1
|
Engin A. Protein Kinases in Obesity, and the Kinase-Targeted Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:199-229. [PMID: 39287853 DOI: 10.1007/978-3-031-63657-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The action of protein kinases and protein phosphatases is essential for multiple physiological responses. Each protein kinase displays its own unique substrate specificity and a regulatory mechanism that may be modulated by association with other proteins. Protein kinases are classified as dual-specificity kinases and dual-specificity phosphatases. Dual-specificity phosphatases are important signal transduction enzymes that regulate various cellular processes in coordination with protein kinases and play an important role in obesity. Impairment of insulin signaling in obesity is largely mediated by the activation of the inhibitor of kappa B-kinase beta and the c-Jun N-terminal kinase (JNK). Oxidative stress and endoplasmic reticulum (ER) stress activate the JNK pathway which suppresses insulin biosynthesis. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are important for proper regulation of glucose metabolism in mammals at both the hormonal and cellular levels. Additionally, obesity-activated calcium/calmodulin dependent-protein kinase II/p38 suppresses insulin-induced protein kinase B phosphorylation by activating the ER stress effector, activating transcription factor-4. To alleviate lipotoxicity and insulin resistance, promising targets are pharmacologically inhibited. Nifedipine, calcium channel blocker, stimulates lipogenesis and adipogenesis by downregulating AMPK and upregulating mTOR, which thereby enhances lipid storage. Contrary to the nifedipine, metformin activates AMPK, increases fatty acid oxidation, suppresses fatty acid synthesis and deposition, and thus alleviates lipotoxicity. Obese adults with vascular endothelial dysfunction have greater endothelial cells activation of unfolded protein response stress sensors, RNA-dependent protein kinase-like ER eukaryotic initiation factor-2 alpha kinase (PERK), and activating transcription factor-6. The transcriptional regulation of adipogenesis in obesity is influenced by AGC (protein kinase A (PKA), PKG, PKC) family signaling kinases. Obesity may induce systemic oxidative stress and increase reactive oxygen species in adipocytes. An increase in intracellular oxidative stress can promote PKC-β activation. Activated PKC-β induces growth factor adapter Shc phosphorylation. Shc-generated peroxides reduce mitochondrial oxygen consumption and enhance triglyceride accumulation and lipotoxicity. Liraglutide attenuates mitochondrial dysfunction and reactive oxygen species generation. Co-treatment of antiobesity and antidiabetic herbal compound, berberine with antipsychotic drug olanzapine decreases the accumulation of triglyceride. While low-dose rapamycin, metformin, amlexanox, thiazolidinediones, and saroglitazar protect against insulin resistance, glucagon-like peptide-1 analog liraglutide inhibits palmitate-induced inflammation by suppressing mTOR complex 1 (mTORC1) activity and protects against lipotoxicity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
2
|
Metz M, O'Hare J, Cheng B, Puchowicz M, Buettner C, Scherer T. Brain insulin signaling suppresses lipolysis in the absence of peripheral insulin receptors and requires the MAPK pathway. Mol Metab 2023; 73:101723. [PMID: 37100238 DOI: 10.1016/j.molmet.2023.101723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
OBJECTIVES Insulin's ability to counterbalance catecholamine-induced lipolysis defines insulin action in adipose tissue. Insulin suppresses lipolysis directly at the level of the adipocyte and indirectly through signaling in the brain. Here, we further characterized the role of brain insulin signaling in regulating lipolysis and defined the intracellular insulin signaling pathway required for brain insulin to suppress lipolysis. METHODS We used hyperinsulinemic clamp studies coupled with tracer dilution techniques to assess insulin's ability to suppress lipolysis in two different mouse models with inducible insulin receptor depletion in all tissues (IRΔWB) or restricted to peripheral tissues excluding the brain (IRΔPER). To identify the underlying signaling pathway required for brain insulin to inhibit lipolysis, we continuously infused insulin +/- a PI3K or MAPK inhibitor into the mediobasal hypothalamus of male Sprague Dawley rats and assessed lipolysis during clamps. RESULTS Genetic insulin receptor deletion induced marked hyperglycemia and insulin resistance in both IRΔPER and IRΔWB mice. However, the ability of insulin to suppress lipolysis was largely preserved in IRΔPER, but completely obliterated in IRΔWB mice indicating that insulin is still able to suppress lipolysis as long as brain insulin receptors are present. Blocking the MAPK, but not the PI3K pathway impaired the inhibition of lipolysis by brain insulin signaling. CONCLUSION Brain insulin is required for insulin to suppress adipose tissue lipolysis and depends on intact hypothalamic MAPK signaling.
Collapse
Affiliation(s)
- Matthäus Metz
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, 1090 Austria
| | - James O'Hare
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - Bob Cheng
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - Michelle Puchowicz
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106 USA
| | - Christoph Buettner
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA; Department of Medicine, Rutgers University, New Brunswick, NJ, 08901 USA.
| | - Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, 1090 Austria; Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA.
| |
Collapse
|
3
|
Evangelista FS, Bartness TJ. Central angiotensin 1-7 triggers brown fat thermogenesis. Physiol Rep 2023; 11:e15621. [PMID: 36905124 PMCID: PMC10006595 DOI: 10.14814/phy2.15621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 03/12/2023] Open
Abstract
We tested the hypothesis that third ventricular (3V) injections of angiotensin 1-7 (Ang 1-7) increases thermogenesis in brown adipose tissue (BAT), and whether the Mas receptor mediates this response. First, in male Siberian hamsters (n = 18), we evaluated the effect of Ang 1-7 in the interscapular BAT (IBAT) temperature and, using selective Mas receptor antagonist A-779, the role of Mas receptor in this response. Each animal received 3V injections (200 nL), with 48 h intervals: saline; Ang 1-7 (0.03, 0.3, 3, and 30 nmol); A-779 (3 nmol); and Ang 1-7 (0.3 nmol) + A-779 (3 nmol). IBAT temperature increased after 0.3 nmol Ang 1-7 compared with Ang 1-7 + A-779 at 20, 30, and 60 min. Also, 0.3 nmol Ang 1-7 increased IBAT temperature at 10 and 20 min, and decreased at 60 min compared with pretreatment. IBAT temperature decreased after A-779 at 60 min and after Ang 1-7 + A-779 at 30 and 60 min compared with the respective pretreatment. A-779 and Ang 1-7 + A-779 decreased core temperature at 60 min compared with 10 min. Then, we evaluated blood and tissue Ang 1-7 levels, and the expression of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) in IBAT. Male Siberian hamsters (n = 36) were killed 10 min after one of the injections. No changes were observed in blood glucose, serum and IBAT Ang 1-7 levels, and ATGL. Ang 1-7 (0.3 nmol) increased p-HSL expression compared with A-779 and increased p-HSL/HSL ration compared with other injections. Ang 1-7 and Mas receptor immunoreactive cells were found in brain regions that coincide with the sympathetic nerves outflow to BAT. In conclusion, 3V injection of Ang 1-7 induced thermogenesis in IBAT in a Mas receptor-dependent manner.
Collapse
Affiliation(s)
- F. S. Evangelista
- School of Arts, Science and HumanitiesUniversity of Sao PauloSao PauloBrazil
- Department of Biology, Center for Obesity Reversal, Neuroscience InstituteGeorgia State UniversityAtlantaGeorgiaUSA
| | - T. J. Bartness
- Department of Biology, Center for Obesity Reversal, Neuroscience InstituteGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
4
|
Scherer T, Sakamoto K, Buettner C. Brain insulin signalling in metabolic homeostasis and disease. Nat Rev Endocrinol 2021; 17:468-483. [PMID: 34108679 DOI: 10.1038/s41574-021-00498-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Insulin signalling in the central nervous system regulates energy homeostasis by controlling metabolism in several organs and by coordinating organ crosstalk. Studies performed in rodents, non-human primates and humans over more than five decades using intracerebroventricular, direct hypothalamic or intranasal application of insulin provide evidence that brain insulin action might reduce food intake and, more importantly, regulates energy homeostasis by orchestrating nutrient partitioning. This Review discusses the metabolic pathways that are under the control of brain insulin action and explains how brain insulin resistance contributes to metabolic disease in obesity, the metabolic syndrome and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Kenichi Sakamoto
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Christoph Buettner
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
5
|
Cao Q, Zhang J, Yu Q, Wang J, Dai M, Zhang Y, Luo Q, Bao M. Carotid baroreceptor stimulation in obese rats affects white and brown adipose tissues differently in metabolic protection. J Lipid Res 2019; 60:1212-1224. [PMID: 31126973 DOI: 10.1194/jlr.m091256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/23/2019] [Indexed: 11/20/2022] Open
Abstract
The sympathetic nervous system (SNS) regulates the functions of white adipose tissue (WAT) and brown adipose tissue (BAT) tightly. Carotid baroreceptor stimulation (CBS) efficiently inhibits SNS activation. We hypothesized that CBS would protect against obesity. We administered CBS to obese rats and measured sympathetic and AMP-activated protein kinase (AMPK)/ PPAR pathway responses as well as changes in perirenal WAT (PWAT), epididymal WAT (EWAT), and interscapular BAT (IBAT). CBS alleviated obesity-related metabolic changes, improving insulin resistance; reducing adipocyte hypertrophy, body weight, and adipose tissue weights; and decreasing norepinephrine but increasing acetylcholine in plasma, PWAT, EWAT, and IBAT. CBS also downregulated fatty acid translocase (CD36), fatty acid transport protein (FATP), phosphorylated and total hormone sensitive lipase, phosphorylated and total protein kinase A, and PPARγ in obese rats. Simultaneously, CBS upregulated phosphorylated adipose triglyceride lipase, phosphorylated and total AMPK, and PPARα in PWAT, EWAT, and IBAT. However, BAT and WAT responses differed; although many responses were more sensitive in IBAT, responses of CD36, FATP, and PPARγ were more sensitive in PWAT and EWAT. Overall, CBS decreased chronically activated SNS and ameliorated obesity-related metabolic disorders by regulating the AMPK/PPARα/γ pathway.
Collapse
Affiliation(s)
- Quan Cao
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Junxia Zhang
- Department of Endocrinology, Wuhan General Hospital of the Chinese People's Liberation Army, Wuhan 430060, China
| | - Qiao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Jing Wang
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Mingyan Dai
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University
| | - Yijie Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Qiang Luo
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Mingwei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University .,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| |
Collapse
|
6
|
Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241:R1-R33. [PMID: 30812013 PMCID: PMC6500576 DOI: 10.1530/joe-18-0596] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.
Collapse
Affiliation(s)
- Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
7
|
Carnagarin R, Matthews VB, Herat LY, Ho JK, Schlaich MP. Autonomic Regulation of Glucose Homeostasis: a Specific Role for Sympathetic Nervous System Activation. Curr Diab Rep 2018; 18:107. [PMID: 30232652 DOI: 10.1007/s11892-018-1069-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Cardiometabolic disorders such as obesity, metabolic syndrome and diabetes are increasingly common and associated with adverse cardiovascular outcomes. The mechanisms driving these developments are incompletely understood but likely to include autonomic dysregulation. The latest evidence for such a role is briefly reviewed here. RECENT FINDINGS Recent findings highlight the relevance of autonomic regulation in glucose metabolism and identify sympathetic activation, in concert with parasympathetic withdrawal, as a major contributor to the development of metabolic disorders and an important mediator of the associated adverse cardiovascular consequences. Methods targeting sympathetic overactivity using pharmacological and device-based approaches are available and appear as logical additional approaches to curb the burden of metabolic disorders and alleviate the associated morbidity from cardiovascular causes. While the available data are encouraging, the role of therapeutic inhibition of sympathetic overdrive in the prevention of the metabolic disorders and the associated adverse outcomes requires adequate testing in properly sized randomised controlled trials.
Collapse
Affiliation(s)
- Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Lakshini Y Herat
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Jan K Ho
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia.
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia.
- Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
8
|
Harris RBS. Denervation as a tool for testing sympathetic control of white adipose tissue. Physiol Behav 2018; 190:3-10. [PMID: 28694155 PMCID: PMC5758439 DOI: 10.1016/j.physbeh.2017.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
This review summarizes the evidence derived from studies utilizing denervation procedures to demonstrate sympathetic control of white adipose tissue metabolism and body fat mass. A majority of the work demonstrating neural control of white fat was performed in the Bartness laboratory with Siberian hamsters as the predominant experimental model. These animals experience dramatic changes in body fat mass in response to changes in photoperiod, however, the mechanisms identified in hamsters have been reproduced or further elucidated by experiments with other animal models. Evidence for the role of sympathetic innervation contributing to the control of white adipocyte lipolysis and preadipocyte proliferation is summarized. In addition, evidence from denervation experiments for neural communication between different white fat depots as well as for a feedback control loop between sensory afferents from individual fat depots and sympathetic efferents to the same or distant white fat depots is discussed.
Collapse
Affiliation(s)
- Ruth B S Harris
- Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
9
|
Nguyen NLT, Xue B, Bartness TJ. Sensory denervation of inguinal white fat modifies sympathetic outflow to white and brown fat in Siberian hamsters. Physiol Behav 2018; 190:28-33. [PMID: 29447836 DOI: 10.1016/j.physbeh.2018.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/10/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) have sympathetic nervous system (SNS) and sensory innervations. Previous studies from our laboratory revealed central neuroanatomical evidence of WAT sensory and BAT SNS crosstalk with double labeling of inguinal WAT (IWAT) sensory and interscapular BAT (IBAT) SNS neurons. We previously demonstrated that WAT lipolysis increases IBAT temperature, but this effect is absent when IWAT afferents are surgically denervated, which severs both sensory and SNS nerves. It is possible that WAT sensory feedback can regulate SNS drive to itself and other WAT and BAT depots, and thus contribute to the existence of differential SNS outflow to fat during different energy challenges. Here we selectively denervated IWAT sensory nerves in Siberian hamsters using capsaicin and measured norepinephrine turnover (NETO) i.e., SNS drive to WAT and BAT depots, IBAT uncoupling protein 1 (UCP1) expression, body mass, fat mass, blood glucose, and food consumed after a 24-h cold exposure. IWAT sensory denervation decreased both IWAT and IBAT NETO and IBAT UCP1 expression. IWAT sensory denervation, however, increased mesenteric WAT (MWAT) NETO after the 24-h cold exposure and did not modify epididymal WAT (EWAT) and retroperitoneal WAT (RWAT) NETO compared with respective controls. Body mass, fat mass, blood glucose, and food consumed were unchanged across groups. RWAT and EWAT mass decreased in capsaicin-injected hamsters, but did not in the vehicle hamsters. These results functionally demonstrate the existence of IWAT sensory and IBAT SNS crosstalk and that a disruption in this sensory-SNS feedback mechanism modifies SNS drive to IWAT, IBAT, and MWAT, but not EWAT and RWAT.
Collapse
Affiliation(s)
- Ngoc Ly T Nguyen
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30303, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30303, USA.
| | - Timothy J Bartness
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
10
|
Itoh M, Suganami T, Kato H, Kanai S, Shirakawa I, Sakai T, Goto T, Asakawa M, Hidaka I, Sakugawa H, Ohnishi K, Komohara Y, Asano K, Sakaida I, Tanaka M, Ogawa Y. CD11c+ resident macrophages drive hepatocyte death-triggered liver fibrosis in a murine model of nonalcoholic steatohepatitis. JCI Insight 2017; 2:92902. [PMID: 29202448 DOI: 10.1172/jci.insight.92902] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022] Open
Abstract
Although recent evidence has pointed to the role of organ- and pathogenesis-specific macrophage subsets, it is still unclear which subsets are critically involved in the pathogenesis of nonalcoholic steatohepatitis (NASH). Using melanocortin-4 receptor-deficient (MC4R-KO) mice fed Western diet (WD), which exhibit liver phenotypes similar to those of human NASH, we found a histological structure, termed hepatic crown-like structure (hCLS), in which CD11c+ macrophages surround dead/dying hepatocytes, a prominent feature of NASH. Here, we demonstrate that hCLS-constituting macrophages could be a novel macrophage subset that drives hepatocyte death-triggered liver fibrosis. In an "inducible NASH model," hepatocyte death induces hCLS formation and liver fibrosis sequentially in the short term. In combination with the long-term WD feeding model, we also showed that resident macrophages are a major cellular source of CD11c+ macrophages constituting hCLS, which exhibited gene expression profiles distinct from CD11c- macrophages scattered in the liver. Moreover, depletion of CD11c+ macrophages abolished hCLS formation and fibrogenesis in NASH. Our clinical data suggest the role of CD11c+ macrophages in the disease progression from simple steatosis to NASH. This study sheds light on the role of resident macrophages, in addition to recruited macrophages, in the pathogenesis of NASH.
Collapse
Affiliation(s)
| | - Takayoshi Suganami
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hideaki Kato
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Drug Discovery & Disease Research Laboratory, Shionogi & Co. Ltd., Osaka, Japan
| | - Sayaka Kanai
- Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Takeru Sakai
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiro Goto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Asakawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isao Hidaka
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | | | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenichi Asano
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Masato Tanaka
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Japan Agency for Medical Research and Development, CREST, Tokyo, Japan
| |
Collapse
|
11
|
Engin A. Human Protein Kinases and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:111-134. [PMID: 28585197 DOI: 10.1007/978-3-319-48382-5_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Kiehn JT, Tsang AH, Heyde I, Leinweber B, Kolbe I, Leliavski A, Oster H. Circadian Rhythms in Adipose Tissue Physiology. Compr Physiol 2017; 7:383-427. [PMID: 28333377 DOI: 10.1002/cphy.c160017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.
Collapse
Affiliation(s)
- Jana-Thabea Kiehn
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Anthony H Tsang
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isabel Heyde
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Brinja Leinweber
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Alexei Leliavski
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Almundarij TI, Smyers ME, Spriggs A, Heemstra LA, Beltz L, Dyne E, Ridenour C, Novak CM. Physical Activity, Energy Expenditure, and Defense of Body Weight in Melanocortin 4 Receptor-Deficient Male Rats. Sci Rep 2016; 6:37435. [PMID: 27886210 PMCID: PMC5122857 DOI: 10.1038/srep37435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/28/2016] [Indexed: 01/28/2023] Open
Abstract
Melanocortin 4 receptor (MC4R) variants contribute to human obesity, and rats lacking functional MC4R (Mc4rK314X/K314X) are obese. We investigated the hypothesis that low energy expenditure (EE) and physical activity contribute to this obese phenotype in male rats, and determined whether lack of functional MC4R conferred protection from weight loss during 50% calorie restriction. Though Mc4rK314X/K314X rats showed low brown adipose Ucp1 expression and were less physically active than rats heterozygous for the mutation (Mc4r+/K314X) or wild-type (Mc4r+/+) rats, we found no evidence of lowered EE in Mc4rK314X/K314X rats once body weight was taken into account using covariance. Mc4rK314X/K314X rats had a significantly higher respiratory exchange ratio. Compared to Mc4r+/+ rats, Mc4rK314X/K314X and Mc4r+/K314X rats lost less lean mass during calorie restriction, and less body mass when baseline weight was accounted for. Limited regional overexpression of Mc3r was found in the hypothalamus. Although lower physical activity levels in rats with nonfunctional MC4R did not result in lower total EE during free-fed conditions, rats lacking one or two functional copies of Mc4r showed conservation of mass, particularly lean mass, during energy restriction. This suggests that variants affecting MC4R function may contribute to individual differences in the metabolic response to food restriction.
Collapse
Affiliation(s)
- Tariq I Almundarij
- College of Agriculture and Veterinary Medicine, Al-Qassim University, Buraydah, Al-Qassim Province, Saudi Arabia.,Department of Biological Sciences, Kent State University, Kent, OH, 44242, US
| | - Mark E Smyers
- School of Biomedical Sciences, Kent State University, Kent, OH, 44242, US
| | - Addison Spriggs
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, US
| | - Lydia A Heemstra
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, US
| | - Lisa Beltz
- Department of Natural Sciences, Malone University, Canton, OH, 44709, US
| | - Eric Dyne
- School of Biomedical Sciences, Kent State University, Kent, OH, 44242, US.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, US
| | - Caitlyn Ridenour
- Department of Natural Sciences, Malone University, Canton, OH, 44709, US
| | - Colleen M Novak
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, US.,School of Biomedical Sciences, Kent State University, Kent, OH, 44242, US
| |
Collapse
|
14
|
Côté I, Sakarya Y, Kirichenko N, Morgan D, Carter CS, Tümer N, Scarpace PJ. Activation of the central melanocortin system chronically reduces body mass without the necessity of long-term caloric restriction. Can J Physiol Pharmacol 2016; 95:206-214. [PMID: 28051332 DOI: 10.1139/cjpp-2016-0290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Melanotan II (MTII) is a potent appetite suppressor that rapidly reduces body mass. Given the rapid loss of anorexic response upon chronic MTII treatment, most investigations have focused on the initial physiological adaptations. However, other evidence supports MTII as a long-term modulator of energy balance that remains to be established. Therefore, we examined the chronic effects of MTII on energy homeostasis. MTII (high or low dose) or artificial cerebrospinal fluid (aCSF) was infused into the lateral ventricle of the brain of 6-month-old F344BN rats (6-7/group) over 40 days. MTII suppressed appetite in a dose-dependent manner (P < 0.05). Although food intake promptly rose back to control level, body mass was persistently reduced in both MTII groups (P < 0.01). At day 40, both MTII groups displayed lower adiposity than the aCSF animals (P < 0.01). These results show that MTII chronically reduces body mass without the requirement of long-term caloric restriction. Our study proposes that food restriction helps initiate mass loss; however, combined with a secondary pharmacological approach preserving a negative energy balance state over time may help combat obesity.
Collapse
Affiliation(s)
- I Côté
- a Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Y Sakarya
- a Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,b Geriatric Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - N Kirichenko
- a Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,b Geriatric Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - D Morgan
- c Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - C S Carter
- d Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - N Tümer
- a Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,b Geriatric Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - P J Scarpace
- a Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Gavini CK, Jones WC, Novak CM. Ventromedial hypothalamic melanocortin receptor activation: regulation of activity energy expenditure and skeletal muscle thermogenesis. J Physiol 2016; 594:5285-301. [PMID: 27126579 PMCID: PMC5023712 DOI: 10.1113/jp272352] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/25/2016] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS The ventromedial hypothalamus (VMH) and the central melanocortin system both play vital roles in regulating energy balance by modulating energy intake and utilization. Recent evidence suggests that activation of the VMH alters skeletal muscle metabolism. We show that intra-VMH melanocortin receptor activation increases energy expenditure and physical activity, switches fuel utilization to fats, and lowers work efficiency such that excess calories are dissipated by skeletal muscle as heat. We also show that intra-VMH melanocortin receptor activation increases sympathetic nervous system outflow to skeletal muscle. Intra-VMH melanocortin receptor activation also induced significant changes in the expression of mediators of energy expenditure in muscle. These results support the role of melanocortin receptors in the VMH in the modulation of skeletal muscle metabolism. ABSTRACT The ventromedial hypothalamus (VMH) and the brain melanocortin system both play vital roles in increasing energy expenditure (EE) and physical activity, decreasing appetite and modulating sympathetic nervous system (SNS) outflow. Because of recent evidence showing that VMH activation modulates skeletal muscle metabolism, we propose the existence of an axis between the VMH and skeletal muscle, modulated by brain melanocortins, modelled on the brain control of brown adipose tissue. Activation of melanocortin receptors in the VMH of rats using a non-specific agonist melanotan II (MTII), compared to vehicle, increased oxygen consumption and EE and decreased the respiratory exchange ratio. Intra-VMH MTII enhanced activity-related EE even when activity levels were held constant. MTII treatment increased gastrocnemius muscle heat dissipation during controlled activity, as well as in the home cage. Compared to vehicle-treated rats, rats with intra-VMH melanocortin receptor activation had higher skeletal muscle norepinephrine turnover, indicating an increased SNS drive to muscle. Lastly, intra-VMH MTII induced mRNA expression of muscle energetic mediators, whereas short-term changes at the protein level were primarily limited to phosphorylation events. These results support the hypothesis that melanocortin peptides act in the VMH to increase EE by lowering the economy of activity via the enhanced expression of mediators of EE in the periphery including skeletal muscle. The data are consistent with the role of melanocortins in the VMH in the modulation of skeletal muscle metabolism.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/physiology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/physiology
- Animals
- Energy Metabolism
- Hypothalamus/physiology
- Liver/drug effects
- Liver/metabolism
- Liver/physiology
- Male
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Norepinephrine/metabolism
- Peptides, Cyclic/pharmacology
- Physical Conditioning, Animal
- Rats, Sprague-Dawley
- Receptors, Melanocortin/agonists
- Receptors, Melanocortin/physiology
- Thermogenesis
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- Chaitanya K Gavini
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| | - William C Jones
- Department of Exercise Science/Physiology, College of Education, Health, and Human Services, Kent State University, Kent, OH, USA
| | - Colleen M Novak
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
16
|
Arsenijevic D, Cajot JF, Fellay B, Dulloo AG, Van Vliet BN, Montani JP. Uninephrectomy-Induced Lipolysis and Low-Grade Inflammation Are Mimicked by Unilateral Renal Denervation. Front Physiol 2016; 7:227. [PMID: 27378937 PMCID: PMC4906570 DOI: 10.3389/fphys.2016.00227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022] Open
Abstract
Uninephrectomy (UniNX) in rats on a fixed food intake leads to increased lipolysis and a low-grade inflammation with an increased subset of circulating cytokines. Because UniNX ablates renal nerves on the side of the removed kidney, we tested the contribution of unilateral renal denervation in the phenotype of UniNX. We compared Sham-operated controls, left nephrectomy (UniNX) and unilateral left kidney denervation (uDNX) in rats 4 weeks after surgery. uDNX did not affect kidney weight and function. In general, the uDNX phenotype was similar to the UniNX phenotype especially for lipolysis in fat pads and increased low-grade inflammation. uDNX led to decreased fat pad weight and increased hormone sensitive lipase and adipocyte triglyceride lipase mRNA levels in epididymal and inguinal adipose tissue, as well as increased circulating lipolysis markers β-hydroxybutyrate and glycerol. Measured circulating hormones such as leptin, T3 and insulin were similar amongst the three groups. The lipolytic cytokines interferon-gamma and granulocyte macrophage colony stimulating factor were increased in the circulation of both uDNX and UniNX groups. These two cytokines were also elevated in the spleen of both groups, but contrastingly they were decreased in fat pads, liver, and kidneys. Both uDNX and UniNX similarly increased noradrenaline content in fat pads and spleen. Melanocortin 4 receptor mRNA levels were increased in the brains of both uDNX and UniNX compared to Sham and may contribute to increased tissue noradrenaline levels. In addition, the farnesoid x receptor (FXR) may contribute to changes in tissue metabolism and inflammation, as anti-inflammatory FXR was decreased in the spleen but increased in other tissues in uDNX and UniNX compared to Sham. In summary, both uDNX and UniNX in rats promote metabolic and immunological alterations by mechanisms that seem to implicate modification of unilateral renal nerve pathways as well as central and peripheral neural pathways.
Collapse
Affiliation(s)
- Denis Arsenijevic
- Division of Physiology, Department of Medicine, University of FribourgFribourg, Switzerland; National Center of Competence in Research (Kidney.CH)Zurich, Switzerland
| | - Jean-François Cajot
- Division of Physiology, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Benoit Fellay
- Chemistry/Hematology Laboratory, Fribourg Hospital Fribourg, Switzerland
| | - Abdul G Dulloo
- Division of Physiology, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Bruce N Van Vliet
- BioMedical Sciences Division, Faculty of Medicine, Memorial University St. John's, NL, Canada
| | - Jean-Pierre Montani
- Division of Physiology, Department of Medicine, University of FribourgFribourg, Switzerland; National Center of Competence in Research (Kidney.CH)Zurich, Switzerland
| |
Collapse
|
17
|
Tang L, Okamoto S, Shiuchi T, Toda C, Takagi K, Sato T, Saito K, Yokota S, Minokoshi Y. Sympathetic Nerve Activity Maintains an Anti-Inflammatory State in Adipose Tissue in Male Mice by Inhibiting TNF-α Gene Expression in Macrophages. Endocrinology 2015; 156:3680-94. [PMID: 26132918 DOI: 10.1210/en.2015-1096] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adipose tissue macrophages (ATMs) play an important role in the inflammatory response in obese animals. How ATMs are regulated in lean animals has remained elusive, however. We now show that the sympathetic nervous system (SNS) is necessary to maintain the abundance of the mRNA for the proinflammatory cytokine TNF-α at a low level in ATMs of lean mice. Intracerebroventricular injection of agouti-related neuropeptide increased the amount of TNF-α mRNA in epididymal (epi) white adipose tissue (WAT), but not in interscapular brown adipose tissue (BAT), through inhibition of sympathetic nerve activity in epiWAT. The surgical denervation and β-adrenergic antagonist propranolol up-regulated TNF-α mRNA in both epiWAT and BAT in vivo. Signaling by the β2-adrenergic receptor (AR) and protein kinase A down-regulated TNF-α mRNA in epiWAT explants and suppressed lipopolysaccharide-induced up-regulation of TNF-α mRNA in the stromal vascular fraction of this tissue. β-AR-deficient (β-less) mice manifested an increased plasma TNF-α concentration and increased TNF-α mRNA abundance in epiWAT and BAT. TNF-α mRNA abundance was greater in ATMs (CD11b(+) cells of the stromal vascular fraction) from epiWAT or BAT of wild-type mice than in corresponding CD11b(-) cells, and β2-AR mRNA abundance was greater in ATMs than in CD11b(-) cells of epiWAT. Our results show that the SNS and β2-AR-protein kinase A pathway maintain an anti-inflammatory state in ATMs of lean mice in vivo, and that the brain melanocortin pathway plays a role in maintaining this state in WAT of lean mice via the SNS.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/innervation
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/innervation
- Adipose Tissue, White/metabolism
- Adrenergic beta-Antagonists/pharmacology
- Agouti-Related Protein/administration & dosage
- Animals
- Cell Line
- Epididymis/drug effects
- Epididymis/metabolism
- Gene Expression/drug effects
- Immunoblotting
- Inflammation Mediators/metabolism
- Injections, Intraventricular
- Macrophages/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Peptide Fragments/administration & dosage
- Propranolol/pharmacology
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sympathectomy
- Sympathetic Nervous System/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Lijun Tang
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| | - Shiki Okamoto
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| | - Tetsuya Shiuchi
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| | - Chitoku Toda
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| | - Kazuyo Takagi
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| | - Tatsuya Sato
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| | - Kumiko Saito
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| | - Shigefumi Yokota
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| | - Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| |
Collapse
|
18
|
Affiliation(s)
- Laurent Gautron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
19
|
Douris N, Stevanovic DM, Fisher FM, Cisu TI, Chee MJ, Nguyen NL, Zarebidaki E, Adams AC, Kharitonenkov A, Flier JS, Bartness TJ, Maratos-Flier E. Central Fibroblast Growth Factor 21 Browns White Fat via Sympathetic Action in Male Mice. Endocrinology 2015; 156:2470-81. [PMID: 25924103 PMCID: PMC4475718 DOI: 10.1210/en.2014-2001] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 21 (FGF21) has multiple metabolic actions, including the induction of browning in white adipose tissue. Although FGF21 stimulated browning results from a direct interaction between FGF21 and the adipocyte, browning is typically associated with activation of the sympathetic nervous system through cold exposure. We tested the hypothesis that FGF21 can act via the brain, to increase sympathetic activity and induce browning, independent of cell-autonomous actions. We administered FGF21 into the central nervous system via lateral ventricle infusion into male mice and found that the central treatment increased norepinephrine turnover in target tissues that include the inguinal white adipose tissue and brown adipose tissue. Central FGF21 stimulated browning as assessed by histology, expression of uncoupling protein 1, and the induction of gene expression associated with browning. These effects were markedly attenuated when mice were treated with a β-blocker. Additionally, neither centrally nor peripherally administered FGF21 initiated browning in mice lacking β-adrenoceptors, demonstrating that an intact adrenergic system is necessary for FGF21 action. These data indicate that FGF21 can signal in the brain to activate the sympathetic nervous system and induce adipose tissue thermogenesis.
Collapse
MESH Headings
- Adipocytes, Brown/metabolism
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Fibroblast Growth Factors/pharmacology
- Infusions, Intraventricular
- Ion Channels/drug effects
- Ion Channels/metabolism
- Male
- Mice
- Mice, Knockout
- Mitochondrial Proteins/drug effects
- Mitochondrial Proteins/metabolism
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-3/genetics
- Sympathetic Nervous System/drug effects
- Sympathetic Nervous System/metabolism
- Thermogenesis
- Uncoupling Protein 1
Collapse
Affiliation(s)
- Nicholas Douris
- Division of Endocrinology (N.D., D.M.S., f.M.F., T.I.C., M.J.C., J.S.F., E.M.-F.), Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215-5491; Institute of Medical Physiology (D.M.S.), School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; Department of Biology and Center for Obesity Reversal (N.L.N., E.Z., T.J.B.), Georgia State University, Atlanta, Georgia 30302-4010; and Diabetes Research (A.C.A., A.K.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285-0001
| | - Darko M Stevanovic
- Division of Endocrinology (N.D., D.M.S., f.M.F., T.I.C., M.J.C., J.S.F., E.M.-F.), Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215-5491; Institute of Medical Physiology (D.M.S.), School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; Department of Biology and Center for Obesity Reversal (N.L.N., E.Z., T.J.B.), Georgia State University, Atlanta, Georgia 30302-4010; and Diabetes Research (A.C.A., A.K.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285-0001
| | - Ffolliott M Fisher
- Division of Endocrinology (N.D., D.M.S., f.M.F., T.I.C., M.J.C., J.S.F., E.M.-F.), Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215-5491; Institute of Medical Physiology (D.M.S.), School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; Department of Biology and Center for Obesity Reversal (N.L.N., E.Z., T.J.B.), Georgia State University, Atlanta, Georgia 30302-4010; and Diabetes Research (A.C.A., A.K.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285-0001
| | - Theodore I Cisu
- Division of Endocrinology (N.D., D.M.S., f.M.F., T.I.C., M.J.C., J.S.F., E.M.-F.), Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215-5491; Institute of Medical Physiology (D.M.S.), School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; Department of Biology and Center for Obesity Reversal (N.L.N., E.Z., T.J.B.), Georgia State University, Atlanta, Georgia 30302-4010; and Diabetes Research (A.C.A., A.K.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285-0001
| | - Melissa J Chee
- Division of Endocrinology (N.D., D.M.S., f.M.F., T.I.C., M.J.C., J.S.F., E.M.-F.), Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215-5491; Institute of Medical Physiology (D.M.S.), School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; Department of Biology and Center for Obesity Reversal (N.L.N., E.Z., T.J.B.), Georgia State University, Atlanta, Georgia 30302-4010; and Diabetes Research (A.C.A., A.K.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285-0001
| | - Ngoc L Nguyen
- Division of Endocrinology (N.D., D.M.S., f.M.F., T.I.C., M.J.C., J.S.F., E.M.-F.), Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215-5491; Institute of Medical Physiology (D.M.S.), School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; Department of Biology and Center for Obesity Reversal (N.L.N., E.Z., T.J.B.), Georgia State University, Atlanta, Georgia 30302-4010; and Diabetes Research (A.C.A., A.K.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285-0001
| | - Eleen Zarebidaki
- Division of Endocrinology (N.D., D.M.S., f.M.F., T.I.C., M.J.C., J.S.F., E.M.-F.), Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215-5491; Institute of Medical Physiology (D.M.S.), School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; Department of Biology and Center for Obesity Reversal (N.L.N., E.Z., T.J.B.), Georgia State University, Atlanta, Georgia 30302-4010; and Diabetes Research (A.C.A., A.K.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285-0001
| | - Andrew C Adams
- Division of Endocrinology (N.D., D.M.S., f.M.F., T.I.C., M.J.C., J.S.F., E.M.-F.), Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215-5491; Institute of Medical Physiology (D.M.S.), School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; Department of Biology and Center for Obesity Reversal (N.L.N., E.Z., T.J.B.), Georgia State University, Atlanta, Georgia 30302-4010; and Diabetes Research (A.C.A., A.K.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285-0001
| | - Alexei Kharitonenkov
- Division of Endocrinology (N.D., D.M.S., f.M.F., T.I.C., M.J.C., J.S.F., E.M.-F.), Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215-5491; Institute of Medical Physiology (D.M.S.), School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; Department of Biology and Center for Obesity Reversal (N.L.N., E.Z., T.J.B.), Georgia State University, Atlanta, Georgia 30302-4010; and Diabetes Research (A.C.A., A.K.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285-0001
| | - Jeffrey S Flier
- Division of Endocrinology (N.D., D.M.S., f.M.F., T.I.C., M.J.C., J.S.F., E.M.-F.), Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215-5491; Institute of Medical Physiology (D.M.S.), School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; Department of Biology and Center for Obesity Reversal (N.L.N., E.Z., T.J.B.), Georgia State University, Atlanta, Georgia 30302-4010; and Diabetes Research (A.C.A., A.K.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285-0001
| | - Timothy J Bartness
- Division of Endocrinology (N.D., D.M.S., f.M.F., T.I.C., M.J.C., J.S.F., E.M.-F.), Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215-5491; Institute of Medical Physiology (D.M.S.), School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; Department of Biology and Center for Obesity Reversal (N.L.N., E.Z., T.J.B.), Georgia State University, Atlanta, Georgia 30302-4010; and Diabetes Research (A.C.A., A.K.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285-0001
| | - Eleftheria Maratos-Flier
- Division of Endocrinology (N.D., D.M.S., f.M.F., T.I.C., M.J.C., J.S.F., E.M.-F.), Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215-5491; Institute of Medical Physiology (D.M.S.), School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; Department of Biology and Center for Obesity Reversal (N.L.N., E.Z., T.J.B.), Georgia State University, Atlanta, Georgia 30302-4010; and Diabetes Research (A.C.A., A.K.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285-0001
| |
Collapse
|
20
|
Teubner BJW, Leitner C, Thomas MA, Ryu V, Bartness TJ. An intact dorsomedial posterior arcuate nucleus is not necessary for photoperiodic responses in Siberian hamsters. Horm Behav 2015; 70:22-9. [PMID: 25647158 PMCID: PMC4409532 DOI: 10.1016/j.yhbeh.2014.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/29/2023]
Abstract
Seasonal responses of many animal species are triggered by changes in daylength and its transduction into a neuroendocrine signal by the pineal gland through the nocturnal duration of melatonin (MEL) release. The precise central sites necessary to receive, transduce, and relay the short day (SD) fall-winter MEL signals into seasonal responses and changes in physiology and behavior are unclear. In Siberian hamsters, SDs trigger decreases in body and lipid mass, testicular regression and pelage color changes. Several candidate genes and their central sites of expression have been proposed as components of the MEL transduction system with considerable recent focus on the arcuate nucleus (ARC) and its component, the dorsomedial posterior arcuate nucleus (dmpARC). This site has been postulated as a critical relay of SD information through the modulation of a variety of neurochemicals/receptors important for the control of energy balance. Here the necessity of an intact dmpARC for SD responses was tested by making electrolytic lesions of the Siberian hamster dmpARC and then exposing them to either long days (LD) or SDs for 12wks. The SD typical decreases in body and fat mass, food intake, testicular volume, serum testosterone concentrations, pelage color change and increased UCP-1 protein expression (a proxy for brown adipose tissue thermogenesis) all occurred despite the lack of an intact dmpARC. Although the Siberian hamster dmpARC contains photoperiod-modulated constituents, these data demonstrate that an intact dmpARC is not necessary for SD responses and not integral to the seasonal energy- and reproductive-related responses measured here.
Collapse
Affiliation(s)
- Brett J W Teubner
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Claudia Leitner
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Michael A Thomas
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Vitaly Ryu
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Timothy J Bartness
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA.
| |
Collapse
|
21
|
Bartness TJ, Liu Y, Shrestha YB, Ryu V. Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 2014; 35:473-93. [PMID: 24736043 PMCID: PMC4175185 DOI: 10.1016/j.yfrne.2014.04.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/10/2014] [Accepted: 04/04/2014] [Indexed: 01/22/2023]
Abstract
White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS) and its activation is necessary for lipolysis. WAT parasympathetic innervation is not supported. Fully-executed SNS-norepinephrine (NE)-mediated WAT lipolysis is dependent on β-adrenoceptor stimulation ultimately hinging on hormone sensitive lipase and perilipin A phosphorylation. WAT sympathetic drive is appropriately measured electrophysiologically and neurochemically (NE turnover) in non-human animals and this drive is fat pad-specific preventing generalizations among WAT depots and non-WAT organs. Leptin-triggered SNS-mediated lipolysis is weakly supported, whereas insulin or adenosine inhibition of SNS/NE-mediated lipolysis is strongly supported. In addition to lipolysis control, increases or decreases in WAT SNS drive/NE inhibit and stimulate white adipocyte proliferation, respectively. WAT sensory nerves are of spinal-origin and sensitive to local leptin and increases in sympathetic drive, the latter implicating lipolysis. Transsynaptic viral tract tracers revealed WAT central sympathetic and sensory circuits including SNS-sensory feedback loops that may control lipolysis.
Collapse
Affiliation(s)
- Timothy J Bartness
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA.
| | - Yang Liu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA; Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yogendra B Shrestha
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vitaly Ryu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA; Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Nguyen NLT, Randall J, Banfield BW, Bartness TJ. Central sympathetic innervations to visceral and subcutaneous white adipose tissue. Am J Physiol Regul Integr Comp Physiol 2014; 306:R375-86. [PMID: 24452544 DOI: 10.1152/ajpregu.00552.2013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is a link between visceral white adipose tissue (WAT) and the metabolic syndrome in humans, with health improvements produced with small visceral WAT reduction. By contrast, subcutaneous WAT provides a site for lipid storage that is rather innocuous relative to ectopic lipid storage in muscle or liver. The sympathetic nervous system (SNS) is the principal initiator for lipolysis in WAT by mammals. Nothing is known, however, about the central origins of the SNS circuitry innervating the only true visceral WAT in rodents, mesenteric WAT (MWAT), which drains into the hepatic portal vein. We tested whether the central sympathetic circuits to subcutaneous [inguinal WAT (IWAT)] and visceral WAT (MWAT) are separate or shared and whether they possess differential sympathetic drives with food deprivation in Siberian hamsters. Using two isogenic strains of pseudorabies virus, a retrograde transneuronal viral tract tracer within the same hamsters, we found some overlap (∼20-55% doubly infected neurons) between the two circuitries across the neural axis with lesser overlap proximal to the depots (spinal cord and sympathetic chain) and with more neurons involved in the innervation of IWAT than MWAT in some brain regions. Food deprivation triggered a greater sympathetic drive to subcutaneous (IWAT) than visceral (MWAT) depots. Collectively, we demonstrated both shared and separate populations of brain, spinal cord, and sympathetic chain neurons ultimately project to a subcutaneous WAT depot (IWAT) and the only visceral WAT depot in rodents (MWAT). In addition, the lipolytic stimulus of food deprivation only increased SNS drive to subcutaneous fat (IWAT).
Collapse
Affiliation(s)
- Ngoc Ly T Nguyen
- Department of Biology, Obesity Reversal Center, Georgia State University, Atlanta, Georgia
| | | | | | | |
Collapse
|
23
|
Murphy KT, Schwartz GJ, Nguyen NLT, Mendez JM, Ryu V, Bartness TJ. Leptin-sensitive sensory nerves innervate white fat. Am J Physiol Endocrinol Metab 2013; 304:E1338-47. [PMID: 23612999 PMCID: PMC3680695 DOI: 10.1152/ajpendo.00021.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Leptin, the primary white adipose tissue (WAT) adipokine, is thought to convey lipid reserve information to the brain via the circulation. Because WAT responds to environmental/internal signals in a fat pad-specific (FPS) manner, systemic signals such as leptin would fail to communicate such distinctive information. Saturation of brain leptin transport systems also would fail to convey increased lipid levels beyond that point. WAT possesses sensory innervation exemplified by proven sensory-associated peptides in nerves within the tissue and by viral sensory nerve-specific transneuronal tract tracer, H129 strain of herpes simplex virus 1 labeling of dorsal root ganglia (DRG) pseudounipolar neurons, spinal cord and central sensory circuits. Leptin as a paracrine factor activating WAT sensory innervation could supply the brain with FPS information. Therefore, we tested for and found the presence of the long form of the leptin receptor (Ob-Rb) on DRG pseudounipolar neurons immunohistochemically labeled after injections of Fluorogold, a retrograde tract tracer, into inguinal WAT (IWAT). Intra-IWAT leptin injections (300 ng) significantly elevated IWAT nerve spike rate within 5 min and persisted for at least 30 min. Intra-IWAT leptin injections also induced significant c-Fos immunoreactivity (ir), indicating neural activation across DRG pseudounipolar sensory neurons labeled with Fluorogold IWAT injections. Intraperitoneal leptin injection did not increase c-Fos-ir in DRG or the arcuate nucleus, nor did it increase arcuate signal transducer and activator of transcription 3 phosphorylation-ir. Collectively, these results strongly suggest that endogenous leptin secreted from white adipocytes functions as a paracrine factor to activate spinal sensory nerves innervating the tissue.
Collapse
Affiliation(s)
- Keegan T Murphy
- Department of Biology, Obesity Reversal Center, Georgia State University, Atlanta, Georgia; and
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The central melanocortin system plays an essential role in the regulation of energy metabolism. Key to this regulation are the responses of neurons expressing proopiomelanocortin (POMC) and agouti-related protein (AgRP) to blood-borne metabolic signals. Recent evidence has demonstrated that POMC and AgRP neurons are not simply mirror opposites of each other in function and responsiveness to metabolic signals, nor are they exclusively first-order neurons. These neurons act as central transceivers, integrating both hormonal and neural signals, and then transmitting this information to peripheral tissues via the autonomic nervous system to coordinate whole-body energy metabolism. This review focuses on most recent developments obtained from rodent studies on the function, metabolic regulation, and circuitry of the central melanocortin system.
Collapse
Affiliation(s)
- James P. Warne
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Allison W. Xu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
|
26
|
TXNIP in Agrp neurons regulates adiposity, energy expenditure, and central leptin sensitivity. J Neurosci 2012; 32:9870-7. [PMID: 22815502 DOI: 10.1523/jneurosci.0353-12.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thioredoxin interacting protein (TXNIP) has recently been described as a key regulator of energy metabolism through pleiotropic actions that include nutrient sensing in the mediobasal hypothalamus (MBH). However, the role of TXNIP in neurochemically specific hypothalamic subpopulations and the circuits downstream from MBH TXNIP engaged to regulate energy homeostasis remain unexplored. To evaluate the metabolic role of TXNIP activity specifically within arcuate Agrp neurons, we generated Agrp-specific TXNIP gain-of-function and loss-of-function mouse models using Agrp-Ires-cre mice, TXNIP (flox/flox) mice, and a lentivector expressing the human TXNIP isoform conditionally in the presence of Cre recombinase. Overexpression of TXNIP in Agrp neurons predisposed to diet-induced obesity and adipose tissue storage by decreasing energy expenditure and spontaneous locomotion, without affecting food intake. Conversely, Agrp neuronal TXNIP deletion protected against diet-induced obesity and adipose tissue storage by increasing energy expenditure and spontaneous locomotion, also without affecting food intake. TXNIP overexpression in Agrp neurons did not primarily affect glycemic control, whereas deletion of TXNIP in Agrp neurons improved fasting glucose levels and glucose tolerance independently of its effects on body weight and adiposity. Bidirectional manipulation of TXNIP expression induced reciprocal changes in central leptin sensitivity and the neural regulation of lipolysis. Together, these results identify a critical role for TXNIP in Agrp neurons in mediating diet-induced obesity through the regulation of energy expenditure and adipose tissue metabolism, independently of food intake. They also reveal a previously unidentified role for Agrp neurons in the brain-adipose axis.
Collapse
|
27
|
Harris RBS. Sympathetic denervation of one white fat depot changes norepinephrine content and turnover in intact white and brown fat depots. Obesity (Silver Spring) 2012; 20:1355-64. [PMID: 22513494 PMCID: PMC3996845 DOI: 10.1038/oby.2012.95] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is well-established that the sympathetic nervous system (SNS) regulates adipocyte metabolism and recently it has been reported that sensory afferents from white fat overlap anatomically with sympathetic efferents to white fat. The studies described here characterize the response of intact fat pads to selective sympathectomy (local 6-hydroxydopamine (6OHDA) injections) of inguinal (ING) or epididymal (EPI) fat in male NIH Swiss mice and provide in vivo evidence for communication between individual white and brown fat depots. The contralateral ING pad, both EPI pads, perirenal (PR), and mesenteric (MES) pads were significantly enlarged 4 weeks after denervating one ING pad, but only intrascapular brown adipose tissue (IBAT) increased when both ING pads were denervated. Denervation of one or both EPI pad had no effect on fat depot weights. In an additional experiment, norepinephrine turnover (NETO) was inhibited in ING, retroperitoneal (RP), MES, and IBAT 2 days after denervation of both EPI or of both ING pads. NE content was reduced to 10-30% of control values in all fat depots. There was no relation between early changes in NETO and fat pad weight 4 weeks after denervation, even though the reduction in NE content of intact fat pads was maintained. These data demonstrate that there is communication among individual fat pads, presumably through central integration of activity of sensory afferent and sympathetic efferent fibers, that changes sympathetic drive to white adipose tissue in a unified manner. In specific situations, removal of sympathetic efferents to one pad induces a compensatory enlargement of other intact depots.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Georgia Health Sciences University, Augusta, GA, USA.
| |
Collapse
|
28
|
New mutations at the imprinted Gnas cluster show gene dosage effects of Gsα in postnatal growth and implicate XLαs in bone and fat metabolism but not in suckling. Mol Cell Biol 2012; 32:1017-29. [PMID: 22215617 DOI: 10.1128/mcb.06174-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The imprinted Gnas cluster is involved in obesity, energy metabolism, feeding behavior, and viability. Relative contribution of paternally expressed proteins XLαs, XLN1, and ALEX or a double dose of maternally expressed Gsα to phenotype has not been established. In this study, we have generated two new mutants (Ex1A-T-CON and Ex1A-T) at the Gnas cluster. Paternal inheritance of Ex1A-T-CON leads to loss of imprinting of Gsα, resulting in preweaning growth retardation followed by catch-up growth. Paternal inheritance of Ex1A-T leads to loss of imprinting of Gsα and loss of expression of XLαs and XLN1. These mice have severe preweaning growth retardation and incomplete catch-up growth. They are fully viable probably because suckling is unimpaired, unlike mutants in which the expression of all the known paternally expressed Gnasxl proteins (XLαs, XLN1 and ALEX) is compromised. We suggest that loss of ALEX is most likely responsible for the suckling defects previously observed. In adults, paternal inheritance of Ex1A-T results in an increased metabolic rate and reductions in fat mass, leptin, and bone mineral density attributable to loss of XLαs. This is, to our knowledge, the first report describing a role for XLαs in bone metabolism. We propose that XLαs is involved in the regulation of bone and adipocyte metabolism.
Collapse
|
29
|
Ju JH, Yoon HS, Park HJ, Kim MY, Shin HK, Park KY, Yang JO, Sohn MS, Do MS. Anti-obesity and antioxidative effects of purple sweet potato extract in 3T3-L1 adipocytes in vitro. J Med Food 2011; 14:1097-106. [PMID: 21861722 DOI: 10.1089/jmf.2010.1450] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The purpose of the current study was to determine the anti-obesity and anti-inflammatory effects of an extract of purple sweet potatoes (PSPs) on 3T3-L1 adipocytes. For this purpose, differentiated 3T3-L1 adipocytes were treated with a PSP extract at concentrations of 1,000, 2,000, and 3,000 μg/mL for 24 hours. Then, we measured the changes in the sizes of the adipocytes, the secretion of leptin, and the mRNA/protein expression of lipogenic, inflammatory, and lipolytic factors after the treatment with the PSP extract. The PSP extract diminished leptin secretion, indicating that growth of fat droplets was suppressed. The extract also suppressed the expression of mRNAs of lipogenic and inflammatory factors and promoted lipolytic action. The antioxidative activity of the PSP extract was also measured using three different in vitro methods: 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity, ferric reducing ability potential assay, and chelating activity of transition metal ions. Taken together, our study shows that PSP extract has antilipogenic, anti-inflammatory, and lipolytic effects on adipocytes and has radical scavenging and reducing activity.
Collapse
Affiliation(s)
- Jae-Hyun Ju
- Department of Food Science and Nutrition, Pusan National University, Busan, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Marino JS, Xu Y, Hill JW. Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol Metab 2011; 22:275-85. [PMID: 21489811 PMCID: PMC5154334 DOI: 10.1016/j.tem.2011.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/25/2011] [Accepted: 03/05/2011] [Indexed: 12/17/2022]
Abstract
Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular play a crucial role in the development of insulin resistance. This review discusses the neuronal crosstalk between the hypothalamus, autonomic nervous system, and tissues associated with the pathogenesis of type 2 diabetes, and how hypothalamic insulin and leptin signaling are integral to maintaining normal glucose homeostasis.
Collapse
Affiliation(s)
- Joseph S Marino
- Center for Diabetes and Endocrine Research, College of Medicine, The University of Toledo, Toledo, OH 43614, USA
| | | | | |
Collapse
|
31
|
Bartness TJ, Keen-Rhinehart E, Dailey MJ, Teubner BJ. Neural and hormonal control of food hoarding. Am J Physiol Regul Integr Comp Physiol 2011; 301:R641-55. [PMID: 21653877 DOI: 10.1152/ajpregu.00137.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many animals hoard food, including humans, but despite its pervasiveness, little is known about the physiological mechanisms underlying this appetitive behavior. We summarize studies of food hoarding in humans and rodents with an emphasis on mechanistic laboratory studies of species where this behavior importantly impacts their energy balance (hamsters), but include laboratory rat studies although their wild counterparts do not hoard food. The photoperiod and cold can affect food hoarding, but food availability is the most significant environmental factor affecting food hoarding. Food-deprived/restricted hamsters and humans exhibit large increases in food hoarding compared with their fed counterparts, both doing so without overeating. Some of the peripheral and central peptides involved in food intake also affect food hoarding, although many have not been tested. Ad libitum-fed hamsters given systemic injections of ghrelin, the peripheral orexigenic hormone that increases with fasting, mimics food deprivation-induced increases in food hoarding. Neuropeptide Y or agouti-related protein, brain peptides stimulated by ghrelin, given centrally to ad libitum-fed hamsters, duplicates the early and prolonged postfood deprivation increases in food hoarding, whereas central melanocortin receptor agonism tends to inhibit food deprivation and ghrelin stimulation of hoarding. Central or peripheral leptin injection or peripheral cholecystokinin-33, known satiety peptides, inhibit food hoarding. Food hoarding markedly increases with pregnancy and lactation. Because fasted and/or obese humans hoard more food in general, and more high-density/high-fat foods specifically, than nonfasted and/or nonobese humans, understanding the mechanisms underlying food hoarding could provide another target for behavioral/pharmacological approaches to curb obesity.
Collapse
Affiliation(s)
- Timothy J Bartness
- Department of Biology, Neurobiology and Behavior Program, Georgia State University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
32
|
Chaves VE, Frasson D, Kawashita NH. Several agents and pathways regulate lipolysis in adipocytes. Biochimie 2011; 93:1631-40. [PMID: 21658426 DOI: 10.1016/j.biochi.2011.05.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 05/23/2011] [Indexed: 01/01/2023]
Abstract
Adipose tissue is the only tissue capable of hydrolyzing its stores of triacylglycerol (TAG) and of mobilizing fatty acids and glycerol in the bloodstream so that they can be used by other tissues. The full hydrolysis of TAG depends on the activity of three enzymes, adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoacylglycerol lipase, each of which possesses a distinct regulatory mechanism. Although more is known about HSL than about the other two enzymes, it has recently been shown that HLS and ATGL can be activated simultaneously, such that the mechanism that enables HSL to access the surface of lipid droplets also permits the stimulation of ATGL. The classical pathway of lipolysis activation in adipocytes is cAMP-dependent. The production of cAMP is modulated by G-protein-coupled receptors of the Gs/Gi family and cAMP degradation is regulated by phosphodiesterase. However, other pathways that activate TAG hydrolysis are currently under investigation. Lipolysis can also be started by G-protein-coupled receptors of the Gq family, through molecular mechanisms that involve phospholipase C, calmodulin and protein kinase C. There is also evidence that increased lipolytic activity in adipocytes occurs after stimulation of the mitogen-activated protein kinase pathway or after cGMP accumulation and activation of protein kinase G. Several agents contribute to the control of lipolysis in adipocytes by modulating the activity of HSL and ATGL. In this review, we have summarized the signalling pathways activated by several agents involved in the regulation of TAG hydrolysis in adipocytes.
Collapse
Affiliation(s)
- Valéria Ernestânia Chaves
- Department of Basic Sciences in Health, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | | | |
Collapse
|
33
|
Leckstrom A, Lew PS, Poritsanos NJ, Mizuno TM. Treatment with a melanocortin agonist improves abnormal lipid metabolism in streptozotocin-induced diabetic mice. Neuropeptides 2011; 45:123-9. [PMID: 21216462 DOI: 10.1016/j.npep.2010.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/28/2010] [Accepted: 12/17/2010] [Indexed: 01/09/2023]
Abstract
Impairments in leptin-melanocortin signaling are associated with insulin-deficient diabetes and leptin treatment has been shown to be effective in reversing hyperglycemia in animal models of type 1 diabetes. Therefore, we hypothesized that enhanced central melanocortin signaling reverses the metabolic impairments associated with type 1 diabetes. To address this hypothesis, streptozotocin (STZ)-induced diabetic mice were treated with daily intracerebroventricular injection of MTII, a melanocortin agonist, for 11days. STZ-induced hyperglycemia and glucose intolerance were not improved by MTII treatment. MTII treatment did not alter expression levels of genes encoding gluconeogenic enzymes including glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), in the liver of diabetic mice. Skeletal muscle and white adipose tissue glucose transporter 4 (GLUT4) mRNA levels were not altered by MTII treatment in diabetic mice. In contrast, serum nonesterified fatty acid (NEFA) levels were significantly increased in STZ-induced diabetic mice compared to non-diabetic control mice and MTII treatment significantly reduced serum NEFA levels in diabetic mice. MTII treatment also significantly reduced expression levels of hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) mRNA in white adipose tissue of diabetic mice without a significant change in serum insulin levels. Expression levels of lipoprotein lipase (LPL) and fatty acid translocase (FAT/CD36) mRNA in white adipose tissue and skeletal muscle were not changed by MTII treatment. These data suggest that central melanocortin signaling regulates lipid metabolism and that enhancing central melanocortin signaling is effective in reversing abnormal lipid metabolism, but not carbohydrate metabolism, at least partly by reducing lipolysis in type 1 diabetes.
Collapse
Affiliation(s)
- Arnold Leckstrom
- Department of Physiology, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, Canada R3E0J9
| | | | | | | |
Collapse
|
34
|
Bartness TJ, Vaughan CH, Song CK. Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond) 2011; 34 Suppl 1:S36-42. [PMID: 20935665 DOI: 10.1038/ijo.2010.182] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The innervation of brown adipose tissue (BAT) by the sympathetic nervous system (SNS) is incontrovertible and, with its activation, functions as the principal, if not exclusive, stimulator of BAT thermogenesis. The parasympathetic innervation of BAT only appears in two minor BAT depots, but not in the major interscapular BAT (IBAT) depot. BAT thermogenesis is triggered by the release of norepinephrine from its sympathetic nerve terminals, stimulating β3-adrenoceptors that turns on a cascade of intracellular events ending in activation of uncoupling protein-1 (UCP-1). BAT also has sensory innervation that may function to monitor BAT lipolysis, a response necessary for activation of UCP-1 by fatty acids, or perhaps responding in a feedback manner to BAT temperature changes. The central sympathetic outflow circuits ultimately terminating in BAT have been revealed by injecting the retrograde viral transneuronal tract tracer, pseudorabies virus, into the tissue; moreover, there is a high degree of colocalization of melanocortin 4-receptor mRNA on these neurons across the neural axis. The necessary and sufficient central BAT SNS outflow sites that are activated by various thermogenic stimuli are not precisely known. In a chronic decerebration procedure, IBAT UCP-1 gene expression can be triggered by fourth ventricular injections of melanotan II, the melanocortin 3/4 receptor agonist, suggesting that there is sufficient hindbrain neural circuitry to generate thermogenic responses with this stimulation. The recent recognition of BAT in normal adult humans suggests a potential target for stimulation of energy expenditure by BAT to help mitigate increased body fat storage.
Collapse
Affiliation(s)
- T J Bartness
- Department of Biology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.
| | | | | |
Collapse
|
35
|
Diéguez C, Vazquez MJ, Romero A, López M, Nogueiras R. Hypothalamic control of lipid metabolism: focus on leptin, ghrelin and melanocortins. Neuroendocrinology 2011; 94:1-11. [PMID: 21576929 DOI: 10.1159/000328122] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 04/02/2011] [Indexed: 11/19/2022]
Abstract
The hypothalamus plays a crucial role in the regulation of food intake and energy expenditure. One of the main regulatory factors within the hypothalamus is AMP-activated protein kinase (AMPK), which is involved in a large number of biological actions including the modulation of energy balance. Leptin and ghrelin-induced changes in hypothalamic AMPK lead to important alterations in hypothalamic fatty acid metabolism. Furthermore, it is well known that the hypothalamus controls peripheral lipid metabolism through the sympathetic nervous system, and those actions are independent of food intake. In this short review, we highlight the main molecular pathways triggered by leptin and ghrelin altering both central and peripheral lipid metabolism and, therefore, controlling feeding behavior and energy expenditure.
Collapse
Affiliation(s)
- Carlos Diéguez
- Department of Physiology, School of Medicine, Instituto de Investigacion Sanitaria (IDIS), University of Santiago de Compostela, Spain. carlos.dieguez @ usc.es
| | | | | | | | | |
Collapse
|