1
|
Hysenaj F, Lauber M, Bast-Habersbrunner A, List M, Klingenspor M. Single-cell transcriptome analysis reveals secretin as a hallmark of human enteroendocrine cell maturation. Sci Rep 2024; 14:13525. [PMID: 38866945 PMCID: PMC11169271 DOI: 10.1038/s41598-024-63699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
The traditional nomenclature of enteroendocrine cells (EECs), established in 1977, applied the "one cell - one hormone" dogma, which distinguishes subpopulations based on the secretion of a specific hormone. These hormone-specific subpopulations included S cells for secretin (SCT), K cells for glucose-dependent insulinotropic polypeptide (GIP), N cells producing neurotensin (NTS), I cells producing cholecystokinin (CCK), D cells producing somatostatin (SST), and others. In the past 15 years, reinvestigations into murine and human organoid-derived EECs, however, strongly questioned this dogma and established that certain EECs coexpress multiple hormones. Using the Gut Cell Atlas, the largest available single-cell transcriptome dataset of human intestinal cells, this study consolidates that the original dogma is outdated not only for murine and human organoid-derived EECs, but also for primary human EECs, showing that the expression of certain hormones is not restricted to their designated cell type. Moreover, specific analyses into SCT-expressing cells reject the presence of any cell population that exhibits significantly elevated secretin expression compared to other cell populations, previously referred to as S cells. Instead, this investigation indicates that secretin production is realized jointly by other enteroendocrine subpopulations, validating corresponding observations in murine EECs also for human EECs. Furthermore, our findings corroborate that SCT expression peaks in mature EECs, in contrast, progenitor EECs exhibit markedly lower expression levels, supporting the hypothesis that SCT expression is a hallmark of EEC maturation.
Collapse
Affiliation(s)
- Franc Hysenaj
- Chair of Experimental Bioinformatics, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Michael Lauber
- Chair of Experimental Bioinformatics, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Andrea Bast-Habersbrunner
- Chair of Molecular Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Markus List
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Munich Data Science Institute (MDSI), Technical University of Munich, 85748, Garching, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
2
|
Atanga R, Appell LL, Thompson MN, Lauer FT, Brearley A, Campen MJ, Castillo EF, In JG. Single Cell Analysis of Human Colonoids Exposed to Uranium-Bearing Dust. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:57006. [PMID: 38771937 PMCID: PMC11108582 DOI: 10.1289/ehp13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Uranium exposure remains an important environmental legacy and physiological health concern, with hundreds of abandoned uranium mines located in the Southwestern United States largely impacting underserved indigenous communities. The negative effects of heavy metals on barrier permeability and inhibition of intestinal epithelial healing have been described; however, transcriptomic changes within the intestinal epithelial cells and impacts on lineage differentiation are largely unknown. OBJECTIVES Herein, we sought to determine the molecular and cellular changes that occur in the colon in response to uranium bearing dust (UBD) exposure. METHODS Human colonoids from three biologically distinct donors were acutely exposed to UBD then digested for single cell RNA sequencing to define the molecular changes that occur to specific identities of colonic epithelial cells. Validation in colonoids was assessed using morphological and imaging techniques. RESULTS Human colonoids acutely exposed to UBD exhibited disrupted proliferation and hyperplastic differentiation of the secretory lineage cell, enteroendocrine cells (EEC). Single-cell RNA sequencing also showed more EEC subtypes present in UBD-exposed colonoids. DISCUSSION These findings highlight the significance of crypt-based proliferative cells and secretory cell differentiation using human colonoids to model major colonic responses to uranium-bearing particulate dust exposure. https://doi.org/10.1289/EHP13855.
Collapse
Affiliation(s)
- Roger Atanga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Lidia L. Appell
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Myranda N. Thompson
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Fredine T. Lauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, College of Arts and Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
3
|
Shu G, Xu D, Ran C, Yin L, Lin J, Fu H, Zhang W, Bai S, Peng X, Zhao X, Amevor FK. Protective effect of dietary supplementation of Bupleurum falcatum L saikosaponins on ammonia exposure-induced ileum injury in broilers. Poult Sci 2021; 100:100803. [PMID: 33516464 PMCID: PMC7936159 DOI: 10.1016/j.psj.2020.10.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 01/26/2023] Open
Abstract
Ammonia (NH3) at a high concentration has been recognized as a highly poisonous pollutant affecting both air and water quality. NH3, as a stimulus, exerts negative impact on broiler growth and production, but the molecular mechanisms are not clear yet. This study was designed to evaluate the effects of dietary supplementation of Bupleurum falcatum L saikosaponins (SP) on the growth and ileum health status in broilers exposed to NH3. Day-old Arbor Acers broilers (n = 480) were randomly allocated into 1 of 4 treatments. The main factors were dietary SP supplementation (0 or 80 mg/kg of diet) and NH3 challenge (with or without 70 ± 5 ppm NH3). The data of growth, intestinal morphology, and mRNA expression related to ileal function were collected from broilers exposed to NH3 for 7 d. Results showed that NH3 remarkably suppressed growth performance and intestinal development as well as induced biological injuries in the ileum of broilers, resulting from oxidative stress, mucous barrier damage, and immune dysfunction as well as upregulated apoptosis. These negative effects of NH3 were alleviated by the SP supplement. In conclusion, dietary supplementation of SP may be helpful in alleviating the detrimental effects of NH3 on the ileum development in broilers.
Collapse
Affiliation(s)
- Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Dan Xu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chonglin Ran
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lizi Yin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juchun Lin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hualin Fu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Zhang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shiping Bai
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
El-Salhy M. Possible role of intestinal stem cells in the pathophysiology of irritable bowel syndrome. World J Gastroenterol 2020; 26:1427-1438. [PMID: 32308344 PMCID: PMC7152517 DOI: 10.3748/wjg.v26.i13.1427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of irritable bowel syndrome (IBS) is not completely understood. However, several factors are known to play a role in pathophysiology of IBS such as genetics, diet, gut microbiota, gut endocrine cells, stress and low-grade inflammation. Understanding the pathophysiology of IBS may open the way for new treatment approaches. Low density of intestinal stem cells and low differentiation toward enteroendocrine cells has been reported recently in patients with IBS. These abnormalities are believed to be the cause of the low density of enteroendocrine cells seen in patients with IBS. Enteroendocrine cells regulate gastrointestinal motility, secretion, absorption and visceral sensitivity. Gastrointestinal dysmotility, abnormal absorption/secretion and visceral hypersensitivity are all seen in patients with IBS and haven been attributed to the low density the intestinal enteroendocrine cells in these patients. The present review conducted a literature search in Medline (PubMed) covering the last ten years until November 2019, where articles in English were included. Articles about the intestinal stem cells and their possible role in the pathophysiology of IBS are discussed in the present review. The present review discusses the assumption that intestinal stem cells play a central role in the pathophysiology of IBS and that the other factors known to contribute to the pathophysiology of IBS such as genetics, diet gut microbiota, stress, and low-grade inflammation exert their effects through affecting the intestinal stem cells. It reports further the data that support this assumption on genetics, diet, gut microbiota, stress with depletion of glutamine, and inflammation.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Hospital, Stord 54 09, Norway
- Department of Clinical Medicine, University of Bergen, Bergen 50 21, Norway
| |
Collapse
|
5
|
Diet in Irritable Bowel Syndrome (IBS): Interaction with Gut Microbiota and Gut Hormones. Nutrients 2019; 11:nu11081824. [PMID: 31394793 PMCID: PMC6723613 DOI: 10.3390/nu11081824] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022] Open
Abstract
Diet plays an important role not only in the pathophysiology of irritable bowel syndrome (IBS), but also as a tool that improves symptoms and quality of life. The effects of diet seem to be a result of an interaction with the gut bacteria and the gut endocrine cells. The density of gut endocrine cells is low in IBS patients, and it is believed that this abnormality is the direct cause of the symptoms seen in IBS patients. The low density of gut endocrine cells is probably caused by a low number of stem cells and low differentiation progeny toward endocrine cells. A low fermentable oligo-, di-, monosaccharide, and polyol (FODMAP) diet and fecal microbiota transplantation (FMT) restore the gut endocrine cells to the level of healthy subjects. It has been suggested that our diet acts as a prebiotic that favors the growth of a certain types of bacteria. Diet also acts as a substrate for gut bacteria fermentation, which results in several by-products. These by-products might act on the stem cells in such a way that the gut stem cells decrease, and consequently, endocrine cell numbers decrease. Changing to a low-FODMAP diet or changing the gut bacteria through FMT improves IBS symptoms and restores the density of endocrine cells.
Collapse
|
6
|
Inhibitory effect of luminal saccharides on glucose absorption from an adjacent jejunal site in rats: a newly described intestinal neural reflex. Pflugers Arch 2018; 471:595-603. [PMID: 30402765 DOI: 10.1007/s00424-018-2230-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022]
Abstract
Nutrients in the lumen of the small intestine are sensed by special cells in the epithelial lining. The ensuing neurohumoral reflexes affect gastrointestinal absorption/secretion, motility, and vascular perfusion. To study in vivo the effect of a monosaccharide (glucose) or polysaccharide (starch) present in the jejunum on glucose absorption from an adjacent part of the intestine and investigate the possible underlying mechanisms. Using the single pass intraluminal perfusion technique, a segment of jejunum (perfusion segment) was continuously perfused with 20 mM glucose to determine glucose absorption. One hour later, a bolus of a saccharide was instilled in an isolated adjacent jejunal segment and the change in glucose absorption was monitored for a further 2 h. The contribution of neural mechanisms in this process was investigated. Instillation of glucose (20 mM or 40 mM) in either distal or proximal jejunal pouch elicited immediate and sustained inhibition of glucose absorption (a decrease by 25%; P < 0.01) from the perfused jejunal segment. Comparable inhibition was obtained with instillation of other monosaccharides or starch in the jejunal pouch. This inhibition was abolished by adding tetrodotoxin to the pouch or to the perfused jejunal segment and also by pretreatment with sympathetic blockers (guanethidine or hexamethonium) and by chemical ablation of capsaicin-sensitive primary afferent fibers. Glucose absorption within the jejunum is auto-regulated through backward and forward mechanisms. This regulation is mediated by neural reflexes involving capsaicin-sensitive afferent and sympathetic efferent fibers. These reflexes might serve to protect against hyperglycemia.
Collapse
|
7
|
Abstract
The anatomical structure and function of beaks, bills and tongue together with the mechanics of deglutition in birds have contributed to the development of a taste system denuded of macrostructures visible to the human naked eye. Studies in chickens and other birds have revealed that the avian taste system consists of taste buds not clustered in papillae and located mainly (60 %) in the upper palate hidden in the crevasses of the salivary ducts. That explains the long delay in the understanding of the avian taste system. However, recent studies reported 767 taste buds in the oral cavity of the chicken. Chickens appear to have an acute sense of taste allowing for the discrimination of dietary amino acids, fatty acids, sugars, quinine, Ca and salt among others. However, chickens and other birds have small repertoires of bitter taste receptors (T2R) and are missing the T1R2 (related to sweet taste in mammals). Thus, T1R2-independent mechanisms of glucose sensing might be particularly relevant in chickens. The chicken umami receptor (T1R1/T1R3) responds to amino acids such as alanine and serine (known to stimulate the umami receptor in rodents and fish). Recently, the avian nutrient chemosensory system has been found in the gastrointestinal tract and hypothalamus related to the enteroendocrine system which mediates the gut-brain dialogue relevant to the control of feed intake. Overall, the understanding of the avian taste system provides novel and robust tools to improve avian nutrition.
Collapse
|
8
|
Rodrigues Sartori SS, Peixoto JV, Lopes VDPG, Barbosa AJA, Neves CA, Fonseca CC. Neuroendocrine structures of the small intestine of the capybara Hydrochoerus hydrochaeris (Mammalia, Rodentia). ANIM BIOL 2018. [DOI: 10.1163/15707563-17000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
A complex network of nerve fibers of the enteric nervous system and enteroendocrine cells is known to regulate the gastrointestinal tract. The distribution and frequency of the argyrophil, argentaffin and serotonin immunoreactive endocrine cells and of the submucosal and myenteric nervous ganglia were studied in the small intestine of the capybara Hydrochoerus hydrochaeris, aiming to verify the existence of possible numerical correlations between endocrine cells and nervous ganglia. Fragments of the duodenum, jejunum and ileum of adult animals were collected and processed according to routine histological techniques. To study the nervous ganglia, hematoxylin and eosin staining was used, while specific staining techniques were used to study the argyrophil, argentaffin and serotonin immunoreactive endocrine cells: Grimelius, modified Masson-Fontana and peroxidase anti-peroxidase, respectively. Endocrine cells were more abundant in the area of the crypts and, in relation to their morphology, ‘open type’ endocrine cells prevailed. The population of argyrophil cells was larger than that of argentaffin cells, and these cells were larger than serotonin immunoreactive cells. The frequency of endocrine cells was apparently greater in the duodenum, indicating the importance of this intestinal segment in digestive and absorptive functions. Prominent nervous ganglia were observed in the submucosal and myenteric plexi, and were larger and more frequent in the myenteric plexus. A numerical correlation was found among the endocrine cells (argentaffin and serotonin immunoreactive cells) and the myenteric nervous ganglia, suggesting the presence of physiological interactions among the endocrine and nervous systems for the control of intestinal activities. The findings in this study contribute to the understanding of the digestive processes of this species, which may also help in its conservation and future survival.
Collapse
Affiliation(s)
| | - Juliano Vogas Peixoto
- 2Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | | | - Alfredo José Afonso Barbosa
- 3Department of Pathological Anatomy and Legal Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Clóvis Andrade Neves
- 4Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Cláudio César Fonseca
- 5Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
9
|
Mazzawi T, El-Salhy M. Effect of diet and individual dietary guidance on gastrointestinal endocrine cells in patients with irritable bowel syndrome (Review). Int J Mol Med 2017; 40:943-952. [PMID: 28849091 PMCID: PMC5593462 DOI: 10.3892/ijmm.2017.3096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a common chronic gastrointestinal (GI) disorder that is characterized by a combination of abdominal pain or discomfort, bloating and alterations in bowel movements. This review presents recent developments concerning the roles of diet and GI endocrine cells in the pathophysiology of IBS and of individual dietary guidance in the management of IBS. Patients with IBS typically report that food aggravates their IBS symptoms. The interactions between specific types of foodstuffs rich in fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs) and GI endocrine cells induce changes in cell densities. Providing individual dietary guidance about a low FODMAP intake, high soluble-fiber intake, and changing the proportions of protein, fat and carbohydrates helps to reduce the symptoms experienced by patients with IBS and to improve their quality of life. These improvements are due to restoring the densities of the GI endocrine cells back to normal. The reported observations emphasize the role of GI endocrine cells in the pathophysiology of IBS and support the provision of dietary guidance as a first-line treatment for managing IBS.
Collapse
Affiliation(s)
- Tarek Mazzawi
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | - Magdy El-Salhy
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
10
|
El-Salhy M, Ystad SO, Mazzawi T, Gundersen D. Dietary fiber in irritable bowel syndrome (Review). Int J Mol Med 2017; 40:607-613. [PMID: 28731144 PMCID: PMC5548066 DOI: 10.3892/ijmm.2017.3072] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder. It is widely believed that IBS is caused by a deficient intake of dietary fiber, and most physicians recommend that patients with IBS increase their intake of dietary fiber in order to relieve their symptoms. However, different types of dietary fiber exhibit marked differences in physical and chemical properties, and the associated health benefits are specific for each fiber type. Short-chain soluble and highly fermentable dietary fiber, such as oligosaccharides results in rapid gas production that can cause abdominal pain/discomfort, abdominal bloating/distension and flatulence in patients with IBS. By contrast, long-chain, intermediate viscous, soluble and moderately fermentable dietary fiber, such as psyllium results in a low gas production and the absence of the symptoms related to excessive gas production. The effects of type of fiber have been documented in the management of IBS, and it is known to improve the overall symptoms in patients with IBS. Dietary fiber acts on the gastrointestinal tract through several mechanisms, including increased fecal mass with mechanical stimulation/irritation of the colonic mucosa with increasing secretion and peristalsis, and the actions of fermentation byproducts, particularly short-chain fatty acids, on the intestinal microbiota, immune system and the neuroendocrine system of the gastrointestinal tract. Fiber supplementation, particularly psyllium, is both safe and effective in improving IBS symptoms globally. Dietary fiber also has other health benefits, such as lowering blood cholesterol levels, improving glycemic control and body weight management.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital, 5416 Stord, Norway
| | - Synne Otterasen Ystad
- National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, 5020 Bergen, Norway
| | - Tarek Mazzawi
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Doris Gundersen
- Department of Research and Innovation, Helse-Fonna, 5528 Haugesund, Norway
| |
Collapse
|
11
|
Mazzawi T, El-Salhy M. Changes in duodenal enteroendocrine cells in patients with irritable bowel syndrome following dietary guidance. Exp Biol Med (Maywood) 2017; 242:1355-1362. [PMID: 28737477 PMCID: PMC5528200 DOI: 10.1177/1535370217699537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The densities of enteroendocrine cells are abnormal in patients with irritable bowel syndrome (IBS); however, they tend to change toward normal levels in stomach, ileum, and colon following dietary guidance. The aim was to identify the types of duodenal enteroendocrine cells affected after receiving dietary guidance in the same group of patients with IBS. Fourteen patients with IBS and 14 control subjects were included. The patients received three sessions of dietary guidance. Both groups underwent gastroscopies at baseline, and again for the patients after 3–9 months (median, four months) from receiving dietary guidance. Tissue biopsies were collected from the descending part of the duodenum and were immunostained for all the types of enteroendocrine cells and were then quantified by using computerized image analysis. Using the Kruskal–Wallis non-parametric test with Dunn’s test as a post-test, the results showed a significant difference in the secretin cell densities between control subjects and patients with IBS prior to and following dietary guidance (P = 0.0001 and 0.011, respectively). The corresponding P values for cholecystokinin (CCK) cell densities were 0.03 and 0.42, respectively; gastric inhibitory peptide (GIP) cell densities were 0.06 and 0.43, respectively; serotonin cell densities were <0.0001 and 0.002, respectively; and for somatostatin cell densities were <0.0001 and 0.052, respectively. The Paired t-test showed a significant difference only in the serotonin (P = 0.03) and somatostatin (P < 0.0001) cell densities between IBS patients prior to and following dietary guidance. The changes in the cell densities of secretin, CCK, and GIP were not significant between IBS patients prior to and following dietary guidance. In conclusion, the densities of several duodenal enteroendocrine cells in IBS patients changed toward the values measured in control subjects following dietary guidance. The changes in serotonin and somatostatin cell densities may have contributed to the improvements in IBS symptoms, particularly pain and diarrhea.
Collapse
Affiliation(s)
- Tarek Mazzawi
- 1 Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway.,2 National Centre for Functional Gastrointestinal Disorders, Division of Gastroenterology, Department of Medicine, Haukeland University Hospital-Helse Bergen, Bergen 5021, Norway
| | - Magdy El-Salhy
- 1 Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway.,2 National Centre for Functional Gastrointestinal Disorders, Division of Gastroenterology, Department of Medicine, Haukeland University Hospital-Helse Bergen, Bergen 5021, Norway.,3 Division of Gastroenterology, Department of Medicine, Stord Hospital-Helse Fonna, Stord 5416, Norway
| |
Collapse
|
12
|
Mazzawi T, El-Salhy M. Dietary guidance and ileal enteroendocrine cells in patients with irritable bowel syndrome. Exp Ther Med 2016; 12:1398-1404. [PMID: 27588061 PMCID: PMC4998043 DOI: 10.3892/etm.2016.3491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/10/2016] [Indexed: 12/12/2022] Open
Abstract
The enteroendocrine cells of the ileum are stimulated by the luminal contents to release specific hormones that regulate its functions. The density of ileal enteroendocrine cells is abnormal in patients with irritable bowel syndrome (IBS), and the majority of patients with IBS associate their symptoms to the consumption of certain foodstuffs. The present study investigated the effect of dietary guidance on the enteroendocrine cells of the ileum in 11 patients with IBS. A total of 10 control subjects were also included. Each patient received three sessions of dietary guidance. Colonoscopies were performed on both controls and patients with IBS (at baseline and 3-9 months after the patients had received dietary guidance). Biopsy samples from the ileum were immunostained for all enteroendocrine cells and quantified by computerized image analysis. The densities of serotonin-immunoreactive cells in controls and in patients with IBS prior to and following dietary guidance were 35.5±5.7, 38.7±7.1 and 22.3±2.6 cells/mm2, respectively (mean ± standard error of the mean; P=0.046); the corresponding values for PYY-immunoreactive cells were 16.7±2.8, 20.2±5.1 and 21.3±2.7 cells/mm2 (P=0.86). These results suggest that changes in enteroendocrine cell densities in the ileum along with changes in enteroendocrine cells throughout the gastrointestinal tract may contribute to the improvement in IBS symptoms following dietary guidance.
Collapse
Affiliation(s)
- Tarek Mazzawi
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Helse-Bergen, 5021 Bergen, Norway
| | - Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital, Helse-Fonna, 5416 Stord, Norway; National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Helse-Bergen, 5021 Bergen, Norway
| |
Collapse
|
13
|
El-Salhy M, Mazzawi T, Hausken T, Hatlebakk JG. Interaction between diet and gastrointestinal endocrine cells. Biomed Rep 2016; 4:651-656. [PMID: 27284402 PMCID: PMC4887949 DOI: 10.3892/br.2016.649] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/01/2016] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal endocrine cells are essential for life. They regulate the gastrointestinal motility, secretion, visceral sensitivity, absorption, local immune defense, cell proliferation and appetite. These cells act as sensory cells with specialized microvilli that project into the lumen that sense the gut contents (mostly nutrients and/or bacteria byproducts), and respond to luminal stimuli by releasing hormones into the lamina propria. These released hormones exert their actions by entering the circulating blood and reaching distant targets (endocrine mode), nearby structures (paracrine mode) or via afferent and efferent synaptic transmission. The mature intestinal endocrine cells are capable of expressing several hormones. A change in diet not only affects the release of gastrointestinal hormones, but also alters the densities of the gut endocrine cells. The interaction between ingested foodstuffs and the gastrointestinal endocrine cells can be utilized for the clinical management of gastrointestinal and metabolic diseases, such as irritable bowel syndrome, obesity and diabetes.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, 5409 Stord, Norway; Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| | - Tarek Mazzawi
- Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| | - Trygve Hausken
- Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jan Gunnar Hatlebakk
- Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
14
|
Mazzawi T, El-Salhy M. Changes in small intestinal chromogranin A-immunoreactive cell densities in patients with irritable bowel syndrome after receiving dietary guidance. Int J Mol Med 2016; 37:1247-53. [PMID: 26987104 PMCID: PMC4829142 DOI: 10.3892/ijmm.2016.2523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/17/2016] [Indexed: 12/12/2022] Open
Abstract
Chromogranin A (CgA) is a common marker for enteroendocrine cells in the gut, and CgA-immunoreactive cell densities are abnormal in patients with irritable bowel syndrome (IBS). The majority of patients with IBS report that their symptoms develop after consuming certain foodstuffs. In the present study, we investigated the effects of dietary guidance on the total enteroendocrine cell densities in the small intestine, as detected by CgA. A total of 14 patients with IBS underwent a gastroscopy with duodenal biopsies and 11 of them also underwent a colonoscopy, with biopsy samples obtained from the ileum. Fourteen control subjects were also included. Each patient received 3 sessions of dietary guidance. Gastroscopies and colonoscopies were performed on both the controls and patients with IBS (at baseline and at 3–9 months after receiving guidance). Biopsy samples obtained from the duodenum and ileum were immunostained for CgA using the avidin-biotin complex (ABC) method and were quantified using computerized image analysis. The density of CgA-immunoreactive cells in the duodenum (mean ± SEM values) in the control subjects was 235.9±31.9 cells/mm2; in the patients with IBS, the density was 36.9±9.8 and 103.7±16.9 cells/mm2 before and after they received dietary guidance, respectively (P=0.007). The density of CgA-immunoreactive cells in the ileum in the control subjects was 47.4±8.3 cells/mm2; in the patients with IBS, the density was 48.4±8.1 and 17.9±4.4 cells/mm2, before and after they received dietary guidance, respectively (P=0.0006). These data indicate that changes in CgA-immunoreactive cell densities in patients with IBS after receiving dietary guidance may reflect a change in the densities of the small intestinal enteroendocrine cells, which may contribute to an improvement in the IBS symptoms.
Collapse
Affiliation(s)
- Tarek Mazzawi
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital-Helse Fonna, Stord, Norway
| |
Collapse
|
15
|
Mazzoni M, Bombardi C, Vallorani C, Sirri F, De Giorgio R, Caio G, Grandis A, Sternini C, Clavenzani P. Distribution of α-transducin and α-gustducin immunoreactive cells in the chicken (Gallus domesticus) gastrointestinal tract. Poult Sci 2016; 95:1624-1630. [PMID: 26957624 DOI: 10.3382/ps/pew057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/06/2016] [Indexed: 01/12/2023] Open
Abstract
The expression and distribution patterns of the taste signaling molecules, α-gustducin (Gαgust) and α-transducin (Gαtran) G-protein subunits, were studied in the gastrointestinal tract of the chicken (Gallus domesticus) using the immunohistochemical method. Gαgust and Gαtran immunoreactive (-IR) cells were observed in the mucosal layer of all examined segments, except the esophagus, crop, and the saccus cranialis of the gizzard. The highest numbers of Gαgust and Gαtran-IR cells were found in the proventriculus glands and along the villi of the pyloric, duodenum, and rectal mucosa. Gαgust and Gαtran-IR cells located in the villi of the jejunum, ileum, and cloaca were much less numerous, while only a few Gαgust and Gαtran-IR cells were detected in the mucosa of the proventriculus and cecum. In the crypts, IR cells were observed in the small and large intestine as well as in the cloaca. Gαgust and Gαtran-IR cells displayed elongated ("bottle-" or "pear-like") or rounded shape. The demonstration of Gαgust and Gαtran expression provides evidence for taste receptor mediated mucosal chemosensitivity in the chicken gastrointestinal tract.
Collapse
Affiliation(s)
- M Mazzoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (BO), Italy.
| | - C Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (BO), Italy
| | - C Vallorani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (BO), Italy
| | - F Sirri
- Department of Agricultural and Food Sciences, University of Bologna, Ozzano Emilia (BO), Italy
| | - R De Giorgio
- Department of Medical and Surgical Sciences, University of Bologna (BO), Italy
| | - G Caio
- Department of Medical and Surgical Sciences, University of Bologna (BO), Italy
| | - A Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (BO), Italy
| | - C Sternini
- CURE/DDRC, Division of Digestive Diseases, Departments Medicine and Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles; Veterans Administration Greater Los Angeles Health System, Los Angeles, CA
| | - P Clavenzani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (BO), Italy
| |
Collapse
|
16
|
Mazzawi T, Hausken T, Gundersen D, El-Salhy M. Dietary guidance normalizes large intestinal endocrine cell densities in patients with irritable bowel syndrome. Eur J Clin Nutr 2015; 70:175-81. [PMID: 26603880 PMCID: PMC4744244 DOI: 10.1038/ejcn.2015.191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 09/02/2015] [Accepted: 09/24/2015] [Indexed: 12/13/2022]
Abstract
Background/Objectives: To determine the large intestinal endocrine cell types affected following dietary guidance in patients with irritable bowel syndrome (IBS). Subjects/Methods: The study included 13 IBS patients and 13 control subjects. The patients received three sessions of individualized dietary guidance. Both the control subjects and the patients were scheduled for colonoscopies at baseline and again for the patients at 3–9 months after dietary guidance. Biopsy samples were taken from the colon and rectum and were immunostained for all types of large intestinal endocrine cells. The endocrine cells were quantified using computerized image analysis. Results: The daily total consumption (mean±s.e.m. values) of fruits and vegetables rich in FODMAPs (fermentable oligosaccharides, disaccharides, monosaccharides and polyols) decreased significantly from 16.2±5.3 g before receiving dietary guidance to 9.2±3.2 g after receiving dietary guidance (P=0.02). In the total colon, the densities of serotonin cells were 46.8±8.9, 10.5±2.1 and 22.6±3.2 cells/mm2 in control subjects and in IBS patients before and after receiving dietary guidance, respectively (P=0.007); the corresponding densities of peptide YY cells were 11.6±1.8, 10.8±1.7 and 16.8±2.1 cells/mm2, respectively (P=0.06). The cell densities for both serotonin and peptide YY did not change significantly in the rectum. The densities of somatostatin cells in the rectum were 13.5±3.0, 13.2±3.0, and 22.3±3.2 cells/mm2 for control subjects and for IBS patients before and after receiving dietary guidance, respectively (P=0.01). Conclusions: The densities of the large intestinal endocrine cells tend to normalize following dietary guidance that may have contributed to the improvement of the patients with IBS symptoms.
Collapse
Affiliation(s)
- T Mazzawi
- Division of Gastroenterology, Department of Medicine, Stord Hospital, Stord, Norway.,Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - T Hausken
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - D Gundersen
- Department of Research, Helse-Fonna, Haugesund, Norway
| | - M El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital, Stord, Norway.,Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
17
|
Increased chromogranin a cell density in the large intestine of patients with irritable bowel syndrome after receiving dietary guidance. Gastroenterol Res Pract 2015; 2015:823897. [PMID: 25918524 PMCID: PMC4397028 DOI: 10.1155/2015/823897] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 02/07/2015] [Accepted: 02/15/2015] [Indexed: 12/15/2022] Open
Abstract
The large intestine contains five types of endocrine cells that regulate its functions by sensing its luminal contents and releasing specific hormones. Chromogranin A (CgA) is a common marker for the gastrointestinal endocrine cells, and it is abnormal in irritable bowel syndrome (IBS) patients. Most IBS patients relate their symptoms to certain food elements. The present study investigated the effect of dietary guidance on the total endocrine cells of the large intestine as detected by CgA in 13 IBS patients. Thirteen control subjects were also included. Each patient received three sessions of dietary guidance. Colonoscopies were performed on controls and patients (at baseline and at 3–9 months after receiving guidance). Biopsy samples from the colon and rectum were immunostained for CgA and quantified by computerized image analysis. The densities of CgA cells in the total colon (mean ± SEM) among the controls and the IBS patients before and after receiving dietary guidance were 83.3 ± 10.1, 38.6 ± 3.7, and 64.7 ± 4.2 cells/mm2, respectively (P = 0.0004), and were unchanged in the rectum. In conclusion, the increase in CgA cell density after receiving dietary guidance may reflect a change in the densities of the large intestinal endocrine cells causing an improvement in the IBS symptoms.
Collapse
|
18
|
Shajib MS, Khan WI. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol (Oxf) 2015; 213:561-74. [PMID: 25439045 DOI: 10.1111/apha.12430] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/29/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022]
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is a neurotransmitter and hormone that contributes to the regulation of various physiological functions by its actions in the central nervous system (CNS) and in the respective organ systems. Peripheral 5-HT is predominantly produced by enterochromaffin (EC) cells of the gastrointestinal (GI) tract. These gut-resident cells produce much more 5-HT than all neuronal and other sources combined, establishing EC cells as the main source of this biogenic amine in the human body. Peripheral 5-HT is also a potent immune modulator and affects various immune cells through its receptors and via the recently identified process of serotonylation. Alterations in 5-HT signalling have been described in inflammatory conditions of the gut, such as inflammatory bowel disease. The association between 5-HT and inflammation, however, is not limited to the gut, as changes in 5-HT levels have also been reported in patients with allergic airway inflammation and rheumatoid arthritis. Based on searches for terms such as '5-HT', 'EC cell', 'immune cells' and 'inflammation' in pubmed.gov as well as by utilizing pertinent reviews, the current review aims to provide an update on the role of 5-HT in biological functions with a particular focus on immune activation and inflammation.
Collapse
Affiliation(s)
- M. S. Shajib
- Farncombe Family Digestive Health Research Institute; Hamilton ON Canada
- Department of Pathology & Molecular Medicine; McMaster University; Hamilton ON Canada
| | - W. I. Khan
- Farncombe Family Digestive Health Research Institute; Hamilton ON Canada
- Department of Pathology & Molecular Medicine; McMaster University; Hamilton ON Canada
- Hamilton Regional Laboratory Medicine Program; Hamilton Health Sciences; Hamilton ON Canada
| |
Collapse
|
19
|
Brownlee I. The impact of dietary fibre intake on the physiology and health of the stomach and upper gastrointestinal tract. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bcdf.2014.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Vegezzi G, Anselmi L, Huynh J, Barocelli E, Rozengurt E, Raybould H, Sternini C. Diet-induced regulation of bitter taste receptor subtypes in the mouse gastrointestinal tract. PLoS One 2014; 9:e107732. [PMID: 25238152 PMCID: PMC4169553 DOI: 10.1371/journal.pone.0107732] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022] Open
Abstract
Bitter taste receptors and signaling molecules, which detect bitter taste in the mouth, are expressed in the gut mucosa. In this study, we tested whether two distinct bitter taste receptors, the bitter taste receptor 138 (T2R138), selectively activated by isothiocyanates, and the broadly tuned bitter taste receptor 108 (T2R108) are regulated by luminal content. Quantitative RT-PCR analysis showed that T2R138 transcript is more abundant in the colon than the small intestine and lowest in the stomach, whereas T2R108 mRNA is more abundant in the stomach compared to the intestine. Both transcripts in the stomach were markedly reduced by fasting and restored to normal levels after 4 hours re-feeding. A cholesterol-lowering diet, mimicking a diet naturally low in cholesterol and rich in bitter substances, increased T2R138 transcript, but not T2R108, in duodenum and jejunum, and not in ileum and colon. Long-term ingestion of high-fat diet increased T2R138 RNA, but not T2R108, in the colon. Similarly, α-gustducin, a bitter taste receptor signaling molecule, was reduced by fasting in the stomach and increased by lowering cholesterol in the small intestine and by high-fat diet in the colon. These data show that both short and long term changes in the luminal contents alter expression of bitter taste receptors and associated signaling molecules in the mucosa, supporting the proposed role of bitter taste receptors in luminal chemosensing in the gastrointestinal tract. Bitter taste receptors might serve as regulatory and defensive mechanism to control gut function and food intake and protect the body from the luminal environment.
Collapse
Affiliation(s)
- Gaia Vegezzi
- CURE Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Laura Anselmi
- CURE Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jennifer Huynh
- CURE Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | | | - Enrique Rozengurt
- CURE Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Veterans Administration, Greater Los Angeles Health system, Los Angeles, California, United States of America
| | - Helen Raybould
- Department of Anatomy, Physiology, & Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Catia Sternini
- CURE Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Veterans Administration, Greater Los Angeles Health system, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Mazzawi T, Gundersen D, Hausken T, El-Salhy M. Increased gastric chromogranin A cell density following changes to diets of patients with irritable bowel syndrome. Mol Med Rep 2014; 10:2322-6. [PMID: 25174455 PMCID: PMC4214334 DOI: 10.3892/mmr.2014.2498] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/05/2014] [Indexed: 12/13/2022] Open
Abstract
The gut endocrine cells control and regulate several functions of the gastrointestinal tract. They have been reported to be abnormal in irritable bowel syndrome (IBS), with alterations occurring in several functions regulated by these cells. Furthermore, it has been established that gut endocrine cells interact with the gut lumen contents, particularly the nutrients. The present study was undertaken to establish whether the positive outcome of dietary guidance observed in patients suffering from IBS is associated with a change in gastric endocrine cells. A total of 46 patients with IBS participated in the present study, of which 14 completed all aspects. These patients included nine females and five males with a mean age of 34 years (range, 20–45 years). In the healthy control group, nine females and five males, with a mean age of 54 years (range 26–70 years) were selected. The patients and controls underwent gastroscopy with biopsy samples taken from the corpus and antrum of the stomach. Each patient attended three sessions that lasted ~45 min each, and received individual guidance on their dietary management. The patients followed the diet prescribed for a minimum of three months, then further samples were taken using a method similar to that used for the initial biopsies. The biopsy samples were immunostained using the avidin-biotin complex method for chromogranin A (CgA) and quantified by computerized image analysis. The patients with IBS presented a low density of CgA compared with the controls. The density of CgA increased in these patients following dietary guidance and changes in food intake. The present observations emphasized the interaction between food intake and gut endocrine cells. The current study also suggests that the positive effects of dietary guidance may be attributed to changes in gut endocrine cell density.
Collapse
Affiliation(s)
- Tarek Mazzawi
- Section for Gastroenterology, Department of Medicine, Stord Helse‑Fonna Hospital, Stord, Norway
| | - Doris Gundersen
- Department of Research, Helse‑Fonna, Haugesund, Rogaland, Norway
| | - Trygve Hausken
- Section for Gastroenterology, Institute of Medicine, Bergen University, Bergen, Hordaland, Norway
| | - Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Helse‑Fonna Hospital, Stord, Norway
| |
Collapse
|
22
|
EL-SALHY MAGDY, GILJA ODDHELGE, GUNDERSEN DORIS, HATLEBAKK JANG, HAUSKEN TRYGVE. Interaction between ingested nutrients and gut endocrine cells in patients with irritable bowel syndrome (review). Int J Mol Med 2014; 34:363-71. [PMID: 24939595 PMCID: PMC4094590 DOI: 10.3892/ijmm.2014.1811] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/10/2014] [Indexed: 12/15/2022] Open
Abstract
Several endocrine cell abnormalities have been reported in different segments of the gastrointestinal tract of patients with irritable bowel syndrome (IBS). These cells have specialized microvilli that project into the lumen; they function as sensors for the gut contents and respond to luminal stimuli (mostly ingested nutrients) by releasing hormones into the lamina propria, where they exert their effects via a paracrine/endocrine mode of action. Certain food items trigger the symptoms experienced by IBS patients, including those rich in fermentable oligo-, di- and monosaccharides, and polyols (FODMAPs). In this review, we present the argument that the effects of both FODMAPs and the proportional intake of proteins, fats and carbohydrates on IBS symptoms may be caused by an interaction with the gut endocrine cells. Since the gut hormones control and regulate gastrointestinal motility and sensation, this interaction may be responsible for abnormal gastrointestinal motility and the visceral hypersensitivity observed in these patients. There is no consistent evidence that IBS patients suffer from food allergy. The role of gluten intolerance in the development of IBS symptoms in these patients remains a matter of controversy. Individual guidance on food management, which includes restrictions in the intake of FODMAP-rich foods and testing diets with different proportions of proteins, fats and carbohydrates has been found to reduce the symptoms, improve the quality of life, and make the habitual diet of IBS patients more healthy.
Collapse
Affiliation(s)
- MAGDY EL-SALHY
- Section of Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, University of Bergen, Bergen, Norway
- Section of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - ODD HELGE GILJA
- Section of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- National Centre for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - JAN G. HATLEBAKK
- Section of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - TRYGVE HAUSKEN
- Section of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Furuya S, Furuya K. Roles of substance P and ATP in the subepithelial fibroblasts of rat intestinal villi. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:133-89. [PMID: 23809436 DOI: 10.1016/b978-0-12-407696-9.00003-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ingestion of food and water induces chemical and mechanical signals that trigger peristaltic reflexes and also villous movement in the gut. In the intestinal villi, subepithelial fibroblasts under the epithelium form contractile cellular networks and closely contact to the varicosities of substance P and nonsubstance P afferent neurons. Subepithelial fibroblasts of the duodenal villi possess purinergic receptor P2Y1 and tachykinin receptor NK1. ATP and substance P induce increase in intracellular Ca(2+) and cell contraction in subepithelial fibroblasts. They are highly mechanosensitive and release ATP by mechanical stimuli. Released ATP spreads to form an ATP "cloud" with nearly 1μM concentration and activates the surroundings via P2Y1 and afferent neurons via P2X receptors. These findings suggest that villous subepithelial fibroblasts and afferent neurons interact via ATP and substance P. This mutual interaction may play important roles in the signal transduction of mechano reflex pathways including a coordinate villous movement and also in the maturation of the structure and function of the intestinal villi.
Collapse
Affiliation(s)
- Sonoko Furuya
- Section of Brain Structure Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.
| | | |
Collapse
|
24
|
Sclafani A, Ackroff K. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1119-33. [PMID: 22442194 PMCID: PMC3362145 DOI: 10.1152/ajpregu.00038.2012] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/14/2012] [Indexed: 12/17/2022]
Abstract
The discovery of taste and nutrient receptors (chemosensors) in the gut has led to intensive research on their functions. Whereas oral sugar, fat, and umami taste receptors stimulate nutrient appetite, these and other chemosensors in the gut have been linked to digestive, metabolic, and satiating effects that influence nutrient utilization and inhibit appetite. Gut chemosensors may have an additional function as well: to provide positive feedback signals that condition food preferences and stimulate appetite. The postoral stimulatory actions of nutrients are documented by flavor preference conditioning and appetite stimulation produced by gastric and intestinal infusions of carbohydrate, fat, and protein. Recent findings suggest an upper intestinal site of action, although postabsorptive nutrient actions may contribute to flavor preference learning. The gut chemosensors that generate nutrient conditioning signals remain to be identified; some have been excluded, including sweet (T1R3) and fatty acid (CD36) sensors. The gut-brain signaling pathways (neural, hormonal) are incompletely understood, although vagal afferents are implicated in glutamate conditioning but not carbohydrate or fat conditioning. Brain dopamine reward systems are involved in postoral carbohydrate and fat conditioning but less is known about the reward systems mediating protein/glutamate conditioning. Continued research on the postoral stimulatory actions of nutrients may enhance our understanding of human food preference learning.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
| | | |
Collapse
|
25
|
Schier LA, Davidson TL, Powley TL. Rapid stimulus-bound suppression of intake in response to an intraduodenal nonnutritive sweetener after training with nutritive sugars predicting malaise. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1351-63. [PMID: 22422670 DOI: 10.1152/ajpregu.00702.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In a previous report (Schier et al., Am J Physiol Regul Integr Comp Physiol 301: R1557-R1568, 2011), we demonstrated with a new behavioral procedure that rats exhibit stimulus-bound suppression of intake in response to an intraduodenal (ID) bitter tastant predicting subsequent malaise. With the use of the same modified taste aversion procedure, the present experiments evaluated whether the sweet taste properties of ID stimuli are likewise detected and encoded. Thirsty rats licked at sipper spouts for hypotonic NaCl for 30 min and received brief (first 6 min) yoked ID infusions of either the same NaCl or an isomolar lithium chloride (LiCl) solution in each session. An intestinal taste cue was mixed directly into the LiCl infusate for aversion training. Results showed that rats failed to detect intestinal sweet taste alone (20 mM Sucralose) but clearly suppressed licking in response to a nutritive sweet taste stimulus (234 mM sucrose) in the intestine that had been repeatedly paired with LiCl. Rats trained with ID sucrose in LiCl subsequently generalized responding to ID Sucralose alone at test. Replicating this, rats trained with ID Sucralose in compound with 80 mM Polycose rapidly suppressed licking to the 20 mM Sucralose alone in a later test. Furthermore, ID sweet taste signaling did not support the rapid negative feedback of sucrose or Polycose on intake when their digestion and transport were blocked. Together, these results suggest that other signaling pathways and/or transporters engaged by caloric carbohydrate stimuli potentiate detection of sweet taste signals in the intestine.
Collapse
Affiliation(s)
- Lindsey A Schier
- Dept. of Psychology, Program in Neuroscience, Florida State Univ., 1107 W. Call St., Tallahassee, FL 32306, USA.
| | | | | |
Collapse
|
26
|
|
27
|
Abstract
Gut inflammation is characterized by mucosal recruitment of activated cells from both the innate and adaptive immune systems. In addition to immune cells, inflammation in the gut is associated with an alteration in enteric endocrine cells and various biologically active compounds produced by these cells. Although the change in enteric endocrine cells or their products is considered to be important in regulating gut physiology (motility and secretion), it is not clear whether the change plays any role in immune activation and in the regulation of gut inflammation. Due to the strategic location of enteric endocrine cells in gut mucosa, these gut hormones may play an important role in immune activation and promotion of inflammation in the gut. This review addresses the research on the interface between immune and endocrine systems in gastrointestinal (GI) pathophysiology, specifically in the context of two major products of enteric endocrine systems, namely serotonin (5-hydroxytryptamine: 5-HT) and chromogranins (Cgs), in relation to immune activation and generation of inflammation. The studies reviewed in this paper demonstrate that 5-HT activates the immune cells to produce proinflammatory mediators and by manipulating the 5-HT system it is possible to modulate gut inflammation. In the case of Cgs the scenario is more complex, as this hormone has been shown to play both proinflammatory and anti-inflammatory functions. It is also possible that interaction between 5-HT and Cgs may play a role in the modulation of immune and inflammatory responses. In addition to enhancing our understanding of immunoendocrine interaction in the gut, the data generated from the these studies may have implications in understanding the role of gut hormone in the pathogenesis of both GI and non-GI inflammatory diseases which may lead ultimately to improved therapeutic strategies in inflammatory disorders.
Collapse
Affiliation(s)
- W I Khan
- Farncombe Family Digestive Health Research Institute, Department of Pathology and Molecular Medicine, McMaster University, ON, Canada.
| | | |
Collapse
|
28
|
Holmes GM, Tong M, Travagli RA. Effects of brain stem cholecystokinin-8s on gastric tone and esophageal-gastric reflex. Am J Physiol Gastrointest Liver Physiol 2009; 296:G621-31. [PMID: 19136379 PMCID: PMC2660178 DOI: 10.1152/ajpgi.90567.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The actions of cholecystokinin (CCK) on gastrointestinal functions occur mainly via paracrine effects on peripheral sensory vagal fibers, which engage vago-vagal brain stem circuits to convey effector responses back to the gastrointestinal tract. Recent evidence suggests, however, that CCK also affects brain stem structures directly. Many electrophysiological studies, including our own, have shown that brain stem vagal circuits are excited by sulfated CCK (CCK-8s) directly, and we have further demonstrated that CCK-8s induces a remarkable degree of plasticity in GABAergic brain stem synapses. In the present study, we used fasted, anesthetized Sprague-Dawley rats to investigate the effects of brain stem administration of CCK-8s on gastric tone before and after activation of the esophageal-gastric reflex. CCK-8s microinjected in the dorsal vagal complex (DVC) or applied on the floor of the fourth ventricle induced an immediate and transient decrease in gastric tone. Upon recovery of gastric tone to baseline values, the gastric relaxation induced by esophageal distension was attenuated or even reversed. The effects of CCK-8s were antagonized by vagotomy or fourth ventricular, but not intravenous, administration of the CCK-A antagonist lorglumide, suggesting a central, not peripheral, site of action. The gastric relaxation induced by DVC microinjection of CCK-8s was unaffected by pretreatment with systemic bethanecol but was completely blocked by NG-nitro-L-arginine methyl ester, suggesting a nitrergic mechanism of action. These data suggest that 1) brain stem application of CCK-8s induces a vagally mediated gastric relaxation; 2) the CCK-8s-induced gastric relaxation is mediated via activation of nonadrenergic, noncholinergic pathways; and 3) CCK-8s reverses the esophageal-gastric reflex transiently.
Collapse
Affiliation(s)
- Gregory M. Holmes
- Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Melissa Tong
- Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - R. Alberto Travagli
- Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
29
|
Wang HT, Lu QC, Wang Q, Wang RC, Zhang Y, Chen HL, Zhao H, Qian HX. Role of the duodenum in regulation of plasma ghrelin levels and body mass index after subtotal gastrectomy. World J Gastroenterol 2008; 14:2425-9. [PMID: 18416474 PMCID: PMC2705102 DOI: 10.3748/wjg.14.2425] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of the duodenum in the regulation of plasma ghrelin levels and body mass index (BMI), and the correlation between them after subtotal gastrectomy.
METHODS: Forty-two patients with T0-1N0-1M0 gastric cancer were divided into two groups after gastrectomy according to digestive reconstruction pattern, Billroth I group (n = 23) and Billroth II group (n = 19). Ghrelin levels were determined with radioimmunoassay (RIA) before and on d 1, 7, 30 and 360 after gastrectomy, and BMI was also measured.
RESULTS: The two groups had identical postoperative trends in ghrelin alterations during the early stage, both decreasing sharply to a nadir on d 1 (36.7% vs 35.7%), then markedly increasing on d 7 (51.0% vs 51.1%). On d 30, ghrelin levels in the Billroth I group were slightly higher than those in the Billroth II group. However, those of the Billroth I group recovered to 93.6% on d 360, which approached, although lower than, the preoperative levels, and no statistically significant difference was observed. Those of the Billroth II group recovered to only 81.6% and manifested significant discrepancy with preoperative levels (P = 0.033). Compared with preoperative levels, ghrelin levels of the two groups decreased by 6.9% and 18.4% and BMI fell by 3.3% and 6.4%, respectively. The linear regression correlations were revealed in both groups between decrease of ghrelin level and BMI (R12 = 0.297, P = 0.007; R22 = 0.559, P < 0.001).
CONCLUSION: Anatomically and physiologically, the duodenum compensatively promotes ghrelin recovery and accordingly enhances BMI after gastrectomy. Regarding patients with insufficient ghrelin secretion, ghrelin is positively associated with BMI.
Collapse
|
30
|
Nelson DW, Murali SG, Liu X, Koopmann MC, Holst JJ, Ney DM. Insulin-like growth factor I and glucagon-like peptide-2 responses to fasting followed by controlled or ad libitum refeeding in rats. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1175-84. [PMID: 18256135 DOI: 10.1152/ajpregu.00238.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Luminal nutrients stimulate structural and functional regeneration in the intestine through mechanisms thought to involve insulin-like growth factor I (IGF-I) and glucagon-like peptide-2 (GLP-2). We investigated the relationship between IGF-I and GLP-2 responses and mucosal growth in rats fasted for 48 h and then refed for 2 or 4 days by continuous intravenous or intragastric infusion or ad libitum feeding. Fasting induced significant decreases in body weight, plasma concentrations of IGF-I and bioactive GLP-2, jejunal mucosal cellularity (mass, protein, DNA, and villus height), IGF-I mRNA, and ileal proglucagon mRNA. Plasma IGF-I concentration was restored to fed levels with 2 days of ad libitum refeeding but not with 4 days of intravenous or intragastric refeeding. Administration of an inhibitor of endogenous GLP-2 (rat GLP-2 3-33) during ad libitum refeeding partially attenuated mucosal growth and prevented the increase in plasma IGF-I to fed levels; however, plasma GLP-2 and jejunal IGF-I mRNA were restored to fed levels. Intragastric refeeding restored intestinal cellularity and functional capacity (sucrase activity and sodium-glucose transporter-1 expression) to fed levels, whereas intravenous refeeding had no effect. Intestinal regeneration after 4 days of intragastric or 2 days of ad libitum refeeding was positively associated with increases in plasma concentrations of GLP-2 and jejunal IGF-I mRNA. These data suggest that luminal nutrients stimulate intestinal growth, in part, by increased expression of both GLP-2 and IGF-I.
Collapse
Affiliation(s)
- David W Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
31
|
Sternini C, Anselmi L, Rozengurt E. Enteroendocrine cells: a site of 'taste' in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes 2008; 15:73-8. [PMID: 18185066 PMCID: PMC2943060 DOI: 10.1097/med.0b013e3282f43a73] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review discusses the role of enteroendocrine cells of the gastrointestinal tract as chemoreceptors that sense lumen contents and induce changes in gastrointestinal function and food intake through the release of signaling substances acting on a variety of targets locally or at a distance. RECENT FINDINGS Recent evidence supports the concept that chemosensing in the gut involves G protein-coupled receptors and effectors that are known to mediate gustatory signals in the oral cavity. These include sweet-taste and bitter-taste receptors, and their associated G proteins, which are expressed in the gastrointestinal mucosa, including selected populations of enteroendocrine cells. In addition, taste receptor agonists elicit a secretory response in enteroendocrine cells in vitro and in animals in vivo, and induce neuronal activation. SUMMARY Taste-signaling molecules expressed in the gastrointestinal mucosa might participate in the functional detection of nutrients and harmful substances in the lumen and prepare the gut to absorb them or initiate a protective response. They might also participate in the control of food intake through the activation of gut-brain neural pathways. These findings provide a new dimension to unraveling the regulatory circuits initiated by luminal contents of the gastrointestinal tract.
Collapse
Affiliation(s)
- Catia Sternini
- Division of Digestive Diseases and CURE: Digestive Diseases Research Center, and Departments of Medicine, USA.
| | | | | |
Collapse
|
32
|
Tracy AL, Clegg DJ, Johnson JD, Davidson TL, Benoit SC. The melanocortin antagonist AgRP (83-132) increases appetitive responding for a fat, but not a carbohydrate, reinforcer. Pharmacol Biochem Behav 2007; 89:263-71. [PMID: 18234306 DOI: 10.1016/j.pbb.2007.12.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 12/12/2007] [Accepted: 12/17/2007] [Indexed: 11/15/2022]
Abstract
Consumption of a diet high in fat is a risk factor for a number of health problems, including obesity, type 2 diabetes and cardiovascular disease. Considerable pharmacological, genetic, and molecular evidence suggests that the hypothalamic melanocortin system plays a critical role in the control of food intake and body weight and, specifically, in fat ingestion. Administration of a melanocortin antagonist, agouti-related peptide (AgRP) (83-132) selectively increases intake of pure fat and high-fat mixed diets. Here, we examined possible mechanisms for this fat-specific effect of AgRP (83-132). In Experiment 1, we determined that intracerebroventricular administration of AgRP (83-132) selectively increased operant responding for a peanut oil, but not a sucrose, reinforcer when tested under a progressive ratio schedule. Experiment 2 employed a Pavlovian conditioning paradigm, in which icv AgRP enhanced appetitive responding toward stimuli that had previously been paired with peanut oil and reduced responding toward stimuli previously paired with sucrose, in the absence of consumption of either macronutrient. Finally, in Experiment 3, we tested the hypothesis that the MC system acts in anticipation of a fat consumption and found that hypothalamic AgRP mRNA was slightly, though not significantly, elevated in an environment predicting fat availability relative to one predicting carbohydrate availability. Collectively, these data indicate that, in addition to increasing free intake of dietary fats, AgRP (83-132) promotes responding for the opportunity to consume a fat reinforcer, as well as appetitive responding to fat-paired stimuli in the absence of ingestive stimulation. These results suggest a possible role for AgRP in the increased fat intake associated with obesity.
Collapse
Affiliation(s)
- Andrea L Tracy
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH 45237, USA.
| | | | | | | | | |
Collapse
|
33
|
Berndt T, Thomas LF, Craig TA, Sommer S, Li X, Bergstralh EJ, Kumar R. Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sci U S A 2007; 104:11085-90. [PMID: 17566100 PMCID: PMC1891094 DOI: 10.1073/pnas.0704446104] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mechanisms by which phosphorus homeostasis is preserved in mammals are not completely understood. We demonstrate the presence of a mechanism by which the intestine detects the presence of increased dietary phosphate and rapidly increases renal phosphate excretion. The mechanism is of physiological relevance because it maintains plasma phosphate concentrations in the normal range after ingestion of a phosphate-containing meal. When inorganic phosphate is infused into the duodenum, there is a rapid increase in the renal fractional excretion of phosphate (FE Pi). The phosphaturic effect of intestinal phosphate is specific for phosphate because administration of sodium chloride does not elicit a similar response. Phosphaturia after intestinal phosphate administration occurs in thyro-parathyroidectomized rats, demonstrating that parathyroid hormone is not essential for this effect. The increase in renal FE Pi in response to the intestinal administration of phosphate occurs without changes in plasma concentrations of phosphate (filtered load), parathyroid hormone, FGF-23, or secreted frizzled related protein-4. Denervation of the kidney does not attenuate phosphaturia elicited after intestinal phosphate administration. Phosphaturia is not elicited when phosphate is instilled in other parts of the gastrointestinal tract such as the stomach. Infusion of homogenates of the duodenal mucosa increases FE Pi, which demonstrates the presence of one or more substances within the intestinal mucosa that directly modulate renal phosphate reabsorption. Our experiments demonstrate the presence of a previously unrecognized phosphate gut-renal axis that rapidly modulates renal phosphate excretion after the intestinal administration of phosphate.
Collapse
Affiliation(s)
- Theresa Berndt
- *Division of Nephrology and Hypertension, Department of Internal Medicine
| | - Leslie F. Thomas
- *Division of Nephrology and Hypertension, Department of Internal Medicine
| | - Theodore A. Craig
- *Division of Nephrology and Hypertension, Department of Internal Medicine
| | - Stacy Sommer
- *Division of Nephrology and Hypertension, Department of Internal Medicine
| | - Xujian Li
- Division of Biostatistics, Department of Health Sciences Research, and
| | | | - Rajiv Kumar
- *Division of Nephrology and Hypertension, Department of Internal Medicine
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Choi S, Lee M, Shiu AL, Yo SJ, Halldén G, Aponte GW. GPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1366-75. [PMID: 17290006 DOI: 10.1152/ajpgi.00516.2006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the intestinal lumen, protein hydrolysate increases the transcription and release of cholecystokinin (CCK) from enteroendocrine cells of the duodenal-jejunal mucosa. Our recent discovery that a G protein-coupled receptor, GPR93, is activated by dietary protein hydrolysate causing induced intracellular calcium-mediated signaling events in intestinal epithelial cells raises a possibility that GPR93 might be involved in the protein hydrolysate induction of CCK expression and/or secretion. Using the enteroendocrine STC-1 cells as a model, the present study demonstrates that increasing expression of GPR93 amplifies the peptone induction of endogenous CCK mRNA levels. A similar increase in CCK transcription, indicated by the luciferase reporter activity driven by an 820-bp CCK promoter, is also observed in response to peptone at a dose as little as 6.25 mg/ml, but not to lysophosphatidic acid (LPA), an agonist of GPR93. We discovered that the upregulation of CCK transcription involves ERK1/2, PKA, and calmodulin-dependent protein kinase-mediated pathways. Additionally, GPR93 activation by peptone induces a response in CCK release at 15 min, which continues over a 2-h period. The cAMP level in STC-1 cells overexpressing GPR93 is induced at a greater extent by peptone than by LPA, suggesting a possible explanation of the different effects of peptone and LPA on CCK transcription and secretion. Our data indicate that GPR93 can contribute to the observed induction of CCK expression and secretion by peptone and provide evidence that G protein-coupled receptors can transduce dietary luminal signals.
Collapse
Affiliation(s)
- Sungwon Choi
- Dept. of Nutritional Sciences and Toxicology, Univ. of California, 119 Morgan Hall, Berkeley, CA 94720-3104, USA
| | | | | | | | | | | |
Collapse
|
35
|
Sternini C. Taste receptors in the gastrointestinal tract. IV. Functional implications of bitter taste receptors in gastrointestinal chemosensing. Am J Physiol Gastrointest Liver Physiol 2007; 292:G457-61. [PMID: 17095755 DOI: 10.1152/ajpgi.00411.2006] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Changes in the luminal contents of the gastrointestinal tract modulate gastrointestinal functions, including absorption of nutrients, food intake, and protection against harmful substances. The current notion is that mucosal enteroendocrine cells act as primary chemoreceptors by releasing signaling molecules in response to changes in the luminal environment, which in turn activate nerve terminals. The recent discovery that taste receptors and G protein subunits alpha-gustducin and alpha-transducin, involved in gustatory signal transduction, are expressed in the gastrointestinal mucosa supports the concept of a chemosensory machinery in the gastrointestinal tract. An understanding of luminal sensing processes responsible for the generation of the appropriate functional response to specific nutrients and nonnutrients is of clinical importance since aberrant or unsteady responses to changes in luminal contents might result in disease states ranging from intoxication to feeding disorders and inflammation. The purpose of this theme article is to discuss the functional implications of bitter taste signaling molecules in the gastrointestinal tract deduced by their localization in selected populations of epithelial cells and their relationship with neural pathways responsible for the generation of specific responses to luminal contents.
Collapse
Affiliation(s)
- Catia Sternini
- CURE Digestive Diseases Research Center, VAGLAHS, Los Angeles, CA 90073, USA.
| |
Collapse
|
36
|
Furuya S, Furuya K. Subepithelial fibroblasts in intestinal villi: roles in intercellular communication. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 264:165-223. [PMID: 17964923 DOI: 10.1016/s0074-7696(07)64004-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ingestion of food and water induces chemical and mechanical signals that trigger peristaltic reflexes in the gut. Intestinal villi are motile, equipped with chemosensors and mechanosensors, and transduce signaling to sensory neurons, but the exact mechanisms have not yet been elucidated. Subepithelial fibroblasts located under the villous epithelium form contractile cellular networks via gap junctions. The networks ensheathe lamina propria and are in close contact with epithelium, neural and capillary networks, smooth muscles, and immune cells. Unique characteristics of subepithelial fibroblasts have been revealed by primary cultures isolated from rat duodenal villi. They include rapid reversal changes in cell shape by cAMP reagents and endothelins, cell shape-dependent mechanosensitivity that induces ATP release as a paracrine mediator, contractile ability, and expression of various receptors for vasoactive and neuroactive substances. Herein, we review these characteristics that play a key role in the villi. They serve as a barrier/sieve, flexible mechanical frame, mechanosensor, and signal transduction machinery in the intestinal villi, which are regulated locally and dynamically by rapid cell shape conversion.
Collapse
Affiliation(s)
- Sonoko Furuya
- Section of Brain Structure, Center for Brain Experiment, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | |
Collapse
|
37
|
Rubio VC, Sánchez-Vázquez FJ, Madrid JA. Influence of nutrient preload on encapsulated macronutrient selection in European sea bass. Physiol Behav 2006; 89:662-9. [PMID: 17011001 DOI: 10.1016/j.physbeh.2006.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/27/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
The sea bass is a teleost that is able to regulate its energy intake by selecting from pure macronutrient sources, although the regulatory mechanisms involved in this selection are unknown. Nutrient preloads are known to reduce food intake and modify macronutrient selection patterns in mammals, but no information is available on its effects in fish. The aim of the present work was to determine the effect of orally administered macronutrient preloads of protein (P), fat (F) or carbohydrate (CH) on the subsequent macronutrient selection, using for the purpose feed consisting of CH, P or F packaged separately in gelatin capsules. The macronutrient preloads left the total food intake unaltered, but caused differential changes in the pattern of macronutrient selection. The CH preload increased the selection of CH (39%) and decreased that of P (20%), independently of the fish's previous nutritional preferences. The F preload induced an F increase (32%) and a P decrease (18%) in P-preferring fish, but not in F-preferring fish in which the macronutrient selection pattern remained unaffected. The P preload stimulated F selection by 42% in P-preferring fish, but left the macronutrient selection pattern unchanged in F-preferring fish. In conclusion, oral macronutrient preloads affected the pattern of macronutrient selection in fish, acting by post-ingestive mechanisms. The effect was influenced by the fish's previous nutritional preference and/or status, which could depend on its metabolic capacity.
Collapse
Affiliation(s)
- V C Rubio
- Department of Physiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| | | | | |
Collapse
|
38
|
Rozengurt N, Wu SV, Chen MC, Huang C, Sternini C, Rozengurt E. Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am J Physiol Gastrointest Liver Physiol 2006; 291:G792-802. [PMID: 16728727 DOI: 10.1152/ajpgi.00074.2006] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In view of the importance of molecular sensing in the function of the gastrointestinal (GI) tract, we assessed whether signal transduction proteins that mediate taste signaling are expressed in cells of the human gut. Here, we demonstrated that the alpha-subunit of the taste-specific G protein gustducin (Galpha(gust)) is expressed prominently in cells of the human colon that also contain chromogranin A, an established marker of endocrine cells. Double-labeling immunofluorescence and staining of serial sections demonstrated that Galpha(gust) localized to enteroendocrine L cells that express peptide YY and glucagon-like peptide-1 in the human colonic mucosa. We also found expression of transcripts encoding human type 2 receptor (hT2R) family members, hT1R3, and Galpha(gust) in the human colon and in the human intestinal endocrine cell lines (HuTu-80 and NCI-H716 cells). Stimulation of HuTu-80 or NCI-H716 cells with the bitter-tasting compound phenylthiocarbamide, which binds hT2R38, induced a rapid increase in the intracellular Ca2+ concentration in these cells. The identification of Galpha(gust) and chemosensory receptors that perceive chemical components of ingested substances, including drugs and toxins, in open enteroendocrine L cells has important implications for understanding molecular sensing in the human GI tract and for developing novel therapeutic compounds that modify the function of these receptors in the gut.
Collapse
Affiliation(s)
- Nora Rozengurt
- Department of Pathology, David Geffen School of Medicine, University of California-Los Angeles, 900 Veteran Ave., Warren Hall Rm. 11-115, Los Angeles, CA 90095-1786, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Chen MC, Wu SV, Reeve JR, Rozengurt E. Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels. Am J Physiol Cell Physiol 2006; 291:C726-39. [PMID: 16707556 DOI: 10.1152/ajpcell.00003.2006] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated the expression of bitter taste receptors of the type 2 family (T2R) and the alpha-subunits of the G protein gustducin (Galpha(gust)) in the rodent gastrointestinal (GI) tract and in GI endocrine cells. In this study, we characterized mechanisms of Ca(2+) fluxes induced by two distinct T2R ligands: denatonium benzoate (DB) and phenylthiocarbamide (PTC), in mouse enteroendocrine cell line STC-1. Both DB and PTC induced a marked increase in intracellular [Ca(2+)] ([Ca(2+)](i)) in a dose- and time-dependent manner. Chelating extracellular Ca(2+) with EGTA blocked the increase in [Ca(2+)](i) induced by either DB or PTC but, in contrast, did not prevent the effect induced by bombesin. Thapsigargin blocked the transient increase in [Ca(2+)](i) induced by bombesin, but did not attenuate the [Ca(2+)](i) increase elicited by DB or PTC. These results indicate that Ca(2+) influx mediates the increase in [Ca(2+)](i) induced by DB and PTC in STC-1 cells. Preincubation with the L-type voltage-sensitive Ca(2+) channel (L-type VSCC) blockers nitrendipine or diltiazem for 30 min inhibited the increase in [Ca(2+)](i) elicited by DB or PTC. Furthermore, exposure to the L-type VSCCs opener BAY K 8644 potentiated the increase in [Ca(2+)](i) induced by DB and PTC. Stimulation with DB also induced a marked increase in the release of cholecystokinin from STC-1 cells, an effect also abrogated by prior exposure to EGTA or L-type VSCC blockers. Collectively, our results demonstrate that bitter tastants increase [Ca(2+)](i) and cholecystokinin release through Ca(2+) influx mediated by the opening of L-type VSCCs in enteroendocrine STC-1 cells.
Collapse
Affiliation(s)
- Monica C Chen
- Division of Digestive Diseases, Department of Medicine, CURE, Digestive Diseases Research Center and Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles 90095-1786, USA
| | | | | | | |
Collapse
|
40
|
Hira T, Hara H, Tomita F, Aoyama Y. Casein binds to the cell membrane and induces intracellular calcium signals in the enteroendocrine cell: a brief communication. Exp Biol Med (Maywood) 2003; 228:850-4. [PMID: 12876305 DOI: 10.1177/15353702-0322807-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dietary protein but not amino acids stimulates cholecystokinin (CCK) secretion in rat mucosal cells. However, the dietary protein sensory mechanisms and the intracellular signal pathway in the enteroendocrine cells have not yet been clarified. The relationship between dietary protein binding to cell membrane and intracellular calcium responses were examined in the CCK-producing enteroendocrine cell line STC-1. The binding of solubilized STC-1 cell membrane to proteins was analyzed using a surface plasmon resonance sensor. Intracellular calcium concentrations of STC-1 cell suspensions loaded with Fura-2 AM were measured using a spectrafluorophotometer system with continuous stirring. Intracellular calcium concentrations in STC-1 cells were increased by exposure to alpha-casein or casein sodium, but not to bovine serum albumin. Solubilized STC-1 membranes bound to alpha-casein and casein sodium but did not bind to bovine serum albumin. alpha-Casein demonstrated higher membrane binding and intracellular calcium stimulating activities than casein sodium. Thus, protein binding to the STC-1 cell membrane and intracellular calcium responses were correlated. Intracellular calcium responses to alpha-casein were suppressed by an L-type calcium channel blocker. These results suggest that casein, a dietary protein, binds to a putative receptor on the CCK-producing enteroendocrine cell membrane and elicits the subsequent intracellular calcium response via an L-type calcium channel.
Collapse
Affiliation(s)
- Tohru Hira
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | |
Collapse
|
41
|
Raybould HE. The future of GI and liver research: editorial perspectives. IV. Visceral afferents: an update. Am J Physiol Gastrointest Liver Physiol 2003; 284:G880-2. [PMID: 12736143 DOI: 10.1152/ajpgi.00123.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The number of articles published in American Journal of Physiology Gastrointestinal and Liver Physiology over the last 15 years on visceral afferents has increased dramatically. This reflects our growing ability to study the characteristics and function of visceral afferents and also the recognition of their importance in the maintenance of homeostasis and also in a number of pathophysiological conditions. However, there are several key unanswered questions concerning the function of visceral afferents that await further investigation.
Collapse
Affiliation(s)
- Helen E Raybould
- Department of Anatomy, Physiology and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California 95616, USA.
| |
Collapse
|
42
|
Raybould HE, Glatzle J, Robin C, Meyer JH, Phan T, Wong H, Sternini C. Expression of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying. Am J Physiol Gastrointest Liver Physiol 2003; 284:G367-72. [PMID: 12409280 DOI: 10.1152/ajpgi.00292.2001] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal perfusion with carbohydrates inhibits gastric emptying via vagal and spinal capsaicin-sensitive afferent pathways. The aim of the present study was to determine the role of 1) 5-hydroxytryptamine (5-HT)(3) receptors (5-HT(3)R) in mediating glucose-induced inhibition of gastric emptying and 2) 5-HT(3)R expression in vagal and spinal afferents in innervating the duodenum. In awake rats fitted with gastric and duodenal cannulas, perfusion of the duodenum with glucose (50 and 100 mg) inhibited gastric emptying. Intestinal perfusion of mannitol inhibited gastric emptying only at the highest concentration (990 mosm/kgH(2)O). Pretreatment with the 5-HT(3)R antagonist tropisetron abolished both glucose- and mannitol-induced inhibition of gastric emptying. Retrograde labeling of visceral afferents by injection of dextran-conjugated Texas Red into the duodenal wall was used to identify extrinsic primary afferents. Immunoreactivity for 5-HT(3)R, visualized with an antibody directed to the COOH terminus of the rat 5-HT(3)R, was found in >80% of duodenal vagal and spinal afferents. These results show that duodenal extrinsic afferents express 5-HT(3)R and that the receptor mediates specific glucose-induced inhibition of gastric emptying. These findings support the hypothesis that enterochromaffin cells in the intestinal mucosa release 5-HT in response to glucose, which activates 5-HT(3)R on afferent nerve terminals to evoke reflex changes in gastric motility. The primary glucose sensors of the intestine may be mucosal enterochromaffin cells.
Collapse
MESH Headings
- Animals
- Duodenum/innervation
- Duodenum/metabolism
- Duodenum/physiology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Gastric Emptying/physiology
- Gastrointestinal Motility/physiology
- Glucose/pharmacology
- Immunohistochemistry
- Indoles/pharmacology
- Intestines/physiology
- Male
- Microscopy, Confocal
- Neurons, Efferent/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Serotonin/biosynthesis
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Receptors, Serotonin/physiology
- Receptors, Serotonin, 5-HT3
- Receptors, Serotonin, 5-HT4
- Serotonin/physiology
- Serotonin Antagonists/pharmacology
- Tropisetron
Collapse
Affiliation(s)
- Helen E Raybould
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, 1321 Haring Hall, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Powley TL, Phillips RJ. Musings on the wanderer: what's new in our understanding of vago-vagal reflexes? I. Morphology and topography of vagal afferents innervating the GI tract. Am J Physiol Gastrointest Liver Physiol 2002; 283:G1217-25. [PMID: 12388183 DOI: 10.1152/ajpgi.00249.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An understanding of the events initiating vago-vagal reflexes requires knowledge of mechanisms of transduction by vagal afferents. Such information presumes an understanding of receptor morphology and location. Anatomic studies have recently characterized two types of vagal afferents, both putative mechanoreceptors distributed in gastrointestinal (GI) smooth muscle. These two receptors are highly specialized in that they 1) are morphologically distinct, 2) have different smooth muscle targets, 3) form complexes with dissimilar accessory cells, and 4) vary in their regional distributions throughout the GI tract. By comparison, information on the architecture and regional distributions of other classes of vagal afferents, notably chemoreceptors, has only begun to accumulate. Progress on the study of the two mechanoreceptors, however, illustrates general principles and delineates experimental issues that may apply to other submodalities of vagal afferents. By extension from morphological and physiological observations on the two species of smooth muscle endings, it is reasonable to hypothesize that additional classes of vagal receptors are also differentiated morphologically and that they vary in structure, accessory cells, regional distributions, and other features. A full appreciation of vago-vagal reflexes will require thorough structural and regional analyses of each of the types of vagal receptors within the GI tract.
Collapse
Affiliation(s)
- Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
44
|
Nian M, Gu J, Irwin DM, Drucker DJ. Human glucagon gene promoter sequences regulating tissue-specific versus nutrient-regulated gene expression. Am J Physiol Regul Integr Comp Physiol 2002; 282:R173-83. [PMID: 11742836 DOI: 10.1152/ajpregu.00215.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glucagon-like peptides (GLPs) are synthesized and secreted in a nutrient-dependent manner in rodents; however, the factors regulating human GLP-1 and GLP-2 biosynthesis remain unclear. To understand how nutrients regulate human proglucagon gene expression, we studied the expression of a human proglucagon promoter-growth hormone (GH) transgene in 1.6 human glucagon-GH transgenic mice. Fasting-refeeding significantly decreased and increased the levels of circulating mouse insulin and transgene-derived hGH (P < 0.05 fasting vs. refeeding) and decreased and upregulated, respectively, the levels of endogenous mouse proglucagon RNA in the ileum but not in the jejunum or colon. High-fiber feeding significantly increased the levels of glucose-stimulated circulating hGH and upregulated levels of mouse intestinal proglucagon gene expression in the jejunum, ileum, and colon (P < 0.05, 0 vs. 30% fiber diet). In contrast, neither fasting-refeeding nor a high-fiber diet upregulated the expression of the human proglucagon promoter-hGH transgene. These findings demonstrate that human proglucagon gene regulatory sequences specifying tissue-specific expression in gut endocrine cells are not sufficient for recognition of energy-derived signals regulating murine glucagon gene expression in enteroendocrine cells in vivo.
Collapse
Affiliation(s)
- Min Nian
- Department of Laboratory Medicine and Pathobiology, Banting and Best Diabetes Centre, Toronto General Hospital, University of Toronto, Toronto, Canada M5G 2C4
| | | | | | | |
Collapse
|
45
|
Buhl ES, Jessen N, Schmitz O, Pedersen SB, Pedersen O, Holman GD, Lund S. Chronic treatment with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner. Diabetes 2001; 50:12-7. [PMID: 11147776 DOI: 10.2337/diabetes.50.1.12] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent studies have demonstrated that chronic administration of AICAR (5-aminoimidazole-4-carboxamide- 1-beta-D-ribofuranoside), an activator of the AMP-activated protein kinase, increases hexokinase activity and the contents of total GLUT4 and glycogen in rat skeletal muscles. To explore whether AICAR also affects insulin-stimulated glucose transport and GLUT4 cell surface content, Wistar rats were subcutaneously injected with AICAR for 5 days in succession (1 mg/g body wt). Maximally insulin-stimulated (60 nmol/l) glucose uptake was markedly increased in epitrochlearis (EPI) muscle (average 63%, P < 0.001, n = 18-19) and in extensor digitorum longus muscle (average 26%, P < 0.001, n = 26-30). In contrast, administration of AICAR did not maximally influence insulin-stimulated glucose transport in soleus muscle. Studies of EPI muscle with the 4,4'-O-[2-[2-[2-[2-[2-[6-(biotinylamino)hexanoyl]amino]ethoxy]ethoxy] ethoxy]-4-(1-azi-2,2,2,-trifluoroethyl)benzoyl]amino-1,3-propanediyl]bis-D-mannose photolabeling technique showed a concomitant increase (average 68%, P < 0.02) in cell surface GLUT4 content after insulin exposure in AICAR-injected rats when compared with controls. In conclusion, 5 days of AICAR administration induces a pronounced fiber type-specific increase in insulin-stimulated glucose uptake and GLUT4 cell surface content in rat skeletal muscle with the greatest effect observed on white fast-twitch glycolytic muscles (EPI). These results are comparable with the effects of chronic exercise training, and it brings the AMP-activated protein kinase into focus as a new interesting target for future pharmacological intervention in insulin-resistant conditions.
Collapse
Affiliation(s)
- E S Buhl
- Medical Department M, Aarhus Kommune-hospital, Denmark
| | | | | | | | | | | | | |
Collapse
|