammatory pathways with multiple contributing and confounding factors leading to DCM. Recent Advances: The relevant biochemical pathways that are critical to a therapeutic approach to treat DCM, specifically caloric restriction and its relation to the PGC-1α-HO-1 axis in the attenuation of DCM, are elucidated. Critical Issues: The increased prevalence of diabetes mellitus type 2, a major contributor to unique cardiomyopathy characterized by cardiomyocyte hypertrophy with no effective clinical treatment. This review highlights the role of mitochondrial dysfunction in the development of DCM and potential oxidative targets to attenuate oxidative stress and attenuate DCM. Future Directions: Targeting the PGC-1α-HO-1 axis is a promising approach to ameliorate DCM through improvement in mitochondrial function and antioxidant defenses. A pharmacological inducer to activate PGC-1α and HO-1 described in this review may be a promising therapeutic approach in the clinical setting.
Collapse
Affiliation(s)
- Maayan Waldman
- Cardiac Research Laboratory, Felsenstein Medical Research Institute at Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
- Cardiac Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Michael Arad
- Cardiac Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Nader G. Abraham
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute at Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
48
|
Expression of asprosin in rat hepatic, renal, heart, gastric, testicular and brain tissues and its changes in a streptozotocin-induced diabetes mellitus model. Tissue Cell 2020; 66:101397. [PMID: 32933720 DOI: 10.1016/j.tice.2020.101397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/07/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
In this study, we aimed to investigate the presence of asprosin (ASP) in the liver, kidneys, heart, stomach, testicles and brain and to determine the serum and tissue asprosin levels in diabetic rats. A total of 14 male Wistar Albino rats were divided into two groups, each containing 7 rats: (I) control group and (II) experimental diabetes group. Control rats received no treatment and the rats in the experiment group received single-dose of streptozotocin (STZ) (50 mg/kg) dissolved in 0.1 M sodium citrate buffer (pH: 4.5) intraperitoneally. Serum levels of asprosin were measured using ELISA method. The presence of asprosin in hepatic, renal, cardiac, gastric, testicular and brain tissues was investigated using immunohistochemical staining. Asprosin was detected in hepatocytes in the liver, cortical distal tubule cells in the kidney, cardiomyocytes in heart, surface epithelial cells of stomach fundus, interstitial Leydig cells in testes and cortical neurons of the brain. Compared to control group, it was found that diabetic rats had decreased asprosin levels in liver, kidney and heart tissues, increased levels in gastric and testicular tissues and no significant changes in brain tissue. Serum asprosin levels of diabetic rats were found to be decreased compared to the control group. This is the first study in the literature that reports the presence of asprosin in liver, kidney, heart, stomach, testis and brain tissues in rats. The aim of the study is to determine the presence of ASP, a newly discovered adipokine, in various tissues and to examine tissue and serum level changes in STZ-induced diabetes.
Collapse
|
49
|
Nuamnaichati N, Mangmool S, Chattipakorn N, Parichatikanond W. Stimulation of GLP-1 Receptor Inhibits Methylglyoxal-Induced Mitochondrial Dysfunctions in H9c2 Cardiomyoblasts: Potential Role of Epac/PI3K/Akt Pathway. Front Pharmacol 2020; 11:805. [PMID: 32547400 PMCID: PMC7274035 DOI: 10.3389/fphar.2020.00805] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulation of methylglyoxal (MG) contributes to oxidative stress, apoptosis, and mitochondrial dysfunction, leading to the development of type 2 diabetes and cardiovascular diseases. Inhibition of mitochondrial abnormalities induced by MG in the heart may improve and delay the progression of heart failure. Although glucagon-like peptide-1 receptor (GLP-1R) agonists have been used as anti-diabetic drugs and GLP-1R has been detected in the heart, the cardioprotective effects of GLP-1R agonists on the inhibition of MG-induced oxidative stress and mitochondrial abnormalities have not been elucidated. Stimulation of GLP-1Rs leads to cAMP elevation and subsequently activates PKA- and/or Epac-dependent signaling pathway. However, the signaling pathway involved in the prevention of MG-induced mitochondrial dysfunctions in the heart has not been clarified so far. In the present study, we demonstrated that stimulation of GLP-1Rs with exendin-4 inhibited MG-induced intracellular and mitochondrial reactive oxygen species (ROS) production and apoptosis in H9c2 cardiomyoblasts. GLP-1R stimulation also improved the alterations of mitochondrial membrane potential (MMP) and expressions of genes related to mitochondrial functions and dynamics induced by MG. In addition, stimulation of GLP-1R exhibits antioxidant and antiapoptotic effects as well as the improvement of mitochondrial functions through cAMP/Epac/PI3K/Akt signaling pathway in H9c2 cells. Our study is the first work demonstrating a novel signaling pathway for cardioprotective effects of GLP-1R agonist on inhibition of oxidative stress and prevention of mitochondrial dysfunction. Thus, GLP-1R agonist represents a potential therapeutic target for inhibition of oxidative stress and modulation of mitochondrial functions in the heart.
Collapse
Affiliation(s)
- Narawat Nuamnaichati
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
50
|
Abstract
Diabetes mellitus predisposes affected individuals to a significant spectrum of cardiovascular complications, one of the most debilitating in terms of prognosis is heart failure. Indeed, the increasing global prevalence of diabetes mellitus and an aging population has given rise to an epidemic of diabetes mellitus-induced heart failure. Despite the significant research attention this phenomenon, termed diabetic cardiomyopathy, has received over several decades, understanding of the full spectrum of potential contributing mechanisms, and their relative contribution to this heart failure phenotype in the specific context of diabetes mellitus, has not yet been fully resolved. Key recent preclinical discoveries that comprise the current state-of-the-art understanding of the basic mechanisms of the complex phenotype, that is, the diabetic heart, form the basis of this review. Abnormalities in each of cardiac metabolism, physiological and pathophysiological signaling, and the mitochondrial compartment, in addition to oxidative stress, inflammation, myocardial cell death pathways, and neurohumoral mechanisms, are addressed. Further, the interactions between each of these contributing mechanisms and how they align to the functional, morphological, and structural impairments that characterize the diabetic heart are considered in light of the clinical context: from the disease burden, its current management in the clinic, and where the knowledge gaps remain. The need for continued interrogation of these mechanisms (both known and those yet to be identified) is essential to not only decipher the how and why of diabetes mellitus-induced heart failure but also to facilitate improved inroads into the clinical management of this pervasive clinical challenge.
Collapse
Affiliation(s)
- Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), Parkville, Victoria 3052, Australia
| | - E. Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| |
Collapse
|