1
|
Swapna K, Srujana M, Mamidala E. Identification of steroidal cardenolides from Calotropis procera as novel HIV-1 PR inhibitors: A molecular docking & molecular dynamics simulation study. Indian J Med Res 2024; 160:78-86. [PMID: 39382500 PMCID: PMC11463882 DOI: 10.25259/ijmr_2115_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Indexed: 10/10/2024] Open
Abstract
Background & objectives Despite advancements in antiretroviral therapy, drug-resistant strains of HIV (human immunodeficiency virus) remain a global health concern. Natural compounds from medicinal plants offer a promising avenue for developing new HIV-1 PR (protease) inhibitors. This study aimed to explore the potential of compounds derived from Calotropis procera, a medicinal plant, as inhibitors of HIV-1 PR. Methods This in silico study utilized natural compound information and the crystal structure of HIV-1 PR. Molecular docking of 17 steroidal cardenolides from Calotropis procera against HIV-1 PR was performed using AutoDock 4.2 to identify compounds with higher antiviral potential. A dynamic simulation study was performed to provide insights into the stability, binding dynamics, and potential efficacy of the top potential antiviral compound as an HIV-1 therapeutic. Results We found that all tested cardenolides had higher binding affinities than Amprenavir, indicating their potential as potent HIV-1 PR inhibitors. Voruscharin and uscharidin displayed the strongest interactions, forming hydrogen bonds and hydrophobic interactions with HIV-1 PR. Voruscharin showed improved stability with lower RMSD (Root Mean Square Deviation) values and reduced fluctuations in binding site residues but increased flexibility in certain regions. The radius of gyration analysis confirmed a stable binding pose between HIV-1 PR and Voruscharin. Interpretation & conclusions These findings suggest that Calotropis procera could potentially be a source of compounds for developing novel HIV-1 PR inhibitors, contributing to the efforts to combat HIV. Further studies and clinical trials are needed to evaluate the safety and efficacy of these compounds as potential drug candidates for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Kandagatla Swapna
- Department of Zoology, Kakatiya University, Hanamkonda, Warangal, Telangana, India
| | - M. Srujana
- Department of Pharmacy, Chaitanya (Deemed to be University), Kishanpura, Hanamkonda, Warangal, Telangana, India
| | - Estari Mamidala
- Department of Zoology, Kakatiya University, Hanamkonda, Warangal, Telangana, India
| |
Collapse
|
2
|
Papantoniou E, Arvanitakis K, Markakis K, Papadakos SP, Tsachouridou O, Popovic DS, Germanidis G, Koufakis T, Kotsa K. Pathophysiology and Clinical Management of Dyslipidemia in People Living with HIV: Sailing through Rough Seas. Life (Basel) 2024; 14:449. [PMID: 38672720 PMCID: PMC11051320 DOI: 10.3390/life14040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Infections with human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS) represent one of the greatest health burdens worldwide. The complex pathophysiological pathways that link highly active antiretroviral therapy (HAART) and HIV infection per se with dyslipidemia make the management of lipid disorders and the subsequent increase in cardiovascular risk essential for the treatment of people living with HIV (PLHIV). Amongst HAART regimens, darunavir and atazanavir, tenofovir disoproxil fumarate, nevirapine, rilpivirine, and especially integrase inhibitors have demonstrated the most favorable lipid profile, emerging as sustainable options in HAART substitution. To this day, statins remain the cornerstone pharmacotherapy for dyslipidemia in PLHIV, although important drug-drug interactions with different HAART agents should be taken into account upon treatment initiation. For those intolerant or not meeting therapeutic goals, the addition of ezetimibe, PCSK9, bempedoic acid, fibrates, or fish oils should also be considered. This review summarizes the current literature on the multifactorial etiology and intricate pathophysiology of hyperlipidemia in PLHIV, with an emphasis on the role of different HAART agents, while also providing valuable insights into potential switching strategies and therapeutic options.
Collapse
Affiliation(s)
- Eleni Papantoniou
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.P.); (K.M.); (O.T.)
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Konstantinos Markakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.P.); (K.M.); (O.T.)
| | - Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Olga Tsachouridou
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.P.); (K.M.); (O.T.)
| | - Djordje S. Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Vojvodina, 21137 Novi Sad, Serbia;
- Medical Faculty, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, AHEPA University Hospital, Aristotle University of Thessaloniki, 1 St. Kiriakidi Street, 54636 Thessaloniki, Greece
| |
Collapse
|
3
|
Mu W, Patankar V, Kitchen S, Zhen A. Examining Chronic Inflammation, Immune Metabolism, and T Cell Dysfunction in HIV Infection. Viruses 2024; 16:219. [PMID: 38399994 PMCID: PMC10893210 DOI: 10.3390/v16020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive. One of the key features of HIV infection is chronic immune activation and inflammation, which are strongly associated with, and predictive of, HIV disease progression, even in patients successfully treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation, immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to summarize current knowledge of the interplay between chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to study HIV immune pathogenesis and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Vaibhavi Patankar
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott Kitchen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Mendes EA, Tang Y, Jiang G. The integrated stress response signaling during the persistent HIV infection. iScience 2023; 26:108418. [PMID: 38058309 PMCID: PMC10696111 DOI: 10.1016/j.isci.2023.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV) infection is a chronic disease under antiretroviral therapy (ART), during which active HIV replication is effectively suppressed. Stable viral reservoirs are established early in infection and cannot be eradicated in people with HIV (PWH) by ART alone, which features residual immune inflammation with disease-associated secondary comorbidities. Mammalian cells are equipped with integrated stress response (ISR) machinery to detect intrinsic and extrinsic stresses such as heme deficiency, nutrient fluctuation, the accumulation of unfolded proteins, and viral infection. ISR is the part of the innate immunity that defends against pathogen infection or environmental alteration, thereby maintaining homeostasis to avoid diseases. Here, we describe how this machinery responds to the off-target effects of ART and persistent HIV infection in both the peripheral compartments and the brain. The latter may be important for us to better understand the mechanisms of stable HIV reservoirs and HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Erica A. Mendes
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - Yuyang Tang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - Guochun Jiang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases and the Department of Biochemistry and Biophysics, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599- 7042, USA
| |
Collapse
|
5
|
Pu S, Pan Y, Zhang Q, You T, Yue T, Zhang Y, Wang M. Endoplasmic Reticulum Stress and Mitochondrial Stress in Drug-Induced Liver Injury. Molecules 2023; 28:molecules28073160. [PMID: 37049925 PMCID: PMC10095764 DOI: 10.3390/molecules28073160] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Drug-induced liver injury (DILI) is a widespread and harmful disease closely linked to mitochondrial and endoplasmic reticulum stress (ERS). Globally, severe drug-induced hepatitis, cirrhosis, and liver cancer are the primary causes of liver-related morbidity and mortality. A hallmark of DILI is ERS and changes in mitochondrial morphology and function, which increase the production of reactive oxygen species (ROS) in a vicious cycle of mutually reinforcing stress responses. Several pathways are maladapted to maintain homeostasis during DILI. Here, we discuss the processes of liver injury caused by several types of drugs that induce hepatocyte stress, focusing primarily on DILI by ERS and mitochondrial stress. Importantly, both ERS and mitochondrial stress are mediated by the overproduction of ROS, destruction of Ca2+ homeostasis, and unfolded protein response (UPR). Additionally, we review new pathways and potential pharmacological targets for DILI to highlight new possibilities for DILI treatment and mitigation.
Collapse
Affiliation(s)
- Sisi Pu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ting You
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Tao Yue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuxing Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Aspartyl Protease Inhibitors as Anti-Filarial Drugs. Pathogens 2022; 11:pathogens11060707. [PMID: 35745561 PMCID: PMC9227574 DOI: 10.3390/pathogens11060707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
The current treatments for lymphatic filariasis and onchocerciasis do not effectively kill the adult parasitic nematodes, allowing these chronic and debilitating diseases to persist in millions of people. Thus, the discovery of new drugs with macrofilaricidal potential to treat these filarial diseases is critical. To facilitate this need, we first investigated the effects of three aspartyl protease inhibitors (APIs) that are FDA-approved as HIV antiretroviral drugs on the adult filarial nematode, Brugia malayi and the endosymbiotic bacteria, Wolbachia. From the three hits, nelfinavir had the best potency with an IC50 value of 7.78 µM, followed by ritonavir and lopinavir with IC50 values of 14.3 µM and 16.9 µM, respectively. The three APIs have a direct effect on killing adult B. malayi after 6 days of exposure in vitro and did not affect the Wolbachia titers. Sequence conservation and stage-specific gene expression analysis identified Bm8660 as the most likely primary aspartic protease target for these drug(s). Immunolocalization using antibodies raised against the Bm8660 ortholog of Onchocerca volvulus showed it is strongly expressed in female B. malayi, especially in metabolically active tissues such as lateral and dorsal/ventral chords, hypodermis, and uterus tissue. Global transcriptional response analysis using adult female B. pahangi treated with APIs identified four additional aspartic proteases differentially regulated by the three effective drugs, as well as significant enrichment of various pathways including ubiquitin mediated proteolysis, protein kinases, and MAPK/AMPK/FoxO signaling. In vitro testing against the adult gastro-intestinal nematode Trichuris muris suggested broad-spectrum potential for these APIs. This study suggests that APIs may serve as new leads to be further explored for drug discovery to treat parasitic nematode infections.
Collapse
|
7
|
Akita S, Suzuki K, Yoshimoto H, Ohtsuru A, Hirano A, Yamashita S. Cellular Mechanism Underlying Highly-Active or Antiretroviral Therapy-Induced Lipodystrophy: Atazanavir, a Protease Inhibitor, Compromises Adipogenic Conversion of Adipose-Derived Stem/Progenitor Cells through Accelerating ER Stress-Mediated Cell Death in Differentiating Adipocytes. Int J Mol Sci 2021; 22:ijms22042114. [PMID: 33672735 PMCID: PMC7924614 DOI: 10.3390/ijms22042114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Lipodystrophy is a common complication in human immunodeficiency virus (HIV)-infected patients receiving highly active antiretroviral therapy (HAART) or antiretroviral therapy (ART). Previous studies demonstrated that endoplasmic reticulum (ER) stress-mediated unfolded protein response (UPR) is involved in lipodystrophy; however, the detailed mechanism has not been fully described in human adipogenic cell lineage. We utilized adipose tissue-derived stem cells (ADSCs) obtained from human subcutaneous adipose tissue, and atazanavir (ATV), a protease inhibitor (PI), was administered to ADSCs and ADSCs undergoing adipogenic conversion. Marked repression of adipogenic differentiation was observed when ATV was administered during 10 days of ADSC culture in adipogenic differentiation medium. Although ATV had no effect on ADSCs, it significantly induced apoptosis in differentiating adipocytes. ATV treatment also caused the punctate appearance of CCAAT-enhancer-binding (C/EBP) protein homologous protein (CHOP), and altered expression of CHOP and GRP78/Bip, which are the representation of ER stress, only in differentiating adipocytes. Administration of UPR inhibitors restored adipogenic differentiation, indicating that ER stress-mediated UPR was induced in differentiating adipocytes in the presence of ATV. We also observed autophagy, which was potentiated in differentiating adipocytes by ATV treatment. Thus, adipogenic cell atrophy leads to ATV-induced lipodystrophy, which is mediated by ER stress-mediated UPR and accelerated autophagy, both of which would cause adipogenic apoptosis. As our study demonstrated for the first time that ADSCs are unsusceptible to ATV and its deleterious effects are limited to the differentiating adipocytes, responsible target(s) for ATV-induced lipodystrophy may be protease(s) processing adipogenesis-specific protein(s).
Collapse
Affiliation(s)
- Sadanori Akita
- Department of Plastic Surgery, Wound Repair and Regeneration, School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (A.H.); (H.Y.)
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- Correspondence: Correspondence: ; Tel.: +81-95-819-7116
| | - Hiroshi Yoshimoto
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (A.H.); (H.Y.)
| | - Akira Ohtsuru
- Takashi Nagai Memorial International Hibakusha Medical Center, Nagasaki University Graduate School of Biomedical Science, 1-12-4 Nagasaki, Nagasaki852-8523, Japan;
| | - Akiyoshi Hirano
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (A.H.); (H.Y.)
| | - Shunichi Yamashita
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- Takashi Nagai Memorial International Hibakusha Medical Center, Nagasaki University Graduate School of Biomedical Science, 1-12-4 Nagasaki, Nagasaki852-8523, Japan;
- Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
- Center for Advanced Radiation Emergency Medicine at the National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
8
|
Gruevska A, Moragrega ÁB, Cossarizza A, Esplugues JV, Blas-García A, Apostolova N. Apoptosis of Hepatocytes: Relevance for HIV-Infected Patients under Treatment. Cells 2021; 10:cells10020410. [PMID: 33669403 PMCID: PMC7920460 DOI: 10.3390/cells10020410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Due to medical advances over the past few decades, human immunodeficiency virus (HIV) infection, once a devastatingly mortal pandemic, has become a manageable chronic condition. However, available antiretroviral treatments (cART) cannot fully restore immune health and, consequently, a number of inflammation-associated and/or immunodeficiency complications have manifested themselves in treated HIV-infected patients. Among these chronic, non-AIDS (acquired immune deficiency syndrome)-related conditions, liver disease is one of the deadliest, proving to be fatal for 15–17% of these individuals. Aside from the presence of liver-related comorbidities, including metabolic disturbances and co-infections, HIV itself and the adverse effects of cART are the main factors that contribute to hepatic cell injury, inflammation, and fibrosis. Among the molecular mechanisms that are activated in the liver during HIV infection, apoptotic cell death of hepatocytes stands out as a key pathogenic player. In this review, we will discuss the evidence and potential mechanisms involved in the apoptosis of hepatocytes induced by HIV, HIV-encoded proteins, or cART. Some antiretroviral drugs, especially the older generation, can induce apoptosis of hepatic cells, which occurs through a variety of mechanisms, such as mitochondrial dysfunction, increased production of reactive oxygen species (ROS), and induction of endoplasmic reticulum (ER) stress and unfolded protein response (UPR), all of which ultimately lead to caspase activation and cell death.
Collapse
Affiliation(s)
- Aleksandra Gruevska
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (A.G.); (Á.B.M.); (N.A.)
- FISABIO—Hospital Universitario Dr. Peset, 46017 Valencia, Spain;
| | - Ángela B. Moragrega
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (A.G.); (Á.B.M.); (N.A.)
- FISABIO—Hospital Universitario Dr. Peset, 46017 Valencia, Spain;
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- National Institute for Cardiovascular Research, 40126 Bologna, Italy
| | - Juan V. Esplugues
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (A.G.); (Á.B.M.); (N.A.)
- FISABIO—Hospital Universitario Dr. Peset, 46017 Valencia, Spain;
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-96-396-4167; Fax: +34-96-398-3879
| | - Ana Blas-García
- FISABIO—Hospital Universitario Dr. Peset, 46017 Valencia, Spain;
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Nadezda Apostolova
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (A.G.); (Á.B.M.); (N.A.)
- FISABIO—Hospital Universitario Dr. Peset, 46017 Valencia, Spain;
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), 46010 Valencia, Spain
| |
Collapse
|
9
|
Alomar FA, Tian C, Dash PK, McMillan JM, Gendelman HE, Gorantla S, Bidasee KR. Efavirenz, atazanavir, and ritonavir disrupt sarcoplasmic reticulum Ca 2+ homeostasis in skeletal muscles. Antiviral Res 2021; 187:104975. [PMID: 33450312 DOI: 10.1016/j.antiviral.2020.104975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 11/07/2020] [Indexed: 01/05/2023]
Abstract
While muscle fatigue, pain and weakness are common co-morbidities in HIV-1 infected people, their underlying cause remain poorly defined. To this end, we evaluated whether the common antiretroviral drugs efavirenz (EFV), atazanavir (ATV) and ritonavir (RTV) could be a contributing factor by pertubating sarcoplasmic reticulum (SR) Ca2+ cycling. In live-cell imaging, EFV (6.0 μM), ATV (6.0 μM), and RTV (3.0 μM) elicited Ca2+ transients and blebbing of the plasma membranes of C2C12 skeletal muscle myotubes. Pretreating C2C12 skeletal muscle myotubes with the SR Ca2+ release channel blocker ryanodine (50 μM), slowed the rate and amplitude of Ca2+ release from and reuptake of Ca2+ into the SR. EFV, ATV and RTV (1 nM - 20 μM) potentiated and then displaced [3H] ryanodine binding to rabbit skeletal muscle ryanodine receptor Ca2+ release channel (RyR1). These drugs at concentrations 0.25-31.2 μM also increased and or decreased the open probability of RyR1 by altering its gating and conductance. ATV (≤5 μM) potentiated and >5μM inhibited the ability of sarco (endo)plasmic reticulum Ca2+-ATPase (SERCA1) to hydrolyze ATP and transport Ca2+. RTV (2.5-31.5 μM) dose-dependently inhibited SERCA1-mediated, ATP-dependent Ca2+ transport. EFV (0.25-31.5 μM) had no measurable effect on SERCA1's ability to hydrolyze ATP and transport Ca2+. These data support the notion that EFV, ATV and RTV could be contributing to skeletal muscle co-morbidities in PLWH by modulating SR Ca2+ homeostasis.
Collapse
Affiliation(s)
- Fadhel A Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Chengju Tian
- Departments of Pharmacology and Experimental Neuroscience, USA
| | - Prasanta K Dash
- Departments of Pharmacology and Experimental Neuroscience, USA
| | - JoEllyn M McMillan
- Departments of Pharmacology and Experimental Neuroscience, USA; Environment and Occupational Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Santhi Gorantla
- Departments of Pharmacology and Experimental Neuroscience, USA
| | - Keshore R Bidasee
- Departments of Pharmacology and Experimental Neuroscience, USA; Environment and Occupational Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Nebraska Redox Biology Center, Lincoln, NE, USA.
| |
Collapse
|
10
|
Wang J, Bwayi M, Florke Gee RR, Chen T. PXR-mediated idiosyncratic drug-induced liver injury: mechanistic insights and targeting approaches. Expert Opin Drug Metab Toxicol 2020; 16:711-722. [PMID: 32500752 PMCID: PMC7429329 DOI: 10.1080/17425255.2020.1779701] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The human liver is the center for drug metabolism and detoxification and is, therefore, constantly exposed to toxic chemicals. The loss of liver function as a result of this exposure is referred to as drug-induced liver injury (DILI). The pregnane X receptor (PXR) is the primary regulator of the hepatic drug-clearance system, which plays a critical role in mediating idiosyncratic DILI. AREAS COVERED This review is focused on common mechanisms of PXR-mediated DILI and on in vitro and in vivo models developed to predict and assess DILI. It also provides an update on the development of PXR antagonists that may manage PXR-mediated DILI. EXPERT OPINION DILI can be caused by many factors, and PXR is clearly linked to DILI. Although emerging data illustrate how PXR mediates DILI and how PXR activity can be modulated, many questions concerning the development of effective PXR modulators remain. Future research should be focused on determining the mechanisms regulating PXR functions in different cellular contexts.
Collapse
Affiliation(s)
- Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Monicah Bwayi
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Rebecca R. Florke Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
11
|
Bianconi V, Schiaroli E, Pirro M, Cardaci S, Busti C, Mannarino MR, Baldelli F, Francisci D. Effects of antiretroviral therapy on proprotein convertase subtilisin/kexin 9: focus on lipids, inflammation and immunovirological parameters. HIV Med 2020; 21:512-522. [PMID: 32496664 DOI: 10.1111/hiv.12884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Plasma levels of proprotein convertase subtilisin/kexin type 9 (PCSK9), a major regulator of cholesterol metabolism, have been reported to have an increasing trend in people living with HIV (PLWH) compared with controls. We assessed the impact of different antiretroviral (ARV) regimens on plasma PCSK9 levels as well as plasma lipids, systemic inflammation and immunovirological parameters. METHODS Eighty HIV-positive ARV therapy (ART)-naïve PLWH and 40 uninfected controls were retrospectively enrolled. At baseline and 3, 6 and 12 months after ART initiation, plasma PCSK9 levels, lipids, high-sensitivity C-reactive protein (hs-CRP), HIV-1 RNA levels and CD4 T-cell count were measured. RESULTS Baseline PCSK9 levels were significantly more elevated in PLWH and were associated with HIV-1 RNA levels (P < 0.001), CD4 T-cell counts (P < 0.001), triglycerides (P < 0.001) and high-density lipoprotein (HDL) cholesterol (P < 0.001), but not with total cholesterol, low-density lipoprotein (LDL) cholesterol and lipoprotein(a) levels. The prescription of ART was paralleled by significant decreases in plasma PCSK9 and hs-CRP levels, and increases in total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides and lipoprotein(a), independent of regimen. CONCLUSIONS PCSK9 levels, along with systemic inflammation, were progressively reduced following the initiation of an effective ART. However, at the end of the study PCSK9 levels remained higher than in controls and did not correlate with any of the lipid variables.
Collapse
Affiliation(s)
- V Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - E Schiaroli
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - M Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - S Cardaci
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - C Busti
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - M R Mannarino
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - F Baldelli
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - D Francisci
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
12
|
Berberine inhibits free fatty acid and LPS-induced inflammation via modulating ER stress response in macrophages and hepatocytes. PLoS One 2020; 15:e0232630. [PMID: 32357187 PMCID: PMC7194368 DOI: 10.1371/journal.pone.0232630] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammation plays an essential role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Berberine (BBR), an isoquinoline alkaloid isolated from Chinese medicinal herbs, has been widely used to treat various diseases, including liver diseases for hundreds of years. The previous studies have shown that BBR inhibits high fat-diet-induced steatosis and inflammation in rodent models of NAFLD. However, the underlying molecular mechanisms remain unclear. This study is aimed to identify the potential mechanisms by which BBR inhibits free fatty acid (FFA) and LPS-induced inflammatory response in mouse macrophages and hepatocytes. Mouse RAW264.7 macrophages and primary mouse hepatocytes were treated with palmitic acid (PA) or LPS or both with or without BBR (0–10 μM) for different periods (0–24 h). The mRNA and protein levels of proinflammatory cytokines (TNF-α, IL-6, IL-1β, MCP-1) and ER stress genes (CHOP, ATF4, XBP-1) were detected by real-time RT-PCR, Western blot and ELISA, respectively. The results indicated that BBR significantly inhibited PA and LPS-induced activation of ER stress and expression of proinflammatory cytokines in macrophages and hepatocytes. PA/LPS-mediated activation of ERK1/2 was inhibited by BBR in a dose-dependent manner. In summary, BBR inhibits PA/LPS-induced inflammatory responses through modulating ER stress-mediated ERK1/2 activation in macrophages and hepatocytes.
Collapse
|
13
|
Khalatbari A, Mishra P, Han H, He Y, MacVeigh-Aloni M, Ji C. Ritonavir and Lopinavir Suppress RCE1 and CAAX Rab Proteins Sensitizing the Liver to Organelle Stress and Injury. Hepatol Commun 2020; 4:932-944. [PMID: 32490327 PMCID: PMC7262282 DOI: 10.1002/hep4.1515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/02/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023] Open
Abstract
Organelle stress and Liver injuries often occur in human immunodeficiency virus (HIV) infected patients under anti-HIV therapies, yet few molecular off-targets of anti-HIV drugs have been identified in the liver. Here, we found through total RNA sequencing that the transcription of a host protease Ras converting CAAX endopeptidase 1 (RCE1) was altered in HepG2 cells treated with anti-HIV protease inhibitors, ritonavir and lopinavir. Levels of RCE1 protein were inhibited in HepG2 and primary mouse hepatocytes and in the liver of mice treated with the anti-HIV drugs, which were accompanied with inhibition of two potential substrates of RCE1, small GTP binding protein Rab13 and Rab18, which are with a common CAAX motif and known to regulate the ER-Golgi traffic or lipogenesis. Neither Rce1 transcription nor RCE1 protein level was inhibited by Brefeldin A, which is known to interfere with the ER-Golgi traffic causing Golgi stress. Knocking down Rce1 with RNA interference increased ritonavir and lopinavir-induced cell death as well as expression of Golgi stress response markers, TFE3, HSP47 and GCP60, in both primary mouse hepatocytes and mouse liver, and deteriorated alcohol-induced alanine aminotransferase (ALT) and fatty liver injury in mice. In addition, overexpressing Rab13 or Rab18 in primary human hepatocytes reduced partially the anti-HIV drugs and alcohol-induced Golgi fragmentation, Golgi stress response, and cell death injury. Conclusion: We identified a mechanism linking a host protease and its substrates, small guanosine triphosphate-binding proteins, to the anti-HIV drug-induced Golgi dysfunction, organelle stress response, and fatty liver injury.
Collapse
Affiliation(s)
- Atousa Khalatbari
- Department of Medicine Keck School of Medicine of USC University of Southern California Los Angeles CA
| | - Pratibha Mishra
- Department of Medicine Keck School of Medicine of USC University of Southern California Los Angeles CA
| | - Hui Han
- Department of Medicine Keck School of Medicine of USC University of Southern California Los Angeles CA
| | - Yuxin He
- Department of Medicine Keck School of Medicine of USC University of Southern California Los Angeles CA
| | - Michelle MacVeigh-Aloni
- Department of Medicine Keck School of Medicine of USC University of Southern California Los Angeles CA
| | - Cheng Ji
- Department of Medicine Keck School of Medicine of USC University of Southern California Los Angeles CA
| |
Collapse
|
14
|
Sangenito LS, Menna-Barreto RFS, d'Avila-Levy CM, Branquinha MH, Santos ALS. Repositioning of HIV Aspartyl Peptidase Inhibitors for Combating the Neglected Human Pathogen Trypanosoma cruzi. Curr Med Chem 2019; 26:6590-6613. [PMID: 31187704 DOI: 10.2174/0929867326666190610152934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
Abstract
Chagas disease, caused by the flagellate parasite Trypanosoma cruzi, is a wellknown neglected tropical disease. This parasitic illness affects 6-7 million people and can lead to severe myocarditis and/or complications of the digestive tract. The changes in its epidemiology facilitate co-infection with the Human Immunodeficiency Virus (HIV), making even more difficult the diagnosis and prognosis. The parasitic infection is reactivated in T. cruzi/HIV co-infection, with the appearance of unusual manifestations in the chronic phase and the exacerbation of classical clinical signs. The therapeutic arsenal to treat Chagas disease, in all its clinical forms, is restricted basically to two drugs, benznidazole and nifurtimox. Both drugs are extremely toxic and the therapeutic efficacy is still unclear, making the clinical treatment a huge issue to be solved. Therefore, it seems obvious the necessity of new tangible approaches to combat this illness. In this sense, the repositioning of approved drugs appears as an interesting and viable strategy. The discovery of Human Immunodeficiency Virus Aspartyl Peptidase Inhibitors (HIV-PIs) represented a milestone in the treatment of Acquired Immune Deficiency Syndrome (AIDS) and, concomitantly, a marked reduction in both the incidence and prevalence of important bacterial, fungal and parasitic co-infections was clearly observed. Taking all these findings into consideration, the present review summarizes the promising and beneficial data concerning the effects of HIV-PIs on all the evolutionary forms of T. cruzi and in important steps of the parasite's life cycle, which highlight their possible application as alternative drugs to treat Chagas disease.
Collapse
Affiliation(s)
- Leandro S Sangenito
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rubem F S Menna-Barreto
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cláudia M d'Avila-Levy
- Laboratorio de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Jensen BK, Roth LM, Grinspan JB, Jordan-Sciutto KL. White matter loss and oligodendrocyte dysfunction in HIV: A consequence of the infection, the antiretroviral therapy or both? Brain Res 2019; 1724:146397. [PMID: 31442414 DOI: 10.1016/j.brainres.2019.146397] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 01/13/2023]
Abstract
While the severe cognitive effects of HIV-associated dementia have been reduced by combined antiretroviral therapy (cART), nearly half of HIV-positive (HIV+) patients still suffer from some form of HIV-Associated Neurocognitive Disorders (HAND). While frank neuronal loss has been dramatically reduced in HAND patients, white matter loss, including dramatic thinning of the corpus callosum, and loss of volume and structural integrity of myelin persists despite viral control by cART. It remains unclear whether changes in white matter underlie the clinical manifestation seen in patients or whether they are the result of persistent viral reservoirs, remnant damage from the acute infection, the antiretroviral compounds used to treat HIV, secondary effects due to peripheral toxicities or other associated comorbid conditions. Both HIV infection itself and its treatment with antiretroviral drugs can induce metabolic syndrome, lipodystrophy, atherosclerosis and peripheral neuropathies by increased oxidative stress, induction of the unfolded protein response and dysregulation of lipid metabolism. These virally and/or cART-induced processes can also cause myelin loss in the CNS. This review aims to highlight existing data on the contribution of white matter damage to HAND and explore the mechanisms by which HIV infection and its treatment contribute to persistence of white matter changes in people living with HIV currently on cART.
Collapse
Affiliation(s)
- Brigid K Jensen
- Vickie and Jack Farber Institute for Neuroscience, Jefferson Weinberg ALS Center, Thomas Jefferson University, United States; Department of Neurology, The Children's Hospital of Philadelphia, United States; Department of Pathology, School of Dental Medicine, University of Pennsylvania, United States
| | - Lindsay M Roth
- Department of Neurology, The Children's Hospital of Philadelphia, United States; Department of Pathology, School of Dental Medicine, University of Pennsylvania, United States
| | - Judith B Grinspan
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, United States
| | | |
Collapse
|
16
|
Lagathu C, Béréziat V, Gorwood J, Fellahi S, Bastard JP, Vigouroux C, Boccara F, Capeau J. Metabolic complications affecting adipose tissue, lipid and glucose metabolism associated with HIV antiretroviral treatment. Expert Opin Drug Saf 2019; 18:829-840. [PMID: 31304808 DOI: 10.1080/14740338.2019.1644317] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Efficient antiretroviral-treatment (ART) generally allows control of HIV infection. However, persons-living-with-HIV (PLWH), when aging, present a high prevalence of metabolic diseases. Area covered: Altered adiposity, dyslipidemias, insulin resistance, diabetes, and their consequences are prevalent in PLWH and could be partly related to ART. Expert opinion: At first, personal and lifestyle factors are involved in the onset of these complications. The persistence of HIV in tissue reservoirs could synergize with some ART and enhance metabolic disorders. Altered fat repartition, diagnosed as lipodystrophy, has been related to first-generation nucleoside-reverse-transcriptase-inhibitors (NRTIs) (stavudine zidovudine) and some protease inhibitors (PIs). Recently, use of some integrase-inhibitors (INSTI) resulted in weight/fat gain, which represents a worrisome unresolved situation. Lipid parameters were affected by some first-generation NRTIs, non-NRTIs (efavirenz) but also PIs boosted by ritonavir, with increased total and LDL-cholesterol and triglycerides. Insulin resistance is common associated with abdominal obesity. Diabetes incidence, high with first-generation-ART (zidovudine, stavudine, didanosine, indinavir) has declined with contemporary ART close to that of the general population. Metabolic syndrome, a dysmetabolic situation with central obesity and insulin resistance, and liver steatosis are common in PLWH and could indirectly result from ART-associated fat gain and insulin resistance. All these dysmetabolic situations increase the atherogenic cardiovascular risk.
Collapse
Affiliation(s)
- Claire Lagathu
- a Faculty of Medicine, Sorbonne Université, Inserm UMR_S938, ICAN , Paris , France
| | - Véronique Béréziat
- a Faculty of Medicine, Sorbonne Université, Inserm UMR_S938, ICAN , Paris , France
| | - Jennifer Gorwood
- a Faculty of Medicine, Sorbonne Université, Inserm UMR_S938, ICAN , Paris , France
| | - Soraya Fellahi
- a Faculty of Medicine, Sorbonne Université, Inserm UMR_S938, ICAN , Paris , France.,b Department of Biochemistry, APHP, Hôpital Tenon , Paris , France
| | - Jean-Philippe Bastard
- a Faculty of Medicine, Sorbonne Université, Inserm UMR_S938, ICAN , Paris , France.,b Department of Biochemistry, APHP, Hôpital Tenon , Paris , France
| | - Corinne Vigouroux
- a Faculty of Medicine, Sorbonne Université, Inserm UMR_S938, ICAN , Paris , France.,c Centre de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Laboratoire Commun de Biologie et Génétique Moléculaires, APHP, Hôpital Saint-Antoine , Paris , France
| | - Franck Boccara
- a Faculty of Medicine, Sorbonne Université, Inserm UMR_S938, ICAN , Paris , France.,d Department of Cardiology, APHP Hôpital Saint-Antoine , Paris , France
| | - Jacqueline Capeau
- a Faculty of Medicine, Sorbonne Université, Inserm UMR_S938, ICAN , Paris , France
| |
Collapse
|
17
|
Yi H, Xu D, Wu X, Xu F, Lin L, Zhou H. Isosteviol Protects Free Fatty Acid- and High Fat Diet-Induced Hepatic Injury via Modulating PKC-β/p66Shc/ROS and Endoplasmic Reticulum Stress Pathways. Antioxid Redox Signal 2019; 30:1949-1968. [PMID: 30484323 PMCID: PMC6486675 DOI: 10.1089/ars.2018.7521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aims: Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver diseases. However, there are no approved pharmacotherapies for the treatment of NAFLD other than managing life style and controlling diets. Extensive studies have demonstrated that multiple mechanisms are involved in free fatty acid (FFA)- and high fat diet (HFD)-induced hepatic injury, including mitochondrial dysfunction, activation of oxidative stress and endoplasmic reticulum (ER) stress, and lysosome dysfunction. A previous study reported that Isosteviol (ISV), a derivative of stevioside, prevents HFD-induced hepatic injury. However, the underlying mechanisms remain unclear. Results: In this study, we examined the potential cellular/molecular mechanisms underlying ISV-mediated protective effect against FFA-/HFD-induced hepatic lipotoxicity by using both in vitro primary rat hepatocytes and the in vivo rat NAFLD model. The results indicated that ISV inhibits FFA-/HFD-induced hepatic injury via reducing oxidative and ER stress. Specifically, ISV inhibited the expression, activation, and mitochondrial translocation of Src-homology-2-domain-containing transforming protein 1 (p66Shc), an adapter protein that mediates oxidative stress-induced injury and is a substrate of protein kinase C-β (PKC-β), via inhibition of PKC-β activity. However, ISV had no effect on the expression and activity of peptidyl-prolyl cis-trans isomerase and serine/threonine protein phosphatase 2A, isomerase and phosphorylase of p66Shc. In addition, ISV also inhibited FFA-induced ER stress and decreased ER-mitochondrial interaction. Innovation and Conclusion: We first identified that ISV prevents FFA-/HFD-induced hepatic injury through modulating PKC-β/p66Shc/oxidative and ER stress pathways. ISV represents a promising therapeutic agent for NAFLD in the future. Antioxid. Redox Signal. 30, 1949-1968.
Collapse
Affiliation(s)
- Hongwei Yi
- 1 Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Deyi Xu
- 1 Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Xudong Wu
- 2 State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Fang Xu
- 2 State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lin Lin
- 1 Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Huiping Zhou
- 3 Department of Microbiology and Immunology, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia
| |
Collapse
|
18
|
Abstract
Endoplasmic reticulum (ER) stress occurs when ER homeostasis is perturbed with accumulation of unfolded/misfolded protein or calcium depletion. The unfolded protein response (UPR), comprising of inositol-requiring enzyme 1α (IRE1α), PKR-like ER kinase (PERK) and activating transcription factor 6 (ATF6) signaling pathways, is a protective cellular response activated by ER stress. However, UPR activation can also induce cell death upon persistent ER stress. The liver is susceptible to ER stress given its synthetic and other biological functions. Numerous studies from human liver samples and animal disease models have indicated a crucial role of ER stress and UPR signaling pathways in the pathogenesis of liver diseases, including non-alcoholic fatty liver disease, alcoholic liver disease, alpha-1 antitrypsin deficiency, cholestatic liver disease, drug-induced liver injury, ischemia/reperfusion injury, viral hepatitis and hepatocellular carcinoma. Extensive investigations have demonstrated the potential underlying mechanisms of the induction of ER stress and the contribution of UPR pathways during the development of the diseases. Moreover ER stress and the UPR proteins and genes have become emerging therapeutic targets to treat liver diseases.
Collapse
Affiliation(s)
- Xiaoying Liu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA, Corresponding author: Xiaoying-liu@northwestern
| | - Richard M. Green
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
19
|
Ekoru K, Young EH, Dillon DG, Gurdasani D, Stehouwer N, Faurholt-Jepsen D, Levitt NS, Crowther NJ, Nyirenda M, Njelekela MA, Ramaiya K, Nyan O, Adewole OO, Anastos K, Compostella C, Dave JA, Fourie CM, Friis H, Kruger IM, Longenecker CT, Maher DP, Mutimura E, Ndhlovu CE, Praygod G, Pefura Yone EW, Pujades-Rodriguez M, Range N, Sani MU, Sanusi M, Schutte AE, Sliwa K, Tien PC, Vorster EH, Walsh C, Gareta D, Mashili F, Sobngwi E, Adebamowo C, Kamali A, Seeley J, Smeeth L, Pillay D, Motala AA, Kaleebu P, Sandhu MS. HIV treatment is associated with a two-fold higher probability of raised triglycerides: Pooled Analyses in 21 023 individuals in sub-Saharan Africa. Glob Health Epidemiol Genom 2018; 3:e7. [PMID: 29881632 PMCID: PMC5985947 DOI: 10.1017/gheg.2018.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Anti-retroviral therapy (ART) regimes for HIV are associated with raised levels of circulating triglycerides (TG) in western populations. However, there are limited data on the impact of ART on cardiometabolic risk in sub-Saharan African (SSA) populations. METHODS Pooled analyses of 14 studies comprising 21 023 individuals, on whom relevant cardiometabolic risk factors (including TG), HIV and ART status were assessed between 2003 and 2014, in SSA. The association between ART and raised TG (>2.3 mmol/L) was analysed using regression models. FINDINGS Among 10 615 individuals, ART was associated with a two-fold higher probability of raised TG (RR 2.05, 95% CI 1.51-2.77, I2=45.2%). The associations between ART and raised blood pressure, glucose, HbA1c, and other lipids were inconsistent across studies. INTERPRETATION Evidence from this study confirms the association of ART with raised TG in SSA populations. Given the possible causal effect of raised TG on cardiovascular disease (CVD), the evidence highlights the need for prospective studies to clarify the impact of long term ART on CVD outcomes in SSA.
Collapse
Affiliation(s)
- K. Ekoru
- Department of Medicine, University of Cambridge, Cambridge, UK
- Global Health and Populations Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - E. H. Young
- Department of Medicine, University of Cambridge, Cambridge, UK
- Global Health and Populations Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - D. G. Dillon
- Weill Cornell Medical College, New York City, New York, USA
| | - D. Gurdasani
- Department of Medicine, University of Cambridge, Cambridge, UK
- Global Health and Populations Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - N. Stehouwer
- University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - D. Faurholt-Jepsen
- Department of Infectious Diseases, University of Copenhagen (Rigshospitalet), Copenhagen, Denmark
| | - N. S. Levitt
- Division of Diabetic Medicine and Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - N. J. Crowther
- Department of Chemical Pathology, National Health Laboratory Service, University of the Witwatersrand Medical School, Johannesburg, South Africa
| | - M. Nyirenda
- Malawi Epidemiology and Intervention Research Unit, Malawi, Lilongwe
| | - M. A. Njelekela
- Department of Physiology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - K. Ramaiya
- Shree Hindu Mandal Hospital, Dar es Salaam, Tanzania
| | - O. Nyan
- Royal Victoria Teaching Hospital, School of Medicine, University of The Gambia, Banjul, The Gambia
| | - O. O. Adewole
- Department of Medicine, Obafemi Awolowo University, Ile Ife, Nigeria
| | - K. Anastos
- Albert Einstein College of Medicine, Bronx NY, USA
| | - C. Compostella
- Department of Medicine, University of Padua, Padua, Italy
| | - J. A. Dave
- Division of Diabetic Medicine and Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - C. M. Fourie
- HART (Hypertension in Africa Research Team), North-West University, Potchefstroom, South Africa
| | - H. Friis
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - I. M. Kruger
- Africa Unit for Transdisciplinary Health Research (AUTHeR), North-West University, Potchefstroom, South Africa
| | | | - D. P. Maher
- Special Programme for Research & Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - E. Mutimura
- Albert Einstein College of Medicine, Bronx NY, USA
| | - C. E. Ndhlovu
- Clinical Epidemiology Resource Training Centre, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - G. Praygod
- National Institute for Medical Research, Tanzania, Dar es Salaam
| | | | - M. Pujades-Rodriguez
- Epicentre, Médecins Sans Frontières, Paris, France
- Department of Epidemiology and Public Health, University College of London, Clinical Epidemiology Group, London, UK
| | - N. Range
- National Institute for Medical Research, Tanzania, Dar es Salaam
| | - M. U. Sani
- Cardiology Unit, Department of Medicine, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - M. Sanusi
- Cardiology Unit, Department of Medicine, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - A. E. Schutte
- HART (Hypertension in Africa Research Team), North-West University, Potchefstroom, South Africa
- MRC Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - K. Sliwa
- Soweto Cardiovascular Research Unit, Chris Hani Baragwanath Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - P. C. Tien
- Department of Medicine, University of California, San Francisco, USA
| | - E. H. Vorster
- Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - C. Walsh
- Department of Nutrition and Dietetics, University of the Free State, Bloemfontein, South Africa
| | - D. Gareta
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - F. Mashili
- National Institute for Medical Research, Tanzania, Dar es Salaam
| | - E. Sobngwi
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Cameroon, Yaoundé
| | - C. Adebamowo
- Institute of Human Virology, Abuja, Nigeria
- Department of Epidemiology and Public Health, Institute of Human Virology and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, USA
| | - A. Kamali
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | - J. Seeley
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | - L. Smeeth
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - D. Pillay
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - A. A. Motala
- Department of Diabetes and Endocrinology, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - P. Kaleebu
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | - M. S. Sandhu
- Department of Medicine, University of Cambridge, Cambridge, UK
- Global Health and Populations Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| |
Collapse
|
20
|
Pedro MN, Rocha GZ, Guadagnini D, Santos A, Magro DO, Assalin HB, Oliveira AG, Pedro RDJ, Saad MJA. Insulin Resistance in HIV-Patients: Causes and Consequences. Front Endocrinol (Lausanne) 2018; 9:514. [PMID: 30233499 PMCID: PMC6133958 DOI: 10.3389/fendo.2018.00514] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022] Open
Abstract
Here we review how immune activation and insulin resistance contribute to the metabolic alterations observed in HIV-infected patients, and how these alterations increase the risk of developing CVD. The introduction and evolution of antiretroviral drugs over the past 25 years has completely changed the clinical prognosis of HIV-infected patients. The deaths of these individuals are now related to atherosclerotic CVDs, rather than from the viral infection itself. However, HIV infection, cART, and intestinal microbiota are associated with immune activation and insulin resistance, which can lead to the development of a variety of diseases and disorders, especially with regards to CVDs. The increase in LPS and proinflammatory cytokines circulating levels and intracellular mechanisms activate serine kinases, resulting in insulin receptor substrate-1 (IRS-1) serine phosphorylation and consequently a down regulation in insulin signaling. While lifestyle modifications and pharmaceutical interventions can be employed to treat these altered metabolic functions, the mechanisms involved in the development of these chronic complications remain largely unresolved. The elucidation and understanding of these mechanisms will give rise to new classes of drugs that will further improve the quality of life of HIV-infected patients, over the age of 50.
Collapse
Affiliation(s)
- Marcelo N. Pedro
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Andrey Santos
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Daniela O. Magro
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Heloisa B. Assalin
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Alexandre G. Oliveira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
- Biosciences Institute, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Rogerio de Jesus Pedro
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Mario J. A. Saad
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
- *Correspondence: Mario J. A. Saad
| |
Collapse
|
21
|
Ji C. Dissecting the Role of Disturbed ER-Golgi Trafficking in Antivirals and Alcohol Abuse-Induced Pathogenesis of Liver Disorders. ACTA ACUST UNITED AC 2017; 3. [PMID: 29399658 PMCID: PMC5791917 DOI: 10.21767/2471-853x.100054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Antiviral drugs and alcohol abuse-induced organelle stresses have been linked to many disorders and the underlying molecular mechanisms are under intense investigations. This brief review communicates emerging evidence and research trends on how certain antivirals and alcohol affect ER-Golgi trafficking, which potentially impacts the function and integrity of the Golgi apparatus contributing to endoplasmic reticulum stress and cellular injury.
Collapse
Affiliation(s)
- Cheng Ji
- Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
22
|
Abstract
: The increased prevalence of age-related comorbidities and mortality is worrisome in ageing HIV-infected patients. Here, we aim to analyse the different ageing mechanisms with regard to HIV infection. Ageing results from the time-dependent accumulation of random cellular damage. Epigenetic modifications and mitochondrial DNA haplogroups modulate ageing. In antiretroviral treatment-controlled patients, epigenetic clock appears to be advanced, and some haplogroups are associated with HIV infection severity. Telomere shortening is enhanced in HIV-infected patients because of HIV and some nucleoside analogue reverse transcriptase inhibitors. Mitochondria-related oxidative stress and mitochondrial DNA mutations are increased during ageing and also by some nucleoside analogue reverse transcriptase inhibitors. Overall, increased inflammation or 'inflammageing' is a major driver of ageing and could result from cell senescence with secreted proinflammatory mediators, altered gut microbiota, and coinfections. In HIV-infected patients, the level of inflammation and innate immunity activation is enhanced and related to most comorbidities and to mortality. This status could result, in addition to age, from the virus itself or viral protein released from reservoirs, from HIV-enhanced gut permeability and dysbiosis, from antiretroviral treatment, from frequent cytomegalovirus and hepatitis C virus coinfections, and also from personal and environmental factors, as central fat accumulation or smoking. Adaptive immune activation and immunosenescence are associated with comorbidities and mortality in the general population but are less predictive in HIV-infected patients. Biomarkers to evaluate ageing in HIV-infected patients are required. Numerous systemic or cellular inflammatory, immune activation, oxidative stress, or senescence markers can be tested in serum or peripheral blood mononuclear cells. The novel European Study to Establish Biomarkers of Human Ageing MARK-AGE algorithm, evaluating the biological age, is currently assessed in HIV-infected patients and reveals an advanced biological age. Some enhanced inflammatory or innate immune activation markers are interesting but still not validated for the patient's follow-up. To be able to assess patients' biological age is an important objective to improve their healthspan.
Collapse
|
23
|
Gannon PJ, Akay-Espinoza C, Yee AC, Briand LA, Erickson MA, Gelman BB, Gao Y, Haughey NJ, Zink MC, Clements JE, Kim NS, Van De Walle G, Jensen BK, Vassar R, Pierce RC, Gill AJ, Kolson DL, Diehl JA, Mankowski JL, Jordan-Sciutto KL. HIV Protease Inhibitors Alter Amyloid Precursor Protein Processing via β-Site Amyloid Precursor Protein Cleaving Enzyme-1 Translational Up-Regulation. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:91-109. [PMID: 27993242 DOI: 10.1016/j.ajpath.2016.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 08/22/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
Mounting evidence implicates antiretroviral (ARV) drugs as potential contributors to the persistence and evolution of clinical and pathological presentation of HIV-associated neurocognitive disorders in the post-ARV era. Based on their ability to induce endoplasmic reticulum (ER) stress in various cell types, we hypothesized that ARV-mediated ER stress in the central nervous system resulted in chronic dysregulation of the unfolded protein response and altered amyloid precursor protein (APP) processing. We used in vitro and in vivo models to show that HIV protease inhibitor (PI) class ARVs induced neuronal damage and ER stress, leading to PKR-like ER kinase-dependent phosphorylation of the eukaryotic translation initiation factor 2α and enhanced translation of β-site APP cleaving enzyme-1 (BACE1). In addition, PIs induced β-amyloid production, indicative of increased BACE1-mediated APP processing, in rodent neuroglial cultures and human APP-expressing Chinese hamster ovary cells. Inhibition of BACE1 activity protected against neuronal damage. Finally, ARVs administered to mice and SIV-infected macaques resulted in neuronal damage and BACE1 up-regulation in the central nervous system. These findings implicate a subset of PIs as potential mediators of neurodegeneration in HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Patrick J Gannon
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cagla Akay-Espinoza
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alan C Yee
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lisa A Briand
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| | - Michelle A Erickson
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Yan Gao
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Norman J Haughey
- Richard T. Johnson Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Christine Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicholas S Kim
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gabriel Van De Walle
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brigid K Jensen
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Vassar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - R Christopher Pierce
- Department of Psychiatry, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander J Gill
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dennis L Kolson
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Joseph L Mankowski
- Richard T. Johnson Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kelly L Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
24
|
Resveratrol Co-Treatment Attenuates the Effects of HIV Protease Inhibitors on Rat Body Weight and Enhances Cardiac Mitochondrial Respiration. PLoS One 2017; 12:e0170344. [PMID: 28107484 PMCID: PMC5249196 DOI: 10.1371/journal.pone.0170344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/03/2017] [Indexed: 11/30/2022] Open
Abstract
Since the early 1990s human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) emerged as a global health pandemic, with sub-Saharan Africa the hardest hit. While the successful roll-out of antiretroviral (ARV) therapy provided significant relief to HIV-positive individuals, such treatment can also elicit damaging side-effects. Here especially HIV protease inhibitors (PIs) are implicated in the onset of cardio-metabolic complications such as type-2 diabetes and coronary heart disease. As there is a paucity of data regarding suitable co-treatments within this context, this preclinical study investigated whether resveratrol (RSV), aspirin (ASP) or vitamin C (VitC) co-treatment is able to blunt side-effects in a rat model of chronic PI exposure (Lopinavir/Ritonavir treatment for 4 months). Body weights and weight gain, blood metabolite levels (total cholesterol, HDL, LDL, triglycerides), echocardiography and cardiac mitochondrial respiration were assessed in PI-treated rats ± various co-treatments. Our data reveal that PI treatment significantly lowered body weight and cardiac respiratory function while no significant changes were found for heart function and blood metabolite levels. Moreover, all co-treatments ameliorated the PI-induced decrease in body weight after 4 months of PI treatment, while RSV co-treatment enhanced cardiac mitochondrial respiratory capacity in PI-treated rats. This pilot study therefore provides novel hypotheses regarding RSV co-treatment that should be further assessed in greater detail.
Collapse
|
25
|
Nasi M, De Biasi S, Gibellini L, Bianchini E, Pecorini S, Bacca V, Guaraldi G, Mussini C, Pinti M, Cossarizza A. Ageing and inflammation in patients with HIV infection. Clin Exp Immunol 2016; 187:44-52. [PMID: 27198731 DOI: 10.1111/cei.12814] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 01/05/2023] Open
Abstract
Nowadays, HIV+ patients have an expected lifespan that is only slightly shorter than healthy individuals. For this reason, along with the fact that infection can be acquired at a relatively advanced age, the effects of ageing on HIV+ people have begun to be evident. Successful anti-viral treatment is, on one hand, responsible for the development of side effects related to drug toxicity; on the other hand, it is not able to inhibit the onset of several complications caused by persistent immune activation and chronic inflammation. Therefore, patients with a relatively advanced age, i.e. aged more than 50 years, can experience pathologies that affect much older citizens. HIV+ individuals with non-AIDS-related complications can thus come to the attention of clinicians because of the presence of neurocognitive disorders, cardiovascular diseases, metabolic syndrome, bone abnormalities and non-HIV-associated cancers. Chronic inflammation and immune activation, observed typically in elderly people and defined as 'inflammaging', can be present in HIV+ patients who experience a type of premature ageing, which affects the quality of life significantly. This relatively new condition is extremely complex, and important factors have been identified as well as the traditional behavioural risk factors, e.g. the toxicity of anti-retroviral treatments and the above-mentioned chronic inflammation leading to a functional decline and a vulnerability to injury or pathologies. Here, we discuss the role of inflammation and immune activation on the most important non-AIDS-related complications of chronic HIV infection, and the contribution of aging per se to this scenario.
Collapse
Affiliation(s)
- M Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Modena, Italy
| | - S De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Modena, Italy
| | - L Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Modena, Italy
| | | | - S Pecorini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Modena, Italy
| | - V Bacca
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Modena, Italy
| | - G Guaraldi
- Department of Medical and Surgical Sciences for Adults and Children, University of Modena and Reggio Emilia, Modena, Italy.,Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria Policlinico di Modena, Modena, Italy
| | - C Mussini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Modena, Italy.,Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria Policlinico di Modena, Modena, Italy
| | - M Pinti
- Department of Life Sciences, Modena, Italy
| | - A Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Modena, Italy
| |
Collapse
|
26
|
Howe CL, LaFrance-Corey RG, Mirchia K, Sauer BM, McGovern RM, Reid JM, Buenz EJ. Neuroprotection mediated by inhibition of calpain during acute viral encephalitis. Sci Rep 2016; 6:28699. [PMID: 27345730 PMCID: PMC4921808 DOI: 10.1038/srep28699] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022] Open
Abstract
Neurologic complications associated with viral encephalitis, including seizures and cognitive impairment, are a global health issue, especially in children. We previously showed that hippocampal injury during acute picornavirus infection in mice is associated with calpain activation and is the result of neuronal death triggered by brain-infiltrating inflammatory monocytes. We therefore hypothesized that treatment with a calpain inhibitor would protect neurons from immune-mediated bystander injury. C57BL/6J mice infected with the Daniel's strain of Theiler's murine encephalomyelitis virus were treated with the FDA-approved drug ritonavir using a dosing regimen that resulted in plasma concentrations within the therapeutic range for calpain inhibition. Ritonavir treatment significantly reduced calpain activity in the hippocampus, protected hippocampal neurons from death, preserved cognitive performance, and suppressed seizure escalation, even when therapy was initiated 36 hours after disease onset. Calpain inhibition by ritonavir may be a powerful tool for preserving neurons and cognitive function and preventing neural circuit dysregulation in humans with neuroinflammatory disorders.
Collapse
Affiliation(s)
- Charles L Howe
- Departments of Neurology, Mayo Clinic, Rochester, Minnesota, 55905 USA.,Departments of Neuroscience, Mayo Clinic, Rochester, Minnesota, 55905 USA.,Departments of Immunology, Mayo Clinic, Rochester, Minnesota, 55905 USA
| | | | - Kanish Mirchia
- Departments of Neurology, Mayo Clinic, Rochester, Minnesota, 55905 USA
| | - Brian M Sauer
- Neurobiology of Disease PhD program, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, 55905 USA
| | - Renee M McGovern
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, 55905 USA
| | - Joel M Reid
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, 55905 USA
| | - Eric J Buenz
- Departments of Neurology, Mayo Clinic, Rochester, Minnesota, 55905 USA
| |
Collapse
|
27
|
Marsit CJ, Brummel SS, Kacanek D, Seage GR, Spector SA, Armstrong DA, Lester BM, Rich K. Infant peripheral blood repetitive element hypomethylation associated with antiretroviral therapy in utero. Epigenetics 2016; 10:708-16. [PMID: 26067216 DOI: 10.1080/15592294.2015.1060389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The use of combination antiretroviral therapy (cART) to prevent HIV mother-to-child transmission during pregnancy and delivery is generally considered safe. However, vigilant assessment of potential risks of these agents remains warranted. Epigenetic changes including DNA methylation are considered potential mechanisms linking the in utero environment with long-term health outcomes. Few studies have examined the epigenetic effects of prenatal exposure to pharmaceutical agents, including antiretroviral therapies, on children. In this study, we examined the methylation status of the LINE-1 and ALU-Yb8 repetitive elements as markers of global DNA methylation alteration in peripheral blood mononuclear cells obtained from newborns participating in the Pediatric HIV/AIDS Cohort Study SMARTT cohort of HIV-exposed, cART-exposed uninfected infants compared to a historical cohort of HIV-exposed, antiretroviral-unexposed infants from the Women and Infants Transmission Study Cohort. In linear regression models controlling for potential confounders, we found the adjusted mean difference of AluYb8 methylation of the cART-exposed compared to the -unexposed was -0.568 (95% CI: -1.023, -0.149) and for LINE-1 methylation was -1.359 (95% CI: -1.860, -0.857). Among those exposed to cART, subjects treated with atazanavir (ATV), compared to those on other treatments, had less AluYb8 methylation (-0.524, 95% CI: -0.025, -1.024). Overall, these results suggest a small but statistically significant reduction in the methylation of these repetitive elements in an HIV-exposed, cART-exposed cohort compared to an HIV-exposed, cART-unexposed historic cohort. The potential long-term implications of these differences are worthy of further examination.
Collapse
Affiliation(s)
- Carmen J Marsit
- a Departments of Pharmacology and Toxicology and of Epidemiology; Geisel School of Medicine at Dartmouth ; Hanover , NH USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yi HW, Ma YX, Wang XN, Wang CF, Lu J, Cao W, Wu XD. Ethanol promotes saturated fatty acid-induced hepatoxicity through endoplasmic reticulum (ER) stress response. Chin J Nat Med 2016; 13:250-6. [PMID: 25908621 DOI: 10.1016/s1875-5364(15)30011-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Indexed: 12/31/2022]
Abstract
Serum palmitic acid (PA), a type of saturated fatty acid, causes lipid accumulation and induces toxicity in hepatocytes. Ethanol (EtOH) is metabolized by the liver and induces hepatic injury and inflammation. Herein, we analyzed the effects of EtOH on PA-induced lipotoxicity in the liver. Our results indicated that EtOH aggravated PA-induced apoptosis and lipid accumulation in primary rat hepatocytes in dose-dependent manner. EtOH intensified PA-caused endoplasmic reticulum (ER) stress response in vitro and in vivo, and the expressions of CHOP, ATF4, and XBP-1 in nucleus were significantly increased. EtOH also increased PA-caused cleaved caspase-3 in cytoplasm. In wild type and CHOP(-/-) mice treated with EtOH and high fat diet (HFD), EtOH worsened the HFD-induced liver injury and dyslipidemia, while CHOP knockout blocked toxic effects of EtOH and PA. Our study suggested that targeting UPR-signaling pathways is a promising, novel approach to reducing EtOH and saturated fatty acid-induced metabolic complications.
Collapse
Affiliation(s)
- Hong-Wei Yi
- Department of Pharmacology, Medical School, Southeast University, Nanjing 210009, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Yu-Xiang Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xiao-Ning Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Cui-Fen Wang
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA
| | - Jian Lu
- Department of Pharmacology, Medical School, Southeast University, Nanjing 210009, China
| | - Wei Cao
- Department of Pharmacology, Medical School, Southeast University, Nanjing 210009, China
| | - Xu-Dong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
29
|
An inhibitor of HIV-1 protease modulates constitutive eIF2α dephosphorylation to trigger a specific integrated stress response. Proc Natl Acad Sci U S A 2015; 113:E117-26. [PMID: 26715744 DOI: 10.1073/pnas.1514076113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inhibitors of the HIV aspartyl protease [HIV protease inhibitors (HIV-PIs)] are the cornerstone of treatment for HIV. Beyond their well-defined antiretroviral activity, these drugs have additional effects that modulate cell viability and homeostasis. However, little is known about the virus-independent pathways engaged by these molecules. Here we show that the HIV-PI Nelfinavir decreases translation rates and promotes a transcriptional program characteristic of the integrated stress response (ISR). Mice treated with Nelfinavir display hallmarks of this stress response in the liver, including α subunit of translation initiation factor 2 (eIF2α) phosphorylation, activating transcription factor-4 (ATF4) induction, and increased expression of known downstream targets. Mechanistically, Nelfinavir-mediated ISR bypassed direct activation of the eIF2α stress kinases and instead relied on the inhibition of the constitutive eIF2α dephosphorylation and down-regulation of the phophatase cofactor CReP (Constitutive Repressor of eIF2α Phosphorylation; also known as PPP1R15B). These findings demonstrate that the modulation of eIF2α-specific phosphatase cofactor activity can be a rheostat of cellular homeostasis that initiates a functional ISR and suggest that the HIV-PIs could be repositioned as therapeutics in human diseases to modulate translation rates and stress responses.
Collapse
|
30
|
Luo Z, Ma L, Zhang L, Martin L, Wan Z, Warth S, Kilby A, Gao Y, Bhargava P, Li Z, Wu H, Meissner EG, Li Z, Kilby JM, Liao G, Jiang W. Key differences in B cell activation patterns and immune correlates among treated HIV-infected patients versus healthy controls following influenza vaccination. Vaccine 2015; 34:1945-55. [PMID: 26721328 DOI: 10.1016/j.vaccine.2015.12.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND There is increasing recognition of the role of B cell dysfunction in HIV pathogenesis, but little is known about how these perturbations may influence responses to vaccinations. METHODS Healthy controls (n=16) and antiretroviral therapy (ART)-treated aviremic HIV-infected subjects (n=26) receiving standard-of-care annual influenza vaccinations were enrolled in the present study. Total bacterial 16S rDNA levels were assessed by quantitative polymerase chain reactions in plasma. Serologic responses were characterized by ELISA, hemagglutination inhibition assay (HI), and microneutralization, and cell-mediated responses were assessed by ELISPOT (antigen-specific IgG+ antibody-secreting cells (ASCs)) and flow cytometry at pre-vaccination (D0), day 7-10 (D7) and day 14-21 (D14) post-vaccination. RESULTS Decreased peripheral CD4+ T cell absolute counts and increased frequencies of cycling and apoptotic B cells were found at baseline in HIV-infected subjects relative to healthy controls. In healthy controls, post-vaccination neutralizing activities were related to the frequencies of vaccine-mediated apoptosis and cycling of B cells, but not to CD4+ T cell counts. In patients, both baseline and post-vaccination neutralizing activities were directly correlated with plasma level of bacterial 16S rDNA. However, overall vaccine responses including antibody titers and fold changes were comparable or greater in HIV-infected subjects relative to healthy controls. CONCLUSION B cell function correlates with measures of recall humoral immunity in response to seasonal influenza vaccination in healthy controls but not in ART-treated patients.
Collapse
Affiliation(s)
- Zhenwu Luo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lei Ma
- Chief of No. 5 Biologicals Department, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kuming 650118, China
| | - Lumin Zhang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lisa Martin
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zhuang Wan
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephanie Warth
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Andrew Kilby
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yong Gao
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 41006, USA
| | - Pallavi Bhargava
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zhen Li
- Beijing You'an Hospital, Capital Medical University, No. 8 Xitoutiao, You'an men wai, Fengtai District, Beijing 100069, China
| | - Hao Wu
- Beijing You'an Hospital, Capital Medical University, No. 8 Xitoutiao, You'an men wai, Fengtai District, Beijing 100069, China
| | - Eric G Meissner
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - J Michael Kilby
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Guoyang Liao
- Chief of No. 5 Biologicals Department, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kuming 650118, China.
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
31
|
Transcriptional profiling suggests that Nevirapine and Ritonavir cause drug induced liver injury through distinct mechanisms in primary human hepatocytes. Chem Biol Interact 2015; 255:31-44. [PMID: 26626330 DOI: 10.1016/j.cbi.2015.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/28/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Drug induced liver injury (DILI), a major cause of pre- and post-approval failure, is challenging to predict pre-clinically due to varied underlying direct and indirect mechanisms. Nevirapine, a non-nucleoside reverse transcriptase inhibitor (NNRTI) and Ritonavir, a protease inhibitor, are antiviral drugs that cause clinical DILI with different phenotypes via different mechanisms. Assessing DILI in vitro in hepatocyte cultures typically requires drug exposures significantly higher than clinical plasma Cmax concentrations, making clinical interpretations of mechanistic pathway changes challenging. We previously described a system that uses liver-derived hemodynamic blood flow and transport parameters to restore primary human hepatocyte biology, and drug responses at concentrations relevant to in vivo or clinical exposure levels. Using this system, primary hepatocytes from 5 human donors were exposed to concentrations approximating clinical therapeutic and supra-therapeutic levels of Nevirapine (11.3 and 175.0 μM) and Ritonavir (3.5 and 62.4 μM) for 48 h. Whole genome transcriptomics was performed by RNAseq along with functional assays for metabolic activity and function. We observed effects at both doses, but a greater number of genes were differentially expressed with higher probability at the toxic concentrations. At the toxic doses, both drugs showed direct cholestatic potential with Nevirapine increasing bile synthesis and Ritonavir inhibiting bile acid transport. Clear differences in antigen presentation were noted, with marked activation of MHC Class I by Nevirapine and suppression by Ritonavir. This suggests CD8+ T cell involvement for Nevirapine and possibly NK Killer cells for Ritonavir. Both compounds induced several drug metabolizing genes (including CYP2B6, CYP3A4 and UGT1A1), mediated by CAR activation in Nevirapine and PXR in Ritonavir. Unlike Ritonavir, Nevirapine did not increase fatty acid synthesis or activate the respiratory electron chain with simultaneous mitochondrial uncoupling supporting clinical reports of a lower propensity for steatosis. This in vitro study offers insights into the disparate direct and immune-mediated toxicity mechanisms underlying Nevirapine and Ritonavir toxicity in the clinic.
Collapse
|
32
|
Jensen BK, Monnerie H, Mannell MV, Gannon PJ, Espinoza CA, Erickson MA, Bruce-Keller AJ, Gelman BB, Briand LA, Pierce RC, Jordan-Sciutto KL, Grinspan JB. Altered Oligodendrocyte Maturation and Myelin Maintenance: The Role of Antiretrovirals in HIV-Associated Neurocognitive Disorders. J Neuropathol Exp Neurol 2015; 74:1093-118. [PMID: 26469251 PMCID: PMC4608376 DOI: 10.1097/nen.0000000000000255] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Despite effective viral suppression through combined antiretroviral therapy (cART), approximately half of HIV-positive individuals have HIV-associated neurocognitive disorders (HAND). Studies of antiretroviral-treated patients have revealed persistent white matter abnormalities including diffuse myelin pallor, diminished white matter tracts, and decreased myelin protein mRNAs. Loss of myelin can contribute to neurocognitive dysfunction because the myelin membrane generated by oligodendrocytes is essential for rapid signal transduction and axonal maintenance. We hypothesized that myelin changes in HAND are partly due to effects of antiretroviral drugs on oligodendrocyte survival and/or maturation. We showed that primary mouse oligodendrocyte precursor cell cultures treated with therapeutic concentrations of HIV protease inhibitors ritonavir or lopinavir displayed dose-dependent decreases in oligodendrocyte maturation; however, this effect was rapidly reversed after drug removal. Conversely, nucleoside reverse transcriptase inhibitor zidovudine had no effect. Furthermore, in vivo ritonavir administration to adult mice reduced frontal cortex myelin protein levels. Finally, prefrontal cortex tissue from HIV-positive individuals with HAND on cART showed a significant decrease in myelin basic protein compared with untreated HIV-positive individuals with HAND or HIV-negative controls. These findings demonstrate that antiretrovirals can impact myelin integrity and have implications for myelination in juvenile HIV patients and myelin maintenance in adults on lifelong therapy.
Collapse
Affiliation(s)
- Brigid K. Jensen
- Department of Neuroscience, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hubert Monnerie
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maggie V. Mannell
- Department of Neuroscience, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick J. Gannon
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cagla Akay Espinoza
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle A. Erickson
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Annadora J. Bruce-Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Lisa A. Briand
- Department of Psychology, College of Liberal Arts, Temple University, Philadelphia, Pennsylvania
| | - R. Christopher Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly L. Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Judith B. Grinspan
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Borsa M, Ferreira PLC, Petry A, Ferreira LGE, Camargo MM, Bou-Habib DC, Pinto AR. HIV infection and antiretroviral therapy lead to unfolded protein response activation. Virol J 2015; 12:77. [PMID: 25976933 PMCID: PMC4455982 DOI: 10.1186/s12985-015-0298-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/09/2015] [Indexed: 02/07/2023] Open
Abstract
Background The unfolded protein response (UPR) is one of the pathways triggered to ensure quality control of the proteins assembled in the endoplasmic reticulum (ER) when cell homeostasis is compromised. This mechanism is primarily composed of three transmembrane proteins serving as stress sensors: PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1). These three proteins’ synergic action elicits translation and transcriptional downstream pathways, leading to less protein production and activating genes that encode important proteins in folding processes, including chaperones. Previous reports showed that viruses have evolved mechanisms to curtail or customize this UPR signaling for their own benefit. However, HIV infection’s effect on the UPR has scarcely been investigated. Methods This work investigated UPR modulation by HIV infection by assessing UPR-related protein expression under in vitro and in vivo conditions via Western blotting. Antiretroviral (ARV) drugs’ influence on this stress response was also considered. Results In in vitro and in vivo analyses, our results confirm that HIV infection activates stress-response components and that ARV therapy contributes to changes in the UPR’s activation profile. Conclusions This is the first report showing UPR-related protein expression in HIV target cells derived directly from HIV-infected patients receiving different ARV therapies. Thus, two mechanisms may occur simultaneously: interference by HIV itself and the ARV drugs’ pharmacological effects as UPR activators. New evidence of how HIV modulates the UPR to enhance its own replication and secure infection success is also presented. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0298-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariana Borsa
- Laboratório de Imunologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Pedro L C Ferreira
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | - Andrea Petry
- Centro de Hematologia e Hemoterapia de Santa Catarina, Florianópolis, SC, Brazil.
| | | | - Maristela M Camargo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | - Aguinaldo R Pinto
- Laboratório de Imunologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
34
|
Liu R, Zhang L, Yang J, Zhang X, Mikkelsen R, Song S, Zhou H. HIV Protease Inhibitors Sensitize Human Head and Neck Squamous Carcinoma Cells to Radiation by Activating Endoplasmic Reticulum Stress. PLoS One 2015; 10:e0125928. [PMID: 25933118 PMCID: PMC4416809 DOI: 10.1371/journal.pone.0125928] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/26/2015] [Indexed: 01/04/2023] Open
Abstract
Background Human head and neck squamous cell carcinoma (HNSCC) is the sixth most malignant cancer worldwide. Despite significant advances in the delivery of treatment and surgical reconstruction, there is no significant improvement of mortality rates for this disease in the past decades. Radiotherapy is the core component of the clinical combinational therapies for HNSCC. However, the tumor cells have a tendency to develop radiation resistance, which is a major barrier to effective treatment. HIV protease inhibitors (HIV PIs) have been reported with radiosensitizing activities in HNSCC cells, but the underlying cellular/molecular mechanisms remain unclear. Our previous study has shown that HIV PIs induce cell apoptosis via activation of endoplasmic reticulum (ER) stress. The aim of this study was to examine the role of ER stress in HIV PI-induced radiosensitivity in human HNSCC. Methodology and Principal Findings HNSCC cell lines, SQ20B and FaDu, and the most commonly used HIV PIs, lopinavir and ritonavir (L/R), were used in this study. Clonogenic assay was used to assess the radiosensitivity. Cell viability, apoptosis and cell cycle were analyzed using Cellometer Vision CBA. The mRNA and protein levels of ER stress-related genes (eIF2α, CHOP, ATF-4, and XBP-1), as well as cell cycle related protein, cyclin D1, were detected by real time RT-PCR and Western blot analysis, respectively. The results demonstrated that L/R dose-dependently sensitized HNSCC cells to irradiation and inhibited cell growth. L/R-induced activation of ER stress was correlated to down-regulation of cyclin D1 expression and cell cycle arrest under G0/G1 phase. Conclusion and Significance HIV PIs sensitize HNSCC cells to radiotherapy by activation of ER stress and induction of cell cycle arrest. Our results provided evidence that HIV PIs can be potentially used in combination with radiation in the treatment of HNSCC.
Collapse
Affiliation(s)
- Runping Liu
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China; Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Luyong Zhang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing Yang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China; Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Xiaoxuan Zhang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China; Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Ross Mikkelsen
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Shiyu Song
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Huiping Zhou
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America; McGuire Veterans Affairs Medical Center, Richmond, VA, 23298, United States of America
| |
Collapse
|
35
|
Lv Z, Chu Y, Wang Y. HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2015; 7:95-104. [PMID: 25897264 PMCID: PMC4396582 DOI: 10.2147/hiv.s79956] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Highly active antiretroviral therapy (HAART) is recognized as the most effective treatment method for AIDS, and protease inhibitors play a very important role in HAART. However, poor bioavailability and unbearable toxicity are their common disadvantages. Thus, the development of safer and potentially promising protease inhibitors is eagerly needed. In this review, we introduced the chemical characteristics and associated side effects of HIV protease inhibitors, as well as the possible off-target mechanisms causing the side effects. From the chemical structures of HIV protease inhibitors and their possible off-target molecules, we could obtain hints for optimizing the molecular selectivity of the inhibitors, to provide help in the design of new compounds with enhanced bioavailability and reduced side effects.
Collapse
Affiliation(s)
- Zhengtong Lv
- Department of Immunology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuan Chu
- Department of Immunology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Yong Wang
- Department of Immunology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
36
|
Wang Y, Jiang ZZ, Chen M, Wu MJ, Guo HL, Sun LX, Wang H, Zhang S, Wang T, Zhang LY. Protective effect of total flavonoid C-glycosides from Abrus mollis extract on lipopolysaccharide-induced lipotoxicity in mice. Chin J Nat Med 2015; 12:461-8. [PMID: 24969528 DOI: 10.1016/s1875-5364(14)60072-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Indexed: 01/16/2023]
Abstract
Abrus mollis is a widely used traditional Chinese medicine for treating acute and chronic hepatitis, steatosis, and fibrosis. It was found that the total flavonoid C-glycosides from Abrus mollis extract (AME) showed potent antioxidant, anti-inflammatory, and hepatoprotective activities. To further investigate the hepatoprotective effect of AME and its possible mechanisms, lipopolysaccharide (LPS)-induced liver injury models were applied in the current study. The results indicated that AME significantly attenuated LPS-induced lipid accumulation in mouse primary hepatocytes as measured by triglyceride (TG) and total cholesterol (TC) assays and Oil Red O staining. Meanwhile, AME exerted a protective effect on LPS-induced liver injury as shown by decreased liver index, serum aminotransferase levels, and hepatic lipid accumulation. Real-time PCR and immunoblot data suggested that AME reversed the LPS-mediated lipid metabolism gene expression, such as sterol regulatory element-binding protein-1 (SREBP-1), fatty acid synthase (FAS), and acetyl-CoA carboxylase 1 (ACC1). In addition, LPS-induced overexpression of activating transcription factor 4 (ATF4), X-box-binding protein-1 (XBP-1), and C/EBP homologous protein (CHOP) were dramatically reversed by AME. Furthermore, AME also decreased the expression of LPS-enhanced interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2). Here, it is demonstrated for the first time that AME ameliorated LPS-induced hepatic lipid accumulation and that this effect of AME can be attributed to its modulation of hepatic de novo fatty acid synthesis. This study also suggested that the hepatoprotective effect of AME may be related to its down-regulation of unfolded protein response (UPR) activation.
Collapse
Affiliation(s)
- Yun Wang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| | - Mi Chen
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Mei-Juan Wu
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hong-Li Guo
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Xin Sun
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shuang Zhang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Wang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 21009, China
| | - Lu-Yong Zhang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
37
|
Svärd J, Blanco F, Nevin D, Fayne D, Mulcahy F, Hennessy M, Spiers JP. Differential interactions of antiretroviral agents with LXR, ER and GR nuclear receptors: potential contributing factors to adverse events. Br J Pharmacol 2014; 171:480-97. [PMID: 24372550 DOI: 10.1111/bph.12480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Antiretroviral (ARV) drugs activate pregnane X receptors and constitutive androstane receptors, increasing the risk of drug interactions due to altered drug metabolism and disposition. The closely related liver X receptors (LXRα/β), oestrogen receptors (ERα/β) and glucocorticoid receptor (GR) regulate many endogenous processes such as lipid/cholesterol homeostasis, cellular differentiation and inflammation. However, ARV drug activation of these nuclear receptors has not been thoroughly investigated. EXPERIMENTAL APPROACH The ability of an ARV drug library to activate LXRα/β, ERα/β and GR was assessed using a combined in silico and in vitro approach encompassing computational docking and molecular descriptor filtering, cell-free time-resolved fluorescence resonance energy transfer co-activator assays to assess direct binding to ligand-binding domains (LBDs), cell-based reporter assays and target gene expression. KEY RESULTS Direct LBD interactions with LXRα and/or LXRβ were predicted in silico and confirmed in vitro for darunavir, efavirenz, flavopiridol, maraviroc and tipranavir. Likewise, efavirenz was also predicted and confirmed as a ligand of ERα-LBD. Interestingly, atazanavir and ritonavir also activated LXRα/β in reporter assays, while tipranavir enhanced transcriptional activity of ERα. Effects on ER and LXR target gene expression were confirmed for efavirenz and tipranavir. CONCLUSIONS AND IMPLICATIONS There was good agreement between in silico predictions and in vitro results. However, some nuclear receptor interactions identified in vitro were probably due to allosteric effects or nuclear receptor cross-talk, rather than direct LBD binding. This study indicates that some of the adverse effects associated with ARV use may be mediated through 'off-target' effects involving nuclear receptor activation.
Collapse
Affiliation(s)
- J Svärd
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
38
|
HIV protease inhibitors in gut barrier dysfunction and liver injury. Curr Opin Pharmacol 2014; 19:61-6. [PMID: 25105480 DOI: 10.1016/j.coph.2014.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 07/12/2014] [Accepted: 07/18/2014] [Indexed: 12/14/2022]
Abstract
The development of HIV protease inhibitors (HIV PIs) has been one of the most significant advances of the past two decades in controlling HIV infection. HIV PIs have been used successfully in highly active anti-retroviral therapy (HAART) for HIV infection, which is currently the most effective treatment available. Incorporation of HIV PIs in HAART causes profound and sustained suppression of viral replication, significantly reduces the morbidity and mortality of HIV infection, and prolongs the lifespan of HIV patients. However, in the era of HAART, drug-induced gastrointestinal (GI) side effects and hepatotoxicity have emerged as important potential complications of HIV therapy, particularly those regimens containing HIV PIs. In this mini-review, we highlight the current understanding of the mechanisms of HIV PI-associated GI and liver injury.
Collapse
|
39
|
ATF4- and CHOP-dependent induction of FGF21 through endoplasmic reticulum stress. BIOMED RESEARCH INTERNATIONAL 2014; 2014:807874. [PMID: 24900988 PMCID: PMC4037570 DOI: 10.1155/2014/807874] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/22/2014] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is an important endogenous regulator involved in the regulation of glucose and lipid metabolism. FGF21 expression is strongly induced in animal and human subjects with metabolic diseases, but little is known about the molecular mechanism. Endoplasmic reticulum (ER) stress plays an essential role in metabolic homeostasis and is observed in numerous pathological processes, including type 2 diabetes, overweight, nonalcoholic fatty liver disease (NAFLD). In this study, we investigate the correlation between the expression of FGF21 and ER stress. We demonstrated that TG-induced ER stress directly regulated the expression and secretion of FGF21 in a dose- and time-dependent manner. FGF21 is the target gene for activating transcription factor 4 (ATF4) and CCAAT enhancer binding protein homologous protein (CHOP). Suppression of CHOP impaired the transcriptional activation of FGF21 by TG-induced ER stress in CHOP-/- mouse primary hepatocytes (MPH), and overexpression of ATF4 and CHOP resulted in FGF21 promoter activation to initiate the transcriptional programme. In mRNA stability assay, we indicated that ER stress increased the half-life of mRNA of FGF21 significantly. In conclusion, FGF21 expression is regulated by ER stress via ATF- and CHOP-dependent transcriptional mechanism and posttranscriptional mechanism, respectively.
Collapse
|
40
|
Abstract
The endoplasmic reticulum (ER) is an important player in regulating protein synthesis and lipid metabolism. Perturbation of ER homeostasis, referred as “ER stress,” has been linked to numerous pathological conditions, such as inflammation, cardiovascular diseases, and metabolic disorders. The liver plays a central role in regulating nutrient and lipid metabolism. Accumulating evidence implicates that ER stress disrupts lipid metabolism and induces hepatic lipotoxicity. Here, we review the major ER stress signaling pathways, how ER stress contributes to the dysregulation of hepatic lipid metabolism, and the potential causative mechanisms of ER stress in hepatic lipotoxicity. Understanding the role of ER stress in hepatic metabolism may lead to the identification of new therapeutic targets for metabolic diseases.
Collapse
Affiliation(s)
- Huiping Zhou
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond VA, USA ; McGuire Veterans Affairs Medical Center, Richmond VA, USA
| | - Runping Liu
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond VA, USA
| |
Collapse
|
41
|
Zhang X, Cao R, Liu R, Zhao R, Huang Y, Gurley EC, Hylemon PB, Pandak WM, Wang G, Zhang L, Li X, Zhou H. Reduction of the HIV protease inhibitor-induced ER stress and inflammatory response by raltegravir in macrophages. PLoS One 2014; 9:e90856. [PMID: 24625618 PMCID: PMC3953206 DOI: 10.1371/journal.pone.0090856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/05/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND HIV protease inhibitor (PI), the core component of highly active antiretroviral treatment (HAART) for HIV infection, has been implicated in HAART-associated cardiovascular complications. Our previous studies have demonstrated that activation of endoplasmic reticulum (ER) stress is linked to HIV PI-induced inflammation and foam cell formation in macrophages. Raltegravir is a first-in-its-class HIV integrase inhibitor, the newest class of anti-HIV agents. We have recently reported that raltegravir has less hepatic toxicity and could prevent HIV PI-induced dysregulation of hepatic lipid metabolism by inhibiting ER stress. However, little information is available as to whether raltegravir would also prevent HIV PI-induced inflammatory response and foam cell formation in macrophages. METHODOLOGY AND PRINCIPAL FINDINGS In this study, we examined the effect of raltegravir on ER stress activation and lipid accumulation in cultured mouse macrophages (J774A.1), primary mouse macrophages, and human THP-1-derived macrophages, and further determined whether the combination of raltegravir with existing HIV PIs would potentially exacerbate or prevent the previously observed activation of inflammatory response and foam cell formation. The results indicated that raltegravir did not induce ER stress and inflammatory response in macrophages. Even more interestingly, HIV PI-induced ER stress, oxidative stress, inflammatory response and foam cell formation were significantly reduced by raltegravir. High performance liquid chromatography (HPLC) analysis further demonstrated that raltegravir did not affect the uptake of HIV PIs in macrophages. CONCLUSION AND SIGNIFICANCE Raltegravir could prevent HIV PI-induced inflammatory response and foam cell formation by inhibiting ER stress. These results suggest that incorporation of this HIV integrase inhibitor may reduce the cardiovascular complications associated with current HAART.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, P.R.China
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Risheng Cao
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Runping Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, P.R.China
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Renping Zhao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, P.R.China
| | - Yi Huang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, P.R.China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, P.R.China
| | - Emily C. Gurley
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Phillip B. Hylemon
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Internal Medicine/Gastroenterology and McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
| | - William M. Pandak
- Department of Internal Medicine/Gastroenterology and McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
| | - Guangji Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, P.R.China
- * E-mail: (GW); (HZ)
| | - Luyong Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, P.R.China
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, P.R.China
| | - Huiping Zhou
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- School of Pharmacy, Wenzhou Medical University, Wenzhou, P.R.China
- Department of Internal Medicine/Gastroenterology and McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
- * E-mail: (GW); (HZ)
| |
Collapse
|
42
|
Chen S, Melchior WB, Guo L. Endoplasmic reticulum stress in drug- and environmental toxicant-induced liver toxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2014; 32:83-104. [PMID: 24598041 PMCID: PMC5736308 DOI: 10.1080/10590501.2014.881648] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Liver injury resulting from exposure to drugs and environmental chemicals is a major health problem. Endoplasmic reticulum stress (ER stress) is considered to be an important factor in a wide range of diseases, such as cancer, neurological and cardiovascular disease, diabetes, and inflammatory diseases. The role of ER stress in drug-induced and environmental toxicant-induced liver toxicity has been underestimated in the past; emerging evidence indicates that ER stress makes a substantial contribution to the pathogenesis of drug-induced liver toxicity. In this review, we summarize current knowledge on drugs and environmental toxicants that trigger ER stress in liver and on the underlying molecular mechanisms. We also discuss experimental approaches for ER stress studies.
Collapse
Affiliation(s)
- Si Chen
- a Division of Biochemical Toxicology , National Center for Toxicological Research, U.S. FDA , Jefferson , Arkansas , USA
| | | | | |
Collapse
|
43
|
Reyskens KMSE, Essop MF. HIV protease inhibitors and onset of cardiovascular diseases: a central role for oxidative stress and dysregulation of the ubiquitin-proteasome system. Biochim Biophys Acta Mol Basis Dis 2013; 1842:256-68. [PMID: 24275553 DOI: 10.1016/j.bbadis.2013.11.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 12/18/2022]
Abstract
The successful roll-out of highly active antiretroviral therapy (HAART) has extended life expectancy and enhanced the overall well-being of HIV-positive individuals. There are, however, increased concerns regarding HAART-mediated metabolic derangements and its potential risk for cardiovascular diseases (CVD) in the long-term. Here certain classes of antiretroviral drugs such as the HIV protease inhibitors (PIs) are strongly implicated in this process. This article largely focuses on the direct PI-linked development of cardio-metabolic complications, and reviews the inter-linked roles of oxidative stress and the ubiquitin-proteasome system (UPS) as key mediators driving this process. It is proposed that PIs trigger reactive oxygen species (ROS) production that leads to serious downstream consequences such as cell death, impaired mitochondrial function, and UPS dysregulation. Moreover, we advocate that HIV PIs may also directly lower myocardial UPS function. The attenuation of cardiac UPS can initiate transcriptional changes that contribute to perturbed lipid metabolism, thereby fueling a pro-atherogenic milieu. It may also directly alter ionic channels and interfere with electrical signaling in the myocardium. Therefore HIV PI-induced ROS together with a dysfunctional UPS elicit detrimental effects on the cardiovascular system that will eventually result in the onset of heart diseases. Thus while HIV PIs substantially improve life expectancy and quality of life in HIV-positive patients, its longer-term side-effects on the cardiovascular system should lead to a) greater clinical awareness regarding its benefit-harm paradigm, and b) the development and evaluation of novel co-treatment strategies.
Collapse
Affiliation(s)
- Kathleen M S E Reyskens
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - M Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
44
|
ER stress in human hepatic cells treated with Efavirenz: mitochondria again. J Hepatol 2013; 59:780-9. [PMID: 23792026 DOI: 10.1016/j.jhep.2013.06.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/23/2013] [Accepted: 06/10/2013] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS ER stress is associated with a growing number of liver diseases, including drug-induced hepatotoxicity. The non-nucleoside analogue reverse transcriptase inhibitor Efavirenz, a cornerstone of the multidrug strategy employed to treat HIV1 infection, has been related to the development of various adverse events, including metabolic disturbances and hepatic toxicity, the mechanisms of which remain elusive. Recent evidence has pinpointed a specific mitochondrial effect of Efavirenz in human hepatic cells. This study assesses the induction of ER stress by Efavirenz in the same model and the implication of mitochondria in this process. METHODS Primary human hepatocytes and Hep3B were treated with clinically relevant concentrations of Efavirenz and parameters of ER stress were studied using standard cell biology techniques. RESULTS ER stress markers, including CHOP and GRP78 expression (both protein and mRNA), phosphorylation of eIF2α, and presence of the spliced form of XBP1 were upregulated. Efavirenz also enhanced cytosolic Ca(2+) content and induced morphological changes in the ER suggestive of ER stress. This response was greatly attenuated in cells with altered mitochondrial function (Rho°). The effects of Efavirenz on the ER, and particularly in regard to the mitochondrial involvement, differed from those elicited by a standard pharmacological ER stressor. CONCLUSIONS This newly discovered mechanism of cellular insult involving ER stress and UPR response may help comprehend the hepatic toxicity that has been associated with the widespread and life-long use of Efavirenz. In addition, the specificity of the actions of Efavirenz observed expands our knowledge of the mechanisms that trigger ER stress and shed some light on the mitochondria/ER interplay in drug-induced hepatic challenge.
Collapse
|
45
|
Zha BS, Wan X, Zhang X, Zha W, Zhou J, Wabitsch M, Wang G, Lyall V, Hylemon PB, Zhou H. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes. PLoS One 2013; 8:e59514. [PMID: 23533630 PMCID: PMC3606318 DOI: 10.1371/journal.pone.0059514] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/15/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND HIV protease inhibitors (PI) are core components of Highly Active Antiretroviral Therapy (HAART), the most effective treatment for HIV infection currently available. However, HIV PIs have now been linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular disease and metabolic syndrome. Our previous studies have shown that HIV PIs activate endoplasmic reticulum (ER) stress and disrupt lipid metabolism in hepatocytes and macrophages. Yet, little is known on how HIV PIs disrupt lipid metabolism in adipocytes, a major cell type involved in the pathogenesis of metabolic syndrome. METHODOLOGY AND PRINCIPAL FINDINGS Cultured and primary mouse adipocytes and human adipocytes were used to examine the effect of frequently used HIV PIs in the clinic, lopinavir/ritonavir, on adipocyte differentiation and further identify the underlying molecular mechanism of HIV PI-induced dysregulation of lipid metabolism in adipocytes. The results indicated that lopinavir alone or in combination with ritonavir, significantly activated the ER stress response, inhibited cell differentiation, and induced cell apoptosis in adipocytes. In addition, HIV PI-induced ER stress was closely linked to inhibition of autophagy activity. We also identified through the use of primary adipocytes of CHOP(-/-) mice that CHOP, the major transcriptional factor of the ER stress signaling pathway, is involved in lopinavir/ritonavir-induced inhibition of cell differentiation in adipocytes. In addition, lopinavir/ritonavir-induced ER stress appears to be associated with inhibition of autophagy activity in adipocytes. CONCLUSION AND SIGNIFICANCE Activation of ER stress and impairment of autophagy activity are involved in HIV PI-induced dysregulation of lipid metabolism in adipocytes. The key components of ER stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced metabolic side effects in HIV patients.
Collapse
Affiliation(s)
- Beth S. Zha
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Xiaoshan Wan
- School of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang, P.R. China
| | - Xiaoxuan Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Weibin Zha
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Jun Zhou
- School of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang, P.R. China
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University of Ulm, Ulm, Germany
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Vijay Lyall
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
| | - Huiping Zhou
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- School of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang, P.R. China
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
| |
Collapse
|
46
|
Wang Y, Zhang L, Wu X, Gurley EC, Kennedy E, Hylemon PB, Pandak WM, Sanyal AJ, Zhou H. The role of CCAAT enhancer-binding protein homologous protein in human immunodeficiency virus protease-inhibitor-induced hepatic lipotoxicity in mice. Hepatology 2013; 57:1005-16. [PMID: 23080229 PMCID: PMC3566321 DOI: 10.1002/hep.26107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/11/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Human immunodeficiency virus (HIV) protease inhibitors (HIV PIs) are the core components of highly active antiretroviral therapy, which has been successfully used in the treatment of HIV-1 infection in the past two decades. However, benefits of HIV PIs are compromised by clinically important adverse effects, such as dyslipidemia, insulin resistance, and cardiovascular complications. We have previously shown that activation of endoplasmic reticulum (ER) stress plays a critical role in HIV PI-induced dys-regulation of hepatic lipid metabolism. HIV PI-induced hepatic lipotoxicity is closely linked to the up-regulation of CCAAT enhancer binding protein homologous protein (CHOP) in hepatocytes. To further investigate whether CHOP is responsible for HIV PI-induced hepatic lipotoxicity, C57BL/6J wild-type (WT) or CHOP knockout (CHOP(-/-) ) mice or the corresponding primary mouse hepatocytes were used in this study. Both in vitro and in vivo studies indicated that HIV PIs (ritonavir and lopinavir) significantly increased hepatic lipid accumulation in WT mice. In contrast, CHOP(-/-) mice showed a significant reduction in hepatic triglyceride accumulation and liver injury, as evidenced by hematoxylin and eosin and Oil Red O staining. Real-time reverse-transcriptase polymerase chain reaction and immunoblotting data showed that in the absence of CHOP, HIV PI-induced expression of stress-related proteins and lipogenic genes were dramatically reduced. Furthermore, tumor necrosis factor alpha and interleukin-6 levels in serum and liver were significantly lower in HIV PI-treated CHOP(-/-) mice, compared to HIV PI-treated WT mice. CONCLUSION Taken together, these data suggest that CHOP is an important molecular link of ER stress, inflammation, and hepatic lipotoxicity, and that increased expression of CHOP represents a critical factor underlying events leading to hepatic injury. (HEPATOLOGY 2013).
Collapse
Affiliation(s)
- Yun Wang
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,Jiangsu Centre for Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Luyong Zhang
- Jiangsu Centre for Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Xudong Wu
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Emily C. Gurley
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Elaine Kennedy
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,Department of Internal Medicine/GI Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine/GI Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| | - Arun J Sanyal
- Department of Internal Medicine/GI Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,Department of Internal Medicine/GI Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,McGuire Veterans Affairs Medical Center, Richmond, VA, USA,To whom correspondence should be addressed: Huiping Zhou, Ph.D, Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, PO Box 908678, Richmond, VA 23298-0678, Tel: (804)-828-6817, Fax: (804) 828-0676,
| |
Collapse
|
47
|
Zha W, Wang G, Xu W, Liu X, Wang Y, Zha BS, Shi J, Zhao Q, Gerk PM, Studer E, Hylemon PB, Pandak WM, Zhou H. Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages. PLoS One 2013; 8:e54349. [PMID: 23372711 PMCID: PMC3553168 DOI: 10.1371/journal.pone.0054349] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 12/12/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND HIV protease inhibitor (PI)-induced inflammatory response in macrophages is a major risk factor for cardiovascular diseases. We have previously reported that berberine (BBR), a traditional herbal medicine, prevents HIV PI-induced inflammatory response through inhibiting endoplasmic reticulum (ER) stress in macrophages. We also found that HIV PIs significantly increased the intracellular concentrations of BBR in macrophages. However, the underlying mechanisms of HIV PI-induced BBR accumulation are unknown. This study examined the role of P-glycoprotein (P-gp) in HIV PI-mediated accumulation of BBR in macrophages. METHODOLOGY AND PRINCIPAL FINDINGS Cultured mouse RAW264.7 macrophages, human THP-1-derived macrophages, Wild type MDCK (MDCK/WT) and human P-gp transfected (MDCK/P-gp) cells were used in this study. The intracellular concentration of BBR was determined by HPLC. The activity of P-gp was assessed by measuring digoxin and rhodamine 123 (Rh123) efflux. The interaction between P-gp and BBR or HIV PIs was predicated by Glide docking using Schrodinger program. The results indicate that P-gp contributed to the efflux of BBR in macrophages. HIV PIs significantly increased BBR concentrations in macrophages; however, BBR did not alter cellular HIV PI concentrations. Although HIV PIs did not affect P-gp expression, P-gp transport activities were significantly inhibited in HIV PI-treated macrophages. Furthermore, the molecular docking study suggests that both HIV PIs and BBR fit the binding pocket of P-gp, and HIV PIs may compete with BBR to bind P-gp. CONCLUSION AND SIGNIFICANCE HIV PIs increase the concentration of BBR by modulating the transport activity of P-gp in macrophages. Understanding the cellular mechanisms of potential drug-drug interactions is critical prior to applying successful combinational therapy in the clinic.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Berberine/pharmacology
- Binding, Competitive
- Biological Transport/drug effects
- Cell Line
- Chromatography, High Pressure Liquid
- Digoxin
- Dogs
- Gene Expression/drug effects
- HIV Protease Inhibitors/pharmacology
- Humans
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/metabolism
- Madin Darby Canine Kidney Cells
- Mice
- Molecular Docking Simulation
- Protein Binding
- Rhodamine 123
- Ritonavir/pharmacology
Collapse
Affiliation(s)
- Weibin Zha
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, P.R. China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, P.R. China
| | - Weiren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, P.R. China
| | - Xuyuan Liu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, P.R. China
- Basic Medical College, Tianjin Medical University, Tianjin, P.R. China
| | - Yun Wang
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Beth S. Zha
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jian Shi
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, P.R. China
| | - Qijin Zhao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, P.R. China
| | - Phillip M. Gerk
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Elaine Studer
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Internal Medicine/Gastroenterology and McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
| | - William M. Pandak
- Department of Internal Medicine/Gastroenterology and McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Internal Medicine/Gastroenterology and McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
- School of Pharmacy, Wenzhou Medical College, Wenzhou, P.R. China
| |
Collapse
|
48
|
Griffin LM, Watkins PB, Perry CH, St Claire RL, Brouwer KLR. Combination lopinavir and ritonavir alter exogenous and endogenous bile acid disposition in sandwich-cultured rat hepatocytes. Drug Metab Dispos 2012; 41:188-96. [PMID: 23091188 DOI: 10.1124/dmd.112.047225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inhibition of the bile salt export pump (BSEP) can cause intracellular accumulation of bile acids and is a risk factor for drug-induced liver injury in humans. Antiretroviral protease inhibitors lopinavir (LPV) and ritonavir (RTV) are reported BSEP inhibitors. However, the consequences of LPV and RTV, alone and combined (LPV/r), on hepatocyte viability, bile acid transport, and endogenous bile acid disposition in rat hepatocytes have not been examined. The effect of LPV, RTV, and LPV/r on cellular viability and the disposition of [(3)H]taurocholic acid (TCA) and [(14)C]chenodeoxycholic acid (CDCA) was determined in sandwich-cultured rat hepatocytes (SCRH) and suspended rat hepatocytes. Lactate dehydrogenase and ATP assays revealed a concentration-dependent effect of LPV and RTV on cellular viability. LPV (5 µM), alone and combined with 5 µM RTV, significantly decreased [(3)H]TCA accumulation in cells + bile of SCRHs compared with control. LPV/r significantly increased [(3)H]TCA cellular accumulation (7.7 ± 0.1 pmol/mg of protein) compared with vehicle and 5 µM LPV alone (5.1 ± 0.7 and 5.0 ± 0.5 pmol/mg of protein). The [(3)H]TCA biliary clearance was reduced significantly by LPV and RTV and further reduced by LPV/r. LPV and RTV did not affect the initial uptake rates of [(3)H]TCA or [(14)C]CDCA in suspended rat hepatocytes. LPV (50 µM), RTV (5 µM), and LPV/r (5 and 50 µM/5 µM) significantly decreased the accumulation of total measured endogenous bile acids (TCA, glycocholic acid, taurochenodeoxycholic acid, glycochenodeoxycholic acid, and α/β-tauromuricholic acid) in SCRH. Quantification of endogenous bile acids in SCRH may reveal important adaptive responses associated with exposure to known BSEP inhibitors.
Collapse
Affiliation(s)
- LaToya M Griffin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
49
|
Kao E, Shinohara M, Feng M, Lau MY, Ji C. Human immunodeficiency virus protease inhibitors modulate Ca2+ homeostasis and potentiate alcoholic stress and injury in mice and primary mouse and human hepatocytes. Hepatology 2012; 56:594-604. [PMID: 22407670 PMCID: PMC3406240 DOI: 10.1002/hep.25702] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/28/2012] [Indexed: 12/13/2022]
Abstract
UNLABELLED A portion of human immunodeficiency virus (HIV)-infected patients undergoing protease inhibitor (PI) therapy concomitantly consume or abuse alcohol leading to hepatic injury. The underling mechanisms are not known. We hypothesize that HIV PIs aggravate alcohol-induced liver injury through an endoplasmic reticulum (ER) stress mechanism. To address this, we treated mice, primary mouse hepatocytes (PMHs), and primary human hepatocytes (PHHs) with alcohol and the HIV PIs ritonavir (RIT) and lopinavir (LOP). In mice, RIT and LOP induced mild ER stress and inhibition of sarco/ER calcium-ATPase (SERCA) without significant increase in serum alanine aminotransferase (ALT) levels. However, a single dose of alcohol plus the two HIV PIs caused a more than five-fold increase in serum ALT, a synergistic increase in alcohol-induced liver lipid accumulation and ER stress response, and a decrease of SERCA. Mice treated with chronic HIV PIs and alcohol developed moderate liver fibrosis. In PMHs, the HIV drugs plus alcohol also inhibited SERCA expression and increased expression of glucose-regulated protein 78, C/EBP homologous protein, sterol regulatory element-binding protein 1c, and phosphorylated c-Jun N-terminal kinase 2, which were accompanied by a synergistic increase in cell death compared with alcohol or the HIV drugs alone. In PHHs, treatment with RIT and LOP or alcohol alone increased messenger RNA of spliced X box-binding protein 1 and decreased SERCA, which were accompanied by reduced levels of intracellular calcium. Alcohol combined with the HIV drugs significantly reduced intracellular calcium levels and potentiated cell death, which was comparable to the cell death caused by the SERCA inhibitor thapsigargin. CONCLUSION Our findings suggest the possibility that HIV PIs potentiate alcohol-induced ER stress and injury through modulation of SERCA and maintaining calcium homeostasis could be a therapeutic aim for better care of HIV patients.
Collapse
Affiliation(s)
| | | | | | | | - Cheng Ji
- Correspondence: Dr. Cheng Ji, Ph.D., Dept. of Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA, ; Phone: 323-442-3452; Fax: 323-442-3420
| |
Collapse
|
50
|
Liu Z, Zhang HM, Yuan J, Ye X, Taylor GA, Yang D. The immunity-related GTPase Irgm3 relieves endoplasmic reticulum stress response during coxsackievirus B3 infection via a PI3K/Akt dependent pathway. Cell Microbiol 2011; 14:133-46. [PMID: 21981022 DOI: 10.1111/j.1462-5822.2011.01708.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The IRG protein Irgm3 preserves cell survival during coxsackievirus B3 (CVB3) infection. However, the molecular mechanisms are not clear. Here, we examined the effect of Irgm3 expression on ER stress triggered by pharmacological agents or CVB3 infection. In Tet-On/Irgm3 HeLa cells, Irgm3 expression suppressed either chemical- or CVB3-induced upregulation of glucose-regulated protein 78. Further, Irgm3 strongly inhibited the activation of both the PERK and ATF6 pathways of ER stress responses, which further led to the diminished phosphorylation of eIF2α, reduced cleavage/activation of transcription factor SREBP1 and attenuated induction of proapoptotic genes CHOP and GADD34. These data were further supported by experiments using Irgm3 knockout mouse embryonic fibroblasts, in which the ER stress induced by CVB3 was not relieved due to the lack of Irgm3 expression. In addition, the tunicamycin-triggered ER stress promoted the subsequent CVB3 infection. The effect of Irgm3 on ER stress and CVB3 infection was diminished by the PI3K inhibitor, LY294002, while inhibitors of ERK, JNK and p38 had no effect. These data were further corroborated by transfection of cells with a dominant negative Akt. Taken together, these data suggest that Irgm3 relieves the ER stress response via a PI3K/Akt dependent mechanism, which contributes to host defence against CVB3 infection.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Pathology and Laboratory Medicine, University of British Columbia - The Heart + Lung Institute - St. Paul's Hospital, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|