1
|
Vlk AM, Prantner D, Shirey KA, Perkins DJ, Buzza MS, Thumbigere-Math V, Keegan AD, Vogel SN. M2a macrophages facilitate resolution of chemically-induced colitis in TLR4-SNP mice. mBio 2023; 14:e0120823. [PMID: 37768050 PMCID: PMC10653841 DOI: 10.1128/mbio.01208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, impacts millions of individuals worldwide and severely impairs the quality of life for patients. Dysregulation of innate immune signaling pathways reduces barrier function and exacerbates disease progression. Macrophage (Mφ) signaling pathways are potential targets for IBD therapies. While multiple treatments are available for IBD, (i) not all patients respond, (ii) responses may diminish over time, and (iii) treatments often have undesirable side effects. Genetic studies have shown that the inheritance of two co-segregating SNPs expressed in the innate immune receptor, TLR4, is associated with human IBD. Mice expressing homologous SNPs ("TLR4-SNP" mice) exhibited more severe colitis than WT mice in a DSS-induced colonic inflammation/repair model. We identified a critical role for M2a "tissue repair" Mφ in the resolution of colitis. Our findings provide insight into potential development of novel therapies targeting Mφ signaling pathways that aim to alleviate the debilitating symptoms experienced by individuals with IBD.
Collapse
Affiliation(s)
- Alexandra M. Vlk
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Daniel Prantner
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Darren J. Perkins
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Marguerite S. Buzza
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vivek Thumbigere-Math
- Division of Periodontics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Achsah D. Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Holman JM, Colucci L, Baudewyns D, Balkan J, Hunt T, Hunt B, Kinney M, Holcomb L, Stratigakis A, Chen G, Moses PL, Mawe GM, Zhang T, Li Y, Ishaq SL. Steamed broccoli sprouts alleviate DSS-induced inflammation and retain gut microbial biogeography in mice. mSystems 2023; 8:e0053223. [PMID: 37702510 PMCID: PMC10654075 DOI: 10.1128/msystems.00532-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/24/2023] [Indexed: 09/14/2023] Open
Abstract
IMPORTANCE Evaluating bacterial communities across different locations in the gut provides a greater insight than fecal samples alone and provides an additional metric by which to evaluate beneficial host-microbe interactions. Here, we show that 10% steamed broccoli sprouts in the diet protects mice from the negative effects of dextran sodium sulfate-induced colitis, that colitis erases biogeographic patterns of bacterial communities in the gut, and that the cecum is not likely to be a significant contributor to colonic bacteria of interest in the DSS mouse model of ulcerative colitis. Mice fed the broccoli sprout diet during colitis performed better than mice fed the control diet while receiving DSS. The identification of accessible dietary components and concentrations that help maintain and correct the gut microbiome may provide universal and equitable approaches to IBD prevention and recovery, and broccoli sprouts represent a promising strategy.
Collapse
Affiliation(s)
- Johanna M. Holman
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Louisa Colucci
- Department of Biology, Husson University, Bangor, Maine, USA
| | - Dorien Baudewyns
- Department of Psychology, University of Maine, Orono, Maine, USA
| | - Joe Balkan
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Timothy Hunt
- Department of Biology, University of Maine, Orono, Maine, USA
| | - Benjamin Hunt
- Department of Biology, University of Maine, Orono, Maine, USA
| | - Marissa Kinney
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Lola Holcomb
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Allesandra Stratigakis
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA
| | - Grace Chen
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter L. Moses
- Departments of Neurological Sciences and of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Finch Therapeutics, Somerville, Massachusetts, USA
| | - Gary M. Mawe
- Departments of Neurological Sciences and of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Suzanne L. Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| |
Collapse
|
3
|
Li X, Morel JD, Benegiamo G, Poisson J, Bachmann A, Rapin A, Sulc J, Williams E, Perino A, Schoonjans K, Bou Sleiman M, Auwerx J. Genetic and dietary modulators of the inflammatory response in the gastrointestinal tract of the BXD mouse genetic reference population. eLife 2023; 12:RP87569. [PMID: 37855835 PMCID: PMC10586803 DOI: 10.7554/elife.87569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Inflammatory gut disorders, including inflammatory bowel disease (IBD), can be impacted by dietary, environmental, and genetic factors. While the incidence of IBD is increasing worldwide, we still lack a complete understanding of the gene-by-environment interactions underlying inflammation and IBD. Here, we profiled the colon transcriptome of 52 BXD mouse strains fed with a chow or high-fat diet (HFD) and identified a subset of BXD strains that exhibit an IBD-like transcriptome signature on HFD, indicating that an interplay of genetics and diet can significantly affect intestinal inflammation. Using gene co-expression analyses, we identified modules that are enriched for IBD-dysregulated genes and found that these IBD-related modules share cis-regulatory elements that are responsive to the STAT2, SMAD3, and REL transcription factors. We used module quantitative trait locus analyses to identify genetic loci associated with the expression of these modules. Through a prioritization scheme involving systems genetics in the mouse and integration with external human datasets, we identified Muc4 and Epha6 as the top candidates mediating differences in HFD-driven intestinal inflammation. This work provides insights into the contribution of genetics and diet to IBD risk and identifies two candidate genes, MUC4 and EPHA6, that may mediate IBD susceptibility in humans.
Collapse
Affiliation(s)
- Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Giorgia Benegiamo
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Johanne Poisson
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Alexis Bachmann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Alexis Rapin
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Evan Williams
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-AlzetteLuxembourg
| | - Alessia Perino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
4
|
Holman JM, Colucci L, Baudewyns D, Balkan J, Hunt T, Hunt B, Kinney M, Holcomb L, Chen G, Moses PL, Mawe GM, Zhang T, Li Y, Ishaq SL. Steamed broccoli sprouts alleviate DSS-induced inflammation and retain gut microbial biogeography in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.522641. [PMID: 37292900 PMCID: PMC10245759 DOI: 10.1101/2023.01.27.522641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inflammatory Bowel Diseases (IBD) are devastating conditions of the gastrointestinal tract with limited treatments, and dietary intervention may be effective, and affordable, for managing symptoms. Glucosinolate compounds are highly concentrated in broccoli sprouts, especially glucoraphanin, and can be metabolized by certain mammalian gut bacteria into anti inflammatory isothiocyanates, such as sulforaphane. Gut microbiota exhibit biogeographic patterns, but it is unknown if colitis alters these or whether the location of glucoraphanin metabolizing bacteria affects anti-inflammatory benefits. We fed specific pathogen free C57BL/6 mice either a control diet or a 10% steamed broccoli sprout diet, and gave a three-cycle regimen of 2.5% dextran sodium sulfate (DSS) in drinking water over a 34-day experiment to simulate chronic, relapsing ulcerative colitis. We monitored body weight, fecal characteristics, lipocalin, serum cytokines, and bacterial communities from the luminal and mucosa-associated populations in the jejunum, cecum, and colon. Mice fed the broccoli sprout diet with DSS treatment performed better than mice fed the control diet with DSS, including significantly more weight gain, lower Disease Activity Indexes, lower plasma lipocalin and proinflammatory cytokines, and higher bacterial richness in all gut locations. Bacterial communities were assorted by gut location, but were more homogenous across locations in the control diet + DSS mice. Importantly, our results showed that broccoli sprout feeding abrogated the effects of DSS on gut microbiota, as bacterial richness and biogeography were similar between mice receiving broccoli sprouts with and without DSS. Collectively, these results support the protective effect of steamed broccoli sprouts against dysbiosis and colitis induced by DSS. Importance Evaluating bacterial communities across different locations in the gut provides a greater insight than fecal samples alone, and provides an additional metric by which to evaluate beneficial host-microbe interactions. Here, we show that 10% steamed broccoli sprouts in the diet protects mice from the negative effects of dextran sodium sulfate induced colitis, that colitis erases biogeographical patterns of bacterial communities in the gut, and that the cecum is not likely to be a significant contributor to colonic bacteria of interest in the DSS mouse model of ulcerative colitis. Mice fed the broccoli sprout diet during colitis performed better than mice fed the control diet while receiving DSS. The identification of accessible dietary components and concentrations that help maintain and correct the gut microbiome may provide universal and equitable approaches to IBD prevention and recovery, and broccoli sprouts represent a promising strategy.
Collapse
Affiliation(s)
- Johanna M. Holman
- School of Food and Agriculture, University of Maine, Orono, Maine, USA 04469
| | - Louisa Colucci
- Department of Biology, Husson University, Bangor, Maine, USA 04401
| | | | - Joe Balkan
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA 02155
| | - Timothy Hunt
- Department of Biology, University of Maine, Orono, Maine, USA 04469
| | - Benjamin Hunt
- Department of Biology, University of Maine, Orono, Maine, USA 04469
| | - Marissa Kinney
- School of Food and Agriculture, University of Maine, Orono, Maine, USA 04469
| | - Lola Holcomb
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA 04469
| | - Grace Chen
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA 48109
| | - Peter L. Moses
- Departments of Neurological Sciences and of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA 05401
- Finch Therapeutics, Somerville, Massachusetts, USA 02143
| | - Gary M. Mawe
- Departments of Neurological Sciences and of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA 05401
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA 13790
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, Maine, USA 04469
| | - Suzanne L. Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine, USA 04469
| |
Collapse
|
5
|
Zhou L, Yan Z, Yang W, Buckley JA, Al Diffalha S, Benveniste EN, Qin H. Socs3 expression in myeloid cells modulates the pathogenesis of dextran sulfate sodium (DSS)-induced colitis. Front Immunol 2023; 14:1163987. [PMID: 37283760 PMCID: PMC10239850 DOI: 10.3389/fimmu.2023.1163987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Myeloid cells play a critical role in the pathogenesis of Inflammatory Bowel Diseases (IBDs), including Ulcerative Colitis (UC) and Crohn's Disease (CD). Dysregulation of the JAK/STAT pathway is associated with many pathological conditions, including IBD. Suppressors Of Cytokine Signaling (SOCS) are a family of proteins that negatively regulate the JAK/STAT pathway. Our previous studies identified that mice lacking Socs3 in myeloid cells developed a hyper-activated phenotype of macrophages and neutrophils in a pre-clinical model of Multiple Sclerosis. Methods To better understand the function of myeloid cell Socs3 in the pathogenesis of colitis, mice with Socs3 deletion in myeloid cells (Socs3 ΔLysM) were utilized in a DSS-induced colitis model. Results Our results indicate that Socs3 deficiency in myeloid cells leads to more severe colitis induced by DSS, which correlates with increased infiltration of monocytes and neutrophils in the colon and increased numbers of monocytes and neutrophils in the spleen. Furthermore, our results demonstrate that the expression of genes related to the pathogenesis and diagnosis of colitis such as Il1β, Lcn2, S100a8 and S100a9 were specifically enhanced in Socs3-deficient neutrophils localized to the colon and spleen. Conversely, there were no observable differences in gene expression in Ly6C+ monocytes. Depletion of neutrophils using a neutralizing antibody to Ly6G significantly improved the disease severity of DSS-induced colitis in Socs3-deficient mice. Discussion Thus, our results suggest that deficiency of Socs3 in myeloid cells exacerbates DSS-induced colitis and that Socs3 prevents overt activation of the immune system in IBD. This study may provide novel therapeutic strategies to IBD patients with hyperactivated neutrophils.
Collapse
Affiliation(s)
- Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhaoqi Yan
- Gladstone Institute of Neurological Disease, San Francisco, CA, United States
| | - Wei Yang
- Division of Gastroenterology and Hepatology, Weill Cornell College of Medicine, New York, NY, United States
| | - Jessica A. Buckley
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Etty N. Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Song SH, Ghosh T, You DG, Joo H, Lee J, Lee J, Kim CH, Jeon J, Shin S, Park JH. Functionally Masked Antibody to Uncouple Immune-Related Toxicities in Checkpoint Blockade Cancer Therapy. ACS NANO 2023. [PMID: 37184643 DOI: 10.1021/acsnano.2c12532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Of the existing immunotherapy drugs in oncology, monoclonal antibodies targeting the immune checkpoint axis are preferred because of the durable responses observed in selected patients. However, the associated immune-related adverse events (irAEs), causing uncommon fatal events, often require specialized management and medication discontinuation. The study aim was to investigate our hypothesis that masking checkpoint antibodies with tumor microenvironment (TME)-responsive polymer chains can mitigate irAEs and selectively target tumors by limiting systemic exposure to patients. We devised a broadly applicable strategy that functionalizes immune checkpoint-blocking antibodies with a mildly acidic pH-cleavable poly(ethylene glycol) (PEG) shell to prevent inflammatory side effects in normal tissues. Conjugation of pH-sensitive PEG to anti-CD47 antibodies (αCD47) minimized antibody-cell interactions by inhibiting their binding ability and functionality at physiological pH, leading to prevention of αCD47-induced anemia in tumor-bearing mice. When conjugated to anti-CTLA-4 and anti-PD-1 antibodies, double checkpoint blockade-induced colitis was also ameliorated. Notably, removal of the protective shell in response to an acidic TME restored the checkpoint antibody activities, accompanied by effective tumor regression and long-term survival in the mouse model. Our results support a feasible strategy for antibody-based therapies to uncouple toxicity from efficacy and show the translational potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Seok Ho Song
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Torsha Ghosh
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong Gil You
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyeyeon Joo
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeongjin Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Jaeah Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jueun Jeon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sol Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Xie Y, Jin Z, Ma D, Yin TH, Zhao K. Palmitic acid- and cysteine-functionalized nanoparticles overcome mucus and epithelial barrier for oral delivery of drug. Bioeng Transl Med 2023; 8:e10510. [PMID: 37206211 PMCID: PMC10189451 DOI: 10.1002/btm2.10510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 05/21/2023] Open
Abstract
Nanoparticles (NPs) used for oral administration have greatly improved drug bioavailability and therapeutic efficacy. Nevertheless, NPs are limited by biological barriers, such as gastrointestinal degradation, mucus barrier, and epithelial barrier. To solve these problems, we developed the PA-N-2-HACC-Cys NPs loaded with anti-inflammatory hydrophobic drug curcumin (CUR) (CUR@PA-N-2-HACC-Cys NPs) by self-assembled amphiphilic polymer, composed of the N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC), hydrophobic palmitic acid (PA), and cysteine (Cys). After oral administration, the CUR@PA-N-2-HACC-Cys NPs had good stability and sustained release under gastrointestinal conditions, followed by adhering to the intestine to achieve drug mucosal delivery. Additionally, the NPs could penetrate mucus and epithelial barriers to promote cellular uptake. The CUR@PA-N-2-HACC-Cys NPs could open tight junctions between cells for transepithelial transport while striking a balance between mucus interaction and diffusion through mucus. Notably, the CUR@PA-N-2-HACC-Cys NPs improved the oral bioavailability of CUR, which remarkably relieved colitis symptoms and promoted mucosal epithelial repair. Our findings proved that the CUR@PA-N-2-HACC-Cys NPs had excellent biocompatibility, could overcome mucus and epithelial barriers, and had significant application prospects for oral delivery of the hydrophobic drugs.
Collapse
Affiliation(s)
- Yinzhuo Xie
- Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou UniversityTaizhou318000China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang UniversityHarbin150080China
| | - Zheng Jin
- Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou UniversityTaizhou318000China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang UniversityHarbin150080China
| | - Da Ma
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou UniversityTaizhou318000China
| | - Tan Hui Yin
- Tunku Abdul Rahman University of Management and TechnologyJalan Genting KelangKuala Lumpur53300Malaysia
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou UniversityTaizhou318000China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang UniversityHarbin150080China
| |
Collapse
|
8
|
Klitgaard M, Kristensen MN, Venkatasubramanian R, Guerra P, Jacobsen J, Berthelsen R, Rades T, Müllertz A. Assessing acute colitis induced by dextran sulfate sodium in rats and its impact on gastrointestinal fluids. Drug Deliv Transl Res 2023; 13:1484-1499. [PMID: 36913104 DOI: 10.1007/s13346-023-01313-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
Dextran sulfate sodium (DSS) is commonly used to induce colitis in rats. While the DSS-induced colitis rat model can be used to test new oral drug formulations for the treatment of inflammatory bowel disease, the effect of the DSS treatment on the gastrointestinal tract has not been thoroughly characterized. Additionally, the use of different markers to assess and confirm successful induction of colitis is somewhat inconsistent. This study aimed to investigate the DSS model to improve the preclinical evaluation of new oral drug formulations. The induction of colitis was evaluated based on the disease activity index (DAI) score, colon length, histological tissue evaluation, spleen weight, plasma C-reactive protein, and plasma lipocalin-2. Furthermore, the study investigated how the DSS-induced colitis affected the luminal pH, lipase activity, and concentrations of bile salts, polar lipids, and neutral lipids. For all evaluated parameters, healthy rats were used as a reference. The DAI score, colon length, and histological evaluation of the colon were effective disease indicators in DSS-induced colitis rats, while spleen weight, plasma C-reactive protein, and plasma lipocalin-2 were not. The luminal pH of the colon and bile salt- and neutral lipid concentrations in regions of the small intestine were lower in DSS-induced rats compared to healthy rats. Overall, the colitis model was deemed relevant for investigating ulcerative colitis-specific formulations.
Collapse
Affiliation(s)
- Mette Klitgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Maja Nørgaard Kristensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.,The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | - Priscila Guerra
- Department of Veterinary and Animal Science, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark. .,Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
9
|
Arroyo-Mendoza M, Proctor A, Correa-Medina A, Brand MW, Rosas V, Wannemuehler MJ, Phillips GJ, Hinton DM. The E. coli pathobiont LF82 encodes a unique variant of σ 70 that results in specific gene expression changes and altered phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.523653. [PMID: 36798310 PMCID: PMC9934711 DOI: 10.1101/2023.02.08.523653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
LF82, an adherent invasive Escherichia coli pathobiont, is associated with ileal Crohn's disease, an inflammatory bowel disease of unknown etiology. Although LF82 contains no virulence genes, it carries several genetic differences, including single nucleotide polymorphisms (SNPs), that distinguish it from nonpathogenic E. coli. We have identified and investigated an extremely rare SNP that is within the highly conserved rpoD gene, encoding σ70, the primary sigma factor for RNA polymerase. We demonstrate that this single residue change (D445V) results in specific transcriptome and phenotypic changes that are consistent with multiple phenotypes observed in LF82, including increased antibiotic resistance and biofilm formation, modulation of motility, and increased capacity for methionine biosynthesis. Our work demonstrates that a single residue change within the bacterial primary sigma factor can lead to multiple alterations in gene expression and phenotypic changes, suggesting an underrecognized mechanism by which pathobionts and other strain variants with new phenotypes can emerge.
Collapse
Affiliation(s)
- Melissa Arroyo-Mendoza
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Alexandra Proctor
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Abraham Correa-Medina
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Meghan Wymore Brand
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Virginia Rosas
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Gregory J Phillips
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States, 50011
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Bethesda, MD, United States, 20892
| |
Collapse
|
10
|
Qu-Yu-Jie-Du Decoction Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice by Modulation of Neutrophils and Macrophage Infiltration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3762591. [DOI: 10.1155/2022/3762591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
Background. Inflammatory bowel disease (IBD) is becoming a global disease. A percentage of IBD patients will not react to therapy or will lose their response. Qu-Yu-Jie-Du Decoction (QYJD) is a traditional Chinese medicine formula commonly used for intestinal diseases. It has been reported that QYJD has an anti-inflammatory effect, but the mechanism is not fully understood. In this study, we mainly evaluated the anti-inflammatory effect of QYJD and explored the possible mechanisms. Methods. Twenty-four BALB/c mice were randomly divided into 4 groups according to their body weight, namely, the control group, the dextran sulfate sodium (DSS) group, the DSS + QYJD group, and the QYJD group. Mice were given 3% DSS drinking water freely, and at the same time, mice were given normal saline or QYJD (4.44 mg/g/d), respectively. Mental state, faeces, and weight were recorded every day. On the 10th day, the mice were sacrificed and collected for investigation. The length of the mice colon was measured. Histological analysis was used to detect the morphological changes in the colon. Immunohistochemistry was used to measure the infiltration of macrophages (F4/80, CD163) and neutrophils (Ly6G). Colorimetry was used to detect the myeloperoxidase (MPO) activity of colon tissues. ELISA was utilized to detect associated inflammatory cytokines and chemokines in colon tissues. Results. QYJD alleviated the weight loss and colitis symptoms of mice caused by DSS. QYJD fought against the shortening of the intestine caused by DSS; that is, it improved the decline of intestinal compliance in mice and had a protective effect on colon tissues. The mechanisms were related to downregulating macrophages and neutrophils in colon tissues of infiltration. Besides, QYJD simultaneously reduced the activity of myeloperoxidase activity (MPO) and the contents of IL-1β, IL-6, TNF-α, TGF-β, CCL2, and CXCL2 in colon tissues. Conclusions. QYJD can ameliorate DSS-induced colitis in mice and the mechanism is connected with a reduction in neutrophil and macrophage infiltration.
Collapse
|
11
|
Masanetz RK, Winkler J, Winner B, Günther C, Süß P. The Gut-Immune-Brain Axis: An Important Route for Neuropsychiatric Morbidity in Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:11111. [PMID: 36232412 PMCID: PMC9570400 DOI: 10.3390/ijms231911111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) comprises Crohn's disease (CD) and ulcerative colitis (UC) and is associated with neuropsychiatric symptoms like anxiety and depression. Both conditions strongly worsen IBD disease burden. In the present review, we summarize the current understanding of the pathogenesis of depression and anxiety in IBD. We present a stepwise cascade along a gut-immune-brain axis initiated by evasion of chronic intestinal inflammation to pass the epithelial and vascular barrier in the gut and cause systemic inflammation. We then summarize different anatomical transmission routes of gut-derived peripheral inflammation into the central nervous system (CNS) and highlight the current knowledge on neuroinflammatory changes in the CNS of preclinical IBD mouse models with a focus on microglia, the brain-resident macrophages. Subsequently, we discuss how neuroinflammation in IBD can alter neuronal circuitry to trigger symptoms like depression and anxiety. Finally, the role of intestinal microbiota in the gut-immune-brain axis in IBD will be reviewed. A more comprehensive understanding of the interaction between the gastrointestinal tract, the immune system and the CNS accounting for the similarities and differences between UC and CD will pave the path for improved prediction and treatment of neuropsychiatric comorbidities in IBD and other inflammatory diseases.
Collapse
Affiliation(s)
- Rebecca Katharina Masanetz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Claudia Günther
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Internal Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Patrick Süß
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
12
|
Jiang K, Wang D, Su L, Liu X, Yue Q, Li B, Li K, Zhang S, Zhao L. Structural characteristics of locust bean gum hydrolysate and its alleviating effect on dextran sulfate sodium-induced colitis. Front Microbiol 2022; 13:985725. [PMID: 36033869 PMCID: PMC9399726 DOI: 10.3389/fmicb.2022.985725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Ulcerative colitis (UC) is an inflammatory lesion of the colon from various causes. As current therapeutic drugs have adverse effects on patients with UC, there is a growing demand for alternative medicines from natural and functional foods. Locust bean gum, as a dietary fiber, has a variety of physiological effects. Methods In the present study, locust bean gum hydrolysate (LBGH) was obtained from the acid hydrolysis of locust bean gum. The structure of LBGH was characterized by thin-layer chromatography and high performance liquid chromatography (HPLC)-electrospray ionization (ESI)-mass spectrometry (MS)/MS analysis. And we investigated the therapeutic effect of LBGH on a mouse model of dextran sulfate sodium (DSS)-induced colitis. Results It was observed that the LBGH consisted of a mixture of monosaccharides and oligosaccharides with a degree of polymerization (DP) 2–7. LBGH treatment dramatically alleviated colonic pathological damage, suppressed the overproduction of pro-inflammatory factors and the activation of nuclear factor κB (NF-κB), increased the mRNA expression of tight junction proteins, and increased the abundance of probiotics such as Lactobacillus and Bifidobacterium in the gut. Conclusion There is a correlation between these mitigating effects on inflammation and the treatment of LBGH. Therefore, LBGH has tremendous potential in the treatment of colitis.
Collapse
Affiliation(s)
- Kangjia Jiang
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Duo Wang
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Le Su
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xinli Liu
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Qiulin Yue
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Baojun Li
- Shandong Zhuoran Biotechnology Co., Ltd., Jinan, China
| | - Kunlun Li
- Shandong Zhuoran Biotechnology Co., Ltd., Jinan, China
| | - Song Zhang
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- *Correspondence: Song Zhang,
| | - Lin Zhao
- State Key Laboratory of Bio-Based Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Shandong Chenzhang Biotechnology Co., Ltd., Jinan, China
- Lin Zhao,
| |
Collapse
|
13
|
Gao J, Zheng M, Wu X, Zhang H, Su H, Dang Y, Ma M, Wang F, Xu J, Chen L, Liu T, Chen J, Zhang F, Yang L, Xu Q, Hu X, Wang H, Fei Y, Chen C, Liu H. CDK inhibitor Palbociclib targets STING to alleviate autoinflammation. EMBO Rep 2022; 23:e53932. [PMID: 35403787 PMCID: PMC9171422 DOI: 10.15252/embr.202153932] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/29/2022] Open
Abstract
Aberrant activation of stimulator of interferon genes (STING) is tightly associated with multiple types of disease, including cancer, infection, and autoimmune diseases. However, the development of STING modulators for the therapy of STING-related diseases is still an unmet clinical need. We employed a high-throughput screening approach based on the interaction of small-molecule chemical compounds with recombinant STING protein to identify functional STING modulators. Intriguingly, the cyclin-dependent protein kinase (CDK) inhibitor Palbociclib was found to directly bind STING and inhibit its activation in both mouse and human cells. Mechanistically, Palbociclib targets Y167 of STING to block its dimerization, its binding with cyclic dinucleotides, and its trafficking. Importantly, Palbociclib alleviates autoimmune disease features induced by dextran sulphate sodium or genetic ablation of three prime repair exonuclease 1 (Trex1) in mice in a STING-dependent manner. Our work identifies Palbociclib as a novel pharmacological inhibitor of STING that abrogates its homodimerization and provides a basis for the fast repurposing of this Food and Drug Administration-approved drug for the therapy of autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiani Gao
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Mengge Zheng
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Xiangyang Wu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Hang Zhang
- Department of Optical Science and EngineeringShanghai Engineering Research Center of Ultra‐Precision Optical ManufacturingKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Fudan UniversityShanghaiChina
| | - Hang Su
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Yifang Dang
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of TuberculosisShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Mingtong Ma
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Fei Wang
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Junfang Xu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Li Chen
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Tianhao Liu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Jianxia Chen
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of TuberculosisShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Fan Zhang
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Li Yang
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Qinghua Xu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Xuefei Hu
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Heyong Wang
- Central LaboratoryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Yiyan Fei
- Department of Optical Science and EngineeringShanghai Engineering Research Center of Ultra‐Precision Optical ManufacturingKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Fudan UniversityShanghaiChina
| | - Chang Chen
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Haipeng Liu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of TuberculosisShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Central LaboratoryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Institute of Nuclear MedicineTongji University School of MedicineShanghaiChina
| |
Collapse
|
14
|
Han Y, Itenberg SA, Wu X, Xiao H. Guidelines for inflammation models in mice for food components. EFOOD 2022. [DOI: 10.1002/efd2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yanhui Han
- Department of Food Science University of Massachusetts Amherst Amherst Massachusetts USA
| | - Sasha A. Itenberg
- Department of Kinesiology, Nutrition, and Health Miami University Oxford Ohio USA
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health Miami University Oxford Ohio USA
| | - Hang Xiao
- Department of Food Science University of Massachusetts Amherst Amherst Massachusetts USA
| |
Collapse
|
15
|
Adamkova P, Hradicka P, Kupcova Skalnikova H, Cizkova V, Vodicka P, Farkasova Iannaccone S, Kassayova M, Gancarcikova S, Demeckova V. Dextran Sulphate Sodium Acute Colitis Rat Model: A Suitable Tool for Advancing Our Understanding of Immune and Microbial Mechanisms in the Pathogenesis of Inflammatory Bowel Disease. Vet Sci 2022; 9:238. [PMID: 35622766 PMCID: PMC9147231 DOI: 10.3390/vetsci9050238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders causing inflammation in the digestive tract. Recent data suggest that dysbiosis may play a pivotal role in the IBD pathogenesis. As microbiome-based therapeutics that modulate the gut ecology have been proposed as a novel strategy for preventing IBD, the aim of presenting study was to evaluate the dextran sulphate sodium (DSS) rat model mainly in terms of microbial shifts to confirm its suitability for dysbiosis study in IBD. Acute colitis was induced using 5% DSS solution for seven days and rats were euthanized five days after DSS removal. The faecal/caecal microbiota was analyzed by next generation sequencing. Disease activity index (DAI) score was evaluated daily. Blood and colon tissue immunophenotyping was assessed by flow cytometry and histological, haematological, and biochemical parameters were also evaluated. The colitis induction was reflected in a significantly higher DAI score and changes in all parameters measured. This study demonstrated significant shifts in the colitis-related microbial species after colitis induction. The characteristic inflammation-associated microbiota could be detected even after a five day-recovery period. Moreover, the DSS-model might contribute to an understanding of the effect of different treatments on extraintestinal organ impairments. The observation that certain bacterial species in the gut microbiota are associated with colitis raises the question of whether these organisms are contributors to, or a consequence of the disease. Despite some limitations, we confirmed the suitability of DSS-induced colitis model to monitor microbial changes during acute colitis, in order to test attractive new microbiome-based therapies.
Collapse
Affiliation(s)
- Petra Adamkova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Petra Hradicka
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Veronika Cizkova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Petr Vodicka
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Silvia Farkasova Iannaccone
- Department of Forensic Medicine, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia;
| | - Monika Kassayova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Vlasta Demeckova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| |
Collapse
|
16
|
Chen MJ, Feng Y, Gao L, Lin MX, Wang SD, Tong ZQ. Composite Sophora Colon-Soluble Capsule Ameliorates DSS-Induced Ulcerative Colitis in Mice via Gut Microbiota-Derived Butyric Acid and NCR + ILC3. Chin J Integr Med 2022; 29:424-433. [PMID: 35412217 DOI: 10.1007/s11655-022-3317-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the effects of composite Sophora colon-soluble Capsule (CSCC) on gut microbiota-mediated short-chain fatty acids (SCFAs) production and downstream group 3 innate lymphoid cells (ILC3s) of dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice model. METHODS The main components of CSCC were analyzed by hybrid ultra-high-performance liquid chromatography ion mobility spectromety quadrupole time-of-flight mass spectrometry (UHPLC-IM-QTOF/MS). Twenty-four male BALB/c mice were randomly divided into 4 groups (n=6) by using a computer algorithm-generated random digital, including control, DSS model, mesalazine, and CSCC groups. A DSS-induced colitis mice model was established to determine the effects of CSCC by recording colonic weight, colonic length, index of colonic weight, and histological colonic score. The variations in ILC3s were assessed by immunofluorescence and flow cytometry. The results of gut microbiota and SCFAs were acquired by 16s rDNA and gas chromatography-mass spectrometry (GC-MS) analysis. The expression levels of NCR+ ILC3-, CCR6+ Nkp46- (Lti) ILC3-, and ILCreg-specific markers were detected by enzyme-linked immunosorbent assay, and real-time quantitative polymerase chain reaction and Western blot, respectively. RESULTS The main components of CSCC were matrine, ammothamnine, Sophora flavescens neoalcohol J, and Sophora oxytol U. After 7 days of treatment, CSCC significantly alleviated colitis by promoting the reproduction of intestinal probiotics manifested as upregulation of the abundance of Bacteroidetes species and specifically the Bacteroidales_S24-7 genus (P<0.05). Among the SCFAs, the content of butyric acid increased the most after CSCC treatment. Meanwhile, compared with the model group, Lti ILC3s and its biomarkers were significantly downregulated and NCR+ ILC3s were significantly elevated in the CSCC group (P<0.01). Further experiments revealed that ILC3s were differentiated from Lti ILC3s to NCR+ ILC3s, resulting in interleukin-22 production which regulates gut epithelial barrier function. CONCLUSION CSCC may exert a therapeutic effect on UC by improving the gut microbiota, promoting metabolite butyric acid production, and managing the ratio between NCR+ ILC3s and Lti ILC3s.
Collapse
Affiliation(s)
- Ming-Jun Chen
- Medical School of Chinese People's Liberation Army, Beijing, 100853, China
- Department of Traditional Chinese Medicine, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Yang Feng
- Department of Traditional Chinese Medicine, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Lu Gao
- Department of Traditional Chinese Medicine, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Ming-Xiong Lin
- Department of Traditional Chinese Medicine, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Shi-da Wang
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Zhan-Qi Tong
- Department of Traditional Chinese Medicine, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, 100853, China.
| |
Collapse
|
17
|
Noh JY, Wu CS, DeLuca JAA, Devaraj S, Jayaraman A, Alaniz RC, Tan XD, Allred CD, Sun Y. Novel Role of Ghrelin Receptor in Gut Dysbiosis and Experimental Colitis in Aging. Int J Mol Sci 2022; 23:2219. [PMID: 35216335 PMCID: PMC8875592 DOI: 10.3390/ijms23042219] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 01/25/2023] Open
Abstract
Chronic low-grade inflammation is a hallmark of aging, which is now coined as inflamm-aging. Inflamm-aging contributes to many age-associated diseases such as obesity, type 2 diabetes, cardiovascular disease, and inflammatory bowel disease (IBD). We have shown that gut hormone ghrelin, via its receptor growth hormone secretagogue receptor (GHS-R), regulates energy metabolism and inflammation in aging. Emerging evidence suggests that gut microbiome has a critical role in intestinal immunity of the host. To determine whether microbiome is an integral driving force of GHS-R mediated immune-metabolic homeostasis in aging, we assessed the gut microbiome profiles of young and old GHS-R global knockout (KO) mice. While young GHS-R KO mice showed marginal changes in Bacteroidetes and Firmicutes, aged GHS-R KO mice exhibited reduced Bacteroidetes and increased Firmicutes, featuring a disease-susceptible microbiome profile. To further study the role of GHS-R in intestinal inflammation in aging, we induced acute colitis in young and aged GHS-R KO mice using dextran sulfate sodium (DSS). The GHS-R KO mice showed more severe disease activity scores, higher proinflammatory cytokine expression, and decreased expression of tight junction markers. These results suggest that GHS-R plays an important role in microbiome homeostasis and gut inflammation during aging; GHS-R suppression exacerbates intestinal inflammation in aging and increases vulnerability to colitis. Collectively, our finding reveals for the first time that GHS-R is an important regulator of intestinal health in aging; targeting GHS-R may present a novel therapeutic strategy for prevention/treatment of aging leaky gut and inflammatory bowel disease.
Collapse
Affiliation(s)
- Ji Yeon Noh
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (J.Y.N.); (C.-S.W.); (J.A.A.D.); (C.D.A.)
| | - Chia-Shan Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (J.Y.N.); (C.-S.W.); (J.A.A.D.); (C.D.A.)
| | - Jennifer A. A. DeLuca
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (J.Y.N.); (C.-S.W.); (J.A.A.D.); (C.D.A.)
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Robert C. Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX 77843, USA;
| | - Xiao-Di Tan
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Clinton D. Allred
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (J.Y.N.); (C.-S.W.); (J.A.A.D.); (C.D.A.)
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (J.Y.N.); (C.-S.W.); (J.A.A.D.); (C.D.A.)
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
18
|
Watanabe S, Kobayashi S, Ogasawara N, Okamoto R, Nakamura T, Watanabe M, Jensen KB, Yui S. Transplantation of intestinal organoids into a mouse model of colitis. Nat Protoc 2022; 17:649-671. [PMID: 35110738 DOI: 10.1038/s41596-021-00658-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
Intestinal organoids are fundamental in vitro tools that have enabled new research opportunities in intestinal stem cell research. Organoids can also be transplanted in vivo, which enables them to probe stem cell potential and be used for disease modeling and as a preclinical tool in regenerative medicine. Here we describe in detail how to orthotopically transplant epithelial organoids into the colon of recipient mice. In this assay, epithelial injury is initiated at the distal part of colon by the administration of dextran sulfate sodium, and organoids are infused into the luminal space via the anus. The infused organoids subsequently attach to the injured region and rebuild a donor-derived epithelium. The steps for cell infusion can be completed in 10 min. The assay has been applied successfully to organoids derived from both wild-type and genetically altered epithelial cells from adult colonic and small intestinal epithelium, as well as fetal small intestine. This is a versatile protocol, providing the technical basis for transplantation following alternative colonic injury models. It has been used previously for functional assays to probe cellular potential, and formed the basis for the first in-human clinical trial using colonic organoid transplantation therapy for intractable cases of ulcerative colitis.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Sakurako Kobayashi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuhiko Ogasawara
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Nakamura
- Department of Research and Development for Organoids, Juntendo University School of Medicine, Tokyo, Japan
| | - Mamoru Watanabe
- Advanced Research Institute (IBD Lab), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kim B Jensen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
19
|
Zentrich E, Talbot SR, Bleich A, Häger C. Automated Home-Cage Monitoring During Acute Experimental Colitis in Mice. Front Neurosci 2021; 15:760606. [PMID: 34744621 PMCID: PMC8570043 DOI: 10.3389/fnins.2021.760606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
For ethical and legal reasons it is necessary to assess the severity of procedures in animal experimentation. To estimate the degree of pain, suffering, distress or lasting harm, objective methods that provide gradebale parameters need to be tested and validated for various models. In this context, automated home-cage monitoring becomes more important as a contactless, objective, continuous and non-invasive method. The aim of this study was to examine a recently developed large scale automated home-cage monitoring system (Digital Ventilated Cage, DVC®) with regard to the applicability and added value for severity assessment in a frequently used acute colitis mouse model. Acute colitis was induced in female C57BL/6J mice by varying doses of DSS (1.5 and 2.5%), matched controls received water only (0%). Besides DVC® activity monitoring and nest scoring, model specific parameters like body weight, clinical colitis score, and intestinal histo-pathology were used. In a second approach, we questioned whether DVC® can be used to detect an influence of different handling methods on the behavior of mice. Therefore, we compared activity patterns of mice that underwent tunnel vs. tail handling for routine animal care procedures. In DSS treated mice, disease specific parameters confirmed induction of a graded colitis. In line with this, DVC® revealed reduced activity in these animals. Furthermore, the system displayed stress-related activity changes due to the restraining procedures necessary in DSS-treatment groups. However, no significant differences between tunnel vs. tail handling procedures were detected. For further analysis of the data, a binary classifier was applied to categorize two severity levels (burdened vs. not burdened) based on activity and body weight. In all DSS-treatment groups data points were allocated to the burdened level, in contrast to a handling group. The fraction of "burdened" animals reflected well the course of colitis development. In conclusion, automated home-cage monitoring by DVC® enabled severity assessment in a DSS-induced colitis model equally well as gold standard clinical parameters. In addition, it revealed changes in activity patterns due to routine handling procedures applied in experimental model work. This indicates that large scale home-cage monitoring can be integrated into routine severity assessment in biomedical research.
Collapse
Affiliation(s)
- Eva Zentrich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Melatonin Attenuates Dextran Sodium Sulfate Induced Colitis in Obese Mice. Pharmaceuticals (Basel) 2021; 14:ph14080822. [PMID: 34451919 PMCID: PMC8399719 DOI: 10.3390/ph14080822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Epidemiological studies have indicated that obesity is an independent risk factor for colitis and that a high-fat diet (HFD) increases the deterioration of colitis-related indicators in mice. Melatonin has multiple anti-inflammatory effects, including inhibiting tumor growth and regulating immune defense. However, the mechanism of its activity in ameliorating obesity-promoted colitis is still unclear. This study explored the possibility that melatonin has beneficial functions in HFD-induced dextran sodium sulfate (DSS)-induced colitis in mice. Here, we revealed that HFD-promoted obesity accelerated DSS-induced colitis, while melatonin intervention improved colitis. Melatonin significantly alleviated inflammation by increasing anti-inflammatory cytokine release and reducing the levels of proinflammatory cytokines in HFD- and DSS-treated mice. Furthermore, melatonin expressed antioxidant activities and reversed intestinal barrier integrity, resulting in improved colitis in DSS-treated obese mice. We also found that melatonin could reduce the ability of inflammatory cells to utilize fatty acids and decrease the growth-promoting effect of lipids by inhibiting autophagy. Taken together, our study indicates that the inhibitory effect of melatonin on autophagy weakens the lipid-mediated prosurvival advantage, which suggests that melatonin-targeted autophagy may provide an opportunity to prevent colitis in obese individuals.
Collapse
|
21
|
Estrogen receptor actions in colitis. Essays Biochem 2021; 65:1003-1013. [PMID: 34342357 DOI: 10.1042/ebc20210010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
In recent years, researchers have demonstrated that estrogen and its receptors, aside from their role in regulating several biological functions, contribute to the development and progression/severity of inflammatory bowel diseases (IBDs). IBDs include both ulcerative colitis (UC) and Crohn's disease (CD). Epidemiological data indicate a clear difference in the incidence, severity, and complications of IBDs between sexes. Men present a higher risk of developing colitis than women and a higher risk of developing colorectal cancer, a common complication of this condition. However, fluctuations of estrogen levels have yielded inconsistent data, where oral contraceptives and hormone replacement therapy have been associated with an increased risk of IBDs in premenopausal women but significantly reduce disease activity after menopause. Likewise, improvement of symptoms related to CD has been reported during pregnancy, but not in UC, who often experience worsening symptoms. In the colonic epithelium, estrogen receptor β (ERβ) is the predominant form of the protein expressed, and it helps maintain normal epithelial function and organization. Preclinical data suggest that ER expression and activation via estrogen confers different responses on disease severity depending on the model used to induce colitis, which may reflect what is observed in patients with IBDs. Hence, this review aims to provide an overview of estrogen and its receptors, particularly ERβ, in the pathophysiology of IBDs.
Collapse
|
22
|
Effects of olives and their constituents on the expression of ulcerative colitis: a systematic review of randomised controlled trials. Br J Nutr 2021; 127:1153-1171. [PMID: 34100354 DOI: 10.1017/s0007114521001999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extra virgin olive oil is often associated with anti-inflammatory and antioxidant properties. Its effects on inflammatory conditions such as ulcerative colitis (UC), however, have yet to be defined. As such, we aimed to conduct a systematic review and meta-analysis of studies investigating olive-based interventions in UC. A comprehensive database search for randomised controlled trials was performed between 9 July 2018 and 16 August 2018. Studies identified from search alerts were included up to 22 June 2020. Both individuals living with UC at any disease stage and murine models of UC were included in this review. No human trials meeting the eligibility criteria were identified, while nineteen animal studies comprised 849 murine models of UC were included in this review. Pooling of the data could not be performed due to heterogeneous outcomes; however, general trends favouring olive-based interventions were identified. Milder disease expression including weight maintenance, reduced rectal bleeding and well-formed stools favouring olive-based interventions was statistically significant in 16/19 studies, with moderate-to-large effect sizes (-0·66 (95 % CI -1·56, 0·24) to -12·70 (95 % CI -16·8, -8·7)). Olive-based interventions did not prevent the development of colitis-like pathologies in any study. In conclusion, effects of olive-based interventions on murine models of UC appear promising, with milder disease outcomes favouring the intervention in most trials and effect sizes suggesting potential clinical relevance. However, the lack of published randomised controlled human trials warrants further investigation to determine if these effects would translate to individuals living with UC.
Collapse
|
23
|
Fabisik M, Tureckova J, Pavliuchenko N, Kralova J, Balounova J, Vicikova K, Skopcova T, Spoutil F, Pokorna J, Angelisova P, Malissen B, Prochazka J, Sedlacek R, Brdicka T. Regulation of Inflammatory Response by Transmembrane Adaptor Protein LST1. Front Immunol 2021; 12:618332. [PMID: 33986741 PMCID: PMC8111073 DOI: 10.3389/fimmu.2021.618332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
LST1 is a small adaptor protein expressed in leukocytes of myeloid lineage. Due to the binding to protein tyrosine phosphatases SHP1 and SHP2 it was thought to have negative regulatory function in leukocyte signaling. It was also shown to be involved in cytoskeleton regulation and generation of tunneling nanotubes. LST1 gene is located in MHCIII locus close to many immunologically relevant genes. In addition, its expression increases under inflammatory conditions such as viral infection, rheumatoid arthritis and inflammatory bowel disease and its deficiency was shown to result in slightly increased sensitivity to influenza infection in mice. However, little else is known about its role in the immune system homeostasis and immune response. Here we show that similar to humans, LST1 is expressed in mice in the cells of the myeloid lineage. In vivo, its deficiency results in alterations in multiple leukocyte subset abundance in steady state and under inflammatory conditions. Moreover, LST1-deficient mice show significant level of resistance to dextran sodium sulphate (DSS) induced acute colitis, a model of inflammatory bowel disease. These data demonstrate that LST1 regulates leukocyte abundance in lymphoid organs and inflammatory response in the gut.
Collapse
Affiliation(s)
- Matej Fabisik
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia.,Faculty of Science, Charles University, Prague, Czechia
| | - Jolana Tureckova
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia.,Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Nataliia Pavliuchenko
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia.,Faculty of Science, Charles University, Prague, Czechia
| | - Jarmila Kralova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Balounova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Kristina Vicikova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Tereza Skopcova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Jana Pokorna
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Pavla Angelisova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Bernard Malissen
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia.,Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia.,Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Tomas Brdicka
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
24
|
Inducible mouse models of colon cancer for the analysis of sporadic and inflammation-driven tumor progression and lymph node metastasis. Nat Protoc 2020; 16:61-85. [PMID: 33318692 DOI: 10.1038/s41596-020-00412-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/17/2020] [Indexed: 12/30/2022]
Abstract
Despite advances in the detection and therapy of colorectal cancer (CRC) in recent years, CRC has remained a major challenge in clinical practice. Although alternative methods for modeling CRC have been developed, animal models of CRC remain helpful when analyzing molecular aspects of pathogenesis and are often used to perform preclinical in vivo studies of potential therapeutics. This protocol updates our protocol published in 2007, which provided an azoxymethane (AOM)-based setup for investigations into sporadic (Step 5A) and, when combined with dextran sodium sulfate (Step 5B), inflammation-associated tumor growth. This update also extends the applications beyond those of the original protocol by including an option in which AOM is serially applied to mice with p53 deficiency in the intestinal epithelium (Step 5C). In this model, the combination of p53 deficiency and AOM promotes tumor development, including growth of invasive cancers and lymph node metastasis. It also provides details on analysis of colorectal tumor growth and metastasis, including analysis of partial epithelial-to-mesenchymal transition, cell isolation and co-culture studies, high-resolution mini-endoscopy, light-sheet fluorescence microscopy and micro-CT imaging in mice. The target audience for our protocol is researchers who plan in vivo studies to address mechanisms influencing sporadic or inflammation-driven tumor development, including the analysis of local invasiveness and lymph node metastasis. It is suitable for preclinical in vivo testing of novel drugs and other interventional strategies for clinical translation, plus the evaluation of emerging imaging devices/modalities. It can be completed within 24 weeks (using Step 5A/C) or 10 weeks (using Step 5B).
Collapse
|
25
|
Nalluri H, Subramanian S, Staley C. Intestinal organoids: a model to study the role of microbiota in the colonic tumor microenvironment. Future Microbiol 2020; 15:1583-1594. [PMID: 33215543 DOI: 10.2217/fmb-2019-0345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer worldwide. Recent studies have suggested that a dysbiotic shift in the intestinal microbial composition of CRC patients influences tumorigenesis. Gut microbes are known to be integral for intestinal homeostasis; however, the mechanisms by which they impact CRC are unclear. Further knowledge about these complex interactions may guide future CRC management. Thus, it is crucial to establish high-quality experimental models to understand the relationship between host, tumor, microbiota and their metabolic interactions. In this review, we highlight the significance of intestinal microbiota and their metabolites in CRC, challenges with current experimental models, advantages and limitations of organoid culture and future directions of this novel model system in CRC-associated microbiome research.
Collapse
Affiliation(s)
- Harika Nalluri
- Department of Surgery, Division of Basic & Translational Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Subbaya Subramanian
- Department of Surgery, Division of Basic & Translational Research, University of Minnesota, Minneapolis, MN 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher Staley
- Department of Surgery, Division of Basic & Translational Research, University of Minnesota, Minneapolis, MN 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
26
|
Wang H, Wang DH, Yang X, Sun Y, Yang CS. Colitis-induced IL11 promotes colon carcinogenesis. Carcinogenesis 2020; 42:557-569. [PMID: 33196831 DOI: 10.1093/carcin/bgaa122] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Colitis increases the risk of colorectal cancer; however, the mechanism of the association between colitis and cancer remains largely unknown. To identify colitis-associated cancer promoting factors, we investigated gene expression changes caused by dextran sulfate sodium (DSS)-induced colitis in mice. By analyzing gene expression profiles, we found that IL11 was upregulated in DSS-induced colitis tissue and 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP)/DSS-induced colon tumours in mice as well as in human colorectal cancer. By characterizing the activation/phosphorylation of STAT3 (pSTAT3), we found that pSTAT3 was induced transiently in colitis, but maintained at higher levels from hyper-proliferative dysplastic lesions to tumours. Using the IL11 receptor (IL11Rα1) knockout mice, we found that pSTAT3 in the newly regenerated crypt epithelial cells in colitis is abolished in IL11Rα1+/- and -/- mice, suggesting that colitis-induced IL11 activates STAT3 in colon crypt epithelial cells. Moreover, colitis-promoted colon carcinogenesis was significantly reduced in IL11Rα1+/- and -/- mice. To determine the roles of the IL11 in colitis, we found that the inhibition of IL11 signalling by recombinant IL11 antagonist mutein during colitis was sufficient to attenuate colitis-promoted carcinogenesis. Together, our results demonstrated that colitis-induced IL11 plays critical roles in creating cancer promoting microenvironment to facilitate the development of colon cancer from dormant premalignant cells.
Collapse
Affiliation(s)
- Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David H Wang
- Department of Electrical and Computer Engineering, Ohio State University, Columbus, OH, USA
| | - Xu Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yuhai Sun
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
27
|
Oxidative stress exacerbates dextran sulfate sodium-induced ulcerative colitis in ICR mice. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00524-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Lechuga S, Naydenov NG, Feygin A, Cruise M, Ervasti JM, Ivanov AI. Loss of β-Cytoplasmic Actin in the Intestinal Epithelium Increases Gut Barrier Permeability in vivo and Exaggerates the Severity of Experimental Colitis. Front Cell Dev Biol 2020; 8:588836. [PMID: 33195251 PMCID: PMC7644907 DOI: 10.3389/fcell.2020.588836] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Intestinal epithelial barrier is critical for the maintenance of normal gut homeostasis and disruption of this barrier may trigger or exaggerate mucosal inflammation. The actin cytoskeleton is a key regulator of barrier structure and function, controlling the assembly and permeability of epithelial adherens and tight junctions. Epithelial cells express two actin isoforms: a β-cytoplasmic actin and γ-cytoplasmic actin. Our previous in vitro studies demonstrated that these actin isoforms play distinctive roles in establishing the intestinal epithelial barrier, by controlling the organization of different junctional complexes. It remains unknown, whether β-actin and γ-actin have unique or redundant functions in regulating the gut barrier in vivo. To address this question, we selectively knocked out β-actin expression in mouse intestinal epithelium. Mice with intestinal epithelial knockout of β-actin do not display gastrointestinal abnormalities or gross alterations of colonic mucosal architecture. This could be due to compensatory upregulation of γ-actin expression. Despite such compensation, β-actin knockout mice demonstrate increased intestinal permeability. Furthermore, these animals show more severe clinical symptoms during dextran sodium sulfate induced colitis, compared to control littermates. Such exaggerated colitis is associated with the higher expression of inflammatory cytokines, increased macrophage infiltration in the gut, and accelerated mucosal cell death. Consistently, intestinal organoids generated from β-actin knockout mice are more sensitive to tumor necrosis factor induced cell death, ex vivo. Overall, our data suggests that β-actin functions as an essential regulator of gut barrier integrity in vivo, and plays a tissue protective role during mucosal injury and inflammation.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Nayden G Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Alex Feygin
- School of Nursing, Virginia Commonwealth University School of Nursing, Richmond, VA, United States
| | - Michael Cruise
- Department of Pathology, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - James M Ervasti
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
29
|
Protein kinase 2 (CK2) controls CD4 + T cell effector function in the pathogenesis of colitis. Mucosal Immunol 2020; 13:788-798. [PMID: 31988467 PMCID: PMC7382987 DOI: 10.1038/s41385-020-0258-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 02/04/2023]
Abstract
Crohn's disease (CD), one of the major forms of inflammatory bowel disease (IBD), is characterized by chronic inflammation of the gastrointestinal tract and associated with aberrant CD4+ T-helper type 1 (Th1) and Th17 responses. Protein kinase 2 (CK2) is a conserved serine-threonine kinase involved in signal transduction pathways, which regulate immune responses. CK2 promotes Th17 cell differentiation and suppresses the generation of Foxp3+ regulatory T cells. The function of CK2 in CD4+ T cells during the pathogenesis of CD is unknown. We utilized the T cell-induced colitis model, transferring CD45RBhi-naive CD4+ T cells from CK2αfl/fl controls and CK2αfl/fldLck-Cre mice into Rag1-/- mice. CD4+ T cells from CK2αfl/fldLck-Cre mice failed to induce wasting disease and significant intestinal inflammation, which was associated with decreased interleukin-17A-positive (IL-17A+), interferon-γ-positive (IFN-γ+), and double-positive IL-17A+IFN-γ+ CD4+ T cells in the spleen and colon. We determined that CK2α regulates CD4+ T cell proliferation through a cell-intrinsic manner. CK2α is also important in controlling CD4+ T cell responses by regulating NFAT2, which is vital for T cell activation and proliferation. Our findings indicate that CK2α contributes to the pathogenesis of colitis by promoting CD4+ T cell proliferation and Th1 and Th17 responses, and that targeting CK2 may be a novel therapeutic treatment for patients with CD.
Collapse
|
30
|
Ruiz Castro PA, Kogel U, Lo Sasso G, Phillips BW, Sewer A, Titz B, Garcia L, Kondylis A, Guedj E, Peric D, Bornand D, Dulize R, Merg C, Corciulo M, Ivanov NV, Peitsch MC, Hoeng J. Anatabine ameliorates intestinal inflammation and reduces the production of pro-inflammatory factors in a dextran sulfate sodium mouse model of colitis. JOURNAL OF INFLAMMATION-LONDON 2020; 17:29. [PMID: 32855621 PMCID: PMC7446176 DOI: 10.1186/s12950-020-00260-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Background Inflammatory bowel disease (IBD) is the collective term for chronic immune-mediated diseases of unknown, multifactorial etiology, arising from the interplay between genetic and environmental factors and including two main disease manifestations: ulcerative colitis (UC) and Crohn’s disease. In the last few decades, naturally occurring alkaloids have gained interest because of their substantial anti-inflammatory effects in several animal models of disease. Studies on mouse models of IBD have demonstrated the anti-inflammatory action of the main tobacco alkaloid, nicotine. In addition, anatabine, a minor tobacco alkaloid also present in peppers, tomato, and eggplant presents anti-inflammatory properties in vivo and in vitro. In this study, we aimed to evaluate the anti-inflammatory properties of nicotine and anatabine in a dextran sulfate sodium (DSS) mouse model of UC. Results Oral administration of anatabine, but not nicotine, reduced the clinical symptoms of DSS-induced colitis. The result of gene expression analysis suggested that anatabine had a restorative effect on global DSS-induced gene expression profiles, while nicotine only had limited effects. Accordingly, MAP findings revealed that anatabine reduced the colonic abundance of DSS-associated cytokines and increased IL-10 abundance. Conclusions Our results support the amelioration of inflammatory effects by anatabine in the DSS mouse model of UC, and suggest that anatabine constitutes a promising therapeutic agent for IBD treatment.
Collapse
Affiliation(s)
- Pedro A Ruiz Castro
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Ulrike Kogel
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Giuseppe Lo Sasso
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Blaine W Phillips
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, The Kendall #02-07, Science Park II, Singapore, 117406 Singapore
| | - Alain Sewer
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Bjorn Titz
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Llenalia Garcia
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Athanasios Kondylis
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Dariusz Peric
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - David Bornand
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Remi Dulize
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Celine Merg
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Maica Corciulo
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
31
|
Bulek K, Zhao J, Liao Y, Rana N, Corridoni D, Antanaviciute A, Chen X, Wang H, Qian W, Miller-Little WA, Swaidani S, Tang F, Willard BB, McCrae K, Kang Z, Dubyak GR, Cominelli F, Simmons A, Pizarro TT, Li X. Epithelial-derived gasdermin D mediates nonlytic IL-1β release during experimental colitis. J Clin Invest 2020; 130:4218-4234. [PMID: 32597834 PMCID: PMC7410065 DOI: 10.1172/jci138103] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Gasdermin D (GSDMD) induces pyroptosis via the pore-forming activity of its N-terminal domain, cleaved by activated caspases associated with the release of IL-1β. Here, we report a nonpyroptotic role of full-length GSDMD in guiding the release of IL-1β-containing small extracellular vesicles (sEVs) from intestinal epithelial cells (IECs). In response to caspase-8 inflammasome activation, GSDMD, chaperoned by Cdc37/Hsp90, recruits the E3 ligase, NEDD4, to catalyze polyubiquitination of pro-IL-1β, serving as a signal for cargo loading into secretory vesicles. GSDMD and IL-1β colocalize with the exosome markers CD63 and ALIX intracellularly, and GSDMD and NEDD4 are required for release of CD63+ sEVs containing IL-1β, GSDMD, NEDD4, and caspase-8. Importantly, increased expression of epithelial-derived GSDMD is observed both in patients with inflammatory bowel disease (IBD) and those with experimental colitis. While GSDMD-dependent release of IL-1β-containing sEVs is detected in cultured colonic explants from colitic mice, GSDMD deficiency substantially attenuates disease severity, implicating GSDMD-mediated release of IL-1β sEVs in the pathogenesis of intestinal inflammation, such as that observed in IBD.
Collapse
Affiliation(s)
- Katarzyna Bulek
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Junjie Zhao
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Yun Liao
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Nitish Rana
- Department of Pathology and
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daniele Corridoni
- Medical Research Counsel (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Agne Antanaviciute
- Medical Research Counsel (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Xing Chen
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Han Wang
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Wen Qian
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - William A. Miller-Little
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
- Department of Pathology and
| | | | - Fangqiang Tang
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Belinda B. Willard
- Proteomics and Metabolomics Core, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Keith McCrae
- Department of Cardiovascular and Metabolic Sciences and
| | - Zizhen Kang
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - George R. Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fabio Cominelli
- Department of Pathology and
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Institute, University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - Alison Simmons
- Medical Research Counsel (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Theresa T. Pizarro
- Department of Pathology and
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
32
|
Ozkul C, Ruiz VE, Battaglia T, Xu J, Roubaud-Baudron C, Cadwell K, Perez-Perez GI, Blaser MJ. A single early-in-life antibiotic course increases susceptibility to DSS-induced colitis. Genome Med 2020; 12:65. [PMID: 32711559 PMCID: PMC7382806 DOI: 10.1186/s13073-020-00764-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background There is increasing evidence that the intestinal microbiota plays a crucial role in the maturation of the immune system and the prevention of diseases during childhood. Early-life short-course antibiotic use may affect the progression of subsequent disease conditions by changing both host microbiota and immunologic development. Epidemiologic studies provide evidence that early-life antibiotic exposures predispose to inflammatory bowel disease (IBD). Methods By using a murine model of dextran sodium sulfate (DSS)-induced colitis, we evaluated the effect on disease outcomes of early-life pulsed antibiotic treatment (PAT) using tylosin, a macrolide and amoxicillin, a beta-lactam. We evaluated microbiota effects at the 16S rRNA gene level, and intestinal T cells by flow cytometry. Antibiotic-perturbed or control microbiota were transferred to pups that then were challenged with DSS. Results A single PAT course early-in-life exacerbated later DSS-induced colitis by both perturbing the microbial community and altering mucosal immune cell composition. By conventionalizing germ-free mice with either antibiotic-perturbed or control microbiota obtained 40 days after the challenge ended, we showed the transferrable and direct effect of the still-perturbed microbiota on colitis severity in the DSS model. Conclusions The findings in this experimental model provide evidence that early-life microbiota perturbation may increase risk of colitis later in life.
Collapse
Affiliation(s)
- Ceren Ozkul
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey.,Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Victoria E Ruiz
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA.,Department of Biology, St. Francis College, Brooklyn, New York, USA
| | - Thomas Battaglia
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Joseph Xu
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Claire Roubaud-Baudron
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA.,CHU Bordeaux, Pôle de Gérontologie Clinique, Bordeaux, France.,INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, F-33000, Bordeaux, France
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA.,Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, New York University Langone Health, New York, NY, 10016, USA
| | - Guillermo I Perez-Perez
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Martin J Blaser
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA. .,Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
33
|
Ge W, Wang HY, Zhao HM, Liu XK, Zhong YB, Long J, Zuo ZY, Liu DY. Effect of Sishen Pill on Memory T Cells From Experimental Colitis Induced by Dextran Sulfate Sodium. Front Pharmacol 2020; 11:908. [PMID: 32714185 PMCID: PMC7343851 DOI: 10.3389/fphar.2020.00908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/03/2020] [Indexed: 01/08/2023] Open
Abstract
Immune memory has a protective effect on the human body, but abnormal immune memory is closely related to the occurrence and development of autoimmune diseases including inflammatory bowel disease (IBD). Sishen Pill (SSP) is a classic prescription of traditional Chinese medicine, which is often used to treat chronic colitis, but it is not clear whether SSP can alleviate experimental colitis by remodeling immune memory. In the present study, the therapeutic effect of SSP on chronic colitis induced by dextran sulfate sodium (DSS) was evaluated by colonic length, colonic weight index, macroscopic and microscopic scores, and pathological observation. The cytokine levels were tested by enzyme-linked immunosorbent assay (ELISA); the percentages of central memory T (Tcm) and effector memory T (Tem) cells were analyze\d by flow cytometry; and activation of phosphoinositide 3-kinase (PI3K)/Akt signaling proteins was measured by western blotting. After 7-days' treatment, SSP alleviated DSS-induced colitis, which was demonstrated by decreased colonic weight index, colonic weight, histopathological injury scores, restored colonic length, gradual recovery of colonic mucosa, and lower levels of interleukin (IL)-2, IL-7, IL-12, and IL-15, while SSP increased IL-10 expression. SSP obviously regulated the quantity and subpopulation of Tcm and Tem cells. Furthermore, SSP markedly inhibited activation of PI3K, Akt, phospho-Akt, Id2, T-bet, forkhead box O3a, Noxa, and C-myc proteins in the PI3K/Akt signaling pathway and activated Rictor, Raptor, tuberous sclerosis complex (TSC)1, TSC2, phospho-AMP-activated kinase (AMPK)-α, AMPK-α, eukaryotic translation initiation factor 4E-binding protein 2, kinesin family member 2a, and 70-kDa ribosomal protein S6 kinase. These results indicate that SSP effectively controls Tem cells in the peripheral blood to relieve experimental colitis induced by DSS, which were potentially related with inhibiting the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Wei Ge
- Proctology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hai-Yan Wang
- Party and School Office, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hai-Mei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xue-Ke Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - You-Bao Zhong
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jian Long
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zheng-Yun Zuo
- Party and School Office, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Duan-Yong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Pharmacology Office, Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang, China
| |
Collapse
|
34
|
Gudi R, Suber J, Brown R, Johnson BM, Vasu C. Pretreatment with Yeast-Derived Complex Dietary Polysaccharides Suppresses Gut Inflammation, Alters the Microbiota Composition, and Increases Immune Regulatory Short-Chain Fatty Acid Production in C57BL/6 Mice. J Nutr 2020; 150:1291-1302. [PMID: 31879786 PMCID: PMC7198290 DOI: 10.1093/jn/nxz328] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/01/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND β-Glucans (BGs), a group of complex dietary polysaccharides (CDPs), are available as dietary supplements. However, the effects of orally administered highly purified BGs on gut inflammation are largely unknown. OBJECTIVES The aim of this study was to investigate the impact of orally administering highly purified, yeast-derived BG (YBG; β-1,3/1,6-d-glucan) on susceptibility to colitis. METHODS Eight-week-old C57BL/6 (B6) mice were used in a series of experiments. Experiment (Expt) 1: male and female mice were treated every day, for 40 d, with saline (control) or 250 μg YBG, followed by 2.5% (wt:vol) dextran sulfate sodium (DSS) in drinking water during days 30-35; and colitis severity and intestinal immune phenotype were determined. Expt 2: female B6 mice were treated with saline or YBG for 30 d and intestinal immune phenotype, gut microbiota composition, and fecal SCFA concentrations were determined. Expt 3: female B6 mice were treated as in Expt 2, given drinking water with or without antibiotics [Abx; ampicillin (1 g/L), vancomycin (0.5 g/L), neomycin (1 g/L), and metronidazole (1 g/L)] during days 16-30, and gut immune phenotype and fecal SCFA concentrations were determined. Expt 4: female B6 Foxp3-green fluorescent protein (-GFP) reporter mice were treated as in Expt 3, and intestinal T-regulatory cell (Treg) frequencies and immune phenotypes were determined. Expt 5: female mice were treated as in Expt 1, given drinking water with or without antibiotics during days 16-40, and colitis severity and intestinal cytokine production were determined. RESULTS Compared with controls, the YBG group in Expt 1 exhibited suppressive effects on features of colitis, such as loss of body weight (by 47%; P < 0.001), shortening of colon (by 24%; P = 0.016), and histopathology severity score (by 45%; P = 0.01). The YBG group of Expt 2 showed a shift in the abundance of gut microbiota towards Bacteroides (by 16%; P = 0.049) and Verrucomicrobia (mean ± SD: control = 7.8 ± 0.44 vs. YBG = 21.0 ± 9.6%) and a reduction in Firmicutes (by 66%; P < 0.001). The YBG group also showed significantly higher concentrations of fecal SCFAs such as acetic (by 37%; P = 0.016), propionic (by 47%; P = 0.026), and butyric (by 57%; P = 0.013) acids. Compared with controls, the YBG group of Expt 2 showed higher frequencies of Tregs (by 32%; P = 0.043) in the gut mucosa. Depletion of gut microbiota in the YBG group of mice caused diminished fecal SCFA concentrations (Expt 3) and intestinal Treg frequencies (Expt 4). Compared with the YBG group, the YBG-(Abx) group of Expt 5 showed aggravated colitis features including loss of body weight (by >100%; P < 0.01) and colonic inflammation score (by 42%; P = 0.04). CONCLUSIONS Studies using B6 mice show that dietary BGs are beneficial for promoting intestinal health when the gut microbiota is intact. However, these CDPs may produce adverse effects if gut microbiota is compromised.
Collapse
Affiliation(s)
- Radhika Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jada Suber
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Robert Brown
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Benjamin M Johnson
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA,Address correspondence to CV (e-mail: )
| |
Collapse
|
35
|
Meeker SM, Seamons A, Treuting PM, Paik J, Brabb T, Hsu CC, Grady WM, Maggio-Price L. Effect of Chronic Vitamin D Deficiency on the Development and Severity of DSS-Induced Colon Cancer in Smad3-/- Mice. Comp Med 2020; 70:120-130. [PMID: 32014085 PMCID: PMC7137544 DOI: 10.30802/aalas-cm-19-000021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/04/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022]
Abstract
Both human epidemiologic data and animal studies suggest that low serum vitamin D increases the risk of inflammatory bowel disease (IBD) and consequently IBD-associated colorectal cancer. We tested the hypothesis that vitamin D deficiency increases the risk for colitis-associated colon cancer (CAC) by using an established CAC mouse model, 129-Smad3tm1Par/J (Smad3-/-) mice, which have defective transforming growth factor β-signaling and develop colitis and CAC after the administration of dextran sodium sulfate (DSS). After determining a dietary regimen that induced chronic vitamin D deficiency in Smad3-/- mice, we assessed the effects of vitamin D deficiency on CAC. Decreasing dietary vitamin D from 1 IU/g diet (control diet) to 0.2 IU /g diet did not decrease serum 25-hydroxyvitamin D (25(OH)D) levels in Smad3-/- mice. A diet devoid of vitamin D (< 0.02 IU/g diet [no added vitamin D]; vitamin D-null) significantly decreased serum 25(OH)D levels in mice after 2 wk (null compared with control diet: 8.4 mg/mL compared with 12.2 ng/mL) and further decreased serum levels to below the detection limit after 9 wk but did not affect weight gain, serum calcium levels, bone histology, or bone mineral density. In light of these results, Smad3-/- mice were fed a vitamin D-null diet and given DSS to induce colitis. Unexpectedly, DSS-treated Smad3-/- mice fed a vitamin D-null diet had improved survival, decreased colon tumor incidence (8% compared with 36%), and reduced the incidence and severity of colonic dysplasia compared with mice fed the control diet. These effects correlated with increased epithelial cell proliferation and repair early in the disease, perhaps reducing the likelihood of developing chronic colitis and progression to cancer. Our results indicate that vitamin D deficiency is beneficial in some cases of CAC, possibly by promoting intestinal healing.
Collapse
Affiliation(s)
- Stacey M Meeker
- Department of Comparative Medicine, University of Washington, Seattle, Washington; Ohio State University, Columbus, Ohio;,
| | - Audrey Seamons
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Piper M Treuting
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Thea Brabb
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Charlie C Hsu
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | | | - Lillian Maggio-Price
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
36
|
Dietary exposure to chlorpyrifos inhibits the polarization of regulatory T cells in C57BL/6 mice with dextran sulfate sodium-induced colitis. Arch Toxicol 2019; 94:141-150. [PMID: 31807802 DOI: 10.1007/s00204-019-02615-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is associated with loss of immune tolerance to antigens originating from the diet and from the gut microflora. T cells play crucial roles in the pathogenesis of IBD. Chlorpyrifos (CPF) is one of the most ubiquitous organophosphate pesticides in the world. The aim of the study was to investigate the effects of dietary exposure to CPF on T-cell populations in C57BL/6 mice with dextran sulfate sodium (DSS)-induced colitis. Mice received distilled water containing 3% DSS for 6 days to induce acute colitis, which was then replaced with distilled water for 21 days, allowing progression to chronic inflammation. During the experimental period, mice were given either an AIN-93-based control diet or a CPF diet-containing 7, 17.5, or 35 ppm of CPF. Results showed that dietary exposure to CPF significantly increased circulating neutrophils in colitic mice. CPF-exposed groups had lower percentages of blood and spleen T cells without altering the proportions of CD4+ and CD8+ T-cell subsets. The percentage of blood regulatory T (Treg) cells, as well as splenic expressions of Treg-related genes, were suppressed in CPF-exposed mice. CPF upregulated the colonic gene expression of tumor necrosis factor-α. Meanwhile, plasma haptoglobin, colon weights, and luminal immunoglobulin G levels were higher in CPF-exposed groups. Histopathological analyses also observed that colon injury was more severe in all CPF-exposed mice. These results suggest that dietary exposure to CPF aggravated tissue injuries in mice with DSS-induced chronic colitis by suppressing T-cell populations and Treg polarization.
Collapse
|
37
|
Target-Specific Fluorescence-Mediated Tomography for Non-Invasive and Dynamic Assessment of Early Neutrophil Infiltration in Murine Experimental Colitis. Cells 2019; 8:cells8111328. [PMID: 31661876 PMCID: PMC6912230 DOI: 10.3390/cells8111328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 12/13/2022] Open
Abstract
The role of neutrophils in the pathogenesis of inflammatory bowel disease (IBD) is still only incompletely understood. Here, we evaluated target-specific fluorescence-mediated tomography (FMT) for visualization of neutrophil infiltration in murine experimental DSS-induced colitis. Colitis was assessed using clinical, endoscopic, and histopathological parameters. Intestinal neutrophil infiltration was determined at day 0, 4, and 10 by targeted FMT after injection of a neutrophil-specific fluorescence-labelled monoclonal antibody (Gr-1). Complementary, immunofluorescence tissue sections with Gr-1 and ELISA-based assessment of tissue myeloperoxidase (MPO) served as the gold standard for the quantification of neutrophil infiltration. Colitic animals showed decreasing body weight, presence of fecal occult blood, and endoscopic signs of inflammation. FMT revealed a significantly increased level of fluorescence only four days after colitis induction as compared to pre-experimental conditions (pmol tracer 73.2 ± 18.1 versus 738.6 ± 80.7; p < 0.05), while neither body weight nor endoscopic assessment showed significant changes at this early time. Confirmatory, post-mortem immunofluorescence studies and measurements of tissue MPO confirmed the presence of increased neutrophil infiltration in colitic mice compared to controls. Concluding, Gr-1 targeted FMT can detect early colonic infiltration of neutrophils in experimental colitis even before clinical symptoms or endoscopic alterations occur. Therefore, FMT might be an important tool for repetitive and non-invasive monitoring of inflammatory cell infiltrate in intestinal inflammation.
Collapse
|
38
|
Tacconi C, Schwager S, Cousin N, Bajic D, Sesartic M, Sundberg JP, Neri D, Detmar M. Antibody-Mediated Delivery of VEGFC Ameliorates Experimental Chronic Colitis. ACS Pharmacol Transl Sci 2019; 2:342-352. [PMID: 32259068 DOI: 10.1021/acsptsci.9b00037] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 12/13/2022]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are two distinct forms of inflammatory bowel disease (IBD) characterized by an expanded lymphatic network with impaired functionality both in mouse models and in human patients. In this study, we investigated whether targeted delivery of the pro-lymphangiogenic vascular endothelial growth factor C (VEGFC) to the site of inflammation may represent a new, clinically feasible strategy for treating IBD. To achieve targeting of inflamed tissue, we developed a fusion protein consisting of human VEGFC fused to the F8 antibody (F8-VEGFC), which specifically binds to the extradomain A (EDA) of fibronectin, a spliced isoform almost exclusively expressed in inflamed tissues. The therapeutic activity of intravenously administered F8-VEGFC, compared to a targeted construct lacking VEGFC (F8-SIP), was investigated in a mouse model of dextran sodium sulfate (DSS)-induced colitis. The presence of EDA fibronectin was detected in both human and mouse inflamed colon tissue. Biodistribution studies of radiolabeled F8-VEGFC revealed a specific accumulation of the antibody in the colon of DSS-administered mice, as compared to an untargeted VEGFC fusion protein (KSF-VEGFC) (binding the irrelevant hen egg lysozyme antigen). Systemic treatment with F8-VEGFC significantly reduced the clinical and histological signs of inflammation, expanded the lymphatic vascular network, reduced the density of immune cells, and also decreased the expression of inflammatory cytokines in the inflamed colon. Overall, these results reveal that administration of F8-VEGFC represents a novel and promising approach for the treatment of IBD.
Collapse
Affiliation(s)
- Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Simon Schwager
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Nikola Cousin
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Davor Bajic
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Marko Sesartic
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - John P Sundberg
- The Jackson Laboratory, Bar Harbor, Maine 04609, United States
| | - Dario Neri
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
39
|
Stimulator of interferon genes (STING) activation exacerbates experimental colitis in mice. Sci Rep 2019; 9:14281. [PMID: 31582793 PMCID: PMC6776661 DOI: 10.1038/s41598-019-50656-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Detection of cytoplasmic DNA by the host’s innate immune system is essential for microbial and endogenous pathogen recognition. In mammalian cells, an important sensor is the stimulator of interferon genes (STING) protein, which upon activation by bacterially-derived cyclic dinucleotides (cDNs) or cytosolic dsDNA (dsDNA), triggers type I interferons and pro-inflammatory cytokine production. Given the abundance of bacterially-derived cDNs in the gut, we determined whether STING deletion, or stimulation, acts to modulate the severity of intestinal inflammation in the dextran sodium sulphate (DSS) model of colitis. DSS was administered to Tmem173gt (STING-mutant) mice and to wild-type mice co-treated with DSS and a STING agonist. Colitis severity was markedly reduced in the DSS-treated Tmem173gt mice and greatly exacerbated in wild-type mice co-treated with the STING agonist. STING expression levels were also assessed in colonic tissues, murine bone marrow derived macrophages (BMDMs), and human THP-1 cells. M1 and M2 polarized THP-1 and murine BMDMs were also stimulated with STING agonists and ligands to assess their responses. STING expression was increased in both murine and human M1 polarized macrophages and a STING agonist repolarized M2 macrophages towards an M1-like subtype. Our results suggest that STING is involved in the host’s response to acutely-induced colitis.
Collapse
|
40
|
SAW TY, MALIK NA, LIM KP, TEO CWL, WONG ESM, KONG SC, FONG CW, PETKOV J, YAP WN. Oral Supplementation of Tocotrienol-Rich Fraction Alleviates Severity of Ulcerative Colitis in Mice. J Nutr Sci Vitaminol (Tokyo) 2019; 65:318-327. [DOI: 10.3177/jnsv.65.318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Tzuen Yih SAW
- Research & Development Department, Davos Life Science
- Research & Development Department, KL-Kepong Oleomas Sdn Bhd (KLK Oleo)
| | - Najib Abdul MALIK
- Research & Development Department, Davos Life Science
- Research & Development Department, KL-Kepong Oleomas Sdn Bhd (KLK Oleo)
| | - Kee Pah LIM
- Research & Development Department, Davos Life Science
- Research & Development Department, KL-Kepong Oleomas Sdn Bhd (KLK Oleo)
| | - Cheryl Wei Ling TEO
- Research & Development Department, Davos Life Science
- Research & Development Department, KL-Kepong Oleomas Sdn Bhd (KLK Oleo)
| | | | - San Choon KONG
- Gastroenterology & Hepatology Department, Singapore General Hospital
| | - Chee Wai FONG
- Research & Development Department, Davos Life Science
- Research & Development Department, KL-Kepong Oleomas Sdn Bhd (KLK Oleo)
| | - Jordan PETKOV
- Research & Development Department, KL-Kepong Oleomas Sdn Bhd (KLK Oleo)
| | - Wei Ney YAP
- Research & Development Department, Davos Life Science
- Research & Development Department, KL-Kepong Oleomas Sdn Bhd (KLK Oleo)
| |
Collapse
|
41
|
Gupta S, Basu S, Bal V, Rath S, George A. Gut IgA abundance in adult life is a major determinant of resistance to dextran sodium sulfate-colitis and can compensate for the effects of inadequate maternal IgA received by neonates. Immunology 2019; 158:19-34. [PMID: 31215020 DOI: 10.1111/imm.13091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 12/11/2022] Open
Abstract
Studies with gene-deficient and gnotobiotic mice have identified many host and microbial factors that contribute to induced colitis, but information on whether specific factors determine susceptibility under more physiological conditions is lacking. Using wild-type strains that differ in their IgA response but harbor a diverse gut microbiome, we found that the IgA-high strain CBA/CaJ (CBA) is resistant to acute colitis induced with dextran sodium sulfate (DSS), unlike the IgA-low strain C57BL/6 (B6). Resistance was associated with extensive IgA-coating of fecal bacteria, lower fecal bacterial loads and greater abundance of barrier-protective transcripts in colonic tissues under homeostatic conditions. Fecal microbial transplant (FT) experiments revealed that disease induction in B6 mice was associated with a cohort of bacteria that are not targeted by IgA. However, CBA mice continued to be resistant to colitis induction following FTs from B6 mice, indicating that they are able to contain such colitogenic members. In support of a role for bacterial exclusion in resistance, oral administration of immunoglobulins decreased DSS-induced disease in B6 mice. In F1 mice derived separately with CBA and B6 dams and in F1 mice backcrossed to the two parental strains, resistance segregated with the IgA response of the pups and not with barrier-associated transcripts or bacterial loads. Interestingly, B6 pups foster-nursed on CBA dams continued to be susceptible in later life, whereas CBA pups foster-nursed on B6 dams continued to be resistant. Together, the data indicate that a high-IgA response in adult life can protect against colitis and compensate for IgA deficiency in early life.
Collapse
Affiliation(s)
- Suman Gupta
- National Institute of Immunology, New Delhi, India
| | - Srijani Basu
- National Institute of Immunology, New Delhi, India
| | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
| | | | - Anna George
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
42
|
Paik J, Meeker S, Hsu CC, Seamons A, Pershutkina O, Snyder JM, Brabb T, Maggio-Price L. Validation studies for germ-free Smad3-/- mice as a bio-assay to test the causative role of fecal microbiomes in IBD. Gut Microbes 2019; 11:21-31. [PMID: 31138018 PMCID: PMC6973324 DOI: 10.1080/19490976.2019.1611151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
While the association between microbiomes and inflammatory bowel disease (IBD) is well known, establishing causal relationships between the two is difficult in humans. Germ-free (GF) mice genetically susceptible to IBD can address this question. Smad3-/- mice with defective transforming growth factor ß signaling are a model of IBD and colon cancer. They develop IBD upon colonization with Helicobacter under specific pathogen-free conditions, suggesting a role of the microbiome in IBD in this model. Thus, we rederived Smad3-/- mice GF to determine the potential of using these mice for testing the causative role of microbiomes in IBD. We found that fecal microbiomes from mice with IBD cause more severe gut inflammation in GF Smad3-/- and wild type mice compared to microbiomes from healthy mice and that Helicobacter induces gut inflammation within the context of other microbiomes but not by itself. Unexpectedly, GF Smad3+/+ and Smad3+/- mice given IBD microbiomes develop IBD despite their lack of disease in SPF conditions upon Helicobacter infection. This was not unique to the background strain of our Smad3 model (129); both wild type C57BL/6 and 129 strains developed IBD upon fecal transfer. However, wild type Swiss Webster stock was not susceptible, indicating that the genetic background of recipient mice influences the severity of IBD following fecal transfer. Our data suggest that the microbiome is an independent risk factor contributing to IBD development, and careful characterization of new GF models is needed to understand potential sources of confounding factors influencing microbiome studies in these mice.
Collapse
Affiliation(s)
- Jisun Paik
- The Department of Comparative Medicine, University of Washington, Seattle, WA, USA,CONTACT Jisun Paik The Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Stacey Meeker
- The Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Charlie C. Hsu
- The Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Audrey Seamons
- The Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Olesya Pershutkina
- The Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Jessica M. Snyder
- The Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Thea Brabb
- The Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Lillian Maggio-Price
- The Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
43
|
West NR. Coordination of Immune-Stroma Crosstalk by IL-6 Family Cytokines. Front Immunol 2019; 10:1093. [PMID: 31156640 PMCID: PMC6529849 DOI: 10.3389/fimmu.2019.01093] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Stromal cells are a subject of rapidly growing immunological interest based on their ability to influence virtually all aspects of innate and adaptive immunity. Present in every bodily tissue, stromal cells complement the functions of classical immune cells by sensing pathogens and tissue damage, coordinating leukocyte recruitment and function, and promoting immune response resolution and tissue repair. These diverse roles come with a price: like classical immune cells, inappropriate stromal cell behavior can lead to various forms of pathology, including inflammatory disease, tissue fibrosis, and cancer. An important immunological function of stromal cells is to act as information relays, responding to leukocyte-derived signals and instructing leukocyte behavior in kind. In this regard, several members of the interleukin-6 (IL-6) cytokine family, including IL-6, IL-11, oncostatin M (OSM), and leukemia inhibitory factor (LIF), have gained recognition as factors that mediate crosstalk between stromal and immune cells, with diverse roles in numerous inflammatory and homeostatic processes. This review summarizes our current understanding of how IL-6 family cytokines control stromal-immune crosstalk in health and disease, and how these interactions can be leveraged for clinical benefit.
Collapse
Affiliation(s)
- Nathaniel R West
- Department of Cancer Immunology, Genentech, South San Francisco, CA, United States
| |
Collapse
|
44
|
Anderson SJ, Lockhart JS, Estaki M, Quin C, Hirota SA, Alston L, Buret AG, Hancock TM, Petri B, Gibson DL, Morck DW. Effects of Azithromycin on Behavior, Pathologic Signs, and Changes in Cytokines, Chemokines, and Neutrophil Migration in C57BL/6 Mice Exposed to Dextran Sulfate Sodium. Comp Med 2019; 69:4-15. [PMID: 30545428 PMCID: PMC6382047 DOI: 10.30802/aalas-cm-18-000001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/08/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022]
Abstract
Here we characterized the murine dextran sulfate sodium (DSS) model of acute colitis. Specifically, we evaluated azithromycin and metronidazole treatment regimens to assess their effects on animal wellbeing, pathologic changes, barrier function, cytokine and chemokine profiles, and neutrophil migration in colon tissue. Azithromycin treatment significantly reduced the severity of colitis, as assessed through body weight change, water consumption, macroscopic lesions, and animal behaviors (activity level, climbing, and grooming), but did not alter food consumption or feeding behavior. Mucosal barrier function (evaluated by using FITC-labeled dextran) was decreased after DSS exposure; azithromycin did not significantly alter barrier function in mice with colitis, whereas metronidazole exacerbated the colitis-related deficit in barrier function. In addition, metronidazole appeared to exacerbate disease as assessed through water consumption and animal behaviors (overall activity, climbing, grooming, and drinking) but had no effect on weight loss, macroscopic lesions, or eating behavior. Pathologic changes were typical for DSS treatment. Antibiotic treatment resulted in reduced levels of proinflammatory cytokines and chemokines and decreased neutrophil adhesion and emigration in DSS-exposed mice. The results highlight the importance of clinical and behavioral assessments in addition to laboratory evaluation as tools to evaluate animal welfare and therapeutic efficacy in disease models. Data from this study suggest that azithromycin may convey some benefits in the mouse DSS colitis model through modulation of the immune response, including neutrophil migration into tissues, whereas metronidazole may exacerbate colitis.
Collapse
Affiliation(s)
- Stefanie J Anderson
- Animal Health Unit, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Joey S Lockhart
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Mehrbod Estaki
- Department of Biology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | - Candice Quin
- Department of Biology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | - Simon A Hirota
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Laurie Alston
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Trina M Hancock
- Animal Health Unit, University of Calgary, Calgary, Alberta, Canada
| | - Björn Petri
- Department of Microbiology, Immunology, and Infectious Diseases, Department of Physiology and Pharmacology, Mouse Phenomics Resource Laboratory, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Deanna L Gibson
- Department of Biology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | - Douglas W Morck
- Animal Health Unit, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Department of Biology, University of British Columbia, Okanagan, Kelowna, British Columbia, Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada;,
| |
Collapse
|
45
|
Shin W, Kim HJ. Intestinal barrier dysfunction orchestrates the onset of inflammatory host-microbiome cross-talk in a human gut inflammation-on-a-chip. Proc Natl Acad Sci U S A 2018; 115:E10539-E10547. [PMID: 30348765 PMCID: PMC6233106 DOI: 10.1073/pnas.1810819115] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The initiation of intestinal inflammation involves complex intercellular cross-talk of inflammatory cells, including the epithelial and immune cells, and the gut microbiome. This multicellular complexity has hampered the identification of the trigger that orchestrates the onset of intestinal inflammation. To identify the initiator of inflammatory host-microbiome cross-talk, we leveraged a pathomimetic "gut inflammation-on-a-chip" undergoing physiological flow and motions that recapitulates the pathophysiology of dextran sodium sulfate (DSS)-induced inflammation in murine models. DSS treatment significantly impaired, without cytotoxic damage, epithelial barrier integrity, villous microarchitecture, and mucus production, which were rapidly recovered after cessation of DSS treatment. We found that the direct contact of DSS-sensitized epithelium and immune cells elevates oxidative stress, in which the luminal microbial stimulation elicited the production of inflammatory cytokines and immune cell recruitment. In contrast, an intact intestinal barrier successfully suppressed oxidative stress and inflammatory cytokine production against the physiological level of lipopolysaccharide or nonpathogenic Escherichia coli in the presence of immune elements. Probiotic treatment effectively reduced the oxidative stress, but it failed to ameliorate the epithelial barrier dysfunction and proinflammatory response when the probiotic administration happened after the DSS-induced barrier disruption. Maintenance of epithelial barrier function was necessary and sufficient to control the physiological oxidative stress and proinflammatory cascades, suggesting that "good fences make good neighbors." Thus, the modular gut inflammation-on-a-chip identifies the mechanistic contribution of barrier dysfunction mediated by intercellular host-microbiome cross-talk to the onset of intestinal inflammation.
Collapse
Affiliation(s)
- Woojung Shin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Hyun Jung Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712;
- Department of Medical Engineering, Yonsei University College of Medicine, 03722 Seoul, Republic of Korea
| |
Collapse
|
46
|
Reade S, Williams JM, Aggio R, Duckworth CA, Mahalhal A, Hough R, Mark Pritchard D, Probert CS. Potential role of fecal volatile organic compounds as biomarkers of chemically induced intestinal inflammation in mice. FASEB J 2018; 33:3129-3136. [DOI: 10.1096/fj.201800076rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sophie Reade
- Gastroenterology Research UnitDepartment of Cellular and Molecular PhysiologyInstitute of Translational MedicineUniversity of Liverpool Liverpool United Kingdom
| | - Jonathan M. Williams
- Pathobiology and Population SciencesRoyal Veterinary College Hatfield United Kingdom
| | - Raphael Aggio
- Gastroenterology Research UnitDepartment of Cellular and Molecular PhysiologyInstitute of Translational MedicineUniversity of Liverpool Liverpool United Kingdom
| | - Carrie A. Duckworth
- Gastroenterology Research UnitDepartment of Cellular and Molecular PhysiologyInstitute of Translational MedicineUniversity of Liverpool Liverpool United Kingdom
| | - Awad Mahalhal
- Gastroenterology Research UnitDepartment of Cellular and Molecular PhysiologyInstitute of Translational MedicineUniversity of Liverpool Liverpool United Kingdom
| | - Rachael Hough
- Gastroenterology Research UnitDepartment of Cellular and Molecular PhysiologyInstitute of Translational MedicineUniversity of Liverpool Liverpool United Kingdom
| | - D. Mark Pritchard
- Gastroenterology Research UnitDepartment of Cellular and Molecular PhysiologyInstitute of Translational MedicineUniversity of Liverpool Liverpool United Kingdom
| | - Chris S. Probert
- Gastroenterology Research UnitDepartment of Cellular and Molecular PhysiologyInstitute of Translational MedicineUniversity of Liverpool Liverpool United Kingdom
| |
Collapse
|
47
|
Schirmer B, Bringmann L, Seifert R, Neumann D. In vivo Evidence for Partial Activation of Eosinophils via the Histamine H 4-Receptor: Adoptive Transfer Experiments Using Eosinophils From H 4R -/- and H 4R +/+ Mice. Front Immunol 2018; 9:2119. [PMID: 30319608 PMCID: PMC6167465 DOI: 10.3389/fimmu.2018.02119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
Our previous in vitro studies revealed that histamine via histamine the H4-receptors (H4R), as compared to other stimuli, such as eotaxin or formylpeptides, rather partially activates eosinophilic granulocytes (eosinophils). In order to evaluate the H4R-mediated activation of eosinophils in vivo, we employed dextran sodium sulfate (DSS)-induced colitis in mice, closely resembling human ulcerative colitis (UC), which is largely characterized by a local eosinophilic infiltration of the colon. IL-5-deficient BALB/c mice served as a model with reduced endogenous numbers of eosinophils, in which wild-type (H4R+/+) or H4R-deficient (H4R−/−) eosinophils were adoptively transferred during the course of DSS-induced colitis. During the 1-week observation period, transfer of eosinophils transiently reversed the acute clinical colitis-like phenotype (body weight loss, perianal bleeding, soft stool consistency) resulting from IL-5-deficiency. This reversion was significantly more pronounced upon transfer of eosinophils from H4R+/+ mice as compared to those from H4R−/− mice. Already at the end of the observation period, the clinical effects of the transfer of H4R+/+ and H4R−/− eosinophils became similar, as were the results of the histological examination of the cola and the analyses of cytokine production in cola and in re-stimulated lymph node cells performed at this time. Thus, analyzing clinical and pathological parameters representative of colitis in this model, we demonstrate that as well as in vitro, also in vivo histamine via the H4R only partially activates eosinophils.
Collapse
Affiliation(s)
- Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Luisa Bringmann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
48
|
Ryzhakov G, West NR, Franchini F, Clare S, Ilott NE, Sansom SN, Bullers SJ, Pearson C, Costain A, Vaughan-Jackson A, Goettel JA, Ermann J, Horwitz BH, Buti L, Lu X, Mukhopadhyay S, Snapper SB, Powrie F. Alpha kinase 1 controls intestinal inflammation by suppressing the IL-12/Th1 axis. Nat Commun 2018; 9:3797. [PMID: 30228258 PMCID: PMC6143560 DOI: 10.1038/s41467-018-06085-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) are heterogenous disorders of the gastrointestinal tract caused by a spectrum of genetic and environmental factors. In mice, overlapping regions of chromosome 3 have been associated with susceptibility to IBD-like pathology, including a locus called Hiccs. However, the specific gene that controls disease susceptibility remains unknown. Here we identify a Hiccs locus gene, Alpk1 (encoding alpha kinase 1), as a potent regulator of intestinal inflammation. In response to infection with the commensal pathobiont Helicobacter hepaticus (Hh), Alpk1-deficient mice display exacerbated interleukin (IL)-12/IL-23 dependent colitis characterized by an enhanced Th1/interferon(IFN)-γ response. Alpk1 controls intestinal immunity via the hematopoietic system and is highly expressed by mononuclear phagocytes. In response to Hh, Alpk1-/- macrophages produce abnormally high amounts of IL-12, but not IL-23. This study demonstrates that Alpk1 promotes intestinal homoeostasis by regulating the balance of type 1/type 17 immunity following microbial challenge.
Collapse
Affiliation(s)
- Grigory Ryzhakov
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Nathaniel R West
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
- Genentech, Department of Cancer Immunology, South San Francisco, CA, 94080, USA
| | - Fanny Franchini
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Nicholas E Ilott
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Stephen N Sansom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Samuel J Bullers
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Claire Pearson
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Alice Costain
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Alun Vaughan-Jackson
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Jeremy A Goettel
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Joerg Ermann
- Department of Gastroenterology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce H Horwitz
- Department of Gastroenterology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ludovico Buti
- Ludwig Institute of Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Xin Lu
- Ludwig Institute of Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | | | - Scott B Snapper
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, United Kingdom.
| |
Collapse
|
49
|
Choksi YA, Reddy VK, Singh K, Barrett CW, Short SP, Parang B, Keating CE, Thompson JJ, Verriere TG, Brown RE, Piazuelo MB, Bader DM, Washington MK, Mittal MK, Brand T, Gobert AP, Coburn LA, Wilson KT, Williams CS. BVES is required for maintenance of colonic epithelial integrity in experimental colitis by modifying intestinal permeability. Mucosal Immunol 2018; 11:1363-1374. [PMID: 29907869 PMCID: PMC6162166 DOI: 10.1038/s41385-018-0043-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/31/2018] [Accepted: 04/15/2018] [Indexed: 02/04/2023]
Abstract
Blood vessel epicardial substance (BVES), or POPDC1, is a tight junction-associated transmembrane protein that modulates epithelial-to-mesenchymal transition (EMT) via junctional signaling pathways. There have been no in vivo studies investigating the role of BVES in colitis. We hypothesized that BVES is critical for maintaining colonic epithelial integrity. At baseline, Bves-/- mouse colons demonstrate increased crypt height, elevated proliferation, decreased apoptosis, altered intestinal lineage allocation, and dysregulation of tight junctions with functional deficits in permeability and altered intestinal immunity. Bves-/- mice inoculated with Citrobacter rodentium had greater colonic injury, increased colonic and mesenteric lymph node bacterial colonization, and altered immune responses after infection. We propose that increased bacterial colonization and translocation result in amplified immune responses and worsened injury. Similarly, dextran sodium sulfate (DSS) treatment resulted in greater histologic injury in Bves-/- mice. Two different human cell lines (Caco2 and HEK293Ts) co-cultured with enteropathogenic E. coli showed increased attaching/effacing lesions in the absence of BVES. Finally, BVES mRNA levels were reduced in human ulcerative colitis (UC) biopsy specimens. Collectively, these studies suggest that BVES plays a protective role both in ulcerative and infectious colitis and identify BVES as a critical protector of colonic mucosal integrity.
Collapse
Affiliation(s)
- Yash A Choksi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vishruth K Reddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kshipra Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Caitlyn W Barrett
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sarah P Short
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bobak Parang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cody E Keating
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua J Thompson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Thomas G Verriere
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel E Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Blanca Piazuelo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David M Bader
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mukul K Mittal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Thomas Brand
- Developmental Dynamics, Heart Science Centre, Imperial College London, London, UK
| | - Alain P Gobert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori A Coburn
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, USA
| | - Keith T Wilson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Christopher S Williams
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
50
|
Kleinwort A, Döring P, Hackbarth C, Patrzyk M, Heidecke CD, Schulze T. Murine Distal Colostomy, A Novel Model of Diversion Colitis in C57BL/6 Mice. J Vis Exp 2018:57616. [PMID: 30059029 PMCID: PMC6126458 DOI: 10.3791/57616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Diversion colitis (DC) is a frequent clinical condition occurring in patients with bowel segments excluded from the fecal stream as a result of a diverting enterostomy. The etiology of this disease remains ill-defined but appears to differ from that of classical inflammatory bowel diseases such as Crohn's disease and ulcerative colitis. Research aimed to decipher the pathophysiological mechanisms leading to the development of this disease has been severely hampered by the lack of an appropriate murine model. This protocol generates a murine model of DC that facilitates the study of the immune system's role and its interaction with the microbiome in the development of DC. In this model using C57BL/6 animals, distal parts of the colon are excluded from the fecal stream by creating a distal colostomy, triggering the development of mild to moderate inflammation in the excluded bowel segments and reproducing the hallmark lesions of human DC with a moderate systemic inflammatory response. In contrast to the rat model, a large number of genetically-modified murine models on the C57BL/6 background are available. The combination of these animals with our model allows the potential roles of individual cytokines, chemokines, or receptors of bioactive molecules (e.g., interleukin (IL)-17; IL-10, chemokine CXCL13, chemokine receptors CXCR5 and CCR7, and the sphingosine-1-phosphate receptor 4) to be assessed in the pathogenesis of DC. The availability of congenic mouse strains on the C57BL/6 background largely facilitates transfer experiments to establish the roles of distinct cell types involved in the etiology of DC. Finally, the model offers the opportunity to assess the influences of local interventions (e.g., modification of the local microbiome or local anti-inflammatory therapy) on mucosal immunity in affected and non-affected bowel segments and the on systemic immune homeostasis.
Collapse
Affiliation(s)
- Annabel Kleinwort
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald
| | - Paula Döring
- Institute of Pathology, Universitätsmedizin Greifswald
| | - Christine Hackbarth
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald
| | - Maciej Patrzyk
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald
| | - Claus-Dieter Heidecke
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald
| | - Tobias Schulze
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald;
| |
Collapse
|