1
|
Cleveland BM, Izutsu A, Ushizawa Y, Radler L, Shimizu M. Profiling growth performance, insulin-like growth factors, and IGF-binding proteins in rainbow trout lacking IGFBP-2b. Am J Physiol Regul Integr Comp Physiol 2025; 328:R34-R44. [PMID: 39401484 DOI: 10.1152/ajpregu.00209.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 12/12/2024]
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) regulate insulin-like growth factor (IGF) signaling, but IGFBP-specific functions are not well characterized in fishes. A line of rainbow trout (Oncorhynchus mykiss) lacking a functional IGFBP-2b was produced using gene editing and subsequent breeding to an F2 generation. This loss-of-function model [IGFBP-2b knockout (2bKO)] was subjected to either continuous feeding or feed deprivation (3 wk) followed by refeeding (1 wk). During continuous feeding, the 2bKO line displayed faster specific growth rate for both body weight and fork length, higher feed intake, and reduced feed conversion ratio compared with a wild-type (WT) line. However, loss of IGFBP-2b did not affect the feed deprivation or refeeding response in terms of weight loss or weight gain, respectively. Several components of the IGF/IGFBP system were affected by loss of IGFBP-2b. Total serum IGF-1 in the 2bKO line was reduced to 0.5- to 0.8-fold of the WT line, although the concentration of free serum IGF-1 was not affected. Gene expression differences include reduced abundance of igfbp1a1, igfbp1b2, igfbp5b2, and igfbp6b1 transcripts and elevated igf2 and igfbp6b2 transcripts in liver of the 2bKO line. Collectively, these findings suggest that although IGFBP-2b is a carrier of circulating IGF-1 in salmonids, the presence of IGFBP-2a and compensatory responses of other IGF/IGFBP system components support an anabolic response that improved growth performance in the loss-of-function model.NEW & NOTEWORTHY Knocking out IGFBP-2b in rainbow trout improved food intake, growth performance, and feed conversion ratio and reduced serum IGF-1 by 0.5- to 0.8-fold, without changes in the concentration of free serum IGF-1. Based on these findings, we propose that, in addition to IGFBP-2b, the 32-kDa IGFBP (putative IGFBP-2a) also serves as a major carrier of circulating IGF-1 in salmonids.
Collapse
Affiliation(s)
- Beth M Cleveland
- Agricultural Research Service/United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, United States
| | - Ayaka Izutsu
- Graduate School of Fisheries Science, Hokkaido University, Hakodate, Japan
| | - Yuika Ushizawa
- Graduate School of Fisheries Science, Hokkaido University, Hakodate, Japan
| | - Lisa Radler
- Agricultural Research Service/United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, United States
| | - Munetaka Shimizu
- Field Science Center for Northern Biosphere, Hokkaido University, Hakodate, Japan
| |
Collapse
|
2
|
Reid RM, Turkmen S, Cleveland BM, Biga PR. Direct actions of growth hormone in rainbow trout, Oncorhynchus mykiss, skeletal muscle cells in vitro. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111725. [PMID: 39122107 DOI: 10.1016/j.cbpa.2024.111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The growth hormone (GH)-insulin-like growth factor-1 (IGF-1) system regulates skeletal muscle growth and function. GH has a major function of targeting the liver to regulate IGF-1 production and release, and IGF-1 mediates the primary anabolic action of GH on growth. However, skeletal muscle is a target tissue of GH as evidenced by dynamic GH receptor expression, but it is unclear if GH elicits any direct actions on extrahepatic tissues as it is difficult to distinguish the effects of IGF-1 from GH. Fish growth regulation is complex compared to mammals, as genome duplication events have resulted in multiple isoforms of GHs, GHRs, IGFs, and IGFRs expressed in most fish tissues. This study investigated the potential for GH direct actions on fish skeletal muscle using an in vitro system, where rainbow trout myogenic precursor cells (MPCs) were cultured in normal and serum-deprived media, to mimic in vivo fasting conditions. Fasting reduces IGF-1 signaling in the muscle, which is critical for disentangling the roles of GH from IGF-1. The direct effects of GH were analyzed by measuring changes in myogenic proliferation and differentiation genes, as well as genes regulating muscle growth and proteolysis. This study provides the first in-depth analysis of the direct actions of GH on serum-deprived fish muscle cells in vitro. Data suggest that GH induces the expression of markers for proliferation and muscle growth in the presence of serum, but all observed GH action was blocked in serum-deprived conditions. Additionally, serum deprivation alone reduced the expression of several proliferation and differentiation markers, while increasing growth and proteolysis markers. Results also demonstrate dynamic gene expression response in the presence of GH and a JAK inhibitor in serum-provided but not serum-deprived conditions. These data provide a better understanding of GH signaling in relation to serum in trout muscle cells in vitro.
Collapse
Affiliation(s)
- Ross M Reid
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Serhat Turkmen
- Department of Cell Development and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service (ARS-USDA), Kearneysville, WV 25430, USA
| | - Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
3
|
García-Pérez I, Duran BOS, Dal-Pai-Silva M, Garcia de la serrana D. Exploring the Integrated Role of miRNAs and lncRNAs in Regulating the Transcriptional Response to Amino Acids and Insulin-like Growth Factor 1 in Gilthead Sea Bream ( Sparus aurata) Myoblasts. Int J Mol Sci 2024; 25:3894. [PMID: 38612703 PMCID: PMC11011856 DOI: 10.3390/ijms25073894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, gilthead sea bream (Sparus aurata) fast muscle myoblasts were stimulated with two pro-growth treatments, amino acids (AA) and insulin-like growth factor 1 (Igf-1), to analyze the transcriptional response of mRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and to explore their possible regulatory network using bioinformatic approaches. AA had a higher impact on transcription (1795 mRNAs changed) compared to Igf-1 (385 mRNAs changed). Both treatments stimulated the transcription of mRNAs related to muscle differentiation (GO:0042692) and sarcomere (GO:0030017), while AA strongly stimulated DNA replication and cell division (GO:0007049). Both pro-growth treatments altered the transcription of over 100 miRNAs, including muscle-specific miRNAs (myomiRs), such as miR-133a/b, miR-206, miR-499, miR-1, and miR-27a. Among 111 detected lncRNAs (>1 FPKM), only 30 were significantly changed by AA and 11 by Igf-1. Eight lncRNAs exhibited strong negative correlations with several mRNAs, suggesting a possible regulation, while 30 lncRNAs showed strong correlations and interactions with several miRNAs, suggesting a role as sponges. This work is the first step in the identification of the ncRNAs network controlling muscle development and growth in gilthead sea bream, pointing out potential regulatory mechanisms in response to pro-growth signals.
Collapse
Affiliation(s)
- Isabel García-Pérez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-900, Brazil;
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
| |
Collapse
|
4
|
Perez ÉS, Duran BOS, Zanella BTT, Dal-Pai-Silva M. Review: Understanding fish muscle biology in the indeterminate growth species pacu (Piaractus mesopotamicus). Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111502. [PMID: 37572733 DOI: 10.1016/j.cbpa.2023.111502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The muscle phenotype of fish is regulated by numerous factors that, although widely explored, still need to be fully understood. In this context, several studies aimed to unravel how internal and external stimuli affect the muscle growth of these vertebrates. The pacu (Piaractus mesopotamicus) is a species of indeterminate muscular growth that quickly reaches high body weight. For this reason, it adds great importance to the productive sector, along with other round fish. In this context, we aimed to compile studies on fish biology and skeletal muscle growth, focusing on studies by our research group that used pacu as an experimental model along with other species. Based on these studies, new muscle phenotype regulators were identified and explored in vivo, in vitro, and in silico studies, which strongly contribute to advances in understanding muscle growth mechanisms with future applications in the productive sector.
Collapse
Affiliation(s)
- Érika Stefani Perez
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
5
|
Ma Y, Su Z, Chen F, Xu C, Jiang K, An W, Zhang G, Xie D, Wang S, Dong Y, Li Y. Terrestrial Compound Protein Replacing Dietary Fishmeal Improved Digestive Enzyme Activity, Immune Response, Intestinal Microflora Composition, and Protein Metabolism of Golden Pompano ( Trachinotus ovatus). AQUACULTURE NUTRITION 2023; 2023:2716724. [PMID: 37829512 PMCID: PMC10567510 DOI: 10.1155/2023/2716724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
Terrestrial compound protein (Cpro) can be potentially used to replace fishmeal (FM) in the marine carnivorous teleost, golden pompano (Trachinotus ovatus). Four isonitrogenous (45%) and isolipidic (12%) diets named FM30, AP80, PP80, and CP80 were formulated. FM30 (control) contained 30% FM and 25% basic protein, while AP80, PP80, and CP80 only contained 6% FM, where 80% FM and 25% basic protein of control diet were completely replaced by animal protein, plant protein, and Cpro, respectively. After golden pompano juveniles (initial weight: 10.32 ± 0.09 g) were, respectively, fed the four diets in floating sea cages for 10 weeks, the growth performance, intestinal digestive enzyme activity, and immune responses, protein metabolism indices of the CP80 group were similar to or better than those of the FM30 group (P > 0.05), and significantly better than those of the AP80 and PP80 groups. Specifically, the weight gain (WG), feed conversion ratio (FCR), activity of alanine transaminase (ALT), growth hormone (GH), and insulin-like growth factor-1 (IGF-1) contents of serum, mRNA level of interleukin-10 (il-10), zonula occludens-2 (zo-2), claudin-3, claudin-12, and eukaryotic translation initiation factor 4G (eif4g) were significantly higher, and the activity of α-amylase (AMS), lipase (LPS) in the foregut and midgut, interleukin-8 (il-8) expression in the intestine was significantly lower than that in the CP80 group, compared with those in AP80 and PP80 groups (P < 0.05). Moreover, the intestinal microflora composition of golden pompano fed with the CP80 diet was improved. Specifically, at the phylum level, the relative abundance of harmful bacterial strains cyanobacteria and TM7 of CP80 group was similar to those of FM30 group (P > 0.05), but was significantly lower than those of AP80 and PP80 groups (P < 0.05). At the genus level, the beneficial bacterial strains Agrobacterium and Blantia of CP80 group were also similar to those of FM30 group (P < 0.05), which were significantly higher than those of AP80 and PP80 groups, but the beneficial bacterial strains Bifidobacterium and Devosia of CP80 group were significantly higher than that in the other groups (P < 0.05). Besides, in diet CP80, the contents of amino acids and anti-nutritional factor, as well as the in vitro digestion rate were comparable to those of FM30, and the anti-nutritional factor content was between AP80 and PP80; total essential amino acids (EAAs) and methionine contents were higher than those in AP80, the glycine content was higher than that in PP80. Taken together, these results indicated that the CP80 diet had better amino acid composition and relatively low content of anti-nutritional factors, as well as high-digestion rate, and thus leads to the fish fed CP80 displaying improved effects in digestive enzyme activity, immune response, protein metabolism, and intestinal microbiota composition, which may be the important reasons to explain why that 80% of FM can be replaced by Cpro in the diet of golden pompano.
Collapse
Affiliation(s)
- Yongcai Ma
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zeliang Su
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Fang Chen
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Chao Xu
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Kunsheng Jiang
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenqiang An
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Guanrong Zhang
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Dizhi Xie
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yewei Dong
- College of Animal Science and Technology of Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuanyou Li
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
6
|
Bersin TV, Cordova KL, Saenger EK, Journey ML, Beckman BR, Lema SC. Nutritional status affects Igf1 regulation of skeletal muscle myogenesis, myostatin, and myofibrillar protein degradation pathways in gopher rockfish (Sebastes carnatus). Mol Cell Endocrinol 2023; 573:111951. [PMID: 37169322 DOI: 10.1016/j.mce.2023.111951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Insulin-like growth factor-1 (Igf1) regulates skeletal muscle growth in fishes by increasing protein synthesis and promoting muscle hypertrophy. When fish experience periods of insufficient food intake, they undergo slower muscle growth or even muscle wasting, and those changes emerge in part from nutritional modulation of Igf1 signaling. Here, we examined how food deprivation (fasting) modulates Igf1 regulation of liver and skeletal muscle gene expression in gopher rockfish (Sebastes carnatus), a nearshore rockfish of importance for commercial and recreational fisheries in the northeastern Pacific Ocean, to understand how food limitation impacts Igf regulation of muscle growth pathways. Rockfish were either fed or fasted for 14 d, after which a subset of fish from each group was treated with recombinant Igf1 from sea bream (Sparus aurata). Fish that were fasted lost body mass and had lower body condition, reduced hepatosomatic index, and lower plasma Igf1 concentrations, as well as a decreased abundance of igf1 gene transcripts in the liver, increased hepatic mRNAs for Igf binding proteins igfbp1a, igfbp1b, and igfbp3a, and decreased mRNA abundances for igfbp2b and a putative Igf acid labile subunit (igfals) gene. In skeletal muscle, fasted fish showed a reduced abundance of intramuscular igf1 mRNAs but elevated gene transcripts encoding Igf1 receptors A (igf1ra) and B (igf1rb), which also showed downregulation by Igf1. Fasting increased skeletal muscle mRNAs for myogenin and myostatin1, as well as ubiquitin ligase F-box only protein 32 (fbxo32) and muscle RING-finger protein-1 (murf1) genes involved in muscle atrophy, while concurrently downregulating mRNAs for myoblast determination protein 2 (myod2), myostatin2, and myogenic factors 5 (myf5) and 6 (myf6 encoding Mrf4). Treatment with Igf1 downregulated muscle myostatin1 and fbxo32 under both feeding conditions, but showed feeding-dependent effects on murf1, myf5, and myf6/Mrf4 gene expression indicating that Igf1 effects on muscle growth and atrophy pathways is contingent on recent food consumption experience.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - E Kate Saenger
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA, 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
7
|
Hue I, Capilla E, Rosell-Moll E, Balbuena-Pecino S, Goffette V, Gabillard JC, Navarro I. Recent advances in the crosstalk between adipose, muscle and bone tissues in fish. Front Endocrinol (Lausanne) 2023; 14:1155202. [PMID: 36998471 PMCID: PMC10043431 DOI: 10.3389/fendo.2023.1155202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Control of tissue metabolism and growth involves interactions between organs, tissues, and cell types, mediated by cytokines or direct communication through cellular exchanges. Indeed, over the past decades, many peptides produced by adipose tissue, skeletal muscle and bone named adipokines, myokines and osteokines respectively, have been identified in mammals playing key roles in organ/tissue development and function. Some of them are released into the circulation acting as classical hormones, but they can also act locally showing autocrine/paracrine effects. In recent years, some of these cytokines have been identified in fish models of biomedical or agronomic interest. In this review, we will present their state of the art focusing on local actions and inter-tissue effects. Adipokines reported in fish adipocytes include adiponectin and leptin among others. We will focus on their structure characteristics, gene expression, receptors, and effects, in the adipose tissue itself, mainly regulating cell differentiation and metabolism, but in muscle and bone as target tissues too. Moreover, lipid metabolites, named lipokines, can also act as signaling molecules regulating metabolic homeostasis. Regarding myokines, the best documented in fish are myostatin and the insulin-like growth factors. This review summarizes their characteristics at a molecular level, and describes both, autocrine effects and interactions with adipose tissue and bone. Nonetheless, our understanding of the functions and mechanisms of action of many of these cytokines is still largely incomplete in fish, especially concerning osteokines (i.e., osteocalcin), whose potential cross talking roles remain to be elucidated. Furthermore, by using selective breeding or genetic tools, the formation of a specific tissue can be altered, highlighting the consequences on other tissues, and allowing the identification of communication signals. The specific effects of identified cytokines validated through in vitro models or in vivo trials will be described. Moreover, future scientific fronts (i.e., exosomes) and tools (i.e., co-cultures, organoids) for a better understanding of inter-organ crosstalk in fish will also be presented. As a final consideration, further identification of molecules involved in inter-tissue communication will open new avenues of knowledge in the control of fish homeostasis, as well as possible strategies to be applied in aquaculture or biomedicine.
Collapse
Affiliation(s)
- Isabelle Hue
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Enrique Rosell-Moll
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sara Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Valentine Goffette
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Jean-Charles Gabillard
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Amino Acids and IGF1 Regulation of Fish Muscle Growth Revealed by Transcriptome and microRNAome Integrative Analyses of Pacu ( Piaractus mesopotamicus) Myotubes. Int J Mol Sci 2022; 23:ijms23031180. [PMID: 35163102 PMCID: PMC8835699 DOI: 10.3390/ijms23031180] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
Amino acids (AA) and IGF1 have been demonstrated to play essential roles in protein synthesis and fish muscle growth. The myoblast cell culture is useful for studying muscle regulation, and omics data have contributed enormously to understanding its molecular biology. However, to our knowledge, no study has performed the large-scale sequencing of fish-cultured muscle cells stimulated with pro-growth signals. In this work, we obtained the transcriptome and microRNAome of pacu (Piaractus mesopotamicus)-cultured myotubes treated with AA or IGF1. We identified 1228 and 534 genes differentially expressed by AA and IGF1. An enrichment analysis showed that AA treatment induced chromosomal changes, mitosis, and muscle differentiation, while IGF1 modulated IGF/PI3K signaling, metabolic alteration, and matrix structure. In addition, potential molecular markers were similarly modulated by both treatments. Muscle-miRNAs (miR-1, -133, -206 and -499) were up-regulated, especially in AA samples, and we identified molecular networks with omics integration. Two pairs of genes and miRNAs demonstrated a high-level relationship, and involvement in myogenesis and muscle growth: marcksb and miR-29b in AA, and mmp14b and miR-338-5p in IGF1. Our work helps to elucidate fish muscle physiology and metabolism, highlights potential molecular markers, and creates a perspective for improvements in aquaculture and in in vitro meat production.
Collapse
|
9
|
Ayala MD, Gómez V, Cabas I, García Hernández MP, Chaves-Pozo E, Arizcun M, Garcia de la Serrana D, Gil F, García-Ayala A. The Effect of 17α-Ethynilestradiol and GPER1 Activation on Body and Muscle Growth, Muscle Composition and Growth-Related Gene Expression of Gilthead Seabream, Sparus aurata L. Int J Mol Sci 2021; 22:13118. [PMID: 34884924 PMCID: PMC8657972 DOI: 10.3390/ijms222313118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Endocrine-disrupting chemicals include natural and synthetic estrogens, such as 17α-ethynilestradiol (EE2), which can affect reproduction, growth and immunity. Estrogen signalling is mediated by nuclear or membrane estrogen receptors, such as the new G-protein-coupled estrogen receptor 1 (GPER1). The present work studies the effect of EE2 and G1 (an agonist of GPER1) on body and muscle parameters and growth-related genes of 54 two-year-old seabreams. The fish were fed a diet containing EE2 (EE2 group) and G1 (G1 group) for 45 days and then a diet without EE2 or G1 for 122 days. An untreated control group was also studied. At 45 days, the shortest body length was observed in the G1 group, while 79 and 122 days after the cessation of treatments, the shortest body growth was observed in the EE2 group. Hypertrophy of white fibers was higher in the EE2 and G1 groups than it was in the control group, whereas the opposite was the case with respect to hyperplasia. Textural hardness showed a negative correlation with the size of white fibers. At the end of the experiment, all fish analyzed in the EE2 group showed a predominance of the gonadal ovarian area. In addition, the highest expression of the mafbx gene (upregulated in catabolic signals) and mstn2 (myogenesis negative regulator) was found in EE2-exposed fish.
Collapse
Affiliation(s)
- Maria D. Ayala
- Department of Anatomy and Comparative Pathological Anatomy, Faculty of Veterinary, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain;
| | - Victoria Gómez
- Department of Cell Biology and Histology, Faculty of Biology, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain; (V.G.); (I.C.); (M.P.G.H.); (A.G.-A.)
| | - Isabel Cabas
- Department of Cell Biology and Histology, Faculty of Biology, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain; (V.G.); (I.C.); (M.P.G.H.); (A.G.-A.)
| | - María P. García Hernández
- Department of Cell Biology and Histology, Faculty of Biology, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain; (V.G.); (I.C.); (M.P.G.H.); (A.G.-A.)
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO-CSIC), Puerto de Mazarrón, 30860 Murcia, Spain; (E.C.-P.); (M.A.)
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO-CSIC), Puerto de Mazarrón, 30860 Murcia, Spain; (E.C.-P.); (M.A.)
| | - Daniel Garcia de la Serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
| | - Francisco Gil
- Department of Anatomy and Comparative Pathological Anatomy, Faculty of Veterinary, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain;
| | - Alfonsa García-Ayala
- Department of Cell Biology and Histology, Faculty of Biology, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain; (V.G.); (I.C.); (M.P.G.H.); (A.G.-A.)
| |
Collapse
|
10
|
Zhang L, Li X, Yu Y, Zhang L, Dong L, Gan J, Mao T, Liu T, Peng J, He L. Comparative analyses of liver transcriptomes reveal the effect of exercise on growth-, glucose metabolism-, and oxygen transport-related genes and signaling pathways in grass carp (Ctenopharyngodon idella). Comp Biochem Physiol A Mol Integr Physiol 2021; 262:111081. [PMID: 34536566 DOI: 10.1016/j.cbpa.2021.111081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/24/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Grass carp is one of the most common farmed fish and its growth rate has been the focus of various studies. However, the impact of long-term exercise on growth rate of juvenile grass carp has not been clearly established. In this study, a four-month exercise trial and liver transcriptome analysis were performed to investigate changes in growth, liver molecular regulatory network and key genes in grass carp. When compared to the non-exercised grass carp (N-EXF), the exercised grass carp (EXF) showed a significant improvement in growth. Liver transcriptome analysis revealed 1714 significantly up-regulated and 1672 significantly down-regulated genes. These genes were enriched in various signaling pathways. These pathways included: those associated with growth, such as the PI3K-Akt and mTOR signaling pathways; those associated with glucose metabolism, such as glycolysis/gluconeogenesis, insulin and AMPK signaling pathways as well as those associated with oxygen transport, such as HIF-1, PI3K-Akt, PPAR and MAPK signaling pathways. In addition, growth-associated genes, such as ghr, igf1 and igf1r; glucose metabolism-associated genes, such as ins and insr as well as oxygen transport-associated genes, such as vhl, pdha and epo were identified. In conclusion, long-term moderate exercise improved the growth rate of grass carp. Our findings elucidate on changes in the liver molecular regulatory network and functional genes that occur during moderate exercise in fish.
Collapse
Affiliation(s)
- Lang Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Xiaohui Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Yali Yu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Lin Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Lixue Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jinhua Gan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Tao Mao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ting Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Jie Peng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Li He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| |
Collapse
|
11
|
Duran BOS, Garcia de la serrana D, Zanella BTT, Perez ES, Mareco EA, Santos VB, Carvalho RF, Dal-Pai-Silva M. An insight on the impact of teleost whole genome duplication on the regulation of the molecular networks controlling skeletal muscle growth. PLoS One 2021; 16:e0255006. [PMID: 34293047 PMCID: PMC8297816 DOI: 10.1371/journal.pone.0255006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023] Open
Abstract
Fish muscle growth is a complex process regulated by multiple pathways, resulting on the net accumulation of proteins and the activation of myogenic progenitor cells. Around 350–320 million years ago, teleost fish went through a specific whole genome duplication (WGD) that expanded the existent gene repertoire. Duplicated genes can be retained by different molecular mechanisms such as subfunctionalization, neofunctionalization or redundancy, each one with different functional implications. While the great majority of ohnolog genes have been identified in the teleost genomes, the effect of gene duplication in the fish physiology is still not well characterized. In the present study we studied the effect of WGD on the transcription of the duplicated components controlling muscle growth. We compared the expression of lineage-specific ohnologs related to myogenesis and protein balance in the fast-skeletal muscle of pacus (Piaractus mesopotamicus—Ostariophysi) and Nile tilapias (Oreochromis niloticus—Acanthopterygii) fasted for 4 days and refed for 3 days. We studied the expression of 20 ohnologs and found that in the great majority of cases, duplicated genes had similar expression profiles in response to fasting and refeeding, indicating that their functions during growth have been conserved during the period after the WGD. Our results suggest that redundancy might play a more important role in the retention of ohnologs of regulatory pathways than initially thought. Also, comparison to non-duplicated orthologs showed that it might not be uncommon for the duplicated genes to gain or loss new regulatory elements simultaneously. Overall, several of duplicated ohnologs have similar transcription profiles in response to pro-growth signals suggesting that evolution tends to conserve ohnolog regulation during muscle development and that in the majority of ohnologs related to muscle growth their functions might be very similar.
Collapse
Affiliation(s)
- Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Erika Stefani Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
12
|
Cloning, prokaryotic expression, purification, and functional verification of the insulin gene in black carp (Mylopharyngodon piceus). AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Zanella BTT, Magiore IC, Duran BOS, Pereira GG, Vicente IST, Carvalho PLPF, Salomão RAS, Mareco EA, Carvalho RF, de Paula TG, Barros MM, Dal-Pai-Silva M. Ascorbic Acid Supplementation Improves Skeletal Muscle Growth in Pacu ( Piaractus mesopotamicus) Juveniles: In Vivo and In Vitro Studies. Int J Mol Sci 2021; 22:2995. [PMID: 33804272 PMCID: PMC7998472 DOI: 10.3390/ijms22062995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
In fish, fasting leads to loss of muscle mass. This condition triggers oxidative stress, and therefore, antioxidants can be an alternative to muscle recovery. We investigated the effects of antioxidant ascorbic acid (AA) on the morphology, antioxidant enzyme activity, and gene expression in the skeletal muscle of pacu (Piaractus mesopotamicus) following fasting, using in vitro and in vivo strategies. Isolated muscle cells of the pacu were subjected to 72 h of nutrient restriction, followed by 24 h of incubation with nutrients or nutrients and AA (200 µM). Fish were fasted for 15 days, followed by 6 h and 15 and 30 days of refeeding with 100, 200, and 400 mg/kg of AA supplementation. AA addition increased cell diameter and the expression of anabolic and cell proliferation genes in vitro. In vivo, 400 mg/kg of AA increased anabolic and proliferative genes expression at 6 h of refeeding, the fiber diameter and the expression of genes related to cell proliferation at 15 days, and the expression of catabolic and oxidative metabolism genes at 30 days. Catalase activity remained low in the higher supplementation group. In conclusion, AA directly affected the isolated muscle cells, and the higher AA supplementation positively influenced muscle growth after fasting.
Collapse
Affiliation(s)
- Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Isabele Cristina Magiore
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-900, Goiás, Brazil;
| | - Guilherme Gutierrez Pereira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Igor Simões Tiagua Vicente
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu 18618-681, São Paulo, Brazil; (I.S.T.V.); (P.L.P.F.C.); (M.M.B.)
| | - Pedro Luiz Pucci Figueiredo Carvalho
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu 18618-681, São Paulo, Brazil; (I.S.T.V.); (P.L.P.F.C.); (M.M.B.)
| | - Rondinelle Artur Simões Salomão
- Environment and Regional Development Graduate Program, University of Western São Paulo, Presidente Prudente 19050-680, São Paulo, Brazil; (R.A.S.S.); (E.A.M.)
| | - Edson Assunção Mareco
- Environment and Regional Development Graduate Program, University of Western São Paulo, Presidente Prudente 19050-680, São Paulo, Brazil; (R.A.S.S.); (E.A.M.)
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Tassiana Gutierrez de Paula
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Margarida Maria Barros
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu 18618-681, São Paulo, Brazil; (I.S.T.V.); (P.L.P.F.C.); (M.M.B.)
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| |
Collapse
|
14
|
Cleveland BM, Habara S, Oikawa J, Radler LM, Shimizu M. Compensatory Response of the Somatotropic Axis from IGFBP-2b Gene Editing in Rainbow Trout ( Oncorhynchus mykiss). Genes (Basel) 2020; 11:genes11121488. [PMID: 33322039 PMCID: PMC7763687 DOI: 10.3390/genes11121488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
Rainbow trout with gene editing-induced reductions in serum insulin-like growth factor binding protein (IGFBP)-2b exhibit similar growth performance compared to fish without IGFBP-2b gene disruption. The objective of this study is to determine how the components of the insulin-like growth factor (IGF)/IGFBP system respond to a reduction in serum IGFBP-2b abundance. Editing the IGFBP-2b genes in rainbow trout resulted in an 83% decrease in serum IGFBP-2b in mutants. This resulted in a 35% reduction in serum IGF-I, which was offset by reduced expression of hepatic igfbp-1a2 and increased muscle igfr-1a; these responses suggest that an increased IGF-I signaling capacity offset reductions in serum IGF-I. During feed deprivation, the differential expression of igfbp genes supports the attenuation of the growth inhibitory response, likely due to the further reduction in serum IGF-I that alleviated the need for an IGF-inhibitory response. Unique igfbp expression patterns occurred during refeeding, suggesting an enhanced IGF-I signaling capacity in controls. Collectively, these findings support that the role of IGFBP-2b is to regulate serum IGF-I concentrations. The compensatory regulation of IGF/IGFBP system genes indicates that adjustments in other IGFBP, both circulating and at the local level, maintain IGF-I signaling at a level appropriate for the nutritional state of the fish.
Collapse
Affiliation(s)
- Beth M. Cleveland
- National Center for Cool and Cold Water Aquaculture, United States Department of Agriculture/Agricultural Research Service, Leetown, WV 25430, USA;
- Correspondence: ; Tel.: +1304-724-8340 (ext. 2133)
| | - Shiori Habara
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0808, Japan; (S.H.); (J.O.)
| | - Jin Oikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0808, Japan; (S.H.); (J.O.)
| | - Lisa M. Radler
- National Center for Cool and Cold Water Aquaculture, United States Department of Agriculture/Agricultural Research Service, Leetown, WV 25430, USA;
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan;
| |
Collapse
|
15
|
Cleveland BM, Gao G, Leeds TD. Transcriptomic Response to Selective Breeding for Fast Growth in Rainbow Trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:539-550. [PMID: 32451652 DOI: 10.1007/s10126-020-09974-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Genetic improvement for faster growth is a conventional approach to increase growth rates in aquaculture species; however, the genetic and physiological factors regulating growth performance in fish are not fully characterized. The objective of this study was to identify physiological mechanisms associated with faster growth rates by comparing the liver and muscle transcriptome of a rainbow trout line selectively bred for fast growth (growth line, GL) and a contemporary randomly mated control line (synthetic control, SC) from the same selective breeding program. A third genetic line from a commercial egg supplier (commercial A, CA) was also included to characterize differences in gene expression profiles between populations. Body weight of the GL at harvest was approximately 20% and 8% heavier (p < 0.05) than SC and CA, respectively. There were 145 and 36 differentially expressed genes (DEG) in liver and white muscle, respectively, between the GL and SC that were enriched for the growth hormone/insulin-like growth factor axis (GH/IGF) and PI3K-Akt, JAK-STAT, MAPK, and cAMP signal transduction pathways. A greater concentration of plasma IGF-I was detected in the GL compared with SC (p < 0.05). A unique gene profile was detected in CA, with 11 and 210 DEG in liver and white muscle; these genes associated with innate immunity, complement systems, and metabolic pathways. Collectively, these findings provide a more extensive characterization of the fast-growth phenotype in fish that furthers knowledge of the physiological basis for genetic variation in growth performance in selectively bred rainbow trout.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV, 25430, USA.
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV, 25430, USA
| | - Timothy D Leeds
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV, 25430, USA
| |
Collapse
|
16
|
Morin G, Pinel K, Dias K, Seiliez I, Beaumatin F. RTH-149 Cell Line, a Useful Tool to Decipher Molecular Mechanisms Related to Fish Nutrition. Cells 2020; 9:cells9081754. [PMID: 32707879 PMCID: PMC7463835 DOI: 10.3390/cells9081754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Nowadays, aquaculture provides more than 50% of fish consumed worldwide but faces new issues that challenge its sustainability. One of them relies on the replacement of fish meal (FM) in aquaculture feeds by other protein sources without deeply affecting the whole organism's homeostasis. Multiple strategies have already been tested using in vivo approaches, but they hardly managed to cope with the multifactorial problems related to the complexities of fish biology together with new feed formulations. In this context, rainbow trout (RT) is particularly concerned by these problems, since, as a carnivorous fish, dietary proteins provide the amino acids required to supply most of its energetic metabolism. Surprisingly, we noticed that in vitro approaches considering RT cell lines as models to study RT amino acid metabolism were never previously used. Therefore, we decided to investigate if, and how, three major pathways described, in other species, to be regulated by amino acid and to control cellular homeostasis were functional in a RT cell line called RTH-149-namely, the mechanistic Target Of Rapamycin (mTOR), autophagy and the general control nonderepressible 2 (GCN2) pathways. Our results not only demonstrated that these three pathways were functional in RTH-149 cells, but they also highlighted some RT specificities with respect to the time response, amino acid dependencies and the activation levels of their downstream targets. Altogether, this article demonstrated, for the first time, that RT cell lines could represent an interesting alternative of in vivo experimentations for the study of fish nutrition-related questions.
Collapse
|
17
|
Zhao Y, Li JY, Jiang Q, Zhou XQ, Feng L, Liu Y, Jiang WD, Wu P, Zhou J, Zhao J, Jiang J. Leucine Improved Growth Performance, Muscle Growth, and Muscle Protein Deposition Through AKT/TOR and AKT/FOXO3a Signaling Pathways in Hybrid Catfish Pelteobagrus v achelli × Leiocassis longirostris. Cells 2020; 9:cells9020327. [PMID: 32019276 PMCID: PMC7072317 DOI: 10.3390/cells9020327] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Background: l-leucine (Leu) plays a positive role in regulating protein turnover in skeletal muscle in mammal. However, the molecular mechanism for the effects of Leu on muscle growth and protein deposition is not clearly demonstrated in fish. This study investigated the effects of dietary Leu on growth performance and muscle growth, protein synthesis, and degradation-related signaling pathways of hybrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). (2) Methods: A total of 630 hybrid catfish (23.19 ± 0.20 g) were fed 6 different experimental diets containing graded levels of Leu at 10.0 (control), 15.0, 20.0, 25.0, 30.0, 35.0, and 40.0 g Leu kg-1 for 8 weeks. (3) Results: Results showed that dietary Leu increased percent weight gain (PWG), specific growth rate (SGR), FI (feed intake), feed efficiency (FE), protein efficiency ratio (PER), muscle fibers diameter, and muscle fibers density; up-regulated insulin-like growth factor I (IGF-I), insulin-like growth factor I receptor (IGF-IR), proliferating cell nuclear antigen (PCNA), myogenic regulation factors (MyoD, Myf5, MyoG, and Mrf4), and MyHC mRNA levels; increased muscle protein synthesis via regulating the AKT/TOR signaling pathway; and attenuated protein degradation via regulating the AKT/FOXO3a signaling pathway. (4) Conclusions: These results suggest that Leu has potential role to improve muscle growth and protein deposition in fish, which might be due to the regulation of IGF mRNA expression, muscle growth related gene, and protein synthesis and degradation-related signaling pathways. Based on the broken-line model, the Leu requirement of hybrid catfish (23.19-54.55 g) for PWG was estimated to be 28.10 g kg-1 of the diet (73.04 g kg-1 of dietary protein). These results will improve our understanding of the mechanisms responsible for muscle growth and protein deposition effects of Leu in fish.
Collapse
Affiliation(s)
- Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin-Yang Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Zhou
- Fisheries Institute of Sichuan Academy of Agricultural Science, Chengdu 611731, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-28-8629-1133
| |
Collapse
|
18
|
Duran BODS, Dal-Pai-Silva M, Garcia de la Serrana D. Rainbow trout slow myoblast cell culture as a model to study slow skeletal muscle, and the characterization of mir-133 and mir-499 families as a case study. ACTA ACUST UNITED AC 2020; 223:jeb.216390. [PMID: 31871118 DOI: 10.1242/jeb.216390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Muscle fibres are classified as fast, intermediate and slow. In vitro myoblast cell culture model from fast muscle is a very useful tool to study muscle growth and development; however, similar models for slow muscle do not exist. Owing to the compartmentalization of fish muscle fibres, we have developed a slow myoblast cell culture for rainbow trout (Oncorhynchus mykiss). Slow and fast muscle-derived myoblasts have similar morphology, but with differential expression of slow muscle markers such as slow myhc, sox6 and pgc-1α We also characterized the mir-133 and mir-499 microRNA families in trout slow and fast myoblasts as a case study during myogenesis and in response to electrostimulation. Three mir-133 (a-1a, a-1b and a-2) and four mir-499 (aa, ab, ba and bb) paralogues were identified for rainbow trout and named base on their phylogenetic relationship to zebrafish and Atlantic salmon orthologues. Omy-mir-499ab and omy-mir-499bb had 0.6 and 0.5-fold higher expression in slow myoblasts compared with fast myoblasts, whereas mir-133 duplicates had similar levels in both phenotypes and little variation during development. Slow myoblasts also showed increased expression for omy-mir-499b paralogues in response to chronic electrostimulation (7-fold increase for omy-mir-499ba and 2.5-fold increase for omy-mir-499bb). The higher expression of mir-499 paralogues in slow myoblasts suggests a role in phenotype determination, while the lack of significant differences of mir-133 copies during culture development might indicate a different role in fish compared with mammals. We have also found signs of sub-functionalization of mir-499 paralogues after electrostimulation, with omy-mir-499b copies more responsive to electrical signals.
Collapse
Affiliation(s)
- Bruno Oliveira da Silva Duran
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu 18618-689, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu 18618-689, São Paulo, Brazil
| | - Daniel Garcia de la Serrana
- University of St Andrews, Scottish Oceans Institute, School of Biology, St Andrews, Fife KY16 8LB, UK.,University of Barcelona, Faculty of Biology, Department of Cell Biology, Physiology and Immunology, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Lavajoo F, Perelló-Amorós M, Vélez EJ, Sánchez-Moya A, Balbuena-Pecino S, Riera-Heredia N, Fernández-Borràs J, Blasco J, Navarro I, Capilla E, Gutiérrez J. Regulatory mechanisms involved in muscle and bone remodeling during refeeding in gilthead sea bream. Sci Rep 2020; 10:184. [PMID: 31932663 PMCID: PMC6957526 DOI: 10.1038/s41598-019-57013-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
The tolerance of fish to fasting offers a model to study the regulatory mechanisms and changes produced when feeding is restored. Gilthead sea bream juveniles were exposed to a 21-days fasting period followed by 2 h to 7-days refeeding. Fasting provoked a decrease in body weight, somatic indexes, and muscle gene expression of members of the Gh/Igf system, signaling molecules (akt, tor and downstream effectors), proliferation marker pcna, myogenic regulatory factors, myostatin, and proteolytic molecules such as cathepsins or calpains, while most ubiquitin-proteasome system members increased or remained stable. In bone, downregulated expression of Gh/Igf members and osteogenic factors was observed, whereas expression of the osteoclastic marker ctsk was increased. Refeeding recovered the expression of Gh/Igf system, myogenic and osteogenic factors in a sequence similar to that of development. Akt and Tor phosphorylation raised at 2 and 5 h post-refeeding, much faster than its gene expression increased, which occurred at day 7. The expression in bone and muscle of the inhibitor myostatin (mstn2) showed an inverse profile suggesting an inter-organ coordination that needs to be further explored in fish. Overall, this study provides new information on the molecules involved in the musculoskeletal system remodeling during the early stages of refeeding in fish.
Collapse
Affiliation(s)
- F Lavajoo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, I.R., Iran
| | - M Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - E J Vélez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - A Sánchez-Moya
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - S Balbuena-Pecino
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - N Riera-Heredia
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - J Fernández-Borràs
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - J Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - I Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - E Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - J Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Forbes JLI, Kostyniuk DJ, Mennigen JA, Weber JM. Glucagon regulation of carbohydrate metabolism in rainbow trout: in vivo glucose fluxes and gene expression. ACTA ACUST UNITED AC 2019; 222:jeb.211730. [PMID: 31767730 DOI: 10.1242/jeb.211730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/20/2019] [Indexed: 01/25/2023]
Abstract
Glucagon increases fish glycaemia, but how it affects glucose fluxes in vivo has never been characterized. The goal of this study was to test the hypothesis that glucagon stimulates hepatic glucose production (rate of appearance, R a) and inhibits disposal (rate of disposal, R d) in rainbow trout. Changes in the mRNA abundance of key proteins involved in glycolysis, gluconeogenesis and glycogen breakdown were also monitored. The results show that glucagon increases glycaemia (+38%) by causing a temporary mismatch between R a and R d before the two fluxes converge below baseline (-17%). A novel aspect of the regulation of trout gluconeogenesis is also demonstrated: the completely different effects of glucagon on the expression of three Pepck isoforms (stimulation of pck1, inhibition of pck2a and no response of pck2b). Glycogen phosphorylase was modulated differently among tissues, and muscle upregulated pygb and downregulated pygm Glucagon failed to activate the cAMP-dependent protein kinase or FoxO1 signalling cascades. We conclude that trout hyperglycaemia results from the combination of two responses: (i) an increase in R a glucose induced by the stimulation of gluconeogenesis through transcriptional activation of pck1 (and possibly glycogen phosphorylase), and (ii) a decrease in R d glucose via inhibition of glycogen synthase and glycolysis. The observed decrease in glucose fluxes after 4 h of glucagon administration may be caused by a counter-regulatory response of insulin, potentially linked to the decrease in pygm transcript abundance. Overall, however, these integrated effects of glucagon only lead to modest changes in glucose fluxes that partly explain why trout seem to be unable to control glycaemia very tightly.
Collapse
Affiliation(s)
| | | | - Jan A Mennigen
- Biology Department, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Jean-Michel Weber
- Biology Department, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
21
|
Latimer MN, Reid RM, Biga PR, Cleveland BM. Glucose regulates protein turnover and growth-related mechanisms in rainbow trout myogenic precursor cells. Comp Biochem Physiol A Mol Integr Physiol 2019; 232:91-97. [PMID: 30904682 PMCID: PMC9105748 DOI: 10.1016/j.cbpa.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
Rainbow trout are considered glucose intolerant because they are poor utilizers of glucose, despite having functional insulin receptors and glucose transporters. Following high carbohydrate meals, rainbow trout are persistently hyperglycemic, which is likely due to low glucose utilization in peripheral tissues including the muscle. Also, rainbow trout myogenic precursor cells (MPCs) treated in vitro with insulin and IGF1 increase glucose uptake and protein synthesis, whereas protein degradation is decreased. Given our understanding of glucose regulation in trout, we sought to understand how glucose concentrations affect protein synthesis, protein degradation; and expression of genes associated with muscle growth and proteolysis in MPCs. We found that following 24 h and 48 h of treatment with low glucose media (5.6 mM), myoblasts had significant decreases in protein synthesis. Also, low glucose treatments affected the expression of both mstn2a and igfbp5. These findings support that glucose is a direct regulator of protein synthesis and growth-related mechanisms in rainbow trout muscle.
Collapse
Affiliation(s)
- M N Latimer
- University of Alabama Birmingham, Department of Biology, 1300 University Blvd-Campbell Hall, 464, Birmingham, AL, USA
| | - R M Reid
- University of Alabama Birmingham, Department of Biology, 1300 University Blvd-Campbell Hall, 464, Birmingham, AL, USA
| | - P R Biga
- University of Alabama Birmingham, Department of Biology, 1300 University Blvd-Campbell Hall, 464, Birmingham, AL, USA.
| | - B M Cleveland
- United States Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| |
Collapse
|
22
|
Salehi-Tabar R, Memari B, Wong H, Dimitrov V, Rochel N, White JH. The Tumor Suppressor FBW7 and the Vitamin D Receptor Are Mutual Cofactors in Protein Turnover and Transcriptional Regulation. Mol Cancer Res 2019; 17:709-719. [DOI: 10.1158/1541-7786.mcr-18-0991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/05/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022]
|
23
|
Vélez EJ, Balbuena-Pecino S, Capilla E, Navarro I, Gutiérrez J, Riera-Codina M. Effects of β2-adrenoceptor agonists on gilthead sea bream (Sparus aurata) cultured muscle cells. Comp Biochem Physiol A Mol Integr Physiol 2019; 227:179-193. [DOI: 10.1016/j.cbpa.2018.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 01/15/2023]
|
24
|
Cleveland BM, Radler LM. Essential amino acids exhibit variable effects on protein degradation in rainbow trout (Oncorhynchus mykiss) primary myocytes. Comp Biochem Physiol A Mol Integr Physiol 2018; 229:33-39. [PMID: 30502472 DOI: 10.1016/j.cbpa.2018.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
Abstract
The functional role of amino acids as regulators of protein degradation was investigated using primary myogenic precursor cell culture as in vitro model of rainbow trout white muscle. Seven-day old myocytes were starved of amino acids for two hours then exposed to media that contained amino acid treatments, during which protein degradation rates were analyzed over five hours by measuring cellular release of 3H-tyrosine. Increasing concentrations of essential amino acids (EAA) reduced protein degradation rates; this effect was dose-dependent within the physiological range found in plasma. Addition of leucine or phenylalanine at 5 mM and 2.5 mM, respectively, decreased rates of protein degradation compared to media without amino acid supplementation, suggesting that these amino acids directly regulate muscle proteolysis. Protein degradation rates were similar in cells exposed to media without EAA and media lacking only leucine, further supporting a role for leucine as a central regulator of protein turnover. Addition of 5 mM lysine or valine to media without amino acids increased protein degradation; this response was attenuated as EAA were added back into media, supporting that a lysine or valine imbalance is costly for muscle protein retention. In summary, there is evidence for amino acids as both positive and negative regulators of protein turnover in rainbow trout muscle. These findings suggest that there may be an optimal plasma amino acid profile that minimizes protein turnover and that this could be achieved through diet formulation.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville 25427, United States.
| | - Lisa M Radler
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville 25427, United States
| |
Collapse
|
25
|
Cleveland BM, Yamaguchi G, Radler LM, Shimizu M. Editing the duplicated insulin-like growth factor binding protein-2b gene in rainbow trout (Oncorhynchus mykiss). Sci Rep 2018; 8:16054. [PMID: 30375441 PMCID: PMC6207780 DOI: 10.1038/s41598-018-34326-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/17/2018] [Indexed: 01/10/2023] Open
Abstract
In salmonids, the majority of circulating insulin-like growth factor-I (IGF-I) is bound to IGF binding proteins (IGFBP), with IGFBP-2b being the most abundant in circulation. We used CRISPR/Cas9 methodology to disrupt expression of a functional IGFBP-2b protein by co-targeting for gene editing IGFBP-2b1 and IGFBP-2b2 subtypes, which represent salmonid-specific gene duplicates. Twenty-four rainbow trout were produced with mutations in the IGFBP-2b1 and IGFBP-2b2 genes. Mutant fish exhibited between 8–100% and 2–83% gene disruption for IGFBP-2b1 and IGFBP-2b2, respectively, with a positive correlation (P < 0.001) in gene mutation rate between individual fish. Analysis of IGFBP-2b protein indicated reductions in plasma IGFBP-2b abundance to between 0.04–0.96-fold of control levels. Plasma IGF-I, body weight, and fork length were reduced in mutants at 8 and 10 months post-hatch, which supports that IGFBP-2b is significant for carrying IGF-I. Despite reduced plasma IGF-I and IGFBP-2b in mutants, growth retardation in mutants was less severe between 10 and 12 months post-hatch (P < 0.05), suggesting a compensatory growth response occurred. These findings indicate that gene editing using CRISPR/Cas9 and ligand blotting is a feasible approach for characterizing protein-level functions of duplicated IGFBP genes in salmonids and is useful to unravel IGF-related endocrine mechanisms.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, West Virginia, United States of America.
| | - Ginnosuke Yamaguchi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Lisa M Radler
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, West Virginia, United States of America
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| |
Collapse
|
26
|
Huang Y, Wen H, Zhang M, Hu N, Si Y, Li S, He F. The DNA methylation status of MyoD and IGF-I genes are correlated with muscle growth during different developmental stages of Japanese flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2018; 219-220:33-43. [PMID: 29486246 DOI: 10.1016/j.cbpb.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 01/15/2023]
Abstract
Many genes related to muscle growth modulate myoblast proliferation and differentiation and promote muscle hypertrophy. MyoD is a myogenic determinant that contributes to myoblast determination, and insulin-like growth factor 1 (IGF-I) interacts with MyoD to regulate muscle hypertrophy and muscle mass. In this study, we aimed to assess DNA methylation and mRNA expression patterns of MyoD and IGF-I during different developmental stages of Japanese flounder, and to examine the relationship between MyoD and IGF-I gene. DNA and RNA were extracted from muscles, and DNA methylation of MyoD and IGF-I promoter and exons was detected by bisulfite sequencing. The relative expression of MyoD and IGF-I was measured by quantitative polymerase chain reaction. IGF-I was measured by radioimmunoassay. Interestingly, the lowest expression of MyoD and IGF-I emerged at larva stage, and the mRNA expression was negatively associated with methylation. We hypothesized that many skeletal muscle were required to complete metamorphosis; thus, the expression levels of MyoD and IGF-I genes increased from larva stage and then decreased. The relative expression levels of MyoD and IGF-I exhibited similar patterns, suggesting that MyoD and IGF-I regulated muscle growth through combined effects. Changes in the concentrations of IGF-I hormone were similar to those of IGF-I gene expression. Our results the mechanism through which MyoD and IGF-I regulate muscle development and demonstrated that MyoD interacted with IGF-I to regulate muscle growth during different developmental stages.
Collapse
Affiliation(s)
- Yajuan Huang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Haishen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Meizhao Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Nan Hu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yufeng Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Siping Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Feng He
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
27
|
Wang T, Wang X, Zhou H, Jiang H, Mai K, He G. The Mitotic and Metabolic Effects of Phosphatidic Acid in the Primary Muscle Cells of Turbot ( Scophthalmus maximus). Front Endocrinol (Lausanne) 2018; 9:221. [PMID: 29780359 PMCID: PMC5946094 DOI: 10.3389/fendo.2018.00221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022] Open
Abstract
Searching for nutraceuticals and understanding the underlying mechanism that promote fish growth is at high demand for aquaculture industry. In this study, the modulatory effects of soy phosphatidic acids (PA) on cell proliferation, nutrient sensing, and metabolic pathways were systematically examined in primary muscle cells of turbot (Scophthalmus maximus). PA was found to stimulate cell proliferation and promote G1/S phase transition through activation of target of rapamycin signaling pathway. The expression of myogenic regulatory factors, including myoD and follistatin, was upregulated, while that of myogenin and myostatin was downregulated by PA. Furthermore, PA increased intracellular free amino acid levels and enhanced protein synthesis, lipogenesis, and glycolysis, while suppressed amino acid degradation and lipolysis. PA also was found to increased cellular energy production through stimulated tricarboxylic acid cycle and oxidative phosphorylation. Our results identified PA as a potential nutraceutical that stimulates muscle cell proliferation and anabolism in fish.
Collapse
Affiliation(s)
- Tingting Wang
- Key Laboratory of Aquaculture Nutrition, Ministry of Agriculture, Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xuan Wang
- Key Laboratory of Aquaculture Nutrition, Ministry of Agriculture, Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Huihui Zhou
- Key Laboratory of Aquaculture Nutrition, Ministry of Agriculture, Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Haowen Jiang
- Key Laboratory of Aquaculture Nutrition, Ministry of Agriculture, Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition, Ministry of Agriculture, Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Gen He
- Key Laboratory of Aquaculture Nutrition, Ministry of Agriculture, Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Gen He,
| |
Collapse
|
28
|
Proteolytic systems' expression during myogenesis and transcriptional regulation by amino acids in gilthead sea bream cultured muscle cells. PLoS One 2017; 12:e0187339. [PMID: 29261652 PMCID: PMC5737955 DOI: 10.1371/journal.pone.0187339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/18/2017] [Indexed: 12/30/2022] Open
Abstract
Proteolytic systems exert an important role in vertebrate muscle controlling protein turnover, recycling of amino acids (AA) or its use for energy production, as well as other functions like myogenesis. In fish, proteolytic systems are crucial for the relatively high muscle somatic index they possess, and because protein is the most important dietary component. Thus in this study, the molecular profile of proteolytic markers (calpains, cathepsins and ubiquitin-proteasome system (UbP) members) were analyzed during gilthead sea bream (Sparus aurata) myogenesis in vitro and under different AA treatments. The gene expression of calpains (capn1, capn3 and capns1b) decreased progressively during myogenesis together with the proteasome member n3; whereas capn2, capns1a, capns1b and ubiquitin (ub) remained stable. Contrarily, the cathepsin D (ctsd) paralogs and E3 ubiquitin ligases mafbx and murf1, showed a significant peak in gene expression at day 8 of culture that slightly decreased afterwards. Moreover, the protein expression analyzed for selected molecules presented in general the same profile of the mRNA levels, which was confirmed by correlation analysis. These data suggest that calpains seem to be more important during proliferation, while cathepsins and the UbP system appear to be required for myogenic differentiation. Concerning the transcriptional regulation by AA, the recovery of their levels after a short starvation period did not show effects on cathepsins expression, whereas it down-regulated the expression of capn3, capns1b, mafbx, murf1 and up-regulated n3. With regards to AA deficiencies, the major changes occurred at day 2, when leucine limitation suppressed ctsb and ctsl expression. Besides at the same time, both leucine and lysine deficiencies increased the expression of mafbx and murf1 and decreased that of n3. Overall, the opposite nutritional regulation observed, especially for the UbP members, points out an efficient and complementary role of these factors that could be useful in gilthead sea bream diets optimization.
Collapse
|
29
|
Kantserova NP, Lysenko LA, Veselov AE, Nemova NN. Protein degradation systems in the skeletal muscles of parr and smolt Atlantic salmon Salmo salar L. and brown trout Salmo trutta L. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1187-1194. [PMID: 28343271 DOI: 10.1007/s10695-017-0364-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
Although protein degradation limits the rate of muscle growth in fish, the role of proteolytic systems responsible for degrading myofibrillar proteins in skeletal muscle is not well defined. The study herein aims to evaluate the role of calpains (calcium-activated proteases) and proteasomes (ATP-dependent proteases) in mediating muscle protein turnover at different life stages in wild salmonids. Protease activities were estimated in Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) parr and smolts from the Indera River (Kola Peninsula, Russia). Calpain and proteasome activities in Atlantic salmon skeletal muscles were lower in smolts as compared with parr. Reduced muscle protein degradation accompanying Atlantic salmon parr-smolt transformation appeared to provide intense muscle growth essential for a minimum threshold size achievement that is required for smoltification. Calpain and proteasome activities in brown trout parr and smolts at age 3+ did not significantly differ. However, calpain activity was higher in smolts brown trout 4+ as compared with parr, while proteasome activity was lower. Results suggest that brown trout smoltification does not correspond with intense muscle growth and is more facultative and plastic in comparison with Atlantic salmon smoltification. Obtained data on muscle protein degradation capacity as well as length-weight parameters of fish reflect differences between salmon and trout in growth and smoltification strategies.
Collapse
Affiliation(s)
- Nadezda P Kantserova
- Institute of Biology, Karelian Research Centre of Russian Academy of Sciences, Pushkinskaya Str., 11, Petrozavodsk, Russian Federation, 185910.
| | - Liudmila A Lysenko
- Institute of Biology, Karelian Research Centre of Russian Academy of Sciences, Pushkinskaya Str., 11, Petrozavodsk, Russian Federation, 185910
| | - Alexey E Veselov
- Institute of Biology, Karelian Research Centre of Russian Academy of Sciences, Pushkinskaya Str., 11, Petrozavodsk, Russian Federation, 185910
| | - Nina N Nemova
- Institute of Biology, Karelian Research Centre of Russian Academy of Sciences, Pushkinskaya Str., 11, Petrozavodsk, Russian Federation, 185910
| |
Collapse
|
30
|
Zhuo MQ, Pan YX, Wu K, Xu YH, Luo Z. Characterization and mechanism of phosphoinositide 3-kinases (PI3Ks) members in insulin-induced changes of protein metabolism in yellow catfish Pelteobagrus fulvidraco. Gen Comp Endocrinol 2017; 247:34-45. [PMID: 28410969 DOI: 10.1016/j.ygcen.2017.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 11/23/2022]
Abstract
In the present study, seven phosphoinositide 3-kinase (PI3K) members (PI3KCa, PI3KCb, PI3KCd, PI3KCg, PI3KC2a, PI3KC2b and PI3KC3, respectively) were isolated and characterized from yellow catfish Pelteobagrus fulvidraco, and their roles in insulin-induced changes of protein metabolism were determined. These seven PI3Ks can be divided into three classes, class I (including PI3KCa, PI3KCb, PI3KCd and PI3KCg), class II (including PI3KC2a and PI3KC2b) and class III (only including PI3KC3). Compared with mammals, all of these members share similar domain structure. Their mRNAs were widely expressed across ten tested tissues (liver, white muscle, spleen, brain, gill, mesenteric fat, intestine, heart, kidney and ovary), but at variable levels. In the in vivo study, insulin treatment significantly increased hepatic protein content at 3h, accompanied with reduced plasma total amino acid contents and liver ALT activity, and with increased total RNA content and the mRNA levels of PI3KCb, PI3KC2a, AKT2, mTORC1 and S6K1 in liver. At 6h and 12h, insulin injection showed no significant effect on liver protein content and plasma total amino acid, but reduced liver ALT activity and increased liver total RNA and the mRNA levels of AKT2, mTORC1 and S6K1 in liver at 6h. In the in vitro study, insulin incubation also tended to increase protein content of hepatocytes, accompanied with reduced cell medium total amino acid contents and hepatocytes ALT activity, and increased total RNA content and the mRNA levels of PI3KCb, PI3KC2a, AKT2, mTORC1 and S6K1 in hepatocytes. However, insulin treatment showed no significant effect on GDH activity and mRNA expression of PI3KCa, PI3KCd, PI3KCg, PI3KC2b, PI3KC3 and eEF2 both in the in vivo and in vitro studies. Effects of insulin on the mRNA levels of eIF-4E and 4E-BP1 were different between the in vivo and in vitro studies, and also time-dependent. Compared to single insulin group, insulin+wortmannin group increased ALT activity at 6h but reduced T-RNA content at 6 and 12h. AKT2 and S6K1 mRNA levels at 6 and 12h, mRNA levels of mTORC1, 4E-BP1 and eEF2 at 3 and 6h, and EIF-4E mRNA levels at 3 and 12h, PI3KCb and PI3KC2a mRNA levels were significantly lower in insulin+wortmannin group than those in single insulin group. Thus, our study demonstrated that among seven PI3K members, PI3KCb and PI3KC2a were more sensitive to the insulin signaling pathway, and insulin stimulated hepatic protein synthesis in yellow catfish through PI3K signaling pathway.
Collapse
Affiliation(s)
- Mei-Qin Zhuo
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan-Xiong Pan
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Wu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Huan Xu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| |
Collapse
|
31
|
de Paula TG, Zanella BTT, Fantinatti BEDA, de Moraes LN, Duran BODS, de Oliveira CB, Salomão RAS, da Silva RN, Padovani CR, dos Santos VB, Mareco EA, Carvalho RF, Dal-Pai-Silva M. Food restriction increase the expression of mTORC1 complex genes in the skeletal muscle of juvenile pacu (Piaractus mesopotamicus). PLoS One 2017; 12:e0177679. [PMID: 28505179 PMCID: PMC5432107 DOI: 10.1371/journal.pone.0177679] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/01/2017] [Indexed: 11/19/2022] Open
Abstract
Skeletal muscle is capable of phenotypic adaptation to environmental factors, such as nutrient availability, by altering the balance between muscle catabolism and anabolism that in turn coordinates muscle growth. Small noncoding RNAs, known as microRNAs (miRNAs), repress the expression of target mRNAs, and many studies have demonstrated that miRNAs regulate the mRNAs of catabolic and anabolic genes. We evaluated muscle morphology, gene expression of components involved in catabolism, anabolism and energetic metabolism and miRNAs expression in both the fast and slow muscle of juvenile pacu (Piaractus mesopotamicus) during food restriction and refeeding. Our analysis revealed that short periods of food restriction followed by refeeding predominantly affected fast muscle, with changes in muscle fiber diameter and miRNAs expression. There was an increase in the mRNA levels of catabolic pathways components (FBXO25, ATG12, BCL2) and energetic metabolism-related genes (PGC1α and SDHA), together with a decrease in PPARβ/δ mRNA levels. Interestingly, an increase in mRNA levels of anabolic genes (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) was also observed during food restriction. After refeeding, muscle morphology showed similar patterns of the control group; the majority of genes were slightly up- or down-regulated in fast and slow muscle, respectively; the levels of all miRNAs increased in fast muscle and some of them decreased in slow muscle. Our findings demonstrated that a short period of food restriction in juvenile pacu had a considerable impact on fast muscle, increasing the expression of anabolic (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) and energetic metabolism genes. The miRNAs (miR-1, miR-206, miR-199 and miR-23a) were more expressed during refeeding and while their target genes (IGF-1, mTOR, PGC1α and MAFbx), presented a decreased expression. The alterations in mTORC1 complex observed during fasting may have influenced the rates of protein synthesis by using amino acids from protein degradation as an alternative mechanism to preserve muscle phenotype and metabolic demand maintenance.
Collapse
Affiliation(s)
- Tassiana Gutierrez de Paula
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | | | - Leonardo Nazário de Moraes
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Bruno Oliveira da Silva Duran
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | - Rondinelle Artur Simões Salomão
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
- Aquaculture Center, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Rafaela Nunes da Silva
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | | | - Robson Francisco Carvalho
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
- Aquaculture Center, São Paulo State University, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
32
|
Vélez EJ, Azizi S, Lutfi E, Capilla E, Moya A, Navarro I, Fernández-Borràs J, Blasco J, Gutiérrez J. Moderate and sustained exercise modulates muscle proteolytic and myogenic markers in gilthead sea bream ( Sparus aurata). Am J Physiol Regul Integr Comp Physiol 2017; 312:R643-R653. [PMID: 28228414 DOI: 10.1152/ajpregu.00308.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
Abstract
Swimming activity primarily accelerates growth in fish by increasing protein synthesis and energy efficiency. The role of muscle in this process is remarkable and especially important in teleosts, where muscle represents a high percentage of body weight and because many fish species present continuous growth. The aim of this work was to characterize the effects of 5 wk of moderate and sustained swimming in gene and protein expression of myogenic regulatory factors, proliferation markers, and proteolytic molecules in two muscle regions (anterior and caudal) of gilthead sea bream fingerlings. Western blot results showed an increase in the proliferation marker proliferating cell nuclear antigen (PCNA), proteolytic system members calpain 1 and cathepsin D, as well as vascular endothelial growth factor protein expression. Moreover, quantitative real-time PCR data showed that exercise increased the gene expression of proteases (calpains, cathepsins, and members of the ubiquitin-proteasome system in the anterior muscle region) and the gene expression of the proliferation marker PCNA and the myogenic factor MyoD in the caudal area compared with control fish. Overall, these data suggest a differential response of the two muscle regions during swimming adaptation, with tissue remodeling and new vessel formation occurring in the anterior muscle and enhanced cell proliferation and differentiation occurring in the caudal area. In summary, the present study contributes to improving the knowledge of the role of proteolytic molecules and other myogenic factors in the adaptation of muscle to moderate sustained swimming in gilthead sea bream.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sheida Azizi
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Esmail Lutfi
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Alberto Moya
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Kantserova NP, Lysenko LA, Nemova NN. Protein degradation in the skeletal muscles of parrs and smolts of the Atlantic salmon Salmo salar L. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017010046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
|
35
|
Vélez EJ, Lutfi E, Azizi S, Montserrat N, Riera-Codina M, Capilla E, Navarro I, Gutiérrez J. Contribution of in vitro myocytes studies to understanding fish muscle physiology. Comp Biochem Physiol B Biochem Mol Biol 2015; 199:67-73. [PMID: 26688542 DOI: 10.1016/j.cbpb.2015.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/04/2015] [Accepted: 12/06/2015] [Indexed: 11/25/2022]
Abstract
Research on the regulation of fish muscle physiology and growth was addressed originally by classical in vivo approaches; however, systemic interactions resulted in many questions that could be better considered through in vitro myocyte studies. The first paper published by our group in this field was with Tom Moon on brown trout cardiomyocytes, where the insulin and IGF-I receptors were characterized and the down-regulatory effects of an excess of peptides demonstrated. We followed the research on cultured skeletal muscle cells through the collaboration with INRA focused on the characterization of IGF-I receptors and its signaling pathways through in vitro development. Later on, we showed the important metabolic role of IGFs, although these studies were only the first stage of a prolific area of work that has offered a useful tool to advance in our knowledge of the endocrine and nutritional regulation of fish growth and metabolism. Obviously, the findings obtained in vitro serve the purpose to propose the scenario that will need confirmation in vivo, but this technique has made possible many different, easy, fast and better controlled studies. In this review, we have summarized the main advances that the use of cultured muscle cells has permitted, focusing mainly in the role of IGFs regulating fish metabolism and growth. Although many articles have already appeared using this model system in salmonids, gilthead sea bream or zebrafish, it is reasonable to expect new studies with cultured cells using innovative approaches that will help to understand fish physiology and its regulation.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Esmail Lutfi
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Sheida Azizi
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Núria Montserrat
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Miquel Riera-Codina
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Isabel Navarro
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
36
|
Heidari Z, Bickerdike R, Tinsley J, Zou J, Wang TY, Chen TY, Martin SA. Regulatory factors controlling muscle mass: Competition between innate immune function and anabolic signals in regulation of atrogin-1 in Atlantic salmon. Mol Immunol 2015; 67:341-9. [DOI: 10.1016/j.molimm.2015.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/19/2015] [Accepted: 06/21/2015] [Indexed: 12/12/2022]
|
37
|
Fuentes EN, Einarsdottir IE, Paredes R, Hidalgo C, Valdes JA, Björnsson BT, Molina A. The TORC1/P70S6K and TORC1/4EBP1 signaling pathways have a stronger contribution on skeletal muscle growth than MAPK/ERK in an early vertebrate: Differential involvement of the IGF system and atrogenes. Gen Comp Endocrinol 2015; 210:96-106. [PMID: 25449137 DOI: 10.1016/j.ygcen.2014.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 08/28/2014] [Accepted: 10/23/2014] [Indexed: 12/25/2022]
Abstract
Knowledge about the underlying mechanisms, particularly the signaling pathways that account for muscle growth in vivo in early vertebrates is still scarce. Fish (Paralichthys adspersus) were fasted for 3weeks to induce a catabolic period of strong muscle atrophy. Subsequently, fish were refed for 2weeks to induce compensatory muscle hypertrophy. During refeeding, the fish were treated daily with either rapamycin (TORC blocker), PD98059 (MEK blocker), or PBS (V; vehicle), or were untreated (C; control). Rapamycin and PD98059 differentially impaired muscle cellularity in vivo, growth performance, and the expression of growth-related genes, and the inhibition of TORC1 had a greater impact on fish muscle growth than the inhibition of MAPK. Blocking TORC1 inhibited the phosphorylation of P70S6K and 4EBP1, two downstream components activated by TORC1, thus affecting protein contents in muscle. Concomitantly, the gene expression in muscle of igf-1, 2 and igfbp-4, 5 was down-regulated while the expression of atrogin-1, murf-1, and igfbp-2, 3 was up-regulated. Muscle hypertrophy was abolished and muscle atrophy was promoted, which finally affected body weight. TORC2 complex was not affected by rapamycin. On the other hand, the PD98059 treatment triggered ERK inactivation, a downstream component activated by MEK. mRNA contents of igf-1 in muscle were down-regulated, and muscle hypertrophy was partially impaired. The present study provides the first direct data on the in vivo contribution of TORC1/P70S6K, TORC1/4EBP1, and MAPK/ERK signaling pathways in the skeletal muscle of an earlier vertebrate, and highlights the transcendental role of TORC1 in growth from the cellular to organism level.
Collapse
Affiliation(s)
- Eduardo N Fuentes
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile; Laboratorio de Biotecnologia Molecular, Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Av. Republica 217, Santiago, Chile.
| | - Ingibjörg Eir Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, S-40530 Gothenburg, Sweden
| | - Rodolfo Paredes
- Escuela de Medicina Veterinaria, Facultad de Ecologia y Recursos Naturales, Universidad Andres Bello, Av. Republica 440, Santiago, Chile
| | - Christian Hidalgo
- Escuela de Medicina Veterinaria, Facultad de Ecologia y Recursos Naturales, Universidad Andres Bello, Av. Republica 440, Santiago, Chile
| | - Juan Antonio Valdes
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile; Laboratorio de Biotecnologia Molecular, Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Av. Republica 217, Santiago, Chile
| | - Björn Thrandur Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, S-40530 Gothenburg, Sweden
| | - Alfredo Molina
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile; Laboratorio de Biotecnologia Molecular, Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Av. Republica 217, Santiago, Chile.
| |
Collapse
|
38
|
Rolland M, Dalsgaard J, Holm J, Gómez-Requeni P, Skov PV. Dietary methionine level affects growth performance and hepatic gene expression of GH-IGF system and protein turnover regulators in rainbow trout (Oncorhynchus mykiss) fed plant protein-based diets. Comp Biochem Physiol B Biochem Mol Biol 2014; 181:33-41. [PMID: 25479406 DOI: 10.1016/j.cbpb.2014.11.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
Abstract
The effects of dietary level of methionine were investigated in juvenile rainbow trout (Oncorhynchus mykiss) fed five plant-based diets containing increasing content of crystalline methionine (Met), in a six week growth trial. Changes in the hepatic expression of genes related to i) the somatotropic axis: including the growth hormone receptor I (GHR-I), insulin-like growth hormones I and II (IGF-I and IGF-II, respectively), and insulin-like growth hormone binding protein-1b (IGFBP-1b); and ii) protein turnover: including the target of rapamycin protein (TOR), proteasome 20 delta (Prot 20D), cathepsin L, calpains 1 and 2 (Capn 1 and Capn 2, respectively), and calpastatin long and short isoforms (CAST-L and CAST-S, respectively) were measured for each dietary treatment. The transcript levels of GHR-I and IGF-I increased linearly with the increase of dietary Met content (P<0.01), reflecting overall growth performances. The apparent capacity for hepatic protein degradation (derived from the gene expression of TOR, Prot 20D, Capn 1, Capn 2, CAST-L and CAST-S) decreased with increasing dietary Met level in a relatively linear manner. Our results suggest that Met availability affects, directly or indirectly, the expression of genes involved in the GH/IGF axis response and protein turnover, which are centrally involved in the regulation of growth.
Collapse
Affiliation(s)
- Marine Rolland
- BioMar A/S, Mylius Erichsensvej 35, DK-7330 Brande, Denmark; Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Center, P.O. Box 101, DK-9850 Hirtshals, Denmark.
| | - Johanne Dalsgaard
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Center, P.O. Box 101, DK-9850 Hirtshals, Denmark
| | - Jørgen Holm
- BioMar A/S, Mylius Erichsensvej 35, DK-7330 Brande, Denmark
| | | | - Peter V Skov
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Center, P.O. Box 101, DK-9850 Hirtshals, Denmark
| |
Collapse
|
39
|
Seiliez I, Gabillard JC, Riflade M, Sadoul B, Dias K, Avérous J, Tesseraud S, Skiba S, Panserat S. Amino acids downregulate the expression of several autophagy-related genes in rainbow trout myoblasts. Autophagy 2014; 8:364-75. [DOI: 10.4161/auto.18863] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
40
|
Seiliez I, Dias K, Cleveland BM. Contribution of the autophagy-lysosomal and ubiquitin-proteasomal proteolytic systems to total proteolysis in rainbow trout (Oncorhynchus mykiss) myotubes. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1330-7. [PMID: 25274907 DOI: 10.1152/ajpregu.00370.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ubiquitin-proteasome system (UPS) is recognized as the major contributor to total proteolysis in mammalian skeletal muscle, responsible for 50% or more of total protein degradation in skeletal muscle, whereas the autophagic-lysosome system (ALS) plays a more minor role. While the relative contribution of these systems to muscle loss is well documented in mammals, little is known in fish species. The current study uses myotubes derived from rainbow trout myogenic precursor cells as an in vitro model of white muscle tissue. Cells were incubated in complete or serum-deprived media or media supplemented with insulin-like growth factor-1 (IGF-1) and exposed to selective proteolytic inhibitors to determine the relative contribution of the ALS and UPS to total protein degradation in myotubes in different culture conditions. Results indicate that the ALS is responsible for 30-34% and 50% of total protein degradation in myotubes in complete and serum-deprived media, respectively. The UPS appears to contribute much less to total protein degradation at almost 4% in cells in complete media to nearly 17% in serum-deprived cells. IGF-1 decreases activity of both systems, as it inhibited the upregulation of both proteolytic systems induced by serum deprivation. The combined inhibition of both the ALS and UPS reduced degradation by a maximum of 55% in serum-deprived cells, suggesting an important contribution of other proteolytic systems to total protein degradation. Collectively, these data identify the ALS as a potential target for strategies aimed at improving muscle protein retention and fillet yield through reductions in protein degradation.
Collapse
Affiliation(s)
- Iban Seiliez
- Institut National de la Recherche Agronomique, Nutrition Métabolisme Aquaculture, St-Pée-sur-Nivelle, France; and
| | - Karine Dias
- Institut National de la Recherche Agronomique, Nutrition Métabolisme Aquaculture, St-Pée-sur-Nivelle, France; and
| | - Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service/United States Department of Agriculture, Kearneysville, West Virginia
| |
Collapse
|
41
|
Cleveland BM. In vitro and in vivo effects of phytoestrogens on protein turnover in rainbow trout (Oncorhynchus mykiss) white muscle. Comp Biochem Physiol C Toxicol Pharmacol 2014; 165:9-16. [PMID: 24874080 DOI: 10.1016/j.cbpc.2014.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/17/2014] [Accepted: 05/18/2014] [Indexed: 12/30/2022]
Abstract
Soybeans and other legumes investigated as fishmeal replacements in aquafeeds contain phytoestrogens capable of binding to and activating estrogen receptors. Estradiol has catabolic effects in salmonid white muscle, partially through increases in protein turnover. The current study determines whether phytoestrogens promote similar effects. In rainbow trout (Oncorhynchus mykiss) primary myocyte cultures, the phytoestrogens genistein, daidzein, glycitein, and R- and S-equol reduced rates of protein synthesis and genistein, the phytoestrogen of greatest abundance in soy, also increased rates of protein degradation. Increased expression of the ubiquitin ligase fbxo32 and autophagy-related genes was observed with high concentrations of genistein (100 μM), and R- and S-equol (100 μM) also up-regulated autophagy-related genes. In contrast, low genistein concentrations in vitro (0.01-0.10 μM) and in vivo (5 μg/g body mass) decreased fbxo32 expression, suggesting a potential metabolic benefit for low levels of genistein exposure. Phytoestrogens reduced cell proliferation, indicating that effects of phytoestrogens extend from metabolic to mitogenic processes. Co-incubation of genistein with the estrogen receptor (ER) antagonist, ICI 182,780, ameliorated effects of genistein on protein degradation, but not protein synthesis or cell proliferation, indicating that effects of genistein are mediated through ER-dependent and ER-independent mechanisms. Collectively, these data warrant additional studies to determine the extent to which dietary phytoestrogens, especially genistein, affect physiological processes that impact growth and nutrient retention.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, 11861 Leetown Rd, Kearneysville, WV 25430 USA.
| |
Collapse
|
42
|
Fuentes EN, Zuloaga R, Valdes JA, Molina A, Alvarez M. Skeletal muscle plasticity induced by seasonal acclimatization involves IGF1 signaling: implications in ribosomal biogenesis and protein synthesis. Comp Biochem Physiol B Biochem Mol Biol 2014; 176:48-57. [PMID: 25088252 DOI: 10.1016/j.cbpb.2014.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/11/2014] [Accepted: 07/22/2014] [Indexed: 12/15/2022]
Abstract
One of the most fundamental biological processes in living organisms that are affected by environmental fluctuations is growth. In fish, skeletal muscle accounts for the largest proportion of body mass, and the growth of this tissue is mainly controlled by the insulin-like growth factor (IGF) system. By using the carp (Cyprinus carpio), a fish that inhabits extreme conditions during winter and summer, we assessed the skeletal muscle plasticity induced by seasonal acclimatization and the relation of IGF signaling with protein synthesis and ribosomal biogenesis. The expression of igf1 in muscle decreased during winter in comparison with summer, whereas the expression for both paralogues of igf2 did not change significantly between seasons. The expression of igf1 receptor a (igf1ra), but not of igf1rb, was down-regulated in muscle during the winter as compared to the summer. A decrease in protein contents and protein phosphorylation for IGF signaling molecules in muscle was observed in winter-acclimatized carp. This was related with a decreased expression in muscle for markers of myogenesis (myoblast determination factor (myod), myogenic factor 5 (myf5), and myogenin (myog)); protein synthesis (myosin heavy chain (mhc) and myosin light chain (mlc3 and mlc1b)); and ribosomal biogenesis (pre-rRNA and ribosomal proteins). IGF signaling, and key markers of ribosomal biogenesis, protein synthesis, and myogenesis were affected by seasonal acclimatization, with differential regulation in gene expression and signaling pathway activation observed in muscle between both seasons. This suggests that these molecules are responsible for the muscle plasticity induced by seasonal acclimatization in carp.
Collapse
Affiliation(s)
- Eduardo N Fuentes
- Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| | - Rodrigo Zuloaga
- Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago, Chile
| | - Juan Antonio Valdes
- Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Alfredo Molina
- Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Marco Alvarez
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile; Laboratorio de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Quillota 980, Viña del Mar, Chile.
| |
Collapse
|
43
|
Li D, Lou Q, Zhai G, Peng X, Cheng X, Dai X, Zhuo Z, Shang G, Jin X, Chen X, Han D, He J, Yin Z. Hyperplasia and cellularity changes in IGF-1-overexpressing skeletal muscle of crucian carp. Endocrinology 2014; 155:2199-212. [PMID: 24617525 DOI: 10.1210/en.2013-1938] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The zebrafish skeletal muscle-specific promoter mylz2 was used to cause crucian carp overexpression of the zebrafish IGF-1 cDNA. In stable transgenic germline F1 progenies, a 5-fold increase in the level of IGF-1 in skeletal muscle was observed. Evident skeletal muscle hyperplasia was observed in the transgenic fish through histologic analysis. By analyzing the RNA sequencing transcriptome of the skeletal muscle of IGF-1 transgenic fish and nontransgenic control fish at 15 months of age, 10 966 transcripts with significant expression levels were identified with definite gene descriptions based on the corresponding zebrafish genome information. Based on the results of our RNA sequencing transcriptome profiling analysis and the results of the real-time quantitative PCR analysis performed to confirm the skeletal muscle transcriptomics analysis, several pathways, including IGF-1 signaling, aerobic metabolism, and protein degradation, were found to be activated in the IGF-1-overexpressing transgenic fish. Intriguingly, our transcriptional expression and protein assays indicated that the overexpression of IGF-1 stimulated a significant shift in the myofiber type toward a more oxidative slow muscle type. Although the body weight was surprisingly decreased by IGF-1 transgenic expression, significantly higher oxygen consumption rates were measured in IGF-1-overexpressing transgenic fish compared with their nontransgenic control fish. These results indicate that the sustained overexpression of IGF-1 in crucian carp skeletal muscle promotes myofiber hyperplasia and cellularity changes, which elicit alterations in the body energy metabolism and skeletal muscle growth.
Collapse
Affiliation(s)
- Dongliang Li
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences (D.L., Q.L., G.Z., X.P., X.C., X.D., Z.Z., G.S., X.J., X.C., D.H., J.H., Z.Y.), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; and University of Chinese Academy of Sciences (D.L., G.Z., X.P., X.C., X.D., Z.Z., G.S.), Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Froehlich JM, Seiliez I, Gabillard JC, Biga PR. Preparation of primary myogenic precursor cell/myoblast cultures from basal vertebrate lineages. J Vis Exp 2014. [PMID: 24835774 DOI: 10.3791/51354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystoma mexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream(1-4).
Collapse
Affiliation(s)
| | | | | | - Peggy R Biga
- Department of Biology, University of Alabama at Birmingham;
| |
Collapse
|
45
|
RNA-seq analysis of early hepatic response to handling and confinement stress in rainbow trout. PLoS One 2014; 9:e88492. [PMID: 24558395 PMCID: PMC3928254 DOI: 10.1371/journal.pone.0088492] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/07/2014] [Indexed: 12/02/2022] Open
Abstract
Fish under intensive rearing conditions experience various stressors which have negative impacts on survival, growth, reproduction and fillet quality. Identifying and characterizing the molecular mechanisms underlying stress responses will facilitate the development of strategies that aim to improve animal welfare and aquaculture production efficiency. In this study, we used RNA-seq to identify transcripts which are differentially expressed in the rainbow trout liver in response to handling and confinement stress. These stressors were selected due to their relevance in aquaculture production. Total RNA was extracted from the livers of individual fish in five tanks having eight fish each, including three tanks of fish subjected to a 3 hour handling and confinement stress and two control tanks. Equal amount of total RNA of six individual fish was pooled by tank to create five RNA-seq libraries which were sequenced in one lane of Illumina HiSeq 2000. Three sequencing runs were conducted to obtain a total of 491,570,566 reads which were mapped onto the previously generated stress reference transcriptome to identify 316 differentially expressed transcripts (DETs). Twenty one DETs were selected for qPCR to validate the RNA-seq approach. The fold changes in gene expression identified by RNA-seq and qPCR were highly correlated (R2 = 0.88). Several gene ontology terms including transcription factor activity and biological process such as glucose metabolic process were enriched among these DETs. Pathways involved in response to handling and confinement stress were implicated by mapping the DETs to reference pathways in the KEGG database. Accession Numbers Raw RNA-seq reads have been submitted to the NCBI Short Read Archive under accession number SRP022881. Customized Perl Scripts All customized scripts described in this paper are available from Dr. Guangtu Gao or the corresponding author.
Collapse
|
46
|
Apper-Bossard E, Feneuil A, Wagner A, Respondek F. Use of vital wheat gluten in aquaculture feeds. AQUATIC BIOSYSTEMS 2013; 9:21. [PMID: 24237766 PMCID: PMC3833847 DOI: 10.1186/2046-9063-9-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/06/2013] [Indexed: 06/02/2023]
Abstract
In aquaculture, when alternative protein sources of Fish Meal (FM) in diets are investigated, Plant Proteins (PP) can be used. Among them, Vital Wheat Gluten (VWG) is a proteinaceous material obtained from wheat after starch extraction. "It is mainly composed of two types of proteins, gliadins and glutenins, which confer specific visco-elasticity that's to say ability to form a network providing suitable binding. This will lead to specific technological properties that are notably relevant to extruded feeds". Besides these properties, VWG is a high-protein ingredient with an interesting amino-acid profile. Whereas it is rather low in lysine, it contains more sulfur amino acids than other PP sources and it is high in glutamine, which is known to improve gut health and modulate immunity. VWG is a protein source with one of the highest nitrogen digestibility due to a lack of protease inhibitor activity and to the lenient process used to make the product. By this way, addition of VWG in diet does not adversely affect growth performance in many fish species, even at a high level, and may secure high PP level diets that can induce health damages.
Collapse
Affiliation(s)
| | | | - Anne Wagner
- Tereos Syral, Z.I. Portuaire, 67 390, Marckolsheim, France
| | | |
Collapse
|
47
|
Pooley NJ, Tacchi L, Secombes CJ, Martin SAM. Inflammatory responses in primary muscle cell cultures in Atlantic salmon (Salmo salar). BMC Genomics 2013; 14:747. [PMID: 24180744 PMCID: PMC3819742 DOI: 10.1186/1471-2164-14-747] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/26/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The relationship between fish health and muscle growth is critical for continued expansion of the aquaculture industry. The effect of immune stimulation on the expression of genes related to the energy balance of fish is poorly understood. In mammals immune stimulation results in major transcriptional changes in muscle, potentially to allow a reallocation of amino acids for use in the immune response and energy homeostasis. The aim of this study was to investigate the effects of immune stimulation on fish muscle gene expression. RESULTS Atlantic salmon (Salmo salar) primary muscle cell cultures were stimulated with recombinant (r)IL-1β, a major proinflammatory cytokine, for 24 h in order to simulate an acute immune response. The transcriptomic response was determined by RNA hybridization to a 4 × 44 K Agilent Atlantic salmon microarray platform. The rIL-1β stimulation induced the expression of genes related to both the innate and adaptive immune systems. In addition there were highly significant changes in the expression of genes related to regulation of the cell cycle, growth/structural proteins, proteolysis and lipid metabolism. Of interest were a number of IGF binding proteins that were differentially expressed, which may demonstrate cross talk between the growth and immune systems. CONCLUSION We show rIL-1β modulates the expression of not only immune related genes, but also that of genes involved in processes related to growth and metabolism. Co-stimulation of muscle cells with both rIGF-I and rIL-1β demonstrates cross talk between these pathways providing potential avenues for further research. This study highlights the potential negative effects of inflammation on muscle protein deposition and growth in fish and extends our understanding of energy allocation in ectothermic animals.
Collapse
Affiliation(s)
- Nicholas J Pooley
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Luca Tacchi
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
- Current address: Centre for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Christopher J Secombes
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Samuel AM Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| |
Collapse
|
48
|
Salem M, Manor ML, Aussanasuwannakul A, Kenney PB, Weber GM, Yao J. Effect of sexual maturation on muscle gene expression of rainbow trout: RNA-Seq approach. Physiol Rep 2013; 1:e00120. [PMID: 24303187 PMCID: PMC3841051 DOI: 10.1002/phy2.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 11/28/2022] Open
Abstract
Muscle degradation occurs as a response to various physiological states that are regulated by specific molecular mechanisms. Previously, we characterized the metabolic changes of muscle deterioration of the female rainbow trout at full sexual maturity and spawning (Salem et al., Physiol. Genomics 2006;28:33–45; J. Proteomics 2010;73:778–789). Muscle deterioration in this model represents nutrient mobilization as a response to the energetic overdemands of the egg/ovarian growth phase. Our recent studies showed that most of the changes in muscle growth and quality start 2–3 months before spawning. Gravid fish exhibited reduced intramuscular fat that is lower in saturated and monounsaturated fatty acids and higher in polyunsaturated fatty acids compared to sterile fish. In this study, RNA-Seq was used to explain the mechanisms underlying changes during this phase of sexual maturity. Furthermore, to minimize changes due to nutrient deficits, fish were fed on a high-plane of nutrition. The RNA-Seq technique identified a gene expression signature that is consistent with metabolic changes of gravid fish. Gravid fish exhibited increased abundance of transcripts in metabolic pathways of fatty acid degradation and up-regulated expression of genes involved in biosynthesis of unsaturated fatty acids. In addition, increased expression of genes involved in the citric acid cycle and oxidative phosphorylation was observed for gravid fish. This muscle transcriptomic signature of fish fed on a high nutritional plane is quite distinct from that previously described for fish at terminal stages of maturity and suggest that female rainbow trout approaching spawning, on high nutritional planes, likely mobilize intramuscular fat rather than protein to support gonadal maturation.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Biology, Middle Tennessee State University Murfreesboro, Tennessee, 37132 ; Division of Animal and Nutritional Science, West Virginia University Morgantown, West Virginia, 26506-6108
| | | | | | | | | | | |
Collapse
|
49
|
Fuentes EN, Valdés JA, Molina A, Björnsson BT. Regulation of skeletal muscle growth in fish by the growth hormone--insulin-like growth factor system. Gen Comp Endocrinol 2013; 192:136-48. [PMID: 23791761 DOI: 10.1016/j.ygcen.2013.06.009] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 12/17/2022]
Abstract
The growth hormone (GH)-insulin-like growth factor (IGF) system is the key promoter of growth in vertebrates; however, how this system modulates muscle mass in fish is just recently becoming elucidated. In fish, the GH induces muscle growth by modulating the expression of several genes belonging to the myostatin (MSTN), atrophy, GH, and IGF systems as well as myogenic regulatory factors (MRFs). The GH controls the expression of igf1 via Janus kinase 2 (JAK2)/signal transducers and activators of the transcription 5 (STAT5) signaling pathway, but it seems that it is not the major regulator. These mild effects of the GH on igf1 expression in fish muscle seem to be related with the presence of higher contents of truncated GH receptor1 (tGHR1) than full length GHR (flGHR1). IGFs in fish stimulate myogenic cell proliferation, differentiation, and protein synthesis through the MAPK/ERK and PI3K/AKT/TOR signaling pathways, concomitant with abolishing protein degradation and atrophy via the PI3K/AKT/FOXO signaling pathway. Besides these signaling pathways control the expression of several genes belonging to the atrophy and IGF systems. Particularly, IGFs and amino acid control the expression of igf1, thus, suggesting other of alternative signaling pathways regulating the transcription of this growth factor. The possible role of IGF binding proteins (IGFBPs) and the contribution of muscle-derived versus hepatic-produced IGF1 on fish muscle growth is also addressed. Thus, a comprehensive overview on the GH-IGF system regulating fish skeletal muscle growth is presented, as well as perspectives for future research in this field.
Collapse
Affiliation(s)
- Eduardo N Fuentes
- Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| | | | | | | |
Collapse
|
50
|
Seiliez I, Taty Taty GC, Bugeon J, Dias K, Sabin N, Gabillard JC. Myostatin induces atrophy of trout myotubes through inhibiting the TORC1 signaling and promoting Ubiquitin-Proteasome and Autophagy-Lysosome degradative pathways. Gen Comp Endocrinol 2013; 186:9-15. [PMID: 23458288 DOI: 10.1016/j.ygcen.2013.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/04/2013] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
Abstract
Myostatin (MSTN) is well known as a potent inhibitor of muscle growth in mammals and has been shown to both inhibit the growth promoting TORC1 signaling pathway and promote Ubiquitin-Proteasomal and Autophagy-Lysosomal degradative routes. In contrast, in non-mammalian species, despite high structural conservation of MSTN sequence, functional conservation is only assumed. Here, we show that treatment of cultured trout myotubes with human recombinant MSTN (huMSTN) resulted in a significant decrease of their diameter by up to 20%, validating the use of heterologous huMSTN in our in vitro model to monitor the processes by which this growth factor promotes muscle wasting in fish. Accordingly, huMSTN stimulation prevented the full activation by IGF1 of the TORC1 signaling pathway, as revealed by the analysis of the phosphorylation status of 4E-BP1. Moreover, the levels of the proteasome-dependent protein Atrogin1 exhibited an increase in huMSTN treated cells. Likewise, we observed a stimulatory effect of huMSTN treatment on the levels of LC3-II, the more reliable marker of the Autophagy-Lysosomal degradative system. Overall, these results show for the first time in a piscine species the effect of MSTN on several atrophic and hypertrophic pathways and support a functional conservation of this growth factor between lower and higher vertebrates.
Collapse
Affiliation(s)
- Iban Seiliez
- INRA, UMR1067 Nutrition Métabolisme et Aquaculture, Pôle d'hydrobiologie, CD918, F-64310 St-Pée-sur-Nivelle, France.
| | | | | | | | | | | |
Collapse
|