1
|
Chaichompoo W, Rojsitthisak P, Supaweera N, Poldorn P, Pabuprapap W, Chunglok W, Wongnongwa Y, Suksamrarn A. Amaryllidaceae alkaloids with nitric oxide inhibitory activity from the leaves of Crinum asiaticum L. var. asiaticum. PHYTOCHEMISTRY 2025; 233:114383. [PMID: 39756558 DOI: 10.1016/j.phytochem.2025.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Forty-two Amaryllidaceae alkaloids, including eleven previously undescribed alkaloids, crinasiaticines C-M, and three undescribed naturally occurring alkaloids, (+)-dihydroepivittatine, (+)-dihydrovittatine and (+)-dihydrohamayne, were isolated from the leaves of Crinum asiaticum L. var. asiaticum. Their structures and configurations were elucidated using NMR and MS spectroscopic techniques, along with the comparison of experimental electronic circular dichroism spectra to calculated data. The anti-inflammatory activity against nitric oxide (NO) production in lipopolysaccharide-stimulated RAW264.7 cells was evaluated for most of the isolated alkaloids. Compounds 39, 21, 22, and 35 exhibited considerable NO inhibitory activity, with IC50 values of 2.5-2.6 μM, compared to positive control dexamethasone (IC50 2.7 μM). However, these compounds demonstrated cytotoxic effects on cells. Compound 15 also possessed the highest selectivity index of 22.5 with minimal cytotoxicity.
Collapse
Affiliation(s)
- Waraluck Chaichompoo
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Natural Products for Aging and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Natural Products for Aging and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nassareen Supaweera
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Preeyaporn Poldorn
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No. 1, Huairou District, 101407, Beijing, China
| | - Wachirachai Pabuprapap
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Yutthana Wongnongwa
- NSTDA Supercomputer Center (ThaiSC), National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| |
Collapse
|
2
|
Rai PK, Kumar A, Kumar P. Spontaneous Deprotonation of HO 2• at Air-Water Interface. J Phys Chem A 2025; 129:2912-2921. [PMID: 40101751 DOI: 10.1021/acs.jpca.4c08194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
HO2• is a crucial radical in atmospheric chemistry, with applications ranging from HO2•/OH• interconversion to controlling the budget of various trace gases in the atmosphere. It is known that one of the potential sinks for HO2• is clouds and aerosols, though the mechanism is not clear to date. In the present study, using Born-Oppenheimer molecular dynamics simulations, we have demonstrated that the dissociation of HO2• on the surface of a water droplet, as well as in the bulk phase, is a spontaneous process. In addition, we have computed the Gibbs free energy for the deprotonation of HO2• on both the surface and in the bulk, which suggests that deprotonation of HO2• on the surface occurs faster compared to the same in the bulk.
Collapse
Affiliation(s)
- Philips Kumar Rai
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Amit Kumar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Pradeep Kumar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| |
Collapse
|
3
|
Bayraktaroğlu SB, Turan RD, Taşlı NP, Şahin F. Evaluation of Anti-aging Agents Using the D-Galactose-Induced Accelerated Aging Model. Methods Mol Biol 2025. [PMID: 40106151 DOI: 10.1007/7651_2025_609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The aging population is rapidly increasing, emphasizing the importance of understanding aging mechanisms and developing effective anti-aging therapies. This chapter investigates the efficacy of novel anti-aging agents, including exosomes and boron compounds, using the D-galactose-induced accelerated aging model. Both in vitro (skin organoid models) and in vivo (rat models) systems are employed to explore cellular, molecular, and histological changes. This comprehensive analysis provides critical insights into the potential of these agents in reversing age-associated pathologies.
Collapse
Affiliation(s)
- Serdar Bora Bayraktaroğlu
- Yeditepe Universitesi, Istanbul, Turkey
- Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Yeditepe University, Kayisdagi, Istanbul, Türkiye
| | | | | | | |
Collapse
|
4
|
An Q, Zhu Y, Shi W, Li W, Yang X, Huang M, Li Y, Zhao Y. Serine protease inhibitor AEBSF(4-(2-aminoethyl)-benzenesulfonyl fluoride) decreased ischemic brain injury through inhibiting endoplasmic reticulum stress, oxidative stress, and autophagy in rats. Brain Res 2025; 1850:149382. [PMID: 39643106 DOI: 10.1016/j.brainres.2024.149382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
4-(2-Aminoethyl)-benzenesulfonyl fluoride (AEBSF) is a serine protease inhibitor that may alleviate endoplasmic reticulum (ER) stress, a significant contributing factor to cerebral ischemia/reperfusion injury. The molecular crosstalk between ER stress, oxidative stress and autophagy represents a vicious cycle that can be pharmacologically targeted to minimize neuronal death after acute injuries to the central nervous system. However, the neuroprotective effects of AEBSF in the context of cerebral ischemia/reperfusion injury remain unknown. In this study,we reported the neuroprotective effect of AEBSF against cerebral ischemia/reperfusion injury and explored the mechanisms involved, particularly its role in reducing ER stress, oxidative stress and autophagy. Rats were pretreated with AEBSF or a vehicle before a 90 min middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion. Our results demonstrate that AEBSF treatment reduced infarct volume and improved neurological function compared to vehicle treated rats after 24 h of reperfusion. Furthermore,AEBSF treatment decreased the expression of caspase-3, suggesting a decrease in neuronal apoptosis. Additionally, AEBSF treatment lowered levels of key ER stress biomarkers, including glucose-regulated protein 78 (GRP78), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), and CCAAT-enhancer-binding protein homologous protein (CHOP), while the levels of inositol-requiring enzyme 1α (IRE1α) remained unchanged. AEBSF also decreased the oxidative stress biomarker neuronal nitric oxide synthase (nNOS) and its related molecule pro-MMP-9. Importantly, treatment with AEBSF reversed the trends of autophagy biomarker LC3B II/α-tubulin, Beclin1, and SQSTM1 at 24 h after reperfusion. In conclusion, AEBSF significantly mitigates ischemic brain damage and promotes neurological recovery by inhibiting ER stress, oxidative stress, and autophagy, highlighting its potential as a therapeutic option for ischemic stroke.
Collapse
Affiliation(s)
- Qi An
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Yuequan Zhu
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Wenjuan Shi
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Wei Li
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Xueqi Yang
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Minqi Huang
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Yakun Li
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Yongmei Zhao
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China.
| |
Collapse
|
5
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Son JJ, Arif Y, Okelberry HJ, Johnson HJ, Willett MP, Wiesman AI, Wilson TW. Aging modulates the impact of cognitive interference subtypes on dynamic connectivity across a distributed motor network. NPJ AGING 2024; 10:54. [PMID: 39580466 PMCID: PMC11585575 DOI: 10.1038/s41514-024-00182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024]
Abstract
Research has shown age-related declines in cognitive control in the context of interference, but these studies have focused on frontoparietal networks and less is known about impacts on motor response-related dynamics in the face of distractors. Thus, we examined whether healthy aging affected connectivity between attention networks and motor circuitry using a multisource interference task and magnetoencephalography in 72 healthy-aging participants (28-63 years-old). Our results indicated stronger beta connectivity with increasing age between bilateral primary motor (M1) and occipital cortices, as well as stronger gamma fronto-motor connectivity during flanker-type interference. Regarding Simon-type interference, stronger beta interactions were observed between left M1 and right temporal and right M1 and left parietal with increasing age. Finally, the superadditivity effect (flanker + Simon presented simultaneously) indicated weaker beta connectivity between right M1 and left premotor with increasing age. These findings suggest exhaustion of age-related compensatory adaptations in the fronto-parieto-motor network with greater interference.
Collapse
Affiliation(s)
- Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA.
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
7
|
Ji X, Wu Y, Gu Z, Zhong Z, Wang K, Ye S, Wan Y, Qiu P. Trajectories of cognitive function and frailty in older adults in China: a longitudinal study. Front Aging Neurosci 2024; 16:1465914. [PMID: 39610717 PMCID: PMC11602512 DOI: 10.3389/fnagi.2024.1465914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
Background Cognitive impairment and frailty are common issues in older adults. Understanding the co-development trajectories of these conditions can provide valuable sights for early detection and intervention in high-risk individuals. Objectives This study aims to identify the co-development of cognitive function and frailty and explore the associated characteristics. Methods We analyzed data from 8,418 individuals aged 55 years and above who participated in the China Health and Retirement Longitudinal Survey between 2011 and 2018. Group-based dual trajectory modeling and logistic regression were used to identify trajectory groups and assess associations with risk factors. Results Two distinct dual trajectories were identified: "Consistently Robust" group (76.12%) and "Consistently Severe" group (23.88%). Factors such as being female, older age, lower levels of education, residing in rural areas, being unmarried, and having comorbidities such as hypertension, diabetes, complete tooth loss, vision impairment, or hearing impairment were associated with a higher likelihood of being assigned to the "Consistently Severe" group. Conclusion Our findings suggest a co-development pattern between cognitive function and frailty in Chinese older adults aged 55 years and above. While cognitive impairment may be irreversible, frailty is a condition that can be potentially reversed. Early detecting is crucial in preventing cognitive decline, considering the shared trajectory of these conditions.
Collapse
Affiliation(s)
- Xiaoyi Ji
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yue Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zijie Gu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhujun Zhong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Kerui Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Suni Ye
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yang Wan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Peiyuan Qiu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| |
Collapse
|
8
|
Sahu Y, Jamadade P, Ch Maharana K, Singh S. Role of mitochondrial homeostasis in D-galactose-induced cardiovascular ageing from bench to bedside. Mitochondrion 2024; 78:101923. [PMID: 38925493 DOI: 10.1016/j.mito.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Ageing is an inevitable phenomenon which affects the cellular to the organism level in the progression of the time. Oxidative stress and inflammation are now widely regarded as the key processes involved in the aging process, which may then cause significant harm to mitochondrial DNA, leading to apoptosis. Normal circulatory function is a significant predictor of disease-free life expectancy. Indeed, disorders affecting the cardiovascular system, which are becoming more common, are the primary cause of worldwide morbidity, disability, and mortality. Cardiovascular aging may precede or possibly underpin overall, age-related health decline. Numerous studies have foundmitochondrial mechanistc approachplays a vital role in the in the onset and development of aging. The D-galactose (D-gal)-induced aging model is well recognized and commonly used in the aging study. In this review we redeposit the association of the previous and current studies on mitochondrial homeostasis and its underlying mechanisms in D-galactose cardiovascular ageing. Further we focus the novel and the treatment strategies to combat the major complication leading to the cardiovascular ageing.
Collapse
Affiliation(s)
- Yogita Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Pratiksha Jamadade
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India.
| |
Collapse
|
9
|
Villaorduña C, Barrios-Arpi L, Lira-Mejía B, Ramos-Gonzalez M, Ramos-Coaguila O, Inostroza-Ruiz L, Romero A, Rodríguez JL. The Fungicide Ipconazole Can Activate Mediators of Cellular Damage in Rat Brain Regions. TOXICS 2024; 12:638. [PMID: 39330566 PMCID: PMC11435560 DOI: 10.3390/toxics12090638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
This study aimed to investigate the toxicity of the fungicide ipconazole on oxidative status, cell death and inflammasome complex activation in the hypothalamus, cerebral cortex, striatum and hippocampus of rats. Female albino rats were randomly divided into a control group and four groups treated with ipconazole at doses of 1, 5, 10 and 20 mg/kg b.w., administered for six days. Ipconazole significantly increased MDA and ROS levels in all brain regions studied, while reducing catalase enzyme activity. The molecular expression of cell death-related genes (AKT1, APAF1, BNIP3, CASP3 and BAX) and the inflammasome complex (CASP1, IL1β, IL6, NLRP3, NFĸB and TNFα) was also assessed, showing increased expression in at least one brain region. The findings demonstrate that ipconazole induces central nervous system toxicity in mammals, highlighting its potential role as a risk factor in the development of neurodegenerative disorders in individuals exposed to this contaminant.
Collapse
Affiliation(s)
- Carlos Villaorduña
- Animal Physiology Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
| | - Luis Barrios-Arpi
- Animal Physiology Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
| | - Boris Lira-Mejía
- Animal Physiology Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
| | - Mariella Ramos-Gonzalez
- Zootecnia an Animal Production Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
| | - Olger Ramos-Coaguila
- Zootecnia an Animal Production Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
| | - Luis Inostroza-Ruiz
- Toxicology Laboratory, Faculty of Pharmacy and Biochemistry, Major National University of San Marcos, Lima 15021, Peru
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José-Luis Rodríguez
- Animal Physiology Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
10
|
Huang H, Peng Z, Zhan S, Li W, Liu D, Huang S, Zhu Y, Wang W. A comprehensive review of Siraitia grosvenorii (Swingle) C. Jeffrey: chemical composition, pharmacology, toxicology, status of resources development, and applications. Front Pharmacol 2024; 15:1388747. [PMID: 38638866 PMCID: PMC11024725 DOI: 10.3389/fphar.2024.1388747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Siraitia grosvenorii (Swingle) C. Jeffrey (S. grosvenorii), a perennial indigenous liana from the Cucurbitaceae family, has historically played a significant role in southern China's traditional remedies for various ailments. Its dual classification by the Chinese Ministry of Health for both medicinal and food utility underscores its has the potential of versatile applications. Recent research has shed light on the chemical composition, pharmacological effects, and toxicity of S. grosvenorii. Its active ingredients include triterpenoids, flavonoids, amino acids, volatile oils, polysaccharides, minerals, vitamins, and other microconstituents. Apart from being a natural sweetener, S. grosvenorii has been found to have numerous pharmacological effects, including alleviating cough and phlegm, preventing dental caries, exerting anti-inflammatory and anti-allergic effects, anti-aging and anti-oxidative, hypoglycemic, lipid-lowering, anti-depression, anti-fatigue, anti-schizophrenic, anti-Parkinson, anti-fibrotic, and anti-tumor activities. Despite its versatile potential, there is still a lack of systematic research on S. grosvenorii to date. This paper aims to address this gap by providing an overview of the main active components, pharmacological efficacy, toxicity, current status of development and application, development dilemmas, and strategies for intensive exploitation and utilization of S. grosvenorii. This paper aims to serve as a guide for researchers and practitioners committed to exploiting the biological resources of S. grosvenorii and further exploring its interdisciplinary potential.
Collapse
Affiliation(s)
- Huaxue Huang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Zhi Peng
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Shuang Zhan
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Wei Li
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Dai Liu
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Sirui Huang
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wei Wang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
11
|
Alvarado-Ojeda ZA, Trejo-Moreno C, Ferat-Osorio E, Méndez-Martínez M, Fragoso G, Rosas-Salgado G. Role of Angiotensin II in Non-Alcoholic Steatosis Development. Arch Med Res 2024; 55:102986. [PMID: 38492325 DOI: 10.1016/j.arcmed.2024.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Fatty liver is a multifactorial disease characterized by excessive accumulation of lipids in hepatocytes (steatosis), insulin resistance, oxidative stress, and inflammation. This disease has a major public health impact because it is the first stage of a chronic and degenerative process in the liver that can lead to steatohepatitis, cirrhosis, and liver cancer. Although this disease is mainly diagnosed in patients with obesity, type 2 diabetes mellitus, and dyslipidemia, recent evidence indicates that vasoactive hormones such as angiotensin II (ANGII) not only promote endothelial dysfunction (ED) and hypertension, but also cause fatty liver, increase adipose tissue, and develop a pro-steatotic environment characterized by a low-grade systemic pro-inflammatory and pro-oxidant state, with elevated blood lipid levels. The role of ANGII in lipid accumulation has been little studied, so this review aims to summarize existing reports on the possible mechanism of action of ANGII in inducing lipid accumulation in hepatocytes.
Collapse
Affiliation(s)
| | - Celeste Trejo-Moreno
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos, Mexico
| | - Eduardo Ferat-Osorio
- División de Investigación en Salud, Unidad de Investigación en Epidemiología Clínica, Hospital de Especialidades, Dr. Bernardo Sepúlveda Gutiérrez, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Marisol Méndez-Martínez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Rosas-Salgado
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos, Mexico.
| |
Collapse
|
12
|
Kalidasan V, Suresh D, Zulkifle N, Hwei YS, Kok Hoong L, Rajasuriar R, Theva Das K. Investigating D-Amino Acid Oxidase Expression and Interaction Network Analyses in Pathways Associated With Cellular Stress: Implications in the Biology of Aging. Bioinform Biol Insights 2024; 18:11779322241234772. [PMID: 38425413 PMCID: PMC10903195 DOI: 10.1177/11779322241234772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
D-amino acid oxidase (DAO) is a flavoenzyme that metabolizes D-amino acids by oxidative deamination, producing hydrogen peroxide (H2O2) as a by-product. The generation of intracellular H2O2 may alter the redox-homeostasis mechanism of cells and increase the oxidative stress levels in tissues, associated with the pathogenesis of age-related diseases and organ decline. This study investigates the effect of DAO knockdown using clustered regularly interspaced short palindromic repeats (CRISPR) through an in silico approach on its protein-protein interactions (PPIs) and their potential roles in the process of aging. The target sequence and guide RNA of DAO were designed using the CCTop database, PPI analysis using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, Reactome biological pathway, protein docking using GalaxyTongDock database, and structure analysis. The translated target sequence of DAO lies between amino acids 43 to 50. The 10 proteins that were predicted to interact with DAO are involved in peroxisome pathways such as acyl-coenzyme A oxidase 1 (ACOX1), alanine-glyoxylate and serine-pyruvate aminotransferase (AGXT), catalase (CAT), carnitine O-acetyltransferase (CRAT), glyceronephosphate O-acyltransferase (GNPAT), hydroxyacid oxidase 1 (HAO1), hydroxyacid oxidase 2 (HAO2), trans-L-3-hydroxyproline dehydratase (L3HYPDH), polyamine oxidase (PAOX), and pipecolic acid and sarcosine oxidase (PIPOX). In summary, DAO mutation would most likely reduce activity with its interacting proteins that generate H2O2. However, DAO mutation may result in peroxisomal disorders, and thus, alternative techniques should be considered for an in vivo approach.
Collapse
Affiliation(s)
- V Kalidasan
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Darshinie Suresh
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nurulisa Zulkifle
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Yap Siew Hwei
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Leong Kok Hoong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Reena Rajasuriar
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre of Excellence for Research in AIDS (CERiA), Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kumitaa Theva Das
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| |
Collapse
|
13
|
Guan T, Guo Y, Zhou T, Yu Q, Sun J, Sun B, Zhang G, Kong J. Oxidized SOD1 accelerates cellular senescence in neural stem cells. Stem Cell Res Ther 2024; 15:55. [PMID: 38414053 PMCID: PMC10900543 DOI: 10.1186/s13287-024-03669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Neural stem cells (NSCs), especially human NSCs, undergo cellular senescence characterized by an irreversible proliferation arrest and loss of stemness after prolonged culture. While compelling correlative data have been generated to support the oxidative stress theory as one of the primary determinants of cellular senescence of NSCs, a direct cause-and-effect relationship between the accumulation of oxidation-mediated damage and cellular senescence of NSCs has yet to be firmly established. Human SOD1 (hSOD1) is susceptible to oxidation. Once oxidized, it undergoes aberrant misfolding and gains toxic properties associated with age-related neurodegenerative disorders. The present study aims to examine the role of oxidized hSOD1 in the senescence of NSCs. METHODS NSCs prepared from transgenic mice expressing the wild-type hSOD1 gene were maintained in culture through repeated passages. Extracellular vesicles (EVs) were isolated from culture media at each passage. To selectively knock down oxidized SOD1 in NSCs and EVs, we used a peptide-directed chaperone-mediated protein degradation system named CT4 that we developed recently. RESULTS In NSCs expressing the hSOD1 from passage 5, we detected a significant increase of oxidized hSOD1 and an increased expression of biomarkers of cellular senescence, including upregulation of P53 and SA-β-Gal and cytoplasmic translocation of HMGB1. The removal of oxidized SOD1 remarkably increased the proliferation and stemness of the NSCs. Meanwhile, EVs derived from senescent NSCs carrying the wild-type hSOD1 contained high levels of oxidized hSOD1, which could accelerate the senescence of young NSCs and induce the death of cultured neurons. The removal of oxidized hSOD1 from the EVs abolished their senescence-inducing activity. Blocking oxidized SOD1 on EVs with the SOD1 binding domain of the CT4 peptide mitigated its toxicity to neurons. CONCLUSION Oxidized hSOD1 is a causal factor in the cellular senescence of NSCs. The removal of oxidized hSOD1 is a strategy to rejuvenate NSCs and to improve the quality of EVs derived from senescent cells.
Collapse
Affiliation(s)
- Teng Guan
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Ying Guo
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Ting Zhou
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Yu
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jingyi Sun
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Baoliang Sun
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Guohui Zhang
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
14
|
Díaz M, Valdés-Baizabal C, de Pablo DP, Marin R. Age-Dependent Changes in Nrf2/Keap1 and Target Antioxidant Protein Expression Correlate to Lipoxidative Adducts, and Are Modulated by Dietary N-3 LCPUFA in the Hippocampus of Mice. Antioxidants (Basel) 2024; 13:206. [PMID: 38397804 PMCID: PMC10886099 DOI: 10.3390/antiox13020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
The brain has a high metabolism rate that may generate reactive oxygen and nitrogen species. Consequently, nerve cells require highly efficient antioxidant defenses in order to prevent a condition of deleterious oxidative stress. This is particularly relevant in the hippocampus, a highly complex cerebral area involved in processing superior cognitive functions. Most current evidence points to hippocampal oxidative damage as a causal effect for neurodegenerative disorders, especially Alzheimer's disease. Nuclear factor erythroid-2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) is a master key for the transcriptional regulation of antioxidant and detoxifying systems. It is ubiquitously expressed in brain areas, mainly supporting glial cells. In the present study, we have analyzed the relationships between Nrf2 and Keap1 isoforms in hippocampal tissue in response to aging and dietary long-chain polyunsaturated fatty acids (LCPUFA) supplementation. The possible involvement of lipoxidative and nitrosative by-products in the dynamics of the Nrf2/Keap1 complex was examined though determination of protein adducts, namely malondialdehyde (MDA), 4-hydroxynonenal (HNE), and 3-nitro-tyrosine (NTyr) under basal conditions. The results were correlated to the expression of target proteins heme-oxygenase-1 (HO-1) and glutathione peroxidase 4 (GPx4), whose expressions are known to be regulated by Nrf2/Keap1 signaling activation. All variables in this study were obtained simultaneously from the same preparations, allowing multivariate approaches. The results demonstrate a complex modification of the protein expression patterns together with the formation of adducts in response to aging and diet supplementation. Both parameters exhibited a strong interaction. Noticeably, LCPUFA supplementation to aged animals restored the Nrf2/Keap1/target protein patterns to the status observed in young animals, therefore driving a "rejuvenation" of hippocampal antioxidant defense.
Collapse
Affiliation(s)
- Mario Díaz
- Department of Physics, Faculty of Sciences, University of La Laguna, 38200 Tenerife, Spain
- Instituto Universitario de Neurociencias (IUNE), University of La Laguna, 38320 Tenerife, Spain; (C.V.-B.); (D.P.d.P.); (R.M.)
| | - Catalina Valdés-Baizabal
- Instituto Universitario de Neurociencias (IUNE), University of La Laguna, 38320 Tenerife, Spain; (C.V.-B.); (D.P.d.P.); (R.M.)
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Faculty of Health Sciences, University of La Laguna, 38200 Tenerife, Spain
| | - Daniel Pereda de Pablo
- Instituto Universitario de Neurociencias (IUNE), University of La Laguna, 38320 Tenerife, Spain; (C.V.-B.); (D.P.d.P.); (R.M.)
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Faculty of Health Sciences, University of La Laguna, 38200 Tenerife, Spain
| | - Raquel Marin
- Instituto Universitario de Neurociencias (IUNE), University of La Laguna, 38320 Tenerife, Spain; (C.V.-B.); (D.P.d.P.); (R.M.)
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Faculty of Health Sciences, University of La Laguna, 38200 Tenerife, Spain
- Associate Research Unit ULL-CSIC “Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases”, 38200 Tenerife, Spain
| |
Collapse
|
15
|
Gao F, Zhao Y, Zhang B, Xiao C, Sun Z, Gao Y, Dou X. Orientin alleviates ox-LDL-induced oxidative stress, inflammation and apoptosis in human vascular endothelial cells by regulating Sestrin 1 (SESN1)-mediated autophagy. J Mol Histol 2024; 55:109-120. [PMID: 38165567 DOI: 10.1007/s10735-023-10176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/04/2023] [Indexed: 01/04/2024]
Abstract
Endothelial cells are a crucial component of the vessel-tissue wall and exert an important role in atherosclerosis (AS). To explore the role of Orientin in AS, human vascular endothelial cells (HUVECs) were induced by oxidized low-density lipoprotein (ox-LDL) to simulate the vascular endothelial injury during AS. Cell viability was detected by CCK-8 assay. Oxidative stress and inflammation related markers were measured using kits, RT-qPCR or western blot. Besides, cell apoptosis was assessed with TUNEL staining and cell autophagy was evaluated by LC3 immunofluorescent staining. Additionally, western blot was utilized to evaluate the expression of Sestrin 1 (SESN1) and proteins in AMPK/mTOR signaling. Afterwards, SESN1 was silenced to determine the expression of autophagy-related proteins. The further application of autophagy inhibitor 3-methyladenine (3-MA) was used to clarify the regulatory mechanism of Orientin on autophagy. Results showed that the decreased viability of HUVECs caused by ox-LDL induction was elevated by Orientin. Oxidative stress and inflammation were also attenuated after Orientin addition in HUVECs under ox-LDL condition. Moreover, Orientin suppressed apoptosis and induced autophagy of HUVECs stimulated by ox-LDL, accompanied by enhanced level of phospho (p)-AMPK and declined level of p-mTOR. Interestingly, SESN1 level was elevated by Orientin, and SESN1 depletion alleviated autophagy and reduced p-AMPK expression but enhanced p-mTOR expression. The further experiments indicated that SESN1 silencing or 3-MA addition reversed the inhibitory effects of Orientin on the oxidative stress, inflammation and apoptosis of HUVECs. Collectively, Orientin could induce autophagy by activating SESN1 expression, thereby regulating AMPK/mTOR signaling in ox-LDL-induced HUVECs.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China.
| | - Yongcheng Zhao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Bin Zhang
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Chunwei Xiao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Zhanfa Sun
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Yuan Gao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Xueyong Dou
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| |
Collapse
|
16
|
Li DCW, Rudloff S, Langer HT, Norman K, Herpich C. Age-Associated Differences in Recovery from Exercise-Induced Muscle Damage. Cells 2024; 13:255. [PMID: 38334647 PMCID: PMC10854791 DOI: 10.3390/cells13030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Understanding the intricate mechanisms governing the cellular response to resistance exercise is paramount for promoting healthy aging. This narrative review explored the age-related alterations in recovery from resistance exercise, focusing on the nuanced aspects of exercise-induced muscle damage in older adults. Due to the limited number of studies in older adults that attempt to delineate age differences in muscle discovery, we delve into the multifaceted cellular influences of chronic low-grade inflammation, modifications in the extracellular matrix, and the role of lipid mediators in shaping the recovery landscape in aging skeletal muscle. From our literature search, it is evident that aged muscle displays delayed, prolonged, and inefficient recovery. These changes can be attributed to anabolic resistance, the stiffening of the extracellular matrix, mitochondrial dysfunction, and unresolved inflammation as well as alterations in satellite cell function. Collectively, these age-related impairments may impact subsequent adaptations to resistance exercise. Insights gleaned from this exploration may inform targeted interventions aimed at enhancing the efficacy of resistance training programs tailored to the specific needs of older adults, ultimately fostering healthy aging and preserving functional independence.
Collapse
Affiliation(s)
- Donna Ching Wah Li
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Stefan Rudloff
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| | | | - Kristina Norman
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Catrin Herpich
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| |
Collapse
|
17
|
Gilad N, Mohanam MP, Darlyuk-Saadon I, Heng CKM, Plaschkes I, Benyamini H, Berezhnoy NV, Engelberg D. Asynchronous Pattern of MAPKs' Activity during Aging of Different Tissues and of Distinct Types of Skeletal Muscle. Int J Mol Sci 2024; 25:1713. [PMID: 38338990 PMCID: PMC10855984 DOI: 10.3390/ijms25031713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The MAPK p38α was proposed to be a prominent promoter of skeletal muscle aging. The skeletal muscle tissue is composed of various muscle types, and it is not known if p38α is associated with aging in all of them. It is also not known if p38α is associated with aging of other tissues. JNK and ERK were also proposed to be associated with aging of several tissues. Nevertheless, the pattern of p38α, JNK, and ERK activity during aging was not documented. Here, we documented the levels of phosphorylated/active p38α, Erk1/2, and JNKs in several organs as well as the soleus, tibialis anterior, quadriceps, gastrocnemius, and EDL muscles of 1-, 3-, 6-, 13-, 18-, and 24-month-old mice. We report that in most tissues and skeletal muscles, the MAPKs' activity does not change in the course of aging. In most tissues and muscles, p38α is in fact active at younger ages. The quadriceps and the lungs are exceptions, where p38α is significantly active only in mice 13 months old or older. Curiously, levels of active JNK and ERKs are also elevated in aged lungs and quadriceps. RNA-seq analysis of the quadriceps during aging revealed downregulation of proteins related to the extra-cellular matrix (ECM) and ERK signaling. A panel of mRNAs encoding cell cycle inhibitors and senescence-associated proteins, considered to be aging markers, was not found to be elevated. It seems that the pattern of MAPKs' activation in aging, as well as expression of known 'aging' components, are tissue- and muscle type-specific, supporting a notion that the process of aging is tissue- and even cell-specific.
Collapse
Affiliation(s)
- Nechama Gilad
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
| | - Manju Payini Mohanam
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ilona Darlyuk-Saadon
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
| | - C. K. Matthew Heng
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Nikolay V. Berezhnoy
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - David Engelberg
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
18
|
Radwan IT, Ghazawy NAR, Alkhaibari AM, Gattan HS, Alruhaili MH, Selim A, Salem ME, AbdelFattah EA, Hamama HM. Nanostructure Lipid Carrier of Curcumin Co-Delivered with Linalool and Geraniol Monoterpenes as Acetylcholinesterase Inhibitor of Culex pipiens. Molecules 2024; 29:271. [PMID: 38202854 PMCID: PMC10780757 DOI: 10.3390/molecules29010271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: A molecular hybridization docking approach was employed to develop and detect a new category of naturally activated compounds against Culex pipiens as acetylcholinesterase inhibitors via designing a one-pot multicomponent nano-delivery system. (2) Methods: A nanostructure lipid carrier (NLC), as a second generation of solid lipid nanoparticles, was used as a carrier to deliver the active components of curcumin (Cur), geraniol (G), and linalool (L) in one nanoformulation after studying their applicability in replacing the co-crystallized ligand imidacloprid. (3) Results: The prepared nanostructure showed spherical-shaped, polydisperse particles ranging in size from 50 nm to 300 nm, as found using a transmission electron microscope. Additionally, dynamic light scattering confirmed an average size of 169 nm and a highly stable dispersed solution, as indicated by the zeta potential (-38 mV). The prepared NLC-Cur-LG displayed competitive, high-malignancy insecticidal activity against fourth instar C. pipiens with an elevated rate of death of 0.649 µg/mL. The treatment, due to the prepared nanostructure, affects oxidative stress enzymes, e.g., hydrogen peroxide (4 ppm), superoxide dismutase (SOD) (0.03 OD/mg), and protein carbonyl (0.08 OD/mg), and there are observable upward and downward fluctuations when using different concentrations of NLC-Cur-LG, suggesting significant problems in its foreseeable insecticidal activity. The acetylcholinesterase activity was assessed by an enzyme inhibition assay, and strengthened inhibition occurred due to the encapsulated NLCs (IC50 = 1.95 µg/mL). An investigation of the gene expression by Western blotting, due to treatment with NLC-Cur-LG, revealed a severe reduction of nearly a quarter of what was seen in the untreated group. As a preliminary safety step, the nanoformulation's toxicity against normal cell lines was tested, and a reassuring result was obtained of IC50 = 158.1 µg/mL for the normal lung fibroblast cell line. (4) Conclusions: the synthesized nanoformulation, NLC-Cur-LG, is a useful insecticide in field conditions.
Collapse
Affiliation(s)
- Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo 11835, Egypt
| | | | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hattan S. Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia;
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21362, Saudi Arabia
| | - Mohammed H. Alruhaili
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21362, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Mostafa E. Salem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| | | | - Heba M. Hamama
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
19
|
Fila M, Pawlowska E, Szczepanska J, Blasiak J. Different Aspects of Aging in Migraine. Aging Dis 2023; 14:2028-2050. [PMID: 37199585 PMCID: PMC10676778 DOI: 10.14336/ad.2023.0313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/13/2023] [Indexed: 05/19/2023] Open
Abstract
Migraine is a common neurological disease displaying an unusual dependence on age. For most patients, the peak intensity of migraine headaches occurs in 20s and lasts until 40s, but then headache attacks become less intense, occur less frequently and the disease is more responsive to therapy. This relationship is valid in both females and males, although the prevalence of migraine in the former is 2-4 times greater than the latter. Recent concepts present migraine not only as a pathological event, but rather as a part of evolutionary adaptive response to protect organism against consequences of stress-induced brain energy deficit. However, these concepts do not fully explain that unusual dependence of migraine prevalence on age. Many aspects of aging, both molecular/cellular and social/cognitive, are interwound in migraine pathogenesis, but they neither explain why only some persons are affected by migraine, nor suggest any causal relationship. In this narrative/hypothesis review we present information on associations of migraine with chronological aging, brain aging, cellular senescence, stem cell exhaustion as well as social, cognitive, epigenetic, and metabolic aging. We also underline the role of oxidative stress in these associations. We hypothesize that migraine affects only individuals who have inborn, genetic/epigenetic, or acquired (traumas, shocks or complexes) migraine predispositions. These predispositions weakly depend on age and affected individuals are more prone to migraine triggers than others. Although the triggers can be related to many aspects of aging, social aging may play a particularly important role as the prevalence of its associated stress has a similar age-dependence as the prevalence of migraine. Moreover, social aging was shown to be associated with oxidative stress, important in many aspects of aging. In perspective, molecular mechanisms underlying social aging should be further explored and related to migraine with a closer association with migraine predisposition and difference in prevalence by sex.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
20
|
Jung HY, Kwon HJ, Hahn KR, Kim W, Yoo DY, Yoon YS, Kim DW, Hwang IK. Tat-heat shock protein 10 ameliorates age-related phenotypes by facilitating neuronal plasticity and reducing age-related genes in the hippocampus. Aging (Albany NY) 2023; 15:12723-12737. [PMID: 38011257 DOI: 10.18632/aging.205182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/06/2023] [Indexed: 11/29/2023]
Abstract
We investigated the effects of heat shock protein 10 (HSP10) protein on memory function, hippocampal neurogenesis, and other related genes/proteins in adult and aged mice. To translocate the HSP10 protein into the hippocampus, the Tat-HSP10 fusion protein was synthesized, and Tat-HSP10, not HSP10, was successfully delivered into the hippocampus based on immunohistochemistry and western blotting. Tat-HSP10 (0.5 or 2.0 mg/kg) or HSP10 (control protein, 2.0 mg/kg) was administered daily to 3- and 21-month-old mice for 3 months, and observed the senescence maker P16 was significantly increased in aged mice and the treatment with Tat-HSP10 significantly decreased P16 expression in the hippocampus of aged mice. In novel object recognition and Morris water maze tests, aged mice demonstrated decreases in exploratory preferences, exploration time, distance moved, number of object contacts, and escape latency compared to adult mice. Treatment with Tat-HSP10 significantly improved exploratory preferences, the number of object contacts, and the time spent swimming in the target quadrant in aged mice but not adults. Administration of Tat-HSP10 increased the number of proliferating cells and differentiated neuroblasts in the dentate gyrus of adult and aged mice compared to controls, as determined by immunohistochemical staining for Ki67 and doublecortin, respectively. Additionally, Tat-HSP10 treatment significantly mitigated the reduction in sirtuin 1 mRNA level, N-methyl-D-aspartate receptor 1, and postsynaptic density 95 protein levels in the hippocampus of aged mice. In contrast, Tat-HSP10 treatment significantly increased sirtuin 3 protein levels in both adult and aged mouse hippocampus. These suggest that Tat-HSP10 can potentially reduce hippocampus-related aging phenotypes.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
- Department of Veterinary Medicine and Institute of Veterinary Science, Chungnam National University, Daejeon 34134, South Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
- Department of Anatomy, College of Veterinary Medicine, and Veterinary Science Research Institute, Konkuk University, Seoul 05030, South Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
21
|
Bellanti F, Lo Buglio A, Quiete S, Dobrakowski M, Kasperczyk A, Kasperczyk S, Vendemiale G. Sarcopenia Is Associated with Changes in Circulating Markers of Antioxidant/Oxidant Balance and Innate Immune Response. Antioxidants (Basel) 2023; 12:1992. [PMID: 38001845 PMCID: PMC10669556 DOI: 10.3390/antiox12111992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: The involvement of redox balance alterations and innate immunity is suggested to play a key role in the pathogenesis of sarcopenia. This investigation aimed to define and relate modifications in circulating markers of redox homeostasis and the innate immune response in human sarcopenia. (2) Methods: A total of 32 subjects aged >65 years old and affected by sarcopenia according to the second "European Working Group on sarcopenia in older people" guidelines were compared with 40 non-sarcopenic age-matched controls. To assess systemic redox homeostasis, reduced (GSH) and oxidized (GSSG) blood glutathione and plasma malondialdehyde (MDA)- and 4-hydroxy-2,3-nonenal (HNE)-protein adducts were measured. Immune cells and circulating interleukins were determined to compare the innate immune response between both groups. (3) Results: Impaired redox balance in sarcopenic patients, characterized by a high blood GSSG/GSH ratio and plasma MDA/HNE-protein adducts, was sustained by reduced antioxidants in peripheral blood mononuclear cells. Furthermore, sarcopenic patients showed higher neutrophil-to-lymphocyte ratios and interleukin (IL)-4, IL-6, IL-10, and tumor necrosis factor (TNF) with respect to non-sarcopenic patients. Linear regression analysis resulted in a strong association between redox balance and immune response markers in the sarcopenic group. (4) Conclusions: These results support the interplay between redox homeostasis alteration and disruption of the innate immune response in the pathogenesis of sarcopenia.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (A.L.B.); (S.Q.); (G.V.)
| | - Aurelio Lo Buglio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (A.L.B.); (S.Q.); (G.V.)
| | - Stefano Quiete
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (A.L.B.); (S.Q.); (G.V.)
| | - Michał Dobrakowski
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland; (M.D.); (A.K.); (S.K.)
| | - Aleksandra Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland; (M.D.); (A.K.); (S.K.)
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland; (M.D.); (A.K.); (S.K.)
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (A.L.B.); (S.Q.); (G.V.)
| |
Collapse
|
22
|
Zhang Y, Zhao Y, Rong J, Liu K, Zhan Y, Chai Y, Ning J, Yuan W. A bibliometric analysis of inflammation in sarcopenia from 2007 to 2022. Exp Gerontol 2023; 183:112316. [PMID: 37862732 DOI: 10.1016/j.exger.2023.112316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
OBJECTIVE In recent years, the impact of inflammation regulation on the progression of sarcopenia has garnered significant attention in research. However, there has been a lack of bibliometric analysis on the literature pertaining to inflammation in sarcopenia. This study was designed for the purpose of exploring the current research trends in this field as well as general situations and hot spots through bibliometric analysis. METHODS Searches were performed on the Web of Science Core Collection for articles related to inflammation in sarcopenia from 2007 to 2022, and selected in compliance with PRISMA guidelines. A variety of data were analyzed and visualized using VOSviewer and CiteSpace, including countries, institutions, authors, keywords, journals, and publications. RESULTS 1833 articles were obtained in the last 16 years in all. The number of publications and citations increased from 2007 to 2022, with a notable rise occurring after 2016. Based on the results, the United States, the University of Melbourne, Nutrients, and Marzetti Emanuele were the most productive countries, institutions, journals, and authors, respectively. The primary keywords were oxidative stress and insulin resistance, and the burst detection analysis of keywords found that there is a possibility that future research will focus on "Inflammatory Bowel Disease". CONCLUSION This is the first bibliometric analysis of inflammation in sarcopenia. The interaction between oxidative stress, insulin resistance and inflammation in sarcopenia is regarded as the current research priorities. As sarcopenia becomes more prevalent, a focus will be placed on determining the molecular mechanisms and therapeutic targets for regulating inflammation to intervene in sarcopenia.
Collapse
Affiliation(s)
- Yujie Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqi Rong
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kaoqiang Liu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yunfan Zhan
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongli Chai
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiawei Ning
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei'an Yuan
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
23
|
Cui K, Meng W, Li Z, Zeng X, Li X, Ge X. Dynamics, association, and temporal sequence of cognitive function and frailty: a longitudinal study among Chinese community-dwelling older adults. BMC Geriatr 2023; 23:658. [PMID: 37833637 PMCID: PMC10571451 DOI: 10.1186/s12877-023-04328-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Little is known about the association of longitudinal dynamics between cognitive function and frailty in Chinese older adults. The temporal sequences between cognitive function and frailty remains unclear. Our study investigates this directionality association using longitudinal data. METHODS Latent growth and multivariate latent growth models were employed to examine dynamics of cognition and frailty and their association among 2824 older adults in China. Cross-lagged panel analyses were used to assess the temporal sequences between frailty and cognition. The relation between cognitive domains and frailty was also examined using aforementioned methods. RESULTS Cognitive function was negatively associated with frailty status. Higher initial level of cognition indicated lower baseline level (β=-0.175, P < 0.001) and change rate (β=-0.041, P = 0.002) of frailty. We observed a reciprocal association between frailty and cognitive function rather than a unidirectional causal relationship. The initial cognitive performance for all components were negatively associated with baseline (β ranged between - 0.098 to -0.023) and change rate (β ranged between - 0.007 to -0.024) of frail status. No consistent associations between change rate of cognitive components and either initial level or change rate of frailty were detected. CONCLUSIONS Our study detected a reciprocal association between cognition and frailty rather than a unidirectional causal relationship. Our results also revealed different connections between cognitive performance and frailty across diverse cognitive domains.
Collapse
Affiliation(s)
- Kai Cui
- School of Public Health, Jinzhou Medical University, 40 Songpo Road, Jinzhou, 121000, P. R. China
| | - Weihan Meng
- School of Public Health, Jinzhou Medical University, 40 Songpo Road, Jinzhou, 121000, P. R. China
| | - Zhiqiang Li
- School of Public Health, Jinzhou Medical University, 40 Songpo Road, Jinzhou, 121000, P. R. China
| | - Xinning Zeng
- School of Public Health, Jinzhou Medical University, 40 Songpo Road, Jinzhou, 121000, P. R. China
| | - Xiaozhe Li
- School of Public Health, Jinzhou Medical University, 40 Songpo Road, Jinzhou, 121000, P. R. China
| | - Xiaoyan Ge
- School of Public Health, Jinzhou Medical University, 40 Songpo Road, Jinzhou, 121000, P. R. China.
| |
Collapse
|
24
|
Hayashi T, Kato N, Furudoi K, Hayashi I, Kyoizumi S, Yoshida K, Kusunoki Y, Furukawa K, Imaizumi M, Hida A, Tanabe O, Ohishi W. Early-life atomic-bomb irradiation accelerates immunological aging and elevates immune-related intracellular reactive oxygen species. Aging Cell 2023; 22:e13940. [PMID: 37539495 PMCID: PMC10577552 DOI: 10.1111/acel.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023] Open
Abstract
Reactive oxygen species (ROS) play an important role in immune responses; however, their excessive production and accumulation increases the risk of inflammation-related diseases. Although irradiation is known to accelerate immunological aging, the underlying mechanism is still unclear. To determine the possible involvement of ROS in this mechanism, we examined 10,023 samples obtained from 3752 atomic-bomb survivors in Hiroshima and Nagasaki, who participated in repeated biennial examinations from 2008 to 2016, for the effects of aging and radiation exposure on intracellular ROS (H2 O2 and O2 •- ) levels, percentages of T-cell subsets, and the effects of radiation exposure on the relationship between cell percentages and intracellular ROS levels in T-cell subsets. The cell percentages and intracellular ROS levels in T-cell subsets were measured using flow cytometry, with both fluorescently labeled antibodies and the fluorescent reagents, carboxy-DCFDA and hydroethidine. The percentages of naïve CD4+ and CD8+ T cells decreased with increasing age and radiation dose, while the intracellular O2 •- levels in central and effector memory CD8+ T cells increased. Additionally, when divided into three groups based on the percentages of naïve CD4+ T cells, intracellular O2 •- levels of central and effector memory CD8+ T cells were significantly elevated with the lowest radiation dose group in the naïve CD4+ T cells. Thus, the radiation exposure-induced decrease in the naïve CD4+ T cell pool size may reflect decreased immune function, resulting in increased intracellular ROS levels in central and effector memory CD8+ T cells, and increased intracellular oxidative stress.
Collapse
Affiliation(s)
- Tomonori Hayashi
- Department of Molecular BiosciencesRadiation Effects Research FoundationHiroshimaJapan
- Biosample Research CenterRadiation Effects Research FoundationHiroshimaJapan
| | - Naohiro Kato
- Department of StatisticsRadiation Effects Research FoundationHiroshimaJapan
| | - Keiko Furudoi
- Biosample Research CenterRadiation Effects Research FoundationHiroshimaJapan
| | - Ikue Hayashi
- Central Research LaboratoryHiroshima University Faculty of Medicine Graduate School of Biomedical and Health SciencesHiroshimaJapan
| | - Seishi Kyoizumi
- Department of Molecular BiosciencesRadiation Effects Research FoundationHiroshimaJapan
| | - Kengo Yoshida
- Department of Molecular BiosciencesRadiation Effects Research FoundationHiroshimaJapan
| | - Yoichiro Kusunoki
- Department of Molecular BiosciencesRadiation Effects Research FoundationHiroshimaJapan
| | | | - Misa Imaizumi
- Biosample Research CenterRadiation Effects Research FoundationHiroshimaJapan
- Department of Nagasaki Clinical StudiesRadiation Effects Research FoundationNagasakiJapan
| | - Ayumi Hida
- Department of Nagasaki Clinical StudiesRadiation Effects Research FoundationNagasakiJapan
| | - Osamu Tanabe
- Biosample Research CenterRadiation Effects Research FoundationHiroshimaJapan
| | - Waka Ohishi
- Department of Hiroshima Clinical StudiesRadiation Effects Research FoundationHiroshimaJapan
| |
Collapse
|
25
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 428] [Impact Index Per Article: 214.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
26
|
Javali PS, Sekar M, Kumar A, Thirumurugan K. Dynamics of redox signaling in aging via autophagy, inflammation, and senescence. Biogerontology 2023; 24:663-678. [PMID: 37195483 DOI: 10.1007/s10522-023-10040-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
Review paper attempts to explain the dynamic aspects of redox signaling in aging through autophagy, inflammation, and senescence. It begins with ROS source in the cell, then states redox signaling in autophagy, and regulation of autophagy in aging. Next, we discuss inflammation and redox signaling with various pathways involved: NOX pathway, ROS production via TNF-α, IL-1β, xanthine oxidase pathway, COX pathway, and myeloperoxidase pathway. Also, we emphasize oxidative damage as an aging marker and the contribution of pathophysiological factors to aging. In senescence-associated secretory phenotypes, we link ROS with senescence, aging disorders. Relevant crosstalk between autophagy, inflammation, and senescence using a balanced ROS level might reduce age-related disorders. Transducing the context-dependent signal communication among these three processes at high spatiotemporal resolution demands other tools like multi-omics aging biomarkers, artificial intelligence, machine learning, and deep learning. The bewildering advancement of technology in the above areas might progress age-related disorders diagnostics with precision and accuracy.
Collapse
Affiliation(s)
- Prashanth S Javali
- #412J, Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Mouliganesh Sekar
- #412J, Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ashish Kumar
- #412J, Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Kavitha Thirumurugan
- #412J, Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
27
|
Parkhitko AA, Filine E, Tatar M. Combinatorial interventions in aging. NATURE AGING 2023; 3:1187-1200. [PMID: 37783817 PMCID: PMC11194689 DOI: 10.1038/s43587-023-00489-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/15/2023] [Indexed: 10/04/2023]
Abstract
Insight on the underlying mechanisms of aging will advance our ability to extend healthspan, treat age-related pathology and improve quality of life. Multiple genetic and pharmacological manipulations extend longevity in different species, yet monotherapy may be relatively inefficient, and we have limited data on the effect of combined interventions. Here we summarize interactions between age-related pathways and discuss strategies to simultaneously retard these in different organisms. In some cases, combined manipulations additively increase their impact on common hallmarks of aging and lifespan, suggesting they quantitatively participate within the same pathway. In other cases, interactions affect different hallmarks, suggesting their joint manipulation may independently maximize their effects on lifespan and healthy aging. While most interaction studies have been conducted with invertebrates and show varying levels of translatability, the conservation of pro-longevity pathways offers an opportunity to identify 'druggable' targets relevant to multiple human age-associated pathologies.
Collapse
Affiliation(s)
- Andrey A Parkhitko
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA.
| | - Elizabeth Filine
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Marc Tatar
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, USA.
| |
Collapse
|
28
|
Shimagami M, Sugaya M, Kimura H, Shindo K. Identification of bolegrevilol B and C as novel antioxidant compounds in Suillus grevillei mushroom. Biosci Biotechnol Biochem 2023; 87:1139-1144. [PMID: 37458792 DOI: 10.1093/bbb/zbad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 09/24/2023]
Abstract
Suillus grevillei is a popular species of mushroom available worldwide. In this study, we isolated compounds, bolegrevilol B and bolegrevilol C, from the mushroom and observed their potent lipid peroxidation-inhibiting activity. The structures of bolegrevilol B and bolegrevilol C were elucidated as 3-geranylgeranyl-1,2,4-trihydroxybenzene and 3-geranylgeranyl-1,2-dihydroxy-4-methoxybenzene, respectively, through high-resolution electrospray ionization mass spectrometry (-) and 1D and 2D nuclear magnetic resonance analyses. Bolegrevilol B and C inhibited lipid peroxidation and exhibited IC50 values of 2.0 ± 0.29 µm and 1.0 ± 0.13 µm, respectively. Furthermore, bolegrevilol B and C demonstrated potent neuroprotective activities in neuronal hybridoma N18-RE-105 cells against L-glutamate toxicity (EC50 of 1.8 ± 1.7 n m and 7.2 ± 6.9 n m, respectively). Bolegrevilol B was found in nature for the first time, and, to the best of our knowledge, this is the first study to report the antioxidant activities of bolegrevilol B and C.
Collapse
Affiliation(s)
- Maho Shimagami
- Department of Food and Nutrition, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Maho Sugaya
- Department of Food and Nutrition, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Hinako Kimura
- Department of Food and Nutrition, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Kazutoshi Shindo
- Department of Food and Nutrition, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
29
|
Oliva CA, Lira M, Jara C, Catenaccio A, Mariqueo TA, Lindsay CB, Bozinovic F, Cavieres G, Inestrosa NC, Tapia-Rojas C, Rivera DS. Long-term social isolation stress exacerbates sex-specific neurodegeneration markers in a natural model of Alzheimer's disease. Front Aging Neurosci 2023; 15:1250342. [PMID: 37810621 PMCID: PMC10557460 DOI: 10.3389/fnagi.2023.1250342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Social interactions have a significant impact on health in humans and animal models. Social isolation initiates a cascade of stress-related physiological disorders and stands as a significant risk factor for a wide spectrum of morbidity and mortality. Indeed, social isolation stress (SIS) is indicative of cognitive decline and risk to neurodegenerative conditions, including Alzheimer's disease (AD). This study aimed to evaluate the impact of chronic, long-term SIS on the propensity to develop hallmarks of AD in young degus (Octodon degus), a long-lived animal model that mimics sporadic AD naturally. We examined inflammatory factors, bioenergetic status, reactive oxygen species (ROS), oxidative stress, antioxidants, abnormal proteins, tau protein, and amyloid-β (Aβ) levels in the hippocampus of female and male degus that were socially isolated from post-natal and post-weaning until adulthood. Additionally, we explored the effect of re-socialization following chronic isolation on these protein profiles. Our results showed that SIS promotes a pro-inflammatory scenario more severe in males, a response that was partially mitigated by a period of re-socialization. In addition, ATP levels, ROS, and markers of oxidative stress are severely affected in female degus, where a period of re-socialization fails to restore them as it does in males. In females, these effects might be linked to antioxidant enzymes like catalase, which experience a decline across all SIS treatments without recovery during re-socialization. Although in males, a previous enzyme in antioxidant pathway diminishes in all treatments, catalase rebounds during re-socialization. Notably, males have less mature neurons after chronic isolation, whereas phosphorylated tau and all detectable forms of Aβ increased in both sexes, persisting even post re-socialization. Collectively, these findings suggest that long-term SIS may render males more susceptible to inflammatory states, while females are predisposed to oxidative states. In both scenarios, the accumulation of tau and Aβ proteins increase the individual susceptibility to early-onset neurodegenerative conditions such as AD.
Collapse
Affiliation(s)
- Carolina A. Oliva
- Centro para la Transversalización de Género en I+D+i+e, Vicerrectoría de Investigación y Doctorados, Universidad Autónoma de Chile, Santiago, Chile
| | - Matías Lira
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alejandra Catenaccio
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Trinidad A. Mariqueo
- Centro de Investigaciones Médicas, Laboratorio de Neurofarmacología, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Carolina B. Lindsay
- Laboratory of Neurosystems, Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Grisel Cavieres
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Nibaldo C. Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Daniela S. Rivera
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| |
Collapse
|
30
|
Radwan IT, Sayed-Ahmed MZ, Ghazawy NA, Alqahtani SS, Ahmad S, Alam N, Alkhaibari AM, Ali MS, Selim A, AbdelFattah EA. Effect of nanostructure lipid carrier of methylene blue and monoterpenes as enzymes inhibitor for Culex pipiens. Sci Rep 2023; 13:12522. [PMID: 37532732 PMCID: PMC10397322 DOI: 10.1038/s41598-023-39385-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Solid lipid nanoparticles second generation, nanostructure lipid carrier (NLC), is one of the most important biodegradable nanoparticles. Nanostructure Lipid carrier (NLC) was used to encapsulate methylene blue (MB) dye, carvacrol and citronellal and their efficacy as insecticidal against Culex pipiens (Cx. pipiens) were distinguished. The prepared nanoformulation revealed very good physicochemical properties, especially the homogeneity of the particle size. Transmission electron microscope showed spherical shaped nanoparticles within range less than 200 nm. The prepared NLC-MB-MT system showed a very competitive insecticidal activity and high virulence against the mosquito larvae with higher mortality rate of LC50 of 0.141 µl/mL, in addition to high level of Oxidative stress parameters obtained through all the tested enzymes including hydrogen peroxide (4.8 ppm), protein carbonyl amount (0.12 OD/mg protein), ascorbic acid (0.15 mg) and Superoxide dismutase (SOD) showed strong increasing (0.09 OD/mg protein/min) at 6 µg/mL, respectively. Whereas paradoxical results of the oxidative stress enzymes were obtained from different concentration of nanoformulation that introduce a convenient reason for their potential insecticidal effect. The cytotoxic effect of NLC-MB-MT was evaluated using WI38 human lung cell lines, the LC50 was 6.4 mg/mL. The low cytotoxic reactivity towards the tested cell line makes the NLC-MB-MT nanoformulation has its promising insecticidal efficacy. Molecular docking study for each component were done against acetylcholine esterase protein and accepted binding modes achieved by the three compounds.
Collapse
Affiliation(s)
- Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt.
| | - Mohamed Z Sayed-Ahmed
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia.
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | | | - Saad S Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sarfaraz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Nawazish Alam
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Kingdom of Saudi Arabia
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | | |
Collapse
|
31
|
Kushwah N, Bora K, Maurya M, Pavlovich MC, Chen J. Oxidative Stress and Antioxidants in Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1379. [PMID: 37507918 PMCID: PMC10376043 DOI: 10.3390/antiox12071379] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress plays a crucial role in aging-related eye diseases, including age-related macular degeneration (AMD), cataracts, and glaucoma. With age, antioxidant reparative capacity decreases, and excess levels of reactive oxygen species produce oxidative damage in many ocular cell types underling age-related pathologies. In AMD, loss of central vision in the elderly is caused primarily by retinal pigment epithelium (RPE) dysfunction and degeneration and/or choroidal neovascularization that trigger malfunction and loss of photo-sensing photoreceptor cells. Along with various genetic and environmental factors that contribute to AMD, aging and age-related oxidative damage have critical involvement in AMD pathogenesis. To this end, dietary intake of antioxidants is a proven way to scavenge free radicals and to prevent or slow AMD progression. This review focuses on AMD and highlights the pathogenic role of oxidative stress in AMD from both clinical and experimental studies. The beneficial roles of antioxidants and dietary micronutrients in AMD are also summarized.
Collapse
Affiliation(s)
| | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
32
|
Keshavarz M, Xie K, Bano D, Ehninger D. Aging - what it is and how to measure it. Mech Ageing Dev 2023:111837. [PMID: 37302556 DOI: 10.1016/j.mad.2023.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/27/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
The current understanding of the biology of aging is largely based on research aimed at identifying factors that influence lifespan. However, lifespan as a sole proxy measure of aging has limitations because it can be influenced by specific pathologies (not generalized physiological deterioration in old age). Hence, there is a great need to discuss and design experimental approaches that are well-suited for studies targeting the biology of aging, rather than the biology of specific pathologies that restrict the lifespan of a given species. For this purpose, we here review various perspectives on aging, discuss agreement and disagreement among researchers on the definition of aging, and show that while slightly different aspects are emphasized, a widely accepted feature, shared across many definitions, is that aging is accompanied by phenotypic changes that occur in a population over the course of an average lifespan. We then discuss experimental approaches that are in line with these considerations, including multidimensional analytical frameworks as well as designs that facilitate the proper assessment of intervention effects on aging rate. The proposed framework can guide discovery approaches to aging mechanisms in all key model organisms (e.g., mouse, fish models, D. melanogaster, C. elegans) as well as in humans.
Collapse
Affiliation(s)
- Maryam Keshavarz
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
33
|
Stow JL, Sweet MJ. Macrophage Nrf 2 the rescue. J Cell Biol 2023; 222:e202305036. [PMID: 37213075 PMCID: PMC10203544 DOI: 10.1083/jcb.202305036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
The exuberant phagocytosis of apoptotic cell corpses by macrophages in Drosophila embryos creates highly oxidative environments. Stow and Sweet discuss work from Clemente and Weavers (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202203062) showing for the first time how macrophage Nrf2 is primed to help sustain immune function and mitigate bystander oxidative damage.
Collapse
Affiliation(s)
- Jennifer L. Stow
- Institute for Molecular Bioscience (IMB), IMB Centre for Cell Biology of Chronic Disease and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience (IMB), IMB Centre for Cell Biology of Chronic Disease and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
34
|
Saud Gany SL, Chin KY, Tan JK, Aminuddin A, Makpol S. Curcumin as a Therapeutic Agent for Sarcopenia. Nutrients 2023; 15:nu15112526. [PMID: 37299489 DOI: 10.3390/nu15112526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Sarcopenia is the progressive loss of muscle mass, strength, and functions as we age. The pathogenesis of sarcopenia is underlined by oxidative stress and inflammation. As such, it is reasonable to suggest that a natural compound with both antioxidant and anti-inflammatory activities could prevent sarcopenia. Curcumin, a natural compound derived from turmeric with both properties, could benefit muscle health. This review aims to summarise the therapeutic effects of curcumin on cellular, animal, and human studies. The available evidence found in the literature showed that curcumin prevents muscle degeneration by upregulating the expression of genes related to protein synthesis and suppressing genes related to muscle degradation. It also protects muscle health by maintaining satellite cell number and function, protecting the mitochondrial function of muscle cells, and suppressing inflammation and oxidative stress. However, it is noted that most studies are preclinical. Evidence from randomised control trials in humans is lacking. In conclusion, curcumin has the potential to be utilised to manage muscle wasting and injury, pending more evidence from carefully planned human clinical trials.
Collapse
Affiliation(s)
- Siti Liyana Saud Gany
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
35
|
Sagaradze G, Monakova A, Efimenko A. Potency Assays for Mesenchymal Stromal Cell Secretome-Based Products for Tissue Regeneration. Int J Mol Sci 2023; 24:ijms24119379. [PMID: 37298329 DOI: 10.3390/ijms24119379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Adult stem cells maintaining tissue homeostasis and regeneration are tightly regulated by their specific microenvironments or stem cell niches. The dysfunction of niche components may alter the activity of stem cells and ultimately lead to intractable chronic or acute disorders. To overcome this dysfunction, niche-targeting regenerative medicine treatments such as gene, cell, and tissue therapy are actively investigated. Here, multipotent mesenchymal stromal cells (MSCs), and particularly their secretomes, are of high interest due to their potency to recover and reactivate damaged or lost stem cell niches. However, a workflow for the development of MSC secretome-based products is not fully covered by regulatory authorities, and and this issue significantly complicates their clinical translation and has possibly been expressed in a huge number of failed clinical trials. One of the most critical issues in this regard relates to the development of potency assays. In this review, guidelines for biologicals and cell therapies are considered to be applied for the development of potency assays for the MSC secretome-based products that aim for tissue regeneration. Specific attention is paid to their possible effects on stem cell niches and to a spermatogonial stem cell niche in particular.
Collapse
Affiliation(s)
- Georgy Sagaradze
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy av., 119192 Moscow, Russia
| | - Anna Monakova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy av., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy av., 119192 Moscow, Russia
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy av., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy av., 119192 Moscow, Russia
| |
Collapse
|
36
|
Guo Y, Li D, Hu Y. Appraising the associations between systemic iron status and epigenetic clocks: A genetic correlation and bidirectional Mendelian Randomization study. Am J Clin Nutr 2023:S0002-9165(23)48897-1. [PMID: 37146762 DOI: 10.1016/j.ajcnut.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Genetic correlations and bidirectional causal effects between systemic iron status and epigenetic clocks have not been fully investigated, although observational studies have suggested systemic iron status is associated with human aging. OBJECTIVES We explored the genetic correlations and bidirectional causal effects between systemic iron status and epigenetic clocks. METHODS Leveraging large-scale genome-wide association study summary-level statistics for four systemic iron status biomarkers (ferritin, serum iron, transferrin, transferrin saturation) (N = 48,972) and four measures for epigenetic age (GrimAge, PhenoAge, IEAA, HannumAge) (N = 34,710), genetic correlations and bidirectional causal effects were estimated between them mainly by applying linkage disequilibrium score (LDSC) regression, Mendelian randomization (MR), and MR based on Bayesian model averaging (MR-BMA). The main analyses were conducted employing multiplicative random effects inverse variance weighted MR. MR-Egger, weighted median, weighted mode, and MR-PRESSO were performed as sensitivity analyses to support the robustness of causal effects. RESULTS The LDSC results illustrated genetic correlations (Rg) between serum iron and PhenoAge (Rg = 0.1971, p = 0.048) and between transferrin saturation and PhenoAge (Rg = 0.196, p = 0.0469). We found that increased ferritin and transferrin saturation significantly increased all four measures of epigenetic age acceleration (all p < 0.0125, beta > 0). Each standard deviation genetically increases in serum iron only significantly associated with increased IEAA acceleration (beta = 0.36, 95% CI 0.16-0.57, p = 6.01E-04) and increased HannumAge acceleration (beta = 0.32, 95% CI 0.11-0.52, p = 2.69E-03). Evidence showed a suggestively significant causal effect of transferrin on epigenetic age acceleration (all 0.0125 < p <0.05). Additionally, reverse MR study indicated no significant causal effect of epigenetic clocks on systemic iron status. CONCLUSIONS All four iron status biomarkers had a significant or suggestively significant causal effect on epigenetic clocks, whereas reverse MR studies did not.
Collapse
Affiliation(s)
- Yu Guo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150086, China
| | - Dahe Li
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Yang Hu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150086, China.
| |
Collapse
|
37
|
Park H, Lee EJ, Moon D, Yun H, Cha A, Hwang I, Kim HS. Discovery of 3,7-dimethoxyflavone that inhibits liver fibrosis based on dual mechanisms of antioxidant and inhibitor of activated hepatic stellate cell. Free Radic Biol Med 2023; 204:195-206. [PMID: 37146699 DOI: 10.1016/j.freeradbiomed.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
The important pathway toward liver fibrosis is the TGF-β1-induced activation of hepatic stellate cells (HSCs). To discover chemicals to inhibit liver fibrosis, we screened 3000 chemicals using cell array system where human HSCs line LX2 cells are activated with TGF-β1. We discovered 3,7-dimethoxyflavone (3,7-DMF) as a chemical to inhibit TGF-β1-induced activation of HSCs. In the thioacetamide (TAA)-induced mouse liver fibrosis model, 3,7-DMF treatment via intraperitoneal or oral administration prevented liver fibrosis as well as reversed the established fibrosis in the separate experiments. It also reduced liver enzyme elevation, suggesting protective effect on hepatocytes because it has antioxidant effect. Treatment with 3,7-DMF induced antioxidant genes, quenches ROS away, and improved the hepatocyte condition that was impaired by H2O2 as reflected by restoration of HNF-4α and albumin. In the TAA-mouse liver injury model also, TAA significantly increased ROS in the liver which led to decrease of albumin and nuclear expression of HNF-4α, increase of TGF-β1 and hepatocytes death, accumulation of lipid, and extra-nuclear localization of HMGB1. Treatment of 3,7-DMF normalized all these pathologic findings and prevented or resolved liver fibrosis. In conclusion, we discovered 3,7-DMF that inhibits liver fibrosis based on dual actions; antioxidant and inhibitor of TGF-β1-induced activation of HSCs.
Collapse
Affiliation(s)
- Hyomin Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Eun Ju Lee
- Interdisciplinary Program in Stem Cell Biology, Seoul National University of Medicine, Seoul, 03080, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Dodam Moon
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Hyunji Yun
- Interdisciplinary Program in Stem Cell Biology, Seoul National University of Medicine, Seoul, 03080, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Areum Cha
- Interdisciplinary Program in Stem Cell Biology, Seoul National University of Medicine, Seoul, 03080, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Injoo Hwang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Hyo-Soo Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, Republic of Korea; Interdisciplinary Program in Stem Cell Biology, Seoul National University of Medicine, Seoul, 03080, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| |
Collapse
|
38
|
Lesiewska H, Woźniak A, Reisner P, Czosnyka K, Stachura J, Malukiewicz G. Is Cataract in Patients under 60 Years Associated with Oxidative Stress? Biomedicines 2023; 11:biomedicines11051286. [PMID: 37238957 DOI: 10.3390/biomedicines11051286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress is considered as a possible factor in the genesis of cataract. The study aimed to determine the systemic antioxidant status in cataract patients under 60 years. We studied 28 consecutive cataract patients, mean of 53 years (SD = 9.2), a range of 22-60 and 37 controls. In erythrocytes, activity of antioxidant enzymes was determined: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), in contrast with plasma concentrations of vitamin A and E. Conjugated dienes (CD) level and protein carbonyls (PC) concentration were also determined in plasma. Malondialdehyde (MDA) concentrations in erythrocytes and plasma were also measured. SOD and GPx activity and vitamin A and E concentrations were lower in cataract patients (p = 0.000511, 0.02, 0.022, and 0.000006, respectively). MDA plasma and erythrocytes concentrations were higher in cataract patients (p = 0.000001 and 0.0000001, respectively). PC concentration was higher in cataract patients than in controls (p = 0.00000013). There were statistically significant correlations between oxidative stress markers both in the cataract patients group as well as in the control group. Cataract incidence in patients under 60 years seems to be accompanied by enhanced lipid peroxidation and protein oxidation, as well as antioxidant defense depletion. Thus, supplementation with antioxidants could be beneficial in this group of patients.
Collapse
Affiliation(s)
- Hanna Lesiewska
- Department of Ophthalmology, The Nicolaus Copernicus University, Ludwik Rydygier's Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, The Nicolaus Copernicus University, Ludwik Rydygier's Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Paweł Reisner
- Department of Ophthalmology, The Nicolaus Copernicus University, Ludwik Rydygier's Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Krzysztof Czosnyka
- Department of Ophthalmology, The Nicolaus Copernicus University, Ludwik Rydygier's Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Joanna Stachura
- Department of Ophthalmology, The Nicolaus Copernicus University, Ludwik Rydygier's Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Grażyna Malukiewicz
- Department of Ophthalmology, The Nicolaus Copernicus University, Ludwik Rydygier's Collegium Medicum, 85-094 Bydgoszcz, Poland
| |
Collapse
|
39
|
Zhang Y, Kiryu H. Identification of oxidative stress-related genes differentially expressed in Alzheimer's disease and construction of a hub gene-based diagnostic model. Sci Rep 2023; 13:6817. [PMID: 37100862 PMCID: PMC10133299 DOI: 10.1038/s41598-023-34021-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/22/2023] [Indexed: 04/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent dementia disorder globally, and there are still no effective interventions for slowing or stopping the underlying pathogenic mechanisms. There is strong evidence implicating neural oxidative stress (OS) and ensuing neuroinflammation in the progressive neurodegeneration observed in the AD brain both during and prior to symptom emergence. Thus, OS-related biomarkers may be valuable for prognosis and provide clues to therapeutic targets during the early presymptomatic phase. In the current study, we gathered brain RNA-seq data of AD patients and matched controls from the Gene Expression Omnibus (GEO) to identify differentially expressed OS-related genes (OSRGs). These OSRGs were analyzed for cellular functions using the Gene Ontology (GO) database and used to construct a weighted gene co-expression network (WGCN) and protein-protein interaction (PPI) network. Receiver operating characteristic (ROC) curves were then constructed to identify network hub genes. A diagnostic model was established based on these hub genes using Least Absolute Shrinkage and Selection Operator (LASSO) and ROC analyses. Immune-related functions were examined by assessing correlations between hub gene expression and immune cell brain infiltration scores. Further, target drugs were predicted using the Drug-Gene Interaction database, while regulatory miRNAs and transcription factors were predicted using miRNet. In total, 156 candidate genes were identified among 11046 differentially expressed genes, 7098 genes in WGCN modules, and 446 OSRGs, and 5 hub genes (MAPK9, FOXO1, BCL2, ETS1, and SP1) were identified by ROC curve analyses. These hub genes were enriched in GO annotations "Alzheimer's disease pathway," "Parkinson's Disease," "Ribosome," and "Chronic myeloid leukemia." In addition, 78 drugs were predicted to target FOXO1, SP1, MAPK9, and BCL2, including fluorouracil, cyclophosphamide, and epirubicin. A hub gene-miRNA regulatory network with 43 miRNAs and hub gene-transcription factor (TF) network with 36 TFs were also generated. These hub genes may serve as biomarkers for AD diagnosis and provide clues to novel potential treatment targets.
Collapse
Affiliation(s)
- Yanting Zhang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hisanori Kiryu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
40
|
Xia H, Cheng X, Cao M, Sun X, He F, Yao X, Liu H. Tetrahydroxystilbene Glucoside Attenuates Oxidative Stress-Induced Aging by Regulating Oxidation Resistance and Inflammation in Larval Zebrafish. Zebrafish 2023; 20:55-66. [PMID: 37071853 DOI: 10.1089/zeb.2022.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Population aging is a global problem worldwide, and the discovery of antiaging drugs and knowledge of their potential molecular mechanisms are research hotspots in biomedical field. Tetrahydroxystilbene glucoside (TSG) is a natural component isolated from Heshouwu (Polygonum multiflorum Thunb.). It has been widely used to treat various chronic diseases for its remarkable biological activities. In this study, we successfully established aging larval zebrafish by exposing larvae to 2 mM hydrogen peroxide (H2O2). Using this aging model, we assessed the antiaging effect of TSG with different concentrations (25-100 μg/mL). After being treated with H2O2, zebrafish showed the obvious aging-associated phenotypes characterized by higher senescence-associated β-galactosidase activity, significantly downregulated expression of sirtuin 1 (sirt1) and telomerase reverse transcriptase (tert), and upregulated serpine1 mRNA level compared to the control group. TSG pretreatment delayed the aging process of oxidative stress-induced zebrafish, indicative of the reduced positive rate of senescence-associated β-galactosidase, improved swimming velocity, and stimulus-response capacity. Further studies proved that TSG could suppress reactive oxygen species production and enhance the activity of antioxidant enzymes superoxide dismutase and catalase. TSG also inhibited the H2O2-induced expressions of inflammation-related genes il-1β, il-6, cxcl-c1c, and il-8 in aging zebrafish, but it did not affect apoptosis-related genes (bcl-2, bax, and caspase-3) of aging zebrafish. In conclusion, TSG can protect against aging by regulating the antioxidative genes and enzyme activity, as well as inflammation in larval zebrafish, providing insight into the application of TSG for clinical treatment of aging or aging-related diseases.
Collapse
Affiliation(s)
- Hui Xia
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xue Cheng
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, China
| | - Xiongjie Sun
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Fuyi He
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaowei Yao
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
41
|
Lund MC, Clausen BH, Brambilla R, Lambertsen KL. The Role of Tumor Necrosis Factor Following Spinal Cord Injury: A Systematic Review. Cell Mol Neurobiol 2023; 43:925-950. [PMID: 35604578 PMCID: PMC11414445 DOI: 10.1007/s10571-022-01229-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
Pre-clinical studies place tumor necrosis factor (TNF) as a central player in the inflammatory response after spinal cord injury (SCI), and blocking its production and/or activity has been proposed as a possible treatment option after SCI. This systematic review provides an overview of the literature on the temporal and cellular expression of TNF after SCI and clarifies the potential for its therapeutic manipulation in SCI. A systematic search was performed in EMBASE (Ovid), MEDLINE (Ovid), and Web of Science (Core Collection). The search terms were the MeSH forms of tumor necrosis factor and spinal cord injury in the different databases, and the last search was performed on February 3, 2021. We found twenty-four articles examining the expression of TNF, with most using a thoracic contusive SCI model in rodents. Two articles described the expression of TNF receptors in the acute phase after SCI. Twenty-one articles described the manipulation of TNF signaling using genetic knock-out, pharmaceutical inhibition, or gain-of-function approaches. Overall, TNF expression increased rapidly after SCI, within the first hours, in resident cells (neurons, astrocytes, oligodendrocytes, and microglia) and again in macrophages in the chronic phase after injury. The review underscores the complexity of TNF's role after SCI and indicates that TNF inhibition is a promising therapeutic option. This review concludes that TNF plays a significant role in the inflammatory response after SCI and suggests that targeting TNF signaling is a feasible therapeutic approach.
Collapse
Affiliation(s)
- Minna Christiansen Lund
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Bettina Hjelm Clausen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIGDE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Roberta Brambilla
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIGDE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Kate Lykke Lambertsen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- BRIGDE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Department of Neurology, Odense University Hospital, J.B. Winsløwsvej 21 st., 5000, Odense, Denmark.
| |
Collapse
|
42
|
Chuang KC, Ramakrishnapillai S, Madden K, St Amant J, McKlveen K, Gwizdala K, Dhullipudi R, Bazzano L, Carmichael O. Brain effective connectivity and functional connectivity as markers of lifespan vascular exposures in middle-aged adults: The Bogalusa Heart Study. Front Aging Neurosci 2023; 15:1110434. [PMID: 36998317 PMCID: PMC10043334 DOI: 10.3389/fnagi.2023.1110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionEffective connectivity (EC), the causal influence that functional activity in a source brain location exerts over functional activity in a target brain location, has the potential to provide different information about brain network dynamics than functional connectivity (FC), which quantifies activity synchrony between locations. However, head-to-head comparisons between EC and FC from either task-based or resting-state functional MRI (fMRI) data are rare, especially in terms of how they associate with salient aspects of brain health.MethodsIn this study, 100 cognitively-healthy participants in the Bogalusa Heart Study aged 54.2 ± 4.3years completed Stroop task-based fMRI, resting-state fMRI. EC and FC among 24 regions of interest (ROIs) previously identified as involved in Stroop task execution (EC-task and FC-task) and among 33 default mode network ROIs (EC-rest and FC-rest) were calculated from task-based and resting-state fMRI using deep stacking networks and Pearson correlation. The EC and FC measures were thresholded to generate directed and undirected graphs, from which standard graph metrics were calculated. Linear regression models related graph metrics to demographic, cardiometabolic risk factors, and cognitive function measures.ResultsWomen and whites (compared to men and African Americans) had better EC-task metrics, and better EC-task metrics associated with lower blood pressure, white matter hyperintensity volume, and higher vocabulary score (maximum value of p = 0.043). Women had better FC-task metrics, and better FC-task metrics associated with APOE-ε4 3–3 genotype and better hemoglobin-A1c, white matter hyperintensity volume and digit span backwards score (maximum value of p = 0.047). Better EC rest metrics associated with lower age, non-drinker status, and better BMI, white matter hyperintensity volume, logical memory II total score, and word reading score (maximum value of p = 0.044). Women and non-drinkers had better FC-rest metrics (value of p = 0.004).DiscussionIn a diverse, cognitively healthy, middle-aged community sample, EC and FC based graph metrics from task-based fMRI data, and EC based graph metrics from resting-state fMRI data, were associated with recognized indicators of brain health in differing ways. Future studies of brain health should consider taking both task-based and resting-state fMRI scans and measuring both EC and FC analyses to get a more complete picture of functional networks relevant to brain health.
Collapse
Affiliation(s)
- Kai-Cheng Chuang
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA, United States
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
- *Correspondence: Kai-Cheng Chuang,
| | - Sreekrishna Ramakrishnapillai
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Kaitlyn Madden
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Julia St Amant
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Kevin McKlveen
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Kathryn Gwizdala
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | | | - Lydia Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| |
Collapse
|
43
|
Sharma V, Mehdi MM. Oxidative stress, inflammation and hormesis: The role of dietary and lifestyle modifications on aging. Neurochem Int 2023; 164:105490. [PMID: 36702401 DOI: 10.1016/j.neuint.2023.105490] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Oxidative stress (OS) is primarily caused by the formation of free radicals and reactive oxygen species; it is considered as one of the prominent factors in slowing down and degrading cellular machinery of an individual, and it eventually leads to aging and age-related diseases by its continuous higher state. The relation between molecular damage and OS should be particularized to understand the beginning of destruction at the cellular levels, extending outwards to affect tissues, organs, and ultimately to the organism. Several OS biomarkers, which are established at the biomolecular level, are useful in investigating the disease susceptibility during aging. Slowing down the aging process is a matter of reducing the rate of oxidative damage to the cellular machinery over time. The breakdown of homeostasis, the mild overcompensation, the reestablishment of homeostasis, and the adaptive nature of the process are the essential features of hormesis, which incorporates several factors, including calorie restriction, nutrition and lifestyle modifications that play an important role in reducing the OS. In the current review, along with the concept and theories of aging (with emphasis on free radical theory), various manifestations of OS with special attention on mitochondrial dysfunction and age-related diseases have been discussed. To alleviate the OS, hormetic approaches including caloric restriction, exercise, and nutrition have also been discussed.
Collapse
Affiliation(s)
- Vinita Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India
| | - Mohammad Murtaza Mehdi
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India.
| |
Collapse
|
44
|
Enichen E, Harvey C, Demmig-Adams B. COVID-19 Spotlights Connections between Disease and Multiple Lifestyle Factors. Am J Lifestyle Med 2023; 17:231-257. [PMID: 36883129 PMCID: PMC9445631 DOI: 10.1177/15598276221123005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2), and the disease it causes (COVID-19), have had a profound impact on global human society and threaten to continue to have such an impact with newly emerging variants. Because of the widespread effects of SARS-CoV-2, understanding how lifestyle choices impact the severity of disease is imperative. This review summarizes evidence for an involvement of chronic, non-resolving inflammation, gut microbiome disruption (dysbiosis with loss of beneficial microorganisms), and impaired viral defenses, all of which are associated with an imbalanced lifestyle, in severe disease manifestations and post-acute sequelae of SARS-CoV-2 (PASC). Humans' physiological propensity for uncontrolled inflammation and severe COVID-19 are briefly contrasted with bats' low propensity for inflammation and their resistance to viral disease. This insight is used to identify positive lifestyle factors with the potential to act in synergy for restoring balance to the immune response and gut microbiome, and thereby protect individuals against severe COVID-19 and PASC. It is proposed that clinicians should consider recommending lifestyle factors, such as stress management, balanced nutrition and physical activity, as preventative measures against severe viral disease and PASC.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Caitlyn Harvey
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| |
Collapse
|
45
|
Hernández-Álvarez D, Rosado-Pérez J, Gavia-García G, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Aging, Physical Exercise, Telomeres, and Sarcopenia: A Narrative Review. Biomedicines 2023; 11:598. [PMID: 36831134 PMCID: PMC9952920 DOI: 10.3390/biomedicines11020598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Human aging is a gradual and adaptive process characterized by a decrease in the homeostatic response, leading to biochemical and molecular changes that are driven by hallmarks of aging, such as oxidative stress (OxS), chronic inflammation, and telomere shortening. One of the diseases associated with the hallmarks of aging, which has a great impact on functionality and quality of life, is sarcopenia. However, the relationship between telomere length, sarcopenia, and age-related mortality has not been extensively studied. Moderate physical exercise has been shown to have a positive effect on sarcopenia, decreasing OxS and inflammation, and inducing protective effects on telomeric DNA. This results in decreased DNA strand breaks, reduced OxS and IA, and activation of repair pathways. Higher levels of physical activity are associated with an apparent increase in telomere length. This review aims to present the current state of the art of knowledge on the effect of physical exercise on telomeric maintenance and activation of repair mechanisms in sarcopenia.
Collapse
Affiliation(s)
- David Hernández-Álvarez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Graciela Gavia-García
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Taide Laurita Arista-Ugalde
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| |
Collapse
|
46
|
Wei Y, Jia S, Ding Y, Xia S, Giunta S. Balanced basal-levels of ROS (redox-biology), and very-low-levels of pro-inflammatory cytokines (cold-inflammaging), as signaling molecules can prevent or slow-down overt-inflammaging, and the aging-associated decline of adaptive-homeostasis. Exp Gerontol 2023; 172:112067. [PMID: 36535453 DOI: 10.1016/j.exger.2022.112067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Both reactive oxygen species (ROS) from redox-biology and pro-inflammatory cytokines from innate immunity/and other sources, in addition to their role in redox-biology, and in defense and repair, have long been regarded as potentially harmful factors associated with oxidative stress and inflammatory states. However, their important physiological functions as signaling molecules have been demonstrated to be of importance, also in Geroscience, particularly when ROS are at balanced basal levels (redox-biology) and pro-inflammatory cytokines are at very low levels (cold-inflammaging). Under these conditions, both of these components (alone or in combination) may act as signaling/response molecules involved in regulating/maintaining or restoring adaptive homeostasis during aging, particularly in the early phases of even very-mild non-damaging internal or external environmental stimuli that could nevertheless elicit low-grade warnings-signals for homeostatic stability. If signals potentially perturbing homeostasis persist, the levels of ROS and pro-inflammatory mediators increase resulting in a switch from adaptive to maladaptive responses which may lead to oxidative stress and overt-inflammaging (or even to an overt inflammatory state), thus paving the way to the risks of aging-related diseases (ARDs). Conversely, upon adaptive-responses, low-levels of ROS and very-low-levels of pro-inflammatory-cytokines, alone or in combination, can result in an amplified capacity to prevent or slow-down overt-inflammaging (2-fold to 4-fold increase of pro-inflammatory cytokines) thus maintaining or restoring homeostasis. Therefore, these signaling molecules may also have the sequential incremental potential to prevent or slow the subsequent decline of adaptive homeostasis that will occur later in the lifespan. These scenarios may lead us to conceive of, and conceptualize, both these molecules and their basal-low levels, as well as their dynamics and the time-course of responses, as 'potential important pillars of adaptive-homeostasis in aging' since the earliest phases of the occurrence of any even very- mild environmental potential imbalance.
Collapse
Affiliation(s)
- Yaqin Wei
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China.
| | - Shuang Jia
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.
| | - Yuanyuan Ding
- Shanghai Medical Information Center, Shanghai Health Development Research Center, Shanghai, China.
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China.
| | - Sergio Giunta
- Casa di Cura Prof. Nobili-GHC Garofalo Health Care, Bologna, Italy.
| |
Collapse
|
47
|
Association between the Oxidative Balance Score and Incident Chronic Kidney Disease in Adults. Antioxidants (Basel) 2023; 12:antiox12020335. [PMID: 36829895 PMCID: PMC9952833 DOI: 10.3390/antiox12020335] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress is a novel risk factor for chronic kidney disease (CKD). The oxidative balance score (OBS) was developed to represent the overall oxidative balance based on dietary and lifestyle pro-oxidant and antioxidant components. The aim of this study is to verify the relationship between the OBS and the incidence of CKD. Data from 5795 participants without CKD at the baseline survey of the Korean Genome and Epidemiology Study were analyzed. Participants were classified into sex-specific OBS tertiles. During the mean follow-up period of 13.6 years, 286 men and 382 women newly developed CKD. The Cox proportional hazard spline curve revealed an inverse dose-response association between the OBS and incident CKD in both men and women. Multiple Cox proportional hazard regression analysis revealed that the adjusted hazard ratios (95% confidence intervals) for sex-specific highest (T3) and middle (T2) OBS tertile groups were 0.80 (0.59-1.08) and 0.70 (0.51-0.95), respectively, in men and 0.76 (0.59-0.98) and 0.73 (0.55-0.96), respectively, in women, with the sex-specific lowest OBS tertile group (T1) as the reference. These results suggest that a healthy diet and lifestyle that increases the OBS may help prevent CKD in both men and women.
Collapse
|
48
|
Chen L, Hu T, Wu R, Wang H, Wu H, Wen P. In vivo antioxidant activity of Cinnamomum cassia leaf residues and their effect on gut microbiota of d-galactose-induced aging model mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:590-598. [PMID: 36054514 DOI: 10.1002/jsfa.12170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND To thoroughly explore the values of Cinnamomum cassia leaf residues (CcLR), their antioxidant activity in vivo and the relationship with gut microbiota were investigated using d-galactose-induced aging mice. RESULTS Results showed that CcLR extract treatment exerted antioxidant activity by increasing the levels of superoxide dismutase (P < 0.01) and glutathione peroxidase (P < 0.05), as well as inhibiting the formation of malondialdehyde (P < 0.01). Meanwhile, the inflammatory response was also alleviated as the ratio of pro-inflammatory tumor necrosis factor-α (P < 0.01) and interleukin-1β (P < 0.01))/anti-inflammatory cytokines (interleukin-10; P < 0.05) in serum was decreased and the contents of inflammatory markers (induced nitrogen monoxide synthase and nitric oxide) in brain and liver tissues (P < 0.01) were reduced. Moreover, through inhibiting acetylcholinesterase activity and improving choline acetyltransferase activity, the cholinergic system in aging mice recovered to levels comparable to the normal control group. In addition, 16S rRNA sequencing results demonstrated that CcLR extract promoted the growth of beneficial bacteria. In particular, Spearman correlation analysis revealed that the abundance of Colidextribacter was negatively correlated with serum superoxide dismutase (P < 0.05, R = -0.943), and Helicobacter displayed a positive correlation with the content of brain nitric oxide (P < 0.05, R = 0.899), suggesting that regulating gut microbiota might be one of the mechanisms for reducing oxidative stress, thus postponing the aging process. CONCLUSION It is suggested that CcLR extract could be used as a novel antioxidant and anti-aging resource in the pharmaceutical and food industries. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingqi Chen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, China
| | - Tenggen Hu
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Ruiqing Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Peng Wen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, China
| |
Collapse
|
49
|
Ganguly S, Kumar J. Role of Antioxidant Vitamins and Minerals from Herbal Source in the Management of Lifestyle Diseases. ROLE OF HERBAL MEDICINES 2023:443-460. [DOI: 10.1007/978-981-99-7703-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
50
|
Lee JH, Son DH, Kwon YJ. Association between oxidative balance score and new-onset hypertension in adults: A community-based prospective cohort study. Front Nutr 2022; 9:1066159. [PMID: 36590204 PMCID: PMC9798298 DOI: 10.3389/fnut.2022.1066159] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Oxidative stress plays a key role in the pathophysiology of hypertension development. The oxidative balance score (OBS) comprises dietary and lifestyle pro- and anti-oxidant components and reflects the overall oxidative stress burden. We aimed to evaluate the association between the OBS and new-onset hypertension (HTN) using large, community-based, prospective Korean cohort data. Methods Among 10,030 participants aged 40-69 years included in the Korean Genome and Epidemiology Study, the data of 5,181 participants were analyzed. The hazard ratio (HR) and 95% confidence interval (CI) for new-onset HTN according to sex-specific OBS quartile groups were calculated using univariable and multivariable Cox proportional hazard regression analyses. Results During the mean 13.6-year follow-up period, 1,157 men and 1,196 women developed new-onset HTN. Compared to the Q1 group, the adjusted HRs (95%CI) for new-onset HTN in the Q2, Q3, and Q4 groups were 0.96 (0.82-1.16), 0.85 (0.72-0.99), and 0.71 (0.59-0.86) in men and 0.81 (0.69-0.95), 0.81(0.68-0.95), and 0.70 (0.57-0.84) in women, respectively. Discussion Individuals with high OBS are at lower risk of developing HTN. This study suggests that a healthy lifestyle and antioxidant rich diet could be a preventive strategy for HTN.
Collapse
Affiliation(s)
- Jun-Hyuk Lee
- Department of Family Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, South Korea,Department of Medicine, Graduate School of Hanyang University, Seoul, South Korea
| | - Da-Hye Son
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, South Korea,*Correspondence: Yu-Jin Kwon
| |
Collapse
|