1
|
Xie DF, Fang C, Crouzet C, Hung YH, Vallejo A, Lee D, Liu J, Liu H, Muvvala S, Paganini-Hill A, Lau WL, Cribbs DH, Choi B, Fisher M. Development of cerebral microhemorrhages in a mouse model of hypertension. J Neuroinflammation 2025; 22:67. [PMID: 40045320 PMCID: PMC11881401 DOI: 10.1186/s12974-025-03378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
Cerebral microhemorrhages (CMH) are the pathological substrate for MRI-demonstrable cerebral microbleeds, which are associated with cognitive impairment and stroke. Aging and hypertension are the main risk factors for CMH. In this study, we investigated the development of CMH in a mouse model of aging and hypertension. Hypertension was induced in aged (17-month-old) female and male C57BL/6J mice via angiotensin II (Ang II), a potent vasoconstrictor. We investigated the vascular origin of CMH using three-dimensional images of 1-mm thick brain sections. We examined Ang II-induced CMH formation with and without telmisartan, an Ang II type 1 receptor (AT1R) blocker. To evaluate the effect of microglia and perivascular macrophages on CMH formation, mice were treated with PLX3397, a selective colony-stimulating factor 1 receptor (CSF1R) inhibitor, to achieve microglial and macrophage depletion. Iba-1 and CD206 labeling were used to study the relative contributions of microglia and macrophages, respectively, on CMH formation. CMH quantification was performed with analysis of histological sections labeled with Prussian blue. Vessels surrounding CMH were primarily of capillary size range (< 10 μm in diameter). Ang II-infused mice exhibited elevated blood pressure (p < 0.0001) and CMH burden (p < 0.001). CMH burden was significantly correlated with mean arterial pressure in mice with and without Ang II (r = 0.52, p < 0.05). Ang II infusion significantly increased Iba-1 immunoreactivity (p < 0.0001), and CMH burden was significantly correlated with Iba-1 in mice with and without Ang II (r = 0.32, p < 0.05). Telmisartan prevented elevation of blood pressure due to Ang II infusion and blocked Ang II-induced CMH formation without affecting Iba-1 immunoreactivity. PLX3397 treatment reduced Iba-1 immunoreactivity in Ang II-infused mice (p < 0.001) and blocked Ang II-induced CMH (p < 0.0001). No significant association between CMH burden and CD206 reactivity was observed. Our findings demonstrate Ang II infusion increases CMH burden. CMH in this model appear to be capillary-derived and Ang II-induced CMH are largely mediated by blood pressure. In addition, microglial activation may represent an alternate pathway for CMH formation. These observations emphasize the continuing importance of blood pressure control and the role of microglia in hemorrhagic cerebral microvascular disease.
Collapse
Affiliation(s)
- Danny F Xie
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Chuo Fang
- Department of Neurology, University of California, Irvine, CA, USA
| | - Christian Crouzet
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Yu-Han Hung
- Department of Neurology, University of California, Irvine, CA, USA
| | - Adrian Vallejo
- Department of Neurology, University of California, Irvine, CA, USA
| | - Donghy Lee
- Department of Neurology, University of California, Irvine, CA, USA
| | - Jihua Liu
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Han Liu
- Department of Medicine, Division of Nephrology, University of California, Irvine, CA, USA
| | - Suhrith Muvvala
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Annlia Paganini-Hill
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Wei Ling Lau
- Department of Medicine, Division of Nephrology, University of California, Irvine, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Surgery, University of California, Irvine, CA, USA.
- Edwards Lifesciences Foundation Cardiovascular Innovation Research Center, University of California, Irvine, CA, USA.
| | - Mark Fisher
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA.
- Department of Neurology, University of California, Irvine, CA, USA.
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Ridha M, Burke JF, Sekar P, Woo D, Hannawi Y. Antihypertensive Medication Class and Functional Outcomes After Nonlobar Intracerebral Hemorrhage. JAMA Netw Open 2025; 8:e2457770. [PMID: 39899295 PMCID: PMC11791703 DOI: 10.1001/jamanetworkopen.2024.57770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/26/2024] [Indexed: 02/04/2025] Open
Abstract
Importance Hypertension is the predominant pathology underlying nonlobar intracerebral hemorrhage (ICH), and antihypertensive agents have distinct biological implications for cerebral microvasculature. It is unknown if the class of antihypertensive medications initiated after ICH affects functional outcome beyond blood pressure (BP) control. Objective To ascertain the association between the class of antihypertensive agents initiated during hospitalization and 90-day functional outcome in nonlobar ICH. Design, Setting, and Participants This cohort study uses data from the Ethnic/Racial Variations of Intracerebral Hemorrhage (ERICH) study, a case-control cohort study investigating ICH risk factors among Hispanic, non-Hispanic Black (hereafter Black), and non-Hispanic White (hereafter White) populations at 42 US hospitals from 2010 to 2015. Data for this analysis were examined from May to September 2024. ERICH study participants were selected for the present analysis if they survived hospitalization and had available covariate and outcome data. Individuals with complications that would limit antihypertensive choice were excluded. Exposures Initiation of angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB), calcium channel blocker, β-blocker, thiazide diuretic, and other antihypertensive medications during index hospitalization. Main Outcomes and Measures Primary outcome was a favorable functional outcome, defined as a 90-day (follow-up) modified Rankin Score score of 0 to 2 (score range: 0 [indicating no disability] to 6 [indicating death]). Mixed-effects logistic regression adjusted for demographic characteristics, medical history, ICH characteristics, BP measurement, total number of antihypertensive medications, and hospitalization site was used to calculate the odds of favorable functional outcome. Results Of the 1561 ERICH study participants in the analytic cohort, 1079 had nonlobar and 482 had lobar ICH. Among the 1079 participants in the nonlobar ICH group (mean [SD] age, 58.5 [12.9] years; 676 males [62.6%]; 429 Hispanic [39.8%], 388 Black [36.0%], and 262 White [24.4%] individuals), a total of 407 (37.7%) ACEIs or ARBs, 419 (38.8%) β-blockers, 503 (46.6%) calcium channel blockers, 180 (16.7%) thiazide diuretics, and 277 (25.7%) other antihypertensive classes were initiated during hospitalization (median [IQR], 3 [2-3] agents at discharge). At follow-up, 481 participants (44.6%) had a favorable functional outcome. Initiation of ACEI or ARB was associated with higher odds of favorable functional outcome (adjusted OR [AOR], 1.49; 95% CI, 1.08-2.05; P = .01). No other antihypertensive class was associated with functional outcome. Findings were consistent across several sensitivity analyses. The interaction with ACEI or ARB was mediated by the presence of radiographic features of cerebral small vessel disease (AOR, 3.04; 95% CI, 1.01-9.19; P = .049). No association with class of antihypertensive agent was observed in lobar ICH. Conclusions and Relevance This large cohort study found that initiation of ACEI or ARB was associated with favorable 90-day functional outcomes after nonlobar ICH. This finding supports a medication class-specific benefit in hypertensive arteriopathy.
Collapse
Affiliation(s)
- Mohamed Ridha
- Department of Neurology, The Ohio State University, Columbus
| | - James F. Burke
- Department of Neurology, The Ohio State University, Columbus
| | - Padmini Sekar
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| | - Daniel Woo
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| | - Yousef Hannawi
- Department of Neurology, The Ohio State University, Columbus
| |
Collapse
|
3
|
Pacholko A, Iadecola C. Hypertension, Neurodegeneration, and Cognitive Decline. Hypertension 2024; 81:991-1007. [PMID: 38426329 PMCID: PMC11023809 DOI: 10.1161/hypertensionaha.123.21356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Elevated blood pressure is a well-established risk factor for age-related cognitive decline. Long linked to cognitive impairment on vascular bases, increasing evidence suggests a potential association of hypertension with the neurodegenerative pathology underlying Alzheimer disease. Hypertension is well known to disrupt the structural and functional integrity of the cerebral vasculature. However, the mechanisms by which these alterations lead to brain damage, enhance Alzheimer pathology, and promote cognitive impairment remain to be established. Furthermore, critical questions concerning whether lowering blood pressure by antihypertensive medications prevents cognitive impairment have not been answered. Recent developments in neurovascular biology, brain imaging, and epidemiology, as well as new clinical trials, have provided insights into these critical issues. In particular, clinical and basic findings on the link between neurovascular dysfunction and the pathobiology of neurodegeneration have shed new light on the overlap between vascular and Alzheimer pathology. In this review, we will examine the progress made in the relationship between hypertension and cognitive impairment and, after a critical evaluation of the evidence, attempt to identify remaining knowledge gaps and future research directions that may advance our understanding of one of the leading health challenges of our time.
Collapse
Affiliation(s)
- Anthony Pacholko
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
4
|
Glavan M, Jelic A, Levard D, Frösen J, Keränen S, Franx BAA, Bras AR, Louet ER, Dénes Á, Merlini M, Vivien D, Rubio M. CNS-associated macrophages contribute to intracerebral aneurysm pathophysiology. Acta Neuropathol Commun 2024; 12:43. [PMID: 38500201 PMCID: PMC10946177 DOI: 10.1186/s40478-024-01756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Intracerebral aneurysms (IAs) are pathological dilatations of cerebral arteries whose rupture leads to subarachnoid hemorrhage, a significant cause of disability and death. Inflammation is recognized as a critical contributor to the formation, growth, and rupture of IAs; however, its precise actors have not yet been fully elucidated. Here, we report CNS-associated macrophages (CAMs), also known as border-associated macrophages, as one of the key players in IA pathogenesis, acting as critical mediators of inflammatory processes related to IA ruptures. Using a new mouse model of middle cerebral artery (MCA) aneurysms we show that CAMs accumulate in the IA walls. This finding was confirmed in a human MCA aneurysm obtained after surgical clipping, together with other pathological characteristics found in the experimental model including morphological changes and inflammatory cell infiltration. In addition, in vivo longitudinal molecular MRI studies revealed vascular inflammation strongly associated with the aneurysm area, i.e., high expression of VCAM-1 and P-selectin adhesion molecules, which precedes and predicts the bleeding extent in the case of IA rupture. Specific CAM depletion by intracerebroventricular injection of clodronate liposomes prior to IA induction reduced IA formation and rupture rate. Moreover, the absence of CAMs ameliorated the outcome severity of IA ruptures resulting in smaller hemorrhages, accompanied by reduced neutrophil infiltration. Our data shed light on the unexplored role of CAMs as main actors orchestrating the progression of IAs towards a rupture-prone state.
Collapse
Affiliation(s)
- Martina Glavan
- UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), PHIND Boulevard Henri Becquerel, Normandie University, 14000, Caen Cedex, Caen, France
- Department of Neuroscience, Yale School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Ana Jelic
- UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), PHIND Boulevard Henri Becquerel, Normandie University, 14000, Caen Cedex, Caen, France
| | - Damien Levard
- UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), PHIND Boulevard Henri Becquerel, Normandie University, 14000, Caen Cedex, Caen, France
| | - Juhana Frösen
- Hemorrhagic Brain Pathology Research Group, Kuopio University Hospital and AIV Institute for Molecular Medicine, University of Eastern Finland, Kuopio, Finland
- Dept of Neurosurgery, Tampere University Hospital and Hemorrhagic Brain Pathology Research Group, Tampere University, Tampere, Finland
| | - Sara Keränen
- Hemorrhagic Brain Pathology Research Group, Kuopio University Hospital and AIV Institute for Molecular Medicine, University of Eastern Finland, Kuopio, Finland
- Dept of Neurosurgery, Tampere University Hospital and Hemorrhagic Brain Pathology Research Group, Tampere University, Tampere, Finland
| | - Bart A A Franx
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Ana-Rita Bras
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Schools of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Estelle R Louet
- UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), PHIND Boulevard Henri Becquerel, Normandie University, 14000, Caen Cedex, Caen, France
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mario Merlini
- UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), PHIND Boulevard Henri Becquerel, Normandie University, 14000, Caen Cedex, Caen, France
| | - Denis Vivien
- UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), PHIND Boulevard Henri Becquerel, Normandie University, 14000, Caen Cedex, Caen, France
- Department of Clinical Research, Caen Normandie University Hospital, Caen, France
| | - Marina Rubio
- UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), PHIND Boulevard Henri Becquerel, Normandie University, 14000, Caen Cedex, Caen, France.
| |
Collapse
|
5
|
Coelho-Junior HJ, Calvani R, Tosato M, Russo A, Landi F, Picca A, Marzetti E. Associations between hypertension and cognitive, mood, and behavioral parameters in very old adults: results from the IlSIRENTE study. Front Public Health 2024; 11:1268983. [PMID: 38533244 PMCID: PMC10964923 DOI: 10.3389/fpubh.2023.1268983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/11/2023] [Indexed: 03/28/2024] Open
Abstract
Introduction Studies on the associations between hypertension-related parameters and cognitive function, mood, and behavioral symptoms in older adults have produced mixed findings. A possible explanation for these divergent results is that investigations have not adequately adjusted their analyses according to the use of angiotensin-converting enzyme inhibitors (ACEIs). Therefore, the present study examined the cross-sectional associations between hypertension-related parameters, ACEI use, and cognitive function, mood, and behavioral symptoms in very old adults. Methods This study was conducted by analyzing the IlSIRENTE database, a prospective cohort study that collected data on all individuals aged 80 years and older residing in the Sirente geographic area (n = 364). Blood pressure (BP) was assessed after 20 to 40 min of rest, while participants sat in an upright position. Drugs were coded according to the Anatomical Therapeutic and Chemical codes. Cognitive function, mood, and behavioral symptoms were recorded using the Minimum Data Set Home Care instrument. Blood inflammatory markers were measured. Results Hypertension-related parameters were significantly associated with many cognitive, mood, and behavioral parameters after adjustment for covariates. However, only the inverse association between hypertension and lesser problems with short-term memory remained significant. Participants with hypertension had lower blood concentrations of inflammatory markers in comparison to their normotensive peers. Conclusion Findings from the present study indicate that high BP values are associated with fewer complaints about memory problems in very old adults. Furthermore, a lower concentration of inflammatory markers was found in hypertensive participants. ACEI use might affect this scenario.
Collapse
Affiliation(s)
- Helio José Coelho-Junior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Andrea Russo
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
6
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
7
|
Santisteban MM, Schaeffer S, Anfray A, Faraco G, Brea D, Wang G, Sobanko MJ, Sciortino R, Racchumi G, Waisman A, Park L, Anrather J, Iadecola C. Meningeal interleukin-17-producing T cells mediate cognitive impairment in a mouse model of salt-sensitive hypertension. Nat Neurosci 2024; 27:63-77. [PMID: 38049579 PMCID: PMC10999222 DOI: 10.1038/s41593-023-01497-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/16/2023] [Indexed: 12/06/2023]
Abstract
Hypertension (HTN), a disease afflicting over one billion individuals worldwide, is a leading cause of cognitive impairment, the mechanisms of which remain poorly understood. In the present study, in a mouse model of HTN, we find that the neurovascular and cognitive dysfunction depends on interleukin (IL)-17, a cytokine elevated in individuals with HTN. However, neither circulating IL-17 nor brain angiotensin signaling can account for the dysfunction. Rather, IL-17 produced by T cells in the dura mater is the mediator released in the cerebrospinal fluid and activating IL-17 receptors on border-associated macrophages (BAMs). Accordingly, depleting BAMs, deleting IL-17 receptor A in brain macrophages or suppressing meningeal T cells rescues cognitive function without attenuating blood pressure elevation, circulating IL-17 or brain angiotensin signaling. Our data unveil a critical role of meningeal T cells and macrophage IL-17 signaling in the neurovascular and cognitive dysfunction in a mouse model of HTN.
Collapse
Affiliation(s)
- Monica M Santisteban
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Samantha Schaeffer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Giuseppe Faraco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - David Brea
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona, Barcelona, Spain
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Melissa J Sobanko
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Rose Sciortino
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gianfranco Racchumi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Mainz, Germany
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Ahn SJ, Anfray A, Anrather J, Iadecola C. Calcium transients in nNOS neurons underlie distinct phases of the neurovascular response to barrel cortex activation in awake mice. J Cereb Blood Flow Metab 2023; 43:1633-1647. [PMID: 37149758 PMCID: PMC10581240 DOI: 10.1177/0271678x231173175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/02/2023] [Indexed: 05/08/2023]
Abstract
Neuronal nitric oxide (NO) synthase (nNOS), a Ca2+ dependent enzyme, is expressed by distinct populations of neocortical neurons. Although neuronal NO is well known to contribute to the blood flow increase evoked by neural activity, the relationships between nNOS neurons activity and vascular responses in the awake state remain unclear. We imaged the barrel cortex in awake, head-fixed mice through a chronically implanted cranial window. The Ca2+ indicator GCaMP7f was expressed selectively in nNOS neurons using adenoviral gene transfer in nNOScre mice. Air-puffs directed at the contralateral whiskers or spontaneous motion induced Ca2+ transients in 30.2 ± 2.2% or 51.6 ± 3.3% of nNOS neurons, respectively, and evoked local arteriolar dilation. The greatest dilatation (14.8 ± 1.1%) occurred when whisking and motion occurred simultaneously. Ca2+ transients in individual nNOS neurons and local arteriolar dilation showed various degrees of correlation, which was strongest when the activity of whole nNOS neuron ensemble was examined. We also found that some nNOS neurons became active immediately prior to arteriolar dilation, while others were activated gradually after arteriolar dilatation. Discrete nNOS neuron subsets may contribute either to the initiation or to the maintenance of the vascular response, suggesting a previously unappreciated temporal specificity to the role of NO in neurovascular coupling.
Collapse
Affiliation(s)
- Sung Ji Ahn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
9
|
Xue Y, Tang J, Zhang M, He Y, Fu J, Ding F. Durative sleep fragmentation with or without hypertension suppress rapid eye movement sleep and generate cerebrovascular dysfunction. Neurobiol Dis 2023:106222. [PMID: 37419254 DOI: 10.1016/j.nbd.2023.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/07/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023] Open
Abstract
Either hypertension or chronic insomnia is the risk factor of developing vascular dementia. Durative hypertension can induce vascular remodeling and is used for modeling small vessel disease in rodents. It remains undetermined if the combination of hypertension and sleep disturbance exacerbates vascular dysfunction or pathologies. Previously, we found chronic sleep fragmentation (SF) dampened cognition in young mice without disease predispositions. In the current study, we superimposed SF with hypertension modeling in young mice. Angiotensin II (AngII)-releasing osmotic mini pumps were subcutaneously implanted to generate persistent hypertension, while sham surgeries were performed as controls. Sleep fragmentation with repetitive arousals (10 s every 2 min) during light-on 12 h for consecutive 30 days, while mice undergoing normal sleep (NS) processes were set as controls. Sleep architectures, whisker-stimulated cerebral blood flow (CBF) changes, vascular responsiveness as well as vascular pathologies were compared among normal sleep plus sham (NS + sham), SF plus sham (SF + sham), normal sleep plus AngII (NS + AngII), and SF plus AngII (SF + AngII) groups. SF and hypertension both alter sleep structures, particularly suppressing REM sleep. SF no matter if combined with hypertension strongly suppressed whisker-stimulated CBF increase, suggesting the tight association with cognitive decline. Hypertension modeling sensitizes vascular responsiveness toward a vasoactive agent, Acetylcholine (ACh, 5 mg/ml, 10 μl) delivered via cisterna magna infusion, while SF exhibits a similar but much milder effect. None of the modeling above was sufficient to induce arterial or arteriole vascular remodeling, but SF or SF plus hypertension increased vascular network density constructed by all categories of cerebral vessels. The current study would potentially help understand the pathogenesis of vascular dementia, and the interconnection between sleep and vascular health.
Collapse
Affiliation(s)
- Yang Xue
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Jie Tang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Miaoyi Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yifan He
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianhui Fu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Fengfei Ding
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
10
|
Kujovic M, Lipka T, Zalman M, Baumann L, Jänner M, Baumann B. Treatment of hypertension and obstructive sleep apnea counteracts cognitive decline in common neurocognitive disorders in diagnosis-related patterns. Sci Rep 2023; 13:7556. [PMID: 37160982 PMCID: PMC10169815 DOI: 10.1038/s41598-023-33701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/18/2023] [Indexed: 05/11/2023] Open
Abstract
The aim of this study was to investigate the effect of arterial hypertension (AH) and of obstructive sleep apnea (OSA) on cognitive course in the neurocognitive disorder (NCD) cohort RIFADE which enrolled patients with NCD due to Alzheimer's disease (AD), vascular NCD (vNCD), and mixed NCD (AD + vNCD = mNCD). Multiple risk factors (RF), including AH and OSA, that contribute to the development of various kinds of dementia have been identified in previous studies. Studies that observed AH lacked investigation of long-term effects and did not isolate it from other RF. Studies involving OSA as a risk factor did not include participants with all stages of NCD. 126 subjects were screened for AH and OSA. Repeated cognitive measurements were performed with the DemTect as primary outcome and the clock drawing test as secondary outcome measure. 90 patients had AH (71.4%) and 40 patients had OSA (31.7%). RF-status had a significant effect on cognitive outcome in models with RF as single factors (AH p = 0.027, OSA p < 0.001), a 2-factor analysis with AH × OSA (AH as main factor p = 0.027) as well as a model including the 3 factors AH × OSA × diagnosis (p = 0.038). Similarly, a 3-factor model was significant for the clock-drawing test, whereas single factor-models remained insignificant. AH and OSA appear to be risk factors in common NCD and cognitive decline can be mitigated by treatment of these RF.
Collapse
Affiliation(s)
- Milenko Kujovic
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
- Department of Neuropsychiatry, Centre for Neurology and Neuropsychiatry, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Tim Lipka
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mark Zalman
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Leonie Baumann
- Department of Mental Health, University Hospital of Münster, Munster, Germany
| | - Michaela Jänner
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Bruno Baumann
- Department of Mental Health, University Hospital of Münster, Munster, Germany
| |
Collapse
|
11
|
Neurovascular Coupling in Hypertension Is Impaired by IL-17A through Oxidative Stress. Int J Mol Sci 2023; 24:ijms24043959. [PMID: 36835372 PMCID: PMC9967204 DOI: 10.3390/ijms24043959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Hypertension, a multifactorial chronic inflammatory condition, is an important risk factor for neurovascular and neurodegenerative diseases, including stroke and Alzheimer's disease. These diseases have been associated with higher concentrations of circulating interleukin (IL)-17A. However, the possible role that IL-17A plays in linking hypertension with neurodegenerative diseases remains to be established. Cerebral blood flow regulation may be the crossroads of these conditions because regulating mechanisms may be altered in hypertension, including neurovascular coupling (NVC), known to participate in the pathogenesis of stroke and Alzheimer's disease. In the present study, the role of IL-17A on NVC impairment induced by angiotensin (Ang) II in the context of hypertension was examined. Neutralization of IL-17A or specific inhibition of its receptor prevents the NVC impairment (p < 0.05) and cerebral superoxide anion production (p < 0.05) induced by Ang II. Chronic administration of IL-17A impairs NVC (p < 0.05) and increases superoxide anion production. Both effects were prevented with Tempol and NADPH oxidase 2 gene deletion. These findings suggest that IL-17A, through superoxide anion production, is an important mediator of cerebrovascular dysregulation induced by Ang II. This pathway is thus a putative therapeutic target to restore cerebrovascular regulation in hypertension.
Collapse
|
12
|
Sabharwal R, Chapleau MW, Gerhold TD, Baumbach GL, Faraci FM. Plasticity of cerebral microvascular structure and mechanics during hypertension and following recovery of arterial pressure. Am J Physiol Heart Circ Physiol 2022; 323:H1108-H1117. [PMID: 36269650 PMCID: PMC9678426 DOI: 10.1152/ajpheart.00292.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
Changes in vascular structure contribute to vascular events and loss of brain health. We examined changes in cerebral arterioles at the onset of hypertension and the hypothesis that alterations during hypertension would recover with the return of mean arterial pressure (MAP) to normal. MAP was measured with radiotelemetry in awake male C57BL/6J mice at baseline and during infusion of vehicle or angiotensin II (ANG II, 1.4 mg/kg/day using osmotic pumps) for 28 days, followed by a 28-day recovery. With ANG II treatment, MAP increased through day 28. On day 30, MAP began to recover, reaching levels not different from vehicle on day 37. We measured intravascular pressure, diameter, wall thickness (WT), wall:lumen ratio (W:L), cross-sectional area (CSA), and slope of the tangential elastic modulus (ET) in maximally dilated arterioles. Variables were similar in both groups at day 1, with no significant change with vehicle treatment. With ANG II treatment, CSA, WT, and W:L increased on days 7-28. Internal and external diameter was reduced at 14 and 28 days. ET versus wall stress was reduced on days 7-28. During recovery, the diameter remained at days 14 and 28 values, whereas other variables returned partly or completely to normal. Thus, CSA, WT, W:L, and ET versus wall stress changed rapidly during hypertension and recovered with MAP. In contrast, inward remodeling developed slowly and did not recover. This lack of recovery has mechanistic implications for the long-term impact of hypertension on vascular determinants of brain health.NEW & NOTEWORTHY Changes in vascular structure contribute to vascular events and loss of brain health. We examined the inherent structural plasticity of cerebral arterioles during and after a period of hypertension. Arteriolar wall thickness, diameter, wall-to-lumen ratio, and biological stiffness changed rapidly during hypertension and recovered with blood pressure. In contrast, inward remodeling developed slowly and did not recover. This lack of recovery of arteriolar diameter has implications for the long-term impact of hypertension on vascular determinants of brain health.
Collapse
Affiliation(s)
- Rasna Sabharwal
- Department of Internal Medicine, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
- Department of Neuroscience and Pharmacology, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
| | - Mark W Chapleau
- Department of Internal Medicine, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
| | - Thomas D Gerhold
- Department of Internal Medicine, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
| | - Gary L Baumbach
- Department of Pathology, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
| | - Frank M Faraci
- Department of Internal Medicine, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
- Department of Neuroscience and Pharmacology, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
13
|
Milner TA, Chen RX, Welington D, Rubin BR, Contoreggi NH, Johnson MA, Mazid S, Marques-Lopes J, Marongiu R, Glass MJ. Angiotensin II differentially affects hippocampal glial inflammatory markers in young adult male and female mice. Learn Mem 2022; 29:265-273. [PMID: 36206386 PMCID: PMC9488028 DOI: 10.1101/lm.053507.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022]
Abstract
Hypertension is a risk factor for neurodegenerative disorders involving inflammation and inflammatory cytokine-producing brain cells (microglia and astrocytes) in the hippocampus and medial prefrontal cortex (mPFC). Here we investigated the effect of slow-pressor angiotensin II (AngII) on gliosis in the hippocampus and mPFC of young adult (2-mo-old) male and female mice. In males, AngII induced hypertension, and this resulted in an increase in the density of the astrocyte marker glial fibrillary acidic protein (GFAP) in the subgranular hilus and a decrease in the density of the microglial marker ionized calcium binding adapter molecule (Iba-1) in the CA1 region. Females infused with AngII did not show hypertension but, significantly, showed alterations in hippocampal glial activation. Compared with vehicle, AngII-infused female mice had an increased density of Iba-1 in the dentate gyrus and CA2/3a region. Like males, females infused with AngII exhibited decreased Iba-1 in the CA1 region. Neither male nor female mice showed differences in GFAP or Iba-1 in the mPFC following AngII infusion. These results demonstrate that the hippocampus is particularly vulnerable to AngII in young adulthood. Differences in gonadal hormones or the sensitivity to AngII hypertension may account for divergences in GFAP and Iba-1 in males and females.
Collapse
Affiliation(s)
- Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065, USA
| | - Ryan X Chen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Diedreanna Welington
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Batsheva R Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Roberta Marongiu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Neurological Surgery Department, Weill Cornell Medicine, New York, New York 10065, USA
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
14
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
15
|
Rudilosso S, Rodríguez-Vázquez A, Urra X, Arboix A. The Potential Impact of Neuroimaging and Translational Research on the Clinical Management of Lacunar Stroke. Int J Mol Sci 2022; 23:1497. [PMID: 35163423 PMCID: PMC8835925 DOI: 10.3390/ijms23031497] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Lacunar infarcts represent one of the most frequent subtypes of ischemic strokes and may represent the first recognizable manifestation of a progressive disease of the small perforating arteries, capillaries, and venules of the brain, defined as cerebral small vessel disease. The pathophysiological mechanisms leading to a perforating artery occlusion are multiple and still not completely defined, due to spatial resolution issues in neuroimaging, sparsity of pathological studies, and lack of valid experimental models. Recent advances in the endovascular treatment of large vessel occlusion may have diverted attention from the management of patients with small vessel occlusions, often excluded from clinical trials of acute therapy and secondary prevention. However, patients with a lacunar stroke benefit from early diagnosis, reperfusion therapy, and secondary prevention measures. In addition, there are new developments in the knowledge of this entity that suggest potential benefits of thrombolysis in an extended time window in selected patients, as well as novel therapeutic approaches targeting different pathophysiological mechanisms involved in small vessel disease. This review offers a comprehensive update in lacunar stroke pathophysiology and clinical perspective for managing lacunar strokes, in light of the latest insights from imaging and translational studies.
Collapse
Affiliation(s)
- Salvatore Rudilosso
- Comprehensive Stroke Center, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (S.R.); (A.R.-V.); (X.U.)
| | - Alejandro Rodríguez-Vázquez
- Comprehensive Stroke Center, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (S.R.); (A.R.-V.); (X.U.)
| | - Xabier Urra
- Comprehensive Stroke Center, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (S.R.); (A.R.-V.); (X.U.)
| | - Adrià Arboix
- Cerebrovascular Division, Department of Neurology, Hospital Universitari del Sagrat Cor, Universitat de Barcelona, 08034 Barcelona, Spain
| |
Collapse
|
16
|
De Silva TM, Sobey CG. Cerebral Vascular Biology in Health and Disease. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Li L, He S, Liu H, Pan M, Dai F. Potential risk factors of persistent postural-perceptual dizziness: a pilot study. J Neurol 2021; 269:3075-3085. [PMID: 34800170 DOI: 10.1007/s00415-021-10899-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Persistent postural-perceptual dizziness (PPPD) unifies the main characteristics of chronic subjective dizziness, visual vertigo and related diseases, which is a common chronic disease in neurology. At present, the pathology of PPPD is not fully understood. OBJECTIVE In this single-center retrospective case series review, we aim to investigate the potential risk factors of PPPD. METHODS Eighty inpatients diagnosed with PPPD were recruited with 81 apparently healthy controls. Patient-specific clinico-radiological data were collected from both groups. Conditions of hypertension, diabetes, smoking, and drinking were derived from medical history. Blood test results were recorded including total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, fibrinogen, vitamin B12, folic acid, total cholesterol, triglyceride, and folate level. The subjects were examined by carotid artery CTA and cranial MRI, and the imaging findings of carotid atherosclerosis (CAS), white matter hyperintensities (WMHs) and lacunar infarction (LI) were recorded. Binary logistic regression analysis was used to investigate the difference between the case and control groups. Significance was defined as p value less than 0.05. RESULTS The prevalence rate of hypertension in the case group was significantly higher than that in the control group, and the detection rates of CAS, WMHs, and LI in the case group were significantly higher than those in the control group (p < 0.05 for all). CONCLUSION Hypertension, CAS, WMHs, and LI are associated with PPPD, which may be potential risk factors for its development.
Collapse
Affiliation(s)
- Ling Li
- Department of Neurology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Songbin He
- Department of Neurology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Haipeng Liu
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK.
| | - Meilun Pan
- Naval Hospital of Eastern Theater, Zhoushan, 316000, Zhejiang Province, China
| | - Fangyu Dai
- Department of Neurology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316000, Zhejiang Province, China.
| |
Collapse
|
18
|
Youwakim J, Girouard H. Inflammation: A Mediator Between Hypertension and Neurodegenerative Diseases. Am J Hypertens 2021; 34:1014-1030. [PMID: 34136907 DOI: 10.1093/ajh/hpab094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the most prevalent and modifiable risk factor for stroke, vascular cognitive impairment, and Alzheimer's disease. However, the mechanistic link between hypertension and neurodegenerative diseases remains to be understood. Recent evidence indicates that inflammation is a common pathophysiological trait for both hypertension and neurodegenerative diseases. Low-grade chronic inflammation at the systemic and central nervous system levels is now recognized to contribute to the physiopathology of hypertension. This review speculates that inflammation represents a mediator between hypertension and neurodegenerative diseases, either by a decrease in cerebral blood flow or a disruption of the blood-brain barrier which will, in turn, let inflammatory cells and neurotoxic molecules enter the brain parenchyma. This may impact brain functions including cognition and contribute to neurodegenerative diseases. This review will thus discuss the relationship between hypertension, systemic inflammation, cerebrovascular functions, neuroinflammation, and brain dysfunctions. The potential clinical future of immunotherapies against hypertension and associated cerebrovascular risks will also be presented.
Collapse
Affiliation(s)
- Jessica Youwakim
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA); Montreal, QC, Canada
- Groupe de Recherche sur le Système Nerveux Central, Montreal, QC, Canada
| | - Hélène Girouard
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA); Montreal, QC, Canada
- Groupe de Recherche sur le Système Nerveux Central, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériaterie de Montréal, Montreal, QC, Canada
| |
Collapse
|
19
|
Boily M, Li L, Vallerand D, Girouard H. Angiotensin II Disrupts Neurovascular Coupling by Potentiating Calcium Increases in Astrocytic Endfeet. J Am Heart Assoc 2021; 10:e020608. [PMID: 34459216 PMCID: PMC8649296 DOI: 10.1161/jaha.120.020608] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Background Angiotensin II (Ang II), a critical mediator of hypertension, impairs neurovascular coupling. Since astrocytes are key regulators of neurovascular coupling, we sought to investigate whether Ang II impairs neurovascular coupling through modulation of astrocytic Ca2+ signaling. Methods and Results Using laser Doppler flowmetry, we found that Ang II attenuates cerebral blood flow elevations induced by whisker stimulation or the metabotropic glutamate receptors agonist, 1S, 3R-1-aminocyclopentane-trans-1,3-dicarboxylic acid (P<0.01). In acute brain slices, Ang II shifted the vascular response induced by 1S, 3R-1-aminocyclopentane-trans-1,3-dicarboxylic acid towards vasoconstriction (P<0.05). The resting and 1S, 3R-1-aminocyclopentane-trans-1,3-dicarboxylic acid-induced Ca2+ levels in the astrocytic endfeet were more elevated in the presence of Ang II (P<0.01). Both effects were reversed by the AT1 receptor antagonist, candesartan (P<0.01 for diameter and P<0.05 for calcium levels). Using photolysis of caged Ca2+ in astrocytic endfeet or pre-incubation of 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis (acetoxymethyl ester), we demonstrated the link between potentiated Ca2+ elevation and impaired vascular response in the presence of Ang II (P<0.001 and P<0.05, respectively). Both intracellular Ca2+ mobilization and Ca2+ influx through transient receptor potential vanilloid 4 mediated Ang II-induced astrocytic Ca2+ elevation, since blockade of these pathways significantly prevented the intracellular Ca2+ in response to 1S, 3R-1-aminocyclopentane-trans-1,3-dicarboxylic acid (P<0.05). Conclusions These results suggest that Ang II through its AT1 receptor potentiates the astrocytic Ca2+ responses to a level that promotes vasoconstriction over vasodilation, thus altering cerebral blood flow increases in response to neuronal activity.
Collapse
Affiliation(s)
- Michaël Boily
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQuébecCanada
- Groupe de Recherche sur le Système Nerveux Central (GRSNC)Université de MontréalMontréalQuébecCanada
| | - Lin Li
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQuébecCanada
- Groupe de Recherche sur le Système Nerveux Central (GRSNC)Université de MontréalMontréalQuébecCanada
| | - Diane Vallerand
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQuébecCanada
- Groupe de Recherche sur le Système Nerveux Central (GRSNC)Université de MontréalMontréalQuébecCanada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA)Université de MontréalMontréalQuébecCanada
| | - Hélène Girouard
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQuébecCanada
- Groupe de Recherche sur le Système Nerveux Central (GRSNC)Université de MontréalMontréalQuébecCanada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA)Université de MontréalMontréalQuébecCanada
- Centre de Recherche de l’Institut de Gériatrie de MontréalMontréalQuébecCanada
| |
Collapse
|
20
|
Milner TA, Contoreggi NH, Yu F, Johnson MA, Wang G, Woods C, Mazid S, Van Kempen TA, Waters EM, McEwen BS, Korach KS, Glass MJ. Estrogen Receptor β Contributes to Both Hypertension and Hypothalamic Plasticity in a Mouse Model of Peri-Menopause. J Neurosci 2021; 41:5190-5205. [PMID: 33941651 PMCID: PMC8211546 DOI: 10.1523/jneurosci.0164-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Hypertension susceptibility in women increases at the transition to menopause, termed perimenopause, a state characterized by erratic estrogen fluctuation and extended hormone cycles. Elucidating the role of estrogen signaling in the emergence of hypertension during perimenopause has been hindered by animal models that are confounded by abrupt estrogen cessation or effects of aging. In the present study, accelerated ovarian failure (AOF) in estrogen receptor β (ERβ) reporter mice was induced by 4-vinylcyclohexene diepoxide in young mice to model early-stage ovarian failure (peri-AOF) characteristic of peri-menopause. It was found that administering ERβ agonists suppressed elevated blood pressure in a model of neurogenic hypertension induced by angiotensin II (AngII) in peri-AOF, but not in age-matched male mice. It was also found that ERβ agonist administration in peri-AOF females, but not males, suppressed the heightened NMDAR signaling and reactive oxygen production in ERβ neurons in the hypothalamic paraventricular nucleus (PVN), a critical neural regulator of blood pressure. It was further shown that deleting ERβ in the PVN of gonadally intact females produced a phenotype marked by a sensitivity to AngII hypertension. These results suggest that ERβ signaling in the PVN plays an important role in blood pressure regulation in female mice and contributes to hypertension susceptibility in females at an early stage of ovarian failure comparable to human perimenopause.
Collapse
Affiliation(s)
- Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, New York 10065
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Fangmin Yu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Clara Woods
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Tracey A Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Elizabeth M Waters
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, New York 10065
| | - Bruce S McEwen
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, New York 10065
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, North Carolina 27709
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
21
|
Bai HY, Min LJ, Shan BS, Iwanami J, Kan-no H, Kanagawa M, Mogi M, Horiuchi M. Angiotensin II and Amyloid-β Synergistically Induce Brain Vascular Smooth Muscle Cell Senescence. Am J Hypertens 2021; 34:552-562. [PMID: 33349854 DOI: 10.1093/ajh/hpaa218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 10/09/2020] [Accepted: 12/17/2020] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Amyloid-β (Aβ) induces cerebrovascular damage and is reported to stimulate endothelial cell senescence. We previously demonstrated that angiotensin II (Ang II)-promoted vascular senescence. We examined the possible cross-talk between Ang II and Aβ in regulating brain vascular smooth muscle cell (BVSMC) senescence. METHODS BVSMCs were prepared from adult male mice and stimulated with Ang II (0, 0.1, 1, 10, and 100 nmol/l) and/or Aβ 1-40 (0, 0.1, 0.3, 0.5, 1, 3, and 5 µmol/l) for the indicated times. Cellular senescence was evaluated by senescence-associated β-galactosidase staining. RESULTS Treatment with Ang II (100 nmol/l) or Aβ (1 µmol/l) at a higher dose increased senescent cells compared with control at 6 days. Treatment with Ang II (10 nmol/l) or Aβ (0.5 µmol/l) at a lower dose had no effect on senescence whereas a combined treatment with lower doses of Ang II and Aβ significantly enhanced senescent cells. This senescence enhanced by lower dose combination was markedly blocked by valsartan (Ang II type 1 receptor inhibitor) or TAK-242 (Aβ receptor TLR4 inhibitor) treatment. Moreover, lower dose combination caused increases in superoxide anion levels and p-ERK expression for 2 days, NF-κB activity, p-IκB, p-IKKα/β, p16 and p53 expression for 4 days, and an obvious decrease in pRb expression. These changes by lower dose combination, except in p-IκB expression and NF-κB activity, were significantly inhibited by pretreatment with U0126 (ERK inhibitor). CONCLUSIONS Ang II and Aβ synergistically promoted BVSMC senescence at least due to enhancement of the p-ERK-p16-pRb signaling pathway, oxidative stress, and NF-κB/IκB activity.
Collapse
Affiliation(s)
- Hui-Yu Bai
- Department of Cell Biology and Molecular Medicine, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li-Juan Min
- Department of Cell Biology and Molecular Medicine, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Bao-Shuai Shan
- Department of Cell Biology and Molecular Medicine, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
- Department of Neurology, The Affiliated Suzhou Hospital, Nanjing Medical University, Suzhou, China
| | - Jun Iwanami
- Department of Cell Biology and Molecular Medicine, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Harumi Kan-no
- Department of Cell Biology and Molecular Medicine, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Motoi Kanagawa
- Department of Cell Biology and Molecular Medicine, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Masaki Mogi
- Department of Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Masatsugu Horiuchi
- Department of Cell Biology and Molecular Medicine, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| |
Collapse
|
22
|
Østergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: Consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol Rep 2021; 9:e14726. [PMID: 33523608 PMCID: PMC7849453 DOI: 10.14814/phy2.14726] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Corona virus disease 2019 (COVID-19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV-2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness ("silent hypoxia"), delirium, rashes, and loss of smell (anosmia), to persisting chest pain, muscle weakness and -pain, fatigue, confusion, memory problems and difficulty to concentrate ("brain fog"), mood changes, and unexpected onset of hypertension or diabetes. SARS CoV-2 affects the microcirculation, causing endothelial cell swelling and damage (endotheliitis), microscopic blood clots (microthrombosis), capillary congestion, and damage to pericytes that are integral to capillary integrity and barrier function, tissue repair (angiogenesis), and scar formation. Similar to other instances of critical illness, COVID-19 is also associated with elevated cytokine levels in the systemic circulation. This review examines how capillary damage and inflammation may contribute to these acute and persisting COVID-19 symptoms by interfering with blood and tissue oxygenation and with brain function. Undetectable by current diagnostic methods, capillary flow disturbances limit oxygen diffusion exchange in lungs and tissue and may therefore cause hypoxemia and tissue hypoxia. The review analyzes the combined effects of COVID-19-related capillary damage, pre-existing microvascular changes, and upstream vascular tone on tissue oxygenation in key organs. It identifies a vicious cycle, as infection- and hypoxia-related inflammation cause capillary function to deteriorate, which in turn accelerates hypoxia-related inflammation and tissue damage. Finally, the review addresses the effects of low oxygen and high cytokine levels in brain tissue on neurotransmitter synthesis and mood. Methods to assess capillary functions in human organs and therapeutic means to protect capillary functions and stimulate capillary bed repair may prove important for the individualized management of COVID-19 patients and targeted rehabilitation strategies.
Collapse
Affiliation(s)
- Leif Østergaard
- Neuroradiology Research UnitSection of NeuroradiologyDepartment of RadiologyAarhus University HospitalAarhusDenmark
- Center of Functionally Integrative NeuroscienceDepartment of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
23
|
Ribeiro VT, de Souza LC, Simões E Silva AC. Renin-Angiotensin System and Alzheimer's Disease Pathophysiology: From the Potential Interactions to Therapeutic Perspectives. Protein Pept Lett 2020; 27:484-511. [PMID: 31886744 DOI: 10.2174/0929866527666191230103739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/27/2019] [Accepted: 11/16/2019] [Indexed: 12/21/2022]
Abstract
New roles of the Renin-Angiotensin System (RAS), apart from fluid homeostasis and Blood Pressure (BP) regulation, are being progressively unveiled, since the discoveries of RAS alternative axes and local RAS in different tissues, including the brain. Brain RAS is reported to interact with pathophysiological mechanisms of many neurological and psychiatric diseases, including Alzheimer's Disease (AD). Even though AD is the most common cause of dementia worldwide, its pathophysiology is far from elucidated. Currently, no treatment can halt the disease course. Successive failures of amyloid-targeting drugs have challenged the amyloid hypothesis and increased the interest in the inflammatory and vascular aspects of AD. RAS compounds, both centrally and peripherally, potentially interact with neuroinflammation and cerebrovascular regulation. This narrative review discusses the AD pathophysiology and its possible interaction with RAS, looking forward to potential therapeutic approaches. RAS molecules affect BP, cerebral blood flow, neuroinflammation, and oxidative stress. Angiotensin (Ang) II, via angiotensin type 1 receptors may promote brain tissue damage, while Ang-(1-7) seems to elicit neuroprotection. Several studies dosed RAS molecules in AD patients' biological material, with heterogeneous results. The link between AD and clinical conditions related to classical RAS axis overactivation (hypertension, heart failure, and chronic kidney disease) supports the hypothesized role of this system in AD. Additionally, RAStargeting drugs as Angiotensin Converting Enzyme inhibitors (ACEis) and Angiotensin Receptor Blockers (ARBs) seem to exert beneficial effects on AD. Results of randomized controlled trials testing ACEi or ARBs in AD are awaited to elucidate whether AD-RAS interaction has implications on AD therapeutics.
Collapse
Affiliation(s)
- Victor Teatini Ribeiro
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Leonardo Cruz de Souza
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Internal Medicine, Service of Neurology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
24
|
Li L, Lai EY, Cao X, Welch WJ, Wilcox CS. Endothelial prostaglandin D 2 opposes angiotensin II contractions in mouse isolated perfused intracerebral microarterioles. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320966177. [PMID: 33094663 PMCID: PMC7585895 DOI: 10.1177/1470320320966177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hypothesis: A lack of contraction of cerebral microarterioles to Ang II (“resilience”) depends on cyclooxygenase (COX) and lipocalin type prostaglandin D sythase L-PGDS producing PGD2 that activates prostaglandin D type 1 receptors (DP1Rs) and nitric oxide synthase (NOS). Materials & Methods: Contractions were assessed in isolated, perfused vessels and NO by fluorescence microscopy. Results: The mRNAs of penetrating intraparenchymal cerebral microarterioles versus renal afferent arterioles were >3000-fold greater for L-PGDS and DP1R and 5-fold for NOS III and COX 2. Larger cerebral arteries contracted with Ang II. However, cerebral microarterioles were entirely unresponsive but contracted with endothelin 1 and perfusion pressure. Ang II contractions were evoked in cerebral microarterioles from COX1 –/– mice or after blockade of COX2, L-PGDS or NOS and in deendothelialized vessels but effects of deendothelialization were lost during COX blockade. NO generation with Ang II depended on COX and also was increased by DP1R activation. Conclusion: The resilience of cerebral arterioles to Ang II contractions is specific for intraparenchymal microarterioles and depends on endothelial COX1 and two products that are metabolized by L-PGDS to generate PGD2 that signals via DP1Rs and NO.
Collapse
Affiliation(s)
- L Li
- Hypertension Center and Division of Nephrology and Hypertension, Georgetown University, Washington DC, USA.,Kidney Disease Center, the First Affiliated Hospital and Department of Physiology, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - E Y Lai
- Hypertension Center and Division of Nephrology and Hypertension, Georgetown University, Washington DC, USA.,Kidney Disease Center, the First Affiliated Hospital and Department of Physiology, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - X Cao
- Kidney Disease Center, the First Affiliated Hospital and Department of Physiology, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - W J Welch
- Hypertension Center and Division of Nephrology and Hypertension, Georgetown University, Washington DC, USA
| | - C S Wilcox
- Hypertension Center and Division of Nephrology and Hypertension, Georgetown University, Washington DC, USA
| |
Collapse
|
25
|
Cosarderelioglu C, Nidadavolu LS, George CJ, Oh ES, Bennett DA, Walston JD, Abadir PM. Brain Renin-Angiotensin System at the Intersect of Physical and Cognitive Frailty. Front Neurosci 2020; 14:586314. [PMID: 33117127 PMCID: PMC7561440 DOI: 10.3389/fnins.2020.586314] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
The renin–angiotensin system (RAS) was initially considered to be part of the endocrine system regulating water and electrolyte balance, systemic vascular resistance, blood pressure, and cardiovascular homeostasis. It was later discovered that intracrine and local forms of RAS exist in the brain apart from the endocrine RAS. This brain-specific RAS plays essential roles in brain homeostasis by acting mainly through four angiotensin receptor subtypes; AT1R, AT2R, MasR, and AT4R. These receptors have opposing effects; AT1R promotes vasoconstriction, proliferation, inflammation, and oxidative stress while AT2R and MasR counteract the effects of AT1R. AT4R is critical for dopamine and acetylcholine release and mediates learning and memory consolidation. Consequently, aging-associated dysregulation of the angiotensin receptor subtypes may lead to adverse clinical outcomes such as Alzheimer’s disease and frailty via excessive oxidative stress, neuroinflammation, endothelial dysfunction, microglial polarization, and alterations in neurotransmitter secretion. In this article, we review the brain RAS from this standpoint. After discussing the functions of individual brain RAS components and their intracellular and intracranial locations, we focus on the relationships among brain RAS, aging, frailty, and specific neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and vascular cognitive impairment, through oxidative stress, neuroinflammation, and vascular dysfunction. Finally, we discuss the effects of RAS-modulating drugs on the brain RAS and their use in novel treatment approaches.
Collapse
Affiliation(s)
- Caglar Cosarderelioglu
- Division of Geriatrics, Department of Internal Medicine, Ankara University School of Medicine, Ankara, Turkey.,Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lolita S Nidadavolu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Claudene J George
- Division of Geriatrics, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Esther S Oh
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter M Abadir
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
26
|
Presa JL, Saravia F, Bagi Z, Filosa JA. Vasculo-Neuronal Coupling and Neurovascular Coupling at the Neurovascular Unit: Impact of Hypertension. Front Physiol 2020; 11:584135. [PMID: 33101063 PMCID: PMC7546852 DOI: 10.3389/fphys.2020.584135] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Components of the neurovascular unit (NVU) establish dynamic crosstalk that regulates cerebral blood flow and maintain brain homeostasis. Here, we describe accumulating evidence for cellular elements of the NVU contributing to critical physiological processes such as cerebral autoregulation, neurovascular coupling, and vasculo-neuronal coupling. We discuss how alterations in the cellular mechanisms governing NVU homeostasis can lead to pathological changes in which vascular endothelial and smooth muscle cell, pericyte and astrocyte function may play a key role. Because hypertension is a modifiable risk factor for stroke and accelerated cognitive decline in aging, we focus on hypertension-associated changes on cerebral arteriole function and structure, and the molecular mechanisms through which these may contribute to cognitive decline. We gather recent emerging evidence concerning cognitive loss in hypertension and the link with vascular dementia and Alzheimer’s disease. Collectively, we summarize how vascular dysfunction, chronic hypoperfusion, oxidative stress, and inflammatory processes can uncouple communication at the NVU impairing cerebral perfusion and contributing to neurodegeneration.
Collapse
Affiliation(s)
- Jessica L Presa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Flavia Saravia
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jessica A Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
27
|
tPA Deficiency Underlies Neurovascular Coupling Dysfunction by Amyloid-β. J Neurosci 2020; 40:8160-8173. [PMID: 32928888 DOI: 10.1523/jneurosci.1140-20.2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/29/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
The amyloid-β (Aβ) peptide, a key pathogenic factor in Alzheimer's disease, attenuates the increase in cerebral blood flow (CBF) evoked by neural activity (functional hyperemia), a vital homeostatic response in which NMDA receptors (NMDARs) play a role through nitric oxide, and the CBF increase produced by endothelial factors. Tissue plasminogen activator (tPA), which is reduced in Alzheimer's disease and in mouse models of Aβ accumulation, is required for the full expression of the NMDAR-dependent component of functional hyperemia. Therefore, we investigated whether tPA is involved in the neurovascular dysfunction of Aβ. tPA activity was reduced, and the tPA inhibitor plasminogen inhibitor-1 (PAI-1) was increased in male mice expressing the Swedish mutation of the amyloid precursor protein (tg2576). Counteracting the tPA reduction with exogenous tPA or with pharmacological inhibition or genetic deletion of PAI-1 completely reversed the attenuation of the CBF increase evoked by whisker stimulation but did not ameliorate the response to the endothelium-dependent vasodilator acetylcholine. The tPA deficit attenuated functional hyperemia by suppressing NMDAR-dependent nitric oxide production during neural activity. Pharmacological inhibition of PAI-1 increased tPA activity, prevented neurovascular uncoupling, and ameliorated cognition in 11- to 12-month-old tg2576 mice, effects associated with a reduction of cerebral amyloid angiopathy but not amyloid plaques. The data unveil a selective role of the tPA in the suppression of functional hyperemia induced by Aβ and in the mechanisms of cerebral amyloid angiopathy, and support the possibility that modulation of the PAI-1-tPA pathway may be beneficial in diseases associated with amyloid accumulation.SIGNIFICANCE STATEMENT Amyloid-β (Aβ) peptides have profound neurovascular effects that may contribute to cognitive impairment in Alzheimer's disease. We found that Aβ attenuates the increases in blood flow evoked by neural activation through a reduction in tissue plasminogen activator (tPA) caused by upregulation of its endogenous inhibitor plasminogen inhibitor-1 (PAI-1). tPA deficiency prevents NMDA receptors from triggering nitric oxide production, thereby attenuating the flow increase evoked by neural activity. PAI-1 inhibition restores tPA activity, rescues neurovascular coupling, reduces amyloid deposition around blood vessels, and improves cognition in a mouse model of Aβ accumulation. The findings demonstrate a previously unappreciated role of tPA in Aβ-related neurovascular dysfunction and in vascular amyloid deposition. Restoration of tPA activity could be of therapeutic value in diseases associated with amyloid accumulation.
Collapse
|
28
|
Salt-dependent hypertension and inflammation: targeting the gut-brain axis and the immune system with Brazilian green propolis. Inflammopharmacology 2020; 28:1163-1182. [PMID: 32785827 PMCID: PMC8826348 DOI: 10.1007/s10787-020-00742-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/30/2020] [Indexed: 01/22/2023]
Abstract
Systemic arterial hypertension (SAH) is a major health problem around the world and its development has been associated with exceeding salt consumption by the modern society. The mechanisms by which salt consumption increase blood pressure (BP) involve several homeostatic systems but many details have not yet been fully elucidated. Evidences accumulated over the last 60 decades raised the involvement of the immune system in the hypertension development and opened a range of possibilities for new therapeutic targets. Green propolis is a promising natural product with potent anti-inflammatory properties acting on specific targets, most of them participating in the gut-brain axis of the sodium-dependent hypertension. New anti-hypertensive products reinforce the therapeutic arsenal improving the corollary of choices, especially in those cases where patients are resistant or refractory to conventional therapy. This review sought to bring the newest advances in the field articulating evidences that show a cross-talking between inflammation and the central mechanisms involved with the sodium-dependent hypertension as well as the stablished actions of green propolis and some of its biologically active compounds on the immune cells and cytokines that would be involved with its anti-hypertensive properties.
Collapse
|
29
|
Kangussu LM, Marzano LAS, Souza CF, Dantas CC, Miranda AS, Simões e Silva AC. The Renin-Angiotensin System and the Cerebrovascular Diseases: Experimental and Clinical Evidence. Protein Pept Lett 2020; 27:463-475. [DOI: 10.2174/0929866527666191218091823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/07/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022]
Abstract
Cerebrovascular Diseases (CVD) comprise a wide spectrum of disorders, all sharing an
acquired or inherited alteration of the cerebral vasculature. CVD have been associated with
important changes in systemic and tissue Renin-Angiotensin System (RAS). The aim of this review
was to summarize and to discuss recent findings related to the modulation of RAS components in
CVD. The role of RAS axes is more extensively studied in experimentally induced stroke. By
means of AT1 receptors in the brain, Ang II hampers cerebral blood flow and causes tissue
ischemia, inflammation, oxidative stress, cell damage and apoptosis. On the other hand, Ang-(1-7)
by stimulating Mas receptor promotes angiogenesis in brain tissue, decreases oxidative stress,
neuroinflammation, and improves cognition, cerebral blood flow, neuronal survival, learning and
memory. In regard to clinical studies, treatment with Angiotensin Converting Enzyme (ACE)
inhibitors and AT1 receptor antagonists exerts preventive and therapeutic effects on stroke. Besides
stroke, studies support a similar role of RAS molecules also in traumatic brain injury and cerebral
aneurysm. The literature supports a beneficial role for the alternative RAS axis in CVD. Further
studies are necessary to investigate the therapeutic potential of ACE2 activators and/or Mas
receptor agonists in patients with CVD.
Collapse
Affiliation(s)
- Lucas M. Kangussu
- Department of Morphology – Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Alexandre Santos Marzano
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cássio Ferraz Souza
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina Couy Dantas
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline Silva Miranda
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões e Silva
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
30
|
Levit A, Cheng S, Hough O, Liu Q, Agca Y, Agca C, Hachinski V, Whitehead SN. Hypertension and Pathogenic hAPP Independently Induce White Matter Astrocytosis and Cognitive Impairment in the Rat. Front Aging Neurosci 2020; 12:82. [PMID: 32351378 PMCID: PMC7174625 DOI: 10.3389/fnagi.2020.00082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/10/2020] [Indexed: 01/28/2023] Open
Abstract
Hypertension is recognized as a risk factor for Alzheimer disease, but the causal link remains undetermined. Although astrocytes and microglia play an important role in maintaining the neurovascular unit, astrocytes and microglia have been understudied in comorbid models of hypertension and Alzheimer disease. In this study, male transgenic Fischer 344 rats (TgAPP21) overexpressing a pathogenic human amyloid precursor protein received 8 weeks of Angiotensin II infusion to increase blood pressure, and the rats were evaluated for astrocytosis, microgliosis, and cognitive function. A linear relationship between astrocytosis and blood pressure was observed in the corpus callosum and cingulum of wildtype rats, with hypertensive wildtype rats matching the elevated baseline astrocytosis seen in normotensive transgenic rats. In contrast, hypertensive transgenic rats did not demonstrate a further increase of astrocytosis, suggesting a deficient response. Angiotensin II infusion did not affect activation of microglia, which were elevated in the white matter and hippocampus of transgenic rats. Angiotensin II infusion did impair both wildtype and transgenic rats’ executive functions in the Morris Water Maze. These results present important implications for the interaction between hypertension and pathogenic human amyloid precursor protein expression, as Angiotensin II infusion produced cognitive impairments in both genotypes, but transgenic rats were additionally impaired in developing a normal astrocytic response to elevated blood pressure.
Collapse
Affiliation(s)
- Alexander Levit
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Sonny Cheng
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Olivia Hough
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Qingfan Liu
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Cansu Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Vladimir Hachinski
- Department of Clinical Neurological Sciences, University Hospital, Western University, London, ON, Canada
| | - Shawn N Whitehead
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, University Hospital, Western University, London, ON, Canada
| |
Collapse
|
31
|
Drieu A, Lanquetin A, Levard D, Glavan M, Campos F, Quenault A, Lemarchand E, Naveau M, Pitel AL, Castillo J, Vivien D, Rubio M. Alcohol exposure-induced neurovascular inflammatory priming impacts ischemic stroke and is linked with brain perivascular macrophages. JCI Insight 2020; 5:129226. [PMID: 31990687 DOI: 10.1172/jci.insight.129226] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Alcohol abuse is a major public health problem worldwide, causing a wide range of preventable morbidity and mortality. In this translational study, we show that heavy drinking (HD) (≥6 standard drinks/day) is independently associated with a worse outcome for ischemic stroke patients. To study the underlying mechanisms of this deleterious effect of HD, we performed an extensive analysis of the brain inflammatory responses of mice chronically exposed or not to 10% alcohol before and after ischemic stroke. Inflammatory responses were analyzed at the parenchymal, perivascular, and vascular levels by using transcriptomic, immunohistochemical, in vivo 2-photon microscopy and molecular MRI analyses. Alcohol-exposed mice show, in the absence of any other insult, a neurovascular inflammatory priming (i.e., an abnormal inflammatory status including an increase in brain perivascular macrophages [PVM]) associated with exacerbated inflammatory responses after a secondary insult (ischemic stroke or LPS challenge). Similar to our clinical data, alcohol-exposed mice showed larger ischemic lesions. We show here that PVM are key players on this aggravating effect of alcohol, since their specific depletion blocks the alcohol-induced aggravation of ischemic lesions. This study opens potentially new therapeutic avenues aiming at blocking alcohol-induced exacerbation of the neurovascular inflammatory responses triggered after ischemic stroke.
Collapse
Affiliation(s)
- Antoine Drieu
- INSERM, Physiopathology and Imaging of Neurological Disorders, UMR-S 1237, Normandie Université, Caen, France
| | - Anastasia Lanquetin
- INSERM, Physiopathology and Imaging of Neurological Disorders, UMR-S 1237, Normandie Université, Caen, France
| | - Damien Levard
- INSERM, Physiopathology and Imaging of Neurological Disorders, UMR-S 1237, Normandie Université, Caen, France
| | - Martina Glavan
- INSERM, Physiopathology and Imaging of Neurological Disorders, UMR-S 1237, Normandie Université, Caen, France
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Aurélien Quenault
- INSERM, Physiopathology and Imaging of Neurological Disorders, UMR-S 1237, Normandie Université, Caen, France
| | - Eloïse Lemarchand
- INSERM, Physiopathology and Imaging of Neurological Disorders, UMR-S 1237, Normandie Université, Caen, France
| | - Mikaël Naveau
- CNRS, UMR-S 3408, GIP Cyceron, Normandie Université, Caen, France
| | - Anne Lise Pitel
- INSERM, Neuropsychologie et Imagerie de la Mémoire Humaine, UMR-S 1077, Université Paris Sciences et Lettres, Caen, France
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Denis Vivien
- INSERM, Physiopathology and Imaging of Neurological Disorders, UMR-S 1237, Normandie Université, Caen, France
| | - Marina Rubio
- INSERM, Physiopathology and Imaging of Neurological Disorders, UMR-S 1237, Normandie Université, Caen, France
| |
Collapse
|
32
|
Vanherle L, Matuskova H, Don-Doncow N, Uhl FE, Meissner A. Improving Cerebrovascular Function to Increase Neuronal Recovery in Neurodegeneration Associated to Cardiovascular Disease. Front Cell Dev Biol 2020; 8:53. [PMID: 32117979 PMCID: PMC7020256 DOI: 10.3389/fcell.2020.00053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Mounting evidence indicates that the presence of cardiovascular disease (CVD) and risk factors elevates the incidence of cognitive impairment (CI) and dementia. CVD and associated decline in cardiovascular function can impair cerebral blood flow (CBF) regulation, leading to the disruption of oxygen and nutrient supply in the brain where limited intracellular energy storage capacity critically depends on CBF to sustain proper neuronal functioning. During hypertension and acute as well as chronic CVD, cerebral hypoperfusion and impaired cerebrovascular function are often associated with neurodegeneration and can lead to CI and dementia. Currently, all forms of neurodegeneration associated to CVD lack effective treatments, which highlights the need to better understand specific mechanisms linking cerebrovascular dysfunction and CBF deficits to neurodegeneration. In this review, we discuss vascular targets that have already shown attenuation of neurodegeneration or CI associated to hypertension, heart failure (HF) and stroke by improving cerebrovascular function or CBF deficits.
Collapse
Affiliation(s)
- Lotte Vanherle
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Hana Matuskova
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,Department of Neurology, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Nicholas Don-Doncow
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Franziska E Uhl
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Anja Meissner
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
33
|
Iulita MF, Duchemin S, Vallerand D, Barhoumi T, Alvarez F, Istomine R, Laurent C, Youwakim J, Paradis P, Arbour N, Piccirillo CA, Schiffrin EL, Girouard H. CD4 + Regulatory T Lymphocytes Prevent Impaired Cerebral Blood Flow in Angiotensin II-Induced Hypertension. J Am Heart Assoc 2020; 8:e009372. [PMID: 30572753 PMCID: PMC6405729 DOI: 10.1161/jaha.118.009372] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Immune cells are key regulators of the vascular inflammatory response characteristic of hypertension. In hypertensive rodents, regulatory T lymphocytes (Treg, CD4+CD25+) prevented vascular injury, cardiac damage, and endothelial dysfunction of mesenteric arteries. Whether Treg modulate the cerebrovascular damage induced by hypertension is unknown. Methods and Results C57BL/6 mice were perfused with angiotensin II (Ang II; 1000 ng/kg per minute) for 14 days and adoptive transfer of 3×105CD4+CD25+ T cells was performed via 2 intravenous injections. Control mice received a sham surgery and PBS. Treg prevented Ang II‐induced neurovascular uncoupling (P<0.05) and endothelial impairment (P<0.05), evaluated by laser Doppler flowmetry in the somatosensory cortex. The neuroprotective effect of Treg was abolished when they were isolated from mice deficient in interleukin‐10. Administration of interleukin‐10 (60 ng/d) to hypertensive mice prevented Ang II‐induced neurovascular uncoupling (P<0.05). Treg adoptive transfer also diminished systemic inflammation induced by Ang II (P<0.05), examined with a peripheral blood cytokine array. Mice receiving Ang II + Treg exhibited reduced numbers of Iba‐1+ cells in the brain cortex (P<0.05) and hippocampus (P<0.001) compared with mice infused only with Ang II. Treg prevented the increase in cerebral superoxide radicals. Overall, these effects did not appear to be directly modulated by Treg accumulating in the brain parenchyma, because only a nonsignificant number of Treg were detected in brain. Instead, Treg penetrated peripheral tissues such as the kidney, inguinal lymph nodes, and the spleen. Conclusions Treg prevent impaired cerebrovascular responses in Ang II‐induced hypertension. The neuroprotective effects of Treg involve the modulation of inflammation in the brain and periphery.
Collapse
Affiliation(s)
- M Florencia Iulita
- 1 Department of Neurosciences Université de Montréal Montréal Canada.,2 Groupe de recherche sur le système nerveux central (GRSNC) Université de Montréal Montréal Canada
| | - Sonia Duchemin
- 4 Department of Pharmacology and Physiology Université de Montréal Montréal Canada
| | - Diane Vallerand
- 4 Department of Pharmacology and Physiology Université de Montréal Montréal Canada
| | - Tlili Barhoumi
- 5 Lady Davis Institute for Medical Research McGill University Montréal Canada
| | - Fernando Alvarez
- 6 Centre of Excellence in Translational Immunology Research Institute of McGill University Health Centre McGill University Montréal Canada.,7 Department of Microbiology and Immunology McGill University Montréal Canada
| | - Roman Istomine
- 6 Centre of Excellence in Translational Immunology Research Institute of McGill University Health Centre McGill University Montréal Canada.,7 Department of Microbiology and Immunology McGill University Montréal Canada
| | - Cyril Laurent
- 1 Department of Neurosciences Université de Montréal Montréal Canada.,3 Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) Montréal Canada
| | - Jessica Youwakim
- 4 Department of Pharmacology and Physiology Université de Montréal Montréal Canada
| | - Pierre Paradis
- 5 Lady Davis Institute for Medical Research McGill University Montréal Canada
| | - Nathalie Arbour
- 1 Department of Neurosciences Université de Montréal Montréal Canada.,3 Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) Montréal Canada
| | - Ciriaco A Piccirillo
- 6 Centre of Excellence in Translational Immunology Research Institute of McGill University Health Centre McGill University Montréal Canada.,7 Department of Microbiology and Immunology McGill University Montréal Canada
| | - Ernesto L Schiffrin
- 5 Lady Davis Institute for Medical Research McGill University Montréal Canada.,8 Department of Medicine Sir Mortimer B. Davis-Jewish General Hospital McGill University Montréal Canada
| | - Hélène Girouard
- 2 Groupe de recherche sur le système nerveux central (GRSNC) Université de Montréal Montréal Canada.,4 Department of Pharmacology and Physiology Université de Montréal Montréal Canada.,9 Centre de recherche de l'Institut universitaire de gériatrie de Montréal Canada
| |
Collapse
|
34
|
Asirvatham-Jeyaraj N, Jones AD, Burnett R, Fink GD. Brain Prostaglandin D2 Increases Neurogenic Pressor Activity and Mean Arterial Pressure in Angiotensin II-Salt Hypertensive Rats. Hypertension 2019; 74:1499-1506. [PMID: 31587572 DOI: 10.1161/hypertensionaha.119.13175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study tested whether brain L-PGDS (lipocalin-type prostaglandin [PG] D synthase), through prostanoid signaling, might increase neurogenic pressor activity and thereby cause hypertension. Sprague Dawley rats on high-salt diet received either vehicle or Ang II (angiotensin II) infusion. On day 4, the developmental stage of hypertension, brains from different sets of control and Ang II-treated rats were collected for measuring L-PGDS expression, PGD2 levels, and DP1R (type 1 PGD2 receptor) expression. In a different set of 14-day Ang II-salt-treated rats, mini-osmotic pumps were used to infuse either a nonselective COX (cyclooxygenase) inhibitor ketorolac, L-PGDS inhibitor AT56, or DP1R inhibitor BWA868C to test the role of brain COX-PGD2-DP1R signaling in Ang II-salt hypertension. The acute depressor response to ganglion blockade with hexamethonium was used to quantify neurogenic pressor activity. During the developmental stage of Ang II-salt hypertension, L-PGDS expression was higher in cerebrospinal fluid, and PGD2 levels were increased in the choroid plexus, cerebrospinal fluid, and the cardioregulatory brain region rostral ventrolateral medulla. DP1R expression was decreased in rostral ventrolateral medulla. Both brain COX inhibition with ketorolac and L-PGDS inhibition with AT56 lowered mean arterial pressure by altering neurogenic pressor activity compared with vehicle controls. Blockade of DP1R with BWA868C, however, increased the magnitude of Ang II-salt hypertension and significantly increased neurogenic pressor activity. In summary, we establish that the development of Ang II-salt hypertension requires increased COX- and L-PGDS-derived PGD2 production in the brain, making L-PGDS a possible target for treating neurogenic hypertension.
Collapse
Affiliation(s)
- Ninitha Asirvatham-Jeyaraj
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru (N.A.-J.).,Department of Pharmacology and Toxicology (N.A.-J., R.B., G.D.F.), Michigan State University, East Lansing
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology (A.D.J.), Michigan State University, East Lansing.,Department of Chemistry (A.D.J.), Michigan State University, East Lansing
| | - Robert Burnett
- Department of Pharmacology and Toxicology (N.A.-J., R.B., G.D.F.), Michigan State University, East Lansing
| | - Gregory D Fink
- Department of Pharmacology and Toxicology (N.A.-J., R.B., G.D.F.), Michigan State University, East Lansing
| |
Collapse
|
35
|
Hachinski V, Einhäupl K, Ganten D, Alladi S, Brayne C, Stephan BCM, Sweeney MD, Zlokovic B, Iturria-Medina Y, Iadecola C, Nishimura N, Schaffer CB, Whitehead SN, Black SE, Østergaard L, Wardlaw J, Greenberg S, Friberg L, Norrving B, Rowe B, Joanette Y, Hacke W, Kuller L, Dichgans M, Endres M, Khachaturian ZS. Special topic section: linkages among cerebrovascular, cardiovascular, and cognitive disorders: Preventing dementia by preventing stroke: The Berlin Manifesto. Int J Stroke 2019:1747493019871915. [PMID: 31543058 DOI: 10.1177/1747493019871915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The incidence of stroke and dementia are diverging across the world, rising for those in low-and middle-income countries and falling in those in high-income countries. This suggests that whatever factors cause these trends are potentially modifiable. At the population level, neurological disorders as a group account for the largest proportion of disability-adjusted life years globally (10%). Among neurological disorders, stroke (42%) and dementia (10%) dominate. Stroke and dementia confer risks for each other and share some of the same, largely modifiable, risk and protective factors. In principle, 90% of strokes and 35% of dementias have been estimated to be preventable. Because a stroke doubles the chance of developing dementia and stroke is more common than dementia, more than a third of dementias could be prevented by preventing stroke. Developments at the pathological, pathophysiological, and clinical level also point to new directions. Growing understanding of brain pathophysiology has unveiled the reciprocal interaction of cerebrovascular disease and neurodegeneration identifying new therapeutic targets to include protection of the endothelium, the blood-brain barrier, and other components of the neurovascular unit. In addition, targeting amyloid angiopathy aspects of inflammation and genetic manipulation hold new testable promise. In the meantime, accumulating evidence suggests that whole populations experiencing improved education, and lower vascular risk factor profiles (e.g., reduced prevalence of smoking) and vascular disease, including stroke, have better cognitive function and lower dementia rates. At the individual levels, trials have demonstrated that anticoagulation of atrial fibrillation can reduce the risk of dementia by 48% and that systolic blood pressure lower than 140 mmHg may be better for the brain. Based on these considerations, the World Stroke Organization has issued a proclamation, endorsed by all the major international organizations focused on global brain and cardiovascular health, calling for the joint prevention of stroke and dementia. This article summarizes the evidence for translation into action. © 2019 the Alzheimer's Association and the World Stroke Organisation. Published by Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Vladimir Hachinski
- Department of Clinical Neurological Sciences, Western University, Ontario, Canada
| | - Karl Einhäupl
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Detlev Ganten
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Suvarna Alladi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Carol Brayne
- Department of Public Health and Primary Care in the University of Cambridge, Cambridge, UK
| | - Blossom C M Stephan
- Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Melanie D Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris B Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Western University, Ontario, Canada
| | - Sandra E Black
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Leif Østergaard
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, Edinburgh Imaging, UK Dementia Research Institute, University of Edinburgh, Scotland, UK
| | - Steven Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Leif Friberg
- Department of Clinical Sciences, Karolinska Institute, Stockholm, Sweden
| | - Bo Norrving
- Department of Clinical Sciences, Neurology, Lund University, Lund, Sweden
| | - Brian Rowe
- Department of Emergency Medicine and School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Joanette
- Canadian Institute of Health and Research, Ottawa, Canada
| | - Werner Hacke
- Department of Neurology, Heidelberg University, Heidelberg, Germany
| | - Lewis Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | | |
Collapse
|
36
|
Sun R, He T, Pan Y, Katusic ZS. Effects of senescence and angiotensin II on expression and processing of amyloid precursor protein in human cerebral microvascular endothelial cells. Aging (Albany NY) 2019; 10:100-114. [PMID: 29348391 PMCID: PMC5811245 DOI: 10.18632/aging.101362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/10/2018] [Indexed: 01/18/2023]
Abstract
The present study was designed to determine the effects of senescence and angiotensin II (Ang II) on expression and processing of amyloid precursor protein (APP) in human brain microvascular endothelial cells (BMECs). Senescence caused a decrease in APP expression thereby resulting in reduced secretion of soluble APPα (sAPPα). In contrast, β-site APP cleaving enzyme (BACE1) expression and production of amyloid β (Aβ)40 were increased in senescent endothelium. Importantly, in senescent human BMECs, treatment with BACE1 inhibitor IV inhibited Aβ generation and increased sAPPα production by enhancing a disintegrin and metalloprotease (ADAM)10 expression. Furthermore, Ang II impaired expression of ADAM10 and significantly reduced generation of sAPPα in senescent human BMECs. This inhibitory effect of Ang II was prevented by treatment with BACE1 inhibitor IV. Our results suggest that impairment of α-processing and shift to amyloidogenic pathway of APP contribute to endothelial dysfunction induced by senescence. Loss of sAPPα in senescent cells treated with Ang II exacerbates detrimental effects of senescence on APP processing. Notably, inhibition of BACE1 has beneficial effects on senescence induced endothelial dysfunction. Reported findings may help to explain contributions of senescent cerebral microvascular endothelium to development of cerebral amyloid angiopathy and Alzheimer’s disease (AD) pathology.
Collapse
Affiliation(s)
- Ruohan Sun
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China.,Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Tongrong He
- Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Yujun Pan
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Zvonimir S Katusic
- Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
37
|
Cerebral Blood Flow Regulation in Pregnancy, Hypertension, and Hypertensive Disorders of Pregnancy. Brain Sci 2019; 9:brainsci9090224. [PMID: 31487961 PMCID: PMC6769869 DOI: 10.3390/brainsci9090224] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 01/12/2023] Open
Abstract
The regulation of cerebral blood flow (CBF) allows for the metabolic demands of the brain to be met and for normal brain function including cognition (learning and memory). Regulation of CBF ensures relatively constant blood flow to the brain despite changes in systemic blood pressure, protecting the fragile micro-vessels from damage. CBF regulation is altered in pregnancy and is further altered by hypertension and hypertensive disorders of pregnancy including preeclampsia. The mechanisms contributing to changes in CBF in normal pregnancy, hypertension, and preeclampsia have not been fully elucidated. This review summarizes what is known about changes in CBF regulation during pregnancy, hypertension, and preeclampsia.
Collapse
|
38
|
Hachinski V, Einhäupl K, Ganten D, Alladi S, Brayne C, Stephan BCM, Sweeney MD, Zlokovic B, Iturria-Medina Y, Iadecola C, Nishimura N, Schaffer CB, Whitehead SN, Black SE, Østergaard L, Wardlaw J, Greenberg S, Friberg L, Norrving B, Rowe B, Joanette Y, Hacke W, Kuller L, Dichgans M, Endres M, Khachaturian ZS. Preventing dementia by preventing stroke: The Berlin Manifesto. Alzheimers Dement 2019; 15:961-984. [PMID: 31327392 PMCID: PMC7001744 DOI: 10.1016/j.jalz.2019.06.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The incidence of stroke and dementia are diverging across the world, rising for those in low- and middle-income countries and falling in those in high-income countries. This suggests that whatever factors cause these trends are potentially modifiable. At the population level, neurological disorders as a group account for the largest proportion of disability-adjusted life years globally (10%). Among neurological disorders, stroke (42%) and dementia (10%) dominate. Stroke and dementia confer risks for each other and share some of the same, largely modifiable, risk and protective factors. In principle, 90% of strokes and 35% of dementias have been estimated to be preventable. Because a stroke doubles the chance of developing dementia and stroke is more common than dementia, more than a third of dementias could be prevented by preventing stroke. Developments at the pathological, pathophysiological, and clinical level also point to new directions. Growing understanding of brain pathophysiology has unveiled the reciprocal interaction of cerebrovascular disease and neurodegeneration identifying new therapeutic targets to include protection of the endothelium, the blood-brain barrier, and other components of the neurovascular unit. In addition, targeting amyloid angiopathy aspects of inflammation and genetic manipulation hold new testable promise. In the meantime, accumulating evidence suggests that whole populations experiencing improved education, and lower vascular risk factor profiles (e.g., reduced prevalence of smoking) and vascular disease, including stroke, have better cognitive function and lower dementia rates. At the individual levels, trials have demonstrated that anticoagulation of atrial fibrillation can reduce the risk of dementia by 48% and that systolic blood pressure lower than 140 mmHg may be better for the brain. Based on these considerations, the World Stroke Organization has issued a proclamation, endorsed by all the major international organizations focused on global brain and cardiovascular health, calling for the joint prevention of stroke and dementia. This article summarizes the evidence for translation into action.
Collapse
Affiliation(s)
- Vladimir Hachinski
- Department of Clinical Neurological Sciences, Western University, Ontario, Canada.
| | - Karl Einhäupl
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Detlev Ganten
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Suvarna Alladi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Carol Brayne
- Department of Public Health and Primary Care in the University of Cambridge, Cambridge, UK
| | - Blossom C M Stephan
- Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Melanie D Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris B Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Western University, Ontario, Canada
| | - Sandra E Black
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Leif Østergaard
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark; Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, Edinburgh Imaging, UK Dementia Research Institute, University of Edinburgh, Scotland, UK
| | - Steven Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Leif Friberg
- Department of Clinical Sciences, Karolinska Institute, Stockholm, Sweden
| | - Bo Norrving
- Department of Clinical Sciences, Neurology, Lund University, Lund, Sweden
| | - Brian Rowe
- Department of Emergency Medicine and School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Joanette
- Canadian Institute of Health and Research, Ottawa, Canada
| | - Werner Hacke
- Department of Neurology, Heidelberg University, Heidelberg, Germany
| | - Lewis Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany; ExcellenceCluster NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | | |
Collapse
|
39
|
Martínez-Martínez S, Lozano-Vidal N, López-Maderuelo MD, Jiménez-Borreguero LJ, Armesilla ÁL, Redondo JM. Cardiomyocyte calcineurin is required for the onset and progression of cardiac hypertrophy and fibrosis in adult mice. FEBS J 2018; 286:46-65. [PMID: 30548183 DOI: 10.1111/febs.14718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
Previous studies have demonstrated that activation of calcineurin induces pathological cardiac hypertrophy (CH). In these studies, loss-of-function was mostly achieved by systemic administration of the calcineurin inhibitor cyclosporin A. The lack of conditional knockout models for calcineurin function has impeded progress toward defining the role of this protein during the onset and the development of CH in adults. Here, we exploited a mouse model of CH based on the infusion of a hypertensive dose of angiotensin II (AngII) to model the role of calcineurin in CH in adulthood. AngII-induced CH in adult mice was reduced by treatment with cyclosporin A, without affecting the associated increase in blood pressure, and also by induction of calcineurin deletion in adult mouse cardiomyocytes, indicating that cardiomyocyte calcineurin is required for AngII-induced CH. Surprisingly, cardiac-specific deletion of calcineurin, but not treatment of mice with cyclosporin A, significantly reduced AngII-induced cardiac fibrosis and apoptosis. Analysis of profibrotic genes revealed that AngII-induced expression of Tgfβ family members and Lox was not inhibited by cyclosporin A but was markedly reduced by cardiac-specific calcineurin deletion. These results show that AngII induces a direct, calcineurin-dependent prohypertrophic effect in cardiomyocytes, as well as a systemic hypertensive effect that is independent of calcineurin activity.
Collapse
Affiliation(s)
- Sara Martínez-Martínez
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Centro de Investigaciones Biomédicas en RED en Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Noelia Lozano-Vidal
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Dolores López-Maderuelo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Centro de Investigaciones Biomédicas en RED en Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Luis J Jiménez-Borreguero
- Centro de Investigaciones Biomédicas en RED en Enfermedades Cardiovasculares (CIBERCV), Spain.,Hospital de La Princesa, Madrid, Spain
| | - Ángel Luis Armesilla
- Centro de Investigaciones Biomédicas en RED en Enfermedades Cardiovasculares (CIBERCV), Spain.,Research Institute in Healthcare Science, School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, UK
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Centro de Investigaciones Biomédicas en RED en Enfermedades Cardiovasculares (CIBERCV), Spain
| |
Collapse
|
40
|
Santisteban MM, Iadecola C. Hypertension, dietary salt and cognitive impairment. J Cereb Blood Flow Metab 2018; 38:2112-2128. [PMID: 30295560 PMCID: PMC6282225 DOI: 10.1177/0271678x18803374] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
Dementia is growing at an alarming rate worldwide. Although Alzheimer disease is the leading cause, over 50% of individuals diagnosed with Alzheimer disease have vascular lesions at autopsy. There has been an increasing appreciation of the pathogenic role of vascular risk factors in cognitive impairment caused by neurodegeneration. Midlife hypertension is a leading risk factor for late-life dementia. Hypertension alters cerebrovascular structure, impairs the major factors regulating the cerebral microcirculation, and promotes Alzheimer pathology. Experimental studies have identified brain perivascular macrophages as the major free radical source mediating neurovascular dysfunction of hypertension. Recent evidence indicates that high dietary salt may also induce cognitive impairment. Contrary to previous belief, the effect is not necessarily associated with hypertension and is mediated by a deficit in endothelial nitric oxide. Collectively, the evidence suggests a remarkable cellular diversity of the impact of vascular risk factors on the cerebral vasculature and cognition. Whereas long-term longitudinal epidemiological studies are needed to resolve the temporal relationships between vascular risk factors and cognitive dysfunction, single-cell molecular studies of the vasculature in animal models will provide a fuller mechanistic understanding. This knowledge is critical for developing new preventive, diagnostic, and therapeutic approaches for these devastating diseases of the mind.
Collapse
Affiliation(s)
- Monica M Santisteban
- Feil Family Brain and Mind Research Institute Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
41
|
Hancock AM, Frostig RD. Hypertension prevents a sensory stimulation-based collateral therapeutic from protecting the cortex from impending ischemic stroke damage in a spontaneously hypersensitive rat model. PLoS One 2018; 13:e0206291. [PMID: 30352082 PMCID: PMC6198990 DOI: 10.1371/journal.pone.0206291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 10/10/2018] [Indexed: 12/02/2022] Open
Abstract
Assessing potential stroke treatments in the presence of risk factors can improve screening of treatments prior to clinical trials and is important in testing the efficacy of treatments in different patient populations. Here, we test our noninvasive, nonpharmacological sensory stimulation treatment in the presence of the main risk factor for ischemic stroke, hypertension. Utilizing functional imaging, blood flow imaging, and histology, we assessed spontaneously hypertensive rats (SHRs) pre- and post-permanent middle cerebral artery occlusion (pMCAO). Experimental groups included a treatment SHR group (sensory-stimulated group), control untreated SHR group (no sensory stimulation), and a treated (sensory-stimulated) Wistar-Kyoto normotensive group. Unlike our previous studies, which showed sensory-based complete protection from impending ischemic cortical stroke damage in rats as seen in the treated Wistar-Kyoto group, we found that SHRs at 24hr post-pMCAO lacked evoked cortical activation, had a significant reduction in blood flow within the MCA, and sustained very large infarcts regardless of whether they received stimulation treatment. If translatable, this work highlights a potential need for a combined treatment plan when delivering sensory stimulation treatment in this patient population.
Collapse
Affiliation(s)
- Aneeka M. Hancock
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
| | - Ron D. Frostig
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
42
|
Horsburgh K, Wardlaw JM, van Agtmael T, Allan SM, Ashford MLJ, Bath PM, Brown R, Berwick J, Cader MZ, Carare RO, Davis JB, Duncombe J, Farr TD, Fowler JH, Goense J, Granata A, Hall CN, Hainsworth AH, Harvey A, Hawkes CA, Joutel A, Kalaria RN, Kehoe PG, Lawrence CB, Lockhart A, Love S, Macleod MR, Macrae IM, Markus HS, McCabe C, McColl BW, Meakin PJ, Miller A, Nedergaard M, O'Sullivan M, Quinn TJ, Rajani R, Saksida LM, Smith C, Smith KJ, Touyz RM, Trueman RC, Wang T, Williams A, Williams SCR, Work LM. Small vessels, dementia and chronic diseases - molecular mechanisms and pathophysiology. Clin Sci (Lond) 2018; 132:851-868. [PMID: 29712883 PMCID: PMC6700732 DOI: 10.1042/cs20171620] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/08/2018] [Accepted: 02/21/2018] [Indexed: 12/14/2022]
Abstract
Cerebral small vessel disease (SVD) is a major contributor to stroke, cognitive impairment and dementia with limited therapeutic interventions. There is a critical need to provide mechanistic insight and improve translation between pre-clinical research and the clinic. A 2-day workshop was held which brought together experts from several disciplines in cerebrovascular disease, dementia and cardiovascular biology, to highlight current advances in these fields, explore synergies and scope for development. These proceedings provide a summary of key talks at the workshop with a particular focus on animal models of cerebral vascular disease and dementia, mechanisms and approaches to improve translation. The outcomes of discussion groups on related themes to identify the gaps in knowledge and requirements to advance knowledge are summarized.
Collapse
Affiliation(s)
- Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K.
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Tom van Agtmael
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | | | - Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, U.K
| | - Rosalind Brown
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, U.K
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, U.K
| | - John B Davis
- Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, U.K
| | - Jessica Duncombe
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Tracy D Farr
- School of Life Sciences, Nottingham University, Nottingham, U.K
| | - Jill H Fowler
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Jozien Goense
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, U.K
| | - Alessandra Granata
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, U.K
| | | | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St Georges University of London, London, U.K
| | - Adam Harvey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Cheryl A Hawkes
- Faculty of Science, Technology, Engineering & Mathematics, Open University, Milton Keynes, U.K
| | - Anne Joutel
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, Université Paris Diderot-Paris 7, Paris, France
| | - Rajesh N Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, U.K
| | | | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | | | - Seth Love
- Clinical Neurosciences, University of Bristol, Bristol, U.K
| | - Malcolm R Macleod
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - I Mhairi Macrae
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, U.K
| | - Hugh S Markus
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, U.K
| | - Chris McCabe
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, U.K
| | - Barry W McColl
- The Roslin Institute & R(D)SVS, UK Dementia Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Paul J Meakin
- Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, Dundee, U.K
| | - Alyson Miller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Maiken Nedergaard
- University of Rochester Medical Center, Rochester, NY, USA and University of Copenhagen's Center of Basic and Translational Neuroscience, Copenhagen, Denmark
| | - Michael O'Sullivan
- Mater Centre for Neuroscience and Queensland Brain Institute, Brisbane, Australia
| | - Terry J Quinn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Rikesh Rajani
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, Université Paris Diderot-Paris 7, Paris, France
| | - Lisa M Saksida
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Institute of Neurology, London, U.K
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | | | - Tao Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | - Anna Williams
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, U.K
| | | | - Lorraine M Work
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
43
|
Hashad AM, Sancho M, Brett SE, Welsh DG. Reactive Oxygen Species Mediate the Suppression of Arterial Smooth Muscle T-type Ca 2+ Channels by Angiotensin II. Sci Rep 2018; 8:3445. [PMID: 29472601 PMCID: PMC5823855 DOI: 10.1038/s41598-018-21899-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023] Open
Abstract
Vascular T-type Ca2+ channels (CaV3.1 and CaV3.2) play a key role in arterial tone development. This study investigated whether this conductance is a regulatory target of angiotensin II (Ang II), a vasoactive peptide that circulates and which is locally produced within the arterial wall. Patch clamp electrophysiology performed on rat cerebral arterial smooth muscle cells reveals that Ang II (100 nM) inhibited T-type currents through AT1 receptor activation. Blocking protein kinase C failed to eliminate channel suppression, a finding consistent with unique signaling proteins enabling this response. In this regard, inhibiting NADPH oxidase (Nox) with apocynin or ML171 (Nox1 selective) abolished channel suppression highlighting a role for reactive oxygen species (ROS). In the presence of Ni2+ (50 µM), Ang II failed to modulate the residual T-type current, an observation consistent with this peptide targeting CaV3.2. Selective channel suppression by Ang II impaired the ability of CaV3.2 to alter spontaneous transient outward currents or vessel diameter. Proximity ligation assay confirmed Nox1 colocalization with CaV3.2. In closing, Ang II targets CaV3.2 channels via a signaling pathway involving Nox1 and the generation of ROS. This unique regulatory mechanism alters BKCa mediated feedback giving rise to a “constrictive” phenotype often observed with cerebrovascular disease.
Collapse
Affiliation(s)
- Ahmed M Hashad
- Deptartment of Physiology & Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes, University of Calgary, Alberta, Canada
| | - Maria Sancho
- Deptartment Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Suzanne E Brett
- Deptartment Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Donald G Welsh
- Deptartment of Physiology & Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes, University of Calgary, Alberta, Canada. .,Deptartment Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
44
|
Buttler L, Jordão MT, Fragas MG, Ruggeri A, Ceroni A, Michelini LC. Maintenance of Blood-Brain Barrier Integrity in Hypertension: A Novel Benefit of Exercise Training for Autonomic Control. Front Physiol 2017; 8:1048. [PMID: 29311978 PMCID: PMC5733101 DOI: 10.3389/fphys.2017.01048] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022] Open
Abstract
The blood-brain barrier (BBB) is a complex multicellular structure acting as selective barrier controlling the transport of substances between these compartments. Accumulating evidence has shown that chronic hypertension is accompanied by BBB dysfunction, deficient local perfusion and plasma angiotensin II (Ang II) access into the parenchyma of brain areas related to autonomic circulatory control. Knowing that spontaneously hypertensive rats (SHR) exhibit deficient autonomic control and brain Ang II hyperactivity and that exercise training is highly effective in correcting both, we hypothesized that training, by reducing Ang II content, could improve BBB function within autonomic brain areas of the SHR. After confirming the absence of BBB lesion in the pre-hypertensive SHR, but marked fluorescein isothiocyanate dextran (FITC, 10 kD) leakage into the brain parenchyma of the hypothalamic paraventricular nucleus (PVN), nucleus of the solitary tract, and rostral ventrolateral medulla during the established phase of hypertension, adult SHR, and age-matched WKY were submitted to a treadmill training (T) or kept sedentary (S) for 8 weeks. The robust FITC leakage within autonomic areas of the SHR-S was largely reduced and almost normalized since the 2nd week of training (T2). BBB leakage reduction occurred simultaneously and showed strong correlations with both decreased LF/HF ratio to the heart and reduced vasomotor sympathetic activity (power spectral analysis), these effects preceding the appearance of resting bradycardia (T4) and partial pressure fall (T8). In other groups of SHR-T simultaneously infused with icv Ang II or saline (osmotic mini-pumps connected to a lateral ventricle cannula) we proved that decreased local availability of this peptide and reduced microglia activation (IBA1 staining) are crucial mechanisms conditioning the restoration of BBB integrity. Our data also revealed that Ang II-induced BBB lesion was faster within the PVN (T2), suggesting the prominent role of this nucleus in driven hypertension-induced deficits. These original set of data suggest that reduced local Ang II content (and decreased activation of its downstream pathways) is an essential and early-activated mechanism to maintain BBB integrity in trained SHR and uncovers a novel beneficial effect of exercise training to improve autonomic control even in the presence of hypertension.
Collapse
Affiliation(s)
- Leila Buttler
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria T Jordão
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matheus G Fragas
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriana Ruggeri
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Ceroni
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lisete C Michelini
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Walker KA, Power MC, Gottesman RF. Defining the Relationship Between Hypertension, Cognitive Decline, and Dementia: a Review. Curr Hypertens Rep 2017; 19:24. [PMID: 28299725 DOI: 10.1007/s11906-017-0724-3] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypertension is a highly prevalent condition which has been established as a risk factor for cardiovascular and cerebrovascular disease. Although the understanding of the relationship between cardiocirculatory dysfunction and brain health has improved significantly over the last several decades, it is still unclear whether hypertension constitutes a potentially treatable risk factor for cognitive decline and dementia. While it is clear that hypertension can affect brain structure and function, recent findings suggest that the associations between blood pressure and brain health are complex and, in many cases, dependent on factors such as age, hypertension chronicity, and antihypertensive medication use. Whereas large epidemiological studies have demonstrated a consistent association between high midlife BP and late-life cognitive decline and incident dementia, associations between late-life blood pressure and cognition have been less consistent. Recent evidence suggests that hypertension may promote alterations in brain structure and function through a process of cerebral vessel remodeling, which can lead to disruptions in cerebral autoregulation, reductions in cerebral perfusion, and limit the brain's ability to clear potentially harmful proteins such as β-amyloid. The purpose of the current review is to synthesize recent findings from epidemiological, neuroimaging, physiological, genetic, and translational research to provide an overview of what is currently known about the association between blood pressure and cognitive function across the lifespan. In doing so, the current review also discusses the results of recent randomized controlled trials of antihypertensive therapy to reduce cognitive decline, highlights several methodological limitations, and provides recommendations for future clinical trial design.
Collapse
Affiliation(s)
- Keenan A Walker
- Department of Neurology, Johns Hopkins University School of Medicine, Phipps 446D 600 North Wolfe St., Baltimore, MD, 21287, USA
| | - Melinda C Power
- Department of Epidemiology and Biostatistics, George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Rebecca F Gottesman
- Department of Neurology, Johns Hopkins University School of Medicine, Phipps 446D 600 North Wolfe St., Baltimore, MD, 21287, USA. .,Department of Epidemiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
46
|
Faraco G, Park L, Anrather J, Iadecola C. Brain perivascular macrophages: characterization and functional roles in health and disease. J Mol Med (Berl) 2017; 95:1143-1152. [PMID: 28782084 DOI: 10.1007/s00109-017-1573-x] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
Perivascular macrophages (PVM) are a distinct population of resident brain macrophages characterized by a close association with the cerebral vasculature. PVM migrate from the yolk sac into the brain early in development and, like microglia, are likely to be a self-renewing cell population that, in the normal state, is not replenished by circulating monocytes. Increasing evidence implicates PVM in several disease processes, ranging from brain infections and immune activation to regulation of the hypothalamic-adrenal axis and neurovascular-neurocognitive dysfunction in the setting of hypertension, Alzheimer disease pathology, or obesity. These effects involve crosstalk between PVM and cerebral endothelial cells, interaction with circulating immune cells, and/or production of reactive oxygen species. Overall, the available evidence supports the idea that PVM are a key component of the brain-resident immune system with broad implications for the pathogenesis of major brain diseases. A better understanding of the biology and pathobiology of PVM may lead to new insights and therapeutic strategies for a wide variety of brain diseases.
Collapse
Affiliation(s)
- Giuseppe Faraco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E61st Street, New York, NY, USA.
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E61st Street, New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E61st Street, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E61st Street, New York, NY, USA.
| |
Collapse
|
47
|
Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 2017; 18:419-434. [PMID: 28515434 PMCID: PMC5759779 DOI: 10.1038/nrn.2017.48] [Citation(s) in RCA: 791] [Impact Index Per Article: 98.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cerebral blood flow (CBF) regulation is essential for normal brain function. The mammalian brain has evolved a unique mechanism for CBF control known as neurovascular coupling. This mechanism ensures a rapid increase in the rate of CBF and oxygen delivery to activated brain structures. The neurovascular unit is composed of astrocytes, mural vascular smooth muscle cells and pericytes, and endothelia, and regulates neurovascular coupling. This Review article examines the cellular and molecular mechanisms within the neurovascular unit that contribute to CBF control, and neurovascular dysfunction in neurodegenerative disorders such as Alzheimer disease.
Collapse
Affiliation(s)
- Kassandra Kisler
- Zilkha Neurogenetic Institute, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Amy R Nelson
- Zilkha Neurogenetic Institute, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Axel Montagne
- Zilkha Neurogenetic Institute, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, 1501 San Pablo Street, Los Angeles, California 90089, USA
| |
Collapse
|
48
|
Wiesmann M, Roelofs M, van der Lugt R, Heerschap A, Kiliaan AJ, Claassen JAHR. Angiotensin II, hypertension and angiotensin II receptor antagonism: Roles in the behavioural and brain pathology of a mouse model of Alzheimer's disease. J Cereb Blood Flow Metab 2017; 37:2396-2413. [PMID: 27596834 PMCID: PMC5531339 DOI: 10.1177/0271678x16667364] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/26/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022]
Abstract
Elevated angiotensin II causes hypertension and contributes to Alzheimer's disease by affecting cerebral blood flow. Angiotensin II receptor blockers may provide candidates to reduce (vascular) risk factors for Alzheimer's disease. We studied effects of two months of angiotensin II-induced hypertension on systolic blood pressure, and treatment with the angiotensin II receptor blockers, eprosartan mesylate, after one month of induced hypertension in wild-type C57bl/6j and AβPPswe/PS1ΔE9 (AβPP/PS1/Alzheimer's disease) mice. AβPP/PS1 showed higher systolic blood pressure than wild-type. Subsequent eprosartan mesylate treatment restored this elevated systolic blood pressure in all mice. Functional connectivity was decreased in angiotensin II-infused Alzheimer's disease and wild-type mice, and only 12 months of Alzheimer's disease mice showed impaired cerebral blood flow. Only angiotensin II-infused Alzheimer's disease mice exhibited decreased spatial learning in the Morris water maze. Altogether, angiotensin II-induced hypertension not only exacerbated Alzheimer's disease-like pathological changes such as impairment of cerebral blood flow, functional connectivity, and cognition only in Alzheimer's disease model mice, but it also induced decreased functional connectivity in wild-type mice. However, we could not detect hypertension-induced overexpression of Aβ nor increased neuroinflammation. Our findings suggest a link between midlife hypertension, decreased cerebral hemodynamics and connectivity in an Alzheimer's disease mouse model. Eprosartan mesylate treatment restored and beneficially affected cerebral blood flow and connectivity. This model could be used to investigate prevention/treatment strategies in early Alzheimer's disease.
Collapse
Affiliation(s)
- Maximilian Wiesmann
- Department of Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Geriatric Medicine, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Monica Roelofs
- Department of Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Robert van der Lugt
- Department of Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology & Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Amanda J Kiliaan
- Department of Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Jurgen AHR Claassen
- Department of Geriatric Medicine, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Wiesmann M, Zerbi V, Jansen D, Lütjohann D, Veltien A, Heerschap A, Kiliaan AJ. Hypertension, cerebrovascular impairment, and cognitive decline in aged AβPP/PS1 mice. Theranostics 2017; 7:1277-1289. [PMID: 28435465 PMCID: PMC5399593 DOI: 10.7150/thno.18509] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/18/2017] [Indexed: 11/05/2022] Open
Abstract
Cardiovascular risk factors, especially hypertension, are also major risk factors for Alzheimer's disease (AD). To elucidate the underlying vascular origin of neurodegenerative processes in AD, we investigated the relation between systolic blood pressure (SBP) cerebral blood flow (CBF) and vasoreactivity with brain structure and function in a 16-18 months old double transgenic AβPPswe/PS1dE9 (AβPP/PS1) mouse model for AD. These aging AβPP/PS1 mice showed an increased SBP linked to a declined regional CBF. Furthermore, using advanced MRI techniques, decline of functional and structural connectivity was revealed in the AD-like mice coupled to impaired cognition, increased locomotor activity, and anxiety-related behavior. Post mortem analyses demonstrated also increased neuroinflammation, and both decreased synaptogenesis and neurogenesis in the AβPP/PS1 mice. Additionally, deviant levels of fatty acids and sterols were present in the brain tissue of the AβPP/PS1 mice indicating maladapted brain fatty acid metabolism. Our findings suggest a link between increased SBP, decreased cerebral hemodynamics and connectivity in an AD mouse model during aging, leading to behavioral and cognitive impairments. As these results mirror the complex clinical symptomatology in the prodromal phase of AD, we suggest that this AD-like murine model could be used to investigate prevention and treatment strategies for early AD patients. Moreover, this study helps to develop more efficient therapies and diagnostics for this very early stage of AD.
Collapse
|
50
|
Hu X, De Silva TM, Chen J, Faraci FM. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke. Circ Res 2017; 120:449-471. [PMID: 28154097 PMCID: PMC5313039 DOI: 10.1161/circresaha.116.308427] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Abstract
The consequences of cerebrovascular disease are among the leading health issues worldwide. Large and small cerebral vessel disease can trigger stroke and contribute to the vascular component of other forms of neurological dysfunction and degeneration. Both forms of vascular disease are driven by diverse risk factors, with hypertension as the leading contributor. Despite the importance of neurovascular disease and subsequent injury after ischemic events, fundamental knowledge in these areas lag behind our current understanding of neuroprotection and vascular biology in general. The goal of this review is to address select key structural and functional changes in the vasculature that promote hypoperfusion and ischemia, while also affecting the extent of injury and effectiveness of therapy. In addition, as damage to the blood-brain barrier is one of the major consequences of ischemia, we discuss cellular and molecular mechanisms underlying ischemia-induced changes in blood-brain barrier integrity and function, including alterations in endothelial cells and the contribution of pericytes, immune cells, and matrix metalloproteinases. Identification of cell types, pathways, and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events.
Collapse
Affiliation(s)
- Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - T. Michael De Silva
- Biomedicine Discovery Institute, Department of Pharmacology, 9 Ancora Imparo Way, Monash University, Clayton, Vic, Australia
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Frank M. Faraci
- Departments of Internal Medicine and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City Veterans Affairs Healthcare System, Iowa City, IA, USA
| |
Collapse
|