1
|
Olsen CM, Glaeser BL, Szabo A, Raff H, Everson CA. The effects of sleep restriction during abstinence on oxycodone seeking: Sex-dependent moderating effects of behavioral and hypothalamic-pituitary-adrenal axis-related phenotypes. Physiol Behav 2023; 272:114372. [PMID: 37805135 PMCID: PMC10841994 DOI: 10.1016/j.physbeh.2023.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
During opioid use and abstinence, sleep disturbances are common and are thought to exacerbate drug craving. In this study, we tested the hypothesis that sleep restriction during abstinence from oxycodone self-administration would increase drug seeking during extinction and footshock reinstatement tests. We also performed behavioral phenotyping to determine if individual variation in responses to stressors and/or pain are associated with oxycodone seeking during abstinence, as stress, pain and sleep disturbance are often co-occurring phenomena. Sleep restriction during abstinence did not have selective effects on oxycodone seeking for either sex in extinction and footshock reinstatement tests. Some phenotypes were associated with drug seeking; these associations differed by sex and type of drug seeking assessment. In female rats, pain-related phenotypes were related to high levels of drug seeking during the initial extinction session. In male rats, lower anxiety-like behavior in the open field was associated with greater drug seeking, although this effect was lost when correcting for oxycodone intake. Adrenal sensitivity prior to oxycodone exposure was positively associated with footshock reinstatement in females. This work identifies sex-dependent relationships between HPA axis function and opioid seeking, indicating that HPA axis function could be a therapeutic target for the treatment of opioid use disorder, with tailored approaches based on sex. Sleep disturbance during abstinence did not appear to be a major contributing factor to opioid seeking.
Collapse
Affiliation(s)
- Christopher M Olsen
- Departments of Pharmacology & Toxicology and Neurosurgery, Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank, Milwaukee, WI 53226, USA.
| | - Breanna L Glaeser
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hershel Raff
- Department of Medicine (Endocrinology and Molecular Medicine), Surgery, and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI, USA
| | - Carol A Everson
- Department of Medicine (Endocrinology and Molecular Medicine) and Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Raff H, Glaeser BL, Szabo A, Olsen CM, Everson CA. Sleep restriction during opioid abstinence affects the hypothalamic-pituitary-adrenal (HPA) axis in male and female rats. Stress 2023; 26:2185864. [PMID: 36856367 PMCID: PMC10339708 DOI: 10.1080/10253890.2023.2185864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis dynamics are disrupted by opioids and may be involved in substance abuse; this persists during withdrawal and abstinence and is associated with co-morbid sleep disruption leading to vulnerability to relapse. We hypothesized that chronic sleep restriction (SR) alters the HPA axis diurnal rhythm and the sexually dimorphic response to acute stressor during opioid abstinence. We developed a rat model to evaluate the effect of persistent sleep loss during opioid abstinence on HPA axis dynamics in male and female rats. Plasma ACTH and corticosterone were measured diurnally and in response to acute restraint stress in rats Before (control) compared to During subsequent opioid abstinence without or with SR. Abstinence, regardless of sleep state, led to an increase in plasma ACTH and corticosterone in the morning in males. There was a tendency for higher PM plasma ACTH during abstinence in SR males (p = 0.076). ACTH and corticosterone responses to restraint were reduced in male SR rats whereas there was a failure to achieve the post-restraint nadir in female SR rats. There was no effect of the treatments or interventions on adrenal weight normalized to body weight. SR resulted in a dramatic increase in hypothalamic PVN AVP mRNA and plasma copeptin in male but not female rats. This corresponded to the attenuation of the HPA axis stress response in SR males during opioid abstinence. We have identified a potentially unique, sexually dimorphic role for magnocellular vasopressin in the control of the HPA axis during opioid abstinence and sleep restriction.
Collapse
Affiliation(s)
- Hershel Raff
- Department of Medicine (Endocrinology and Molecular Medicine), Surgery, and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Advocate Aurora Research Institute, Milwaukee, Wisconsin, USA
| | - Breanna L. Glaeser
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher M. Olsen
- Departments of Pharmacology & Toxicology and Neurosurgery, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Carol A. Everson
- Department of Medicine (Endocrinology and Molecular Medicine) and Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Review recent literature investigating the relationship between bone health and sleep/circadian disruptions (e.g., abnormal sleep duration, night shift work). RECENT FINDINGS Short and long sleep are associated with low bone mineral density (BMD). Recent data from observational studies identified an increased risk of fracture in women with short sleep. Studies suggest that age, sex, weight change, and concurrent circadian misalignment may modify the effects of sleep restriction on bone metabolism. Interventional studies demonstrate alterations in bone metabolism and structure in response to circadian disruption that could underlie the increased fracture risk seen with night shift work. The effects of sleep and circadian disruption during adolescence may have lifelong skeletal consequences if they adversely impact bone modeling. Data suggest that short sleep and night shift work negatively impact bone metabolism and health. Rigorous studies of prevalent sleep and circadian disruptions are needed to determine mechanisms and develop prevention strategies to optimize lifelong skeletal health.
Collapse
Affiliation(s)
- Christine Swanson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave., Mail Stop 8106, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Depner CM, Rice JD, Tussey EJ, Eckel RH, Bergman BC, Higgins JA, Melanson EL, Kohrt WM, Wright KP, Swanson CM. Bone turnover marker responses to sleep restriction and weekend recovery sleep. Bone 2021; 152:116096. [PMID: 34216838 PMCID: PMC8316414 DOI: 10.1016/j.bone.2021.116096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/28/2021] [Accepted: 06/25/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Prior data demonstrated three weeks of sleep restriction and concurrent circadian disruption uncoupled bone turnover markers (BTMs), indicating decreased bone formation and no change or increased bone resorption. The effect of insufficient sleep with or without ad libitum weekend recovery sleep on BTMs is unknown. METHODS BTMs were measured in stored serum from 20 healthy adults randomized to one of three study groups consisting of a control group (N = 3 men; 9 h/night) or one of two nocturnal sleep restriction groups in an inpatient laboratory environment. One Sleep Restriction group ("SR"; N = 9; 4 women) had 5 h sleep opportunity per night for nine nights. The other sleep restriction group had an opportunity for ad libitum Weekend Recovery sleep ("WR"; N = 8; 4 women) after four nights of 5 h sleep opportunity per night. Food intake was energy balanced at baseline and ad libitum thereafter. Fasted morning BTM levels and hourly 24 h melatonin levels were obtained on study days 3 (baseline), 5 (after 1 night of sleep restriction for WR and SR), and 11 (after a sleep restricted workweek with weekend recovery sleep in WR or 7 nights of sleep restriction in SR). Linear mixed-effects modeling was used to examine the effect of study duration (e.g., change over time), study condition, age, and sex on BTMs. Pearson correlations were used to determine associations between changes in BTMs and changes in weight and morning circadian misalignment (i.e., duration of high melatonin levels after wake time). RESULTS There was no significant difference between the three study groups in change over time (p ≥ 0.4 for interaction between assigned group and time for all BTMs), adjusted for age and sex. There was no significant change in N-terminal propeptide of procollagen type I (P1NP), osteocalcin, or C-telopeptide of type I collagen (CTX) from baseline to day 11 (all p ≥ 0.3). In women <25 years old, there was a non-significant decline in P1NP from day 3 to day 5 (= -15.74 ± 7.80 ng/mL; p = 0.06). Change in weight and morning circadian misalignment from baseline to day 11 were correlated with statistically non-significant changes in BTMs (all p ≤ 0.05). CONCLUSION In this small secondary analysis, we showed that nine nights of prescribed sleep restriction with or without weekend recovery sleep and ad libitum food intake did not alter BTMs. It is possible that age, sex, weight change and morning circadian misalignment modify the effects of sleep restriction on bone metabolism.
Collapse
Affiliation(s)
- Christopher M Depner
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Department of Health and Kinesiology, University of Utah, Salt Lake City, UT, USA
| | - John D Rice
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Emma J Tussey
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert H Eckel
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Janine A Higgins
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward L Melanson
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, and Eastern Colorado VA Geriatric, Research, Education, and Clinical Center (GRECC), Aurora, CO, USA
| | - Wendy M Kohrt
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, and Eastern Colorado VA Geriatric, Research, Education, and Clinical Center (GRECC), Aurora, CO, USA
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christine M Swanson
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
5
|
Segev Y, Nujedat H, Arazi E, Assadi MH, Tarasiuk A. Changes in energy metabolism and respiration in different tracheal narrowing in rats. Sci Rep 2021; 11:19166. [PMID: 34580405 PMCID: PMC8476542 DOI: 10.1038/s41598-021-98799-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Why obstructive sleep apnea (OSA) treatment does not completely restore healthy metabolic physiology is unclear. In rats, the need for respiratory homeostasis maintenance following airway obstruction (AO) is associated with a loss of thermoregulation and abnormal metabolic physiology that persists following successful obstruction removal. Here, we explored the effect of two different types of tracheal narrowing, i.e., AO and mild airway obstruction (mAO), and its removal on respiratory homeostasis and metabolic physiology. We show that after ten weeks, mAO vs. AO consumes sufficient energy that is required to maintain respiratory homeostasis and thermoregulation. Obstruction removal was associated with largely irreversible increased feeding associated with elevated serum ghrelin, hypothalamic growth hormone secretagogue receptor 1a, and a phosphorylated Akt/Akt ratio, despite normalization of breathing and energy requirements. Our study supports the need for lifestyle eating behavior management, in addition to endocrine support, in order to attain healthy metabolic physiology in OSA patients.
Collapse
Affiliation(s)
- Yael Segev
- Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, P.O Box 105, Beer-Sheva, 84105, Israel
| | - Haiat Nujedat
- Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, P.O Box 105, Beer-Sheva, 84105, Israel
| | - Eden Arazi
- Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, P.O Box 105, Beer-Sheva, 84105, Israel
| | - Mohammad H Assadi
- Sleep-Wake Disorders Unit, Soroka University Medical Center, P.O. Box 151, Beer-Sheva, 84105, Israel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O Box 105, Beer-Sheva, 84105, Israel
| | - Ariel Tarasiuk
- Sleep-Wake Disorders Unit, Soroka University Medical Center, P.O. Box 151, Beer-Sheva, 84105, Israel.
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O Box 105, Beer-Sheva, 84105, Israel.
| |
Collapse
|
6
|
Deurveilher S, Antonchuk M, Saumure BSC, Baldin A, Semba K. No loss of orexin/hypocretin, melanin-concentrating hormone or locus coeruleus noradrenergic neurons in a rat model of chronic sleep restriction. Eur J Neurosci 2021; 54:6027-6043. [PMID: 34355453 DOI: 10.1111/ejn.15412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022]
Abstract
Chronic sleep restriction (CSR) is common in modern society, adversely affecting cognitive performance and health. Yet how it impacts neurons regulating sleep remains unclear. Several studies using mice reported substantial losses of wake-active orexin/hypocretin and locus coeruleus (LC) noradrenergic neurons, but not rapid eye movement sleep-active melanin-concentrating hormone (MCH) neurons, following CSR. Here, we used immunohistochemistry and stereology to examine orexin, MCH and LC noradrenergic neurons in a rat model of CSR that uses programmed wheel rotation (3 h on/1 h off; '3/1' protocol). Adult male Wistar rats underwent one or four cycles of the 4-day 3/1 CSR protocol, with 2-day recovery between cycles in home cages. Time-matched control rats were housed in locked wheels/home cages. We found no significant differences in the numbers of orexin, MCH and LC noradrenergic neurons following either one- or four-cycle CSR protocol compared to respective controls. Similarly, the four-cycle CSR protocol had no effect on the densities of orexin axon terminals in the LC, noradrenergic dendrites in the LC and noradrenergic axon terminals in the frontal cortex. Body weights, however, decreased after one cycle of CSR and then increased with diminishing slope over the next three cycles. Thus, we found no evidence for loss of orexin or LC noradrenergic neurons following one and four cycles of the 4-day 3/1 CSR protocol in rats. Differences in CSR protocols and/or possible species differences in neuronal vulnerability to sleep loss may account for the discrepancy between the current results in rats and previous findings in mice.
Collapse
Affiliation(s)
- Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael Antonchuk
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Brock St C Saumure
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew Baldin
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
7
|
Lasisi TJ, Shittu STT, Abeje JI, Ogunremi KJ, Shittu SA. Paradoxical sleep deprivation induces oxidative stress in the submandibular glands of Wistar rats. J Basic Clin Physiol Pharmacol 2021; 33:399-408. [PMID: 33878251 DOI: 10.1515/jbcpp-2020-0178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/24/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Paradoxical sleep deprivation has been associated with impaired salivary secretion in rats. However, the mechanism that underlies this is not known. Therefore, this study assessed salivary and serum oxidative stress levels following paradoxical sleep deprivation in rats. METHODS Twenty-one male Wistar rats randomly divided into three groups of seven rats each as; Control (C); partial sleep-deprived (PSD); and total sleep-deprived (TSD) were used. Malondialdehyde (MDA) concentration, Superoxide dismutase (SOD), and catalase activities were evaluated in saliva, serum, and submandibular glands after seven days of sleep deprivation. Data were expressed as mean ± standard error of the mean and analyzed using one-way ANOVA, Tukey HSD post hoc, and Pearson's correlation tests. RESULTS Serum MDA levels were significantly higher in both the TSD and PSD groups compared to the control group whereas only the TSD group showed higher submandibular MDA levels compared to the PSD group and the control group. Submandibular SOD activity was significantly lower in both the TSD and PSD groups compared to the control group. Serum catalase activity was significantly lower in the TSD group only compared to the control group. CONCLUSIONS These results have demonstrated for the first time that paradoxical sleep deprivation was associated with changes in the oxidant/antioxidant defense system in the submandibular salivary glands of male Wistar rats which may contribute to impairment in salivary secretion.
Collapse
Affiliation(s)
- Taye J Lasisi
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Oral Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Shehu-Tijani T Shittu
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Jude I Abeje
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kehinde J Ogunremi
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Seyyid A Shittu
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
8
|
Deurveilher S, Shewchuk SM, Semba K. Homeostatic sleep and body temperature responses to acute sleep deprivation are preserved following chronic sleep restriction in rats. J Sleep Res 2021; 30:e13348. [PMID: 33783043 DOI: 10.1111/jsr.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022]
Abstract
Chronic sleep insufficiency is common in our society and has negative cognitive and health impacts. It can also alter sleep regulation, yet whether it affects subsequent homeostatic responses to acute sleep loss is unclear. We assessed sleep and thermoregulatory responses to acute sleep deprivation before and after a '3/1' chronic sleep restriction protocol in adult male Wistar rats. The 3/1 protocol consisted of continuous cycles of wheel rotations (3 h on/1 h off) for 4 days. Sleep latency in a 2-h multiple sleep latency test starting 26 h post-3/1 was unchanged, whereas non-rapid eye movement sleep (NREMS) and associated electroencephalogram delta power (a measure of sleep need) over a 24-h period beginning 54 h post-3/1 were reduced, compared to respective pre-3/1 baseline levels. However, in response to acute sleep deprivation (6 h by 'gentle handling') starting 78 h post-3/1, the compensatory rebounds in NREMS and rapid eye movement sleep (REMS) amounts and NREMS delta power were unaltered. Body temperature increased progressively across the 3/1 protocol and returned to baseline levels on the second day post-3/1. The acute sleep deprivation also increased body temperature, followed by a decline below baseline levels, with no difference between before and after 3/1 sleep restriction. Non-sleep-restricted control rats showed responses to acute sleep deprivation similar to those observed in the sleep-restricted animals. These results suggest that the process of sleep homeostasis is altered on the third recovery day after a 4-day 3/1 sleep restriction protocol, whereas subsequent homeostatic sleep and temperature responses to brief sleep deprivation are not affected.
Collapse
Affiliation(s)
- Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | | | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
9
|
Spaeth AM, Goel N, Dinges DF. Caloric and Macronutrient Intake and Meal Timing Responses to Repeated Sleep Restriction Exposures Separated by Varying Intervening Recovery Nights in Healthy Adults. Nutrients 2020; 12:nu12092694. [PMID: 32899289 PMCID: PMC7550992 DOI: 10.3390/nu12092694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022] Open
Abstract
Sleep restriction (SR) reliably increases caloric intake. It remains unknown whether such intake cumulatively increases with repeated SR exposures and is impacted by the number of intervening recovery sleep opportunities. Healthy adults (33.9 ± 8.9y; 17 women, Body Mass Index: 24.8 ± 3.6) participated in a laboratory protocol. N = 35 participants experienced two baseline nights (10 h time-in-bed (TIB)/night; 22:00–08:00) followed by 10 SR nights (4 h TIB/night; 04:00–08:00), which were divided into two exposures of five nights each and separated by one (n = 13), three (n = 12), or five (n = 10) recovery nights (12 h TIB/night; 22:00–10:00). Control participants (n = 10) were permitted 10 h TIB (22:00–08:00) on all nights. Food and drink consumption were ad libitum and recorded daily. Compared to baseline, sleep-restricted participants increased daily caloric (+527 kcal) and saturated fat (+7 g) intake and decreased protein (−1.2% kcal) intake during both SR exposures; however, intake did not differ between exposures or recovery conditions. Similarly, although sleep-restricted participants exhibited substantial late-night caloric intake (671 kcal), such intake did not differ between exposures or recovery conditions. By contrast, control participants showed no changes in caloric intake across days. We found consistent caloric and macronutrient intake increases during two SR exposures despite varying intervening recovery nights. Thus, energy intake outcomes do not cumulatively increase with repeated restriction and are unaffected by recovery opportunities.
Collapse
Affiliation(s)
- Andrea M. Spaeth
- Department of Kinesiology and Health, Division of Life Sciences, School of Arts and Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence:
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612, USA;
| | - David F. Dinges
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| |
Collapse
|
10
|
Menezes L, de Moraes DA, Ribeiro-Silva N, Silva SMA, Suchecki D, Luz J. Chronic REM sleep restriction in young rats increases energy expenditure with no change in food intake. Exp Physiol 2020; 105:1339-1348. [PMID: 32589295 DOI: 10.1113/ep088474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the effects of different periods of REM sleep restriction (7, 14 and 21 days) on metabolic parameters in young rats? What is the main finding and its importance? Animals submitted to each period of REM sleep deprivation showed a negative energy balance, with reduced body weight gain, body energy gain and gross food efficiency, less body fat content, and increased energy expenditure. There was no increase in food intake after any of the REM sleep restriction periods. In young rats, negative energy balance is not compensated by increased dietary intake as observed in adult rats. ABSTRACT Reduced sleep is associated with metabolic alterations, not only in adults, but also in children and adolescents. Several studies have shown that sleep restricted (SR) adult rats exhibit metabolic changes, followed by increased food intake, but few have evaluated these functions in young animals. The aim of the present study was to establish the metabolic parameters of young rats subjected to different periods of REM sleep restriction and to propose a correction factor for the correct measurement of food intake. Young male Wistar rats were distributed in control and SR groups for 7, 14 or 21 days. Sleep restriction was performed by the single platform method for 18 h. Regardless of the length of sleep restriction, all SR rats had a negative energy balance, evidenced by reduction in body weight gain, body energy gain and gross food efficiency, accompanied by increased energy expenditure. In addition, sleep restriction reduced body fat content throughout the entire period. Discounting food spillage, there was no increase in food intake by SR rats. In conclusion, the present study revealed metabolic changes in SR young rats after different lengths of REM sleep restriction and that weight loss and increased energy expenditure were not compensated by increased dietary intake as occurs in adult rats, indicating that young rats use other mechanisms to cope with the negative energy balance caused by sleep restriction. In addition, we propose a correction factor for food intake, to prevent overestimation of this parameter, due to food spillage in the water containers.
Collapse
Affiliation(s)
- Letícia Menezes
- Department of Phisiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Neila Ribeiro-Silva
- Department of Phisiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jacqueline Luz
- Department of Phisiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Assadi MH, Segev Y, Tarasiuk A. Upper Airway Obstruction Elicited Energy Imbalance Leads to Growth Retardation that Persists after the Obstruction Removal. Sci Rep 2020; 10:3206. [PMID: 32081973 PMCID: PMC7035324 DOI: 10.1038/s41598-020-60226-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/08/2020] [Indexed: 12/28/2022] Open
Abstract
Upper airway obstruction can lead to growth retardation by unclear mechanisms. We explored the effect of upper airway obstruction in juvenile rats on whole-body energy balance, growth plate metabolism, and growth. We show that after seven weeks, obstructed animals’ ventilation during room air breathing increased, and animals grew less due to abnormal growth plate metabolism. Increased caloric intake in upper airway-obstructed animals did not meet increased energy expenditure associated with increased work of breathing. Decreased whole-body energy balance induced hindrance of bone elongation following obstruction removal, and array pathways regulating growth plate development and marrow adiposity. This is the first study to show that rapidly growing animals cannot consume enough calories to maintain their energy homeostasis, leading to an impediment in growth in the effort to save energy.
Collapse
Affiliation(s)
- Mohammad H Assadi
- Sleep-Wake Disorders Unit, Soroka University Medical Center, P.O. Box 151, Beer-Sheva, 84105, Israel.,Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, P.O. Box 105, Beer-Sheva, 84105, Israel
| | - Yael Segev
- Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, P.O. Box 105, Beer-Sheva, 84105, Israel
| | - Ariel Tarasiuk
- Sleep-Wake Disorders Unit, Soroka University Medical Center, P.O. Box 151, Beer-Sheva, 84105, Israel. .,Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 105, Beer-Sheva, 84105, Israel.
| |
Collapse
|
12
|
Assadi MH, Segev Y, Tarasiuk A. Irreversible metabolic abnormalities following chronic upper airway loading. Sleep 2019; 42:5540153. [PMID: 31353408 DOI: 10.1093/sleep/zsz176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/10/2019] [Indexed: 02/01/2023] Open
Abstract
STUDY OBJECTIVES Treatment of obstructive sleep apnea increases obesity risk by an unclear mechanism. Here, we explored the effects of upper airway obstruction and its removal on respiratory homeostasis, energy expenditure, and feeding hormones during the sleep/wake cycle from weaning to adulthood. METHODS The tracheas of 22-day-old rats were narrowed, and obstruction removal was performed on post-surgery day 14. Energy expenditure, ventilation, and hormone-regulated feeding were analyzed during 49 days before and after obstruction. RESULTS Energy expenditure increased and body temperature decreased in upper airway obstruction and was only partially recovered in obstruction removal despite normalization of airway resistance. Increased energy expenditure was associated with upregulation of ventilation. Decreased body temperature was associated with decreased brown adipose tissue uncoupling protein 1 level, suppressed energy expenditure response to norepinephrine, and decreased leptin level. Upper airway obstructed animals added less body weight, in spite of an increase in food intake, due to elevated hypothalamic orexin and neuropeptide Y and plasma ghrelin. Animals who underwent obstruction removal fed more due to an increase in hypothalamic neuropeptide Y and plasma ghrelin. CONCLUSIONS The need to maintain respiratory homeostasis is associated with persistent abnormal energy metabolism and hormonal regulation of feeding. Surgical treatment per se may not be sufficient to correct energy homeostasis, and endocrine regulation of feeding may have a larger effect on weight change.
Collapse
Affiliation(s)
- Mohammad H Assadi
- Sleep-Wake Disorders Unit, Soroka University Medical Center, Beer-Sheva, Israel.,Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yael Segev
- Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ariel Tarasiuk
- Sleep-Wake Disorders Unit, Soroka University Medical Center, Beer-Sheva, Israel.,Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
13
|
Xu X, Wang R, Sun Z, Wu R, Yan W, Jiang Q, Shi D. Trehalose enhances bone fracture healing in a rat sleep deprivation model. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:297. [PMID: 31475167 DOI: 10.21037/atm.2019.05.73] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background The purpose of this study was to investigate whether sleep deprivation (SD) could delay bone fracture healing and evaluate the therapeutic effect of trehalose. Methods Eighteen 300-350 g female Sprague-Dawley rats were created a mid-femoral transverse osteotomy in the right thigh and divided into three groups (i.e., group 1: fracture; group 2: fracture + SD; and group 3: fracture + SD + trehalose). Seven days after surgery, the rats in group 2 and group 3 were started to get sleep-deprived for 18 h per day for 3 weeks. The rats in group 3 were injected with trehalose intraperitoneally at 1 g/kg/d for 3 weeks. Radiological and histological analyses were used to assess fracture healing quality. Circulating cytokines were detected by the end of the study. The expression of M1 and M2 macrophage markers were measured by quantitative real-time polymerase chain reaction (qPCR). Results X-rays showed group 2 experienced much poorer fracture healing. Micro CT demonstrated that the bone quality of the fracture callus site in group 2 was much worse than that in groups 1 and 3. Both haematoxylin eosin (H&E) and Masson staining revealed that the bone fracture of the group 2 healed worse. Elisa results demonstrated that the interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) of the rats in group 2 were significantly higher. In vitro study showed that 100 mM trehalose enhanced the expression of M2 macrophage markers (Arg-1 and IL-10), and decreased M1 macrophage polarization through the decreasing expression of IL-6. Conclusions The present study showed (SD) could delay bone fracture healing in a rat model. And, trehalose could promote the healing of delayed bone fracture union by down-regulating pro-inflammatory mediators and enhancing M2 polarization.
Collapse
Affiliation(s)
- Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Rongliang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Ziying Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Wenjin Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| |
Collapse
|
14
|
Konkle ATM, Keith SE, McNamee JP, Michaud D. Chronic noise exposure in the spontaneously hypertensive rat. Noise Health 2019; 19:213-221. [PMID: 28937015 PMCID: PMC5644380 DOI: 10.4103/nah.nah_15_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction: Epidemiological studies have suggested an association between the relative risk for developing cardiovascular disease (CVD) and long-term exposure to elevated levels of transportation noise. The contention is that this association is largely owing to an increase in stress-related biomarkers that are thought to be associated with CVD. Animal models have demonstrated that acute noise exposure is capable of triggering a stress response; however, similar studies using chronic noise models are less common. Materials and Methods: The current study assessed the effects of intermittent daily exposure to broadband 80 kHz bandwidth noise of 87.3 dBA for a period of 21 consecutive days in spontaneously hypertensive rats. Results: Twenty-one days of exposure to noise significantly reduced body weight relative to the sham and unhandled control groups; however, noise had no statistically significant impact on plasma adrenocorticotropic hormone (or adrenal gland weights). Noise was associated with a significant, albeit modest, increase in both corticosterone and aldosterone concentrations following the 21 days of exposure. Interleukin 1 and interleukin 6 levels were unchanged in the noise group, whereas both tumour necrosis factor alpha and C-reactive protein were significantly reduced in noise exposed rats. Tail blood sampling for corticosterone throughout the exposure period showed no appreciable difference between the noise and sham exposed animals, largely due to the sizeable variation for each group as well as the observed fluctuations over time. Discussion: The current pilot study provides only modest support that chronic noise may promote stress-related biological and/or developmental effects. More research is required to verify the current findings and resolve some of the unexpected observations.
Collapse
Affiliation(s)
- Anne T M Konkle
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario; School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen E Keith
- Healthy Environments and Consumer Safety Branch, Environmental and Radiation Health Sciences Directorate, Consumer and Clinical Radiation Protection Bureau, Health , Ottawa, Ontario, Canada
| | - James P McNamee
- Healthy Environments and Consumer Safety Branch, Environmental and Radiation Health Sciences Directorate, Consumer and Clinical Radiation Protection Bureau, Health , Ottawa, Ontario, Canada
| | - David Michaud
- Healthy Environments and Consumer Safety Branch, Environmental and Radiation Health Sciences Directorate, Consumer and Clinical Radiation Protection Bureau, Health , Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Shigiyama F, Kumashiro N, Tsuneoka Y, Igarashi H, Yoshikawa F, Kakehi S, Funato H, Hirose T. Mechanisms of sleep deprivation-induced hepatic steatosis and insulin resistance in mice. Am J Physiol Endocrinol Metab 2018; 315:E848-E858. [PMID: 29989853 DOI: 10.1152/ajpendo.00072.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sleep deprivation is associated with increased risk for type 2 diabetes mellitus. However, the underlying mechanisms of sleep deprivation-induced glucose intolerance remain elusive. The aim of this study was to investigate the mechanisms of sleep deprivation-induced glucose intolerance in mice with a special focus on the liver. We established a mouse model of sleep deprivation-induced glucose intolerance using C57BL/6J male mice. A single 6-h sleep deprivation by the gentle handling method under fasting condition induced glucose intolerance. Hepatic glucose production assessed by a pyruvate challenge test was significantly increased, as was hepatic triglyceride content (by 67.9%) in the sleep deprivation group, compared with freely sleeping control mice. Metabolome and microarray analyses were used to evaluate hepatic metabolites and gene expression levels and to determine the molecular mechanisms of sleep deprivation-induced hepatic steatosis. Hepatic metabolites, such as acetyl coenzyme A, 3β-hydroxybutyric acid, and certain acylcarnitines, were significantly increased in the sleep deprivation group, suggesting increased lipid oxidation in the liver. In contrast, fasted sleep-deprived mice showed that hepatic gene expression levels of elongation of very long chain fatty acids-like 3, lipin 1, perilipin 4, perilipin 5, and acyl-CoA thioesterase 1, which are known to play lipogenic roles, were 2.7, 4.5, 3.7, 2.9, and 2.8 times, respectively, those of the fasted sleeping control group, as assessed by quantitative RT-PCR. Sleep deprivation-induced hepatic steatosis and hepatic insulin resistance seem to be mediated through upregulation of hepatic lipogenic enzymes.
Collapse
Affiliation(s)
- Fumika Shigiyama
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine , Tokyo , Japan
| | - Naoki Kumashiro
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine , Tokyo , Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Toho University Graduate School of Medicine , Tokyo , Japan
| | - Hiroyuki Igarashi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine , Tokyo , Japan
| | - Fukumi Yoshikawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine , Tokyo , Japan
| | - Saori Kakehi
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine , Tokyo , Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiromasa Funato
- Department of Anatomy, Toho University Graduate School of Medicine , Tokyo , Japan
| | - Takahisa Hirose
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine , Tokyo , Japan
| |
Collapse
|
16
|
Pigarev IN, Pigareva ML. Association of sleep impairments and gastrointestinal disorders in the context of the visceral theory of sleep. J Integr Neurosci 2018; 16:143-156. [PMID: 28891506 DOI: 10.3233/jin-170005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It was noticed long ago that sleep disorders or interruptions to the normal sleep pattern were associated with various gastrointestinal disorders. We review the studies which established the causal link between these disorders and sleep impairment. However, the mechanism of interactions between the quality of sleep and gastrointestinal pathophysiology remained unclear. Recently, the visceral theory of sleep was formulated. This theory proposes that the same brain structures, and particularly the same cortical sensory areas, which in wakefulness are involved in processing of the exteroceptive information, switch during sleep to the processing of information coming from various visceral systems. We review the studies which demonstrated that neurons of the various cortical areas (occipital, parietal, frontal) during sleep began to fire in response to activation coming from the stomach and small intestine. These data demonstrate that, during sleep, the computational power of the central nervous system, including all cortical areas, is engaged in restoration of visceral systems. Thus, the general mechanism of the interaction between quality of sleep and health became clear.
Collapse
Affiliation(s)
- Ivan N Pigarev
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Bol'shoy Karetniy st. 19, Moscow, 127994, Russia. E-mail:
| | - Marina L Pigareva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova st. 5-a, Moscow, 117485, Russia. E-mail:
| |
Collapse
|
17
|
Potdar S, Daniel DK, Thomas FA, Lall S, Sheeba V. Sleep deprivation negatively impacts reproductive output in Drosophila melanogaster. ACTA ACUST UNITED AC 2018; 221:jeb.174771. [PMID: 29361608 DOI: 10.1242/jeb.174771] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
Most animals sleep or exhibit a sleep-like state, yet the adaptive significance of this phenomenon remains unclear. Although reproductive deficits are associated with lifestyle-induced sleep deficiencies, how sleep loss affects reproductive physiology is poorly understood, even in model organisms. We aimed to bridge this mechanistic gap by impairing sleep in female fruit flies and testing its effect on egg output. We found that sleep deprivation by feeding caffeine or by mechanical perturbation resulted in decreased egg output. Transient activation of wake-promoting dopaminergic neurons decreased egg output in addition to sleep levels, thus demonstrating a direct negative impact of sleep deficit on reproductive output. Similarly, loss-of-function mutation in dopamine transporter fumin (fmn) led to both significant sleep loss and lowered fecundity. This demonstration of a direct relationship between sleep and reproductive fitness indicates a strong driving force for the evolution of sleep.
Collapse
Affiliation(s)
- Sheetal Potdar
- Behavioural Neurogenetics Laboratory, Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Danita K Daniel
- Behavioural Neurogenetics Laboratory, Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Femi A Thomas
- Behavioural Neurogenetics Laboratory, Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Shraddha Lall
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Vasu Sheeba
- Behavioural Neurogenetics Laboratory, Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India .,Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
18
|
Tarasiuk A, Segev Y. Abnormal Growth and Feeding Behavior in Upper Airway Obstruction in Rats. Front Endocrinol (Lausanne) 2018; 9:298. [PMID: 29915561 PMCID: PMC5994397 DOI: 10.3389/fendo.2018.00298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Pediatric obstructive sleep apnea (OSA) is a syndrome manifesting with snoring and increased respiratory effort due to increased upper airway resistance. In addition to cause the abnormal sleep, this syndrome has been shown to elicit either growth retardation or metabolic syndrome and obesity. Treating OSA by adenotonsillectomy is usually associated with increased risk for obesity, despite near complete restoration of breathing and sleep. However, the underlying mechanism linking upper airways obstruction (AO) to persistent change in food intake, metabolism, and growth remains unclear. Rodent models have examined the impact of intermittent hypoxia on metabolism. However, an additional defining feature of OSA that is not related to intermittent hypoxia is enhanced respiratory loading leading to increased respiratory effort and abnormal sleep. The focus of this mini review is on recent evidence indicating the persistent abnormalities in endocrine regulation of feeding and growth that are not fully restored by the chronic upper AO removal in rats. Here, we highlight important aspects related to abnormal regulation of metabolism that are not related to intermittent hypoxia per se, in an animal model that mimics many of the clinical features of pediatric OSA. Our evidence from the AO model indicates that obstruction removal may not be sufficient to prevent the post-removal tendency for abnormal growth.
Collapse
Affiliation(s)
- Ariel Tarasiuk
- Sleep-Wake Disorders Unit, Soroka University Medical Center, Beer-Sheva, Israel
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Ariel Tarasiuk,
| | - Yael Segev
- Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
19
|
Hall S, Deurveilher S, Ko KR, Burns J, Semba K. Region-specific increases in FosB/ΔFosB immunoreactivity in the rat brain in response to chronic sleep restriction. Behav Brain Res 2017; 322:9-17. [PMID: 28089853 DOI: 10.1016/j.bbr.2017.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 01/23/2023]
Abstract
Using a rat model of chronic sleep restriction (CSR) featuring periodic sleep deprivation with slowly rotating wheels (3h on/1h off), we previously observed that 99h of this protocol induced both homeostatic and allostatic (adaptive) changes in physiological and behavioural measures. Notably, the initial changes in sleep intensity and attention performance gradually adapted during CSR despite accumulating sleep loss. To identify brain regions involved in these responses, we used FosB/ΔFosB immunohistochemistry as a marker of chronic neuronal activation. Adult male rats were housed in motorized activity wheels and underwent the 3/1 CSR protocol for 99h, or 99h followed by 6 or 12days of recovery. Control rats were housed in home cages, locked activity wheels, or unlocked activity wheels that the animals could turn freely. Immunohistochemistry was conducted using an antibody that recognized both FosB and ΔFosB, and 24 brain regions involved in sleep/wake, autonomic, and limbic functions were examined. The number of darkly-stained FosB/ΔFosB-immunoreactive cells was increased immediately following 99h of CSR in 8/24 brain regions, including the medial preoptic and perifornical lateral hypothalamic areas, dorsomedial and paraventricular hypothalamic nuclei, and paraventricular thalamic nucleus. FosB/ΔFosB labeling was at control levels in all 8 brain areas following 6 or 12 recovery days, suggesting that most of the immunoreactivity immediately after CSR reflected FosB, the more transient marker of chronic neuronal activation. This region-specific induction of FosB/ΔFosB following CSR may be involved in the mechanisms underlying the allostatic changes in behavioural and physiological responses to CSR.
Collapse
Affiliation(s)
- Shannon Hall
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Samüel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kristin Robin Ko
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joan Burns
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
20
|
Changes in Body Water Caused by Sleep Deprivation in Taeeum and Soyang Types in Sasang Medicine: Prospective Intervention Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2105343. [PMID: 28676829 PMCID: PMC5476891 DOI: 10.1155/2017/2105343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/16/2017] [Accepted: 05/14/2017] [Indexed: 11/18/2022]
Abstract
Background There is a negative relationship between sleep deprivation and health. However, no study has investigated the effect of sleep deprivation on individuals with different body composition. The aim of this study was to determine the differential effect of sleep deprivation in individuals with different body compositions (fluid) according to Soyang type (SY) and Taeeum type (TE). Methods Sixty-two cognitively normal, middle-aged people with normal sleep patterns were recruited from the local population. The duration of participants' sleep was restricted to 4 h/day during the intervention phase. To examine the physiological changes brought on by sleep deprivation and recovery, 10 ml of venous blood was obtained. Results Total Body Water (TBW) and Extracellular Water (ECW) were significantly different between the groups in the intervention phase. Physiological parameters also varied from the beginning of the resting phase to the end of the experiment. Potassium levels changed more in SY than TE individuals. Conclusion Participants responded differently to the same amount of sleep deprivation depending on their Sasang constitution types. This study indicated that SY individuals were more sensitive to sleep deprivation and were slower to recover from the effects of sleep deprivation than TE individuals.
Collapse
|
21
|
Simpson NS, Diolombi M, Scott-Sutherland J, Yang H, Bhatt V, Gautam S, Mullington J, Haack M. Repeating patterns of sleep restriction and recovery: Do we get used to it? Brain Behav Immun 2016; 58:142-151. [PMID: 27263430 PMCID: PMC5067189 DOI: 10.1016/j.bbi.2016.06.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/18/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022] Open
Abstract
Despite its prevalence in modern society, little is known about the long-term impact of restricting sleep during the week and 'catching up' on weekends. This common sleep pattern was experimentally modeled with three weeks of 5 nights of sleep restricted to 4h followed by two nights of 8-h recovery sleep. In an intra-individual design, 14 healthy adults completed both the sleep restriction and an 8-h control condition, and the subjective impact and the effects on physiological markers of stress (cortisol, the inflammatory marker IL-6, glucocorticoid receptor sensitivity) were assessed. Sleep restriction was not perceived to be subjectively stressful and some degree of resilience or resistance to the effects of sleep restriction was observed in subjective domains. In contrast, physiological stress response systems remain activated with repeated exposures to sleep restriction and limited recovery opportunity. Morning IL-6 expression in monocytes was significantly increased during week 2 and 3 of sleep restriction, and remained increased after recovery sleep in week 2 (p<0.05) and week 3 (p<0.09). Serum cortisol showed a significantly dysregulated 24h-rhythm during weeks 1, 2, and 3 of sleep restriction, with elevated morning cortisol, and decreased cortisol in the second half of the night. Glucocorticoid sensitivity of monocytes was increased, rather than decreased, during the sleep restriction and sleep recovery portion of each week. These results suggest a disrupted interplay between the hypothalamic-pituitary-adrenal and inflammatory systems in the context of repeated exposure to sleep restriction and recovery. The observed dissociation between subjective and physiological responses may help explain why many individuals continue with the behavior pattern of restricting and recovering sleep over long time periods, despite a cumulative deleterious physiological effect.
Collapse
Affiliation(s)
- Norah S Simpson
- Department of Psychiatry and Behavioral Sciences, 401 Quarry Rd., Stanford University School of Medicine, Stanford, CA, United States
| | - Moussa Diolombi
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, DANA-727, 330 Brookline Ave., Boston, MA 02215, United States
| | - Jennifer Scott-Sutherland
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, DANA-727, 330 Brookline Ave., Boston, MA 02215, United States
| | - Huan Yang
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, DANA-727, 330 Brookline Ave., Boston, MA 02215, United States
| | - Vrushank Bhatt
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, DANA-727, 330 Brookline Ave., Boston, MA 02215, United States
| | - Shiva Gautam
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, DANA-727, 330 Brookline Ave., Boston, MA 02215, United States
| | - Janet Mullington
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, DANA-727, 330 Brookline Ave., Boston, MA 02215, United States
| | - Monika Haack
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, DANA-727, 330 Brookline Ave., Boston, MA 02215, United States.
| |
Collapse
|
22
|
Xu X, Wang L, Chen L, Su T, Zhang Y, Wang T, Ma W, Yang F, Zhai W, Xie Y, Li D, Chen Q, Fu X, Ma Y, Zhang Y. Effects of chronic sleep deprivation on bone mass and bone metabolism in rats. J Orthop Surg Res 2016; 11:87. [PMID: 27485745 PMCID: PMC4970273 DOI: 10.1186/s13018-016-0418-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/13/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND This study aimed to assess the effects of chronic sleep deprivation (CSD) on bone mass and bone metabolism in rats. METHODS Twenty-four rats were randomly divided into CSD and control (CON) groups. Rats were subjected to CSD by using the modified multiple platform method (MMPM) to establish an animal model of CSD. Biochemical parameters such as levels of serum N-terminal propeptide of type I procollagen (PINP), N-terminal cross-linking telopeptide of type I collagen (NTX), growth hormone (GH), estradiol (E2), serum 25(OH)D, and calcium (Ca) were evaluated at 0, 1, 2, and 3 months. After 3 months, each fourth lumbar vertebra and the distal femoral metaphysis of the left extremity of rats were harvested for micro-computed tomography scans and histological analysis, respectively, after the rats were sacrificed under an overdose of pentobarbital sodium. RESULTS Compared with rats from the CON group, rats from the CSD group showed significant decreases in bone mineral density (BMD), bone volume over total volume, trabecular bone thickness, and trabecular bone number and significant increases in bone surface area over bone volume and trabecular bone separations (P < 0.05). Bone histomorphology studies showed that rats in the CSD group had decreased osteogenesis, impaired mineralization of newly formed bones, and deteriorative trabecular bone in the secondary spongiosa zone. In addition, they showed significantly decreased levels of serum PINP (1 month later) and NTX (3 months later) (P < 0.05). The serum 25(OH)D level of rats from the CSD group was lower than that of rats from the CON group after 1 month (P < 0.05). CONCLUSIONS CSD markedly affects bone health by decreasing BMD and 25(OH)D, deteriorating the bone microarchitecture, and decreasing bone formation and bone resorption markers.
Collapse
Affiliation(s)
- Xiaowen Xu
- Center of Orthopedics, The 309th Hospital of PLA, Beijing, 100091, China
| | - Liang Wang
- Center of Orthopedics, The 309th Hospital of PLA, Beijing, 100091, China
| | - Liying Chen
- Center of Orthopedics, The 309th Hospital of PLA, Beijing, 100091, China
| | - Tianjiao Su
- Center of Orthopedics, The 309th Hospital of PLA, Beijing, 100091, China
| | - Yan Zhang
- Center of Orthopedics, The 309th Hospital of PLA, Beijing, 100091, China
| | - Tiantian Wang
- Center of Orthopedics, The 309th Hospital of PLA, Beijing, 100091, China
| | - Weifeng Ma
- Center of Orthopedics, The 309th Hospital of PLA, Beijing, 100091, China
| | - Fan Yang
- Center of Orthopedics, The 309th Hospital of PLA, Beijing, 100091, China
| | - Wujie Zhai
- Center of Orthopedics, The 309th Hospital of PLA, Beijing, 100091, China
| | - Yuanyuan Xie
- Center of Orthopedics, The 309th Hospital of PLA, Beijing, 100091, China
| | - Dan Li
- Center of Orthopedics, The 309th Hospital of PLA, Beijing, 100091, China
| | - Qiong Chen
- Center of Orthopedics, The 309th Hospital of PLA, Beijing, 100091, China
| | - Xuemei Fu
- Center of Orthopedics, The 309th Hospital of PLA, Beijing, 100091, China
| | - Yuanzheng Ma
- Center of Orthopedics, The 309th Hospital of PLA, Beijing, 100091, China.
| | - Yan Zhang
- Center for Systems Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
23
|
Tarasiuk A, Levi A, Assadi MH, Troib A, Segev Y. Orexin Plays a Role in Growth Impediment Induced by Obstructive Sleep Breathing in Rats. Sleep 2016; 39:887-97. [PMID: 26943473 DOI: 10.5665/sleep.5648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/16/2015] [Indexed: 01/17/2023] Open
Abstract
STUDY OBJECTIVES The mechanisms linking sleep disordered breathing with impairment of sleep and bone metabolism/architecture are poorly understood. Here, we explored the role of the neuropeptide orexin, a respiratory homeostasis modulator, in growth retardation induced in an upper airway obstructed (AO) rat model. METHODS The tracheae of 22-day-old rats were narrowed; AO and sham-control animals were monitored for 5 to 7 w. Growth parameters, food intake, sleep/wake activity, and serum hormones were measured. After euthanasia, growth plate (GP) histology, morphometry, orexin receptors (OXR), and related mediators were analyzed. The effect of dual orexin receptor antagonist (almorexant 300 mg/kg) on sleep and GP histology were also investigated. RESULTS The AO group slept 32% less; the time spent in slow wave and paradoxical sleep during light period and slow wave activity was reduced. The AO group gained 46% less body weight compared to the control group, despite elevated food intake; plasma ghrelin increased by 275% and leptin level decreased by 44%. The impediment of bone elongation and bone mass was followed by a 200% increase in OX1R and 38% reduction of local GP ghrelin proteins and growth hormone secretagogue receptor 1a. Sry-related transcription factor nine (Sox9), a molecule mediating cartilage ossification, was downregulated and the level of transcription factor peroxisome proliferator-activated receptor gamma was upregulated, explaining the bone architecture abnormalities. Administration of almorexant restored sleep and improved GP width in AO animals. CONCLUSIONS In AO animals, enhanced expression of orexin and OX1R plays a role in respiratory induced sleep and growth abnormalities.
Collapse
Affiliation(s)
- Ariel Tarasiuk
- Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Sleep-Wake Disorders Unit, Soroka University Medical Center, Beer-Sheva, Israel.,Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avishag Levi
- Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mohammad H Assadi
- Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ariel Troib
- Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yael Segev
- Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
24
|
Deurveilher S, Bush JE, Rusak B, Eskes GA, Semba K. Psychomotor vigilance task performance during and following chronic sleep restriction in rats. Sleep 2015; 38:515-28. [PMID: 25515100 DOI: 10.5665/sleep.4562] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/07/2014] [Indexed: 12/21/2022] Open
Abstract
STUDY OBJECTIVES Chronic sleep restriction (CSR) impairs sustained attention in humans, as commonly assessed with the psychomotor vigilance task (PVT). To further investigate the mechanisms underlying performance deficits during CSR, we examined the effect of CSR on performance on a rat version of PVT (rPVT). DESIGN Adult male rats were trained on a rPVT that required them to press a bar when they detected irregularly presented, brief light stimuli, and were then tested during CSR. CSR consisted of 100 or 148 h of continuous cycles of 3-h sleep deprivation (using slowly rotating wheels) alternating with a 1-h sleep opportunity (3/1 protocol). MEASUREMENTS AND RESULTS After 28 h of CSR, the latency of correct responses and the percentages of lapses and omissions increased, whereas the percentage of correct responses decreased. Over 52-148 h of CSR, all performance measures showed partial or nearly complete recovery, and were at baseline levels on the first or second day after CSR. There were large interindividual differences in the magnitude of performance impairment during CSR, suggesting differential vulnerability to the effects of sleep loss. Wheel-running controls showed no changes in performance. CONCLUSIONS A 28-h period of the 3/1 chronic sleep restriction (CSR) protocol disrupted performance on a sustained attention task in rats, as sleep deprivation does in humans. Performance improved after longer periods of CSR, suggesting allostatic adaptation, contrary to some reports of progressive deterioration in psychomotor vigilance task performance during CSR in humans. However, as observed in humans, there were individual differences among rats in the vulnerability of their attention performance to CSR.
Collapse
Affiliation(s)
- Samuel Deurveilher
- Departments of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jacquelyn E Bush
- Departments of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Benjamin Rusak
- Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gail A Eskes
- Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kazue Semba
- Departments of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
25
|
Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep 2014; 37:1929-40. [PMID: 25325492 DOI: 10.5665/sleep.4244] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 06/20/2014] [Indexed: 12/29/2022] Open
Abstract
STUDY OBJECTIVES Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. DESIGN Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. MEASUREMENTS AND RESULTS Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. CONCLUSIONS These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Neurology, The Medical College of Wisconsin, Milwaukee, WI
| | | | - Aniko Szabo
- Department of Population Health, The Medical College of Wisconsin, Milwaukee, WI
| | - Neil Hogg
- Department of Biophysics, The Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
26
|
Manzar MD, Zannat W, Hussain ME. Sleep and physiological systems: a functional perspective. BIOL RHYTHM RES 2014. [DOI: 10.1080/09291016.2014.966504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
The energy allocation function of sleep: A unifying theory of sleep, torpor, and continuous wakefulness. Neurosci Biobehav Rev 2014; 47:122-53. [DOI: 10.1016/j.neubiorev.2014.08.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/27/2014] [Accepted: 08/02/2014] [Indexed: 12/14/2022]
|
28
|
Increases in mature brain-derived neurotrophic factor protein in the frontal cortex and basal forebrain during chronic sleep restriction in rats: Possible role in initiating allostatic adaptation. Neuroscience 2014; 277:174-83. [DOI: 10.1016/j.neuroscience.2014.06.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 01/09/2023]
|
29
|
Noguti J, Alvarenga TA, Marchi P, Oshima CTF, Andersen ML, Ribeiro DA. The influence of sleep restriction on expression of apoptosis regulatory proteins p53, Bcl-2 and Bax following rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide. J Oral Pathol Med 2014; 44:222-8. [PMID: 25169245 DOI: 10.1111/jop.12225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2014] [Indexed: 01/22/2023]
Abstract
PURPOSE The aim of this study was to evaluate whether sleep restriction (SR) could affect the mechanisms and pathways' essentials for cancer cells in tongue cancer induced by 4-nitroquinoline 1-oxide in Wistar rats. METHODS The animals were distributed into 4 groups of 5 animals each treated with 50 ppm 4 NQO solution through their drinking water for 4 and 12 weeks. The animals were submitted to sleep restriction for 21 days using the modified multiple platform method, which consisted of placing 5 rats in a cage (41 × 34 × 16 cm) containing 10 circular platforms (3.5 cm in diameter) with water 1 cm below the upper surface. The investigations were conducted using immunohistochemistry of p53, Bax and Bcl-2 proteins related to apoptosis and its pathways. RESULTS Although no histopathologic abnormalities were induced in the epithelium after 4 weeks of carcinogen exposure in all groups, in 12 weeks were observed pre-neoplastic lesions. Data analysis revealed statistically significant differences (P < 0.05) in 4 weeks group for p53, and for bcl-2. Following 12 weeks of 4NQO administration, we found significant differences between SR and control groups in p53, bax, and bcl-2 immunoexpression. CONCLUSION Our results reveal that sleep restriction exerted alterations in proteins associated with proliferation and apoptosis in carcinogenesis.
Collapse
Affiliation(s)
- Juliana Noguti
- Departamento de Patologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Tarasiuk A, Levi A, Berdugo-Boura N, Yahalom A, Segev Y. Role of orexin in respiratory and sleep homeostasis during upper airway obstruction in rats. Sleep 2014; 37:987-98. [PMID: 24790278 DOI: 10.5665/sleep.3676] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
STUDY OBJECTIVES Chronic upper airway obstruction (UAO) elicits a cascade of complex endocrine derangements that affect growth, sleep, and energy metabolism. We hypothesized that elevated hypothalamic orexin has a role in maintaining ventilation during UAO, while at the same time altering sleep-wake activity and energy metabolism. Here, we sought to explore the UAO-induced changes in hypothalamic orexin and their role in sleep-wake balance, respiratory activity, and energy metabolism. INTERVENTIONS The tracheae of 22-day-old Sprague-Dawley rats were surgically narrowed; UAO and sham-operated control animals were monitored for 7 weeks. We measured food intake, body weight, temperature, locomotion, and sleep-wake activity. Magnetic resonance imaging was used to quantify subcutaneous and visceral fat tissue volumes. In week 7, the rats were sacrificed and levels of hypothalamic orexin, serum leptin, and corticosterone were determined. The effect of dual orexin receptor antagonist (almorexant 300 mg/kg) on sleep and respiration was also explored. MEASUREMENTS AND RESULTS UAO increased hypothalamic orexin mRNA and protein content by 64% and 65%, respectively. UAO led to 30% chronic sleep loss, excessive active phase sleepiness, decreased body temperature, increased food intake, reduction of abdominal and subcutaneous fat tissue volume, and growth retardation. Administration of almorexant normalized sleep but induced severe breathing difficulties in UAO rats, while it had no effect on sleep or on breathing of control animals. CONCLUSIONS In upper airway obstruction animals, enhanced orexin secretion, while crucially important for respiratory homeostasis maintenance, is also responsible for chronic partial sleep loss, as well as considerable impairment of energy metabolism and growth.
Collapse
Affiliation(s)
- Ariel Tarasiuk
- Sleep-Wake Disorders Unit, Soroka University Medical Center and Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avishag Levi
- Sleep-Wake Disorders Unit, Soroka University Medical Center and Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel ; Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nilly Berdugo-Boura
- Sleep-Wake Disorders Unit, Soroka University Medical Center and Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel ; Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ari Yahalom
- Sleep-Wake Disorders Unit, Soroka University Medical Center and Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel ; Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yael Segev
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
31
|
Pejovic S, Basta M, Vgontzas AN, Kritikou I, Shaffer ML, Tsaoussoglou M, Stiffler D, Stefanakis Z, Bixler EO, Chrousos GP. Effects of recovery sleep after one work week of mild sleep restriction on interleukin-6 and cortisol secretion and daytime sleepiness and performance. Am J Physiol Endocrinol Metab 2013; 305:E890-6. [PMID: 23941878 PMCID: PMC3798707 DOI: 10.1152/ajpendo.00301.2013] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/12/2013] [Indexed: 02/06/2023]
Abstract
One workweek of mild sleep restriction adversely impacts sleepiness, performance, and proinflammatory cytokines. Many individuals try to overcome these adverse effects by extending their sleep on weekends. To assess whether extended recovery sleep reverses the effects of mild sleep restriction on sleepiness/alertness, inflammation, and stress hormones, 30 healthy young men and women (mean age ± SD, 24.7 ± 3.5 yr; mean body mass index ± SD, 23.6 ± 2.4 kg/m(2)) participated in a sleep laboratory experiment of 13 nights [4 baseline nights (8 h/night), followed by 6 sleep restriction nights (6 h/night) and 3 recovery nights (10 h/night)]. Twenty-four-hour profiles of circulating IL-6 and cortisol, objective and subjective daytime sleepiness (Multiple Sleep Latency Test and Stanford Sleepiness Scale), and performance (Psychomotor Vigilance Task) were assessed on days 4 (baseline), 10 (after 1 wk of sleep restriction), and 13 (after 2 nights of recovery sleep). Serial 24-h IL-6 plasma levels increased significantly during sleep restriction and returned to baseline after recovery sleep. Serial 24-h cortisol levels during restriction did not change compared with baseline, but after recovery they were significantly lower. Subjective and objective sleepiness increased significantly after restriction and returned to baseline after recovery. In contrast, performance deteriorated significantly after restriction and did not improve after recovery. Extended recovery sleep over the weekend reverses the impact of one work week of mild sleep restriction on daytime sleepiness, fatigue, and IL-6 levels, reduces cortisol levels, but does not correct performance deficits. The long-term effects of a repeated sleep restriction/sleep recovery weekly cycle in humans remain unknown.
Collapse
Affiliation(s)
- Slobodanka Pejovic
- Sleep Research and Treatment Center, Department of Psychiatry, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Although numerous experimental investigations have evaluated the neurobehavioral effects of either short periods of total sleep deprivation or selective rapid eye movement sleep deprivation, few studies have examined the effects of chronic sleep restriction (CSR). Long-Evans rats were deprived of sleep by the automated movement of activity wheels for 18 h/day for 5 consecutive days from 16:00 to 10:00 h, and were allowed 6 h/day of sleep opportunity (10:00-16:00 h; lights on from 10:00 to 22:00 h). Activity wheels were intermittently activated on a 3 s on : 12 s off schedule for the CSR condition, whereas a schedule of 36 min of continuous wheel movement in every 3 h was used for a cage movement control condition. A cross-over design was used with rats serving in both the CSR and the movement control conditions with 2 days of rest between conditions. Water maze acquisition training occurred at 16:00 h immediately after the 6-h sleep opportunity on each of the first 4 days, followed by a probe trial on day 5 to assess spatial memory recall. Although the rate of learning/acquisition was not affected by the daily 18 h of CSR, the day 5 recall of the platform location was impaired on three different probe trial measures. Thus, CSR impaired spatial memory, but did not affect the rate of learning/acquisition in the water maze.
Collapse
|
33
|
Pigarev IN, Bagaev VA, Levichkina EV, Fedorov GO, Busigina II. Cortical visual areas process intestinal information during slow-wave sleep. Neurogastroenterol Motil 2013; 25:268-75, e169. [PMID: 23216826 DOI: 10.1111/nmo.12052] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Previously we have shown that, during sleep, electrical and magnetic stimulation of areas of the stomach and small intestine evoked neuronal and EEG responses in various cortical areas. In this study we wanted to correlate natural myoelectrical activity of the duodenum with cortical neuronal activity, and to investigate whether there is a causal link between them during periods of slow-wave sleep. METHODS We have recorded the myoelectrical activity from the wall of the duodenum and activity of single neurons from three cortical visual areas in naturally sleeping cats and investigated causal interrelationship between these structures during slow-wave sleep. KEY RESULTS About 30% of the cortical neurons studied changed their firing rate dependent on the phases of the peristaltic cycle and demonstrated selectivity to particular pattern of duodenal myoelectrical activity during slow-wave sleep. This interrelationship was never seen when awake. CONCLUSIONS & INFERENCES This observation supports the hypothesis that, during sleep, the cerebral cortex switches from processing of exteroceptive and proprioceptive information to processing of interoceptive information.
Collapse
Affiliation(s)
- I N Pigarev
- Institute for Problems of Information Transmission (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | |
Collapse
|
34
|
Liang W, Chikritzhs T. Sleep Duration and Its Links to Psychological Distress, Health Status, Physical Activity and Body Mass Index among a Large Representative General Population Sample. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ijcm.2013.41010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Abstract
CONTEXT Alongside the growing epidemics of obesity and diabetes mellitus, chronic partial sleep restriction is also increasingly common in modern society, and the metabolic implications of this have not been fully illustrated as yet. Whether recovery sleep is sufficient to offset these detriments is an area of ongoing research. OBJECTIVE This review seeks to summarize the relevant epidemiological and experimental data in the areas of altered metabolic consequences of both shortened sleep and subsequent recovery sleep. DATA ACQUISITION The medical literature from 1970 to March 2012 was reviewed for key articles. DATA SYNTHESIS Epidemiological studies suggest associations between shortened sleep and future obesity and diabetes. Experimental data thus far show a probable link between shortened sleep and altered glucose metabolism as well as appetite dysregulation. CONCLUSION Sleep often seems undervalued in modern society, but this may have widespread metabolic consequences as described in this review. Acute sleep loss is often unavoidable, but chronic sleep restriction ideally should not be. Understanding the implications of both sleep restriction and recovery on metabolic outcomes will guide public health policy and allow clinical recommendations to be prescribed.
Collapse
Affiliation(s)
- Roo Killick
- David Geffen School of Medicine at University of California Los Angeles (UCLA), Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, 1124 West Carson Street, Torrance, California 90502, USA
| | | | | |
Collapse
|
36
|
|
37
|
Everson CA, Folley AE, Toth JM. Chronically inadequate sleep results in abnormal bone formation and abnormal bone marrow in rats. Exp Biol Med (Maywood) 2012; 237:1101-9. [PMID: 22946089 DOI: 10.1258/ebm.2012.012043] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Insufficient sleep over long durations of the lifespan is believed to adversely affect proper development and healthful aging, although how this might become manifested is unknown. In the present study, rats were repeatedly sleep-restricted during 72 days to permit maladaptations to evolve, thereby permitting study. Densitometric and histomorphometric analyses were performed on harvested bone. In sleep-restricted rats, bone lined by osteoid was reduced 45-fold and osteoid thickness was decreased, compared with controls. This corresponded to a decrease in osteoblast number and activity. The percentage of bone lined by osteoclasts did not differ from that of controls. Plasma concentrations of an osteoclast marker (TRACP 5b) were increased in sleep-restricted rats, indicating increased bone resorption. The low amount of new bone formation without a reduction in bone resorption is diagnostic of osteopenia. Bone mineral density was decreased in femurs from sleep-restricted rats compared with controls, indicating osteoporosis. Red marrow in sleep-restricted rats contained only 37% of the fat and more than twice the number of megakaryocytes compared with that of the control rats. These findings in marrow suggest changed plasticity and increased hematopoiesis. Plasma concentrations of insulin-like growth factor-1, a known, major mediator of osteoblast differentiation and the proliferation of progenitor cells, was decreased by 30% in sleep-restricted rats. Taken together, these findings suggest that chronically inadequate sleep affects bone metabolism and bone marrow composition in ways that have implications for development, aging, bone healing and repair, and blood cell differentiation.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Neurology, The Medical College of Wisconsin, Milwaukee, WI 53226-0509, USA.
| | | | | |
Collapse
|
38
|
|
39
|
Deurveilher S, Rusak B, Semba K. Time-of-day modulation of homeostatic and allostatic sleep responses to chronic sleep restriction in rats. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1411-25. [PMID: 22492816 DOI: 10.1152/ajpregu.00678.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To study sleep responses to chronic sleep restriction (CSR) and time-of-day influences on these responses, we developed a rat model of CSR that takes into account the polyphasic sleep patterns in rats. Adult male rats underwent cycles of 3 h of sleep deprivation (SD) and 1 h of sleep opportunity (SO) continuously for 4 days, beginning at the onset of the 12-h light phase ("3/1" protocol). Electroencephalogram (EEG) and electromyogram (EMG) recordings were made before, during, and after CSR. During CSR, total sleep time was reduced by ∼60% from baseline levels. Both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS) during SO periods increased initially relative to baseline and remained elevated for the rest of the CSR period. In contrast, NREMS EEG delta power (a measure of sleep intensity) increased initially, but then declined gradually, in parallel with increases in high-frequency power in the NREMS EEG. The amplitude of daily rhythms in NREMS and REMS amounts was maintained during SO periods, whereas that of NREMS delta power was reduced. Compensatory responses during the 2-day post-CSR recovery period were either modest or negative and gated by time of day. NREMS, REMS, and EEG delta power lost during CSR were not recovered by the end of the second recovery day. Thus the "3/1" CSR protocol triggered both homeostatic responses (increased sleep amounts and intensity during SOs) and allostatic responses (gradual decline in sleep intensity during SOs and muted or negative post-CSR sleep recovery), and both responses were modulated by time of day.
Collapse
Affiliation(s)
- S Deurveilher
- Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
40
|
McCoy JG, Strecker RE. The cognitive cost of sleep lost. Neurobiol Learn Mem 2011; 96:564-82. [PMID: 21875679 DOI: 10.1016/j.nlm.2011.07.004] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/12/2011] [Accepted: 07/25/2011] [Indexed: 11/25/2022]
Abstract
A substantial body of literature supports the intuitive notion that a good night's sleep can facilitate human cognitive performance the next day. Deficits in attention, learning & memory, emotional reactivity, and higher-order cognitive processes, such as executive function and decision making, have all been documented following sleep disruption in humans. Thus, whilst numerous clinical and experimental studies link human sleep disturbance to cognitive deficits, attempts to develop valid and reliable rodent models of these phenomena are fewer, and relatively more recent. This review focuses primarily on the cognitive impairments produced by sleep disruption in rodent models of several human patterns of sleep loss/sleep disturbance. Though not an exclusive list, this review will focus on four specific types of sleep disturbance: total sleep deprivation, experimental sleep fragmentation, selective REM sleep deprivation, and chronic sleep restriction. The use of rodent models can provide greater opportunities to understand the neurobiological changes underlying sleep loss induced cognitive impairments. Thus, this review concludes with a description of recent neurobiological findings concerning the neuroplastic changes and putative brain mechanisms that may underlie the cognitive deficits produced by sleep disturbances.
Collapse
Affiliation(s)
- John G McCoy
- VA Boston Healthcare System, Research Service and Harvard Medical School, Department of Psychiatry, 940 Belmont St., Brockton, MA 02301-5596, USA.
| | | |
Collapse
|
41
|
Everson CA, Szabo A. Repeated exposure to severely limited sleep results in distinctive and persistent physiological imbalances in rats. PLoS One 2011; 6:e22987. [PMID: 21853062 PMCID: PMC3154920 DOI: 10.1371/journal.pone.0022987] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/08/2011] [Indexed: 01/22/2023] Open
Abstract
Chronic sleep disruption in laboratory rats leads to increased energy expenditure, connective tissue abnormalities, and increased weights of major organs relative to body weight. Here we report on expanded findings and the extent to which abnormalities become long-lasting, potentially permanent changes to health status after apparent recuperation from chronic sleep disruption. Rats were exposed 6 times to long periods of disrupted sleep or control conditions during 10 weeks to produce adaptations and then were permitted nearly 4 months of undisturbed sleep. Measurements were made in tissues from these groups and in preserved tissue from the experimental and control groups of an antecedent study that lacked a lengthy recuperation period. Cycles of sleep restriction resulted in energy deficiency marked by a progressive course of hyperphagia and major (15%) weight loss. Analyses of tissue composition in chronically sleep-restricted rats indicated that protein and lipid amounts in internal organs were largely spared, while adipose tissue depots appeared depleted. This suggests high metabolic demands may have preserved the size of the vital organs relative to expectations of severe energy deficiency alone. Low plasma corticosterone and leptin concentrations appear to reflect low substrate availability and diminished adiposity. After nearly 4 months of recuperation, sleep-restricted rats were consuming 20% more food and 35% more water than did comparison control rats, despite normalized weight, normalized adipocytes, and elevated plasma leptin concentrations. Plasma cholesterol levels in recuperated sleep-restricted rats were diminished relative to those of controls. The chronically increased intake of nutriments and water, along with altered negative feedback regulation and substrate use, indicate that internal processes are modified long after a severe period of prolonged and insufficient sleep has ended.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Neurology, The Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America.
| | | |
Collapse
|
42
|
Caron AM, Stephenson R. Energy expenditure is affected by rate of accumulation of sleep deficit in rats. Sleep 2010; 33:1226-35. [PMID: 20857870 DOI: 10.1093/sleep/33.9.1226] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES Short sleep is a putative risk factor for obesity. However, prolonged total sleep deprivation (TSD) leads to negative energy balance and weight loss in rodents, whereas sleep-restricted humans tend to gain weight. We hypothesized that energy expenditure (VO2) is influenced by the rate of accumulation of sleep deficit in rats. DESIGN AND INTERVENTION Six Sprague-Dawley rats underwent chronic sleep-restriction (CSR, 6-h sleep opportunity at ZT0-6 for 10 days) and stimulus-control protocols (CON, 12-h sleep opportunity for 10 days, matched number of stimuli) in a balanced cross-over design. Four additional rats underwent TSD (4 days). Sleep was manipulated using a motor-driven walking wheel. MEASUREMENTS AND RESULTS Electroencephalography, electromyography, and body temperature were measured by telemetry, and VO2, by respirometry. Total sleep deficits of 55.1 +/- 6.4 hours, 31.8 +/- 6.8 hours, and 38.2 +/- 2.3 hours accumulated over the CSR, CON, and TSD protocols, respectively. Responses to TSD confirmed previous reports of elevated VO2 and body temperature. These responses were attenuated in CSR, despite a greater cumulative sleep deficit. Rate of rise of VO2 was strongly correlated with rate of accumulation of sleep deficit, above a threshold deficit of 3.6 h x day(-1). CONCLUSION The change in VO2 is affected by rate of accumulation of sleep deficit and not the total sleep loss accrued. Negative energy balance, observed during TSD, is strongly attenuated when brief daily sleep opportunities are available to rats (CSR), despite greater accumulated sleep deficit.
Collapse
Affiliation(s)
- Aimee M Caron
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
43
|
Nedeltcheva AV, Kilkus JM, Imperial J, Schoeller DA, Penev PD. Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med 2010. [PMID: 20921542 PMCID: PMC2951287 DOI: 10.1059/0003-4819-153-7-201010050-00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Sleep loss can modify energy intake and expenditure. OBJECTIVE To determine whether sleep restriction attenuates the effect of a reduced-calorie diet on excess adiposity. DESIGN Randomized, 2-period, 2-condition crossover study. SETTING University clinical research center and sleep laboratory. PATIENTS 10 overweight nonsmoking adults (3 women and 7 men) with a mean age of 41 years (SD, 5) and a mean body mass index of 27.4 kg/m² (SD, 2.0). INTERVENTION 14 days of moderate caloric restriction with 8.5 or 5.5 hours of nighttime sleep opportunity. MEASUREMENTS The primary measure was loss of fat and fat-free body mass. Secondary measures were changes in substrate utilization, energy expenditure, hunger, and 24-hour metabolic hormone concentrations. RESULTS Sleep curtailment decreased the proportion of weight lost as fat by 55% (1.4 vs. 0.6 kg with 8.5 vs. 5.5 hours of sleep opportunity, respectively; P = 0.043) and increased the loss of fat-free body mass by 60% (1.5 vs. 2.4 kg; P = 0.002). This was accompanied by markers of enhanced neuroendocrine adaptation to caloric restriction, increased hunger, and a shift in relative substrate utilization toward oxidation of less fat. LIMITATION The nature of the study limited its duration and sample size. CONCLUSION The amount of human sleep contributes to the maintenance of fat-free body mass at times of decreased energy intake. Lack of sufficient sleep may compromise the efficacy of typical dietary interventions for weight loss and related metabolic risk reduction. PRIMARY FUNDING SOURCE National Institutes of Health.
Collapse
|
44
|
Nedeltcheva AV, Kilkus JM, Imperial J, Schoeller DA, Penev PD. Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med 2010; 153:435-41. [PMID: 20921542 PMCID: PMC2951287 DOI: 10.7326/0003-4819-153-7-201010050-00006] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sleep loss can modify energy intake and expenditure. OBJECTIVE To determine whether sleep restriction attenuates the effect of a reduced-calorie diet on excess adiposity. DESIGN Randomized, 2-period, 2-condition crossover study. SETTING University clinical research center and sleep laboratory. PATIENTS 10 overweight nonsmoking adults (3 women and 7 men) with a mean age of 41 years (SD, 5) and a mean body mass index of 27.4 kg/m² (SD, 2.0). INTERVENTION 14 days of moderate caloric restriction with 8.5 or 5.5 hours of nighttime sleep opportunity. MEASUREMENTS The primary measure was loss of fat and fat-free body mass. Secondary measures were changes in substrate utilization, energy expenditure, hunger, and 24-hour metabolic hormone concentrations. RESULTS Sleep curtailment decreased the proportion of weight lost as fat by 55% (1.4 vs. 0.6 kg with 8.5 vs. 5.5 hours of sleep opportunity, respectively; P = 0.043) and increased the loss of fat-free body mass by 60% (1.5 vs. 2.4 kg; P = 0.002). This was accompanied by markers of enhanced neuroendocrine adaptation to caloric restriction, increased hunger, and a shift in relative substrate utilization toward oxidation of less fat. LIMITATION The nature of the study limited its duration and sample size. CONCLUSION The amount of human sleep contributes to the maintenance of fat-free body mass at times of decreased energy intake. Lack of sufficient sleep may compromise the efficacy of typical dietary interventions for weight loss and related metabolic risk reduction. PRIMARY FUNDING SOURCE National Institutes of Health.
Collapse
|
45
|
Barf RP, Meerlo P, Scheurink AJW. Chronic sleep disturbance impairs glucose homeostasis in rats. Int J Endocrinol 2010; 2010:819414. [PMID: 20339560 PMCID: PMC2842885 DOI: 10.1155/2010/819414] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/22/2009] [Accepted: 01/02/2010] [Indexed: 11/17/2022] Open
Abstract
Epidemiological studies have shown an association between short or disrupted sleep and an increased risk for metabolic disorders. To assess a possible causal relationship, we examined the effects of experimental sleep disturbance on glucose regulation in Wistar rats under controlled laboratory conditions. Three groups of animals were used: a sleep restriction group (RS), a group subjected to moderate sleep disturbance without restriction of sleep time (DS), and a home cage control group. To establish changes in glucose regulation, animals were subjected to intravenous glucose tolerance tests (IVGTTs) before and after 1 or 8 days of sleep restriction or disturbance. Data show that both RS and DS reduce body weight without affecting food intake and also lead to hyperglycemia and decreased insulin levels during an IVGTT. Acute sleep disturbance also caused hyperglycemia during an IVGTT, yet, without affecting the insulin response. In conclusion, both moderate and severe disturbances of sleep markedly affect glucose homeostasis and body weight control.
Collapse
Affiliation(s)
- R. Paulien Barf
- Department of Neuroendocrinology, Center for Behavior and Neurosciences, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands
- *R. Paulien Barf:
| | - Peter Meerlo
- Department of Behavioral Physiology, Center for Behavior and Neurosciences, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands
| | - Anton J. W. Scheurink
- Department of Neuroendocrinology, Center for Behavior and Neurosciences, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands
| |
Collapse
|