1
|
Latini L, Porta F, Maccarrone V, Zompa D, Cipolletta E, Mirza RM, Filippucci E, Vreju FA. Clinical Efficacy and Safety of Ultrasound-Guided Injection with Low-Molecular-Weight Peptides from Hydrolyzed Collagen in Patients with Partial Supraspinatus Tendon Tears: A Pilot Study. Life (Basel) 2024; 14:1351. [PMID: 39598150 PMCID: PMC11595708 DOI: 10.3390/life14111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND This study evaluates the clinical efficacy and safety of two ultrasound (US)-guided injections of a 5 mg/1 mL low-molecular-weight peptide (LWP) solution derived from hydrolyzed bovine collagen in patients with supraspinatus partial tendon tears. METHODS A total of 21 patients with symptomatic partial tears of the supraspinatus tendon, detected by US, were consecutively enrolled and received one injection at a baseline visit (T0) and one after two weeks (T1). The primary outcome measure was the visual analogue scale (VAS) for pain. Secondary outcomes were the shoulder pain and disability index (SPADI) total score and the safety of LWP injections. Patients were examined at baseline (T0), at a week 2 follow-up visit (T1), and at a week 12 follow-up visit (T2). RESULTS A statistically significant improvement was found for both VAS pain and SPADI total scores, between T0 and T2 visits. US-guided injections were well tolerated and, apart from one patient with a progression of a tendon tear, no adverse events were recorded. CONCLUSIONS Intratendinous tear US-guided injection therapy with an LWP solution was found to be safe and effective in improving both pain and shoulder function at a 12-week follow-up visit. The present pilot study should be considered the first step justifying a larger confirmatory investigation.
Collapse
Affiliation(s)
- Luca Latini
- Centro Medico e Fisioterapia “Salute e Benessere”—Senigallia, 60019 Ancona, Italy;
| | - Francesco Porta
- Interdisciplinary Pain Medicine Unit, Rheumatology Section, Santa Maria Maddalena Hospital, Occhiobello, 45030 Rovigo, Italy
| | - Vincenzo Maccarrone
- Rheumatology Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (V.M.); (E.C.)
| | - Davide Zompa
- Rheumatology Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (V.M.); (E.C.)
| | - Edoardo Cipolletta
- Rheumatology Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (V.M.); (E.C.)
| | | | - Emilio Filippucci
- Rheumatology Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (V.M.); (E.C.)
| | - Florentin Ananu Vreju
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
2
|
de Lorenzo A, Bomback AS, Mihic N. High Protein Diets and Glomerular Hyperfiltration in Athletes and Bodybuilders: Is Chronic Kidney Disease the Real Finish Line? Sports Med 2024; 54:2481-2495. [PMID: 39196487 DOI: 10.1007/s40279-024-02086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Several observational and experimental studies in humans have suggested that high protein intake (PI) causes intraglomerular hypertension leading to hyperfiltration. This phenomenon results in progressive loss of renal function with long-term exposure to high-protein diets (HPDs), even in healthy people. The recommended daily allowance for PI is 0.83 g/kg per day, which meets the protein requirement for approximately 98% of the population. A HPD is defined as a protein consumption > 1.5 g/kg per day. Athletes and bodybuilders are encouraged to follow HPDs to optimize muscle protein balance, increase lean body mass, and enhance performance. A series of studies in resistance-trained athletes looking at HPD has been published concluding that there are no harmful effects of HPD on renal health. However, the aim of these studies was to evaluate body composition changes and they were not designed to assess safety or kidney outcomes. Here we review the effects of HPD on kidney health in athletes and healthy individuals with normal kidney function.
Collapse
Affiliation(s)
- Alberto de Lorenzo
- Department of Nephrology, Hospital Universitario HM Sanchinarro, Madrid, Spain.
- Department of Nephrology, Hospital Universitario de Getafe, Universidad Europea de Madrid, Madrid, Spain.
| | - Andrew S Bomback
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, Presbyterian Hospital, New York, USA
| | - Niko Mihic
- Chief Medical Officer of Real Madrid CF, Madrid, Spain
| |
Collapse
|
3
|
Liu Y, Qian K, Shi X, Jing Y, He H, Li Y, Li D, Wang S. Synergistic Effects of Nutrients on Musculoskeletal Health in Gerontology: Understanding the Combined Impact of Macronutrients and Micronutrients. Nutrients 2024; 16:1640. [PMID: 38892573 PMCID: PMC11174030 DOI: 10.3390/nu16111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
With the global aging population, addressing prevalent age-related conditions such as osteoporosis and sarcopenia is crucial. Traditional nutritional strategies focusing on single nutrients like calcium, vitamin D, or protein have limitations, prompting a nuanced exploration of the relationship between aging, nutrition, and musculoskeletal health. This cross-sectional study examines the complex interplay between dietary intake of macronutrients, common micronutrients, and water, as well as their association with musculoskeletal health in adults aged 50 to 80 years, using U.S. National Health and Nutrition Examination Survey data (NHANES). Employing multiple linear regression, restricted cubic splines, weighted quantile sum (WQS), and quantile-based g-computation (QGC) regression models, our initial analysis using the WQS model revealed that a one-quartile increase in mixed macronutrient intake was associated with a significant 0.009 unit increase in bone mineral density (BMD) and a 0.670 unit increase in grip strength, while a similar increase in mixed micronutrient intake showed a 0.007 unit increase in BMD and a 0.442 unit increase in grip strength. Our findings highlight the importance of a balanced dietary approach in promoting musculoskeletal health in the elderly, offering holistic strategies for overall well-being.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dapeng Li
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (K.Q.); (X.S.); (Y.J.); (H.H.)
| | - Shuran Wang
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (K.Q.); (X.S.); (Y.J.); (H.H.)
| |
Collapse
|
4
|
Trommelen J, van Lieshout GAA, Nyakayiru J, Holwerda AM, Smeets JSJ, Hendriks FK, van Kranenburg JMX, Zorenc AH, Senden JM, Goessens JPB, Gijsen AP, van Loon LJC. The anabolic response to protein ingestion during recovery from exercise has no upper limit in magnitude and duration in vivo in humans. Cell Rep Med 2023; 4:101324. [PMID: 38118410 PMCID: PMC10772463 DOI: 10.1016/j.xcrm.2023.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/03/2023] [Accepted: 11/16/2023] [Indexed: 12/22/2023]
Abstract
The belief that the anabolic response to feeding during postexercise recovery is transient and has an upper limit and that excess amino acids are being oxidized lacks scientific proof. Using a comprehensive quadruple isotope tracer feeding-infusion approach, we show that the ingestion of 100 g protein results in a greater and more prolonged (>12 h) anabolic response when compared to the ingestion of 25 g protein. We demonstrate a dose-response increase in dietary-protein-derived plasma amino acid availability and subsequent incorporation into muscle protein. Ingestion of a large bolus of protein further increases whole-body protein net balance, mixed-muscle, myofibrillar, muscle connective, and plasma protein synthesis rates. Protein ingestion has a negligible impact on whole-body protein breakdown rates or amino acid oxidation rates. These findings demonstrate that the magnitude and duration of the anabolic response to protein ingestion is not restricted and has previously been underestimated in vivo in humans.
Collapse
Affiliation(s)
- Jorn Trommelen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Glenn A A van Lieshout
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands; FrieslandCampina, 3818 LE Amersfoort, the Netherlands
| | - Jean Nyakayiru
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Floris K Hendriks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Janneau M X van Kranenburg
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Antoine H Zorenc
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joy P B Goessens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Annemie P Gijsen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| |
Collapse
|
5
|
Geirsdóttir ÓG, Pajari AM. Protein - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10261. [PMID: 38187790 PMCID: PMC10770649 DOI: 10.29219/fnr.v67.10261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/16/2023] [Accepted: 09/27/2023] [Indexed: 01/09/2024] Open
Abstract
Proteins are needed for providing essential amino acids, nitrogen, and fuel for the body's needs in all age groups. Proteins are especially required during active growth in pregnancy, lactation, childhood, and tissue growth in general. An adequate protein intake is needed in old adults to avoid premature muscle loss. According to the current dietary surveys, protein intake in the Nordic and Baltic countries varies from 15 to 19% of the total energy intake in adults. Comprehensive data regarding children and older adults are lacking. No good measure for protein status exists, and the estimation of physiological requirements is based on N-balance studies having some weaknesses. Protein quality is assessed by considering the protein digestibility of individual indispensable amino acids and their utilization (bioavailability), which is affected by food antinutrients and processing. The evidence regarding the association of protein intake per se with health outcomes is limited or suggestive. It is difficult to separate from the effect of other nutrients or ingredients in protein-rich foods. Proteins are widespread in foods, deriving from both animal and plant sources. Animal-sourced protein production puts more strain on the environment than plant-sourced proteins and contributes significantly to greenhouse gas emissions, thereby enhancing climate change. In Nordic and Baltic countries, consumption of animal-sourced proteins is relatively high. A shift toward more plant-based protein diets would be advisable for promoting a healthy and sustainable diet.
Collapse
Affiliation(s)
- Ólöf Guðný Geirsdóttir
- Faculty of Food Science and Nutrition, School of Health Science, University of Iceland, Reykjavik, Iceland
| | - Anne-Maria Pajari
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Yao H, Li K, Wei J, Lin Y, Liu Y. The contradictory role of branched-chain amino acids in lifespan and insulin resistance. Front Nutr 2023; 10:1189982. [PMID: 37408986 PMCID: PMC10318341 DOI: 10.3389/fnut.2023.1189982] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Branched-chain amino acids (BCAAs; a mixture of leucine, valine and isoleucine) have important regulatory effects on glucose and lipid metabolism, protein synthesis and longevity. Many studies have reported that circulating BCAA levels or dietary intake of BCAAs is associated with longevity, sarcopenia, obesity, and diabetes. Among them, the influence of BCAAs on aging and insulin resistance often present different benefits or harmful effects in the elderly and in animals. Considering the nonobvious correlation between circulating BCAA levels and BCAA uptake, as well as the influence of diseases, diet and aging on the body, some of the contradictory conclusions have been drawn. The regulatory mechanism of the remaining contradictory role may be related to endogenous branched-chain amino acid levels, branched-chain amino acid metabolism and mTOR-related autophagy. Furthermore, the recent discovery that insulin resistance may be independent of longevity has expanded the research thinking related to the regulatory mechanism among the three. However, the negative effects of BCAAs on longevity and insulin resistance were mostly observed in high-fat diet-fed subjects or obese individuals, while the effects in other diseases still need to be studied further. In conclusion, there is still no definite conclusion on the specific conditions under which BCAAs and insulin resistance extend life, shorten life, or do not change lifespan, and there is still no credible and comprehensive explanation for the different effects of BCAAs and insulin resistance on lifespan.
Collapse
Affiliation(s)
- He Yao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Li
- Department of General Surgery, The First People’s Hospital of Taian, Taian, Shandong, China
| | - Jie Wei
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yinghua Liu
- Department of Nutrition, National Clinical Research Center for Geriatric Diseases, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Nishimura Y, Højfeldt G, Breen L, Tetens I, Holm L. Dietary protein requirements and recommendations for healthy older adults: a critical narrative review of the scientific evidence. Nutr Res Rev 2023; 36:69-85. [PMID: 34666855 DOI: 10.1017/s0954422421000329] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adequate protein intake is essential for the maintenance of whole-body protein mass. Different methodological approaches are used to substantiate the evidence for the current protein recommendations, and it is continuously debated whether older adults require more protein to counteract the age-dependent loss of muscle mass, sarcopenia. Thus, the purpose of this critical narrative review is to outline and discuss differences in the approaches and methodologies assessing the protein requirements and, hence, resulting in controversies in current protein recommendations for healthy older adults. Through a literature search, this narrative review first summarises the historical development of the Food and Agriculture Organization/World Health Organization/United Nations University setting of protein requirements and recommendations for healthy older adults. Hereafter, we describe the various types of studies (epidemiological studies and protein turnover kinetic measurements) and applied methodological approaches founding the basis and the different recommendations with focus on healthy older adults. Finally, we discuss important factors to be considered in future studies to obtain evidence for international agreement on protein requirements and recommendations for healthy older adults. We conclude by proposing future directions to determine 'true' protein requirements and recommendations for healthy older adults.
Collapse
Affiliation(s)
- Yusuke Nishimura
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Grith Højfeldt
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Inge Tetens
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lars Holm
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
8
|
Yanagisawa Y. How dietary amino acids and high protein diets influence insulin secretion. Physiol Rep 2023; 11:e15577. [PMID: 36695783 PMCID: PMC9875820 DOI: 10.14814/phy2.15577] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/26/2023] Open
Abstract
Glucose homeostasis is the maintenance and regulation of blood glucose concentration within a tight physiological range, essential for the functioning of most tissues and organs. This is primarily achieved by pancreatic secretion of insulin and glucagon. Deficient pancreatic endocrine function, coupled with or without peripheral insulin resistance leads to prolonged hyperglycemia with chronic impairment of glucose homeostasis, most commonly seen in diabetes mellitus. High protein diets (HPDs) are thought to modulate glucose homeostasis through various metabolic pathways. Insulin secretion can be directly modulated by the amino acid products of protein digestion, which activate nutrient receptors and nutrient transporters expressed by the endocrine pancreas. Insulin secretion can also be modulated indirectly, through incretin release from enteroendocrine cells, and via vagal neuronal pathways. Additionally, glucose homeostasis can be promoted by the satiating effects of anorectic hormones released following HPD consumption. This review summarizes the insulinotropic mechanisms by which amino acids and HPDs may influence glucose homeostasis, with a particular focus on their applicability in the management of Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yuuki Yanagisawa
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| |
Collapse
|
9
|
Zheng W, Li R, Zhou Y, Shi F, Song Y, Liao Y, Zhou F, Zheng X, Lv J, Li Q. Effect of dietary protein content shift on aging in elderly rats by comprehensive quantitative score and metabolomics analysis. Front Nutr 2022; 9:1051964. [DOI: 10.3389/fnut.2022.1051964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
In the protein nutrition strategy of middle-aged and elderly people, some believe that low protein is good for health, while others believe high protein is good for health. Facing the contradictory situation, the following hypothesis is proposed. There is a process of change from lower to higher ratio of protein nutritional requirements that are good for health in the human body after about 50 years of age, and the age at which the switch occurs is around 65 years of age. Hence, in this study, 50, 25-month-old male rats were randomly divided into five groups: Control (basal diet), LP (low-protein diet with a 30% decrease in protein content compared to the basal diet), HP (high-protein diet with a 30% increase in protein content compared to the basal diet), Model 1 (switched from LP to HP feed at week 4), and Model 2 (switched from LP to HP feed at week 7). After a total of 10 weeks intervention, the liver and serum samples were examined for aging-related indicators, and a newly comprehensive quantitative score was generated using principal component analysis (PCA). The effects of the five protein nutritional modalities were quantified in descending order: Model 1 > HP > LP > Control > Model 2. Furthermore, the differential metabolites in serum and feces were determined by orthogonal partial least squares discriminant analysis, and 15 differential metabolites, significantly associated with protein intake, were identified by Spearman’s correlation analysis (p < 0.05). Among the fecal metabolites, 10 were positively correlated and 3 were negatively correlated. In the serum, tyrosine and lactate levels were positively correlated, and acetate levels were negatively correlated. MetaboAnalyst analysis identified that the metabolic pathways influenced by protein intake were mainly related to amino acid and carbohydrate metabolism. The results of metabolomic analysis elucidate the mechanisms underlying the preceding effects to some degree. These efforts not only contribute to a unified protein nutrition strategy but also positively impact the building of a wiser approach to protein nutrition, thereby helping middle-aged and older populations achieve healthy aging.
Collapse
|
10
|
Matsunaga T, Deto T, Yamada T, Yamamoto T, Yamakawa K, Kamiyama Y, Morimoto M, Seki H, Haraguchi F, Hisatomi I, Nakanishi K, Takahashi M. Limitations of the L3 skeletal muscle index and the Asian Working Group for Sarcopenia 2019 consensus diagnostic criteria for sarcopenia evaluation in a case of diffuse large B-cell lymphoma. Clin Case Rep 2022; 10:e5949. [PMID: 35765296 PMCID: PMC9207118 DOI: 10.1002/ccr3.5949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
Sarcopenia is an adverse prognostic factor for diffuse large B-cell lymphoma. A case of diffuse large B-cell lymphoma whose diagnosis, severity, and therapeutic effect of sarcopenia were difficult to determine owing to lymphoma cell infiltration into the psoas major and femoral bone marrow is reported. At presentation, the cross-sectional area of left psoas major at L3 was enlarged owing to lymphoma cell infiltration; thus, sarcopenia evaluation was impossible by L3 skeletal muscle index. The patient was bedridden; thus, sarcopenia evaluation was impossible by the Asian Working Group for Sarcopenia 2019 consensus diagnostic criteria at presentation. At the terminal stage, she could not walk due to bilateral anterior thigh pain caused by lymphoma infiltration into femoral marrow; thus, sarcopenia evaluation was impossible by the Asian Working Group for Sarcopenia 2019 consensus diagnostic criteria. Although the L3 skeletal muscle index and the Asian Working Group for Sarcopenia 2019 consensus diagnostic criteria are representative sarcopenia evaluation systems, they cannot be used to evaluate sarcopenia in some diffuse large B-cell lymphoma patients.
Collapse
Affiliation(s)
- Takuya Matsunaga
- Department of Medical OncologyJCHO Sapporo Hokushin HospitalSapporoJapan
| | - Tomoko Deto
- Nutrition Management OfficeJCHO Sapporo Hokushin HospitalSapporoJapan
| | - Tomoe Yamada
- Nutrition Management OfficeJCHO Sapporo Hokushin HospitalSapporoJapan
| | - Takashi Yamamoto
- Rehabilitation DepartmentJCHO Sapporo Hokushin HospitalSapporoJapan
| | - Kimika Yamakawa
- Rehabilitation DepartmentJCHO Sapporo Hokushin HospitalSapporoJapan
| | - Yuta Kamiyama
- Rehabilitation DepartmentJCHO Sapporo Hokushin HospitalSapporoJapan
| | - Masako Morimoto
- Pharmaceutical DepartmentJCHO Sapporo Hokushin HospitalSapporoJapan
| | - Hitoshi Seki
- Radiation DepartmentJCHO Sapporo Hokushin HospitalSapporoJapan
| | | | - Ikuko Hisatomi
- Nursing DepartmentJCHO Sapporo Hokushin HospitalSapporoJapan
| | | | | |
Collapse
|
11
|
Tucker LA. Macronutrient Intake and Insulin Resistance in 5665 Randomly Selected, Non-Diabetic U.S. Adults. Nutrients 2022; 14:nu14050918. [PMID: 35267895 PMCID: PMC8912746 DOI: 10.3390/nu14050918] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/29/2022] Open
Abstract
The main goal of this investigation was to evaluate the relationships between several macronutrients and insulin resistance in 5665 non-diabetic U.S. adults. A secondary objective was to determine the extent to which the associations were influenced by multiple potential confounding variables. A cross-sectional design and 8 years of data from the 2011–2018 National Health and Nutrition Examination Survey (NHANES) were used to answer the research questions. Ten macronutrients were evaluated: total carbohydrate, starch, simple carbohydrate, dietary fiber, total protein, total fat, saturated, polyunsaturated, monounsaturated, and total unsaturated fat. The homeostatic model assessment (HOMA), based on fasting glucose and fasting insulin levels, was used to index insulin resistance. Age, sex, race, year of assessment, physical activity, cigarette smoking, alcohol use, and waist circumference were used as covariates. The relationships between total carbohydrate intake (F = 6.7, p = 0.0121), simple carbohydrate (F = 4.7, p = 0.0344) and HOMA-IR were linear and direct. The associations between fiber intake (F = 9.1, p = 0.0037), total protein (F = 4.4, p = 0.0393), total fat (F = 5.5, p = 0.0225), monounsaturated fat (F = 5.5, p = 0.0224), and total unsaturated fat (F = 6.5, p = 0.0132) were linear and inversely related to HOMA-IR, with 62 degrees of freedom. Starch, polyunsaturated fat, and saturated fat intakes were not related to HOMA-IR. In conclusion, in this nationally representative sample, several macronutrients were significant predictors of insulin resistance in U.S. adults.
Collapse
Affiliation(s)
- Larry A Tucker
- College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
12
|
Fong BYF, Chiu WK, Chan WFM, Lam TY. A Review Study of a Green Diet and Healthy Ageing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8024. [PMID: 34360317 PMCID: PMC8345706 DOI: 10.3390/ijerph18158024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/17/2021] [Accepted: 07/24/2021] [Indexed: 12/18/2022]
Abstract
Nowadays people are living longer, and there has been a substantial growth in the global elderly population in the past decades. While life expectancy is increasing, there are growing concerns towards the heavy financial and social burdens related to chronic diseases among the elderly. These have been critical health care issues, and healthy ageing is considered a top priority in public health. Diet and eating habits are crucial factors contributing to healthy ageing. These important aspects have attracted much attention in health research, particularly in consideration of the causes and management of chronic conditions which affect most elder adults in the world. Recently, a growing number of investigations have reported significant findings on the association of reduction in the risks of chronic non-communicable diseases with plant-based diets. Meanwhile, there have been worldwide initiatives and programmes implemented for reduction of salt intake. A green diet, which emphasises the consumption of a diet rich in plant foods with minimal portions of red or processed meat and reduced salt intake, is advocated with due consideration to the importance of sustainable environment and healthy ageing. This paper highlights a brief review of the recent advance of knowledge in diet and health, its effects on the elderly and the significance of a green diet on healthy ageing. Implications for a green diet and recommendations for future research are also discussed.
Collapse
Affiliation(s)
- Ben Y. F. Fong
- Division of Science, Engineering and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong, China; (B.Y.F.F.); (W.F.M.C.)
- Centre for Ageing and Healthcare Management Research, School of Professional Education and Executive Development, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Wang-Kin Chiu
- Division of Science, Engineering and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong, China; (B.Y.F.F.); (W.F.M.C.)
- Centre for Ageing and Healthcare Management Research, School of Professional Education and Executive Development, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Wendy F. M. Chan
- Division of Science, Engineering and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong, China; (B.Y.F.F.); (W.F.M.C.)
- Centre for Ageing and Healthcare Management Research, School of Professional Education and Executive Development, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Ting Yu Lam
- Centre for Ageing and Healthcare Management Research, School of Professional Education and Executive Development, The Hong Kong Polytechnic University, Hong Kong, China;
| |
Collapse
|
13
|
Sukkar SG, Muscaritoli M. A Clinical Perspective of Low Carbohydrate Ketogenic Diets: A Narrative Review. Front Nutr 2021; 8:642628. [PMID: 34322508 PMCID: PMC8310928 DOI: 10.3389/fnut.2021.642628] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/28/2021] [Indexed: 01/23/2023] Open
Abstract
Low carbohydrates diets (LCDs), which provide 20–120 g of carbohydrates per day, have long been used as therapeutic options in the treatment of severe obesity, type 2 diabetes mellitus and other morbid conditions, with good results in terms of weight loss and control of the main metabolic parameters, at least in the short and medium term. According to the caloric content and the macronutrient composition, we can classify LCDs in hypocaloric, normoproteic diets [such as the Very Low-Calorie Ketogenic Diet (VLCKD) or the protein-sparing modified fasting (PSMF)], hypocaloric, hyperproteic and hyperlipidic diets (e.g., Atkins, Paleo diets…) and normocaloric, normo-/hyperproteic diets (eucaloric KD), the latter mainly used in patients with brain tumors (gliomas) and refractory epilepsy. In addition to LCD diets, another interesting dietary approach which gained attention in the last few decades is fasting and its beneficial effects in terms of modulation of metabolic pathways, cellular processes and hormonal secretions. Due to the impossibility of using fasting regimens for long periods of time, several alternative strategies have been proposed that can mimic the effects, including calorie restriction, intermittent or alternating fasting, and the so-called fasting mimicking diets (FMDs). Recent preclinical studies have shown positive effects of FMDs in various experimental models of tumors, diabetes, Alzheimer Disease, and other morbid conditions, but to date, the scientific evidence in humans is limited to some opens studies and case reports. The purpose of our narrative review is to offer an overview of the characteristics of the main dietary regimens applied in the treatment of different clinical conditions as well as of the scientific evidence that justifies their use, focusing on low and zero-carb diets and on the different types of fasting.
Collapse
Affiliation(s)
- Samir Giuseppe Sukkar
- Unità Operativa Dipartimentale Dietetica e Nutrizione Clinica, Dipartimento Medicina Interna, Policlinico San Martino di Genova Istituto di Ricovero e Cura a Carattere Scientifico per l'Oncologia e la Neurologia, Genova, Italy
| | - Maurizio Muscaritoli
- Unità Operativa Complessa di Medicina Interna e Nutrizione Clinica, Dipartimento ad Attività Integrata di Medicina Interna Scienze Endocrino-Metaboliche e Malattie Infettive, Azienda Ospedaliera Universitaria Policlinico Umberto I, Rome, Italy
| |
Collapse
|
14
|
The effects of glucagon and the target of rapamycin (TOR) on skeletal muscle protein synthesis and age-dependent sarcopenia in humans. Clin Nutr ESPEN 2021; 44:15-25. [PMID: 34330459 DOI: 10.1016/j.clnesp.2021.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Human target of rapamycin (TOR) is a kinase that stimulates protein synthesis in the skeletal muscle in response to amino acids and physical activity. METHODS A comprehensive literature search was conducted on the PubMed database from its inception up to May 2021 to retrieve information on the effects of TOR and glucagon on muscle function. Articles written in English regarding human subjects were included. RESULTS l-leucine activates TOR to initiate protein synthesis in the skeletal muscle. Glucagon has a crucial role suppressing skeletal muscle protein synthesis by increasing l-leucine oxidation and the irreversible loss of this amino acid. Glucagon-induced l-leucine oxidation suppresses TOR and attenuates the ability of skeletal muscle to synthesize proteins. Conditions associated with increased glucagon secretion typically feature reduced ability to synthesize proteins in the skeletal muscle that may evolve into sarcopenia. Animal protein ingestion, unlike vegetable protein, stimulates glucagon secretion. High intake of animal protein increases l-leucine oxidation and promotes the use of amino acids as fuel. Sarcopenia and arterial stiffness characteristically occur together in conditions featuring insulin resistance, such as aging. Insulin resistance mediates the relationship between aging and sarcopenia and arterial stiffness. The loss of skeletal muscle fibers that characterizes sarcopenia is followed by collagen and lipid accumulation. Likewise, insulin resistance is associated with arterial stiffness and intima-media thickening due to adaptive accretion of collagen and lipids in the arterial wall. CONCLUSIONS Human TOR participates in the pathogenesis of sarcopenia and arterial stiffness, although its effects remain to be fully elucidated.
Collapse
|
15
|
Optimal Protein Intake in Pre-Dialysis Chronic Kidney Disease Patients with Sarcopenia: An Overview. Nutrients 2021; 13:nu13041205. [PMID: 33917381 PMCID: PMC8067427 DOI: 10.3390/nu13041205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/23/2022] Open
Abstract
Multi-factors, such as anorexia, activation of renin-angiotensin system, inflammation, and metabolic acidosis, contribute to malnutrition in chronic kidney disease (CKD) patients. Most of these factors, contributing to the progression of malnutrition, worsen as CKD progresses. Protein restriction, used as a treatment for CKD, can reduce the risk of CKD progression, but may worsen the sarcopenia, a syndrome characterized by a progressive and systemic loss of muscle mass and strength. The concomitant rate of sarcopenia is higher in CKD patients than in the general population. Sarcopenia is also associated with mortality risk in CKD patients. Thus, it is important to determine whether protein restriction should be continued or loosened in CKD patients with sarcopenia. We may prioritize protein restriction in CKD patients with a high risk of end-stage kidney disease (ESKD), classified to stage G4 to G5, but may loosen protein restriction in ESKD-low risk CKD stage G3 patients with proteinuria <0.5 g/day, and rate of eGFR decline <3.0 mL/min/1.73 m2/year. However, the effect of increasing protein intake alone without exercise therapy may be limited in CKD patients with sarcopenia. The combination of exercise therapy and increased protein intake is effective in improving muscle mass and strength in CKD patients with sarcopenia. In the case of loosening protein restriction, it is safe to avoid protein intake of more than 1.5 g/kgBW/day. In CKD patients with high risk in ESKD, 0.8 g/kgBW/day may be a critical point of protein intake.
Collapse
|
16
|
Pataky MW, Young WF, Nair KS. Hormonal and Metabolic Changes of Aging and the Influence of Lifestyle Modifications. Mayo Clin Proc 2021; 96:788-814. [PMID: 33673927 PMCID: PMC8020896 DOI: 10.1016/j.mayocp.2020.07.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Increased life expectancy combined with the aging baby boomer generation has resulted in an unprecedented global expansion of the elderly population. The growing population of older adults and increased rate of age-related chronic illness has caused a substantial socioeconomic burden. The gradual and progressive age-related decline in hormone production and action has a detrimental impact on human health by increasing risk for chronic disease and reducing life span. This article reviews the age-related decline in hormone production, as well as age-related biochemical and body composition changes that reduce the bioavailability and actions of some hormones. The impact of hormonal changes on various chronic conditions including frailty, diabetes, cardiovascular disease, and dementia are also discussed. Hormone replacement therapy has been attempted in many clinical trials to reverse and/or prevent the hormonal decline in aging to combat the progression of age-related diseases. Unfortunately, hormone replacement therapy is not a panacea, as it often results in various adverse events that outweigh its potential health benefits. Therefore, except in some specific individual cases, hormone replacement is not recommended. Rather, positive lifestyle modifications such as regular aerobic and resistance exercise programs and/or healthy calorically restricted diet can favorably affect endocrine and metabolic functions and act as countermeasures to various age-related diseases. We provide a critical review of the available data and offer recommendations that hopefully will form the groundwork for physicians/scientists to develop and optimize new endocrine-targeted therapies and lifestyle modifications that can better address age-related decline in heath.
Collapse
Affiliation(s)
- Mark W Pataky
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN
| | - William F Young
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN
| | - K Sreekumaran Nair
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN.
| |
Collapse
|
17
|
Gathercole JL, Grosvenor AJ, Lee E, Thomas A, Mitchell CJ, Zeng N, D'Souza RF, Ramzan F, Sharma P, Knowles SO, Roy NC, Sjödin A, Wagner KH, Milan AM, Mitchell SM, Cameron-Smith D. Analysis of Human Faecal Host Proteins: Responsiveness to 10-Week Dietary Intervention Modifying Dietary Protein Intake in Elderly Males. Front Nutr 2021; 7:595905. [PMID: 33521034 PMCID: PMC7838370 DOI: 10.3389/fnut.2020.595905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Faecal proteomics targeting biomarkers of immunity and inflammation have demonstrated clinical application for the identification of changes in gastrointestinal function. However, there are limited comprehensive analyses of the host faecal proteome and how it may be influenced by dietary factors. To examine this, the Homo sapiens post-diet proteome of older males was analysed at the completion of a 10-week dietary intervention, either meeting the minimum dietary protein recommendations (RDA; n = 9) or twice the recommended dietary allowance (2RDA, n = 10). The host faecal proteome differed markedly between individuals, with only a small subset of proteins present in ≥ 60% of subjects (14 and 44 proteins, RDA and 2RDA, respectively, with only 7 common to both groups). No differences were observed between the diet groups on the profiles of host faecal proteins. Faecal proteins were detected from a wide range of protein classes, with high inter-individual variation and absence of obvious impact in response to diets with markedly different protein intake. This suggests that well-matched whole food diets with two-fold variation in protein intake maintained for 10 weeks have minimal impact on human faecal host proteins.
Collapse
Affiliation(s)
| | - Anita J Grosvenor
- Proteins and Metabolites Team, AgResearch, Lincoln, Christchurch, New Zealand
| | - Erin Lee
- Proteins and Metabolites Team, AgResearch, Lincoln, Christchurch, New Zealand
| | - Ancy Thomas
- Proteins and Metabolites Team, AgResearch, Lincoln, Christchurch, New Zealand
| | - Cameron J Mitchell
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Nina Zeng
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Randall F D'Souza
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Discipline of Nutrition, University of Auckland, Auckland, New Zealand
| | - Farha Ramzan
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Pankaja Sharma
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Scott O Knowles
- Food, Nutrition, and Health Team, AgResearch, Auckland University, Auckland, New Zealand
| | - Nicole C Roy
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Food, Nutrition, and Health Team, AgResearch, Auckland University, Auckland, New Zealand.,Department of Nutrition, University of Otago, Dunedin, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Anders Sjödin
- Department of Nutrition, Exercise, and Sports, Copenhagen University, Copenhagen, Denmark
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences and Research Platform Active Ageing, University of Vienna, Vienna, Austria
| | - Amber M Milan
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Food, Nutrition, and Health Team, AgResearch, Auckland University, Auckland, New Zealand
| | - Sarah M Mitchell
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Agency for Science, Technology, and Research, Singapore Institute for Clinical Sciences, Singapore, Singapore
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) is highly prevalent in elderly patients. There is growing recognition of the importance of attention to dietary protein intake (DPI) in this population given their predisposition to age-related changes in kidney function and coexisting comorbidities (i.e., hypertension). We reviewed the impact of DPI on kidney health and survival and the role of dietary protein management in older CKD patients. RECENT FINDINGS While kidney function parameters including glomerular filtration rate (GFR) and renal plasma flow are slightly lower in elderly patients irrespective of CKD status, the kidneys' ability to compensate for increased DPI by augmentation of GFR is preserved until 80 years of age or less. However, long-term consumption of high DPI in individuals of older age and/or with CKD may contribute to kidney function deterioration over time. Prescription of a plant-dominant low-protein diet of 0.6-0.8 g/kg/day with more than 50% from plant sources or very low protein diets less than 0.45 g/kg/day supplemented with essential amino acids or their keto-analogues may be effective in preserving kidney function in older patients and their younger counterparts, while also monitoring for development of protein-energy wasting (PEW). SUMMARY Using tailored precision nutrition approaches in prescribing plant-dominant low DPI that also maintains adequate energy and nitrogen balance may ameliorate kidney function decline while also preventing development of PEW in elderly patients with CKD.
Collapse
Affiliation(s)
- Yoko Narasaki
- Division of Nephrology, Hypertension and Kidney Transplantation, Harold Simmons Center for Chronic Disease Research and Epidemiology, University of California Irvine, Orange, California
| | - Connie M Rhee
- Division of Nephrology, Hypertension and Kidney Transplantation, Harold Simmons Center for Chronic Disease Research and Epidemiology, University of California Irvine, Orange, California
| | - Holly Kramer
- Department of Public Health Sciences
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood
- Hines VA Medical Center, Hines, Illinois, USA
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Hypertension and Kidney Transplantation, Harold Simmons Center for Chronic Disease Research and Epidemiology, University of California Irvine, Orange, California
| |
Collapse
|
19
|
Fukuda Y, Kohara M, Hatakeyama A, Ochi M, Nakai M. Influence of Geriatric Patients' Food Preferences on the Selection of Discharge Destination. J Clin Med Res 2020; 12:705-710. [PMID: 33224372 PMCID: PMC7665873 DOI: 10.14740/jocmr4337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 01/09/2023] Open
Abstract
Background The nonprotein calorie/nitrogen (NPC/N) ratio of food remains poorly investigated. Thus, this study examined the nutritional factors that influence the choice of discharge destination for geriatric patients. Methods We retrospectively investigated the patient characteristics, clinical laboratory test results, and hospital food consumption of 65 geriatric patients (80.0 ± 8.2 years; 31 males, 34 females), who were receiving oral nutritional support at a small mixed-care hospital and further explored their discharge destinations. The NPC/N ratios were calculated according to the menus for the meals provided during the first 4 weeks after admission. For logistic regression analysis, the objective variables were discharge destinations (i.e., nursing care facilities including home or medical institutions) whereas the predictor variables were age, sex, nursing care level, hospitalization duration, serum albumin level (Alb), estimated glomerular filtration rate (eGFR), and NPC/N ratio. Results Compared with age and nursing care level, sex (partial regression coefficient (B) = -5.140, P = 0.002), hospitalization duration (B = 0.077, P = 0.004), Alb (B = 3.223, P = 0.013), eGFR (B = -0.071, P = 0.019), and NPC/N ratio (B = -0.224, P = 0.001) are significantly correlated with the selection of discharge destination. Conclusions For geriatric patients who went to medical institutions, the need for prolonged hospitalization, male sex, hospitalization duration, stable serum Alb, low eGFR, low NPC/N ratio (i.e., high protein proportion), and the quantity of hospital food consumed were the possible factors that influence their discharge destination.
Collapse
Affiliation(s)
- Yasuko Fukuda
- Department of Food Science and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, Ikebiraki-cho, Nishinomiya, Hyogo Prefecture 663-8558, Japan.,Research Institute for Nutrition Sciences, Mukogawa Women's University, Ikebiraki-cho, Nishinomiya, Hyogo Prefecture 663-8558, Japan
| | - Mina Kohara
- Formerly Affiliated With the Department of Nutrition, Nakai Hospital, Nada-ku, Kobe, Hyogo Prefecture 657-0833, Japan
| | - Asami Hatakeyama
- Department of Food Science and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, Ikebiraki-cho, Nishinomiya, Hyogo Prefecture 663-8558, Japan
| | - Mikako Ochi
- Department of Nutrition, Nakai Hospital, Nada-ku, Kobe, Hyogo Prefecture 657-0833, Japan
| | - Masanobu Nakai
- Department of Nutrition, Nakai Hospital, Nada-ku, Kobe, Hyogo Prefecture 657-0833, Japan
| |
Collapse
|
20
|
Medical nutrition therapy and dietary counseling for patients with diabetes-energy, carbohydrates, protein intake and dietary counseling. Diabetol Int 2020; 11:224-239. [PMID: 32802703 DOI: 10.1007/s13340-020-00437-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/11/2022]
|
21
|
Effects of slow- v. fast-digested protein supplementation combined with mixed power training on muscle function and functional capacities in older men. Br J Nutr 2020; 125:1017-1033. [PMID: 32498755 DOI: 10.1017/s0007114520001932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ageing leads to a progressive loss of muscle function (MF) and quality (MQ: muscle strength (MS)/lean muscle mass (LM)). Power training and protein (PROT) supplementation have been proposed as efficient interventions to improve MF and MQ. Discrepancies between results appear to be mainly related to the type and/or dose of proteins used. The present study aimed at determining whether or not mixed power training (MPT) combined with fast-digested PROT (F-PROT) leads to greater improvements in MF and MQ in elderly men than MPT combined with slow-digested PROT (S-PROT) or MPT alone. Sixty elderly men (age 69 (sd 7) years; BMI 18-30 kg/m2) were randomised into three groups: (1) placebo + MPT (PLA; n 19); (2) F-PROT + MPT (n 21) and (3) S-PROT + MPT (n 20) completed the intervention. LM, handgrip and knee extensor MS and MQ, functional capacity, serum metabolic markers, skeletal muscle characteristics, dietary intake and total energy expenditure were measured. The interventions consisted in 12 weeks of MPT (3 times/week; 1 h/session) combined with a supplement (30 g:10 g per meal) of F-PROT (whey) or S-PROT (casein) or a placebo. No difference was observed among groups for age, BMI, number of steps and dietary intake pre- and post-intervention. All groups improved significantly their LM, lower limb MS/MQ, functional capacity, muscle characteristics and serum parameters following the MPT. Importantly, no difference between groups was observed following the MPT. Altogether, adding 30 g PROT/d to MPT, regardless of the type, does not provide additional benefits to MPT alone in older men ingesting an adequate (i.e. above RDA) amount of protein per d.
Collapse
|
22
|
Abiri B, Vafa M. The Role of Nutrition in Attenuating Age-Related Skeletal Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:297-318. [PMID: 32304039 DOI: 10.1007/978-3-030-42667-5_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The elderly population is increasing rapidly worldwide, and we are faced with the significant challenge for maintaining or improving physical activity, independence, and quality of life. Sarcopenia, the age-related decline of skeletal muscle mass, is characterized by loss of muscle quantity and quality resulting to a gradual slowing of movement, a decrease in strength and power, elevated risk of fall-related injury, and often frailty. Supplemental, hormonal, and pharmacological approaches have been attempted to attenuate sarcopenia but these have not achieved outstanding results. In this review, we summarize the current knowledge of nutrition-based therapies for counteracting sarcopenia.
Collapse
Affiliation(s)
- Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran. .,Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Buondonno I, Sassi F, Carignano G, Dutto F, Ferreri C, Pili FG, Massaia M, Nisoli E, Ruocco C, Porrino P, Ravetta C, Riganti C, Isaia GC, D'Amelio P. From mitochondria to healthy aging: The role of branched-chain amino acids treatment: MATeR a randomized study. Clin Nutr 2019; 39:2080-2091. [PMID: 31672329 DOI: 10.1016/j.clnu.2019.10.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 07/17/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
RATIONALE Malnutrition often affects elderly patients and significantly contributes to the reduction in healthy life expectancy, causing high morbidity and mortality. In particular, protein malnutrition is one of the determinants of frailty and sarcopenia in elderly people. METHODS To investigate the role of amino acid supplementation in senior patients we performed an open-label randomized trial and administered a particular branched-chain amino acid enriched mixture (BCAAem) or provided diet advice in 155 elderly malnourished patients. They were followed for 2 months, assessing cognitive performance by Mini Mental State Examination (MMSE), muscle mass measured by anthropometry, strength measure by hand grip and performance measured by the Timed Up and Go (TUG) test, the 30 s Chair Sit to Stand (30-s CST) test and the 4 m gait speed test. Moreover we measured oxidative stress in plasma and mitochondrial production of ATP and electron flux in peripheral blood mononuclear cells. RESULTS Both groups improved in nutritional status, general health and muscle mass, strength and performance; treatment with BCAAem supplementation was more effective than simple diet advice in increasing MMSE (1.2 increase versus 0.2, p = 0.0171), ATP production (0.43 increase versus -0.1, p = 0.0001), electron flux (0.50 increase versus 0.01, p < 0.0001) and in maintaining low oxidative stress. The amelioration of clinical parameters as MMSE, balance, four meter walking test were associated to increased mitochondrial function. CONCLUSIONS Overall, our findings show that sustaining nutritional support might be clinically relevant in increasing physical performance in elderly malnourished patients and that the use of specific BCAAem might ameliorate also cognitive performance thanks to an amelioration of mitochondria bioenergetics.
Collapse
Affiliation(s)
- Ilaria Buondonno
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Turin, Italy
| | - Francesca Sassi
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Turin, Italy
| | - Giulia Carignano
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Turin, Italy
| | - Francesca Dutto
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Turin, Italy
| | - Cinzia Ferreri
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Turin, Italy
| | - Fausto G Pili
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Turin, Italy
| | - Massimiliano Massaia
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Turin, Italy
| | - Enzo Nisoli
- Department of Medical Biotechnology and Translational Medicine, Centre for Study and Research on Obesity, University of Milan, Italy
| | - Chiara Ruocco
- Department of Medical Biotechnology and Translational Medicine, Centre for Study and Research on Obesity, University of Milan, Italy
| | - Paola Porrino
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Turin, Italy
| | - Claudia Ravetta
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Turin, Italy
| | | | - Giovanni C Isaia
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Turin, Italy
| | - Patrizia D'Amelio
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Turin, Italy.
| |
Collapse
|
24
|
Obesity Status Affects the Relationship Between Protein Intake and Insulin Sensitivity in Late Pregnancy. Nutrients 2019; 11:nu11092190. [PMID: 31514469 PMCID: PMC6769608 DOI: 10.3390/nu11092190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to determine the associations between amount and type of dietary protein intake and insulin sensitivity in late pregnancy, in normal weight and overweight women (29.8 ± 0.2 weeks gestation, n = 173). A 100-g oral glucose tolerance test (OGTT) was administered following an overnight fast to estimate the metabolic clearance rate of glucose (MCR, mg·kg−1·min−1) using four different equations accounting for the availability of blood samples. Total (TP), animal (AP), and plant (PP) protein intakes were assessed using a 3-day food record. Two linear models with MCR as the response variable were fitted to the data to estimate the relationship of protein intake to insulin sensitivity either unadjusted or adjusted for early pregnancy body mass index (BMI) because of the potential of BMI to influence this relationship. There was a positive association between TP (β = 1.37, p = 0.002) and PP (β = 4.44, p < 0.001) intake in the last trimester of pregnancy and insulin sensitivity that weakened when accounting for early pregnancy BMI. However, there was no relationship between AP intake and insulin sensitivity (β = 0.95, p = 0.08). Therefore, early pregnancy BMI may be a better predictor of insulin sensitivity than dietary protein intake in late pregnancy.
Collapse
|
25
|
Allman BR, Andres A, Børsheim E. The Association of Maternal Protein Intake during Pregnancy in Humans with Maternal and Offspring Insulin Sensitivity Measures. Curr Dev Nutr 2019; 3:nzz055. [PMID: 31139768 PMCID: PMC6533362 DOI: 10.1093/cdn/nzz055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
The purpose of this review is to critically evaluate the studies assessing the relations between protein intake during human pregnancy and insulin sensitivity measures in the mother and offspring, and to get a better understanding of the knowledge gaps that still exist. Overall, there is insufficient evidence to conclude about implications of higher amounts of protein intake during pregnancy on maternal or offspring insulin sensitivity. However, studies show a relation between protein quality and insulin sensitivity, such that animal protein may be associated with negative outcomes and plant protein may be associated with positive insulin sensitivity outcomes. There is an urgent need for standardized studies using comparable terminology to evaluate any potential relations between insulin sensitivity in mothers and offspring and truly low and high maternal protein intake while maintaining eucaloric balance to better inform about optimal protein dosage and quality during this period.
Collapse
Affiliation(s)
- Brittany R Allman
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aline Andres
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Elisabet Børsheim
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
26
|
Holwerda AM, Paulussen KJM, Overkamp M, Goessens JPB, Kramer IF, Wodzig WKWH, Verdijk LB, van Loon LJC. Dose-Dependent Increases in Whole-Body Net Protein Balance and Dietary Protein-Derived Amino Acid Incorporation into Myofibrillar Protein During Recovery from Resistance Exercise in Older Men. J Nutr 2019; 149:221-230. [PMID: 30722014 PMCID: PMC6374151 DOI: 10.1093/jn/nxy263] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/26/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Age-related decline in skeletal muscle mass is at least partly attributed to anabolic resistance to food intake. Resistance exercise sensitizes skeletal muscle tissue to the anabolic properties of amino acids. OBJECTIVE The present study assessed protein digestion and amino acid absorption kinetics, whole-body protein balance, and the myofibrillar protein synthetic response to ingestion of different amounts of protein during recovery from resistance exercise in older men. METHODS Forty-eight healthy older men [mean ± SEM age: 66 ± 1 y; body mass index (kg/m2): 25.4 ± 0.3] were randomly assigned to ingest 0, 15, 30, or 45 g milk protein concentrate after a single bout of resistance exercise consisting of 4 sets of 10 repetitions of leg press and leg extension and 2 sets of 10 repetitions of lateral pulldown and chest press performed at 75-80% 1-repetition maximum. Postprandial protein digestion and amino acid absorption kinetics, whole-body protein metabolism, and myofibrillar protein synthesis rates were assessed using primed, continuous infusions of l-[ring-2H5]-phenylalanine, l-[ring-2H2]-tyrosine, and l-[1-13C]-leucine combined with ingestion of intrinsically l-[1-13C]-phenylalanine and l-[1-13C]-leucine labeled protein. RESULTS Whole-body net protein balance showed a dose-dependent increase after ingestion of 0, 15, 30, or 45 g of protein (0.015 ± 0.002, 0.108 ± 0.004, 0.162 ± 0.008, and 0.215 ± 0.009 μmol Phe · kg-1 · min-1, respectively; P < 0.001). Myofibrillar protein synthesis rates were higher after ingesting 30 (0.0951% ± 0.0062%/h, P = 0.07) or 45 g of protein (0.0970% ± 0.0062%/h, P < 0.05) than after 0 g (0.0746% ± 0.0051%/h). Incorporation of dietary protein-derived amino acids (l-[1-13C]-phenylalanine) into de novo myofibrillar protein showed a dose-dependent increase after ingestion of 15, 30, or 45 g protein (0.0171 ± 0.0017, 0.0296 ± 0.0030, and 0.0397 ± 0.0026 mole percentage excess, respectively; P < 0.05). CONCLUSIONS Dietary protein ingested during recovery from resistance exercise is rapidly digested and absorbed. Whole-body net protein balance and dietary protein-derived amino acid incorporation into myofibrillar protein show dose-dependent increases. Ingestion of ≥30 g protein increases postexercise myofibrillar protein synthesis rates in older men. This trial was registered at Nederlands Trial Register as NTR4492.
Collapse
Affiliation(s)
- Andrew M Holwerda
- NUTRIM School of Nutrition and Translational Research in Metabolism,Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | | | - Maarten Overkamp
- NUTRIM School of Nutrition and Translational Research in Metabolism
| | - Joy P B Goessens
- NUTRIM School of Nutrition and Translational Research in Metabolism
| | | | - Will K W H Wodzig
- Central Diagnostic Laboratory, Maastricht University Medical Center+, The Netherlands
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism,Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism,Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands,Address correspondence to LJCvL (e-mail: )
| |
Collapse
|
27
|
Devries MC, Sithamparapillai A, Brimble KS, Banfield L, Morton RW, Phillips SM. Changes in Kidney Function Do Not Differ between Healthy Adults Consuming Higher- Compared with Lower- or Normal-Protein Diets: A Systematic Review and Meta-Analysis. J Nutr 2018; 148:1760-1775. [PMID: 30383278 PMCID: PMC6236074 DOI: 10.1093/jn/nxy197] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/01/2017] [Accepted: 07/24/2018] [Indexed: 01/09/2023] Open
Abstract
Background Higher-protein (HP) diets are advocated for several reasons, including mitigation of sarcopenia, but their effects on kidney function are unclear. Objective This meta-analysis was conducted to determine the effect of HP intakes on kidney function in healthy adults. Methods We conducted a systematic review and meta-analysis of trials comparing HP (≥1.5 g/kg body weight or ≥20% energy intake or ≥100 g protein/d) with normal- or lower-protein (NLP; ≥5% less energy intake from protein/d compared with HP group) intakes on kidney function. Medline and EMBASE databases were searched. Randomized controlled trials comparing the effects of HP with NLP (>4 d duration) intakes on glomerular filtration rate (GFR) in adults without kidney disease were included. Results A total of 2144 abstracts were reviewed, with 40 articles selected for full-text review; 28 of these were analyzed and included data from 1358 participants. Data were analyzed using random-effects meta-analysis (RevMan 5; The Cochrane Collaboration), meta-regression (STATA; StataCorp), and dose-response analysis (Prism; GraphPad). Analyses were conducted using postintervention (post) GFR and the change in GFR from preintervention to post. The post-only comparison showed a trivial effect for GFR to be higher after HP intakes [standardized mean difference (SMD): 0.19; 95% CI: 0.07, 0.31; P = 0.002]. The change in GFR did not differ between interventions (SMD: 0.11; 95% CI: -0.05, 0.27; P = 0.16). There was a linear relation between protein intake and GFR in the post-only comparison (r = 0.332, P = 0.03), but not between protein intake and the change in GFR (r = 0.184, P = 0.33). The main limitation of the current analysis is the unclear risk of selection bias of the included trials. Conclusions Postintervention GFR comparisons indicate that HP diets result in higher GFRs; however, when changes in GFR were compared, dietary protein had no effect. Our analysis indicates that HP intakes do not adversely influence kidney function on GFR in healthy adults.
Collapse
Affiliation(s)
- Michaela C Devries
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Canada
| | | | | | - Laura Banfield
- Health Sciences Library, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | | | | |
Collapse
|
28
|
McCormick R, Vasilaki A. Age-related changes in skeletal muscle: changes to life-style as a therapy. Biogerontology 2018; 19:519-536. [PMID: 30259289 PMCID: PMC6223729 DOI: 10.1007/s10522-018-9775-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
As we age, there is an age-related loss in skeletal muscle mass and strength, known as sarcopenia. Sarcopenia results in a decrease in mobility and independence, as well as an increase in the risk of other morbidities and mortality. Sarcopenia is therefore a major socio-economical problem. The mechanisms behind sarcopenia are unclear and it is likely that it is a multifactorial condition with changes in numerous important mechanisms all contributing to the structural and functional deterioration. Here, we review the major proposed changes which occur in skeletal muscle during ageing and highlight evidence for changes in physical activity and nutrition as therapeutic approaches to combat age-related skeletal muscle wasting.
Collapse
Affiliation(s)
- Rachel McCormick
- Musculoskeletal Biology II, Institute of Ageing and Chronic Disease, Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Aphrodite Vasilaki
- Musculoskeletal Biology II, Institute of Ageing and Chronic Disease, Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
29
|
Van Elswyk ME, Weatherford CA, McNeill SH. A Systematic Review of Renal Health in Healthy Individuals Associated with Protein Intake above the US Recommended Daily Allowance in Randomized Controlled Trials and Observational Studies. Adv Nutr 2018; 9:404-418. [PMID: 30032227 PMCID: PMC6054213 DOI: 10.1093/advances/nmy026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/10/2017] [Accepted: 03/27/2018] [Indexed: 12/21/2022] Open
Abstract
A systematic review was used to identify randomized controlled trials (RCTs) and observational epidemiologic studies (OBSs) that examined protein intake consistent with either the US RDA (0.8 g/kg or 10-15% of energy) or a higher protein intake (≥20% but <35% of energy or ≥10% higher than a comparison intake) and reported measures of kidney function. Studies (n = 26) of healthy, free-living adults (>18 y old) with or without metabolic disease risk factors were included. Studies of subjects with overt disease, such as chronic kidney, end-stage renal disease, cancer, or organ transplant, were excluded. The most commonly reported variable was glomerular filtration rate (GFR), with 13 RCTs comparing GFRs obtained with normal and higher protein intakes. Most (n = 8), but not all (n = 5), RCTs reported significantly higher GFRs in response to increased protein intake, and all rates were consistent with normal kidney function in healthy adults. The evidence from the current review is limited and inconsistent with regard to the role of protein intake and the risk of kidney stones. Increased protein intake had little or no effect on blood markers of kidney function. Evidence reported here suggests that protein intake above the US RDA has no adverse effect on blood pressure. All included studies were of moderate to high risk of bias and, with the exception of 2 included cohorts, were limited in duration (i.e. <6 mo). Data in the current review are insufficient to determine if increased protein intake from a particular source, i.e., plant or animal, influences kidney health outcomes. These data further indicate that, at least in the short term, higher protein intake within the range of recommended intakes for protein is consistent with normal kidney function in healthy individuals.
Collapse
|
30
|
Deutz NEP, Thaden JJ, Ten Have GAM, Walker DK, Engelen MPKJ. Metabolic phenotyping using kinetic measurements in young and older healthy adults. Metabolism 2018; 78:167-178. [PMID: 28986165 PMCID: PMC5732887 DOI: 10.1016/j.metabol.2017.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND The aging process is often associated with the presence of sarcopenia. Although changes in the plasma concentration of several amino acids have been observed in older adults, it remains unclear whether these changes are related to disturbances in whole body production and/or interconversions. METHODS We studied 10 healthy young (~22.7y) and 17 older adults (~64.8y) by administering a mixture of stable amino acid tracers in a pulse and in a primed constant infusion. We calculated whole body production (WBP) and metabolite to metabolite interconversions. In addition, we measured body composition, muscle function, and provided questionnaires to assess daily dietary intake, physical activity, mood (anxiety, depression) and markers of cognitive function. Plasma enrichments and metabolite concentrations were measured by GC- and LC-MS/MS and statistics were performed by student t-test. RESULTS Older adults had a 11% higher body mass index (p=0.04) and 27% reduced peak leg extension force (p=0.02) than the younger group, but comparable values for muscle mass, mood and cognitive function. Although small differences in several plasma amino acid concentrations were observed, we found older adults had about 40% higher values of WBP for glutamine (221±27 vs. 305±21μmol/kgffm/h, p=0.03) and tau-methylhistidine (0.15±0.01 vs. 0.21±0.02μmol/kgffm/h, p=0.04), 26% lower WBP value for arginine (59±4 vs. 44±4μmol/kgffm/h, p=0.02) and a reduction in WBP (50%; 1.23±0.15 vs. 0.69±0.06μmol/kgffm/h, p=0.001) and concentration (25%; 3.5±0.3μmol/l vs. 2.6±0.2μmol/l, p=0.01) for β-Hydroxy β-Methylbutyrate. No differences were observed in protein catabolism. Clearance of arginine was decreased (27%, p=0.03) and clearance of glutamine (58%, p=0.01), leucine (67%, p=0.001) and KIC (76%, p=0.004) were increased in older adults. CONCLUSIONS Specific differences exist between young and older adults in amino acid metabolism.
Collapse
Affiliation(s)
- Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA.
| | - John J Thaden
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Gabriella A M Ten Have
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Dillon K Walker
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
31
|
James HA, O'Neill BT, Nair KS. Insulin Regulation of Proteostasis and Clinical Implications. Cell Metab 2017; 26:310-323. [PMID: 28712655 PMCID: PMC8020859 DOI: 10.1016/j.cmet.2017.06.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/02/2017] [Accepted: 06/14/2017] [Indexed: 02/01/2023]
Abstract
Maintenance and modification of the cellular proteome are at the core of normal cellular physiology. Although insulin is well known for its control of glucose homeostasis, its critical role in maintaining proteome homeostasis (proteostasis) is less appreciated. Insulin signaling regulates protein synthesis and degradation as well as posttranslational modifications at the tissue level and coordinates proteostasis at the organism level. Here, we review regulation of proteostasis by insulin in postabsorptive, postprandial, and diabetic states. We present the effects of insulin on amino acid flux in skeletal muscle and splanchnic tissues, the regulation of protein quality control, and turnover of mitochondrial protein pools in humans. We also review the current evidence for the mechanistic control of proteostasis by insulin and insulin-like growth factor 1 receptors based on preclinical studies. Finally, we discuss irreversible posttranslational modifications of the proteome in diabetes and how future investigations will provide new insights into mechanisms of diabetic complications.
Collapse
Affiliation(s)
- Haleigh A James
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Brian T O'Neill
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - K Sreekumaran Nair
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
32
|
Abstract
Chronic kidney disease (CKD) has a prevalence of approximately 13% and is most frequently caused by diabetes and hypertension. In population studies, CKD etiology is often uncertain. Some experimental and observational human studies have suggested that high-protein intake may increase CKD progression and even cause CKD in healthy people. The protein source may be important. Daily red meat consumption over years may increase CKD risk, whereas white meat and dairy proteins appear to have no such effect, and fruit and vegetable proteins may be renal protective. Few randomized trials exist with an observation time greater than 6 months, and most of these were conducted in patients with preexisting diseases that dispose to CKD. Results conflict and do not allow any conclusion about kidney-damaging effects of long-term, high-protein intake. Until additional data become available, present knowledge seems to substantiate a concern. Screening for CKD should be considered before and during long-term, high-protein intake.
Collapse
Affiliation(s)
- Anne-Lise Kamper
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Svend Strandgaard
- Department of Nephrology, Herlev Hospital, University of Copenhagen, 2730 Copenhagen, Denmark;
| |
Collapse
|
33
|
Wada A, Kawakami M, Otsuka T, Aoki H, Anzai A, Yamada Y, Liu F, Otaka E, Akaboshi K, Liu M. Nitrogen balance in patients with hemiparetic stroke during the subacute rehabilitation phase. J Hum Nutr Diet 2017; 30:302-308. [DOI: 10.1111/jhn.12457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. Wada
- Department of Rehabilitation Medicine; National Higashisaitama Hospital; Hasuda Japan
| | - M. Kawakami
- Department of Rehabilitation Medicine; Keio University School of Medicine; Shinjuku-ku Tokyo Japan
| | - T. Otsuka
- Department of Rehabilitation Medicine; National Higashisaitama Hospital; Hasuda Japan
| | - H. Aoki
- Nutrition Management Office; National Higashisaitama Hospital; Hasuda Japan
| | - A. Anzai
- Department of Rehabilitation Medicine; National Higashisaitama Hospital; Hasuda Japan
| | - Y. Yamada
- Department of Rehabilitation Medicine; National Higashisaitama Hospital; Hasuda Japan
| | - F. Liu
- Department of Rehabilitation Medicine; Keio University School of Medicine; Shinjuku-ku Tokyo Japan
| | - E. Otaka
- Department of Rehabilitation Medicine; National Higashisaitama Hospital; Hasuda Japan
| | - K. Akaboshi
- Department of Rehabilitation Medicine; Ichikawa City Rehabilitation Hospital; Ichikawa Japan
| | - M. Liu
- Department of Rehabilitation Medicine; Keio University School of Medicine; Shinjuku-ku Tokyo Japan
| |
Collapse
|
34
|
Shimoda T, Suzuki T, Takahashi N, Tsutsumi K, Samukawa M, Yoshimachi S, Goto T, Enomoto H, Kise N, Ogasawara K, Yoshimura S. Nutritional Status and Body Composition of Independently Living Older Adults in a Snowy Region of Japan. Gerontol Geriatr Med 2017; 3:2333721417706854. [PMID: 28516130 PMCID: PMC5419067 DOI: 10.1177/2333721417706854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 11/16/2022] Open
Abstract
Lifestyle diseases, which are associated with nutrition, account for 30% of elderly requiring long-term care. To increase health expectancy among Japan's rapidly aging population, we investigated the nutritional status and body composition of elderly adults living in a region subject to heavy snowfall, to identify pertinent health indicators. The dietary habits of 288 local residents aged ≥50 years were analyzed using body composition and a brief-type self-administered diet history questionnaire. Body mass index of all residents was normal. Basal metabolic rate (BMR) and muscle mass were reduced in the older group. Dietary habits did not differ with age among men, but older women had significantly higher dietary intake. BMR and muscle mass declined with age, even when dietary intake was sustained. Despite sufficient dietary intake, independently living older adults demonstrate less efficient use of food with age. Interventions to reduce excessive sodium and protein intake are required.
Collapse
|
35
|
Yang P, Hu W, Fu Z, Sun L, Zhou Y, Gong Y, Yang T, Zhou H. The positive association of branched-chain amino acids and metabolic dyslipidemia in Chinese Han population. Lipids Health Dis 2016; 15:120. [PMID: 27457614 PMCID: PMC4960685 DOI: 10.1186/s12944-016-0291-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/14/2016] [Indexed: 12/19/2022] Open
Abstract
Background It has been suggested that serum branched-chain amino acids (BCAAs) are associated with the incident, progression and prognostic of type 2 diabetes. However, the role of BCAAs in metabolic dyslipidemia (raised triglycerides (TG) and reduced high-density lipoprotein cholesterol (HDL-C)) remains poorly understood. This study aims to investigate 1) the association of serum BCAAs with total cholesterol (TC), TG, HDL-C and low-density lipoprotein cholesterol (LDL-C) and 2) the association between serum BCAAs levels and risk of metabolic dyslipidemia in a community population with different glucose homeostasis. Methods Demographics data and blood samples were collected from 2251 Chinese subjects from the Huaian Diabetes Protective Program (HADPP) study. After exclusion for cardiovascular disease (CVD), serious hepatic or nephritic diseases and others, 1320 subjects remained for analysis (789 subjects with hemoglobin A1c (HbA1c) > 5.7, 521 with HbA1c ≤ 5.7). Serum BCAAs level was measured by liquid chromatography-tandem mass spectrometry (LC MS/MS). The association of BCAAs with lipids or with the risk of metabolic dyslipidemia was analyzed. Results Elevated serum BCAAs (both total and individual BCAA) were positively associated with TG and inversely associated with HDL-C in the whole population. These correlations were still significant even after adjustment for confounding factors (r = 0.165, p < 0.001 for TG; and r = -0.126, p < 0.001 for HDL-C). For reduced HDL-C, we found higher odds risk (OR) of Valine (Val) in high HbA1c group than in the low one (OR = 1.055, p < 0.001 vs OR = 1.032, p = 0.059). Compared with that in the first quartile, the multivariable-adjusted OR (95 % CI) of the 4th quartile of serum total BCAAs level for reduced HDL-C was 3.689 (2.325, 5.854) in high HbA1c group and 2.329 (1.284, 4.227) in low group, for raised TG was 3.305 (2.120, 5.152) and 2.972 (1.706, 5.176), and for metabolic dyslipidemia was 3.703 (2.261, 6.065) and 3.702 (1.877, 7.304), respectively (all p < 0.01). Conclusion Elevated serum BCAAs level are positively associated with incident metabolic dyslipidemia. In addition, glucose homeostasis could play a certain role in BCAAs-related dyslipidemia.
Collapse
Affiliation(s)
- Panpan Yang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Wen Hu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.,Department of Endocrinology and Metabolism, Huaian Hospital Affiliated to Xuzhou Medical College and Huaian Second People's Hospital, Huaian, 223002, China
| | - Zhenzhen Fu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Luning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Ying Zhou
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yingyun Gong
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Tao Yang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Hongwen Zhou
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
36
|
Appleton KM. Barriers to and Facilitators of the Consumption of Animal-Based Protein-Rich Foods in Older Adults. Nutrients 2016; 8:187. [PMID: 27043615 PMCID: PMC4848656 DOI: 10.3390/nu8040187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 01/06/2023] Open
Abstract
Protein intakes in the older population can be lower than recommended for good health, and while reasons for low protein intakes can be provided, little work has attempted to investigate these reasons in relation to actual intakes, and so identify those of likely greatest impact when designing interventions. Questionnaires assessing: usual consumption of meat, fish, eggs and dairy products; agreement/disagreement with reasons for the consumption/non-consumption of these foods; and several demographic and lifestyle characteristics; were sent to 1000 UK community-dwelling adults aged 65 years and over. In total, 351 returned questionnaires, representative of the UK older population for gender and age, were suitable for analysis. Different factors were important for consumption of the four food groups, but similarities were also found. These similarities likely reflect issues of particular concern to both the consumption of animal-based protein-rich foods and the consumption of these foods by older adults. Taken together, these findings suggest intakes to be explained by, and thus that strategies for increasing consumption should focus on: increasing liking/tastiness; improving convenience and the effort required for food preparation and consumption; minimizing spoilage and wastage; and improving perceptions of affordability or value for money; freshness; and the healthiness of protein-rich foods.
Collapse
Affiliation(s)
- K M Appleton
- Research Centre for Behaviour Change, Department of Psychology, Bournemouth University, Poole House, Fern Barrow, Poole BH12 5BB, UK.
| |
Collapse
|
37
|
Niitsu M. Reply, Letter to the Editor - Combined intervention of whey protein intake and rehabilitation in female patients with hip fracture in the early postoperative period. Clin Nutr 2015; 34:1280-1. [PMID: 26410612 DOI: 10.1016/j.clnu.2015.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
|
38
|
Murphy J, Chevalier S, Gougeon R, Goulet ÉD, Morais JA. Effect of obesity and type 2 diabetes on protein anabolic response to insulin in elderly women. Exp Gerontol 2015; 69:20-6. [DOI: 10.1016/j.exger.2015.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 12/25/2022]
|
39
|
Irving BA, Carter RE, Soop M, Weymiller A, Syed H, Karakelides H, Bhagra S, Short KR, Tatpati L, Barazzoni R, Nair KS. Effect of insulin sensitizer therapy on amino acids and their metabolites. Metabolism 2015; 64:720-8. [PMID: 25733201 PMCID: PMC4525767 DOI: 10.1016/j.metabol.2015.01.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 01/07/2015] [Accepted: 01/16/2015] [Indexed: 12/19/2022]
Abstract
AIMS Prior studies have reported that elevated concentrations of several plasma amino acids (AA), particularly branched chain (BCAA) and aromatic AA predict the onset of type 2 diabetes. We sought to test the hypothesis that circulating BCAA, aromatic AA and related AA metabolites decline in response to the use of insulin sensitizing agents in overweight/obese adults with impaired fasting glucose or untreated diabetes. METHODS We performed a secondary analysis of a randomized, double-blind, placebo, controlled study conducted in twenty five overweight/obese (BMI ~30kg/m(2)) adults with impaired fasting glucose or untreated diabetes. Participants were randomized to three months of pioglitazone (45mg per day) plus metformin (1000mg twice per day, N=12 participants) or placebo (N=13). We measured insulin sensitivity by the euglycemic-hyperinsulinemic clamp and fasting concentrations of AA and AA metabolites using ultra-pressure liquid chromatography tandem mass spectrometry before and after the three-month intervention. RESULTS Insulin sensitizer therapy that significantly enhanced insulin sensitivity reduced 9 out of 33 AA and AA metabolites measured compared to placebo treatment. Moreover, insulin sensitizer therapy significantly reduced three functionally clustered AA and metabolite pairs: i) phenylalanine/tyrosine, ii) citrulline/arginine, and iii) lysine/α-aminoadipic acid. CONCLUSIONS Reductions in plasma concentrations of several AA and AA metabolites in response to three months of insulin sensitizer therapy support the concept that reduced insulin sensitivity alters AA and AA metabolites.
Collapse
Affiliation(s)
- Brian A Irving
- Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, MN.
| | - Rickey E Carter
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Mattias Soop
- Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, MN
| | - Audrey Weymiller
- Department of Nursing, Mayo Clinic College of Medicine, Rochester, MN
| | - Husnain Syed
- Department of Family Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Helen Karakelides
- Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, MN
| | - Sumit Bhagra
- Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, MN
| | - Kevin R Short
- Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, MN
| | - Laura Tatpati
- Division of Reproductive Endocrinology, Mayo Clinic College of Medicine, Rochester, MN
| | - Rocco Barazzoni
- Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, MN
| | - K Sreekumaran Nair
- Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, MN.
| |
Collapse
|
40
|
Layman DK, Anthony TG, Rasmussen BB, Adams SH, Lynch CJ, Brinkworth GD, Davis TA. Defining meal requirements for protein to optimize metabolic roles of amino acids. Am J Clin Nutr 2015; 101:1330S-1338S. [PMID: 25926513 PMCID: PMC5278948 DOI: 10.3945/ajcn.114.084053] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signals that influence the rate of protein synthesis, inflammation responses, mitochondrial activity, and satiety, exerting their influence through signaling systems including mammalian/mechanistic target of rapamycin complex 1 (mTORC1), general control nonrepressed 2 (GCN2), glucagon-like peptide 1 (GLP-1), peptide YY (PYY), serotonin, and insulin. These signals represent meal-based responses to dietary protein. The best characterized of these signals is the leucine-induced activation of mTORC1, which leads to the stimulation of skeletal muscle protein synthesis after ingestion of a meal that contains protein. The response of this metabolic pathway to dietary protein (i.e., meal threshold) declines with advancing age or reduced physical activity. Current dietary recommendations for protein are focused on total daily intake of 0.8 g/kg body weight, but new research suggests daily needs for older adults of ≥1.0 g/kg and identifies anabolic and metabolic benefits to consuming at least 20-30 g protein at a given meal. Resistance exercise appears to increase the efficiency of EAA use for muscle anabolism and to lower the meal threshold for stimulation of protein synthesis. Applying this information to a typical 3-meal-a-day dietary plan results in protein intakes that are well within the guidelines of the Dietary Reference Intakes for acceptable macronutrient intakes. The meal threshold concept for dietary protein emphasizes a need for redistribution of dietary protein for optimum metabolic health.
Collapse
Affiliation(s)
- Donald K Layman
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Tracy G Anthony
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Blake B Rasmussen
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Sean H Adams
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Christopher J Lynch
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Grant D Brinkworth
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Teresa A Davis
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| |
Collapse
|
41
|
Abstract
An optimal protein intake is important for the preservation of muscle mass, functionality, and quality of life in older persons. In recent years, new recommendations regarding the optimal intake of protein in this population have been published. Based on the available scientific literature, 1.0 to 1.2 g protein/kg body weight (BW)/d are recommended in healthy older adults. In certain disease states, a daily protein intake of more than 1.2 g/kg BW may be required. The distribution of protein intake over the day, the amount per meal, and the amino acid profile of proteins are also discussed.
Collapse
|
42
|
Abstract
The aim of the present paper is to critically review the details of the published nutrition intervention trials, with and without exercise, targeting sarcopenia. Sarcopenia is the loss of muscle mass, strength and/or performance with age. Since amino acids and energy are required for muscle synthesis it is possible that nutritional intake influences sarcopenia. Nutritional studies are challenging to carry out because of the complexity of modulating dietary intake. It is very difficult to change one nutrient without influencing many others, which means that many of the published studies are problematic to interpret. The studies included evaluate whole protein, essential amino acids and β-hydroxyl β-methylbutyrate (HMB). Whole-protein supplementation failed to show a consistent effect on muscle mass, strength or function. This can be explained by the variations in study design, composition of the protein supplement and the failure to monitor voluntary food intake, adherence and baseline nutritional status. Essential amino-acid supplements showed an inconsistent effect but there are only two trials that have significant differences in methodology and the supplement used. The HMB studies are suggestive of a beneficial effect on older adults, but larger well-controlled studies are required that measure outcomes relevant to sarcopenia, ideally in sarcopenic populations. The issues of timing and distribution of protein intake, and increased splanchnic amino-acid sequestration are discussed, and recommendations for future trials are made.
Collapse
|
43
|
Bonnefoy M, Berrut G, Lesourd B, Ferry M, Gilbert T, Guérin O, Hanon O, Jeandel C, Paillaud E, Raynaud-Simon A, Ruault G, Rolland Y. Frailty and nutrition: searching for evidence. J Nutr Health Aging 2015; 19:250-7. [PMID: 25732208 DOI: 10.1007/s12603-014-0568-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Frailty is a geriatric syndrome that predicts disability, morbidity and mortality in the elderly. Poor nutritional status is one of the main risk factors for frailty. Macronutrients and micronutrients deficiencies are associated with frailty. Recent studies suggest that improving nutritional status for macronutrients and micronutrients may reduce the risk of frailty. Specific diets such as the Mediterranean diet rich in anti-oxidants, is currently investigated in the prevention of frailty. The aim of this paper is to summarize the current body of knowledge on the relations between nutrition and frailty, and provide recommendations for future nutritional research on the field of frailty.
Collapse
Affiliation(s)
- M Bonnefoy
- Marc Bonnefoy - service universitaire de gériatrie - Groupement Hospitalier Sud - 69495 Pierre-Bénite Cedex - France - tél 33 (0)4 78 86 15 80 - Fax 33 (0)4 78 86 57 27 -
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW To highlight the recent evicence for optimal protein intake and protein supplementation in older adults. A special focus has been placed on the effects on muscle protein synthesis, strength and overall performance in this population. RECENT FINDINGS Although for older adults, some additional evidence on the benefits of a higher protein intake than 0.8 g/kg body weight per day has been provided, the results of studies focusing on the timing of protein intake over the day have been contradictory. Supplementation with so-called 'fast' proteins, which are also rich in leucine, for example whey protein, proved superior with regard to muscle protein synthesis. First studies in frail older persons showed increased strength after supplementation with milk protein, whereas the combination with physical exercise increased muscle mass without additional benefit for strength or functionality. SUMMARY Recent evidence suggests positive effects of protein supplementation on muscle protein synthesis, muscle mass and muscle strength. However, as most studies included only small numbers of participants for short treatment periods, larger studies with longer duration are necessary to support the clinical relevance of these observations.
Collapse
Affiliation(s)
- Juergen M Bauer
- Department of Geriatric Medicine, Klinikum Oldenburg gGmbH, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | | |
Collapse
|
45
|
Beaufrère AM, Neveux N, Patureau Mirand P, Buffière C, Marceau G, Sapin V, Cynober L, Meydinal-Denis D. Long-term intermittent glutamine supplementation repairs intestinal damage (structure and functional mass) with advanced age: assessment with plasma citrulline in a rodent model. J Nutr Health Aging 2014; 18:814-9. [PMID: 25389959 DOI: 10.1007/s12603-014-0554-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Glutamine is the preferred fuel for the rat small intestine and promotes the growth of intestinal mucosa, especially in the event of gut injury. Quantitatively, glutamine is one important precursor for intestinal citrulline release. The aim of this study was to determine whether the effect of glutamine on the increase in intestinal villus height is correlated with an increase in both gut mass and citrulline plasma level in very old rats. METHODS We intermittently supplemented very old (27-mo) female rats with oral glutamine (20% of diet protein). Intestinal histomorphometric analysis of the small bowel was performed. Amino acids, in particular citrulline, were measured in the plasma, liver and jejunum. Markers of renal (creatinine, urea) and liver (alanine aminotransferase [ALT]) and aspartate aminotransferase (AST) functions were measured to evaluate renal and liver functions in relation to aging and to glutamine supplementation. Liver glutathione was also determined to evaluate cellular redox state. RESULTS Glutamine supplementation maintains the body weight of very old rats, not by limiting sarcopenia but rather by increasing the organ mass of the splanchnic area. Total intestine mass was significantly higher in glutamine-supplemented rats than in controls (15%). Measurement of villus height and crypt depth demonstrated that the difference between villus and crypt was significantly improved in glutamine pre-treated rats compared to controls (~ 11%). Plasma citrulline also increased by 15% in glutamine-supplemented rats compared to controls. CONCLUSION Citrulline appears as a biomarker of enterocyte mass in villous atrophy associated with advanced age. Non-invasive measurement of this metabolite may be useful in following the state of the gastrointestinal tract in very old people, whose numbers are increasing worldwide and the care of whom is a major public health issue. The gut may contribute to the malnutrition caused by malabsorption frequently observed in the elderly.
Collapse
Affiliation(s)
- A M Beaufrère
- Dominique Meynial-Denis (PhD), Human Nutrition Unit, INRA and Human Nutrition Research Center, Theix 63122 - St Genes Champanelle, France. Phone: +33 (0)4 73 62 43 13; Fax: +33 (0)4 73 62 47 55; E-mail address:
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Rietman A, Schwarz J, Tomé D, Kok FJ, Mensink M. High dietary protein intake, reducing or eliciting insulin resistance? Eur J Clin Nutr 2014; 68:973-9. [DOI: 10.1038/ejcn.2014.123] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 02/07/2023]
|
47
|
Yuzbashian E, Asghari G, Mirmiran P, Hosseini FS, Azizi F. Associations of dietary macronutrients with glomerular filtration rate and kidney dysfunction: Tehran lipid and glucose study. J Nephrol 2014; 28:173-80. [DOI: 10.1007/s40620-014-0095-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/04/2014] [Indexed: 01/08/2023]
|
48
|
Groen BBL, Hamer HM, Snijders T, van Kranenburg J, Frijns D, Vink H, van Loon LJC. Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J Appl Physiol (1985) 2014; 116:998-1005. [DOI: 10.1152/japplphysiol.00919.2013] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adequate muscle perfusion is required for the maintenance of skeletal muscle mass. Impairments in microvascular structure and/or function with aging and type 2 diabetes have been associated with the progressive loss of skeletal muscle mass. Our objective was to compare muscle fiber type specific capillary density and endothelial function between healthy young men, healthy older men, and age-matched type 2 diabetes patients. Fifteen healthy young men (24 ± 1 yr), 15 healthy older men (70 ± 2 yr), and 15 age-matched type 2 diabetes patients (70 ± 1 yr) were selected to participate in the present study. Whole body insulin sensitivity, muscle fiber type specific capillary density, sublingual microvascular density, and dimension of the erythrocyte-perfused boundary region were assessed to evaluate the impact of aging and/or type 2 diabetes on microvascular structure and function. Whole body insulin sensitivity was significantly lower at a more advanced age, with lowest values reported in the type 2 diabetic patients. In line, skeletal muscle capillary contacts were much lower in the older and older type 2 diabetic patients when compared with the young. Sidestream darkfield imaging showed a significantly greater thickness of the erythrocyte perfused boundary region in the type 2 diabetic patients compared with the young. Skeletal muscle capillary density is reduced with aging and type 2 diabetes and accompanied by impairments in endothelial glycocalyx function, which is indicative of compromised vascular function.
Collapse
Affiliation(s)
- Bart B. L. Groen
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Henrike M. Hamer
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Tim Snijders
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Janneau van Kranenburg
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Dionne Frijns
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Hans Vink
- Department of Physiology, CARIM School for Cardiovascular Disease, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc J. C. van Loon
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| |
Collapse
|
49
|
Editors T. CIR-Myo News: Proceedings of the 2014 Spring Padua Muscle Days: Terme Euganee and Padova (Italy), April 3-5, 2014. Eur J Transl Myol 2014; 24:3299. [PMID: 26913130 PMCID: PMC4749006 DOI: 10.4081/ejtm.2014.3299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Not available.
Collapse
|
50
|
Pedersen AN, Cederholm T. Health effects of protein intake in healthy elderly populations: a systematic literature review. Food Nutr Res 2014; 58:23364. [PMID: 24624051 PMCID: PMC3926464 DOI: 10.3402/fnr.v58.23364] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 11/13/2013] [Accepted: 11/13/2013] [Indexed: 11/23/2022] Open
Abstract
The purpose of this systematic review is to assess the evidence behind the dietary requirement of protein and to assess the health effects of varying protein intake in healthy elderly persons in order to evaluate the evidence for an optimal protein intake. The literature search covered year 2000–2011. Prospective cohort, case–control, and intervention studies of a general healthy population in settings similar to the Nordic countries with protein intake from food-based sources were included. Out of a total of 301 abstracts, 152 full papers were identified as potentially relevant. After careful scrutiny, 23 papers were quality graded as A (highest, n=1), B (n=18), or C (n=4). The grade of evidence was classified as convincing, probable, suggestive, or inconclusive. The evidence is assessed as: probable for an estimated average requirement (EAR) of 0.66 g good-quality protein/kg body weight (BW)/day based on nitrogen balance (N-balance) studies and the subsequent recommended dietary allowance (RDA) of 0.83 g good-quality protein/kg BW/day representing the minimum dietary protein needs of virtually all healthy elderly persons. Regarding the optimal level of protein related to functional outcomes like maintenance of bone mass, muscle mass, and strength, as well as for morbidity and mortality, the evidence is ranging from suggestive to inconclusive. Results from particularly prospective cohort studies suggest a safe intake of up to at least 1.2–1.5 g protein/kg BW/day or approximately 15–20 E%. Overall, many of the included prospective cohort studies were difficult to fully evaluate since results mainly were obtained by food frequency questionnaires that were flawed by underreported intakes, although some studies were ‘calibrated’ to correct for under- or over-reporting. In conclusion, the evidence is assessed as probable regarding the EAR based on N-balance studies and suggestive to inconclusive regarding an optimal protein intake higher than the estimated RDA assessed from N-balance studies, but an exact level cannot be determined. Potentially adverse effects of a protein intake exceeding 20–23 E% remain to be investigated.
Collapse
Affiliation(s)
| | - Tommy Cederholm
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|