1
|
Azahaf S, Spit KA, de Blok CJM, Nanayakkara PWB. Increased FGF-19 levels following explantation in women with breast implant illness. Sci Rep 2025; 15:3652. [PMID: 39880914 PMCID: PMC11779942 DOI: 10.1038/s41598-025-88013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Breast Implant Illness (BII) is characterized by a cluster of systemic and local symptoms affecting a subset of women with silicone breast implants. While symptom improvement is frequently observed following implant removal, the underlying mechanisms remain poorly understood, and the absence of reliable biomarkers complicates clinical decision-making. Here, we investigate inflammatory protein profiles in 43 women with BII, comparing pre- and post-explantation levels using the Olink Target 96 Inflammation panel and Meso Scale Discovery technology for absolute quantification. Sixteen inflammatory proteins, including MCP-1, CD8A, and CCL11, were elevated post-explantation, with FGF-19 showing the most pronounced increase (64%). FGF-19 levels increased from a median of 136 pg/mL to 195 pg/mL (p = 0.001), comparable to levels in women with silicone breast implants but no BII. We propose that explantation may alleviate FGF-19 signaling disruption, restoring its metabolic benefits. These findings suggest FGF-19 as a potential diagnostic and therapeutic marker for BII, warranting further investigation.
Collapse
Affiliation(s)
- S Azahaf
- Section General Internal Medicine, Department of Internal Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - K A Spit
- Section General Internal Medicine, Department of Internal Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - C J M de Blok
- Section General Internal Medicine, Department of Internal Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - P W B Nanayakkara
- Section General Internal Medicine, Department of Internal Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Fuchs CD, Simbrunner B, Baumgartner M, Campbell C, Reiberger T, Trauner M. Bile acid metabolism and signalling in liver disease. J Hepatol 2025; 82:134-153. [PMID: 39349254 DOI: 10.1016/j.jhep.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Bile acids (BAs) serve as signalling molecules, efficiently regulating their own metabolism and transport, as well as key aspects of lipid and glucose homeostasis. BAs shape the gut microbial flora and conversely are metabolised by microbiota. Disruption of BA transport, metabolism and physiological signalling functions contribute to the pathogenesis and progression of a wide range of liver diseases including cholestatic disorders and MASLD (metabolic dysfunction-associated steatotic liver disease), as well as hepatocellular and cholangiocellular carcinoma. Additionally, impaired BA signalling may also affect the intestine and kidney, thereby contributing to failure of gut integrity and driving the progression and complications of portal hypertension, cholemic nephropathy and the development of extrahepatic malignancies such as colorectal cancer. In this review, we will summarise recent advances in the understanding of BA signalling, metabolism and transport, focusing on transcriptional regulation and novel BA-focused therapeutic strategies for cholestatic and metabolic liver diseases.
Collapse
Affiliation(s)
- Claudia D Fuchs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maximillian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Clarissa Campbell
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
4
|
Bai Y, Zhang J, Li J, Liao M, Zhang Y, Xia Y, Wei Z, Dai Y. Silibinin, a commonly used therapeutic agent for non-alcohol fatty liver disease, functions through upregulating intestinal expression of fibroblast growth factor 15/19. Br J Pharmacol 2024; 181:3663-3684. [PMID: 38839561 DOI: 10.1111/bph.16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/15/2023] [Accepted: 10/16/2023] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND AND PURPOSE Silibinin is used to treat non-alcohol fatty liver disease (NAFLD) despite having rapid liver metabolism. Therefore, we investigated the role of the intestine in silibinin mechanism of action. EXPERIMENTAL APPROACH NAFLD mice model was established by feeding them with a high-fat diet (HFD). Liver pathological were examined using H&E and oil red O staining. Tissue distribution of silibinin was detected by LC-MS/MS. SiRNA was employed for gene silencing and plasmid was used for gene overexpression. ChIP-qPCR assay was performed to detect the levels of histone acetylation. Recombinant adeno-associated virus 9-short hairpin-fibroblast growth factor (FGF)-15 and -farnesoid X receptor (FXR; NR1H4) were used to knockdown expression of FGF-15 and FXR. KEY RESULTS Oral silibinin significantly reversed NAFLD in mice, although liver concentration was insufficient for reduction of lipid accumulation in hepatocytes. Among endogenous factors capable of reversing NAFLD, the expression of Fgf-15 was selectively up-regulated by silibinin in ileum and colon of mice. When intestinal expression of Fgf-15 was knocked down, protection of silibinin against lipid accumulation and injury of livers nearly disappeared. Silibinin could reduce activity of histone deacetylase 2 (HDAC2), enhance histone acetylation in the promoter region of FXR and consequently increase intestinal expression of FGF-15/19. CONCLUSION AND IMPLICATIONS Oral silibinin selectively promotes expression of FGF-15/19 in ileum by enhancing transcription of FXR via reduction of HDAC2 activity, and FGF-15/19 enters into circulation to exert anti-NAFLD action. As the site of action is the intestine this would explain the discrepancy between pharmacodynamics and pharmacokinetics of silibinin.
Collapse
Affiliation(s)
- Yujie Bai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jialin Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghui Liao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yajing Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Kim B, Ronaldo R, Kweon BN, Yoon S, Park Y, Baek JH, Lee JM, Hyun CK. Mesenchymal Stem Cell-Derived Exosomes Attenuate Hepatic Steatosis and Insulin Resistance in Diet-Induced Obese Mice by Activating the FGF21-Adiponectin Axis. Int J Mol Sci 2024; 25:10447. [PMID: 39408777 PMCID: PMC11476820 DOI: 10.3390/ijms251910447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Exosomes derived from mesenchymal stem cells have shown promise in treating metabolic disorders, yet their specific mechanisms remain largely unclear. This study investigates the protective effects of exosomes from human umbilical cord Wharton's jelly mesenchymal stem cells (hWJMSCs) against adiposity and insulin resistance in high-fat diet (HFD)-induced obese mice. HFD-fed mice treated with hWJMSC-derived exosomes demonstrated improved gut barrier integrity, which restored immune balance in the liver and adipose tissues by reducing macrophage infiltration and pro-inflammatory cytokine expression. Furthermore, these exosomes normalized lipid metabolism including lipid oxidation and lipogenesis, which alleviate lipotoxicity-induced endoplasmic reticulum (ER) stress, thereby decreasing fat accumulation and chronic tissue inflammation in hepatic and adipose tissues. Notably, hWJMSC-derived exosomes also promoted browning and thermogenic capacity of adipose tissues, which was linked to reduced fibroblast growth factor 21 (FGF21) resistance and increased adiponectin production. This process activated the AMPK-SIRT1-PGC-1α pathway, highlighting the role of the FGF21-adiponectin axis. Our findings elucidate the molecular mechanisms through which hWJMSC-derived exosomes counteract HFD-induced metabolic dysfunctions, supporting their potential as therapeutic agents for metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang 37554, Gyungbuk, Republic of Korea
| |
Collapse
|
6
|
Habib S. Team players in the pathogenesis of metabolic dysfunctions-associated steatotic liver disease: The basis of development of pharmacotherapy. World J Gastrointest Pathophysiol 2024; 15:93606. [PMID: 39220834 PMCID: PMC11362842 DOI: 10.4291/wjgp.v15.i4.93606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Nutrient metabolism is regulated by several factors. Social determinants of health with or without genetics are the primary regulator of metabolism, and an unhealthy lifestyle affects all modulators and mediators, leading to the adaptation and finally to the exhaustion of cellular functions. Hepatic steatosis is defined by presence of fat in more than 5% of hepatocytes. In hepatocytes, fat is stored as triglycerides in lipid droplet. Hepatic steatosis results from a combination of multiple intracellular processes. In a healthy individual nutrient metabolism is regulated at several steps. It ranges from the selection of nutrients in a grocery store to the last step of consumption of ATP as an energy or as a building block of a cell as structural component. Several hormones, peptides, and genes have been described that participate in nutrient metabolism. Several enzymes participate in each nutrient metabolism as described above from ingestion to generation of ATP. As of now several publications have revealed very intricate regulation of nutrient metabolism, where most of the regulatory factors are tied to each other bidirectionally, making it difficult to comprehend chronological sequence of events. Insulin hormone is the primary regulator of all nutrients' metabolism both in prandial and fasting states. Insulin exerts its effects directly and indirectly on enzymes involved in the three main cellular function processes; metabolic, inflammation and repair, and cell growth and regeneration. Final regulators that control the enzymatic functions through stimulation or suppression of a cell are nuclear receptors in especially farnesoid X receptor and peroxisome proliferator-activated receptor/RXR ligands, adiponectin, leptin, and adiponutrin. Insulin hormone has direct effect on these final modulators. Whereas blood glucose level, serum lipids, incretin hormones, bile acids in conjunction with microbiota are intermediary modulators which are controlled by lifestyle. The purpose of this review is to overview the key players in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) that help us understand the disease natural course, risk stratification, role of lifestyle and pharmacotherapy in each individual patient with MASLD to achieve personalized care and target the practice of precision medicine. PubMed and Google Scholar databases were used to identify publication related to metabolism of carbohydrate and fat in states of health and disease states; MASLD, cardiovascular disease and cancer. More than 1000 publications including original research and review papers were reviewed.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85712, United States
| |
Collapse
|
7
|
Das SJ, Pathak B, Dutta S, Bose S, Bose PD. Role of serum endotoxin, FGF19, TLR2, TNF-α, IL-12 and IL-10 in NAFLD-associated T2DM pathogenesis: Insights into Th1 bias and protective mechanisms. Indian J Gastroenterol 2024:10.1007/s12664-024-01597-z. [PMID: 38780878 DOI: 10.1007/s12664-024-01597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/20/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) in non-obese patients is pathophysiologically distinct, exhibiting common immunological link with type-2 diabetes mellitus (T2DM). This study aims to delineate the role of Toll-like receptor 2 (TLR2)-mediated immuno-modulation along with its association with fibroblast growth factor receptor 4 (FGFR4) and its ligand fibroblast growth factor 19 (FGF19) in the pathogenesis of NAFLD without or with T2DM. METHODOLOGY Blood samples were collected from patients with NAFLD (n = 90), NAFLD with T2DM (n = 90) and healthy cohorts (n = 90) with consent and clinical records. Real-time polymerase chain reaction (PCR), enzyme-linked immunoassay (ELIZA) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) were used to analyze messenger ribonucleic acid (mRNA), protein expression and gene polymorphism. RESULTS The molecular genetic analysis revealed the prevalence of variant allele(A) in FGFR4 gene in both cases compared to controls. The mRNA expression of FGF19 and TLR2 exhibited significant upregulation in NAFLD without T2DM compared to NAFLD with T2DM. Tumor necrosis factor-α (TNF-α) and interleukin-12 (IL-12) showed upregulation in both disease cohorts compared to control while IL-10 showed significant downregulation in NAFLD with T2DM compared to the other two cohorts. Correlation analysis between FGF19 and TLR2 revealed significant positive association in both NAFLD with and without T2DM. The Th1:Th2 ratio showed significant upregulation in NAFLD with T2DM compared to NAFLD without T2DM. CONCLUSION In conclusion, elevated serum endotoxin levels appear to contribute to NAFLD and T2DM development. Upregulated FGF19 seems to be protective against developing T2DM in NAFLD patients. Higher TLR2, TNF-α and IL-12 expression in NAFLD without T2DM suggests a Th1 bias in its pathogenesis, while reduced IL-10 in NAFLD with T2DM implies a more skewed Th1 state in this condition.
Collapse
Affiliation(s)
- Snigdha Jyoti Das
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, 781 001, India
| | - Barsha Pathak
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, 781 001, India
| | - Sangit Dutta
- Department of Medicine, Gauhati Medical College and Hospital, Guwahati, 781 032, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Jalukbari, Guwahati, 781 014, India
| | - Purabi Deka Bose
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, 781 001, India.
| |
Collapse
|
8
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
9
|
Maj MA, Burrin DG, Manjarín R. Decreased FXR Agonism in the Bile Acid Pool Is Associated with Impaired FXR Signaling in a Pig Model of Pediatric NAFLD. Biomedicines 2023; 11:3303. [PMID: 38137523 PMCID: PMC10740974 DOI: 10.3390/biomedicines11123303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The objective of this study was to investigate whether the impairment of farnesoid X receptor (FXR)-fibroblast growth factor 19 (FGF19) signaling in juvenile pigs with non-alcoholic fatty liver disease (NAFLD) is associated with changes in the composition of the enterohepatic bile acid pool. Eighteen 15-day-old Iberian pigs, pair-housed in pens, were allocated to receive either a control (CON) or high-fructose, high-fat (HFF) diet. Animals were euthanized in week 10, and liver, blood, and distal ileum (DI) samples were collected. HFF-fed pigs developed NAFLD and had decreased FGF19 expression in the DI and lower FGF19 levels in the blood. Compared with the CON, the HFF diet increased the total cholic acid (CA) and the CA to chenodeoxycholic acid (CDCA) ratio in the liver, DI, and blood. CA and CDCA levels in the DI were negatively and positively correlated with ileal FGF19 expression, respectively, and blood levels of FGF19 decreased with an increasing ileal CA to CDCA ratio. Compared with the CON, the HFF diet increased the gene expression of hepatic 12-alpha-hydrolase, which catalyzes the synthesis of CA in the liver. Since CA species are weaker FXR ligands than CDCA, our results suggest that impairment of FXR-FGF19 signaling in NAFLD pigs is associated with a decrease in FXR agonism in the bile acid pool.
Collapse
Affiliation(s)
- Magdalena A. Maj
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Douglas G. Burrin
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Rodrigo Manjarín
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
| |
Collapse
|
10
|
Iannone V, Babu AF, Lok J, Gómez-Gallego C, D'Auria G, Vazquez-Uribe R, Vaaben TH, Bongers M, Mikkonen S, Vaittinen M, Tikkanen I, Kettunen M, Klåvus A, Sehgal R, Kaminska D, Pihlajamaki J, Hanhineva K, El-Nezami H, Sommer MOA, Kolehmainen M. Changes in liver metabolic pathways demonstrate efficacy of the combined dietary and microbial therapeutic intervention in MASLD mouse model. Mol Metab 2023; 78:101823. [PMID: 37839774 PMCID: PMC10618820 DOI: 10.1016/j.molmet.2023.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
OBJECTIVE Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most prevalent liver disease globally, yet no therapies are approved. The effects of Escherichia coli Nissle 1917 expressing aldafermin, an engineered analog of the intestinal hormone FGF19, in combination with dietary change were investigated as a potential treatment for MASLD. METHODS MASLD was induced in C57BL/6J male mice by American lifestyle-induced obesity syndrome diet and then switched to a standard chow diet for seven weeks. In addition to the dietary change, the intervention group received genetically engineered E. coli Nissle expressing aldafermin, while control groups received either E. coli Nissle vehicle or no treatment. MASLD-related plasma biomarkers were measured using an automated clinical chemistry analyzer. The liver steatosis was assessed by histology and bioimaging analysis using Fiji (ImageJ) software. The effects of the intervention in the liver were also evaluated by RNA sequencing and liquid-chromatography-based non-targeted metabolomics analysis. Pathway enrichment studies were conducted by integrating the differentially expressed genes from the transcriptomics findings with the metabolites from the metabolomics results using Ingenuity pathway analysis. RESULTS After the intervention, E. coli Nissle expressing aldafermin along with dietary changes reduced body weight, liver steatosis, plasma aspartate aminotransferase, and plasma cholesterol levels compared to the two control groups. The integration of transcriptomics with non-targeted metabolomics analysis revealed the downregulation of amino acid metabolism and related receptor signaling pathways potentially implicated in the reduction of hepatic steatosis and insulin resistance. Moreover, the downregulation of pathways linked to lipid metabolism and changes in amino acid-related pathways suggested an overall reduction of oxidative stress in the liver. CONCLUSIONS These data support the potential for using engineered microbial therapeutics in combination with dietary changes for managing MASLD.
Collapse
Affiliation(s)
- Valeria Iannone
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| | - Ambrin Farizah Babu
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland
| | - Johnson Lok
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| | - Carlos Gómez-Gallego
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland.
| | - Giuseppe D'Auria
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, FISABIO, 46020 Valencia, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ruben Vazquez-Uribe
- Technical University of Denmark, The Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
| | - Troels Holger Vaaben
- Technical University of Denmark, The Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
| | - Mareike Bongers
- Technical University of Denmark, The Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
| | - Santtu Mikkonen
- University Department of Technical Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maija Vaittinen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| | - Ida Tikkanen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| | - Mikko Kettunen
- Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Anton Klåvus
- Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland
| | - Ratika Sehgal
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| | - Dorota Kaminska
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA 90095, USA
| | - Jussi Pihlajamaki
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Kati Hanhineva
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland; Department of Life Technologies, Food Sciences Unit, University of Turku, 20014 Turku, Finland
| | - Hani El-Nezami
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; University of Hong Kong, Hong Kong SAR, Molecular and Cell Biology Research Area, School of Biological Sciences, Hong Kong, Hong Kong, China
| | - Morten Otto Alexander Sommer
- Technical University of Denmark, The Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark.
| | - Marjukka Kolehmainen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| |
Collapse
|
11
|
Lalloyer F, Mogilenko DA, Verrijken A, Haas JT, Lamazière A, Kouach M, Descat A, Caron S, Vallez E, Derudas B, Gheeraert C, Baugé E, Despres G, Dirinck E, Tailleux A, Dombrowicz D, Van Gaal L, Eeckhoute J, Lefebvre P, Goossens JF, Francque S, Staels B. Roux-en-Y gastric bypass induces hepatic transcriptomic signatures and plasma metabolite changes indicative of improved cholesterol homeostasis. J Hepatol 2023; 79:898-909. [PMID: 37230231 DOI: 10.1016/j.jhep.2023.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND & AIMS Roux-en-Y gastric bypass (RYGB), the most effective surgical procedure for weight loss, decreases obesity and ameliorates comorbidities, such as non-alcoholic fatty liver (NAFLD) and cardiovascular (CVD) diseases. Cholesterol is a major CVD risk factor and modulator of NAFLD development, and the liver tightly controls its metabolism. How RYGB surgery modulates systemic and hepatic cholesterol metabolism is still unclear. METHODS We studied the hepatic transcriptome of 26 patients with obesity but not diabetes before and 1 year after undergoing RYGB. In parallel, we measured quantitative changes in plasma cholesterol metabolites and bile acids (BAs). RESULTS RYGB surgery improved systemic cholesterol metabolism and increased plasma total and primary BA levels. Transcriptomic analysis revealed specific alterations in the liver after RYGB, with the downregulation of a module of genes implicated in inflammation and the upregulation of three modules, one associated with BA metabolism. A dedicated analysis of hepatic genes related to cholesterol homeostasis pointed towards increased biliary cholesterol elimination after RYGB, associated with enhancement of the alternate, but not the classical, BA synthesis pathway. In parallel, alterations in the expression of genes involved in cholesterol uptake and intracellular trafficking indicate improved hepatic free cholesterol handling. Finally, RYGB decreased plasma markers of cholesterol synthesis, which correlated with an improvement in liver disease status after surgery. CONCLUSIONS Our results identify specific regulatory effects of RYGB on inflammation and cholesterol metabolism. RYGB alters the hepatic transcriptome signature, likely improving liver cholesterol homeostasis. These gene regulatory effects are reflected by systemic post-surgery changes of cholesterol-related metabolites, corroborating the beneficial effects of RYGB on both hepatic and systemic cholesterol homeostasis. IMPACT AND IMPLICATIONS Roux-en-Y gastric bypass (RYGB) is a widely used bariatric surgery procedure with proven efficacy in body weight management, combatting cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). RYGB exerts many beneficial metabolic effects, by lowering plasma cholesterol and improving atherogenic dyslipidemia. Using a cohort of patients undergoing RYGB, studied before and 1 year after surgery, we analyzed how RYGB modulates hepatic and systemic cholesterol and bile acid metabolism. The results of our study provide important insights on the regulation of cholesterol homeostasis after RYGB and open avenues that could guide future monitoring and treatment strategies targeting CVD and NAFLD in obesity.
Collapse
Affiliation(s)
- Fanny Lalloyer
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Denis A Mogilenko
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France; Department of Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ann Verrijken
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Joel T Haas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Antonin Lamazière
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Clinical Metabolomic Department, Sorbonne Université, Inserm, F-75012, Paris, France
| | - Mostafa Kouach
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Amandine Descat
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Sandrine Caron
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Emmanuelle Vallez
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Bruno Derudas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Céline Gheeraert
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Eric Baugé
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Gaëtan Despres
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Clinical Metabolomic Department, Sorbonne Université, Inserm, F-75012, Paris, France
| | - Eveline Dirinck
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Anne Tailleux
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - David Dombrowicz
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Jerôme Eeckhoute
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Philippe Lefebvre
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Jean-François Goossens
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Sven Francque
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, ERN RARE-LIVER, 2650, Edegem, Antwerp, Belgium
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France.
| |
Collapse
|
12
|
Xu J, Zhou Y, Cheng S, Zhao Y, Yan J, Wang Y, Cai W, Jiang L. Lactobacillus johnsonii Attenuates Liver Steatosis and Bile Acid Dysregulation in Parenteral Nutrition-Fed Rats. Metabolites 2023; 13:1043. [PMID: 37887368 PMCID: PMC10608838 DOI: 10.3390/metabo13101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Parenteral nutrition (PN), a vital therapy for patients with intestinal failure, can lead to the development of parenteral nutrition-associated liver disease (PNALD). In this study, we aimed to investigate the role of Lactobacillus johnsonii (L. johnsonii) in a rat model of PNALD. Total parenteral nutrition (TPN)-fed rats were used to assess the role of L. johnsonii in liver steatosis, bile acid metabolism, gut microbiota, and hepatocyte apoptosis. We observed a depletion of L. johnsonii that was negatively correlated with the accumulation of glycochenodeoxycholic acid (GCDCA), a known apoptosis inducer, in rats subjected to TPN. L. johnsonii attenuated TPN-induced liver steatosis by inhibiting fatty acid synthesis and promoting fatty acid oxidation. TPN resulted in a decrease in bile acid synthesis and biliary bile secretion, which were partially restored by L. johnsonii treatment. The gut microbial profile revealed depletion of pathogenic bacteria in L. johnsonii-treated rats. L. johnsonii treatment reduced both hepatic GCDCA levels and hepatocyte apoptosis compared with the TPN group. In vitro, L. johnsonii treatment inhibited GCDCA-induced hepatocyte apoptosis via its bile salt hydrolase (BSH) activity. Our findings suggest that L. johnsonii protects against liver steatosis, bile acid dysregulation, and hepatocyte apoptosis in TPN-fed rats.
Collapse
Affiliation(s)
- Juan Xu
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (J.X.); (J.Y.); (Y.W.)
| | - Yongchang Zhou
- Shanghai Institute for Pediatric Research, Shanghai 200092, China;
| | - Siyang Cheng
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (S.C.); (Y.Z.)
| | - Yuling Zhao
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (S.C.); (Y.Z.)
| | - Junkai Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (J.X.); (J.Y.); (Y.W.)
- Shanghai Institute for Pediatric Research, Shanghai 200092, China;
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (J.X.); (J.Y.); (Y.W.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Wei Cai
- Shanghai Institute for Pediatric Research, Shanghai 200092, China;
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (S.C.); (Y.Z.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Lu Jiang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (J.X.); (J.Y.); (Y.W.)
- Shanghai Institute for Pediatric Research, Shanghai 200092, China;
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
13
|
Aaldijk AS, Verzijl CRC, Jonker JW, Struik D. Biological and pharmacological functions of the FGF19- and FGF21-coreceptor beta klotho. Front Endocrinol (Lausanne) 2023; 14:1150222. [PMID: 37260446 PMCID: PMC10229096 DOI: 10.3389/fendo.2023.1150222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 06/02/2023] Open
Abstract
Beta klotho (KLB) is a fundamental component in fibroblast growth factor receptor (FGFR) signaling as it serves as an obligatory coreceptor for the endocrine hormones fibroblast growth factor 19 (FGF19) and fibroblast growth factor 21 (FGF21). Through the development of FGF19- and FGF21 mimetics, KLB has emerged as a promising drug target for treating various metabolic diseases, such as type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease. While rodent studies have significantly increased our understanding of KLB function, current clinical trials that test the safety and efficacy of KLB-targeting drugs raise many new scientific questions about human KLB biology. Although most KLB-targeting drugs can modulate disease activity in humans, individual patient responses differ substantially. In addition, species-specific differences in KLB tissue distribution may explain why the glucose-lowering effects that were observed in preclinical studies are not fully replicated in clinical trials. Besides, the long-term efficacy of KLB-targeting drugs might be limited by various pathophysiological conditions known to reduce the expression of KLB. Moreover, FGF19/FGF21 administration in humans is also associated with gastrointestinal side effects, which are currently unexplained. A better understanding of human KLB biology could help to improve the efficacy and safety of existing or novel KLB/FGFR-targeting drugs. In this review, we provide a comprehensive overview of the current understanding of KLB biology, including genetic variants and their phenotypic associations, transcriptional regulation, protein structure, tissue distribution, subcellular localization, and function. In addition, we will highlight recent developments regarding the safety and efficacy of KLB-targeting drugs in clinical trials. These insights may direct the development and testing of existing and future KLB-targeting drugs.
Collapse
|
14
|
Sciarrillo CM, Short KR, Keirns BH, Elliott DC, Clarke SL, Palle S, Emerson SR. Postprandial triglycerides and fibroblast growth factor 19 as potential screening tools for paediatric non-alcoholic fatty liver disease. Pediatr Obes 2023; 18:e13007. [PMID: 36734693 DOI: 10.1111/ijpo.13007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Better screening tools for paediatric NAFLD are needed. We tested the hypothesis that the postprandial triglyceride (TG) and fibroblast growth factor 19 (FGF19) response to an abbreviated fat tolerance test (AFTT) could differentiate adolescents with NAFLD from peers with obesity and normal weight. METHODS Fifteen controls with normal weight (NW), 13 controls with obesity (OB) and 9 patients with NAFLD completed an AFTT. Following an overnight fast, participants consumed a high-fat meal. TG and FGF19 were measured at baseline and 4 h post-meal. Liver steatosis and fibrosis were measured via Fibroscan. RESULTS Fasting TG and FGF19 did not differ among groups; 4 h TG in the NAFLD and OB groups were greater (197 ± 69 mg/dL; 157 ± 72 mg/dL, respectively) than NW (105 ± 45 mg/dL; p < 0.05) and did not differ from one another. Within the entire cohort, 4 h TG were stratified by high and low steatosis. Adolescents with high steatosis had 98% greater 4 h TG than adolescents with low steatosis. 4 h FGF19, but not fasting FGF19, was higher in children with low steatosis compared with high steatosis (p < 0.05). Using area under the receiver operating curve (AUROC), the only biochemical outcome with diagnostic accuracy for NAFLD was 4 h TG (0.77 [95% CI: 0.60-0.94; p = 0.02]). CONCLUSIONS The postprandial TG response is increased in adolescents with obesity with hepatic steatosis, with or without NAFLD. Our preliminary analysis demonstrates 4 h TG differentiate patients with NAFLD from those without, supporting a role for the AFTT as a screening tool for paediatric NAFLD.
Collapse
Affiliation(s)
- Christina M Sciarrillo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kevin R Short
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bryant H Keirns
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Destinee C Elliott
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sirish Palle
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sam R Emerson
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
15
|
Tian H, Zhang S, Liu Y, Wu Y, Zhang D. Fibroblast Growth Factors for Nonalcoholic Fatty Liver Disease: Opportunities and Challenges. Int J Mol Sci 2023; 24:ijms24054583. [PMID: 36902015 PMCID: PMC10003526 DOI: 10.3390/ijms24054583] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a chronic condition associated with metabolic dysfunction and obesity, has reached epidemic proportions worldwide. Although early NAFLD can be treated with lifestyle changes, the treatment of advanced liver pathology, such as nonalcoholic steatohepatitis (NASH), remains a challenge. There are currently no FDA-approved drugs for NAFLD. Fibroblast growth factors (FGFs) play essential roles in lipid and carbohydrate metabolism and have recently emerged as promising therapeutic agents for metabolic diseases. Among them, endocrine members (FGF19 and FGF21) and classical members (FGF1 and FGF4) are key regulators of energy metabolism. FGF-based therapies have shown therapeutic benefits in patients with NAFLD, and substantial progress has recently been made in clinical trials. These FGF analogs are effective in alleviating steatosis, liver inflammation, and fibrosis. In this review, we describe the biology of four metabolism-related FGFs (FGF19, FGF21, FGF1, and FGF4) and their basic action mechanisms, and then summarize recent advances in the biopharmaceutical development of FGF-based therapies for patients with NAFLD.
Collapse
Affiliation(s)
- Haoyu Tian
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Shuairan Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ying Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yifan Wu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
- Correspondence: or
| |
Collapse
|
16
|
Guo Q, Hou X, Cui Q, Li S, Shen G, Luo Q, Wu H, Chen H, Liu Y, Chen A, Zhang Z. Pectin mediates the mechanism of host blood glucose regulation through intestinal flora. Crit Rev Food Sci Nutr 2023; 64:6714-6736. [PMID: 36756885 DOI: 10.1080/10408398.2023.2173719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Pectin is a complex polysaccharide found in plant cell walls and interlayers. As a food component, pectin is benefit for regulating intestinal flora. Metabolites of intestinal flora, including short-chain fatty acids (SCFAs), bile acids (BAs) and lipopolysaccharides (LPS), are involved in blood glucose regulation. SCFAs promote insulin synthesis through the intestine-GPCRs-derived pathway and hepatic adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway to promote hepatic glycogen synthesis. On the one hand, BAs stimulate intestinal L cells and pancreatic α cells to secrete Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) through receptors G protein-coupled receptor (TGR5) and farnesoid X receptor (FXR). On the other hand, BAs promote hepatic glycogen synthesis through AMPK pathway. LPS inhibits the release of inflammatory cytokines through Toll-like receptors (TLRs)-myeloid differentiation factor 88 (MYD88) pathway and mitogen-activated protein kinase (MAPK) pathway, thereby alleviating insulin resistance (IR). In brief, both SCFAs and BAs promote GLP-1 secretion through different pathways, employing strategies of increasing glucose consumption and decreasing glucose production to maintain normal glucose levels. Notably, pectin can also directly inhibit the release of inflammatory cytokines through the -TLRs-MYD88 pathway. These data provide valuable information for further elucidating the relationship between pectin-intestinal flora-glucose metabolism.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qiang Cui
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qingying Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hejun Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
17
|
Jin L, Yang R, Geng L, Xu A. Fibroblast Growth Factor-Based Pharmacotherapies for the Treatment of Obesity-Related Metabolic Complications. Annu Rev Pharmacol Toxicol 2023; 63:359-382. [PMID: 36100222 DOI: 10.1146/annurev-pharmtox-032322-093904] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fibroblast growth factor (FGF) family, which comprises 22 structurally related proteins, plays diverse roles in cell proliferation, differentiation, development, and metabolism. Among them, two classical members (FGF1 and FGF4) and two endocrine members (FGF19 and FGF21) are important regulators of whole-body energy homeostasis, glucose/lipid metabolism, and insulin sensitivity. Preclinical studies have consistently demonstrated the therapeutic benefits of these FGFs for the treatment of obesity, diabetes, dyslipidemia, and nonalcoholic steatohepatitis (NASH). Several genetically engineered FGF19 and FGF21 analogs with improved pharmacodynamic and pharmacokinetic properties have been developed and progressed into various stages of clinical trials. These FGF analogs are effective in alleviating hepatic steatosis, steatohepatitis, and liver fibrosis in biopsy-confirmed NASH patients, whereas their antidiabetic and antiobesity effects are mildand vary greatly in different clinical trials. This review summarizes recent advances in biopharmaceutical development of FGF-based therapies against obesity-related metabolic complications, highlights major challenges in clinical implementation, and discusses possible strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
18
|
Chen Z, Yang L, Liu Y, Huang P, Song H, Zheng P. The potential function and clinical application of FGF21 in metabolic diseases. Front Pharmacol 2022; 13:1089214. [PMID: 36618930 PMCID: PMC9810635 DOI: 10.3389/fphar.2022.1089214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
As an endocrine hormone, fibroblast growth factor 21 (FGF21) plays a crucial role in regulating lipid, glucose, and energy metabolism. Endogenous FGF21 is generated by multiple cell types but acts on restricted effector tissues, including the brain, adipose tissue, liver, heart, and skeletal muscle. Intervention with FGF21 in rodents or non-human primates has shown significant pharmacological effects on a range of metabolic dysfunctions, including weight loss and improvement of hyperglycemia, hyperlipidemia, insulin resistance, cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). Due to the poor pharmacokinetic and biophysical characteristics of native FGF21, long-acting FGF21 analogs and FGF21 receptor agonists have been developed for the treatment of metabolic dysfunction. Clinical trials of several FGF21-based drugs have been performed and shown good safety, tolerance, and efficacy. Here we review the actions of FGF21 and summarize the associated clinical trials in obesity, type 2 diabetes mellitus (T2DM), and NAFLD, to help understand and promote the development of efficient treatment for metabolic diseases via targeting FGF21.
Collapse
Affiliation(s)
- Zhiwei Chen
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Liu
- Teaching Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Huang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Peiyong Zheng, ; Haiyan Song,
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Peiyong Zheng, ; Haiyan Song,
| |
Collapse
|
19
|
Cook JR, Kohan AB, Haeusler RA. An Updated Perspective on the Dual-Track Model of Enterocyte Fat Metabolism. J Lipid Res 2022; 63:100278. [PMID: 36100090 PMCID: PMC9593242 DOI: 10.1016/j.jlr.2022.100278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023] Open
Abstract
The small intestinal epithelium has classically been envisioned as a conduit for nutrient absorption, but appreciation is growing for a larger and more dynamic role for enterocytes in lipid metabolism. Considerable gaps remain in our knowledge of this physiology, but it appears that the enterocyte's structural polarization dictates its behavior in fat partitioning, treating fat differently based on its absorption across the apical versus the basolateral membrane. In this review, we synthesize existing data and thought on this dual-track model of enterocyte fat metabolism through the lens of human integrative physiology. The apical track includes the canonical pathway of dietary lipid absorption across the apical brush-border membrane, leading to packaging and secretion of those lipids as chylomicrons. However, this track also reserves a portion of dietary lipid within cytoplasmic lipid droplets for later uses, including the "second-meal effect," which remains poorly understood. At the same time, the enterocyte takes up circulating fats across the basolateral membrane by mechanisms that may include receptor-mediated import of triglyceride-rich lipoproteins or their remnants, local hydrolysis and internalization of free fatty acids, or enterocyte de novo lipogenesis using basolaterally absorbed substrates. The ultimate destinations of basolateral-track fat may include fatty acid oxidation, structural lipid synthesis, storage in cytoplasmic lipid droplets, or ultimate resecretion, although the regulation and purposes of this basolateral track remain mysterious. We propose that the enterocyte integrates lipid flux along both of these tracks in order to calibrate its overall program of lipid metabolism.
Collapse
Affiliation(s)
- Joshua R. Cook
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY, USA,Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Alison B. Kohan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca A. Haeusler
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY, USA,Department of Pathology and Cell Biology; Columbia University College of Physicians and Surgeons, New York, NY, USA,For correspondence: Rebecca A. Haeusler
| |
Collapse
|
20
|
Nandakumar M, Moin ASM, Ramanjaneya M, Qaissi AA, Sathyapalan T, Atkin SL, Butler AE. Severe iatrogenic hypoglycaemia modulates the fibroblast growth factor protein response. Diabetes Obes Metab 2022; 24:1483-1497. [PMID: 35415885 DOI: 10.1111/dom.14716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION There is evidence that fibroblast growth factor (FGF) levels may be implicated in hypoglycaemia, with FGF19 being a potential contributor to insulin-independent pathways driving postprandial hypoglycaemia following bariatric surgery and basic FGF (FGF2) being elevated following mild hypoglycaemia occurring after the glucose tolerance test. However, their response following severe iatrogenic hypoglycaemia is unknown and therefore this pilot exploratory study was undertaken. METHODS A case-control study of aged-matched type 2 diabetes (T2D; n = 23) and control (n = 23) subjects who underwent a hyperinsulinaemic clamp, initially to euglycaemia in T2D (5 mmol/L; 90 mg/dl), and then to hypoglycaemia (<2 mmol/L; <36 mg/dl) with subsequent follow-up time course to 24 h. FGF and FGF receptor proteins were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement. RESULTS At baseline, FGF12 (p = .006) was higher and FGF20 (p = .004) was lower in T2D versus controls. At hypoglycaemia, FGF7 was lower in T2D. Post-hypoglycaemic levels of FGF18, FGF19, FGF20 and FGF23 were lower while FGF12 and FGF16 were higher in T2D versus control at different time points. No differences between T2D and controls were seen for FGF1, FGF2, FGF4, FGF6, FGF8, FGF9, FGF10, FGF21 or any of the FGF receptors. At 24 h post-hypoglycaemia, FGF20 (p = .01) differed between controls and T2D, while the levels for the other proteins measured returned to baseline. None of the FGF proteins altered from baseline to euglycaemia when clamped in T2D subjects. FGF23 negatively correlated with fasting blood glucose, but no FGFs correlated with body mass index in T2D. CONCLUSION Severe transient hypoglycaemia modulated FGF7, 16, 19, 20 and 23 (known to be associated with diabetes), together with FGF18 and 12, not previously reported to be associated with diabetes but that may be important in the pathophysiology of hypoglycaemia; FGF20 remained low at 24 h. Taken together, these data suggest that recurrent hypoglycaemia may contribute to the development of complications through changes in FGF proteins.
Collapse
Affiliation(s)
- Manjula Nandakumar
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Abu Saleh Md Moin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Al Qaissi
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
| | | | - Stephen L Atkin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Alexandra E Butler
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| |
Collapse
|
21
|
Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol 2022; 19:432-450. [PMID: 35165436 DOI: 10.1038/s41575-021-00566-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) can regulate their own metabolism and transport as well as other key aspects of metabolic homeostasis via dedicated (nuclear and G protein-coupled) receptors. Disrupted BA transport and homeostasis results in the development of cholestatic disorders and contributes to a wide range of liver diseases, including nonalcoholic fatty liver disease and hepatocellular and cholangiocellular carcinoma. Furthermore, impaired BA homeostasis can also affect the intestine, contributing to the pathogenesis of irritable bowel syndrome, inflammatory bowel disease, and colorectal and oesophageal cancer. Here, we provide a summary of the role of BAs and their disrupted homeostasis in the development of gastrointestinal and hepatic disorders and present novel insights on how targeting BA pathways might contribute to novel treatment strategies for these disorders.
Collapse
|
22
|
Kasai Y, Kessoku T, Tanaka K, Yamamoto A, Takahashi K, Kobayashi T, Iwaki M, Ozaki A, Nogami A, Honda Y, Ogawa Y, Kato S, Imajo K, Higurashi T, Hosono K, Yoneda M, Usuda H, Wada K, Kawanaka M, Kawaguchi T, Torimura T, Kage M, Hyogo H, Takahashi H, Eguchi Y, Aishima S, Kobayashi N, Sumida Y, Honda A, Oyamada S, Shinoda S, Saito S, Nakajima A. Association of Serum and Fecal Bile Acid Patterns With Liver Fibrosis in Biopsy-Proven Nonalcoholic Fatty Liver Disease: An Observational Study. Clin Transl Gastroenterol 2022; 13:e00503. [PMID: 35616321 PMCID: PMC10476812 DOI: 10.14309/ctg.0000000000000503] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION No reports on both blood and fecal bile acids (BAs) in patients with nonalcoholic fatty liver disease (NAFLD) exist. We simultaneously assessed the serum and fecal BA patterns in healthy participants and those with NAFLD. METHODS We collected stool samples from 287 participants from 5 hospitals in Japan (healthy control [HC]: n = 88; mild fibrosis: n = 104; and advanced fibrosis group: n = 95). Blood samples were collected and analyzed for serum BAs and 7α-hydroxy-4-cholesten-3-one (C4)-a surrogate marker for BA synthesis ability-from 141 patients. Concentrations of BAs, including cholic acid (CA), deoxycholic acid (DCA), chenodeoxycholic acid, ursodeoxycholic acid, and lithocholic acid (LCA), were measured using liquid chromatography-mass spectrometry. RESULTS The total fecal BA concentration was significantly higher in the NAFLD group with worsening of fibrosis than in the HC group. Most of the fecal BAs were secondary and unconjugated. In the fecal BA fraction, CA, DCA, chenodeoxycholic acid, ursodeoxycholic acid, and LCA were significantly higher in the NAFLD than in the HC group. The total serum BA concentration was higher in the NAFLD group with worsening of fibrosis than in the HC group. In the serum BA fraction, CA, LCA, and C4 concentrations were significantly higher in the NAFLD than in the HC group. DISCUSSION Fecal and serum BA and C4 concentrations were high in patients with NAFLD with worsening of fibrosis, suggesting involvement of abnormal BA metabolism in NAFLD with fibrosis progression. Abnormalities in BA metabolism may be a therapeutic target in NAFLD with fibrosis.
Collapse
Affiliation(s)
- Yuki Kasai
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan;
| | - Kosuke Tanaka
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan;
| | - Atsushi Yamamoto
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Kota Takahashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan;
| | - Anna Ozaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan;
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Shingo Kato
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
- Department of Clinical Cancer Genomics, Yokohama City University Hospital, Yokohama, Japan;
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Takuma Higurashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Kunihiro Hosono
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine, Shimane, Japan;
| | - Koichiro Wada
- Department of Pharmacology, Shimane University Faculty of Medicine, Shimane, Japan;
| | - Miwa Kawanaka
- Department of General Internal Medicine 2, Kawasaki Medical Center, Kawasaki Medical School, Okayama, Japan;
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan;
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan;
| | - Masayoshi Kage
- Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan;
| | - Hideyuki Hyogo
- Department of Gastroenterology, JA Hiroshima Kouseiren General Hospital, Hiroshima, Japan;
- Life Care Clinic Hiroshima, Hiroshima, Japan;
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan;
- Liver Center, Saga University Hospital, Saga, Japan;
| | | | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan;
| | | | - Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Aichi, Japan;
| | - Akira Honda
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan;
| | - Shunsuke Oyamada
- Japanese Organization for Research and Treatment of Cancer (JORTC), JORTC Data Center, Tokyo, Japan
| | - Satoru Shinoda
- Department of Biostatistics, Yokohama City University School of Medicine
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| |
Collapse
|
23
|
Research Progress of Fibroblast Growth Factor 21 in Fibrotic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5042762. [PMID: 35677107 PMCID: PMC9168133 DOI: 10.1155/2022/5042762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
Fibrosis is a common pathological outcome of chronic injuries, characterized by excessive deposition of extracellular matrix components in organs, as seen in most chronic inflammatory diseases. At present, there is an increasing tendency of the morbidity and mortality of diseases caused by fibrosis, but the treatment measures for fibrosis are still limited. Fibroblast growth factor 21 (FGF21) belongs to the FGF19 subfamily, which also has the name endocrine FGFs because of their endocrine manner. In recent years, it has been found that plasma FGF21 level is significantly correlated with fibrosis progression. Furthermore, there is evidence that FGF21 has a pronounced antifibrotic effect in a variety of fibrotic diseases. This review summarizes the biological effects of FGF21 and discusses what is currently known about this factor and fibrosis disease, highlighting emerging insights that warrant further research.
Collapse
|
24
|
Bhat N, Esteghamat F, Chaube BK, Gunawardhana K, Mani M, Thames C, Jain D, Ginsberg HN, Fernandes-Hernando C, Mani A. TCF7L2 transcriptionally regulates Fgf15 to maintain bile acid and lipid homeostasis through gut-liver crosstalk. FASEB J 2022; 36:e22185. [PMID: 35133032 PMCID: PMC9624374 DOI: 10.1096/fj.202101607r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/13/2022]
Abstract
FGF19/FGF15 is an endocrine regulator of hepatic bile salt and lipid metabolism, which has shown promising effects in the treatment of NASH in clinical trials. FGF19/15 is transcribed and released from enterocytes of the small intestine into enterohepatic circulation in response to bile-induced FXR activation. Previously, the TSS of FGF19 was identified to bind Wnt-regulated TCF7L2/encoded transcription factor TCF4 in colorectal cancer cells. Impaired Wnt signaling and specifical loss of function of its coreceptor LRP6 have been associated with NASH. We, therefore, examined if TCF7L2/TCF4 upregulates Fgf19 in the small intestine and restrains NASH through gut-liver crosstalk. We examined the mice globally overexpressing, haploinsufficient, and conditional knockout models of TCF7L2 in the intestinal epithelium. The TCF7L2+/- mice exhibited increased plasma bile salts and lipids and developed diet-induced fatty liver disease while mice globally overexpressing TCF7L2 were protected against these traits. Comprehensive in vivo analysis revealed that TCF7L2 transcriptionally upregulates FGF15 in the gut, leading to reduced bile synthesis and diminished intestinal lipid uptake. Accordingly, VilinCreert2 ; Tcf7L2fl/fl mice showed reduced Fgf19 in the ileum, and increased plasma bile. The global overexpression of TCF7L2 in mice with metabolic syndrome-linked LRP6R611C substitution rescued the fatty liver and fibrosis in the latter. Strikingly, the hepatic levels of TCF4 were reduced and CYP7a1 was increased in human NASH, indicating the relevance of TCF4-dependent regulation of bile synthesis to human disease. These studies identify the critical role of TCF4 as an upstream regulator of the FGF15-mediated gut-liver crosstalk that maintains bile and liver triglyceride homeostasis.
Collapse
Affiliation(s)
- Neha Bhat
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fatemehsadat Esteghamat
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bal Krishna Chaube
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kushan Gunawardhana
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mitra Mani
- New York Medical College, Valhalla, New York, USA,Department of Internal Medicine, Columbia University College of Physicians and Surgeon, New York, New York, USA
| | - Clay Thames
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dhanpat Jain
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Henry N. Ginsberg
- Department of Internal Medicine, Columbia University College of Physicians and Surgeon, New York, New York, USA
| | | | - Arya Mani
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA,Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
25
|
New insight of obesity-associated NAFLD: Dysregulated “crosstalk” between multi-organ and the liver? Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Wei JH, Lee MH, Lee WJ, Chen SC, Almalki OM, Chen JC, Wu CC, Lee YC. Change of cardiovascular risk associated serologic biomarkers after gastric bypass: A comparison of diabetic and non-diabetic Asian patients. Asian J Surg 2022; 45:2253-2258. [DOI: 10.1016/j.asjsur.2021.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 11/02/2022] Open
|
27
|
Fiorucci S, Distrutti E. Linking liver metabolic and vascular disease via bile acid signaling. Trends Mol Med 2021; 28:51-66. [PMID: 34815180 DOI: 10.1016/j.molmed.2021.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder affecting over one quarter of the global population. Liver fat accumulation in NAFLD is promoted by increased de novo lipogenesis leading to the development of a proatherosclerotic lipid profile and atherosclerotic cardiovascular disease (CVD). The CVD component of NAFLD is the main determinant of patient outcome. The farnesoid X receptor (FXR) and the G protein bile acid-activated receptor 1 (GPBAR1) are bile acid-activated receptors that modulate inflammation and lipid and glucose metabolism in the liver and CV system, and are thus potential therapeutic targets. We review bile acid signaling in liver, metabolic tissues, and the CV system, and we propose the development of dual FXR/GPBAR1 ligands, intestine-restricted FXR ligands, or statin combinations to limit side effects and effectively manage the liver and CV components of NAFLD.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Eleonora Distrutti
- Struttura Complessa di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| |
Collapse
|
28
|
Radun R, Trauner M. Role of FXR in Bile Acid and Metabolic Homeostasis in NASH: Pathogenetic Concepts and Therapeutic Opportunities. Semin Liver Dis 2021; 41:461-475. [PMID: 34289507 PMCID: PMC8492195 DOI: 10.1055/s-0041-1731707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent cause of liver disease, increasingly contributing to the burden of liver transplantation. In search for effective treatments, novel strategies addressing metabolic dysregulation, inflammation, and fibrosis are continuously emerging. Disturbed bile acid (BA) homeostasis and microcholestasis via hepatocellular retention of potentially toxic BAs may be an underappreciated factor in the pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH) as its progressive variant. In addition to their detergent properties, BAs act as signaling molecules regulating cellular homeostasis through interaction with BA receptors such as the Farnesoid X receptor (FXR). Apart from being a key regulator of BA metabolism and enterohepatic circulation, FXR regulates metabolic homeostasis and has immune-modulatory effects, making it an attractive therapeutic target in NAFLD/NASH. In this review, the molecular basis and therapeutic potential of targeting FXR with a specific focus on restoring BA and metabolic homeostasis in NASH is summarized.
Collapse
Affiliation(s)
- Richard Radun
- Department of Internal Medicine III, Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna, Austria
| | - Michael Trauner
- Department of Internal Medicine III, Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna, Austria
| |
Collapse
|
29
|
Ravanbakhsh N, Kohli R. Biomarkers in Fatty Liver Disease-Here is the Skinny. J Clin Exp Hepatol 2021; 11:637-640. [PMID: 34866840 PMCID: PMC8617537 DOI: 10.1016/j.jceh.2021.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Naseem Ravanbakhsh
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, 4650 Sunset Blvd., Mailstop #78, Los Angeles, CA 90027, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, 4650 Sunset Blvd., Mailstop #78, Los Angeles, CA 90027, USA
| |
Collapse
|
30
|
Risk of Heart Disease after Cholecystectomy: A Nationwide Population-Based Cohort Study in South Korea. J Clin Med 2021; 10:jcm10153253. [PMID: 34362037 PMCID: PMC8348353 DOI: 10.3390/jcm10153253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the study is to evaluate the risk of heart disease in individuals who underwent cholecystectomy. This was a retrospective cohort study using the National Health Insurance Service database of South Korea. A total of 146,928 patients who underwent cholecystectomy and 268,502 age- and sex-matched controls were compared. Multivariate Cox proportional hazard regression analysis was used to estimate the hazard ratio (HR) and 95% confidence interval (CI) for heart disease after cholecystectomy. In results, a previous history of cholecystectomy increased the risk of heart disease (congestive heart failure [CHF], myocardial infarction [MI], atrial fibrillation [AF]) (adjusted HR [aHR]: 1.40, 95% CI: [1.36–1.44]). The increased risk was particularly seen for CHF (1.22 [1.16–1.29]) but not for MI and AF (p > 0.05). In the subgroup analyses, cholecystectomy was associated with an increased risk of MI in patients aged <65 years (1.49 [1.16–1.92] and 1.18 [1.05–1.35] in patients aged 40–49 and 50–64 years, respectively), but not in those aged ≥ 65 years (0.932 [0.838–1.037]). Moreover, the risk of MI was increased in patients without diabetes mellitus (DM) (1.16 [1.06–1.27]); however, it was decreased in patients with DM (0.83 [0.72–0.97]). In contrast, cholecystectomy did not modify the risk of AF in the subgroup analyses (all p > 0.05). In conclusion, a history of cholecystectomy is associated with an increased risk of CHF. Cholecystectomy may increase the risk of MI in the younger population without DM. These findings suggest that the alteration of bile metabolism and homeostasis might be potentially associated with the development of some heart diseases.
Collapse
|
31
|
Role of FGF15 in Hepatic Surgery in the Presence of Tumorigenesis: Dr. Jekyll or Mr. Hyde? Cells 2021; 10:cells10061421. [PMID: 34200439 PMCID: PMC8228386 DOI: 10.3390/cells10061421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
The pro-tumorigenic activity of fibroblast growth factor (FGF) 19 (FGF15 in its rodent orthologue) in hepatocellular carcinoma (HCC), as well as the unsolved problem that ischemia-reperfusion (IR) injury supposes in liver surgeries, are well known. However, it has been shown that FGF15 administration protects against liver damage and regenerative failure in liver transplantation (LT) from brain-dead donors without tumor signals, providing a benefit in avoiding IR injury. The protection provided by FGF15/19 is due to its anti-apoptotic and pro-regenerative properties, which make this molecule a potentially beneficial or harmful factor, depending on the disease. In the present review, we describe the preclinical models currently available to understand the signaling pathways responsible for the apparent controversial effects of FGF15/19 in the liver (to repair a damaged liver or to promote tumorigenesis). As well, we study the potential pharmacological use that has the activation or inhibition of FGF15/19 pathways depending on the disease to be treated. We also discuss whether FGF15/19 non-pro-tumorigenic variants, which have been developed for the treatment of liver diseases, might be promising approaches in the surgery of hepatic resections and LT using healthy livers and livers from extended-criteria donors.
Collapse
|
32
|
Sciarrillo CM, Keirns BH, Koemel NA, Anderson KL, Emerson SR. Fibroblast Growth Factor 19: Potential modulation of hepatic metabolism for the treatment of non-alcoholic fatty liver disease. Liver Int 2021; 41:894-904. [PMID: 33506572 DOI: 10.1111/liv.14802] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver disease that is becoming more prevalent in concert with obesity and poor lifestyle habits. Although NAFLD is treatable via lifestyle modification in early stages, more advanced liver pathologies (eg non-alcoholic steatohepatitis [NASH]) are harder to reverse. There is no Food and Drug Administration approved pharmacological treatment for NAFLD, and little research has been done to identify compounds that target key NAFLD mechanisms. Bile acids and bile acid receptors have been implicated in NAFLD pathogenesis and modulating bile acids and bile acid receptors has recently been targeted as a therapeutic treatment option for NAFLD. Fibroblast growth factor 19 (FGF19), a nutritionally regulated post-prandial hormone, is a chief regulator of bile acid metabolism and an important player in lipid and carbohydrate metabolism, including key mechanisms of NAFLD pathogenesis. In this review, we discuss recent findings related to FGF19-regulated processes involved in the pathogenesis of NAFLD. We summarize known and conjectural frameworks and limitations for the clinical application of FGF19-targeted therapies as they relate to NAFLD.
Collapse
Affiliation(s)
| | - Bryant H Keirns
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Nicholas A Koemel
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Kendall L Anderson
- Department of Pediatric Gastroenterology and Hepatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sam R Emerson
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
33
|
Fiorucci S, Distrutti E, Carino A, Zampella A, Biagioli M. Bile acids and their receptors in metabolic disorders. Prog Lipid Res 2021; 82:101094. [PMID: 33636214 DOI: 10.1016/j.plipres.2021.101094] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Bile acids are a large family of atypical steroids which exert their functions by binding to a family of ubiquitous cell membrane and nuclear receptors. There are two main bile acid activated receptors, FXR and GPBAR1, that are exclusively activated by bile acids, while other receptors CAR, LXRs, PXR, RORγT, S1PR2and VDR are activated by bile acids in addition to other more selective endogenous ligands. In the intestine, activation of FXR and GPBAR1 promotes the release of FGF15/19 and GLP1 which integrate their signaling with direct effects exerted by theother receptors in target tissues. This network is tuned in a time ordered manner by circadian rhythm and is critical for the regulation of metabolic process including autophagy, fast-to-feed transition, lipid and glucose metabolism, energy balance and immune responses. In the last decade FXR ligands have entered clinical trials but development of systemic FXR agonists has been proven challenging because their side effects including increased levels of cholesterol and Low Density Lipoproteins cholesterol (LDL-c) and reduced High-Density Lipoprotein cholesterol (HDL-c). In addition, pruritus has emerged as a common, dose related, side effect of FXR ligands. Intestinal-restricted FXR and GPBAR1 agonists and dual FXR/GPBAR1 agonists have been developed. Here we review the last decade in bile acids physiology and pharmacology.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Adriana Carino
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli, Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
34
|
Zhou R, Llorente C, Cao J, Zaramela LS, Zeng S, Gao B, Li SZ, Welch RD, Huang FQ, Qi LW, Pan C, Huang Y, Zhou P, Beussen I, Zhang Y, Bryam G, Fiehn O, Wang L, Liu EH, Yu RT, Downes M, Evans RM, Goglin K, Fouts DE, Brenner DA, Bode L, Fan X, Zengler K, Schnabl B. Intestinal α1-2-Fucosylation Contributes to Obesity and Steatohepatitis in Mice. Cell Mol Gastroenterol Hepatol 2021; 12:293-320. [PMID: 33631374 PMCID: PMC8166943 DOI: 10.1016/j.jcmgh.2021.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Fucosyltransferase 2 (Fut2)-mediated intestinal α1- 2-fucosylation is important for host-microbe interactions and has been associated with several diseases, but its role in obesity and hepatic steatohepatitis is not known. The aim of this study was to investigate the role of Fut2 in a Western-style diet-induced mouse model of obesity and steatohepatitis. METHODS Wild-type (WT) and Fut2-deficient littermate mice were used and features of the metabolic syndrome and steatohepatitis were assessed after 20 weeks of Western diet feeding. RESULTS Intestinal α1-2-fucosylation was suppressed in WT mice after Western diet feeding, and supplementation of α1-2-fucosylated glycans exacerbated obesity and steatohepatitis in these mice. Fut2-deficient mice were protected from Western diet-induced features of obesity and steatohepatitis despite an increased caloric intake. These mice have increased energy expenditure and thermogenesis, as evidenced by a higher core body temperature. Protection from obesity and steatohepatitis associated with Fut2 deficiency is transmissible to WT mice via microbiota exchange; phenotypic differences between Western diet-fed WT and Fut2-deficient mice were reduced with antibiotic treatment. Fut2 deficiency attenuated diet-induced bile acid accumulation by altered relative abundance of bacterial enzyme 7-α-hydroxysteroid dehydrogenases metabolizing bile acids and by increased fecal excretion of secondary bile acids. This also was associated with increased intestinal farnesoid X receptor/fibroblast growth factor 15 signaling, which inhibits hepatic synthesis of bile acids. Dietary supplementation of α1-2-fucosylated glycans abrogates the protective effects of Fut2 deficiency. CONCLUSIONS α1-2-fucosylation is an important host-derived regulator of intestinal microbiota and plays an important role for the pathogenesis of obesity and steatohepatitis in mice.
Collapse
Affiliation(s)
- Rongrong Zhou
- Department of Infectious Diseases, Xiangya Hospital, Central South University and Key Laboratory of Viral Hepatitis, Hunan, Changsha, China; Department of Medicine, University of California San Diego, La Jolla, California
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Jinling Cao
- Department of Medicine, University of California San Diego, La Jolla, California; College of Food Science and Engineering, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Livia S Zaramela
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Suling Zeng
- Department of Medicine, University of California San Diego, La Jolla, California; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bei Gao
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Shang-Zhen Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ryan D Welch
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, California
| | - Feng-Qing Huang
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lian-Wen Qi
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chuyue Pan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yan Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University and Key Laboratory of Viral Hepatitis, Hunan, Changsha, China
| | - Pengchen Zhou
- Department of Infectious Diseases, Xiangya Hospital, Central South University and Key Laboratory of Viral Hepatitis, Hunan, Changsha, China
| | - Iris Beussen
- National Institutes of Health West Coast Metabolomics Center, University of California, Davis, California
| | - Ying Zhang
- National Institutes of Health West Coast Metabolomics Center, University of California, Davis, California; Department of Chemistry, University of California, Davis, California
| | - Gregory Bryam
- National Institutes of Health West Coast Metabolomics Center, University of California, Davis, California
| | - Oliver Fiehn
- National Institutes of Health West Coast Metabolomics Center, University of California, Davis, California
| | - Lirui Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, California
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, California
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, California
| | | | | | - David A Brenner
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, California
| | - Xuegong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University and Key Laboratory of Viral Hepatitis, Hunan, Changsha, China
| | - Karsten Zengler
- Department of Pediatrics, University of California San Diego, La Jolla, California; Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, VA San Diego Healthcare System, San Diego, California.
| |
Collapse
|
35
|
Wang LX, Frey MR, Kohli R. The Role of FGF19 and MALRD1 in Enterohepatic Bile Acid Signaling. Front Endocrinol (Lausanne) 2021; 12:799648. [PMID: 35116006 PMCID: PMC8804323 DOI: 10.3389/fendo.2021.799648] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bile acids are the catabolic end products of cholesterol metabolism that are best known for their role in the digestion of lipids. In the last two decades, extensive investigation has shown bile acids to be important signaling molecules in metabolic processes throughout the body. Bile acids are ligands that can bind to several receptors, including the nuclear receptor farnesoid X receptor (FXR) in ileal enterocytes. FXR activation induces the expression of fibroblast growth factor (FGF) 15/19, a hormone that can modulate bile acid levels, repress gluconeogenesis and lipogenesis, and promote glycogen synthesis. Recent studies have described a novel intestinal protein, MAM and LDL Receptor Class A Domain containing 1 (MALRD1) that positively affects FGF15/19 levels. This signaling pathway presents an exciting target for treating metabolic disease and bile acid-related disorders.
Collapse
|
36
|
Kim YC, Seok S, Zhang Y, Ma J, Kong B, Guo G, Kemper B, Kemper JK. Intestinal FGF15/19 physiologically repress hepatic lipogenesis in the late fed-state by activating SHP and DNMT3A. Nat Commun 2020; 11:5969. [PMID: 33235221 PMCID: PMC7686350 DOI: 10.1038/s41467-020-19803-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatic lipogenesis is normally tightly regulated but is aberrantly elevated in obesity. Fibroblast Growth Factor-15/19 (mouse FGF15, human FGF19) are bile acid-induced late fed-state gut hormones that decrease hepatic lipid levels by unclear mechanisms. We show that FGF15/19 and FGF15/19-activated Small Heterodimer Partner (SHP/NR0B2) have a role in transcriptional repression of lipogenesis. Comparative genomic analyses reveal that most of the SHP cistrome, including lipogenic genes repressed by FGF19, have overlapping CpG islands. FGF19 treatment or SHP overexpression in mice inhibits lipogenesis in a DNA methyltransferase-3a (DNMT3A)-dependent manner. FGF19-mediated activation of SHP via phosphorylation recruits DNMT3A to lipogenic genes, leading to epigenetic repression via DNA methylation. In non-alcoholic fatty liver disease (NAFLD) patients and obese mice, occupancy of SHP and DNMT3A and DNA methylation at lipogenic genes are low, with elevated gene expression. In conclusion, FGF15/19 represses hepatic lipogenesis by activating SHP and DNMT3A physiologically, which is likely dysregulated in NAFLD. Hepatic lipogenesis is a tightly regulated process, which is elevated in obesity. Here the authors report that FGF15/19, bile acid-induced gut hormones, repress lipogenic genes in the late fed-state by activating small heterodimer partner (SHP) and promoting SHP-dependent recruitment of DNA methyltransferase DNMT3A to lipogenic genes.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sunmi Seok
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Grace Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
37
|
Wei HC, Xing SJ, Chen P, Wu XF, Gu X, Luo L, Liang XF, Xue M. Plant protein diet-induced hypoimmunity by affecting the spiral valve intestinal microbiota and bile acid enterohepatic circulation in Amur sturgeon (Acipenser schrenckii). FISH & SHELLFISH IMMUNOLOGY 2020; 106:421-430. [PMID: 32798694 DOI: 10.1016/j.fsi.2020.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
An 8-week growth trial was conducted to study enterohepatic recirculation of bile acid metabolism and the intestinal microbiota of Amur sturgeon (Acipenser schrenckii) fed with three diets, including 540 g/kg, 270 g/kg or 0 g/kg fishmeal, which was correspondingly replaced by a plant protein blend (named P0, P50 and P100, respectively). The diets were designed to be isonitrogenous, isoenergetic and essential nutrients balanced. With rising levels of dietary plant protein, disruption of the spiral valve intestinal microbiota and more morbidity with liver disease were observed in the P100 group, although there were no haematological abnormalities observed. An obvious bile acids enterohepatic circulation disorder was found with phenotypes of increased liver bile acids compensatory synthesis, and reduced expression of bile acid receptors (FXR and TGR5), which induced BA accumulative toxicity. Accompanied by increased oxidative stress, it further induced hepatic lesions and hypoimmunity, which were non-negligible reasons for the high mortality and low utilization ability of plant protein by Amur sturgeon.
Collapse
Affiliation(s)
- H C Wei
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - S J Xing
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - P Chen
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - X F Wu
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - X Gu
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - L Luo
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - X F Liang
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - M Xue
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Agriculture and Rural Ministry Quality and Safety Risk Evaluation Laboratory of Feed and Feed Additives for Animal Husbandry, Beijing, 100081, China.
| |
Collapse
|
38
|
Dávalos-Salas M, Mariadason JM, Watt MJ, Montgomery MK. Molecular regulators of lipid metabolism in the intestine - Underestimated therapeutic targets for obesity? Biochem Pharmacol 2020; 178:114091. [PMID: 32535104 DOI: 10.1016/j.bcp.2020.114091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
The incidence of obesity and type 2 diabetes continues to rise across the globe necessitating the need to identify new therapeutic approaches to manage these diseases. In this review, we explore the potential for therapeutic interventions focussed on the intestinal epithelium, by targeting the role of this tissue in lipid uptake, lipid-mediated cross talk and lipid oxidation. We focus initially on ongoing strategies to manage obesity by targeting the essential role of the intestinal epithelium in lipid uptake, and in mediating tissue cross talk to regulate food intake. Subsequently, we explore a previously underestimated capacity of intestinal epithelial cells to oxidize fatty acids. In this context, we describe recent findings which have unveiled a key role for the peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors and histone deacetylases (HDACs) in the regulation of lipid oxidation genes in enterocytes and how targeted genetic manipulation of these factors in enterocytes reduces weight gain, identifying intestinal PPARs and HDACs as potential therapeutic targets in the management of obesity.
Collapse
Affiliation(s)
- Mercedes Dávalos-Salas
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia; La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - John M Mariadason
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia; La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Physiology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Magdalene K Montgomery
- Department of Physiology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
39
|
Weaver MJ, McHenry SA, Sayuk GS, Gyawali CP, Davidson NO. Bile Acid Diarrhea and NAFLD: Shared Pathways for Distinct Phenotypes. Hepatol Commun 2020; 4:493-503. [PMID: 32258945 PMCID: PMC7109338 DOI: 10.1002/hep4.1485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Irritable bowel syndrome with diarrhea (IBS-D) and NAFLD are both common conditions that may be influenced by shared pathways of altered bile acid (BA) signaling and homeostatic regulation. Pathophysiological links between IBS-D and altered BA metabolism include altered signaling through the ileal enterokine and fibroblast growth factor 19 (FGF19) as well as increased circulating levels of 7α-hydroxy-4-cholesten-3-one, a metabolic intermediate that denotes increased hepatic BA production from cholesterol. Defective production or release of FGF19 is associated with increased BA production and BA diarrhea in some IBS-D patients. FGF19 functions as a negative regulator of hepatic cholesterol 7α-hydroxylase; therefore, reduced serum FGF19 effectively de-represses hepatic BA production in a subset of IBS-D patients, causing BA diarrhea. In addition, FGF19 modulates hepatic metabolic homeostatic response signaling by means of the fibroblast growth factor receptor 4/klotho beta receptor to activate cascades involved in hepatic lipogenesis, fatty acid oxidation, and insulin sensitivity. Emerging evidence of low circulating FGF19 levels in subsets of patients with pediatric and adult NAFLD demonstrates altered enterohepatic BA homeostasis in NAFLD. Conclusion: Here we outline how understanding of shared pathways of aberrant BA homeostatic signaling may guide targeted therapies in some patients with IBS-D and subsets of patients with NAFLD.
Collapse
Affiliation(s)
- Michael J. Weaver
- Division of GastroenterologyWashington University School of MedicineSt. LouisMO
| | - Scott A. McHenry
- Division of GastroenterologyWashington University School of MedicineSt. LouisMO
| | - Gregory S. Sayuk
- Division of GastroenterologyWashington University School of MedicineSt. LouisMO
- U.S. Department of Veterans AffairsVA St. Louis Health Care SystemJohn Cochran DivisionSt. LouisMO
| | - C. Prakash Gyawali
- Division of GastroenterologyWashington University School of MedicineSt. LouisMO
| | | |
Collapse
|
40
|
Kim K, Kim KH. Targeting of Secretory Proteins as a Therapeutic Strategy for Treatment of Nonalcoholic Steatohepatitis (NASH). Int J Mol Sci 2020; 21:ijms21072296. [PMID: 32225108 PMCID: PMC7177791 DOI: 10.3390/ijms21072296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is defined as a progressive form of nonalcoholic fatty liver disease (NAFLD) and is a common chronic liver disease that causes significant worldwide morbidity and mortality, and has no approved pharmacotherapy. Nevertheless, growing understanding of the molecular mechanisms underlying the development and progression of NASH has suggested multiple potential therapeutic targets and strategies to treat this disease. Here, we review this progress, with emphasis on the functional role of secretory proteins in the development and progression of NASH, in addition to the change of expression of various secretory proteins in mouse NASH models and human NASH subjects. We also highlight secretory protein-based therapeutic approaches that influence obesity-associated insulin resistance, liver steatosis, inflammation, and fibrosis, as well as the gut–liver and adipose–liver axes in the treatment of NASH.
Collapse
Affiliation(s)
- Kyeongjin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Inha-ro 100, Michuhol-gu, Incheon 22212, Korea
- Correspondence: (K.K.); (K.H.K.)
| | - Kook Hwan Kim
- Metabolic Diseases Research Center, GI Cell, Inc., B-1014, Tera Tower, Songpa-daero 167, Songpa-gu, Seoul 05855, Korea
- Correspondence: (K.K.); (K.H.K.)
| |
Collapse
|
41
|
Ocker M. Fibroblast growth factor signaling in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis: Paving the way to hepatocellular carcinoma. World J Gastroenterol 2020; 26:279-290. [PMID: 31988589 PMCID: PMC6969880 DOI: 10.3748/wjg.v26.i3.279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/17/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic disorders are increasingly leading to non-alcoholic fatty liver disease, subsequent steatohepatitis, cirrhosis and hepatocellular carcinoma. Fibroblast growth factors and their receptors play an important role in maintaining metabolic homeostasis also in the liver and disorders in signaling have been identified to contribute to those pathophysiologic conditions leading to hepatic lipid accumulation and chronic inflammation. While specific and well tolerated inhibitors of fibroblast growth factor receptor activity are currently developed for (non-liver) cancer therapy, treatment of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis is still limited. Fibroblast growth factor-mimicking or restoring approaches have recently evolved as a novel therapeutic option and the impact of such interactions with the fibroblast growth factor receptor signaling network during non-alcoholic fatty liver disease/non-alcoholic steatohepatitis development is reviewed here.
Collapse
Affiliation(s)
- Matthias Ocker
- Department of Gastroenterology (CBF), Charité University Medicine Berlin, Berlin 10117, Germany
| |
Collapse
|
42
|
Hu J, Liu Z, Tong Y, Mei Z, Xu A, Zhou P, Chen X, Tang W, Zhou Z, Xiao Y. Fibroblast Growth Factor 19 Levels Predict Subclinical Atherosclerosis in Men With Type 2 Diabetes. Front Endocrinol (Lausanne) 2020; 11:282. [PMID: 32528406 PMCID: PMC7258879 DOI: 10.3389/fendo.2020.00282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Objective: Fibroblast growth factor 19 (FGF19) plays an indispensable role in regulating bile acid, glucose, and lipid metabolism, and alterations of its circulating concentration is associated with the development of type 2 diabetes (T2D). Atherosclerosis is directly related to the death-deriving diabetic macroangiopathy in T2D, yet relationships between FGF19 and atherosclerosis in T2D remain unclear. The aim of this study was to investigate the association of circulating FGF19 levels with the development of subclinical atherosclerosis (subAS) in patients with T2D in a 3-year prospective study. Methods: In the present study, 153 newly diagnosed T2D patients without subAS were recruited at baseline, and 137 of them completed a 3-year follow-up. FGF19 levels were measured in fasting serum samples collected at baseline and the third-year visits. Carotid, femoral, and iliac intima-media thickness (IMT) were detected by high-resolution B-mode ultrasound to determine the presence of subAS. Logistic regression analysis was applied to assess the relationship between serum FGF19 and subAS in patients with T2D. Results: At baseline, serum FGF19 levels were positively correlated with carotid IMT and iliac IMT in men (r = 0.239, P = 0.036; r = 0.309, P = 0.006). At the 3-year follow-up, 25 out of 153 patients developed subAS, and FGF19 levels in men were higher in the subAS group than in the non-subAS group [202.7 (177.9-373.6) vs. 133.4 (85.6-171.3) pg/ml, P = 0.028]. Furthermore, in men, higher baseline levels of FGF19 were independently associated with a greater risk of subAS at year 3 in patients with T2D with an odds ratio (OR) of 4.798 per 1 standard deviation (SD) of the FGF19 concentration [OR = 4.798 (95% CI, 1.680-13.706), P = 0.003]. Baseline FGF19 levels yielded an area under the receiver operating characteristic curve of 0.769 to predict the development of subAS at year 3 in men with T2D. Conclusions: Serum FGF19 levels could help in predicting the development of atherosclerosis in men with T2D.
Collapse
Affiliation(s)
- Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Endocrinology, Xuhui District Central Hospital, Shanghai, China
| | - Yue Tong
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zubing Mei
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Anorectal Disease Institute of Shuguang Hospital, Shanghai, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
- Research Center of Heart, Brain, Hormone, and Healthy Aging, The University of Hong Kong, Hong Kong, China
| | - Pengcheng Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
- Research Center of Heart, Brain, Hormone, and Healthy Aging, The University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weili Tang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhiguang Zhou
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Yang Xiao
| |
Collapse
|
43
|
Henriksson E, Andersen B. FGF19 and FGF21 for the Treatment of NASH-Two Sides of the Same Coin? Differential and Overlapping Effects of FGF19 and FGF21 From Mice to Human. Front Endocrinol (Lausanne) 2020; 11:601349. [PMID: 33414764 PMCID: PMC7783467 DOI: 10.3389/fendo.2020.601349] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
FGF19 and FGF21 analogues are currently in clinical development for the potential treatment of NASH. In Phase 2 clinical trials analogues of FGF19 and FGF21 decrease hepatic steatosis with up to 70% (MRI-PDFF) after 12 weeks and as early as 12-16 weeks of treatment an improvement in NASH resolution and fibrosis has been observed. Therefore, this class of compounds is currently of great interest in the field of NASH. FGF19 and FGF21 belong to the endocrine FGF19 subfamily and both require the co-receptor beta-klotho for binding and signalling through the FGF receptors. FGF19 is expressed in the ileal enterocytes and is released into the enterohepatic circulation in response to bile acids stimuli and in the liver FGF19 inhibits hepatic bile acids synthesis by transcriptional regulation of Cyp7A1, which is the rate limiting enzyme. FGF21 is, on the other hand, highly expressed in the liver and is released in response to high glucose, high free-fatty acids and low amino-acid supply and regulates energy, glucose and lipid homeostasis by actions in the CNS and in the adipose tissue. FGF19 and FGF21 are differentially expressed, have distinct target tissues and separate physiological functions. It is therefore of peculiar interest to understand why treatment with both FGF19 and FGF21 analogues have strong beneficial effects on NASH parameters in mice and human and whether the mode of action is overlapping This review will highlight the physiological and pharmacological effects of FGF19 and FGF21. The potential mode of action behind the anti-steatotic, anti-inflammatory and anti-fibrotic effects of FGF19 and FGF21 will be discussed. Finally, development of drugs is always a risk benefit analysis and the human relevance of adverse effects observed in pre-clinical species as well as findings in humans will be discussed. The aim is to provide a comprehensive overview of the current understanding of this drug class for the potential treatment of NASH.
Collapse
|
44
|
Chen J, Zheng M, Liu J, Luo Y, Yang W, Yang J, Liu J, Zhou J, Xu C, Zhao F, Su M, Zang S, Shi J. Ratio of Conjugated Chenodeoxycholic to Muricholic Acids is Associated with Severity of Nonalcoholic Steatohepatitis. Obesity (Silver Spring) 2019; 27:2055-2066. [PMID: 31657148 DOI: 10.1002/oby.22627] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Bile acids (BAs) are important molecules in the progression of nonalcoholic fatty liver disease. This study aimed to investigate BA profile alterations in Chinese nonalcoholic steatohepatitis (NASH) patients. METHODS BA profiles in serum and liver tissues were determined by ultraperformance liquid chromatography coupled to tandem mass spectrometry in patients from two different clinical centers. RESULTS A total of 134 participants were enrolled in this study to serve as the training (n = 87) and validation (n = 47) cohorts. The ratio of circulating conjugated chenodeoxycholic acids to muricholic acids (P = 0.001) was elevated from healthy controls to non-NASH individuals to NASH individuals in a stepwise manner in the training cohort and was positively associated with the histological severity of NASH: steatosis (R2 = 0.12), lobular inflammation (R2 = 0.12), ballooning (R2 = 0.11), and fibrosis stage (R2 = 0.18). The ratio was elevated in the validation cohort of NASH patients (P < 0.001), and it was able to predict NASH (area under the receiver operating characteristic curve: 75%) and significant fibrosis (area under the receiver operating characteristic curve: 71%) in these two cohorts. Moreover, this elevated ratio and impaired farnesoid X receptor signaling were found in the NASH liver. CONCLUSIONS Altered BA profile in NASH is closely associated with the severity of liver lesions, and it has the potential for predicting NASH development.
Collapse
Affiliation(s)
- Jin Chen
- Department of Gastroenterology, First People's Hospital of Yancheng City, Yancheng, Jiangsu, China
| | - Minghua Zheng
- Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Liu
- Department of Endocrinology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yan Luo
- Department of Transformation Medical platform, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Wenjun Yang
- Department of Pathology, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Jing Yang
- Department of Transformation Medical platform, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Juan Liu
- Department of Pathology, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Jingxing Zhou
- Department of Statistics, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Chengfu Xu
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Faling Zhao
- Department of Statistics, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mingming Su
- Metabo-profile Biotechnology, Shanghai, China
| | - Shufei Zang
- Department of Endocrinology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Junping Shi
- Department of Liver Diseases, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | | |
Collapse
|
45
|
Fukui H. Role of Gut Dysbiosis in Liver Diseases: What Have We Learned So Far? Diseases 2019; 7:diseases7040058. [PMID: 31726747 PMCID: PMC6956030 DOI: 10.3390/diseases7040058] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence supports that gut dysbiosis may relate to various liver diseases. Alcoholics with high intestinal permeability had a decrease in the abundance of Ruminnococcus. Intestinal dysmotility, increased gastric pH, and altered immune responses in addition to environmental and genetic factors are likely to cause alcohol-associated gut microbial changes. Alcohol-induced dysbiosis may be associated with gut barrier dysfunction, as microbiota and their products modulate barrier function by affecting epithelial pro-inflammatory responses and mucosal repair functions. High levels of plasma endotoxin are detected in alcoholics, in moderate fatty liver to advanced cirrhosis. Decreased abundance of Faecalibacterium prausnitzii, an anti-inflammatory commensal, stimulating IL-10 secretion and inhibiting IL-12 and interferon-γ expression. Proteobacteria, Enterobacteriaceae, and Escherichia were reported to be increased in NAFLD (nonalcoholic fatty liver disease) patients. Increased abundance of fecal Escherichia to elevated blood alcohol levels in these patients and gut microbiota enriched in alcohol-producing bacteria produce more alcohol (alcohol hypothesis). Some undetermined pathological sequences related to gut dysbiosis may facilitate energy-producing and proinflammatory conditions for the progression of NAFLD. A shortage of autochthonous non-pathogenic bacteria and an overgrowth of potentially pathogenic bacteria are common findings in cirrhotic patients. The ratio of the amounts of beneficial autochthonous taxa (Lachnospiraceae + Ruminococaceae + Veillonellaceae + Clostridiales Incertae Sedis XIV) to those of potentially pathogenic taxa (Enterobacteriaceae + Bacteroidaceae) was low in those with early death and organ failure. Cirrhotic patients with decreased microbial diversity before liver transplantation were more likely to develop post-transplant infections and cognitive impairment related to residual dysbiosis. Patients with PSC had marked reduction of bacterial diversity. Enterococcus and Lactobacillus were increased in PSC patients (without liver cirrhosis.) Treatment-naive PBC patients were associated with altered composition and function of gut microbiota, as well as a lower level of diversity. As serum anti-gp210 antibody has been considered as an index of disease progression, relatively lower species richness and lower abundance of Faecalibacterium spp. in gp210-positive patients are interesting. The dysbiosis-induced altered bacterial metabolites such as a hepatocarcinogenesis promotor DCA, together with a leaky gut and bacterial translocation. Gut protective Akkermansia and butyrate-producing genera were decreased, while genera producing-lipopolysaccharide were increased in early hepatocellular carcinoma (HCC) patients.
Collapse
Affiliation(s)
- Hiroshi Fukui
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8522, Japan
| |
Collapse
|
46
|
Peng M, Zheng Q, Liu P, Liang X, Zhang M, Wang Y, Zhao Y. Developments in the study of gastrointestinal microbiome disorders affected by FGF19 in the occurrence and development of colorectal neoplasms. J Cell Physiol 2019; 235:4060-4069. [PMID: 31637718 DOI: 10.1002/jcp.29322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
Colorectal neoplasms are a type of malignant digestive system tumor that has become the third-highest morbidity tumor in China and the fourth leading cause of cancer-related death worldwide. The role of the gastrointestinal (GI) microbiome in bile acid metabolism, inflammation, and insulin resistance and its strong correlation with the occurrence and development of colorectal neoplasms have gradually led to it becoming a target area of tumor research. Fibroblast growth factor (FGF) 19 is a hormone that is secreted in mainly the ileum and can regulate bile acid biosynthesis, improve inflammation, and regulate insulin resistance. The relationship of the GI microbiome, FGF19 and its carcinogenic activities in colorectal neoplasms enticed us to search for potential targets and research ideas for the clinical diagnosis and treatment of colorectal neoplasms.
Collapse
Affiliation(s)
- Meichang Peng
- Basic Medical School, Guangdong Medical University, Dongguan, Guangdong, China.,Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong, China
| | - Qiaowen Zheng
- Basic Medical School, Guangdong Medical University, Dongguan, Guangdong, China
| | - Peiqi Liu
- Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xinyun Liang
- Basic Medical School, Guangdong Medical University, Dongguan, Guangdong, China
| | - Min Zhang
- Basic Medical School, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yan Wang
- Basic Medical School, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yi Zhao
- Basic Medical School, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
47
|
van Nierop FS, Meessen ECE, Nelissen KGM, Achterbergh R, Lammers LA, Vaz FM, Mathôt RAA, Klümpen HJ, Olde Damink SW, Schaap FG, Romijn JA, Kemper EM, Soeters MR. Differential effects of a 40-hour fast and bile acid supplementation on human GLP-1 and FGF19 responses. Am J Physiol Endocrinol Metab 2019; 317:E494-E502. [PMID: 31237451 DOI: 10.1152/ajpendo.00534.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bile acids, glucagon-like peptide-1 (GLP-1), and fibroblast growth factor 19 (FGF19) play an important role in postprandial metabolism. In this study, we investigated the postprandial bile acid response in plasma and its relation to insulin, GLP-1, and FGF19. First, we investigated the postprandial response to 40-h fast. Then we administered glycine-conjugated deoxycholic acid (gDCA) with the meal. We performed two separate observational randomized crossover studies on healthy, lean men. In experiment 1: we tested 4-h mixed meal after an overnight fast and a 40-h fast. In experiment 2, we tested a 4-h mixed meal test with and without gDCA supplementation. Both studies measured postprandial glucose, insulin, bile acids, GLP-1, and FGF19. In experiment 1, 40 h of fasting induced insulin resistance and increased postprandial GLP-1 and FGF19 concentrations. After an overnight fast, we observed strong correlations between postprandial insulin and gDCA levels at specific time points. In experiment 2, administration of gDCA increased GLP-1 levels and lowered late postprandial glucose without effect on FGF19. Energy expenditure was not affected by gDCA administration. Unexpectedly, 40 h of fasting increased both GLP-1 and FGF19, where the former appeared bile acid independent and the latter bile acid dependent. Second, a single dose of gDCA increased postprandial GLP-1. Therefore, our data add complexity to the physiological regulation of the enterokines GLP-1 and FGF19 by bile acids.
Collapse
Affiliation(s)
- F Samuel van Nierop
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| | - Emma C E Meessen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| | - Kyra G M Nelissen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| | - Roos Achterbergh
- Department of Internal Medicine, Amsterdam University Medical Centers, The Netherlands
| | - Laureen A Lammers
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, The Netherlands
| | - Frédéric M Vaz
- Department of Clinical Chemistry, Amsterdam University Medical Centers, The Netherlands
| | - Ron A A Mathôt
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, The Netherlands
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Amsterdam University Medical Centers, The Netherlands
| | - Steven W Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Johannes A Romijn
- Department of Internal Medicine, Amsterdam University Medical Centers, The Netherlands
| | - E Marleen Kemper
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, The Netherlands
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| |
Collapse
|
48
|
Wong YK, Cheung CYY, Tang CS, Au KW, Hai JSH, Lee CH, Lau KK, Cheung BMY, Sham PC, Xu A, Lam KSL, Tse HF. Age-Biomarkers-Clinical Risk Factors for Prediction of Cardiovascular Events in Patients With Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2019; 38:2519-2527. [PMID: 30354221 DOI: 10.1161/atvbaha.118.311726] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective- In patients with stable coronary artery disease, conventional risk factors provide limited incremental predictive value for cardiovascular events. We sought to investigate whether a panel of cardiometabolic biomarkers alone or combined with conventional risk factors would exhibit incremental value in the prediction of cardiovascular events. Approach and Results- In the discovery cohort, we measured serum adiponectin, A-FABP (adipocyte fatty acid-binding protein), lipocalin-2, FGF (fibroblast growth factor)-19 and 21, plasminogen activator inhibitor-1, and retinol-binding protein-4 in 1166 Chinese coronary artery disease patients. After a median follow-up of 35 months, 170 patients developed new-onset major adverse cardiovascular events (MACE). In the model with age ≥65 years and conventional risk factors, area under the curve for predicting MACE was 0.68. Addition of lipocalin-2 to the age-clinical risk factor model improved predictive accuracy (area under the curve=0.73). Area under the curve further increased to 0.75 when a combination of lipocalin-2, A-FABP, and FGF-19 was added to yield age-biomarkers-clinical risk factor model. The adjusted hazard ratio on MACEs for lipocalin-2, A-FABP, and FGF-19 levels above optimal cutoffs were 2.23 (95% CI, 1.62-3.08), 1.99 (95% CI, 1.43-2.76), and 1.65 (95% CI, 1.15-2.35), respectively. In the validation cohort of 1262 coronary artery disease patients with type 2 diabetes mellitus, the age-biomarkers-clinical risk factor model was confirmed to provide good discrimination and calibration over the conventional risk factor alone for prediction of MACE. Conclusions- A combination of the 3 biomarkers, lipocalin-2, A-FABP, and FGF-19, with clinical risk factors to yield the age-biomarkers-clinical risk factor model provides an optimal and validated prediction of new-onset MACE in patients with stable coronary artery disease.
Collapse
Affiliation(s)
- Yuen-Kwun Wong
- From the Department of Medicine (Y.-K.W., C.Y.Y.C., K.-W.A., J.S.H.H., C.-H.L., K.-K.L., B.M.Y.C., A.X., K.S.L.L., H.-F.T.), the University of Hong Kong, China
| | - Chloe Y Y Cheung
- From the Department of Medicine (Y.-K.W., C.Y.Y.C., K.-W.A., J.S.H.H., C.-H.L., K.-K.L., B.M.Y.C., A.X., K.S.L.L., H.-F.T.), the University of Hong Kong, China
| | - Clara S Tang
- Department of Surgery (C.S.T.), the University of Hong Kong, China
| | - Ka-Wing Au
- From the Department of Medicine (Y.-K.W., C.Y.Y.C., K.-W.A., J.S.H.H., C.-H.L., K.-K.L., B.M.Y.C., A.X., K.S.L.L., H.-F.T.), the University of Hong Kong, China
| | - JoJo S H Hai
- From the Department of Medicine (Y.-K.W., C.Y.Y.C., K.-W.A., J.S.H.H., C.-H.L., K.-K.L., B.M.Y.C., A.X., K.S.L.L., H.-F.T.), the University of Hong Kong, China
| | - Chi-Ho Lee
- From the Department of Medicine (Y.-K.W., C.Y.Y.C., K.-W.A., J.S.H.H., C.-H.L., K.-K.L., B.M.Y.C., A.X., K.S.L.L., H.-F.T.), the University of Hong Kong, China
| | - Kui-Kai Lau
- From the Department of Medicine (Y.-K.W., C.Y.Y.C., K.-W.A., J.S.H.H., C.-H.L., K.-K.L., B.M.Y.C., A.X., K.S.L.L., H.-F.T.), the University of Hong Kong, China
| | - Bernard M Y Cheung
- From the Department of Medicine (Y.-K.W., C.Y.Y.C., K.-W.A., J.S.H.H., C.-H.L., K.-K.L., B.M.Y.C., A.X., K.S.L.L., H.-F.T.), the University of Hong Kong, China
| | - Pak-Chung Sham
- Department of Psychiatry (P.-C.S.), the University of Hong Kong, China.,Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine (P.-C.S.), the University of Hong Kong, China.,State Key Laboratory in Brain and Cognitive Sciences (P.-C.S.), the University of Hong Kong, China
| | - Aimin Xu
- From the Department of Medicine (Y.-K.W., C.Y.Y.C., K.-W.A., J.S.H.H., C.-H.L., K.-K.L., B.M.Y.C., A.X., K.S.L.L., H.-F.T.), the University of Hong Kong, China.,State Key Laboratory of Pharmaceutical Biotechnology (A.X., K.S.L.L.), the University of Hong Kong, China.,Department of Pharmacology & Pharmacy (A.X.), the University of Hong Kong, China
| | - Karen S L Lam
- From the Department of Medicine (Y.-K.W., C.Y.Y.C., K.-W.A., J.S.H.H., C.-H.L., K.-K.L., B.M.Y.C., A.X., K.S.L.L., H.-F.T.), the University of Hong Kong, China.,State Key Laboratory of Pharmaceutical Biotechnology (A.X., K.S.L.L.), the University of Hong Kong, China
| | - Hung-Fat Tse
- From the Department of Medicine (Y.-K.W., C.Y.Y.C., K.-W.A., J.S.H.H., C.-H.L., K.-K.L., B.M.Y.C., A.X., K.S.L.L., H.-F.T.), the University of Hong Kong, China.,Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine (H.-F.T.), the University of Hong Kong, China.,Shenzhen Institutes of Research and Innovation (H.-F.T.), the University of Hong Kong, China.,Department of Medicine, Shenzhen Hong Kong University Hospital, China (H.-F.T.)
| |
Collapse
|
49
|
Koelfat KVK, Plummer MP, Schaap FG, Lenicek M, Jansen PLM, Deane AM, Olde Damink SWM. Gallbladder Dyskinesia Is Associated With an Impaired Postprandial Fibroblast Growth Factor 19 Response in Critically Ill Patients. Hepatology 2019; 70:308-318. [PMID: 30933374 DOI: 10.1002/hep.30629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/14/2019] [Indexed: 12/13/2022]
Abstract
Critical illness is associated with a disturbed regulation of gastrointestinal hormones resulting in functional and metabolic anomalies. Fibroblast growth factor 19 (FGF19) is an ileum-derived metabolic hormone induced by bile salts upon gallbladder emptying after enteral nutrient stimulation. Our aim was to study the nutrient-stimulated FGF19 response in 24 patients admitted to the intensive care unit (ICU) compared with 12 healthy controls. All subjects received intraduodenal high-lipid nutrient infusion for 120 minutes. Blood was collected every 30 minutes until 1 hour after infusion, and gallbladder emptying was studied by ultrasound. Serum levels of bile salts and FGF19 were assessed. ICU patients had significantly higher fasting bile salt serum levels compared with controls, whereas FGF19 serum levels were similar. In both groups, nutrient infusion elicited substantial bile salt elevations (P < 0.001), peaking at 90 minutes, albeit with a significantly lower peak in the ICU patients (P = 0.029). In controls, FGF19 was significantly elevated relative to baseline from 120 minutes onward (P < 0.001). In ICU patients, the FGF19 response was blunted, as reflected by significantly lower FGF19 elevations at 120, 150, and 180 minutes (P < 0.05) and significantly lower area under the curve (AUC) values compared with controls (P < 0.001). Gallbladder dysmotility was associated with the impaired FGF19 response in critical illness. The gallbladder ejection fraction correlated positively with FGF19 AUC values (ρ = +0.34, P = 0.045). In 10 of 24 ICU patients, gallbladder emptying was disturbed. These patients had significantly lower FGF19 AUC values (P < 0.001). Gallbladder emptying and the FGF19 response were respectively disturbed or absent in patients receiving norepinephrine. Conclusion: The nutrient-stimulated FGF19 response is impaired in ICU patients, which is mechanistically linked to gallbladder dysmotility in critical illness. This may contribute to disturbed liver metabolism in these patients and has potential as a nutritional biomarker.
Collapse
Affiliation(s)
- Kiran V K Koelfat
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Mark P Plummer
- Intensive Care Unit, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Frank G Schaap
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Martin Lenicek
- Department of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Peter L M Jansen
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Adam M Deane
- Intensive Care Unit, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
50
|
Bile Acid and Fibroblast Growth Factor 19 Regulation in Obese Diabetics, and Non-Alcoholic Fatty Liver Disease after Sleeve Gastrectomy. J Clin Med 2019; 8:jcm8060815. [PMID: 31181641 PMCID: PMC6616896 DOI: 10.3390/jcm8060815] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/26/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Sleeve gastrectomy (SG) is an effective treatment for obesity and type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD); however, the mechanism is not completely understood. Bile acids and fibroblast growth factors (FGFs) are involved in the regulation of energy metabolism. Methods: We investigated the roles of total bile acid and FGF 19 in T2DM remission and NAFLD improvement in obese subjects undergoing SG. A total of 18 patients with obesity and T2DM undergoing laparoscopic SG were enrolled in this study. Serial plasma total bile acid and FGF 19 levels were measured, while the fatty liver index was calculated before and after surgery. Results: The FGF 19 level significantly increased, and the total bile acid level and fatty liver index decreased 1 year after surgery. The complete T2DM remission rate was 66.7% one year after surgery; the complete remitters had significantly lower FGF 19 levels and higher insulin levels than the non-complete remitters. The complete remitters also had significantly decreased total bile acid levels and increased FGF 19 levels 1 year after surgery compared with those before surgery. The fatty improvers had significantly decreased total bile acid levels and increased FGF 19 levels 1 year after surgery compared with those before surgery. Conclusion: The total bile acids level and fatty liver index decreased, and the FGF 19 levels increased 1 year after SG. Both T2DM complete remitters and NAFLD improvers showed significantly decreased total bile acid levels and increased FGF 19 levels 1 year after SG. Plasma total bile acids and FGF 19 might have roles in T2DM remission and NAFLD improvement. Low preoperative FGF 19 levels might be a predictor for NAFLD improvement after SG.
Collapse
|