1
|
Bokor S, Csölle I, Felső R, Vass RA, Funke S, Ertl T, Molnár D. Dietary nutrients during gestation cause obesity and related metabolic changes by altering DNA methylation in the offspring. Front Endocrinol (Lausanne) 2024; 15:1287255. [PMID: 38449848 PMCID: PMC10916691 DOI: 10.3389/fendo.2024.1287255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Growing evidence shows that maternal nutrition from preconception until lactation has an important effect on the development of non-communicable diseases in the offspring. Biological responses to environmental stress during pregnancy, including undernutrition or overnutrition of various nutrients, are transmitted in part by DNA methylation. The aim of the present narrative review is to summarize literature data on altered DNA methylation patterns caused by maternal macronutrient or vitamin intake and its association with offspring's phenotype (obesity and related metabolic changes). With our literature search, we found evidence for the association between alterations in DNA methylation pattern of different genes caused by maternal under- or overnutrition of several nutrients (protein, fructose, fat, vitamin D, methyl-group donor nutrients) during 3 critical periods of programming (preconception, pregnancy, lactation) and the development of obesity or related metabolic changes (glucose, insulin, lipid, leptin, adiponectin levels, blood pressure, non-alcoholic fatty liver disease) in offspring. The review highlights that maternal consumption of several nutrients could individually affect the development of offspring's obesity and related metabolic changes via alterations in DNA methylation.
Collapse
Affiliation(s)
- Szilvia Bokor
- Department of Paediatrics, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
| | - Ildikó Csölle
- Department of Paediatrics, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Regina Felső
- Department of Paediatrics, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
| | - Réka A. Vass
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary
- Obstetrics and Gynecology, Magyar Imre Hospital Ajka, Ajka, Hungary
| | - Simone Funke
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary
| | - Tibor Ertl
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary
| | - Dénes Molnár
- Department of Paediatrics, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Kubant R, Cho CE, Pannia E, Hammoud R, Yang NV, Simonian R, Anderson GH. Methyl donor micronutrients, hypothalamic development and programming for metabolic disease. Neurosci Biobehav Rev 2024; 157:105512. [PMID: 38128771 DOI: 10.1016/j.neubiorev.2023.105512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/14/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
Nutriture in utero is essential for fetal brain development through the regulation of neural stem cell proliferation, differentiation, and apoptosis, and has a long-lasting impact on risk of disease in offspring. This review examines the role of maternal methyl donor micronutrients in neuronal development and programming of physiological functions of the hypothalamus, with a focus on later-life metabolic outcomes. Although evidence is mainly derived from preclinical studies, recent research shows that methyl donor micronutrients (e.g., folic acid and choline) are critical for neuronal development of energy homeostatic pathways and the programming of characteristics of the metabolic syndrome in mothers and their children. Both folic acid and choline are active in one-carbon metabolism with their impact on epigenetic modification of gene expression. We conclude that an imbalance of folic acid and choline intake during gestation disrupts DNA methylation patterns affecting mechanisms of hypothalamic development, and thus elevates metabolic disease risk. Further investigation, including studies to determine translatability to humans, is required.
Collapse
Affiliation(s)
- Ruslan Kubant
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Clara E Cho
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Emanuela Pannia
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Rola Hammoud
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Neil Victor Yang
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Rebecca Simonian
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Sauder KA, Couzens GL, Bailey RL, Hockett CW, Switkowski KM, Lyall K, Kerver JM, Dabelea D, Maldonado LE, O'Connor TG, Deoni SC, Glueck DH, Catellier DJ. Selecting a dietary supplement with appropriate dosing for 6 key nutrients in pregnancy. Am J Clin Nutr 2023; 117:823-829. [PMID: 37019542 PMCID: PMC10273074 DOI: 10.1016/j.ajcnut.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Most pregnant women in the United States (US) are at risk of inadequate intake of key nutrients during pregnancy from foods alone. Current dietary supplement practices reduce risk of inadequacy for only some nutrients and induce excessive intake of other nutrients. OBJECTIVES Our study aimed to estimate the doses of supplementation needed to help most pregnant women achieve the recommended intake without exceeding upper limits for key prenatal nutrients and to identify US dietary supplements providing these doses. METHODS We conducted 24-h dietary recalls in 2450 pregnant participants aged 14-50 y from 2007 to 2019. We estimated the usual intake of vitamins A and D, folate, calcium, iron, and ω-3 FAs from foods alone. We calculated the target doses of supplementation needed to shift 90% of participants to consume above the estimated average requirement and keep 90% below the tolerable upper limit. We identified products in the Dietary Supplement Label Database providing these target doses of supplementation. RESULTS The target dose for supplementation was ≥198 mcg retinol activity equivalents of total vitamin A (with ≤2063 mcg preformed retinol); 7-91 mcg vitamin D; 169-720 mcg dietary folate equivalents of folic acid; 383-943 mg calcium; 13-22 mg iron; and ≥59 mg ω-3 FAs. Out of 20,547 dietary supplements (including 421 prenatal products), 69 products (33 prenatal) contained all 6 nutrients; 7 products (2 prenatal) contained target doses for 5 nutrients. Only 1 product (not a prenatal) contained target doses for all 6 nutrients, but it currently costs ∼USD200/mo and requires 7 tablets per daily serving. CONCLUSIONS Almost no US dietary supplements provide key nutrients in the doses needed for pregnant women. Affordable and convenient products that fill the gap between food-based intake and estimated requirements of pregnancy without inducing excess intake are needed to support pregnant women and their offspring. Am J Clin Nutr 20XX;xx:xx-xx.
Collapse
Affiliation(s)
- Katherine A Sauder
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | | | - Regan L Bailey
- Institute for Advancing Health through Agriculture, College Station, TX, USA
| | - Christine W Hockett
- Avera Research Institute and Department of Pediatrics, University of South Dakota, Sioux Falls, SD, USA
| | - Karen M Switkowski
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | - Jean M Kerver
- Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luis E Maldonado
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Thomas G O'Connor
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sean Cl Deoni
- Department of Pediatrics, Brown University, Providence, RI, USA
| | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | |
Collapse
|
4
|
Shi Y, Zhong H, Pang L. Maternal micronutrient disturbance as risks of offspring metabolic syndrome. J Trace Elem Med Biol 2023; 75:127097. [PMID: 36272194 DOI: 10.1016/j.jtemb.2022.127097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS) is defined as a constellation of individual metabolic disturbances, including central obesity, hypertension, dyslipidemia, and insulin resistance. The established pathogenesis of MetS varies extensively with gender, age, ethnic background, and nutritional status. In terms of nutritional status, micronutrients are more likely to be discounted as essential components of required nutrition than macronutrients due to the small amount required. Numerous observational studies have shown that pregnant women frequently experience malnutrition, especially in developing and low-income countries, resulting in chronic MetS in the offspring due to the urgent and increasing demands for micronutrients during gestation and lactation. Over the past few decades, scientific developments have revolutionized our understanding of the association between balanced maternal micronutrients and MetS in the offspring. Examples of successful individual, dual, or multiple maternal micronutrient interventions on the offspring include iron for hypertension, selenium for type 2 diabetes, and a combination of folate and vitamin D for adiposity. In this review, we aim to elucidate the effects of maternal micronutrient intake on offspring metabolic homeostasis and discuss potential perspectives and challenges in the field of maternal micronutrient interventions.
Collapse
Affiliation(s)
- Yujie Shi
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Hong Zhong
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Lingxia Pang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| |
Collapse
|
5
|
Boudry G, Cahu A, Romé V, Janvier R, Louvois M, Catheline D, Rioux V, Le Huërou-Luron I, Blat S. The ghrelin system follows a precise post-natal development in mini-pigs that is not impacted by dietary medium chain fatty-acids. Front Physiol 2022; 13:1010586. [PMID: 36225304 PMCID: PMC9549131 DOI: 10.3389/fphys.2022.1010586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The ghrelin-ghrelin receptor (GHSR1) system is one of the most important mechanisms regulating food intake and energy balance. To be fully active, ghrelin is acylated with medium-chain fatty acids (MCFA) through the ghrelin-O-acetyl transferase (GOAT). Several studies reported an impact of dietary MCFA on ghrelin acylation in adults. Our study aimed at describing early post-natal development of the ghrelin system in mini-pigs as a model of human neonates and evaluating the impact of dietary MCFA. Suckled mini-pigs were sacrificed at post-natal day (PND) 0, 2, 5, and 10 or at adult stage. In parallel, other mini-pigs were fed from birth to PND10 a standard or a dairy lipid-enriched formula with increased MCFA concentration (DL-IF). Plasma ghrelin transiently peaked at PND2, with no variation of the acylated fraction except in adults where it was greater than during the neonatal period. Levels of mRNA coding pre-proghrelin (GHRL) and GOAT in the antrum did not vary during the post-natal period but dropped in adults. Levels of antral pcsk1/3 (cleaving GHRL into ghrelin) mRNA decreased significantly with age and was negatively correlated with plasma acylated, but not total, ghrelin. Hypothalamic ghsr1 mRNA did not vary in neonates but increased in adults. The DL-IF formula enriched antral tissue with MCFA but did not impact the ghrelin system. In conclusion, the ghrelin maturation enzyme PCSK1/3 gene expression exhibited post-natal modifications parallel to transient variations in circulating plasma ghrelin level in suckling piglets but dietary MCFA did not impact this post-natal development.
Collapse
Affiliation(s)
- Gaëlle Boudry
- Institut Numecan, INRAE, INSERM, Univ Rennes, Saint-Gilles-Rennes, France
- *Correspondence: Gaëlle Boudry,
| | - Armelle Cahu
- Institut Numecan, INRAE, INSERM, Univ Rennes, Saint-Gilles-Rennes, France
| | - Véronique Romé
- Institut Numecan, INRAE, INSERM, Univ Rennes, Saint-Gilles-Rennes, France
| | - Régis Janvier
- Institut Numecan, INRAE, INSERM, Univ Rennes, Saint-Gilles-Rennes, France
| | - Margaux Louvois
- Institut Numecan, INRAE, INSERM, Univ Rennes, Saint-Gilles-Rennes, France
| | - Daniel Catheline
- Institut Numecan, INRAE, INSERM, Univ Rennes, Saint-Gilles-Rennes, France
- Institut Agro, Rennes, France
| | - Vincent Rioux
- Institut Numecan, INRAE, INSERM, Univ Rennes, Saint-Gilles-Rennes, France
- Institut Agro, Rennes, France
| | | | - Sophie Blat
- Institut Numecan, INRAE, INSERM, Univ Rennes, Saint-Gilles-Rennes, France
| |
Collapse
|
6
|
OUP accepted manuscript. Nutr Rev 2022; 80:2178-2197. [DOI: 10.1093/nutrit/nuac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Excess Vitamins or Imbalance of Folic Acid and Choline in the Gestational Diet Alter the Gut Microbiota and Obesogenic Effects in Wistar Rat Offspring. Nutrients 2021; 13:nu13124510. [PMID: 34960062 PMCID: PMC8705167 DOI: 10.3390/nu13124510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Excess vitamin intake during pregnancy leads to obesogenic phenotypes, and folic acid accounts for many of these effects in male, but not in female, offspring. These outcomes may be modulated by another methyl nutrient choline and attributed to the gut microbiota. Pregnant Wistar rats were fed an AIN-93G diet with recommended vitamin (RV), high 10-fold multivitamin (HV), high 10-fold folic acid with recommended choline (HFol) or high 10-fold folic acid without choline (HFol-C) content. Male and female offspring were weaned to a high-fat RV diet for 12 weeks post-weaning. Removing choline from the HFol gestational diet resulted in obesogenic phenotypes that resembled more closely to HV in male and female offspring with higher body weight, food intake, glucose response to a glucose load and body fat percentage with altered activity, concentrations of short-chain fatty acids and gut microbiota composition. Gestational diet and sex of the offspring predicted the gut microbiota differences. Differentially abundant microbes may be important contributors to obesogenic outcomes across diet and sex. In conclusion, a gestational diet high in vitamins or imbalanced folic acid and choline content contributes to the gut microbiota alterations consistent with the obesogenic phenotypes of in male and female offspring.
Collapse
|
8
|
Sauder KA, Harte RN, Ringham BM, Guenther PM, Bailey RL, Alshawabkeh A, Cordero JF, Dunlop AL, Ferranti EP, Elliott AJ, Mitchell DC, Hedderson MM, Avalos LA, Zhu Y, Breton CV, Chatzi L, Ran J, Hertz-Picciotto I, Karagas MR, Sayarath V, Hoover J, MacKenzie D, Lyall K, Schmidt RJ, O'Connor TG, Barrett ES, Switkowski KM, Comstock SS, Kerver JM, Trasande L, Tylavsky FA, Wright RJ, Kannan S, Mueller NT, Catellier DJ, Glueck DH, Dabelea D. Disparities in Risks of Inadequate and Excessive Intake of Micronutrients during Pregnancy. J Nutr 2021; 151:3555-3569. [PMID: 34494118 PMCID: PMC8564697 DOI: 10.1093/jn/nxab273] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/29/2021] [Accepted: 07/26/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Inadequate or excessive intake of micronutrients in pregnancy has potential to negatively impact maternal/offspring health outcomes. OBJECTIVE The aim was to compare risks of inadequate or excessive micronutrient intake in diverse females with singleton pregnancies by strata of maternal age, race/ethnicity, education, and prepregnancy BMI. METHODS Fifteen observational cohorts in the US Environmental influences on Child Health Outcomes (ECHO) Consortium assessed participant dietary intake with 24-h dietary recalls (n = 1910) or food-frequency questionnaires (n = 7891) from 1999-2019. We compared the distributions of usual intake of 19 micronutrients from food alone (15 cohorts; n = 9801) and food plus dietary supplements (10 cohorts with supplement data; n = 7082) to estimate the proportion with usual daily intakes below their age-specific daily Estimated Average Requirement (EAR), above their Adequate Intake (AI), and above their Tolerable Upper Intake Level (UL), overall and within sociodemographic and anthropometric subgroups. RESULTS Risk of inadequate intake from food alone ranged from 0% to 87%, depending on the micronutrient and assessment methodology. When dietary supplements were included, some women were below the EAR for vitamin D (20-38%), vitamin E (17-22%), and magnesium (39-41%); some women were above the AI for vitamin K (63-75%), choline (7%), and potassium (37-53%); and some were above the UL for folic acid (32-51%), iron (39-40%), and zinc (19-20%). Highest risks for inadequate intakes were observed among participants with age 14-18 y (6 nutrients), non-White race or Hispanic ethnicity (10 nutrients), less than a high school education (9 nutrients), or obesity (9 nutrients). CONCLUSIONS Improved diet quality is needed for most pregnant females. Even with dietary supplement use, >20% of participants were at risk of inadequate intake of ≥1 micronutrients, especially in some population subgroups. Pregnancy may be a window of opportunity to address disparities in micronutrient intake that could contribute to intergenerational health inequalities.
Collapse
Affiliation(s)
- Katherine A Sauder
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robyn N Harte
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brandy M Ringham
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Patricia M Guenther
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Regan L Bailey
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | | | - José F Cordero
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA
| | - Anne L Dunlop
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Erin P Ferranti
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | | | - Diane C Mitchell
- Department of Nutritional Sciences, Penn State University, University Park, PA, USA
| | - Monique M Hedderson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lyndsay A Avalos
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Carrie V Breton
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Jin Ran
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| | | | - Vicki Sayarath
- Department of Epidemiology, Dartmouth College, Hanover, NH, USA
| | - Joseph Hoover
- Community Environmental Health Program, College of Pharmacy at the University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Debra MacKenzie
- Community Environmental Health Program, College of Pharmacy at the University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Thomas G O'Connor
- Departments of Psychiatry, Psychology, Neuroscience, and Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Karen M Switkowski
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Jean M Kerver
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Frances A Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Srimathi Kannan
- Department of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Pannia E, Yang NV, Ho M, Chatterjee D, Hammoud R, Kubant R, Anderson GH. Folic acid content of diet during pregnancy determines post-birth re-set of metabolism in Wistar rat dams. J Nutr Biochem 2020; 83:108414. [PMID: 32544644 DOI: 10.1016/j.jnutbio.2020.108414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/11/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022]
Abstract
Maternal metabolism begins to return to homeostasis (re-set) following birth and is accelerated by lactation. Delay in metabolic re-set may contribute to postpartum weight retention and later-life metabolic consequences. Folic acid (FA) is essential during pregnancy but inadequate intakes may alter 1-carbon metabolism, consequently affecting energy homeostatic systems. Our objectives were to examine the effects of FA content 1)below and 2)above requirements during pregnancy on the re-set of body weight, markers of hepatic 1-carbon metabolism and central and peripheral energy metabolic pathways in Wistar rat mothers early post-weaning (PW) compared to pregnant controls. Pregnant Wistar rats were fed an AIN-93G diet with FA at 0X, 1X (control, 2 mg FA/kg) or a range above requirements at 2.5X, 5X or 10X recommended levels then the control diet during lactation up to 1 week PW. Dams fed below (0X) or above (5X and 10X) FA requirements had delayed weight-loss from weaning up to 1 week PW, higher plasma insulin and HOMA-IR and changes in glucose and lipid metabolism-regulating genes in muscle, but not liver or adipose tissue compared to controls. Expression of folate-related genes in liver were lower in high FA fed dams. Central food intake neurons were not affected by FA diets. In conclusion, intakes of FA below (0X) or above (5X, 10X) requirements during pregnancy delayed weight-loss, dysregulated 1-carbon pathways in the liver and peripheral energy metabolic pathways in the Wistar rat mother up to 4 weeks after dietary exposure; potentially programming long-term negative metabolic effects and that of her future offspring.
Collapse
Affiliation(s)
- Emanuela Pannia
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Neil V Yang
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mandy Ho
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Diptendu Chatterjee
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rola Hammoud
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ruslan Kubant
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Hammoud R, Pannia E, Kubant R, Liao CS, Ho M, Yang NV, Chatterjee D, Caudill MA, Malysheva OV, Pausova Z, Anderson GH. Maternal Choline Intake Programs Hypothalamic Energy Regulation and Later-Life Phenotype of Male Wistar Rat Offspring. Mol Nutr Food Res 2020; 64:e1901178. [PMID: 32110848 DOI: 10.1002/mnfr.201901178] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/21/2020] [Indexed: 12/13/2022]
Abstract
SCOPE High-folic-acid diets during pregnancy result in obesity in the offspring, associated with altered DNA-methylation of hypothalamic food intake neurons. Like folic acid, the methyl-donor choline modulates foetal brain development, but its long-term programing effects on energy regulation remain undefined. This study aims to describe the effect of choline intake during pregnancy on offspring phenotype and hypothalamic energy-regulatory mechanisms. METHODS AND RESULTS Wistar rat dams are fed an AIN-93G diet with recommended choline (RC, 1 g kg-1 diet), low choline (LC, 0.5-fold), or high choline (HC, 2.5-fold) during pregnancy. Male pups are terminated at birth and 17 weeks post-weaning. Brain 1-carbon metabolites, body weight, food intake, energy expenditure, plasma hormones, and protein expression of hypothalamic neuropeptides are measured. HC pups have higher expression of the orexigenic neuropeptide-Y neurons at birth, consistent with higher cumulative food intake and body weight gain post-weaning compared to RC and LC offspring. LC pups have lower leptin receptor expression at birth and lower energy expenditure and activity during adulthood. CONCLUSION Choline content of diets that are consumed by rats during pregnancy affects the later-life phenotype of offspring, associated with altered in utero programing of hypothalamic food intake regulation.
Collapse
Affiliation(s)
- Rola Hammoud
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
| | - Emanuela Pannia
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
| | - Ruslan Kubant
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
| | - Chih-Sheng Liao
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
| | - Mandy Ho
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
| | - Neil V Yang
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
| | - Diptendu Chatterjee
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, 228 Savage Hall, Ithaca, NY, 14850, USA
| | - Olga V Malysheva
- Division of Nutritional Sciences, Cornell University, 228 Savage Hall, Ithaca, NY, 14850, USA
| | - Zdenka Pausova
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
- Department of Physiology, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, Rm. 109705, Toronto, Ontario, M5G0A4, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
- Department of Physiology, University of Toronto, 1 King's College Circle, Rm. 5360, Toronto, Ontario, M5S1A8, Canada
| |
Collapse
|
11
|
Chan YM, Aufreiter S, O'Keefe SJ, O'Connor DL. Switching to a fibre-rich and low-fat diet increases colonic folate contents among African Americans. Appl Physiol Nutr Metab 2018; 44:127-132. [PMID: 29996064 DOI: 10.1139/apnm-2018-0181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
How dietary patterns impact colonic bacterial biosynthesis of vitamins and utilization by humans is poorly understood. Our aim was to investigate whether a reciprocal dietary switch between rural South Africans (traditionally high fibre, low fat) and African Americans (Western diet of low fibre, high fat) affects colonic folate synthesis. Colonic evacuants were obtained from 20 rural South Africans and 20 African Americans consuming their usual diets at baseline. For 2 weeks thereafter, rural South Africans were provided with a Western diet (protein, 27%; fat, 52%; carbohydrate, 20%; and fibre, 8 g/day) and African Americans were provided with a high fibre, low-fat diet (protein, 16%; fat, 17%; carbohydrate, 63%; and fibre, 43 g/day). Colonic evacuants were again collected. No difference between groups at baseline in the folate content of 3-h evacuants was observed. The high-fibre, low-fat diet consumed by African Americans during the intervention produced a 41% increase in mean total folate content compared with baseline values (p = 0.0037). No change was observed in rural South Africans consuming a Western diet. Mean total folate content of colonic evacuants was higher among African Americans at the end of the dietary switch (3107 ± 1811 μg) compared with rural South Africans (2157 ± 1956 μg) (p = 0.0409). In conclusion, consistent with animal studies, switching from a Western diet to one higher in fibre and lower in fat can be expected to result in greater colonic folate content. Future research should confirm that these observations are not transitory and understand the contribution of transit-time to the findings.
Collapse
Affiliation(s)
- Yen-Ming Chan
- a Department of Nutritional Sciences, University of Toronto and Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Susanne Aufreiter
- b Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Stephen J O'Keefe
- c Department of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Deborah L O'Connor
- d Translational Medicine Program, The Hospital for Sick Children and Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
12
|
Yang NV, Pannia E, Chatterjee D, Kubant R, Ho M, Hammoud R, Pausova Z, Anderson GH. Gestational folic acid content alters the development and function of hypothalamic food intake regulating neurons in Wistar rat offspring post-weaning. Nutr Neurosci 2018; 23:149-160. [PMID: 29848222 DOI: 10.1080/1028415x.2018.1479628] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Folic acid plays an important role in early brain development of offspring, including proliferation and differentiation of neural stem cells known to impact the function of food intake regulatory pathways. Excess (10-fold) intakes of folic acid in the gestational diet have been linked to increased food intake and obesity in male rat offspring post-weaning.Objective: The present study examined the effects of folic acid content in gestational diets on the development and function of two hypothalamic neuronal populations, neuropeptide Y (NPY) and pro-opiomelanocortin (POMC), within food intake regulatory pathways of male Wistar rat offspring at birth and post-weaning.Results: Folic acid fed at 5.0-fold above recommended levels (5RF) to Wistar dams during pregnancy increased the number of mature NPY-positive neurons in the hypothalamus of male offspring, compared to control (RF), 0RF, 2.5RF, and 10RF at birth. Folic acid content had no effect on expression and maturation of POMC-positive neurons. Body weight and food intake were higher in all treatment groups (2.5-, 5.0-, and 10.0-fold folic acid) from birth to 9 weeks post-weaning compared to control. Increased body weight and food intake at 9-weeks post-weaning were accompanied by a reduced activation of POMC neurons in the arcuate nucleus (ARC).Conclusion: Gestational folic acid content modulates expression of mature hypothalamic NPY-positive neurons at birth and activation of POMC-positive neurons at 9-weeks post-weaning in the ARC of male Wistar rat offspring which may contribute to higher body weight and food intake later in life.
Collapse
Affiliation(s)
- Neil Victor Yang
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Emanuela Pannia
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Diptendu Chatterjee
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ruslan Kubant
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Mandy Ho
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Rola Hammoud
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Zdenka Pausova
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Hospital for Sick Children, Toronto, ON, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Barzilay E, Moon A, Plumptre L, Masih SP, Sohn KJ, Visentin CE, Ly A, Malysheva O, Croxford R, Caudill MA, O'Connor DL, Kim YI, Berger H. Fetal one-carbon nutrient concentrations may be affected by gestational diabetes. Nutr Res 2018; 55:57-64. [PMID: 29914628 DOI: 10.1016/j.nutres.2018.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/19/2018] [Accepted: 04/15/2018] [Indexed: 01/21/2023]
Abstract
Both insufficiency and excess of one-carbon nutrients (folate, choline, vitamins B6 and B12) during pregnancy have been associated with gestational diabetes mellitus (GDM). However, the precise nature of this association has not been clearly established. We hypothesized that GDM may affect one-carbon nutrients concentrations in the fetus, thus possibly participating in epigenetic programing of the offspring. Maternal blood was collected at recruitment (12-16 weeks). At delivery (28-42 weeks), both maternal and cord blood were collected. Blood concentrations of one-carbon nutrients and their metabolites were compared between the two groups. A total of 368 women were included in the study, of whom 19 (5.6%) were later diagnosed with GDM. No significant differences were found in maternal blood concentrations of one-carbon nutrients and their metabolites between the GDM and control groups at recruitment or at delivery. In cord blood, however, serum folate (87.7 [IQR 70.4-103.9] vs 66.6 [IQR 45.5-80.3] nmol/L, P = .025) and plasma TMAO (2.82 [IQR 1.3-3.2] vs 1.35 [IQR 1.0-2.0] μmol/L, P = .017) concentrations were higher, while plasma betaine concentrations were lower (17.5 [IQR 16.3-19.4] vs 21.1 [IQR 18.0-24.1] μmol/L, P = .019) in infants born to mothers with GDM compared with control. Our data suggest that while maternal blood concentrations of one-carbon nutrients and their metabolites may not affect the risk of GDM, GDM may alter concentrations of serum folate, plasma betaine and TMAO in cord blood. These alterations in one-carbon nutrient concentrations in fetal circulation may impact epigenetic programing, thereby contributing to physiologic changes and disease susceptibility in adulthood associated with GDM offspring.
Collapse
Affiliation(s)
- Eran Barzilay
- Department of Obstetrics & Gynecology, St. Michael's Hospital & University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynecology, Assuta Ashdod University Hospital, Ashdod, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Ashley Moon
- The Keenan Research Center for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Lesley Plumptre
- The Keenan Research Center for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Shannon P Masih
- The Keenan Research Center for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Kyoung-Jin Sohn
- The Keenan Research Center for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Carly E Visentin
- The Keenan Research Center for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Anna Ly
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Olga Malysheva
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY
| | - Ruth Croxford
- Freelance statistics consultant, Toronto, Ontario, Canada
| | - Marie A Caudill
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY
| | - Deborah L O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; Research Institute, the Hospital for Sick Children
| | - Young-In Kim
- The Keenan Research Center for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; The Division of Gastroenterology, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Howard Berger
- Department of Obstetrics & Gynecology, St. Michael's Hospital & University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Tiu AC, Bishop MD, Asico LD, Jose PA, Villar VAM. Primary Pediatric Hypertension: Current Understanding and Emerging Concepts. Curr Hypertens Rep 2017; 19:70. [PMID: 28780627 PMCID: PMC6314210 DOI: 10.1007/s11906-017-0768-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rising prevalence of primary pediatric hypertension and its tracking into adult hypertension point to the importance of determining its pathogenesis to gain insights into its current and emerging management. Considering that the intricate control of BP is governed by a myriad of anatomical, molecular biological, biochemical, and physiological systems, multiple genes are likely to influence an individual's BP and susceptibility to develop hypertension. The long-term regulation of BP rests on renal and non-renal mechanisms. One renal mechanism relates to sodium transport. The impaired renal sodium handling in primary hypertension and salt sensitivity may be caused by aberrant counter-regulatory natriuretic and anti-natriuretic pathways. The sympathetic nervous and renin-angiotensin-aldosterone systems are examples of antinatriuretic pathways. An important counter-regulatory natriuretic pathway is afforded by the renal autocrine/paracrine dopamine system, aberrations of which are involved in the pathogenesis of hypertension, including that associated with obesity. We present updates on the complex interactions of these two systems with dietary salt intake in relation to obesity, insulin resistance, inflammation, and oxidative stress. We review how insults during pregnancy such as maternal and paternal malnutrition, glucocorticoid exposure, infection, placental insufficiency, and treatments during the neonatal period have long-lasting effects in the regulation of renal function and BP. Moreover, these effects have sex differences. There is a need for early diagnosis, frequent monitoring, and timely management due to increasing evidence of premature target organ damage. Large controlled studies are needed to evaluate the long-term consequences of the treatment of elevated BP during childhood, especially to establish the validity of the current definition and treatment of pediatric hypertension.
Collapse
Affiliation(s)
- Andrew C Tiu
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA.
| | - Michael D Bishop
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| | - Laureano D Asico
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| | - Pedro A Jose
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| | - Van Anthony M Villar
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| |
Collapse
|
15
|
Perinatal high methyl donor alters gene expression in IGF system in male offspring without altering DNA methylation. Future Sci OA 2016; 3:FSO164. [PMID: 28344827 PMCID: PMC5351714 DOI: 10.4155/fsoa-2016-0077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/15/2016] [Indexed: 01/08/2023] Open
Abstract
Aim: To investigate the effect of a protein restriction and a supplementation with methyl donor nutrients during fetal and early postnatal life on the expression and epigenetic state of imprinted genes from the IGF system. Materials & methods: Pregnant female rats were fed a protein-restricted diet supplemented or not with methyl donor. Results: Gene expression of the Igf2, H19, Igf1, Igf2r and Plagl1 genes in the liver of male offspring at birth and weaning was strongly influenced by maternal diet. Whereas the methylation profiles of the Igf2, H19 and Igf2r genes were remarkably stable, DNA methylation of Plagl1 promoter was slightly modified. Conclusion: DNA methylation of most, but not all, imprinted gene regulatory regions was resistant to methyl group nutritional supply. Fetal environment influences fetal growth and may confer a risk to develop metabolic diseases, possibly through alterations in the epigenetic state of the genome. Imprinted genes constitute a special class of genes that are crucial for the control of fetal and postnatal growth and are closely associated with energy metabolism. In addition, these genes are finely regulated by epigenetic mechanisms that are themselves influenced by environmental factors. This study showed that methyl donor nutrients in maternal diet strongly influenced the expression level of imprinted genes in the liver of rat offspring, despite a mild effect on epigenetic regulation.
Collapse
|
16
|
Sauder KA, Starling AP, Shapiro AL, Kaar JL, Ringham BM, Glueck DH, Dabelea D. Exploring the association between maternal prenatal multivitamin use and early infant growth: The Healthy Start Study. Pediatr Obes 2016; 11:434-41. [PMID: 26663829 PMCID: PMC4903091 DOI: 10.1111/ijpo.12084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/09/2015] [Accepted: 10/14/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Prenatal multivitamin supplementation is recommended to improve offspring outcomes, but effects on early infant growth are unknown. OBJECTIVES We examined whether multivitamin supplementation in the year before delivery predicts offspring mass, body composition and early infant growth. METHODS Multivitamin use was assessed longitudinally in 626 women from the Healthy Start Study. Offspring body size and composition was measured with air displacement plethysmography at birth (<3 days) and postnatally (median 5.2 months). Separate multiple linear regressions assessed the relationship of weeks of daily multivitamin use with offspring mass, body composition and postnatal growth, after adjustment for potential confounders (maternal age, race, pre-pregnant body mass index; offspring gestational age at birth, sex; breastfeeding exclusivity). RESULTS Maternal multivitamin use was not related to offspring mass or body composition at birth, or rate of change in total or fat-free mass in the first 5 months. Multivitamin use was inversely associated with average monthly growth in offspring percent fat mass (β = -0.009, p = 0.049) between birth and postnatal exam. Offspring of non-users had a monthly increase in percent fat mass of 3.45%, while offspring at the top quartile of multivitamin users had a monthly increase in percent fat mass of 3.06%. This association was not modified by exclusive breastfeeding. CONCLUSIONS Increased multivitamin use in the pre-conception and prenatal periods was associated with a slower rate of growth in offspring percent fat mass in the first 5 months of life. This study provides further evidence that in utero nutrient exposures may affect offspring adiposity beyond birth.
Collapse
Affiliation(s)
- Katherine A. Sauder
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO
| | - Anne P. Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO
| | - Allison L. Shapiro
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO
| | - Jill L. Kaar
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO
| | - Brandy M. Ringham
- Department of Biostatistics and Bioinformatics, Colorado School of Public Health, University of Colorado, Aurora, CO
| | - Deborah H. Glueck
- Department of Biostatistics and Bioinformatics, Colorado School of Public Health, University of Colorado, Aurora, CO
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO
| |
Collapse
|
17
|
Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats. Nutrients 2016; 8:nu8100594. [PMID: 27669293 PMCID: PMC5083982 DOI: 10.3390/nu8100594] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 01/21/2023] Open
Abstract
Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet.
Collapse
|
18
|
The expression of genes encoding enzymes regulating fat metabolism is affected by maternal nutrition when lambs are fed algae high in omega-3. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Pannia E, Cho CE, Kubant R, Sánchez-Hernández D, Huot PSP, Harvey Anderson G. Role of maternal vitamins in programming health and chronic disease. Nutr Rev 2016; 74:166-80. [PMID: 26883881 DOI: 10.1093/nutrit/nuv103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vitamin consumption prior to and during pregnancy has increased as a result of proactive recommendations by health professionals, wide availability of vitamin supplements, and liberal food-fortification policies. Folic acid, alone or in combination with other B vitamins, is the most recommended vitamin consumed during pregnancy because deficiency of this vitamin leads to birth defects in the infant. Folic acid and other B vitamins are also integral components of biochemical processes that are essential to the development of regulatory systems that control the ability of the offspring to adapt to the external environment. Although few human studies have investigated the lasting effects of high vitamin intakes during pregnancy, animal models have shown that excess vitamin supplementation during gestation is associated with negative metabolic effects in both the mothers and their offspring. This research from animal models, combined with the recognition that epigenetic regulation of gene expression is plastic, provides evidence for further examination of these relationships in the later life of pregnant women and their children.
Collapse
Affiliation(s)
- Emanuela Pannia
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Clara E Cho
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ruslan Kubant
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Diana Sánchez-Hernández
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Pedro S P Huot
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - G Harvey Anderson
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Huot PSP, Ly A, Szeto IMY, Reza-López SA, Cho D, Kim YI, Anderson GH. Maternal and postweaning folic acid supplementation interact to influence body weight, insulin resistance, and food intake regulatory gene expression in rat offspring in a sex-specific manner. Appl Physiol Nutr Metab 2015; 41:411-20. [PMID: 26989972 DOI: 10.1139/apnm-2015-0503] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Maternal intake of multivitamins or folic acid above the basal dietary requirement alters the growth and metabolic trajectory of rat offspring. We hypothesized that a modest increase in the folic acid content of maternal diets would alter the offspring's metabolic phenotype, and that these effects could be corrected by matching the folic acid content of the offspring's diet with that of the maternal diet. Female Sprague-Dawley rats were placed on a control or a 2.5× folic acid-supplemented diet prior to mating and during pregnancy and lactation. At weaning, pups from each maternal diet group were randomized to the control or to the 2.5× folic acid-supplemented diet for 25 weeks. Male pups from dams fed the folic acid-supplemented diet were 3.7% heavier than those from control-fed dams and had lower mRNA expression for leptin receptor Obrb isoform (Lepr) (11%) and Agouti-related protein (Agrp) (14%). In contrast, female pups from folic acid-supplemented dams were 5% lighter than those from control-fed dams and had lower proopiomelanocortin (Pomc) (42%), Lepr (32%), and Agrp (13%), but higher neuropeptide Y (Npy) (18%) mRNA expression. Folic acid supplementation ameliorated the alterations induced by maternal folic acid supplementation in male pups and led to the lowest insulin resistance, but the effects were smaller in female pups and led to the highest insulin resistance. In conclusion, maternal folic acid supplementation at 2.5× the control level was associated with alterations in body weight and hypothalamic gene expression in rat offspring in a sex-specific manner, and some of these effects were attenuated by postweaning folic acid supplementation.
Collapse
Affiliation(s)
- Pedro S P Huot
- a Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Anna Ly
- a Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Ignatius M Y Szeto
- a Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Sandra A Reza-López
- a Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Daniel Cho
- a Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Young-In Kim
- a Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3E2, Canada.,b Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M5G 2C4, Canada.,c Keenan Research Centre for Biomedical Sciences of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.,d Division of Gastroenterology, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - G Harvey Anderson
- a Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3E2, Canada
| |
Collapse
|
21
|
Jahan-Mihan A, Rodriguez J, Christie C, Sadeghi M, Zerbe T. The Role of Maternal Dietary Proteins in Development of Metabolic Syndrome in Offspring. Nutrients 2015; 7:9185-217. [PMID: 26561832 PMCID: PMC4663588 DOI: 10.3390/nu7115460] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/16/2015] [Accepted: 10/28/2015] [Indexed: 12/22/2022] Open
Abstract
The prevalence of metabolic syndrome and obesity has been increasing. Pre-natal environment has been suggested as a factor influencing the risk of metabolic syndrome in adulthood. Both observational and experimental studies showed that maternal diet is a major modifier of the development of regulatory systems in the offspring in utero and post-natally. Both protein content and source in maternal diet influence pre- and early post-natal development. High and low protein dams’ diets have detrimental effect on body weight, blood pressure191 and metabolic and intake regulatory systems in the offspring. Moreover, the role of the source of protein in a nutritionally adequate maternal diet in programming of food intake regulatory system, body weight, glucose metabolism and blood pressure in offspring is studied. However, underlying mechanisms are still elusive. The purpose of this review is to examine the current literature related to the role of proteins in maternal diets in development of characteristics of the metabolic syndrome in offspring.
Collapse
Affiliation(s)
- Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| | - Judith Rodriguez
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| | - Catherine Christie
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| | - Marjan Sadeghi
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| | - Tara Zerbe
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| |
Collapse
|
22
|
Sánchez-Hernández D, Poon AN, Kubant R, Kim H, Huot PSP, Cho CE, Pannia E, Reza-López SA, Pausova Z, Bazinet RP, Anderson GH. High vitamin A intake during pregnancy modifies dopaminergic reward system and decreases preference for sucrose in Wistar rat offspring. J Nutr Biochem 2015; 27:104-11. [PMID: 26456562 DOI: 10.1016/j.jnutbio.2015.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 05/06/2015] [Accepted: 08/18/2015] [Indexed: 11/25/2022]
Abstract
High multivitamin (HV) content in gestational diets has long-term metabolic effects in rat offspring. These changes are associated with in utero modifications of gene expression in hypothalamic food intake regulation. However, the role of fat-soluble vitamins in mediating these effects has not been explored. Vitamin A is a plausible candidate due to its role in gene methylation. Vitamin A intake above requirements during pregnancy affects the development of neurocircuitries involved in food intake and reward regulation. Pregnant Wistar rats were fed AIN-93G diets with the following content: recommended multivitamins (1-fold multivitamins: RV), high vitamin A (10-fold vitamin A: HA) or HV with only recommended vitamin A (10-fold multivitamins, 1-fold vitamin A: HVRA). Body weight, food intake and preference, mRNA expression and DNA methylation of hippocampal dopamine-related genes were assessed in male offspring brains at different developmental windows: birth, weaning and 14weeks postweaning. HA offspring had changes in dopamine-related gene expression at all developmental windows and DNA hypermethylation in the dopamine receptor 2 promoter region compared to RV offspring. Furthermore, HA diet lowered sucrose preference but had no effect on body weight and expression of hypothalamic genes. In contrast, HVRA offspring showed only at adulthood changes in expression of hippocampal genes and a modest effect on hypothalamic genes. High vitamin A intake alone in gestational diets has long-lasting programming effects on the dopaminergic system that are further translated into decreased sucrose preference but not food intake.
Collapse
Affiliation(s)
- Diana Sánchez-Hernández
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Abraham N Poon
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Ruslan Kubant
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Hwanki Kim
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Pedro S P Huot
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Clara E Cho
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Emanuela Pannia
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Sandra A Reza-López
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Zdenka Pausova
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2; Hospital for Sick Children, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| | - G Harvey Anderson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2; Department of Physiology, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, Canada M5S 3E2.
| |
Collapse
|
23
|
Sanchez-Hernandez D, Poon AN, Kubant R, Kim H, Huot PS, Cho CE, Pannia E, Pausova Z, Anderson GH. A gestational diet high in fat-soluble vitamins alters expression of genes in brain pathways and reduces sucrose preference, but not food intake, in Wistar male rat offspring. Appl Physiol Nutr Metab 2015; 40:424-31. [DOI: 10.1139/apnm-2014-0480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High intakes of multivitamins (HV) during pregnancy by Wistar rats increase food intake, body weight, and characteristics of the metabolic syndrome in male offspring. In this study, high-fat soluble vitamins were fed in combination during gestation to test the hypothesis that they partially account for the effects of the HV diet. Pregnant Wistar rats (14–16/group) were fed a recommended multivitamin diet (1-fold all vitamins) or high-fat soluble vitamin diet (HFS; 10-fold vitamins A, D, E, and K) during pregnancy. Offspring body weight, food intake, and preference as well as expression of selected genes in the hypothalamus and hippocampus were evaluated at birth, weaning, and 14 weeks postweaning. Body weight and food intake were not affected but sucrose preference decreased by 4% in those born to dams fed the HFS gestational diet. Gene expressions of the hypothalamic anorexogenic pro-opiomelanocortin (Pomc) and orexogenic neuropeptide Y (Npy) (∼30% p = 0.008, ∼40% p = 0.007) were increased in weaning and adult rats, respectively. Hippocampal dopaminergic genes (35%–50% p < 0.05) were upregulated at birth and 14 weeks postweaning. DNA hypermethylation (2% p = 0.006) was observed in the dopamine receptor 1 (Drd1) promoter region. We conclude that a gestational diet high in vitamins A, D, E, and K does not show the effects of the HV diet on body weight or food intake but may affect the development of higher hedonic regulatory pathways associated with food preference.
Collapse
Affiliation(s)
| | - Abraham N. Poon
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Ruslan Kubant
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Hwanki Kim
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Pedro S.P. Huot
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Clara E. Cho
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 3E2, Canada
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, NY 14853, USA
| | - Emanuela Pannia
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Zdenka Pausova
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 3E2, Canada
- Hospital for Sick Children, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - G. Harvey Anderson
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 3E2, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3E2, Canada
| |
Collapse
|
24
|
Cho CE, Pannia E, Huot PSP, Sánchez-Hernández D, Kubant R, Dodington DW, Ward WE, Bazinet RP, Anderson GH. Methyl vitamins contribute to obesogenic effects of a high multivitamin gestational diet and epigenetic alterations in hypothalamic feeding pathways in Wistar rat offspring. Mol Nutr Food Res 2015; 59:476-89. [PMID: 25488374 DOI: 10.1002/mnfr.201400663] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 01/13/2023]
Abstract
SCOPE High multivitamin (HV, tenfold AIN-93G) gestational diets fed to Wistar rats increase food intake, obesity, and characteristics of metabolic syndrome in the offspring. We hypothesized that methyl vitamins, and specifically folate, in the HV gestational diet contribute to the obesogenic phenotypes consistent with their epigenetic effects on hypothalamic food intake regulatory mechanisms. METHODS AND RESULTS Male offspring of dams fed the AIN-93G diet with high methyl vitamins (HMethyl; tenfold folate, vitamins B12, and B6) (Study 1) and HV with recommended folate (HVRF) (Study 2) were compared with those from HV and recommended vitamin (RV) fed dams. All offspring were weaned to a high fat diet for 8 wks. HMethyl diet, similar to HV, and compared to RV, resulted in higher food intake, body weight, and metabolic disturbances. Removing folate additions to the HV diet in HVRF offspring normalized the obesogenic phenotype. Methyl vitamins, and folate in HV diets, altered hypothalamic gene expression toward increased food intake concurrent with DNA methylation and leptin and insulin receptor signaling dysfunction. CONCLUSION Methyl vitamins in HV gestational diets contribute to obesogenic phenotypes and epigenetic alterations in the hypothalamic feeding pathways in the offspring. Folate alone accounts for many of these effects.
Collapse
Affiliation(s)
- Clara E Cho
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pannia E, Cho CE, Kubant R, Sánchez-Hernández D, Huot PSP, Chatterjee D, Fleming A, Anderson GH. A high multivitamin diet fed to Wistar rat dams during pregnancy increases maternal weight gain later in life and alters homeostatic, hedonic and peripheral regulatory systems of energy balance. Behav Brain Res 2014; 278:1-11. [PMID: 25264184 DOI: 10.1016/j.bbr.2014.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 12/21/2022]
Abstract
High multivitamin (10-fold, HV) and high folic acid (Fol) diets fed to pregnant Wistar rats increase body weight and characteristics of the metabolic syndrome in their offspring. Our objective was to determine the effects of a HV maternal diet on dams and whether methyl vitamins contribute to these effects. Pregnant Wistar rats were fed AIN-93G diets containing either (1) recommended multivitamins (RV, control), (2) HV, (3) HV with recommended Fol (HVRF; 1-fold Fol), or (4) RV with high methyl group vitamins (HMethyl; 10-fold Fol, vitamin B12 and B6). All groups were fed a RV diet during lactation until weaning and a RV high fat (HF; 60% fat) diet for 16 weeks post-weaning. The HV, HVRF and HMethyl diet fed dams gained 45% more weight from 2 to 15 weeks post-weaning and their weight gain (WG) was positively associated with cumulative post-weaning food intake (FI). However, only HV dams had a reduced preference for a sucrose solution, lower mesolimbic dopamine (DA) turnover in the nucleus accumbens (NAc), and higher expression of several genes involved in FI regulation in the arcuate nucleus of the hypothalamus (ARC). Energy conserving peroxisome proliferator-activated receptor (Ppar)-γ in adipose and -α in liver was also greater in these dams consistent with their WG. In conclusion, HV, HVRF and HMethyl maternal diets exacerbate maternal WG when dams are exposed to a HF diet post-weaning. However, the diets differed in their effects on central and peripheral regulatory systems of energy balance.
Collapse
Affiliation(s)
- Emanuela Pannia
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Clara E Cho
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ruslan Kubant
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Diana Sánchez-Hernández
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Pedro S P Huot
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Diptendu Chatterjee
- Department of Psychology, University of Toronto Mississauga, Toronto, Ontario, Canada
| | - Alison Fleming
- Department of Psychology, University of Toronto Mississauga, Toronto, Ontario, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Sánchez-Hernández D, Cho CE, Kubant R, Reza-López SA, Poon AN, Wang J, Huot PSP, Smith CE, Anderson GH. Increasing vitamin A in post-weaning diets reduces food intake and body weight and modifies gene expression in brains of male rats born to dams fed a high multivitamin diet. J Nutr Biochem 2014; 25:991-6. [PMID: 24993918 DOI: 10.1016/j.jnutbio.2014.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 04/21/2014] [Accepted: 05/01/2014] [Indexed: 01/29/2023]
Abstract
High multivitamin gestational diets (HV, 10-fold AIN-93G levels) increase body weight (BW) and food intake (FI) in rat offspring weaned to a recommended multivitamin (RV), but not to a HV diet. We hypothesized that high vitamin A (HA) alone, similar to HV, in post-weaning diets would prevent these effects of the HV maternal diet consistent with gene expression in FI and reward pathways. Male offspring from dams fed HV diets were weaned to a high vitamin A (HA, 10-fold AIN-93G levels), HV or RV diet for 29 weeks. BW, FI, expression of genes involved in regulation of FI and reward and global and gene-specific DNA methylation of pro-opiomelanocortin (POMC) in the hypothalamus were measured. Both HV and HA diets slowed post-weaning weight gain and modified gene expression in offspring compared to offspring fed an RV post-weaning diet. Hypothalamic POMC expression in HA offspring was not different from either HV or RV, and dopamine receptor 1 was 30% (P<.05) higher in HA vs. HV, but not different from RV group. Hippocampal expression of serotonin receptor 1A (40%, P<.01), dopamine receptor 2 (40%, P<.05) and dopamine receptor 5 (70%, P<.0001) was greater in HA vs. RV fed pups and is 40% (P<.01), 50% (P<.05) and 40% (P<.0001) in HA vs. HV pups, respectively. POMC DNA methylation was lower in HA vs. RV offspring (P<.05). We conclude that high vitamin A in post-weaning diets reduces post-weaning weight gain and FI and modifies gene expression in FI and reward pathways.
Collapse
Affiliation(s)
| | - Clara E Cho
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ruslan Kubant
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sandra A Reza-López
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Abraham N Poon
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jingzhou Wang
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Pedro S P Huot
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Christopher E Smith
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Multivitamin restriction increases adiposity and disrupts glucose homeostasis in mice. GENES AND NUTRITION 2014; 9:410. [PMID: 24858304 DOI: 10.1007/s12263-014-0410-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/14/2014] [Indexed: 01/04/2023]
Abstract
A strong association between obesity and low plasma concentrations of vitamins has been widely reported; however, the causality of this relationship is still not established. Our goal was to evaluate the impact of a multivitamin restriction diet (MRD) on body weight, adiposity and glucose homeostasis in mice. The mice were given a standard diet or a diet containing 50 % of the recommended vitamin intake (MRD) for 12 weeks. At the end of the experiment, total body weight was 6 % higher in MRD animals than in the control group, and the adiposity of the MRD animals more than doubled. The HOMA-IR index of the MRD animals was significantly increased. The adipose tissue of MRD animals had lower expression of mRNA encoding adiponectin and Pnpla2 (47 and 32 %, respectively) and 43 % higher leptin mRNA levels. In the liver, the mRNA levels of Pparα and Pgc1α were reduced (29 and 69 %, respectively) in MRD mice. Finally, the level of β-hydroxybutyrate, a ketonic body reflecting fatty acid oxidation, was decreased by 45 % in MRD mice. Our results suggest that MRD promotes adiposity, possibly by decreasing adipose tissue lipolysis and hepatic β-oxidation. These results could highlight a possible role of vitamin deficiency in the etiology of obesity and associated disorders.
Collapse
|
28
|
Huang Y, He Y, Sun X, He Y, Li Y, Sun C. Maternal high folic acid supplement promotes glucose intolerance and insulin resistance in male mouse offspring fed a high-fat diet. Int J Mol Sci 2014; 15:6298-313. [PMID: 24736781 PMCID: PMC4013629 DOI: 10.3390/ijms15046298] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/03/2014] [Accepted: 03/28/2014] [Indexed: 11/16/2022] Open
Abstract
Maternal nutrition may influence metabolic profiles in offspring. We aimed to investigate the effect of maternal folic acid supplement on glucose metabolism in mouse offspring fed a high-fat diet (HFD). Sixty C57BL/6 female mice were randomly assigned into three dietary groups and fed the AIN-93G diet containing 2 (control), 5 (recommended folic acid supplement, RFolS) or 40 (high folic acid supplement, HFolS) mg folic acid/kg of diet. All male offspring were fed HFD for eight weeks. Physiological, biochemical and genetic variables were measured. Before HFD feeding, developmental variables and metabolic profiles were comparable among each offspring group. However, after eight weeks of HFD feeding, the offspring of HFolS dams (Off-HFolS) were more vulnerable to suffer from obesity (p = 0.009), glucose intolerance (p < 0.001) and insulin resistance (p < 0.001), compared with the controls. Off-HFolS had reduced serum adiponectin concentration, accompanied with decreased adiponectin mRNA level but increased global DNA methylation level in white adipose tissue. In conclusion, our results suggest maternal HFolS exacerbates the detrimental effect of HFD on glucose intolerance and insulin resistance in male offspring, implying that HFolS during pregnancy should be adopted cautiously in the general population of pregnant women to avoid potential deleterious effect on the metabolic diseases in their offspring.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China.
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China.
| | - Xiaowei Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China.
| | - Yujie He
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China.
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China.
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
29
|
Vanhees K, Vonhögen IGC, van Schooten FJ, Godschalk RWL. You are what you eat, and so are your children: the impact of micronutrients on the epigenetic programming of offspring. Cell Mol Life Sci 2014; 71:271-85. [PMID: 23892892 PMCID: PMC11113902 DOI: 10.1007/s00018-013-1427-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 02/07/2023]
Abstract
The research field of fetal programming has developed tremendously over the years and increasing knowledge suggests that both maternal and paternal unbalanced diet can have long-lasting effects on the health of offspring. Studies implicate that macronutrients play an important role in fetal programming, although the importance of micronutrients is also becoming increasingly apparent. Folic acid and vitamins B2, B6 and B12 are essential for one-carbon metabolism and are involved in DNA methylation. They can therefore influence the programming of the offspring's epigenome. Also, other micronutrients such as vitamins A and C, iron, chromium, zinc and flavonoids play a role in fetal programming. Since it is estimated that approximately 78 % of pregnant women in the US take vitamin supplements during pregnancy, more attention should be given to the long-term effects of these supplements on offspring. In this review we address several different studies which illustrate that an unbalanced diet prior and during pregnancy, regarding the intake of micronutrients of both mother and father, can have long-lasting effects on the health of adult offspring.
Collapse
Affiliation(s)
- Kimberly Vanhees
- Department of Toxicology, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands,
| | | | | | | |
Collapse
|
30
|
Cho CE, Sánchez-Hernández D, Reza-López SA, Huot PS, Kim YI, Anderson GH. High folate gestational and post-weaning diets alter hypothalamic feeding pathways by DNA methylation in Wistar rat offspring. Epigenetics 2013; 8:710-9. [PMID: 23803567 PMCID: PMC3781190 DOI: 10.4161/epi.24948] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/17/2013] [Accepted: 05/05/2013] [Indexed: 01/31/2023] Open
Abstract
Excess vitamins, especially folate, are consumed during pregnancy but later-life effects on the offspring are unknown. High multivitamin (10-fold AIN-93G, HV) gestational diets increase characteristics of metabolic syndrome in Wistar rat offspring. We hypothesized that folate, the vitamin active in DNA methylation, accounts for these effects through epigenetic modification of food intake regulatory genes. Male offspring of dams fed 10-fold folate (HFol) diet during pregnancy and weaned to recommended vitamin (RV) or HFol diets were compared with those born to RV dams and weaned to RV diet for 29 weeks. Food intake and body weight were highest in offspring of HFol dams fed the RV diet. In contrast, the HFol pup diet in offspring of HFol dams reduced food intake (7%, p = 0.02), body weight (9%, p = 0.03) and glucose response to a glucose load (21%, p = 0.02), and improved glucose response to an insulin load (20%, p = 0.009). HFol alone in either gestational or pup diet modified gene expression of feeding-related neuropeptides. Hypomethylation of the pro-opiomelanocortin (POMC) promoter occurred with the HFol pup diet. POMC-specific methylation was positively associated with glucose response to a glucose load (r = 0.7, p = 0.03). In conclusion, the obesogenic phenotype of offspring from dams fed the HFol gestational diet can be corrected by feeding them a HFol diet. Our work is novel in showing post-weaning epigenetic plasticity of the hypothalamus and that in utero programming by vitamin gestational diets can be modified by vitamin content of the pup diet.
Collapse
Affiliation(s)
- Clara E. Cho
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto, ON Canada
| | - Diana Sánchez-Hernández
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto, ON Canada
| | - Sandra A. Reza-López
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto, ON Canada
| | - Pedro S.P. Huot
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto, ON Canada
| | - Young-In Kim
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto, ON Canada
- Department of Medicine; Faculty of Medicine; University of Toronto; Toronto, ON Canada
- Keenan Research Center of the Li Ka Shing Knowledge Institute at St. Michael’s Hospital; Toronto, ON Canada
- Division of Gastroenterology; St. Michael’s Hospital; Toronto, ON Canada
| | - G. Harvey Anderson
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto, ON Canada
- Department of Physiology; Faculty of Medicine; University of Toronto; Toronto, ON Canada
| |
Collapse
|
31
|
Davis J, Khan G, Martin MB, Hilakivi-Clarke L. Effects of maternal dietary exposure to cadmium during pregnancy on mammary cancer risk among female offspring. J Carcinog 2013; 12:11. [PMID: 23858299 PMCID: PMC3709380 DOI: 10.4103/1477-3163.114219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/16/2013] [Indexed: 11/18/2022] Open
Abstract
Background: Since heavy metal cadmium is an endocrine disrupting chemical, we investigated whether maternal exposure to cadmium during the pregnancy alters mammary tumorigenesis among female offspring. Methods: From gestation day 10 to day 19, pregnant rat dams were fed modified American Institute of Nutrition (AIN93G) diet containing 39% energy from fat (baseline diet), or the baseline diet containing moderate (75 μg/kg of feed) or high (150 μg/kg) cadmium levels. Some dams were injected with 10 μg 17β-estradiol (E2) daily between gestation days 10 and 19. Results: Rats exposed to a moderate cadmium dose in utero were heavier and exhibited accelerated puberty onset. Both moderate and high cadmium dose led to increased circulating testosterone levels and reduced the expression of androgen receptor in the mammary gland. The moderate cadmium dose mimicked the effects of in utero E2 exposure on mammary gland morphology and increased both the number of terminal end buds and pre-malignant hyperplastic alveolar nodules (HANs), but in contrast to the E2, it did not increase 7, 12-dimethylbenz (a) anthracene-induced mammary tumorigenesis. Conclusions: The effects of in utero cadmium exposure were dependent on the dose given to pregnant dams: Moderate, but not high, cadmium dose mimicked some of the effects seen in the in utero E2 exposed rats, such as increased HANs in the mammary gland.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA ; Tumor Biology Graduate Program, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
32
|
Takahashi A, Asakura M, Ito S, Min KD, Shindo K, Yan Y, Liao Y, Yamazaki S, Sanada S, Asano Y, Ishibashi-Ueda H, Takashima S, Minamino T, Asanuma H, Mochizuki N, Kitakaze M. Dipeptidyl-peptidase IV inhibition improves pathophysiology of heart failure and increases survival rate in pressure-overloaded mice. Am J Physiol Heart Circ Physiol 2013; 304:H1361-9. [DOI: 10.1152/ajpheart.00454.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Incretin hormones, including glucagon-like peptide-1 (GLP-1), a target for diabetes mellitus (DM) treatment, are associated with cardioprotection. As dipeptidyl-peptidase IV (DPP-IV) inhibition increases plasma GLP-1 levels in vivo, we investigated the cardioprotective effects of the DPP-IV inhibitor vildagliptin in a murine heart failure (HF) model. We induced transverse aortic constriction (TAC) in C57BL/6J mice, simulating pressure-overloaded cardiac hypertrophy and HF. TAC or sham-operated mice were treated with or without vildagliptin. An intraperitoneal glucose tolerance test revealed that blood glucose levels were higher in the TAC than in sham-operated mice, and these levels improved with vildagliptin administration in both groups. Vildagliptin increased plasma GLP-1 levels in the TAC mice and ameliorated TAC-induced left ventricular enlargement and dysfunction. Vildagliptin palliated both myocardial apoptosis and fibrosis in TAC mice, demonstrated by histological, gene and protein expression analyses, and improved survival rate on day 28 (TAC with vildagliptin, 67.5%; TAC without vildagliptin, 41.5%; P < 0.05). Vildagliptin improved cardiac dysfunction and overall survival in the TAC mice, both by improving impaired glucose tolerance and by increasing GLP-1 levels. DPP-IV inhibitors represent a candidate treatment for HF patients with or without DM.
Collapse
Affiliation(s)
- Ayako Takahashi
- Department of Cell Biology,
- Department of Molecular Cardiology and
| | | | | | | | - Kazuhiro Shindo
- Department of Cell Biology,
- Department of Molecular Cardiology and
| | - Yi Yan
- Department of Molecular Cardiology and
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | | | - Shoji Sanada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Asano
- Department of Molecular Cardiology and
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Seiji Takashima
- Department of Molecular Cardiology and
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Minamino
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Asanuma
- Department of Cardiology, Kyoto Prefectural University School of Medicine, Kyoto, Japan
| | | | | |
Collapse
|
33
|
Cho CE, Sánchez-Hernández D, Reza-López SA, Huot PSP, Kim YI, Anderson GH. Obesogenic phenotype of offspring of dams fed a high multivitamin diet is prevented by a post-weaning high multivitamin or high folate diet. Int J Obes (Lond) 2013; 37:1177-82. [PMID: 23295499 PMCID: PMC4954778 DOI: 10.1038/ijo.2012.210] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/31/2012] [Accepted: 11/18/2012] [Indexed: 11/17/2022]
Abstract
Background High multivitamin (10-fold AIN-93G, HV) diets fed during pregnancy to Wistar rats increase characteristics of metabolic syndrome in offspring when weaned to the recommended vitamin (RV) diet. Objective To determine if the effects of HV gestational diets on obesogenic phenotypes in the offspring arise as a consequence of altered hypothalamic control of feeding behavior and if their increased food intake could be prevented by feeding them HV or high folate (10-fold folate, HFol) diets. Methods Male offspring of dams fed HV diet during pregnancy weaned to RV, HV or HFol diets were compared to those born to RV dams and weaned to RV diet for 29 weeks. Food intake over 72 hours and body weight were measured bi-weekly and weekly, respectively. Glucose response to a glucose load was measured at 18 weeks post-weaning. Hypothalamic gene expression of feeding-related neuropeptides including neuropeptide Y, pro-opiomelanocortin (POMC), insulin receptor, leptin receptor, brain-derived neurotrophic factor (BDNF), receptors for dopamine (DopaR1/2/5) and serotonin (SeroR1A/2A/2C), as well as global DNA methylation and brain and plasma folate concentrations were measured at 29 weeks post-weaning. Results HV or HFol pup diets increased brain and plasma folate concentrations and prevented the increase in food intake (5%, P=0.03), body weight (8%, P=0.0006) and glucose response to a glucose load (36%, P=0.02) found in those fed the RV diet. Expression of anorexigenic POMC (P=0.004) and BDNF (P=0.02) was higher, and DopaR1 was lower (P=0.06) in pups fed the HV diet. The HFol pup diet partially brought BDNF to the control level (P=0.02) and lowered SeroR2A (P=0.008). Expression of other genes was unaffected. Global DNA methylation was similar among the diet groups. Conclusion The obesogenic phenotype in offspring from HV fed dams is prevented by feeding HV or HFol pup diets, possibly due to post-weaning modulation of food intake regulatory mechanisms.
Collapse
Affiliation(s)
- C E Cho
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
34
|
High Folic Acid Intake during Pregnancy Lowers Body Weight and Reduces Femoral Area and Strength in Female Rat Offspring. J Osteoporos 2013; 2013:154109. [PMID: 23781391 PMCID: PMC3678445 DOI: 10.1155/2013/154109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/29/2013] [Indexed: 01/28/2023] Open
Abstract
Rats fed gestational diets high in multivitamin or folate produce offspring of altered phenotypes. We hypothesized that female rat offspring born to dams fed a gestational diet high in folic acid (HFol) have compromised bone health and that feeding the offspring the same HFol diet attenuates these effects. Pregnant rats were fed diets with either recommended folic acid (RFol) or 10-fold higher folic acid (HFol) amounts. Female offspring were weaned to either the RFol or HFol diet for 17 weeks. HFol maternal diet resulted in lower offspring body weights (6%, P = 0.03) and, after adjusting for body weight and femoral length, smaller femoral area (2%, P = 0.03), compared to control diet. After adjustments, HFol pup diet resulted in lower mineral content (7%, P = 0.01) and density (4%, P = 0.002) of lumbar vertebra 4 without differences in strength. An interaction between folate content of the dam and pup diets revealed that a mismatch resulted in lower femoral peak load strength (P = 0.01) and stiffness (P = 0.002). However, the match in folate content failed to prevent lower weight gain. In conclusion, HFol diets fed to rat dams and their offspring affect area and strength of femurs and mineral quantity but not strength of lumbar vertebrae in the offspring.
Collapse
|
35
|
Taha AY, Gao F, Ramadan E, Cheon Y, Rapoport SI, Kim HW. Upregulated expression of brain enzymatic markers of arachidonic and docosahexaenoic acid metabolism in a rat model of the metabolic syndrome. BMC Neurosci 2012; 13:131. [PMID: 23110484 PMCID: PMC3531256 DOI: 10.1186/1471-2202-13-131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/05/2012] [Indexed: 12/22/2022] Open
Abstract
Background In animal models, the metabolic syndrome elicits a cerebral response characterized by altered phospholipid and unesterified fatty acid concentrations and increases in pro-apoptotic inflammatory mediators that may cause synaptic loss and cognitive impairment. We hypothesized that these changes are associated with phospholipase (PLA2) enzymes that regulate arachidonic (AA, 20:4n-6) and docosahexaenoic (DHA, 22:6n-6) acid metabolism, major polyunsaturated fatty acids in brain. Male Wistar rats were fed a control or high-sucrose diet for 8 weeks. Brains were assayed for markers of AA metabolism (calcium-dependent cytosolic cPLA2 IVA and cyclooxygenases), DHA metabolism (calcium-independent iPLA2 VIA and lipoxygenases), brain-derived neurotrophic factor (BDNF), and synaptic integrity (drebrin and synaptophysin). Lipid concentrations were measured in brains subjected to high-energy microwave fixation. Results The high-sucrose compared with control diet induced insulin resistance, and increased phosphorylated-cPLA2 protein, cPLA2 and iPLA2 activity and 12-lipoxygenase mRNA, but decreased BDNF mRNA and protein, and drebrin mRNA. The concentration of several n-6 fatty acids in ethanolamine glycerophospholipids and lysophosphatidylcholine was increased, as was unesterified AA concentration. Eicosanoid concentrations (prostaglandin E2, thromboxane B2 and leukotriene B4) did not change. Conclusion These findings show upregulated brain AA and DHA metabolism and reduced BDNF and drebrin, but no changes in eicosanoids, in an animal model of the metabolic syndrome. These changes might contribute to altered synaptic plasticity and cognitive impairment in rats and humans with the metabolic syndrome.
Collapse
Affiliation(s)
- Ameer Y Taha
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
36
|
High multivitamin intakes during pregnancy and postweaning obesogenic diets interact to affect the relationship between expression of PPAR genes and glucose regulation in the offspring. J Nutr Biochem 2012; 24:877-81. [PMID: 22917842 DOI: 10.1016/j.jnutbio.2012.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 05/10/2012] [Accepted: 06/01/2012] [Indexed: 11/24/2022]
Abstract
High multivitamin intake (HV) during pregnancy increases body fat and weight and alters glucose and fatty acid metabolism in Wistar rat offspring. This study investigated the expression of peroxisome-proliferator activated receptors (PPARs) genes involved in regulation of glucose and fatty acid metabolism in their tissues. Dams received the AIN-93G diet with either the regular (RV) or 10-fold multivitamins (HV) during pregnancy. Male offspring were weaned to either the RV diet (RV-RV and HV-RV) or an obesogenic diet (RV-Ob and HV-Ob). Gene expression of PPARs in tissues was analyzed by real-time reverse transcriptase polymerase chain reaction. Gestational diet (GD) did not affect PPARs gene expression in offspring at either birth or weaning. In liver, at 14 weeks postweaning, PPAR-γ was 30% lower in the HV-RV and 30% higher in HV-Ob than in the RV-RV group [GD P=.76, postweaning diet (PD) P=.19, interaction P=.02, by two-way analysis of variance]. In muscle, PPAR-α expression was affected by GD and PD (GD P=.05, PD P<.01, interaction P=.07). In adipose tissue, PPAR-α expression was higher in all groups compared to RV-RV (GD P=.25, PD P=.85, interaction P=.03). PPAR-γ mRNA levels correlated with abdominal fat (r=0.45, P<.05) and insulin resistance index (r=0.39, P<.05). In liver, PPAR-γ expression correlated with insulin resistance index in offspring from RV (r=-0.62, P<.05), but not in those from HV dams (r=0.13, P>.05). In conclusion, the HV diet during pregnancy interacts with postweaning diets in determining the expression of PPARs genes in a tissue- and age-dependent manner and uncouples the relationship between these genes and glucose regulation and fat mass in the rat offspring.
Collapse
|
37
|
Vickers MH, Sloboda DM. Strategies for reversing the effects of metabolic disorders induced as a consequence of developmental programming. Front Physiol 2012; 3:242. [PMID: 22783205 PMCID: PMC3387724 DOI: 10.3389/fphys.2012.00242] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/13/2012] [Indexed: 01/21/2023] Open
Abstract
Obesity and the metabolic syndrome have reached epidemic proportions worldwide with far-reaching health care and economic implications. The rapid increase in the prevalence of these disorders suggests that environmental and behavioral influences, rather than genetic causes, are fueling the epidemic. The developmental origins of health and disease hypothesis has highlighted the link between the periconceptual, fetal, and early infant phases of life and the subsequent development of metabolic disorders in later life. In particular, the impact of poor maternal nutrition on susceptibility to later life metabolic disease in offspring is now well documented. Several studies have now shown, at least in experimental animal models, that some components of the metabolic syndrome, induced as a consequence of developmental programming, are potentially reversible by nutritional or targeted therapeutic interventions during windows of developmental plasticity. This review will focus on critical windows of development and possible therapeutic avenues that may reduce metabolic and obesogenic risk following an adverse early life environment.
Collapse
Affiliation(s)
- M H Vickers
- National Research Centre for Growth and Development, Liggins Institute, University of Auckland Auckland, New Zealand
| | | |
Collapse
|
38
|
Chen YP, Xiao XM, Li J, Reichetzeder C, Wang ZN, Hocher B. Paternal body mass index (BMI) is associated with offspring intrauterine growth in a gender dependent manner. PLoS One 2012; 7:e36329. [PMID: 22570703 PMCID: PMC3343080 DOI: 10.1371/journal.pone.0036329] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 04/03/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Environmental alternations leading to fetal programming of cardiovascular diseases in later life have been attributed to maternal factors. However, animal studies showed that paternal obesity may program cardio-metabolic diseases in the offspring. In the current study we tested the hypothesis that paternal BMI may be associated with fetal growth. METHODS AND RESULTS We analyzed the relationship between paternal body mass index (BMI) and birth weight, ultrasound parameters describing the newborn's body shape as well as parameters describing the newborns endocrine system such as cortisol, aldosterone, renin activity and fetal glycated serum protein in a birth cohort of 899 father/mother/child triplets. Since fetal programming is an offspring sex specific process, male and female offspring were analyzed separately. Multivariable regression analyses considering maternal BMI, paternal and maternal age, hypertension during pregnancy, maternal total glycated serum protein, parity and either gestational age (for birth weight) or time of ultrasound investigation (for ultrasound parameters) as confounding showed that paternal BMI is associated with growth of the male but not female offspring. Paternal BMI correlated with birth parameters of male offspring only: birth weight; biparietal diameter, head circumference; abdominal diameter, abdominal circumference; and pectoral diameter. Cortisol was likewise significantly correlated with paternal BMI in male newborns only. CONCLUSIONS Paternal BMI affects growth of the male but not female offspring. Paternal BMI may thus represent a risk factor for cardiovascular diseases of male offspring in later life. It remains to be demonstrated whether this is linked to an offspring sex specific paternal programming of cortisol secretion.
Collapse
Affiliation(s)
- You-Peng Chen
- Department of Infectious Diseases, the first Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao-Min Xiao
- Department of Obstetrics and Gynecology, the first Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jian Li
- Department of Obstetrics and Gynecology, the first Affiliated Hospital of Jinan University, Guangzhou, China
| | - Christoph Reichetzeder
- Institute of Nutritional Science, University of Potsdam, Nuthetal-Potsdam, Germany
- Center for Cardiovascular Research/Institute of Pharmacology, Berlin, Germany
| | - Zi-Neng Wang
- Department of Obstetrics and Gynecology, the first Affiliated Hospital of Jinan University, Guangzhou, China
| | - Berthold Hocher
- Department of Infectious Diseases, the first Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Nutritional Science, University of Potsdam, Nuthetal-Potsdam, Germany
- Center for Cardiovascular Research/Institute of Pharmacology, Berlin, Germany
- * E-mail:
| |
Collapse
|
39
|
Soy protein-based compared with casein-based diets fed during pregnancy and lactation increase food intake and characteristics of metabolic syndrome less in female than male rat offspring. Nutr Res 2012; 31:644-51. [PMID: 21925350 DOI: 10.1016/j.nutres.2011.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/30/2011] [Accepted: 08/02/2011] [Indexed: 11/22/2022]
Abstract
We hypothesized that soy protein (S)-based diets fed during pregnancy and lactation increase food intake and the presence of characteristics of the metabolic syndrome to a lesser extent in female than in male rats. Soy protein- and casein (C)-based American Institute of Nutrition-93G diets were fed to 2 groups (n = 12 per group) of pregnant Wistar rats from day 3 of gestation and throughout lactation. Their effects on characteristics of metabolic syndrome and food intake regulation in female pups maintained for 15 weeks on the C diet were compared. Body weight (BW) and food intake (FI) were measured weekly. Fat pad mass was measured at birth, at weaning, and at week 15. Glucose and insulin tolerance tests were conducted at weeks 8 and 12; and systolic and diastolic blood pressures were measured at weeks 4, 8, and 12. Plasma was collected at weaning and at the end of the studies for glucose, insulin, glucagon-like peptide 1, peptide YY, and ghrelin. Food intake in response to protein preloads was measured at week 7. Feeding the S diet throughout gestation and lactation resulted in higher systolic blood pressure (P < .005), FI (P < .05), and glucagon-like peptide 1 and lower peptide YY at weaning and higher BW during weeks 11 to 15 and fat pad mass at week 15 (all Ps < .05). However, no sign of insulin resistance was found; nor was short-term FI in response to protein preloads affected. In conclusion, S- compared with C-based American Institute of Nutrition-93 G diets consumed throughout gestation and lactation increased BW and FI later and resulted in fewer characteristics of metabolic syndrome in female than in male offspring.
Collapse
|
40
|
Lappas M, Hiden U, Desoye G, Froehlich J, Hauguel-de Mouzon S, Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal 2011; 15:3061-100. [PMID: 21675877 DOI: 10.1089/ars.2010.3765] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Normal human pregnancy is considered a state of enhanced oxidative stress. In pregnancy, it plays important roles in embryo development, implantation, placental development and function, fetal development, and labor. However, pathologic pregnancies, including gestational diabetes mellitus (GDM), are associated with a heightened level of oxidative stress, owing to both overproduction of free radicals and/or a defect in the antioxidant defenses. This has important implications on the mother, placental function, and fetal well-being. Animal models of diabetes have confirmed the important role of oxidative stress in the etiology of congenital malformations; the relative immaturity of the antioxidant system facilitates the exposure of embryos and fetuses to the damaging effects of oxidative stress. Of note, there are only a few clinical studies evaluating the potential beneficial effects of antioxidants in GDM. Thus, whether or not increased antioxidant intake can reduce the complications of GDM in both mother and fetus needs to be explored. This review provides an overview and updated data on our current understanding of the complications associated with oxidative changes in GDM.
Collapse
Affiliation(s)
- Martha Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
41
|
The effect of high multivitamin diet during pregnancy on food intake and glucose metabolism in Wistar rat offspring fed low-vitamin diets post weaning. J Dev Orig Health Dis 2011; 2:302-10. [DOI: 10.1017/s2040174411000523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rat offspring born to dams fed a high multivitamin diet (HV) are shown to have increased risks of obesity and metabolic syndrome. We hypothesized that a low-vitamin postweaning diet would enhance these characteristics in offspring born to HV dams. During pregnancy, Wistar rats were fed the AIN-93G diet with or without a 10-fold increase in vitamin content. In Experiment 1, at weaning, males were fed the recommended diet (RV) or a diet with 1/3 the vitamin content (1/3 RV) for 12 weeks. In Experiment 2, males and females were fed the RV diet or 1/6 RV diet for 35 weeks. Body weight was measured on a weekly basis, food intake on a daily basis, and for 1 h after an overnight fast following glucose gavage at 6, 12 and 24 weeks. Blood glucose and insulin responses to an oral glucose load were measured at 30 weeks. Males from HV dams, compared with those from RV dams, gained more weight in Experiment 1 (+7%,P< 0.05) and Experiment 2 (+11%,P< 0.0001), along with higher glucose response (+33%,P< 0.05). The 1/6 RV pup diet led to lower weight gain in males (−16%,P< 0.0001) and females (−13%,P< 0.0005), and lower food intake in males (−9%,P< 0.01) independent of the gestational diet. Females on the 1/6 RV diet and from HV dams had higher 1 h food intake (+36%,P< 0.05) and lower insulin response (−25%,P< 0.05) compared with those from RV dams. Exposure of the offspring to low-vitamin diets did not amplify the expression of the metabolic syndrome observed in those born to dams fed an HV diet.
Collapse
|
42
|
Jahan-mihan A, Smith CE, Anderson GH. Soy protein- and casein-based weaning diets differ in effects on food intake and blood glucose regulation in male Wistar rats. Nutr Res 2011; 31:237-45. [PMID: 21481718 DOI: 10.1016/j.nutres.2011.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
Abstract
The effect of weaning male Wistar rats to AIN-93G diets based on casein (C) and soy protein (S) on blood glucose and food intake (FI) regulation was determined. In experiment 1, male Wistar rats (n = 21 per group) received either C or S AIN-93G diets for 7 weeks. In experiment 2, 3 groups of rats were formed (n = 21 per group). The C followed by the S diet group (CS) was weaned to the C diet for 6 weeks followed by the S diet for another 7 weeks. Diet sequence was the reverse for the S followed by the C diet group (SC). The control group (CC) received the C diet throughout 13 weeks. Body weight and cumulative FI were not affected by diet in either experiment. In experiment 1, in fasted rats, S preloads reduced FI for 1 hour more in the C diet group (P < .05), but response to C preloads was not affected by diet. A cholecystokinin A receptor blocker prevented FI reduction by S in rats fed C but not S diet (P < .05). At week 7, rats fed the S diet had higher plasma insulin (67%) (P < .005), glucose (30%) (P < .05) and homeostatic model assessment of insulin resistance index (75%) (P < .005). In experiment 2, FI at weeks 6 and 12 was, again, suppressed most strongly by S preloads in rats fed the C diet (P < .05). At week 13, S and C preloads increased insulin and the insulin/glucose ratio (P < .05), but no differences were found due to preload or diet composition. In conclusion, differences in the effects of first diet exposure to the AIN-93G diets on blood glucose did not persist through either diet change or time. In contrast, protein composition of the most recent diet, but not time, affected FI regulation in response to protein preloads.
Collapse
Affiliation(s)
- Alireza Jahan-mihan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 3E2
| | | | | |
Collapse
|
43
|
Soya protein- and casein-based nutritionally complete diets fed during gestation and lactation differ in effects on characteristics of the metabolic syndrome in male offspring of Wistar rats. Br J Nutr 2011; 107:284-94. [PMID: 21733315 DOI: 10.1017/s0007114511002686] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The AIN-93G diets based on soya protein or casein were fed to pregnant Wistar rats from day 3 of gestation and compared for their effects on characteristics of the metabolic syndrome in male offspring. Pregnant rats were randomised to either a casein (C) or soya protein (S) diet (n 12) during gestation only (Expt 1) or during gestation and lactation (Expt 2). Male offspring were weaned to either a C or S diet for 9 weeks (Expt 1) or 15 weeks (Expt 2). In Expt 1, pups born to S-fed dams had higher fasting blood glucose (BG), systolic blood pressure (SBP) and diastolic blood pressure (DBP) at week 4, higher blood glucose (BG) response to a glucose administration (P < 0·001) and higher body weight (BW) at week 8 (P < 0·05). In Expt 2, consumption of the S diet throughout gestation and lactation resulted in higher BW (P < 0·05), DBP (P < 0·005) and SBP (P < 0·005) in the offspring. They also had higher homeostasis model assessment of insulin resistance (HOMA-IR; P < 0·05) and plasma homocysteine (P < 0·05) at weaning, higher fasting BG and glucose response to glucose administration (P < 0·005) at week 12 and higher HOMA-IR (P < 0·01) at week 15. Although composition of the weaning diets interacted with the diet of the dams, the latter was the dominant factor in determining metabolic outcomes in the offspring. In conclusion, the S diet, compared with the C diet, when consumed during gestation or throughout gestation and lactation increased the presence of characteristics of the metabolic syndrome in the offspring.
Collapse
|
44
|
Multivitamin supplementation during pregnancy alters body weight and macronutrient selection in Wistar rat offspring. J Dev Orig Health Dis 2010; 1:386-95. [DOI: 10.1017/s2040174410000565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Reza-López SA, Anderson GH, Szeto IMY, Taha AY, Ma DWL. High vitamin intake by Wistar rats during pregnancy alters tissue fatty acid concentration in the offspring fed an obesogenic diet. Metabolism 2009; 58:722-30. [PMID: 19375598 DOI: 10.1016/j.metabol.2009.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 01/26/2009] [Indexed: 01/11/2023]
Abstract
Diet during pregnancy affects the long-term health of the offspring. Vitamins are known to modulate lipid metabolism, which may be reflected in tissue fatty acid (FA) concentrations. The objective of this study was to investigate the effect of high vitamin intake during pregnancy on tissue FA concentration of the offspring. Wistar rats were fed an AIN-93G diet with either the recommended vitamin or 10-fold higher amounts (HV) during pregnancy. Afterward, offspring were weaned onto an obesogenic diet. Liver, quadriceps, adipose, and brain were collected over 48 weeks. Fatty acid concentration of tissue total lipids was analyzed by gas chromatography. At birth, the liver from HV offspring was higher in monounsaturated, stearic, and arachidonic acids. At weaning, the liver from HV offspring was higher in stearic and oleic acids; and in adipose tissue, n-6 and n-3 FAs were lower only in the male HV offspring (P < .05). At 12 weeks, HV offspring had higher concentrations of total fat, saturates, monounsaturates, and n-6 FA in muscle (P < .05), but not in other tissues. At 48 weeks, gestational diet did not affect tissue total lipid FA concentrations; but differences remained in specific tissue phospholipids species. Liver phospholipids from HV offspring were lower in monounsaturates and n-6 FA. Brain phosphatidylethanolamine was higher in oleic, n-6 FA, and docosahexaenoic acid in the HV offspring. Phosphatidylinositol was lower in saturates, monounsaturates, arachidonic, and docosahexaenoic acids only in HV female offspring. These observations demonstrate that high vitamin intake during pregnancy has short- and long-term effects on tissue FA concentration in the offspring.
Collapse
Affiliation(s)
- Sandra A Reza-López
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3E2
| | | | | | | | | |
Collapse
|
46
|
Multivitamin supplementation of Wistar rats during pregnancy accelerates the development of obesity in offspring fed an obesogenic diet. Int J Obes (Lond) 2009; 33:364-72. [PMID: 19153583 DOI: 10.1038/ijo.2008.281] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The effect of gestational multivitamin supplementation on the development of obesity in rat offspring fed an obesogenic diet was investigated. DESIGN Pregnant Wistar rats (n=10 per group) were fed the AIN-93G diet with the recommended vitamin (RV) content or a 10-fold increase (high vitamin, HV). At weaning, 10 males and 10 females, from separate dams, and from each gestational diet group were weaned to the liquid obesogenic diet for 48 weeks post-weaning. MEASUREMENTS Body weight (BW) was measured weekly, and food intake over 24 h was measured once every 3 weeks for 24 weeks. Every 4 weeks, after an overnight fast, food intake over 1 h was measured 30 min after a gavage of water or glucose. An oral glucose tolerance test (OGTT) was carried out every 3-5 weeks. Post-weaning fasting glucose, insulin, ghrelin, glucagon-like peptide 1 (GLP-1), and systolic blood pressure (SBP) were measured. RESULTS No difference in BW at birth or litter size was observed. Males and females from HV dams gained 17% (P<0.05) and 37% (P<0.001) more BW at 48 weeks post-weaning, and consumed 18% (P=0.07) and 20% (P<0.05) more food. One-hour food intake after water and glucose preloads was 27% (P<0.01) and 34% (P<0.05) higher in males from HV dams. Fasting ghrelin and GLP-1 were 27 and 32% higher in males from HV dams at weaning (P<0.05). Blood glucose response to the OGTT was greater in both males and females from HV dams at 13 weeks post-weaning (P<0.05), and the insulin resistance index was 76 and 43% higher in females from HV dams at 14 and 28 weeks post-weaning (P<0.05). SBP was 23 and 16% higher at 44 weeks post-weaning in male and females (P<0.01). CONCLUSION High multivitamin intake during pregnancy increases the phenotypic expression of obesity and components of the metabolic syndrome in both female and male rats fed an obesogenic diet.
Collapse
|