1
|
Ruiz CF, Garcia C, Jacox JB, Lawres L, Muzumdar MD. Decoding the obesity-cancer connection: lessons from preclinical models of pancreatic adenocarcinoma. Life Sci Alliance 2023; 6:e202302228. [PMID: 37648285 PMCID: PMC10474221 DOI: 10.26508/lsa.202302228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity is a metabolic state of energy excess and a risk factor for over a dozen cancer types. Because of the rising worldwide prevalence of obesity, decoding the mechanisms by which obesity promotes tumor initiation and early progression is a societal imperative and could broadly impact human health. Here, we review results from preclinical models that link obesity to cancer, using pancreatic adenocarcinoma as a paradigmatic example. We discuss how obesity drives cancer development by reprogramming the pretumor or tumor cell and its micro- and macro-environments. Specifically, we describe evidence for (1) altered cellular metabolism, (2) hormone dysregulation, (3) inflammation, and (4) microbial dysbiosis in obesity-driven pancreatic tumorigenesis, denoting variables that confound interpretation of these studies, and highlight remaining gaps in knowledge. Recent advances in preclinical modeling and emerging unbiased analytic approaches will aid in further unraveling the complex link between obesity and cancer, informing novel strategies for prevention, interception, and therapy in pancreatic adenocarcinoma and other obesity-associated cancers.
Collapse
Affiliation(s)
- Christian F Ruiz
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Cathy Garcia
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jeremy B Jacox
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Lawres
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Mandar D Muzumdar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Keringer P, Furedi N, Gaszner B, Miko A, Pakai E, Fekete K, Olah E, Kelava L, Romanovsky AA, Rumbus Z, Garami A. The hyperthermic effect of central cholecystokinin is mediated by the cyclooxygenase-2 pathway. Am J Physiol Endocrinol Metab 2022; 322:E10-E23. [PMID: 34779255 DOI: 10.1152/ajpendo.00223.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholecystokinin (CCK) increases core body temperature via CCK2 receptors when administered intracerebroventricularly (icv). The mechanisms of CCK-induced hyperthermia are unknown, and it is also unknown whether CCK contributes to the fever response to systemic inflammation. We studied the interaction between central CCK signaling and the cyclooxygenase (COX) pathway. Body temperature was measured in adult male Wistar rats pretreated with intraperitoneal infusion of the nonselective COX enzyme inhibitor metamizol (120 mg/kg) or a selective COX-2 inhibitor, meloxicam, or etoricoxib (10 mg/kg for both) and, 30 min later, treated with intracerebroventricular CCK (1.7 µg/kg). In separate experiments, CCK-induced neuronal activation (with and without COX inhibition) was studied in thermoregulation- and feeding-related nuclei with c-Fos immunohistochemistry. CCK increased body temperature by ∼0.4°C from 10 min postinfusion, which was attenuated by metamizol. CCK reduced the number of c-Fos-positive cells in the median preoptic area (by ∼70%) but increased it in the dorsal hypothalamic area and in the rostral raphe pallidus (by ∼50% in both); all these changes were completely blocked with metamizol. In contrast, CCK-induced satiety and neuronal activation in the ventromedial hypothalamus were not influenced by metamizol. CCK-induced hyperthermia was also completely blocked with both selective COX-2 inhibitors studied. Finally, the CCK2 receptor antagonist YM022 (10 µg/kg icv) attenuated the late phases of fever induced by bacterial lipopolysaccharide (10 µg/kg; intravenously). We conclude that centrally administered CCK causes hyperthermia through changes in the activity of "classical" thermoeffector pathways and that the activation of COX-2 is required for the development of this response.NEW & NOTEWORTHY An association between central cholecystokinin signaling and the cyclooxygenase-prostaglandin E pathway has been proposed but remained poorly understood. We show that the hyperthermic response to the central administration of cholecystokinin alters the neuronal activity within efferent thermoeffector pathways and that these effects are fully blocked by the inhibition of cyclooxygenase. We also show that the activation of cyclooxygenase-2 is required for the hyperthermic effect of cholecystokinin and that cholecystokinin is a modulator of endotoxin-induced fever.
Collapse
Affiliation(s)
- Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Nora Furedi
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alexandra Miko
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Emoke Olah
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | | | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
3
|
LEHMALI IRAJFATHI, JAFARI MOHAMMADALI. Soybean processing effects on the performance, carcass traits, and blood metabolites of broiler chickens. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v90i8.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Processing methods are used to increase the nutritional value of soybean. The purpose of this research was to study the effect of different processing methods of soybean on performance, carcass traits, and blood metabolites of Ross broiler chickens. A factorial experiment was used in the form of a completely random design using 600 male Ross 308 broiler chickens for 42 days (in 3 feeding phases: starter, grower, and finisher). The experimental factors included the 2 soybean varieties (Katol and Caspian) and 4 processing methods (unprocessed, extruded, thermal, and gamma radiation). Data were measured and analyzed with the Lsmeans procedure by SAS package. Processing methods had a significant effect on the feed conversion ratio (FCR) at the starter and finisher phase. Soybean varieties had a significant effect on the FCR at the whole phase. Interaction of processing methods and soybean variety had a significant effect on the FCR at the finisher and whole phase. Processing methods had a significant effect on the albumin. Soybean varieties, processing methods and interaction of them had a significant effect on the phosphorus. Interaction of processing methods and soybean varieties had a significant effect on the live weight, thigh, wings, pancreas weight, uric acid, and Alkaline phosphatase (ALP). Results showed that extruded and thermal methods are the most suitable for soybean processing.
Collapse
|
4
|
Williams JA. Cholecystokinin (CCK) Regulation of Pancreatic Acinar Cells: Physiological Actions and Signal Transduction Mechanisms. Compr Physiol 2019; 9:535-564. [PMID: 30873601 DOI: 10.1002/cphy.c180014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic acinar cells synthesize and secrete about 20 digestive enzymes and ancillary proteins with the processes that match the supply of these enzymes to their need in digestion being regulated by a number of hormones (CCK, secretin and insulin), neurotransmitters (acetylcholine and VIP) and growth factors (EGF and IGF). Of these regulators, one of the most important and best studied is the gastrointestinal hormone, cholecystokinin (CCK). Furthermore, the acinar cell has become a model for seven transmembrane, heterotrimeric G protein coupled receptors to regulate multiple processes by distinct signal transduction cascades. In this review, we briefly describe the chemistry and physiology of CCK and then consider the major physiological effects of CCK on pancreatic acinar cells. The majority of the review is devoted to the physiologic signaling pathways activated by CCK receptors and heterotrimeric G proteins and the functions they affect. The pathways covered include the traditional second messenger pathways PLC-IP3-Ca2+ , DAG-PKC, and AC-cAMP-PKA/EPAC that primarily relate to secretion. Then there are the protein-protein interaction pathways Akt-mTOR-S6K, the three major MAPK pathways (ERK, JNK, and p38 MAPK), and Ca2+ -calcineurin-NFAT pathways that primarily regulate non-secretory processes including biosynthesis and growth, and several miscellaneous pathways that include the Rho family small G proteins, PKD, FAK, and Src that may regulate both secretory and nonsecretory processes but are not as well understood. © 2019 American Physiological Society. Compr Physiol 9:535-564, 2019.
Collapse
Affiliation(s)
- John A Williams
- University of Michigan, Departments of Molecular & Integrative Physiology and Internal Medicine (Gastroenterology), Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Demenis C, McLaughlin J, Smith CP. Sulfated Cholecystokinin-8 Promotes CD36-Mediated Fatty Acid Uptake into Primary Mouse Duodenal Enterocytes. Front Physiol 2017; 8:660. [PMID: 28919867 PMCID: PMC5586203 DOI: 10.3389/fphys.2017.00660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/18/2017] [Indexed: 11/13/2022] Open
Abstract
Cholecystokinin (CCK) is an archetypal incretin hormone secreted by intestinal enteroendocrine cells (EEC) in response to ingested nutrients. The aim of this study was to determine whether CCK modulates enterocyte fatty acid uptake by primary mouse duodenal cells. Exposure of primary mouse duodenal cells to 10 pM sulfated CCK-8 caused a two fold increase in dodecanoic acid fatty acid (FA) uptake. The selective CCK A receptor antagonist loxiglumide (100 μM) completely abolished the CCK-8 induced FA uptake. The CD36 fatty acid translocase-specific inhibitor sulfo-N-succinimidyl oleate (1 μM) also completely inhibited CCK-8 induced FA uptake, as did treatment with 200 μM phloretin. Together these data show CCK induces FA uptake into duodenal enterocytes; this action involves the CCK-RA receptor and is carrier mediated by CD36.
Collapse
Affiliation(s)
- Claire Demenis
- School of Medical Sciences, University of ManchesterManchester, United Kingdom
| | - John McLaughlin
- School of Medical Sciences, University of ManchesterManchester, United Kingdom
| | - Craig P Smith
- School of Medical Sciences, University of ManchesterManchester, United Kingdom
| |
Collapse
|
6
|
Weng J, Lou D, Benoit SC, Coschigano N, Woods SC, Tso P, Lo CC. Energy homeostasis in apolipoprotein AIV and cholecystokinin-deficient mice. Am J Physiol Regul Integr Comp Physiol 2017; 313:R535-R548. [PMID: 28768657 DOI: 10.1152/ajpregu.00034.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
Abstract
Apolipoprotein AIV (ApoAIV) and cholecystokinin (CCK) are well-known satiating signals that are stimulated by fat consumption. Peripheral ApoAIV and CCK interact to prolong satiating signals. In the present study, we hypothesized that ApoAIV and CCK control energy homeostasis in response to high-fat diet feeding. To test this hypothesis, energy homeostasis in ApoAIV and CCK double knockout (ApoAIV/CCK-KO), ApoAIV knockout (ApoAIV-KO), and CCK knockout (CCK-KO) mice were monitored. When animals were maintained on a low-fat diet, ApoAIV/CCK-KO, ApoAIV-KO, and CCK-KO mice had comparable energy intake and expenditure, body weight, fat mass, fat absorption, and plasma parameters relative to the controls. In contrast, these KO mice exhibited impaired lipid transport to epididymal fat pads in response to intraduodenal infusion of dietary lipids. Furthermore, ApoAIV-KO mice had upregulated levels of CCK receptor 2 (CCK2R) in the small intestine while ApoAIV/CCK-KO mice had upregulated levels of CCK2R in the brown adipose tissue. After 20 wk of a high-fat diet, ApoAIV-KO and CCK-KO mice had comparable body weight and fat mass, as well as lower energy expenditure at some time points. However, ApoAIV/CCK-KO mice exhibited reduced body weight and adiposity relative to wild-type mice, despite having normal food intake. Furthermore, ApoAIV/CCK-KO mice displayed normal fat absorption and locomotor activity, as well as enhanced energy expenditure. These observations suggest that mice lacking ApoAIV and CCK have reduced body weight and adiposity, possibly due to impaired lipid transport and elevated energy expenditure.
Collapse
Affiliation(s)
- Jonathan Weng
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, and Diabetes Institute, Ohio University, Athens, Ohio.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NewYork
| | - Danwen Lou
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio; and
| | - Stephen C Benoit
- Department of Psychiatry, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - Natalie Coschigano
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, and Diabetes Institute, Ohio University, Athens, Ohio
| | - Stephen C Woods
- Department of Psychiatry, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio; and
| | - Chunmin C Lo
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, and Diabetes Institute, Ohio University, Athens, Ohio;
| |
Collapse
|
7
|
Takahashi-Iwanaga H, Kimura S, Konno K, Watanabe M, Iwanaga T. Intrarenal signaling mediated by CCK plays a role in salt intake-induced natriuresis. Am J Physiol Renal Physiol 2017; 313:F20-F29. [DOI: 10.1152/ajprenal.00539.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 11/22/2022] Open
Abstract
The natriuretic hormone CCK exhibits its gene transcripts in total kidney extracts. To test the possibility of CCK acting as an intrarenal mediator of sodium excretion, we examined mouse kidneys by 1) an in situ hybridization technique for CCK mRNA in animals fed a normal- or a high-sodium diet; 2) immuno-electron microscopy for the CCK peptide, 3) an in situ hybridization method and immunohistochemistry for the CCK-specific receptor CCKAR; 4) confocal image analysis of receptor-mediated Ca2+ responses in isolated renal tubules; and 5) metabolic cage experiments for the measurement of urinary sodium excretion in high-salt-fed mice either treated or untreated with the CCKAR antagonist lorglumide. Results showed the CCK gene to be expressed intensely in the inner medulla and moderately in the inner stripe of the outer medulla, with the expression in the latter being enhanced by high sodium intake. Immunoreactivity for the CCK peptide was localized to the rough endoplasmic reticulum of the medullary interstitial cells in corresponding renal regions, confirming it to be a secretory protein. Gene transcripts, protein products, and the functional activity for CCKAR were consistently localized to the late proximal tubule segments (S2 and S3) in the medullary rays, and the outer stripe of the outer medulla. Lorglumide significantly diminished natriuretic responses of mice to a dietary sodium load without altering the glomerular filtration rate. These findings suggest that the medullary interstitial cells respond to body fluid expansion by CCK release for feedback regulation of the late proximal tubular reabsorption.
Collapse
Affiliation(s)
| | - Shunsuke Kimura
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshihiko Iwanaga
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
8
|
Lipid transport in cholecystokinin knockout mice. Physiol Behav 2015; 151:198-206. [PMID: 26171590 DOI: 10.1016/j.physbeh.2015.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/22/2015] [Accepted: 07/07/2015] [Indexed: 01/21/2023]
Abstract
Cholecystokinin (CCK) is released in response to lipid feeding and regulates pancreatic digestive enzymes vital to the absorption of nutrients. Our previous reports demonstrated that cholecystokinin knockout (CCK-KO) mice fed for 10 weeks of HFD had reduced body fat mass, but comparable glucose uptake by white adipose tissues and skeletal muscles. We hypothesized that CCK is involved in energy homeostasis and lipid transport from the small intestine to tissues in response to acute treatment with dietary lipids. CCK-KO mice with comparable fat absorption had increased energy expenditure and were resistant to HFD-induced obesity. Using intraduodenal infusion of butter fat and intravenous infusion using Liposyn III, we determined the mechanism of lipid transport from the small intestine to deposition in lymph and adipocytes in CCK-KO mice. CCK-KO mice had delayed secretion of Apo B48-chylomicrons, lipid transport to the lymphatic system, and triglyceride (TG)-derived fatty acid uptake by epididymal fat in response to acute treatment of intraduodenal lipids. In contrast, CCK-KO mice had comparable TG clearance and lipid uptake by white adipocytes in response to TGs in chylomicron-like emulsion. Thus, we concluded that CCK is important for lipid transport and energy expenditure to control body weight in response to dietary lipid feeding.
Collapse
|
9
|
Méquinion M, Chauveau C, Viltart O. The use of animal models to decipher physiological and neurobiological alterations of anorexia nervosa patients. Front Endocrinol (Lausanne) 2015; 6:68. [PMID: 26042085 PMCID: PMC4436882 DOI: 10.3389/fendo.2015.00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022] Open
Abstract
Extensive studies were performed to decipher the mechanisms regulating feeding due to the worldwide obesity pandemy and its complications. The data obtained might be adapted to another disorder related to alteration of food intake, the restrictive anorexia nervosa. This multifactorial disease with a complex and unknown etiology is considered as an awful eating disorder since the chronic refusal to eat leads to severe, and sometimes, irreversible complications for the whole organism, until death. There is an urgent need to better understand the different aspects of the disease to develop novel approaches complementary to the usual psychological therapies. For this purpose, the use of pertinent animal models becomes a necessity. We present here the various rodent models described in the literature that might be used to dissect central and peripheral mechanisms involved in the adaptation to deficient energy supplies and/or the maintenance of physiological alterations on the long term. Data obtained from the spontaneous or engineered genetic models permit to better apprehend the implication of one signaling system (hormone, neuropeptide, neurotransmitter) in the development of several symptoms observed in anorexia nervosa. As example, mutations in the ghrelin, serotonin, dopamine pathways lead to alterations that mimic the phenotype, but compensatory mechanisms often occur rendering necessary the use of more selective gene strategies. Until now, environmental animal models based on one or several inducing factors like diet restriction, stress, or physical activity mimicked more extensively central and peripheral alterations decribed in anorexia nervosa. They bring significant data on feeding behavior, energy expenditure, and central circuit alterations. Animal models are described and criticized on the basis of the criteria of validity for anorexia nervosa.
Collapse
Affiliation(s)
- Mathieu Méquinion
- INSERM UMR-S1172, Development and Plasticity of Postnatal Brain, Lille, France
| | - Christophe Chauveau
- Pathophysiology of Inflammatory Bone Diseases, EA 4490, University of the Littoral Opal Coast, Boulogne sur Mer, France
| | - Odile Viltart
- INSERM UMR-S1172, Early stages of Parkinson diseases, University Lille 1, Lille, France
| |
Collapse
|
10
|
Functional synergy between cholecystokinin receptors CCKAR and CCKBR in mammalian brain development. PLoS One 2015; 10:e0124295. [PMID: 25875176 PMCID: PMC4398320 DOI: 10.1371/journal.pone.0124295] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/11/2015] [Indexed: 12/11/2022] Open
Abstract
Cholecystokinin (CCK), a peptide hormone and one of the most abundant neuropeptides in vertebrate brain, mediates its actions via two G-protein coupled receptors, CCKAR and CCKBR, respectively active in peripheral organs and the central nervous system. Here, we demonstrate that the CCK receptors have a dynamic and largely reciprocal expression in embryonic and postnatal brain. Using compound homozygous mutant mice lacking the activity of both CCK receptors, we uncover their additive, functionally synergistic effects in brain development and demonstrate that CCK receptor loss leads to abnormalities of cortical development, including defects in the formation of the midline and corpus callosum, and cortical interneuron migration. Using comparative transcriptome analysis of embryonic neocortex, we define the molecular mechanisms underlying these defects. Thus we demonstrate a developmental, hitherto unappreciated, role of the two CCK receptors in mammalian neocortical development.
Collapse
|
11
|
Holtz BJ, Lodewyk KB, Sebolt-Leopold JS, Ernst SA, Williams JA. ERK activation is required for CCK-mediated pancreatic adaptive growth in mice. Am J Physiol Gastrointest Liver Physiol 2014; 307:G700-10. [PMID: 25104499 PMCID: PMC4187068 DOI: 10.1152/ajpgi.00163.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
High levels of cholecystokinin (CCK) can stimulate pancreatic adaptive growth in which mature acinar cells divide, leading to enhanced pancreatic mass with parallel increases in protein, DNA, RNA, and digestive enzyme content. Prolonged release of CCK can be induced by feeding trypsin inhibitor (TI) to disrupt normal feedback control. This leads to exocrine growth in a CCK-dependent manner. The extracellular signal-related kinase (ERK) pathway regulates many proliferative processes in various tissues and disease models. The aim of this study was to evaluate the role of ERK signaling in pancreatic adaptive growth using the MEK inhibitors PD-0325901 and trametinib (GSK-1120212). It was determined that PD-0325901 given two times daily by gavage or mixed into powdered chow was an effective and specific inhibitor of ERK signaling in vivo. TI-containing chow led to a robust increase in pancreatic mass, protein, DNA, and RNA content. This pancreatic adaptive growth was blocked in mice fed chow containing the MEK inhibitors. PD-0325901 blocked TI-induced ERK-regulated early response genes, cell-cycle proteins, and mitogenesis by acinar cells. It was determined that ERK signaling is necessary for the initiation of pancreatic adaptive growth but not necessary to maintain it. PD-0325901 blocked adaptive growth when given before cell-cycle initiation but not after mitogenesis had been established. Furthermore, GSK-1120212, a chemically distinct inhibitor of the ERK pathway that is now approved for clinical use, inhibited growth similar to PD-0325901. These data demonstrate that the ERK pathway is required for CCK-stimulated pancreatic adaptive growth.
Collapse
Affiliation(s)
- Bryan J. Holtz
- 1Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan;
| | - Kevin B. Lodewyk
- 1Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan;
| | | | - Stephen A. Ernst
- 3Department of Cellular and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - John A. Williams
- 1Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; ,4Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
12
|
Abstract
The association between leptin and reproduction originated with the leptin-mediated correction of sterility in ob/ob mice and initiation of reproductive function in normal female mice. The uncovering of a central leptin pathway regulating food intake prompted the dissection of neuroendocrine mechanisms involving leptin in the metabolic control of reproduction. The absence of leptin receptors on GnRH neurons incited a search for intermediary neurons situated between leptin-responsive and GnRH neurons. This review addresses the most significant findings that have furthered our understanding of recent progress in this new field. The role of leptin in puberty was impacted by the discovery of neurons that co-express kisspeptin, neurokinin B, and dynorphin and these could act as leptin intermediates. Furthermore, the identification of first-order leptin-responsive neurons in the premammilary ventral nucleus and other brain regions opens new avenues to explore their relationship to GnRH neurons. Central to these advances is the unveiling that agouti-related protein/neuropeptide Y neurons project onto GnRH and kisspeptin neurons, allowing for a crosstalk between food intake and reproduction. Finally, while puberty is a state of leptin sensitivity, mid-gestation represents a state of leptin resistance aimed at building energy stores to sustain pregnancy and lactation. The mechanisms underlying leptin resistance in pregnancy have lagged; however, the establishment of this natural state is significant. Reproduction and energy balance are tightly controlled and backed up by redundant mechanisms that are critical for the survival of our species. It will be the goal of the following decade to shed new light on these complex and essential pathways.
Collapse
Affiliation(s)
- Farid F Chehab
- Department of Laboratory MedicineUniversity of California, San Francisco, San Francisco, California 94132, USA
| |
Collapse
|
13
|
Smith JP, Solomon TE. Cholecystokinin and pancreatic cancer: the chicken or the egg? Am J Physiol Gastrointest Liver Physiol 2014; 306:G91-G101. [PMID: 24177032 PMCID: PMC4073990 DOI: 10.1152/ajpgi.00301.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastrointestinal peptide cholecystokinin (CCK) causes the release of pancreatic digestive enzymes and growth of the normal pancreas. Exogenous CCK administration has been used in animal models to study pancreatitis and also as a promoter of carcinogen-induced or Kras-driven pancreatic cancer. Defining CCK receptors in normal human pancreas has been problematic because of its retroperitoneal location, high concentrations of pancreatic proteases, and endogenous RNase. Most studies indicate that the predominant receptor in human pancreas is the CCK-B type, and CCK-A is the predominant form in rodent pancreas. In pancreatic cancer cells and tumors, the role of CCK is better established because receptors are often overexpressed by these cancer cells and stimulation of such receptors promotes growth. Furthermore, in established cancer, endogenous production of CCK and/or gastrin occurs and their actions stimulate the synthesis of more receptors plus growth by an autocrine mechanism. Initially it was thought that the mechanism by which CCK served to potentiate carcinogenesis was by interplay with inflammation in the pancreatic microenvironment. But with the recent findings of CCK receptors on early PanIN (pancreatic intraepithelial neoplasia) lesions and on stellate cells, the question has been raised that perhaps CCK actions are not the result of cancer but an early driving promoter of cancer. This review will summarize what is known regarding CCK, its receptors, and pancreatic cancer, and also what is unknown and requires further investigation to determine which comes first, the chicken or the egg, "CCK or the cancer."
Collapse
Affiliation(s)
- Jill P. Smith
- 1Clinical and Translational Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; and
| | - Travis E. Solomon
- 2Department of Basic Medical Science, University of Missouri-Kansas City, Kansas City, Missouri
| |
Collapse
|
14
|
Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion. PLoS Pathog 2013; 9:e1003122. [PMID: 23349631 PMCID: PMC3547840 DOI: 10.1371/journal.ppat.1003122] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/26/2012] [Indexed: 12/18/2022] Open
Abstract
Gastrointestinal infection is often associated with hypophagia and weight loss; however, the precise mechanisms governing these responses remain poorly defined. Furthermore, the possibility that alterations in feeding during infection may be beneficial to the host requires further study. We used the nematode Trichinella spiralis, which transiently inhabits the small intestine before migrating to skeletal muscle, as a biphasic model of infection to determine the cellular and molecular pathways controlling feeding during enteric and peripheral inflammation. Through the infection of genetically modified mice lacking cholecystokinin, Tumor necrosis factor α receptors and T and B-cells, we observed a biphasic hypophagic response to infection resulting from two separate immune-driven mechanisms. The enteroendocrine I-cell derived hormone cholecystokinin is an essential mediator of initial hypophagia and is induced by CD4+ T-cells during enteritis. In contrast, the second hypophagic response is extra-intestinal and due to the anorectic effects of TNFα during peripheral infection of the muscle. Moreover, via maintaining naive levels of the adipose secreted hormone leptin throughout infection we demonstrate a novel feedback loop in the immunoendocrine axis. Immune driven I-cell hyperplasia and resultant weight loss leads to a reduction in the inflammatory adipokine leptin, which in turn heightens protective immunity during infection. These results characterize specific immune mediated mechanisms which reduce feeding during intestinal or peripheral inflammation. Importantly, the molecular mediators of each phase are entirely separate. The data also introduce the first evidence that I-cell hyperplasia is an adaptively driven immune response that directly impinges on the outcome to infection. Infection with intestinal parasites often results in a period of reduced appetite which can result in weight loss; however the factors which control these feeding alterations and the reason why they occur is unknown. We used the nematode parasite Trichinella spiralis, which during its life cycle causes intestinal and muscular inflammation, as a mouse infection model to study the factors which alter feeding during infection. We found that the mouse immune response to the parasite was driving two periods of reduced feeding by two distinct immune mediators during the intestinal and muscular periods of infection. Interestingly, the immune system was utilizing a hormone which usually terminates feeding during our daily meals to cause a reduction in weight and fat deposits. Furthermore, we found that a reduction in these fat deposits and their associated hormones actually helped the mouse expel the parasite from the intestine. Hence the immune driven weight loss was actually beneficial to the mouse's ability to resolve an infection. Our study provides novel insights into how the immune system interacts with feeding pathways during intestinal inflammation and may help us design new strategies for helping people with parasitic infections of the gut.
Collapse
|
15
|
Lo CC, Langhans W, Georgievsky M, Arnold M, Caldwell JL, Cheng S, Liu M, Woods SC, Tso P. Apolipoprotein AIV requires cholecystokinin and vagal nerves to suppress food intake. Endocrinology 2012; 153:5857-65. [PMID: 23027805 PMCID: PMC3512075 DOI: 10.1210/en.2012-1427] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are gastrointestinal satiation signals that are stimulated by fat consumption. Previous studies have demonstrated that peripheral apo AIV cannot cross the blood-brain barrier. In the present study, we hypothesized that peripheral apo AIV uses a CCK-dependent system and intact vagal nerves to relay its satiation signal to the hindbrain. To test this hypothesis, CCK-knockout (CCK-KO) mice and Long-Evan rats that had undergone subdiaphragmatic vagal deafferentation (SDA) were used. Intraperitoneal administration of apo AIV at 100 or 200 μg/kg suppressed food intake of wild-type (WT) mice at 30, 60, and 90 min. In contrast, the same dose did not reduce food intake in the CCK-KO mice. Blockade of the CCK 1 receptor by lorglumide, a CCK 1 receptor antagonist, attenuated apo AIV-induced satiation. Apo AIV at 100 μg/kg reduced food intake in SHAM rats but not in SDA rats. Furthermore, apo AIV elicited an increase in c-Fos-positive cells in the nucleus of the solitary tract (NTS), area postrema, dorsal motor nucleus of the vagus, and adjacent areas of WT mice but elicited only an attenuated increase in these same regions in CCK-KO mice. Apo AIV-induced c-Fos positive cells in the NTS and area postrema of WT mice were reduced by lorglumide. Lastly, apo AIV increased c-Fos positive cells in the NTS of SHAM rats but not in SDA rats. These observations imply that peripheral apo AIV requires an intact CCK system and vagal afferents to activate neurons in the hindbrain to reduce food intake.
Collapse
Affiliation(s)
- Chunmin C Lo
- Departments of Pathology and Laboratory Medicine, Cincinnati, OH 45237-0507, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Page AJ, Symonds E, Peiris M, Blackshaw LA, Young RL. Peripheral neural targets in obesity. Br J Pharmacol 2012; 166:1537-58. [PMID: 22432806 PMCID: PMC3419899 DOI: 10.1111/j.1476-5381.2012.01951.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 12/15/2022] Open
Abstract
Interest in pharmacological treatments for obesity that act in the brain to reduce appetite has increased exponentially over recent years, but failures of clinical trials and withdrawals due to adverse effects have so far precluded any success. Treatments that do not act within the brain are, in contrast, a neglected area of research and development. This is despite the fact that a vast wealth of molecular mechanisms exists within the gut epithelium and vagal afferent system that could be manipulated to increase satiety. Here we discuss mechano- and chemosensory pathways from the gut involved in appetite suppression, and distinguish between gastric and intestinal vagal afferent pathways in terms of their basic physiology and activation by enteroendocrine factors. Gastric bypass surgery makes use of this system by exposing areas of the intestine to greater nutrient loads resulting in greater satiety hormone release and reduced food intake. A non-surgical approach to this system is preferable for many reasons. This review details where the opportunities may lie for such approaches by describing nutrient-sensing mechanisms throughout the gastrointestinal tract.
Collapse
Affiliation(s)
- Amanda J Page
- Nerve-Gut Research Laboratory, Discipline of Medicine, South Australia, Australia
| | | | | | | | | |
Collapse
|
17
|
Lo CM, Obici S, Dong HH, Haas M, Lou D, Kim DH, Liu M, D’Alessio D, Woods SC, Tso P. Impaired insulin secretion and enhanced insulin sensitivity in cholecystokinin-deficient mice. Diabetes 2011; 60:2000-7. [PMID: 21602512 PMCID: PMC3121422 DOI: 10.2337/db10-0789] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Cholecystokinin (CCK) is released in response to lipid intake and stimulates insulin secretion. We hypothesized that CCK deficiency would alter the regulation of insulin secretion and glucose homeostasis. RESEARCH DESIGN AND METHODS We used quantitative magnetic resonance imaging to determine body composition and studied plasma glucose and insulin secretion of CCK gene knockout (CCK-KO) mice and their wild-type controls using intraperitoneal glucose and arginine infusions. The area of anti-insulin staining in pancreatic islets was measured by immunohistochemistry. Insulin sensitivity was assessed with euglycemic-hyperinsulemic clamps. RESULTS CCK-KO mice fed a low-fat diet had a reduced acute insulin response to glucose but a normal response to arginine and normal glucose tolerance, associated with a trend toward greater insulin sensitivity. However, when fed a high-fat diet (HFD) for 10 weeks, CCK-KO mice developed glucose intolerance despite increased insulin sensitivity that was associated with low insulin secretion in response to both glucose and arginine. The deficiency of insulin secretion in CCK-KO mice was not associated with changes in β-cell or islet size. CONCLUSIONS CCK is involved in regulating insulin secretion and glucose tolerance in mice eating an HFD. The impaired insulin response to intraperitoneal stimuli that do not typically elicit CCK release suggests that this hormone has chronic effects on β-cell adaptation to diet in addition to acute incretin actions.
Collapse
Affiliation(s)
- Chun-Min Lo
- Cincinnati Obesity Research Center, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - Silvana Obici
- Cincinnati Obesity Research Center, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
- Rangos Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - H. Henry Dong
- Department of Internal Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - Michael Haas
- Rangos Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dawnwen Lou
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - Dae Hyun Kim
- Department of Internal Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - Min Liu
- Cincinnati Obesity Research Center, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - David D’Alessio
- Rangos Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen C. Woods
- Cincinnati Obesity Research Center, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
- Department of Psychiatry, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - Patrick Tso
- Cincinnati Obesity Research Center, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
- Corresponding author: Patrick Tso,
| |
Collapse
|
18
|
Crozier SJ, Sans MD, Wang JY, Lentz SI, Ernst SA, Williams JA. CCK-independent mTORC1 activation during dietary protein-induced exocrine pancreas growth. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1154-63. [PMID: 20798356 PMCID: PMC2993171 DOI: 10.1152/ajpgi.00445.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dietary protein can stimulate pancreatic growth in the absence of CCK release, but there is little data on the regulation of CCK-independent growth. To identify mechanisms whereby protein stimulates pancreatic growth in the absence of CCK release, C57BL/6 control and CCK-null male mice were fed normal-protein (14% casein) or high-protein (75% casein) chow for 7 days. The weight of the pancreas increased by 32% in C57BL/6 mice and 26% in CCK-null mice fed high-protein chow. Changes in pancreatic weight in control mice were due to both cell hypertrophy and hyperplasia since there was an increase in protein-to-DNA ratio, total DNA content, and DNA synthesis. In CCK-null mice pancreatic growth was almost entirely due to hypertrophy with both protein-to-DNA ratio and cell size increasing without significant increases in DNA content or DNA synthesis. ERK, calcineurin, and mammalian target of rapamycin complex 1 (mTORC1) are activated in models of CCK-induced growth, but there were no differences in ERK or calcineurin activation between fasted and fed CCK-null mice. In contrast, mTORC1 activation was increased after feeding and the duration of activation was prolonged in mice fed high-protein chow compared with normal-protein chow. Changes in pancreatic weight and RNA content were completely inhibited, and changes in protein content were partially abated, when the mTORC1 inhibitor rapamycin was administered during high-protein chow feeding. Prolonged mTORC1 activation is thus required for dietary protein-induced pancreatic growth in the absence of CCK.
Collapse
Affiliation(s)
| | | | | | - Stephen I. Lentz
- 3Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - John A. Williams
- Departments of 1Molecular and Integrative Physiology, ,3Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
19
|
Baumler MD, Koopmann MC, Thomas DDH, Ney DM, Groblewski GE. Intravenous or luminal amino acids are insufficient to maintain pancreatic growth and digestive enzyme expression in the absence of intact dietary protein. Am J Physiol Gastrointest Liver Physiol 2010; 299:G338-47. [PMID: 20539007 PMCID: PMC2928533 DOI: 10.1152/ajpgi.00165.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously reported that rats receiving total parenteral nutrition (TPN) undergo significant pancreatic atrophy characterized by reduced total protein and digestive enzyme expression due to a lack of intestinal stimulation by nutrients (Baumler MD, Nelson DW, Ney DM, Groblewski GE. Am J Physiol Gastrointest Liver Physiol 292: G857-G866, 2007). Essentially identical results were recently reported in mice fed protein-free diets (Crozier SJ, D'Alecy LG, Ernst SA, Ginsburg LE, Williams JA. Gastroenterology 137: 1093-1101, 2009), provoking the question of whether reductions in pancreatic protein and digestive enzyme expression could be prevented by providing amino acids orally or by intravenous (IV) infusion while maintaining intestinal stimulation with fat and carbohydrate. Controlled studies were conducted in rats with IV catheters including orally fed/saline infusion or TPN-fed control rats compared with rats fed a protein-free diet, oral amino acid, or IV amino acid feeding, all with oral carbohydrate and fat. Interestingly, neither oral nor IV amino acids were sufficient to prevent the pancreatic atrophy seen for TPN controls or protein-free diets. Oral and IV amino acids partially attenuated the 75-90% reductions in pancreatic amylase and trypsinogen expression; however, values remained 50% lower than orally fed control rats. Lipase expression was more modestly reduced by a lack of dietary protein but did respond to IV amino acids. In comparison, chymotrypsinogen expression was induced nearly twofold in TPN animals but was not altered in other experimental groups compared with oral control animals. In contrast to pancreas, protein-free diets had no detectable effects on jejunal mucosal villus height, total mass, protein, DNA, or sucrase activity. These data underscore that, in the rat, intact dietary protein is essential in maintaining pancreatic growth and digestive enzyme adaptation but has surprisingly little effect on small intestinal mucosa.
Collapse
Affiliation(s)
| | - Matthew C. Koopmann
- Departments of 1Nutritional Sciences and ,2Surgery, University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | | |
Collapse
|
20
|
Lavine JA, Raess PW, Stapleton DS, Rabaglia ME, Suhonen JI, Schueler KL, Koltes JE, Dawson JA, Yandell BS, Samuelson LC, Beinfeld MC, Davis DB, Hellerstein MK, Keller MP, Attie AD. Cholecystokinin is up-regulated in obese mouse islets and expands beta-cell mass by increasing beta-cell survival. Endocrinology 2010; 151:3577-88. [PMID: 20534724 PMCID: PMC2940525 DOI: 10.1210/en.2010-0233] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An absolute or functional deficit in beta-cell mass is a key factor in the pathogenesis of diabetes. We model obesity-driven beta-cell mass expansion by studying the diabetes-resistant C57BL/6-Leptin(ob/ob) mouse. We previously reported that cholecystokinin (Cck) was the most up-regulated gene in obese pancreatic islets. We now show that islet cholecystokinin (CCK) is up-regulated 500-fold by obesity and expressed in both alpha- and beta-cells. We bred a null Cck allele into the C57BL/6-Leptin(ob/ob) background and investigated beta-cell mass and metabolic parameters of Cck-deficient obese mice. Loss of CCK resulted in decreased islet size and reduced beta-cell mass through increased beta-cell death. CCK deficiency and decreased beta-cell mass exacerbated fasting hyperglycemia and reduced hyperinsulinemia. We further investigated whether CCK can directly affect beta-cell death in cell culture and isolated islets. CCK was able to directly reduce cytokine- and endoplasmic reticulum stress-induced cell death. In summary, CCK is up-regulated by islet cells during obesity and functions as a paracrine or autocrine factor to increase beta-cell survival and expand beta-cell mass to compensate for obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Jeremy A Lavine
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Effect of gallbladder hypomotility on cholesterol crystallization and growth in CCK-deficient mice. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:138-46. [PMID: 19836465 DOI: 10.1016/j.bbalip.2009.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/30/2009] [Accepted: 10/07/2009] [Indexed: 12/28/2022]
Abstract
We investigated the effect of gallbladder hypomotility on cholesterol crystallization and growth during the early stage of gallstone formation in CCK knockout mice. Contrary to wild-type mice, fasting gallbladder volumes were enlarged and the response of gallbladder emptying to a high-fat meal was impaired in knockout mice on chow or the lithogenic diet. In the lithogenic state, large amounts of mucin gel and liquid crystals as well as arc-like and tubular crystals formed first, followed by rapid formation of classic parallelogram-shaped cholesterol monohydrate crystals in knockout mice. Furthermore, three patterns of crystal growth habits were observed: proportional enlargement, spiral dislocation growth, and twin crystal growth, all enlarging solid cholesterol crystals. At day 15 on the lithogenic diet, 75% of knockout mice formed gallstones. However, wild-type mice formed very little mucin gel, liquid, and solid crystals, and gallstones were not observed. We conclude that lack of CCK induces gallbladder hypomotility that prolongs the residence time of excess cholesterol in the gallbladder, leading to rapid crystallization and precipitation of solid cholesterol crystals. Moreover, during the early stage of gallstone formation, there are two pathways of liquid and polymorph anhydrous crystals evolving to monohydrate crystals and three modes for cholesterol crystal growth.
Collapse
|
22
|
Lavine JA, Raess PW, Davis DB, Rabaglia ME, Presley BK, Keller MP, Beinfeld MC, Kopin AS, Newgard CB, Attie AD. Overexpression of pre-pro-cholecystokinin stimulates beta-cell proliferation in mouse and human islets with retention of islet function. Mol Endocrinol 2008; 22:2716-28. [PMID: 18845673 DOI: 10.1210/me.2008-0255] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Type 1 and type 2 diabetes result from a deficit in insulin production and beta-cell mass. Methods to expand beta-cell mass are under intensive investigation for the treatment of type 1 and type 2 diabetes. We tested the hypothesis that cholecystokinin (CCK) can promote beta-cell proliferation. We treated isolated mouse and human islets with an adenovirus containing the CCK cDNA (AdCMV-CCK). We measured [(3)H]thymidine and BrdU incorporation into DNA and additionally, performed flow cytometry analysis to determine whether CCK overexpression stimulates beta-cell proliferation. We studied islet function by measuring glucose-stimulated insulin secretion and investigated the cell cycle regulation of proliferating beta-cells by quantitative RT-PCR and Western blot analysis. Overexpression of CCK stimulated [(3)H]thymidine incorporation into DNA 5.0-fold and 15.8-fold in mouse and human islets, respectively. AdCMV-CCK treatment also stimulated BrdU incorporation into DNA 10-fold and 21-fold in mouse and human beta-cells, respectively. Glucose-stimulated insulin secretion was unaffected by CCK expression. Analysis of cyclin and cdk mRNA and protein abundance revealed that CCK overexpression increased cyclin A, cyclin B, cyclin E, cdk1, and cdk2 with no change in cyclin D1, cyclin D2, cyclin D3, cdk4, or cdk6 in mouse and human islets. Additionally, AdCMV-CCK treatment of CCK receptor knockout and wild-type mice resulted in equal [(3)H]thymidine incorporation. CCK is a beta-cell proliferative factor that is effective in both mouse and human islets. CCK triggers beta-cell proliferation without disrupting islet function, up-regulates a distinct set of cell cycle regulators in islets, and signals independently of the CCK receptors.
Collapse
Affiliation(s)
- Jeremy A Lavine
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lo CM, Samuelson LC, Chambers JB, King A, Heiman J, Jandacek RJ, Sakai RR, Benoit SC, Raybould HE, Woods SC, Tso P. Characterization of mice lacking the gene for cholecystokinin. Am J Physiol Regul Integr Comp Physiol 2008; 294:R803-10. [DOI: 10.1152/ajpregu.00682.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CCK acts peripherally as a satiating peptide released during meals in response to lipid feeding and centrally functions in the modulation of feeding, exploratory, and memory activities. The present study determined metabolic parameters, food intake, anxiety-like behaviors, and cognitive function in mice lacking the CCK gene. We studied intestinal fat absorption, body composition, and food intake of CCK knockout (CCK-KO) mice by using the noninvasive measurement of intestinal fat absorption along with quantitative magnetic resonance (QMR) imaging and the DietMax system, respectively. Additionally, exploratory and memory capacities were assessed by monitoring running wheel activity and conducting elevated plus-maze and Morris water-maze tests with these mice. Compared with wild-type (WT) littermate controls, CCK-KO mice had normal food intake, fat absorption, body weight, and body mass. CCK-KO mice ate more food than control animals during the light period and less food during the dark period. Energy expenditure was unchanged between the genotypes; however, CCK-KO mice displayed greater fatty acid oxidation. CCK-KO mice were as active as WT animals in the running wheel test. CCK-KO mice spent more time in the closed arms of an elevated plus-maze, indicative of increased anxiety. Additionally, CCK-KO mice exhibited attenuated performance in a passive avoidance task and impaired spatial memory in the Morris water maze test. We conclude that CCK is involved in metabolic rate and is important for memory and exploration. CCK is intimately involved in multiple processes related to cognitive function and food intake regulation.
Collapse
|
24
|
Gurda GT, Guo L, Lee SH, Molkentin JD, Williams JA. Cholecystokinin activates pancreatic calcineurin-NFAT signaling in vitro and in vivo. Mol Biol Cell 2008; 19:198-206. [PMID: 17978097 PMCID: PMC2174201 DOI: 10.1091/mbc.e07-05-0430] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/11/2007] [Accepted: 10/23/2007] [Indexed: 01/13/2023] Open
Abstract
Elevated endogenous cholecystokinin (CCK) release induced by protease inhibitors leads to pancreatic growth. This response has been shown to be mediated by the phosphatase calcineurin, but its downstream effectors are unknown. Here we examined activation of calcineurin-regulated nuclear factor of activated T-cells (NFATs) in isolated acinar cells, as well as in an in vivo model of pancreatic growth. Western blotting of endogenous NFATs and confocal imaging of NFATc1-GFP in pancreatic acini showed that CCK dose-dependently stimulated NFAT translocation from the cytoplasm to the nucleus within 0.5-1 h. This shift in localization correlated with CCK-induced activation of NFAT-driven luciferase reporter and was similar to that induced by a calcium ionophore and constitutively active calcineurin. The effect of CCK was dependent on calcineurin, as these changes were blocked by immunosuppressants FK506 and CsA and by overexpression of the endogenous protein inhibitor CAIN. Parallel NFAT activation took place in vivo. Pancreatic growth was accompanied by an increase in nuclear NFATs and subsequent elevation in expression of NFAT-luciferase in the pancreas, but not in organs unresponsive to CCK. The changes also required calcineurin, as they were blocked by FK506. We conclude that CCK activates NFATs in a calcineurin-dependent manner, both in vitro and in vivo.
Collapse
Affiliation(s)
- Grzegorz T Gurda
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, MI 48109-0622, USA.
| | | | | | | | | |
Collapse
|
25
|
Ahituv N, Kavaslar N, Schackwitz W, Ustaszewska A, Martin J, Hebert S, Doelle H, Ersoy B, Kryukov G, Schmidt S, Yosef N, Ruppin E, Sharan R, Vaisse C, Sunyaev S, Dent R, Cohen J, McPherson R, Pennacchio LA. Medical sequencing at the extremes of human body mass. Am J Hum Genet 2007; 80:779-91. [PMID: 17357083 PMCID: PMC1852707 DOI: 10.1086/513471] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 01/16/2007] [Indexed: 01/19/2023] Open
Abstract
Body weight is a quantitative trait with significant heritability in humans. To identify potential genetic contributors to this phenotype, we resequenced the coding exons and splice junctions of 58 genes in 379 obese and 378 lean individuals. Our 96-Mb survey included 21 genes associated with monogenic forms of obesity in humans or mice, as well as 37 genes that function in body weight-related pathways. We found that the monogenic obesity-associated gene group was enriched for rare nonsynonymous variants unique to the obese population compared with the lean population. In addition, computational analysis predicted a greater fraction of deleterious variants within the obese cohort. Together, these data suggest that multiple rare alleles contribute to obesity in the population and provide a medical sequencing-based approach to detect them.
Collapse
Affiliation(s)
- Nadav Ahituv
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Gastrin, a potent stimulator of gastric acid secretion, primarily targets the acid-secreting parietal cells and histamine-secreting enterochromaffin-like (ECL) cells in the stomach. Accordingly, gastrin-deficient (GAS-KO) mice have a severe impairment in acid secretion. The aim of this study was to characterize changes in gene expression in GAS-KO mice to identify gastrin-regulated genes and to gain insight into how gastric cell types are regulated by gastrin and acid secretion. Affymetrix microarray analysis of GAS-KO and wild-type mice identified numerous differentially expressed transcripts. The results were compared with GAS-KO mice treated with gastrin to identify genes that were gastrin responsive. Finally, genes that were primarily changed due to gastrin and not hypochlorhydria were identified by comparison to mice that are deficient in both gastrin and cholecystokinin (GAS/CCK-KO), since these mice have restored basal acid secretion. The data were validated by quantitative reverse transcriptase polymerase chain reaction analysis. Interestingly, a number of inflammatory response genes were induced in GAS-KO mice and normalized in GAS/CCK-KO mice, suggesting that they were increased in response to low gastric acid. Moreover, a number of parietal cell transcripts that were downregulated in GAS-KO mice were similarly restored in GAS/CCK-KO mice, suggesting that parietal cell changes were also primarily associated with hypochlorhydria. In contrast, ECL cell genes that were markedly downregulated in GAS-KO mice continued to be reduced in GAS/CCK-KO mice, demonstrating that gastrin coordinately regulates a number of ECL cell genes, including several involved in histamine synthesis and secretion.
Collapse
Affiliation(s)
- Renu N Jain
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | |
Collapse
|
27
|
Guo L, Sans MD, Gurda GT, Lee SH, Ernst SA, Williams JA. Induction of early response genes in trypsin inhibitor-induced pancreatic growth. Am J Physiol Gastrointest Liver Physiol 2007; 292:G667-77. [PMID: 17095753 DOI: 10.1152/ajpgi.00433.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endogenous CCK release induced by a synthetic trypsin inhibitor, camostat, stimulates pancreatic growth; however, the mechanisms mediating this growth are not well established. Early response genes often couple short-term signals with long-term responses. To study their participation in the pancreatic growth response, mice were fasted for 18 h and refed chow containing 0.1% camostat for 1-24 h. Expression of 18 early response genes were evaluated by quantitative PCR; mRNA for 17 of the 18 increased at 1, 2, 4, or 8 h. Protein expression for c-jun, c-fos, ATF-3, Egr-1, and JunB peaked at 2 h. Nuclear localization was confirmed by immunohistochemistry of c-fos, c-jun, and Egr-1. Refeeding regular chow induced only a small increase of c-jun and none in c-fos expression. JNKs and ERKs were activated 1 h after camostat feeding as was the phosphorylation of c-jun and ATF-2. AP-1 DNA binding evaluated by EMSA showed a significant increase 1-2 h after camostat feeding with participation of c-jun, c-fos, ATF-2, ATF-3, and JunB shown by supershift. The CCK antagonist IQM-95,333 blocked camostat feeding-induced c-jun and c-fos expression by 67 and 84%, respectively, and AP-1 DNA binding was also inhibited. In CCK-deficient mice, the maximal response of c-jun induction and AP-1 DNA binding were reduced by 64 and 70%, respectively. These results indicate that camostat feeding induces a spectrum of early response gene expression and AP-1 DNA binding and that these effects are mainly CCK dependent.
Collapse
Affiliation(s)
- Lili Guo
- Dept of Molecular and Integrative Physiology, Univ of Michigan Medical School, Ann Arbor, MI 48109-0622, USA
| | | | | | | | | | | |
Collapse
|
28
|
Berna MJ, Jensen RT. Role of CCK/gastrin receptors in gastrointestinal/metabolic diseases and results of human studies using gastrin/CCK receptor agonists/antagonists in these diseases. Curr Top Med Chem 2007; 7:1211-31. [PMID: 17584143 PMCID: PMC2718729 DOI: 10.2174/156802607780960519] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this paper, the established and possible roles of CCK1 and CCK2 receptors in gastrointestinal (GI) and metabolic diseases are reviewed and available results from human agonist/antagonist studies are discussed. While there is evidence for the involvement of CCK1R in numerous diseases including pancreatic disorders, motility disorders, tumor growth, regulation of satiety and a number of CCK-deficient states, the role of CCK1R in these conditions is not clearly defined. There are encouraging data from several clinical studies of CCK1R antagonists in some of these conditions, but their role as therapeutic agents remains unclear. The role of CCK2R in physiological (atrophic gastritis, pernicious anemia) and pathological (Zollinger-Ellison syndrome) hypergastrinemic states, its effects on the gastric mucosa (ECL cell hyperplasia, carcinoids, parietal cell mass) and its role in acid-peptic disorders are clearly defined. Furthermore, recent studies point to a possible role for CCK2R in a number of GI malignancies. Current data from human studies of CCK2R antagonists are presented and their potential role in the treatment of these conditions reviewed. Furthermore, the role of CCK2 receptors as targets for medical imaging is discussed.
Collapse
Affiliation(s)
- Marc J. Berna
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
29
|
Abstract
Cholecystokinin and gastrin receptors (CCK1R and CCK2R) are G protein-coupled receptors that have been the subject of intensive research in the last 10 years with corresponding advances in the understanding of their functioning and physiology. In this review, we first describe general properties of the receptors, such as the different signaling pathways used to exert short- and long-term effects and the structural data that explain their binding properties, activation, and regulation. We then focus on peripheral cholecystokinin receptors by describing their tissue distribution and physiological actions. Finally, pathophysiological peripheral actions of cholecystokinin receptors and their relevance in clinical disorders are reviewed.
Collapse
Affiliation(s)
- Marlène Dufresne
- Institut National de la Santé et de la Recherche Médicale U. 531, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, France
| | | | | |
Collapse
|
30
|
Borghei A, Ouyang YB, Westmuckett AD, Marcello MR, Landel CP, Evans JP, Moore KL. Targeted disruption of tyrosylprotein sulfotransferase-2, an enzyme that catalyzes post-translational protein tyrosine O-sulfation, causes male infertility. J Biol Chem 2006; 281:9423-31. [PMID: 16469738 PMCID: PMC1615914 DOI: 10.1074/jbc.m513768200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine O-sulfation is a post-translational modification mediated by one of two Golgi tyrosylprotein sulfotransferases (TPST-1 and -2) expressed in all mammalian cells. Tyrosine sulfation plays an important role in the function of some known TPST substrates by enhancing protein-protein interactions. To explore the role of these enzymes in vivo and gain insight into other potential TPST substrates, TPST-2-deficient mice were generated by targeted disruption of the Tpst2 gene. Tpst2(+/-) mice appear normal and, when interbred, yield litters of normal size with a Mendelian distribution of the targeted mutation. Tpst2(-/-) mice have moderately delayed growth but appear healthy and attain normal body weight by 10 weeks of age. In contrast to Tpst1(-/-) males that have normal fertility, Tpst2(-/-) males are infertile. Tpst2(-/-) sperm are normal in number, morphology, and motility in normal media and appear to capacitate and undergo acrosomal exocytosis normally. However, they are severely defective in their motility in viscous media and in their ability to fertilize zona pellucida-intact eggs. Adhesion of Tpst2(-/-) sperm to the egg plasma membrane is reduced compared with wild type sperm, but sperm-egg fusion is similar or even increased. These data strongly suggest that tyrosine sulfation of unidentified substrate(s) play a crucial role in these processes and document for the first time the critical importance of post-translational tyrosine sulfation in male fertility.
Collapse
Affiliation(s)
- Atefeh Borghei
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Ying-Bin Ouyang
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Andrew D. Westmuckett
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Matthew R. Marcello
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | | | - Janice P. Evans
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - Kevin L. Moore
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Department of Medicine University of Oklahoma Health Sciences Center Oklahoma City, OK 73104
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- The Oklahoma Center for Medical Glycobiology, Oklahoma City, OK 73104
| |
Collapse
|
31
|
Varga G, Bálint A, Burghardt B, D'Amato M. Involvement of endogenous CCK and CCK1 receptors in colonic motor function. Br J Pharmacol 2004. [PMID: 15100163 DOI: 10.1038/sj.bjp.0705769141/8/1275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cholecystokinin (CCK) is a brain-gut peptide; it functions both as a neuropeptide and as a gut hormone. Although the pancreas and the gallbladder were long thought to be the principal peripheral targets of CCK, CCK receptors are found throughout the gut. It is likely that CCK has a physiological role not only in the stimulation of pancreatic and biliary secretions but also in the regulation of gastrointestinal motility. The motor effects of CCK include postprandial inhibition of gastric emptying and inhibition of colonic transit. It is now evident that at least two different receptors, CCK(1) and CCK(2) (formerly CCK-A and CCK-B, respectively), mediate the actions of CCK. Both localization and functional studies suggest that the motor effects of CCK are mediated by CCK(1) receptors in humans. Since CCK is involved in sensory and motor responses to distension in the intestinal tract, it may contribute to the symptoms of constipation, bloating and abdominal pain that are often characteristic of functional gastrointestinal disorders in general and irritable bowel syndrome (IBS), in particular. CCK(1) receptor antagonists are therefore currently under development for the treatment of constipation-predominant IBS. Clinical studies suggest that CCK(1) receptor antagonists are effective facilitators of gastric emptying and inhibitors of gallbladder contraction and can accelerate colonic transit time in healthy volunteers and patients with IBS. These drugs are therefore potentially of great value in the treatment of motility disorders such as constipation and constipation-predominant IBS.
Collapse
Affiliation(s)
- Gábor Varga
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, Budapest 1083, Hungary.
| | | | | | | |
Collapse
|
32
|
Varga G, Bálint A, Burghardt B, D'Amato M. Involvement of endogenous CCK and CCK1 receptors in colonic motor function. Br J Pharmacol 2004; 141:1275-84. [PMID: 15100163 PMCID: PMC1574909 DOI: 10.1038/sj.bjp.0705769] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cholecystokinin (CCK) is a brain-gut peptide; it functions both as a neuropeptide and as a gut hormone. Although the pancreas and the gallbladder were long thought to be the principal peripheral targets of CCK, CCK receptors are found throughout the gut. It is likely that CCK has a physiological role not only in the stimulation of pancreatic and biliary secretions but also in the regulation of gastrointestinal motility. The motor effects of CCK include postprandial inhibition of gastric emptying and inhibition of colonic transit. It is now evident that at least two different receptors, CCK(1) and CCK(2) (formerly CCK-A and CCK-B, respectively), mediate the actions of CCK. Both localization and functional studies suggest that the motor effects of CCK are mediated by CCK(1) receptors in humans. Since CCK is involved in sensory and motor responses to distension in the intestinal tract, it may contribute to the symptoms of constipation, bloating and abdominal pain that are often characteristic of functional gastrointestinal disorders in general and irritable bowel syndrome (IBS), in particular. CCK(1) receptor antagonists are therefore currently under development for the treatment of constipation-predominant IBS. Clinical studies suggest that CCK(1) receptor antagonists are effective facilitators of gastric emptying and inhibitors of gallbladder contraction and can accelerate colonic transit time in healthy volunteers and patients with IBS. These drugs are therefore potentially of great value in the treatment of motility disorders such as constipation and constipation-predominant IBS.
Collapse
Affiliation(s)
- Gábor Varga
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, Budapest 1083, Hungary.
| | | | | | | |
Collapse
|
33
|
Tashiro M, Samuelson LC, Liddle RA, Williams JA. Calcineurin mediates pancreatic growth in protease inhibitor-treated mice. Am J Physiol Gastrointest Liver Physiol 2004; 286:G784-90. [PMID: 14684381 DOI: 10.1152/ajpgi.00446.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CCK acts on pancreatic acinar cells to increase intracellular Ca(2+) leading to secretion of digestive enzymes and, in the long term, pancreatic growth. Calcineurin (CN) is a serine/threonine-specific protein phosphatase activated by Ca(2+) and calmodulin that recently has been shown to participate in the growth regulation of cardiac and skeletal myocytes. We therefore tested the effect of two different CN inhibitors, cyclosporine A (CsA) and FK506, on mouse pancreatic growth induced by oral administration of the synthetic protease inhibitor camostat, a known stimulator of endogenous CCK release. Mice were fed a powdered diet with or without 0.1% camostat. Pancreatic wet weight, protein, and DNA were increased in response to camostat in a time-dependent manner over 10 days in ICR mice but not in CCK-deficient mice. Both CsA (15 mg/kg) and FK506 (3 mg/kg) given twice daily blocked the increase in pancreatic wet weight and protein and DNA content induced by camostat. The increase in plasma CCK induced by camostat was not blocked by CsA or FK506. Camostat feeding also increased the relative amount of CN protein, whereas levels of MAPKs, ERKs, and p38 were not altered. In summary, 1) CCK released by chronic camostat feeding induces pancreatic growth in mice; 2) this growth is blocked by treatment with both CsA and FK506, indicating a role for CN; 3) CCK stimulation also increases CN protein. In conclusion, activation and possibly upregulation of CN may participate in regulation of pancreatic growth by CCK in mice.
Collapse
Affiliation(s)
- Mitsuo Tashiro
- Molecular and Integrative Physiology, Univ. of Michigan Medical School, 7744 Medical Science II, Ann Arbor, MI 48109-0622, USA
| | | | | | | |
Collapse
|
34
|
Jia D, Otsuki M. Bezafibrate, a peroxisome proliferator-activated receptor (PPAR)-alpha activator, prevents pancreatic degeneration in obese and diabetic rats. Pancreas 2003; 26:286-91. [PMID: 12657956 DOI: 10.1097/00006676-200304000-00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Damage to the exocrine pancreas has been observed in patients and animals with hyperlipidemia and hyperglycemia. Bezafibrate, a peroxisome proliferator-activated receptor (PPAR)-alpha activator, has been shown to improve lipid and glucose metabolism, and to interfere with the inflammatory response. AIM To examine the effects of bezafibrate on exocrine pancreas in hyperlipidemic obese and diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats that have no cholecystokinin-1 receptor gene expression. METHODOLOGY One group of rats (n = 8) received a bezafibrate-rich diet (150 mg/100 g normal chow) from 12 weeks of age until 30 weeks of age, whereas a control group (n = 8) received standard rat chow. RESULTS Bezafibrate treatment significantly reduced serum triglyceride, total cholesterol, and free fatty acids levels and significantly increased the pancreatic wet weight (1,145 +/- 54 vs 874 +/- 33 mg/rat, p < 0.01), and protein (169 +/- 7 vs 128 +/- 11 mg/pancreas p < 0.01) and enzyme contents in the pancreas compared with those in untreated control rats. Immunohistochemical studies of the pancreas showed that expression of proinflammatory cytokines such as tumor necrosis factor-alpha, interleukin-1beta and interleukin-6, and alpha-smooth muscle actin in bezafibrate-treated rats was greatly suppressed compared with that in the untreated control rats. The histopathologic changes such as vacuolar degeneration and tubular complexes observed in the control rat pancreas were markedly improved in bezafibrate-treated rats. CONCLUSIONS Our results suggest that bezafibrate reduces hyperlipidemia, inhibits pancreatic inflammation, and prevents pancreatic degeneration in obese and diabetic OLETF rats.
Collapse
Affiliation(s)
- Dongmei Jia
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Japan, School of Medicine, Kitakyushu, Japan
| | | |
Collapse
|
35
|
Jia DM, Fukumitsu KI, Tabaru A, Akiyama T, Otsuki M. Troglitazone stimulates pancreatic growth in congenitally CCK-A receptor-deficient OLETF rats. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1332-40. [PMID: 11294751 DOI: 10.1152/ajpregu.2001.280.5.r1332] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We examined the effect of troglitazone treatment on pancreatic growth in the CCK-A receptor-deficient Otsuka Long-Evans Tokushima fatty (OLETF) rat, an animal model for type 2 diabetes mellitus. A troglitazone-rich diet (0.2%) was given from 12 to 28 wk of age or from 12 or 28 wk of age to 72 wk of age. Fasting serum glucose concentrations in control OLETF rats increased progressively with age, which was almost completely prevented by troglitazone treatment. Insulin levels in serum and pancreatic content in the control rat markedly increased at 28 wk of age but significantly decreased at 72 wk of age compared with those at 12 wk of age, whereas those in troglitazone-treated rats were nearly the same at all ages and were similar to those in control rats at 12 wk of age. Pancreatic wet weight in control rats decreased with age irrespective of whether they were hyperinsulinemic (28 wk old) or hypoinsulinemic (72 wk old). Troglitazone treatment significantly increased pancreatic wet weight and protein, DNA, and enzyme contents compared with those in the control rats. Moreover, troglitazone treatment completely prevented or reversed histological alterations such as fibrosis, fatty replacement, and inflammatory cell infiltration. Our results indicate that troglitazone stimulates pancreatic growth in the congenitally CCK-A receptor-deficient OLETF rat not only by reducing insulin resistance and potentiating insulin action but also by suppressing inflammatory changes in the pancreas.
Collapse
Affiliation(s)
- D M Jia
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | |
Collapse
|
36
|
Abstract
Obesity is a health problem of epidemic proportions in the industrialized world. The cloning and characterization of the genes for the five naturally occurring monogenic obesity syndromes in the mouse have led to major breakthroughs in understanding the physiology of energy balance and the contribution of genetics to obesity in the human population. However, the regulation of energy balance is an extremely complex process, and it is quickly becoming clear that hundreds of genes are involved. In this article, we review the naturally occurring monogenic and polygenic obese mouse strains, as well as the large number of transgenic and knockout mouse models currently available for the study of obesity and energy balance.
Collapse
Affiliation(s)
- S W Robinson
- Vollum Institute, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97201, USA.
| | | | | |
Collapse
|
37
|
Hara H, Ohyama S, Hira T. Luminal dietary protein, not amino acids, induces pancreatic protease via CCK in pancreaticobiliary-diverted rats. Am J Physiol Gastrointest Liver Physiol 2000; 278:G937-45. [PMID: 10859224 DOI: 10.1152/ajpgi.2000.278.6.g937] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We determined whether pancreatic adaptation to a high-protein diet depends on ingested protein in the intestinal lumen and whether such adaptation depends on a CCK or capsaicin-sensitive vagal afferent pathway in pancreaticobiliary-diverted (PBD) rats. Feeding a high-casein (60%) diet but not a high-amino acid diet to PBD rats increased pancreatic trypsin and chymotrypsin activities compared with those after feeding a 25% casein diet. In contrast, feeding both the high-nitrogen diets induced pancreatic hypertrophy in PBD rats. These pancreatic changes by the diets were abolished by treatment with devazepide, a CCK-A receptor antagonist. Protease zymogen mRNA abundance in the PBD rat was not increased by feeding the high-casein diet and was decreased by devazepide. Perivagal capsaicin treatment did not influence the values of any pancreatic variables in PBD rats fed the normal or high-casein diet. We concluded that luminal protein or peptides were responsible for the bile pancreatic juice-independent induction of pancreatic proteases on feeding a high-protein diet. The induction was found to be dependent on the direct action of CCK on the pancreas. Pancreatic growth induced by high-protein feeding in PBD rats may depend at least partly on absorbed amino acids.
Collapse
Affiliation(s)
- H Hara
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | | | | |
Collapse
|