1
|
Jonny J, Sitepu EC, Lister INE, Chiuman L, Putranto TA. The Potential of Anti-Inflammatory DC Immunotherapy in Improving Proteinuria in Type 2 Diabetes Mellitus. Vaccines (Basel) 2024; 12:972. [PMID: 39340004 PMCID: PMC11435532 DOI: 10.3390/vaccines12090972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
A typical consequence of type 2 diabetes mellitus, diabetic kidney disease (DKD) is a significant risk factor for end-stage renal disease. The pathophysiology of diabetic kidney disease (DKD) is mainly associated with the immune system, which involves adhesion molecules and growth factors disruption, excessive expression of inflammatory mediators, decreased levels of anti-inflammatory mediators, and immune cell infiltration in the kidney. Dendritic cells are professional antigen-presenting cells acting as a bridge connecting innate and adaptive immune responses. The anti-inflammatory subset of DCs is also capable of modulating inflammation. Autologous anti-inflammatory dendritic cells can be made by in vitro differentiation of peripheral blood monocytes and utilized as a cell-based therapy. Treatment with anti-inflammatory cytokines, immunosuppressants, and substances derived from pathogens can induce tolerogenic or anti-inflammatory features in ex vivo-generated DCs. It has been established that targeting inflammation can alleviate the progression of DKD. Recent studies have focused on the potential of dendritic cell-based therapies to modulate immune responses favorably. By inducing a tolerogenic phenotype in dendritic cells, it is possible to decrease the inflammatory response and subsequent kidney damage. This article highlights the possibility of using anti-inflammatory DCs as a cell-based therapy for DKD through its role in controlling inflammation.
Collapse
Affiliation(s)
- Jonny Jonny
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
- Faculty of Military Medicine, Indonesia Defense University, Jakarta 16810, Indonesia
- Faculty of Medicine, University of Pembangunan Nasional “Veteran” Jakarta, Jakarta 12450, Indonesia
| | - Enda Cindylosa Sitepu
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
| | - I Nyoman Ehrich Lister
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
| | - Linda Chiuman
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
| | - Terawan Agus Putranto
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
| |
Collapse
|
2
|
Hu J, Dong X, Yao X, Yi T. Circulating inflammatory factors and risk causality associated with type 2 diabetic nephropathy: A Mendelian randomization and bioinformatics study. Medicine (Baltimore) 2024; 103:e38864. [PMID: 38996161 PMCID: PMC11245217 DOI: 10.1097/md.0000000000038864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
The main causative factors of diabetic nephropathy (DN), a common complication of diabetes mellitus, are metabolic abnormalities and hemodynamic changes. However, studies have shown that the immune-inflammatory response also plays an important role in DN pathogenesis. Therefore, in this study, we analyzed the causal relationship and immune infiltration between inflammatory factors and DN using Mendelian randomization (MR) and bioinformatics techniques. We analyzed the causal relationship between 91 inflammatory factors and DN using two-sample MR dominated by the results of inverse variance-weighted analysis. Based on the MR analysis, the immune mechanism of inflammatory factors in DN was further explored using immune cell infiltration analysis. MR analysis indicated a positive causal relationship between DN and IL1A, caspase 8 (CASP8), macrophage colony-stimulating factor 1, IL10, STAM-binding protein, and tumor necrosis factor ligand superfamily member 12 (TNFSF12) and a negative causal relationship between DN and cystatin D, fibroblast growth factor 19, neurturin, and TNFSF14. The pathogenic mechanism of CASP8 may involve the recruitment of CD4+ T cells and macrophages for DN infiltration. In this study, we found a causal relationship between DN and IL1A, CASP8, macrophage colony-stimulating factor 1, IL10, STAM-binding protein, TNFSF12, cystatin D, fibroblast growth factor 19, neurturin, and TNFSF14. Bioinformatic immune infiltration analysis further revealed that CASP8 regulates DN by influencing the infiltration of immune cells, such as T cells and macrophages.
Collapse
Affiliation(s)
- Jialin Hu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xue Dong
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xingyi Yao
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Tongning Yi
- Department of Endocrinology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
3
|
Ekperikpe US, Mandal S, Bhopatkar AA, Shields CA, Coley CA, Chambers CL, Johnson TD, Cornelius DC, Williams JM. Abatacept Decreases Renal T-cell Infiltration and Renal Inflammation and Ameliorates Progressive Renal Injury in Obese Dahl Salt-sensitive Rats Before Puberty. J Cardiovasc Pharmacol 2024; 83:635-645. [PMID: 38547515 DOI: 10.1097/fjc.0000000000001565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/01/2024] [Indexed: 11/01/2024]
Abstract
ABSTRACT Prepubertal obesity is growing at an alarming rate and is now considered a risk factor for renal injury. Recently, we reported that the early development of renal injury in obese Dahl salt-sensitive (SS) leptin receptor mutant (SS LepR mutant) rats was associated with increased T-cell infiltration and activation before puberty. Therefore, the current study investigated the effect of inhibiting T-cell activation with abatacept on the progression of renal injury in young obese SS LepR mutant rats before puberty. Four-week-old SS and SS LepR mutant rats were treated with IgG or abatacept (1 mg/kg; ip, every other day) for 4 weeks. Abatacept reduced the renal infiltration of T cells by almost 50% in SS LepR mutant rats. Treatment with abatacept decreased the renal expression of macrophage inflammatory protein-3 alpha while increasing IL-4 in SS LepR mutant rats without affecting SS rats. While not having an impact on blood glucose levels, abatacept reduced hyperinsulinemia and plasma triglycerides in SS LepR mutant rats without affecting SS rats. We did not observe any differences in the mean arterial pressure among the groups. Proteinuria was markedly higher in SS LepR mutant rats than in SS rats throughout the study, and treatment with abatacept decreased proteinuria by about 40% in SS LepR mutant rats without affecting SS rats. We observed significant increases in glomerular and tubular injury and renal fibrosis in SS LepR mutant rats versus SS rats, and chronic treatment with abatacept significantly reduced these renal abnormalities in SS LepR mutant rats. These data suggest that renal T-cell activation contributes to the early progression of renal injury associated with prepubertal obesity.
Collapse
Affiliation(s)
- Ubong S Ekperikpe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Chen XJ, Tang R, Zha J, Zeng L, Zhou L, Liu Z, Yang D, Zeng M, Zhu X, Chen A, Liu H, Chen H, Chen G. A potential defensive role of TIM-3 on T lymphocytes in the inflammatory involvement of diabetic kidney disease. Front Immunol 2024; 15:1365226. [PMID: 38812511 PMCID: PMC11133625 DOI: 10.3389/fimmu.2024.1365226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Objective The aberrant mobilization and activation of various T lymphocyte subpopulations play a pivotal role in the pathogenesis of diabetic kidney disease (DKD), yet the regulatory mechanisms underlying these processes remain poorly understood. Our study is premised on the hypothesis that the dysregulation of immune checkpoint molecules on T lymphocytes disrupts kidney homeostasis, instigates pathological inflammation, and promotes DKD progression. Methods A total of 360 adult patients with DKD were recruited for this study. The expression of immune checkpoint molecules on T lymphocytes was assessed by flow cytometry for peripheral blood and immunofluorescence staining for kidney tissue. Single-cell sequencing (scRNA-seq) data from the kidneys of DKD mouse model were analyzed. Results Patients with DKD exhibited a reduction in the proportion of CD3+TIM-3+ T cells in circulation concurrent with the emergence of significant albuminuria and hematuria (p=0.008 and 0.02, respectively). Conversely, the incidence of infection during DKD progression correlated with an elevation of peripheral CD3+TIM-3+ T cells (p=0.01). Both univariate and multivariate logistic regression analysis revealed a significant inverse relationship between the proportion of peripheral CD3+TIM-3+ T cells and severe interstitial mononuclear infiltration (OR: 0.193, 95%CI: 0.040,0.926, p=0.04). Immunofluorescence assays demonstrated an increase of CD3+, TIM-3+ and CD3+TIM-3+ interstitial mononuclear cells in the kidneys of DKD patients as compared to patients diagnosed with minimal change disease (p=0.03, 0.02 and 0.002, respectively). ScRNA-seq analysis revealed decreased gene expression of TIM3 on T lymphocytes in DKD compared to control. And one of TIM-3's main ligands, Galectin-9 on immune cells showed a decreasing trend in gene expression as kidney damage worsened. Conclusion Our study underscores the potential protective role of TIM-3 on T lymphocytes in attenuating the progression of DKD and suggests that monitoring circulating CD3+TIM3+ T cells may serve as a viable strategy for identifying DKD patients at heightened risk of disease progression.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Runyan Tang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Jie Zha
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Li Zeng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Linshan Zhou
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Danyi Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Mengru Zeng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Anqun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Huihui Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| |
Collapse
|
5
|
Deng W, Zhao Z, Zou T, Kuang T, Wang J. Research Advances in Fusion Protein-Based Drugs for Diabetes Treatment. Diabetes Metab Syndr Obes 2024; 17:343-362. [PMID: 38288338 PMCID: PMC10823413 DOI: 10.2147/dmso.s421527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by elevated blood glucose levels, resulting in multi-organ dysfunction and various complications. Fusion proteins can form multifunctional complexes by combining the target proteins with partner proteins. It has significant advantages in improving the performance of the target proteins, extending their biological half-life, and enhancing patient drug compliance. Fusion protein-based drugs have emerged as promising new drugs in diabetes therapeutics. However, there has not been a systematic review of fusion protein-based drugs for diabetes therapeutics. Hence, we conducted a comprehensive review of published literature on diabetic fusion protein-based drugs for diabetes, with a primary focus on immunoglobulin G (IgG) fragment crystallizable (Fc) region, albumin, and transferrin (TF). This review aims to provide a reference for the subsequent development and clinical application of fusion protein-based drugs in diabetes therapeutics.
Collapse
Affiliation(s)
- Wenying Deng
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Zeyi Zhao
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Tao Zou
- Department of Cardiovascular Medicine, First Affiliated Hospital of University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Tongdong Kuang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi Province, 541199, People’s Republic of China
| | - Jing Wang
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| |
Collapse
|
6
|
Jiang H, Shen Z, Zhuang J, Lu C, Qu Y, Xu C, Yang S, Tian X. Understanding the podocyte immune responses in proteinuric kidney diseases: from pathogenesis to therapy. Front Immunol 2024; 14:1335936. [PMID: 38288116 PMCID: PMC10822972 DOI: 10.3389/fimmu.2023.1335936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
The glomerular filtration barrier, comprising the inner layer of capillary fenestrated endothelial cells, outermost podocytes, and the glomerular basement membrane between them, plays a pivotal role in kidney function. Podocytes, terminally differentiated epithelial cells, are challenging to regenerate once injured. They are essential for maintaining the integrity of the glomerular filtration barrier. Damage to podocytes, resulting from intrinsic or extrinsic factors, leads to proteinuria in the early stages and eventually progresses to chronic kidney disease (CKD). Immune-mediated podocyte injury is a primary pathogenic mechanism in proteinuric glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, and lupus nephritis with podocyte involvement. An extensive body of evidence indicates that podocytes not only contribute significantly to the maintenance of the glomerular filtration barrier and serve as targets of immune responses but also exhibit immune cell-like characteristics, participating in both innate and adaptive immunity. They play a pivotal role in mediating glomerular injury and represent potential therapeutic targets for CKD. This review aims to systematically elucidate the mechanisms of podocyte immune injury in various podocyte lesions and provide an overview of recent advances in podocyte immunotherapy. It offers valuable insights for a deeper understanding of the role of podocytes in proteinuric glomerular diseases, and the identification of new therapeutic targets, and has significant implications for the future clinical diagnosis and treatment of podocyte-related disorders.
Collapse
Affiliation(s)
- Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhirang Shen
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jing Zhuang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen Lu
- Division of Nephrology, Department of Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Qu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
7
|
Jianbin X, Peng D, Jing Z, Xiaofei A, Yudie F, Jing Z, Yanping Y, Xiaorong Y, Kaida M, Jinan Z. (5R)-5-hydroxytriptolide ameliorates diabetic kidney damage by inhibiting macrophage infiltration and its cross-talk with renal resident cells. Int Immunopharmacol 2024; 126:111253. [PMID: 38007850 DOI: 10.1016/j.intimp.2023.111253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
OBJECTIVE Diabetic nephropathy (DN) is the main cause of end-stage renal disease, and there are no targeted treatment options at present. The efficacy of the new immunosuppressive drug (5R)-5-hydroxytriptolide (LLDT8) in improving kidney inflammation has been demonstrated in multiple studies. The present study was intended to investigate the preventive and therapeutic effects of LLDT8 on DN and to reveal its potential pharmacological mechanisms. METHODS The effects of LLDT8 on liver and kidney functions, and urine microprotein of Streptozotocin (STZ) induced DN mice were detected. The protective effect of LLDT8 on the kidney tissue was observed by pathological staining and transmission electron microscopy. Cell culture experiments were performed to detect the effects of LLDT8 on the expression of chemokines and epithelial-mesenchymal transition (EMT) in high glucose-induced TCMK1 cells using real-time polymerase chain reaction (RT-PCR) and western blot (WB) techniques and to detect the influence of LLDT8 on the secretion of pro-inflammatory and pro-fibrotic factors in high glucose-induced RAW264.7 cells. RESULTS In animal experiments, treatment with high-dose LLDT8 (0.25 mg/kg/2d) reduced 24 h urinary albumin excretion, improved structural kidney damage, and delayed fibrosis progression in DN mice. Immunofluorescence results showed that LLDT8 intervention reduced macrophage infiltration in kidney tissues of DN mice. PCR and WB results of kidney tissues showed reduced expressions of chemokines CCL2 and M-CSF1 in the LLDT8 intervention group compared to the DN group. In cellular assays, LLDT8 treatment reduced chemokine secretion in high glucose-induced TCMK1 cells, but had no effect on EMT of TCMK1 cells. LLDT8 treatment reduced the secretion of pro-inflammatory and pro-fibrotic factors in high glucose-induced RAW264.7 cells. CONCLUSIONS The present study suggests that LLDT8 could effectively inhibit the secretion of pro-inflammatory and pro-fibrotic factors by macrophages, which could alleviate high glucose-induced renal tissue injury and slow down the process of tissue fibrosis and DN.
Collapse
Affiliation(s)
- Xu Jianbin
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Du Peng
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Zhao Jing
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - An Xiaofei
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, China
| | - Fang Yudie
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Zhang Jing
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yang Yanping
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yang Xiaorong
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Mu Kaida
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| | - Zhang Jinan
- Department of Endocrinology & Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
8
|
Ma S, Qiu Y, Zhang C. Cytoskeleton Rearrangement in Podocytopathies: An Update. Int J Mol Sci 2024; 25:647. [PMID: 38203817 PMCID: PMC10779434 DOI: 10.3390/ijms25010647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Podocyte injury can disrupt the glomerular filtration barrier (GFB), leading to podocytopathies that emphasize podocytes as the glomerulus's key organizer. The coordinated cytoskeleton is essential for supporting the elegant structure and complete functions of podocytes. Therefore, cytoskeleton rearrangement is closely related to the pathogenesis of podocytopathies. In podocytopathies, the rearrangement of the cytoskeleton refers to significant alterations in a string of slit diaphragm (SD) and focal adhesion proteins such as the signaling node nephrin, calcium influx via transient receptor potential channel 6 (TRPC6), and regulation of the Rho family, eventually leading to the disorganization of the original cytoskeletal architecture. Thus, it is imperative to focus on these proteins and signaling pathways to probe the cytoskeleton rearrangement in podocytopathies. In this review, we describe podocytopathies and the podocyte cytoskeleton, then discuss the molecular mechanisms involved in cytoskeleton rearrangement in podocytopathies and summarize the effects of currently existing drugs on regulating the podocyte cytoskeleton.
Collapse
Affiliation(s)
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.M.); (Y.Q.)
| |
Collapse
|
9
|
Peng YL, Zhang Y, Pang L, Dong YF, Li MY, Liao H, Li RS. Integrated Analysis of Single-Cell RNA-Seq and Bulk RNA-Seq Combined with Multiple Machine Learning Identified a Novel Immune Signature in Diabetic Nephropathy. Diabetes Metab Syndr Obes 2023; 16:1669-1684. [PMID: 37312900 PMCID: PMC10258044 DOI: 10.2147/dmso.s413569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Background Increasing evidence suggests that immune modulation contributes to the pathogenesis and progression of diabetic nephropathy (DN). However, the role of immune modulation in DN has not been elucidated. The purpose of this study was to search for potential immune-related therapeutic targets and molecular mechanisms of DN. Methods Gene expression datasets were obtained from the Gene Expression Omnibus (GEO) database. A total of 1793 immune-related genes were acquired from the Immunology Database and Analysis Portal (ImmPort). Weighted gene co-expression network analysis (WGCNA) was performed for GSE142025, and the red and turquoise co-expression modules were found to be key for DN progression. We utilized four machine learning algorithms, namely, random forest (RF), support vector machine (SVM), adaptive boosting (AdaBoost), and k-nearest neighbor (KNN), to evaluate the diagnostic value of hub genes. Immune infiltration patterns were analyzed using the CIBERSORT algorithm, and the correlation between immune cell type abundance and hub gene expression was also investigated. Results A total of 77 immune-related genes of advanced DN were selected for subsequent analyzes. Functional enrichment analysis showed that the regulation of cytokine-cytokine receptor interactions and immune cell function play a corresponding role in the progression of DN. The final 10 hub genes were identified through multiple datasets. In addition, the expression levels of the identified hub genes were corroborated through a rat model. The RF model exhibited the highest AUC. CIBERSORT analysis and single-cell sequencing analysis revealed changes in immune infiltration patterns between control subjects and DN patients. Several potential drugs to reverse the altered hub genes were identified through the Drug-Gene Interaction database (DGIdb). Conclusion This pioneering work provided a novel immunological perspective on the progression of DN, identifying key immune-related genes and potential drug targets, thus stimulating future mechanistic research and therapeutic target identification for DN.
Collapse
Affiliation(s)
- Yue-Ling Peng
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, People’s Republic of China
| | - Yan Zhang
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, People’s Republic of China
| | - Lin Pang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ya-Fang Dong
- Department of Pathology and Pathophysiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Mu-Ye Li
- Department of Ocular Fundus Diseases, Shanxi Eye Hospital, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hui Liao
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, People’s Republic of China
| | - Rong-Shan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, People’s Republic of China
| |
Collapse
|
10
|
Russell WE, Bundy BN, Anderson MS, Cooney LA, Gitelman SE, Goland RS, Gottlieb PA, Greenbaum CJ, Haller MJ, Krischer JP, Libman IM, Linsley PS, Long SA, Lord SM, Moore DJ, Moore WV, Moran AM, Muir AB, Raskin P, Skyler JS, Wentworth JM, Wherrett DK, Wilson DM, Ziegler AG, Herold KC. Abatacept for Delay of Type 1 Diabetes Progression in Stage 1 Relatives at Risk: A Randomized, Double-Masked, Controlled Trial. Diabetes Care 2023; 46:1005-1013. [PMID: 36920087 PMCID: PMC10154649 DOI: 10.2337/dc22-2200] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/02/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE Previous studies showed that inhibiting lymphocyte costimulation reduces declining β-cell function in individuals newly diagnosed with type 1 diabetes. We tested whether abatacept would delay or prevent progression of type 1 diabetes from normal glucose tolerance (NGT) to abnormal glucose tolerance (AGT) or to diabetes and the effects of treatment on immune and metabolic responses. RESEARCH DESIGN AND METHODS We conducted a phase 2, randomized, placebo-controlled, double-masked trial of abatacept in antibody-positive participants with NGT who received monthly abatacept/placebo infusions for 12 months. The end point was AGT or diabetes, assessed by oral glucose tolerance tests. RESULTS A total of 101 participants received abatacept and 111 placebo. Of these, 81 (35 abatacept and 46 placebo) met the end point of AGT or type 1 diabetes diagnosis (hazard ratio 0.702; 95% CI 0.452, 1.09; P = 0.11) The C-peptide responses to oral glucose tolerance tests were higher in the abatacept arm (P < 0.03). Abatacept reduced the frequency of inducible T-cell costimulatory (ICOS)+ PD1+ T-follicular helper (Tfh) cells during treatment (P < 0.0001), increased naive CD4+ T cells, and also reduced the frequency of CD4+ regulatory T cells (Tregs) from the baseline (P = 0.0067). Twelve months after treatment, the frequency of ICOS+ Tfh, naive CD4+ T cells, and Tregs returned to baseline. CONCLUSIONS Although abatacept treatment for 1 year did not significantly delay progression to glucose intolerance in at-risk individuals, it impacted immune cell subsets and preserved insulin secretion, suggesting that costimulation blockade may modify progression of type 1 diabetes.
Collapse
Affiliation(s)
- William E. Russell
- Departments of Pediatrics and Cell & Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Brian N. Bundy
- Health Informatics Institute, University of South Florida, Tampa, FL
| | - Mark S. Anderson
- Department of Medicine, University of California, San Francisco, San Francisco, CA
- Immune Tolerance Network, Seattle, WA
| | | | | | - Robin S. Goland
- Departments of Medicine and Pediatrics, Columbia University, New York, NY
| | | | | | | | | | | | | | | | | | - Daniel J. Moore
- Departments of Pediatrics and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | | | - Jay S. Skyler
- Department of Medicine, University of Miami, Miami, FL
| | - John M. Wentworth
- Royal Melbourne Hospital and The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Diane K. Wherrett
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | - Anette-Gabriele Ziegler
- Forschergruppe Diabetes, Technical University Munich at Klinikum rechts der Isar, Munich, Germany
- Institute for Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
| | | | | |
Collapse
|
11
|
Glomerular B7-1 staining: toward precision medicine for treatment of recurrent focal segmental glomerulosclerosis. Pediatr Nephrol 2023; 38:13-15. [PMID: 35725967 DOI: 10.1007/s00467-022-05650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023]
|
12
|
Chen J, Liu Q, He J, Li Y. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front Immunol 2022; 13:958790. [PMID: 36045667 PMCID: PMC9420855 DOI: 10.3389/fimmu.2022.958790] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/28/2022] [Indexed: 11/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a chronic, inflammatory disease affecting millions of diabetic patients worldwide. DN is associated with proteinuria and progressive slowing of glomerular filtration, which often leads to end-stage kidney diseases. Due to the complexity of this metabolic disorder and lack of clarity about its pathogenesis, it is often more difficult to diagnose and treat than other kidney diseases. Recent studies have highlighted that the immune system can inadvertently contribute to DN pathogenesis. Cells involved in innate and adaptive immune responses can target the kidney due to increased expression of immune-related localization factors. Immune cells then activate a pro-inflammatory response involving the release of autocrine and paracrine factors, which further amplify inflammation and damage the kidney. Consequently, strategies to treat DN by targeting the immune responses are currently under study. In light of the steady rise in DN incidence, this timely review summarizes the latest findings about the role of the immune system in the pathogenesis of DN and discusses promising preclinical and clinical therapies.
Collapse
Affiliation(s)
| | | | - Jinhan He
- *Correspondence: Jinhan He, ; Yanping Li,
| | - Yanping Li
- *Correspondence: Jinhan He, ; Yanping Li,
| |
Collapse
|
13
|
Kong L, Andrikopoulos S, MacIsaac RJ, Mackay LK, Nikolic‐Paterson DJ, Torkamani N, Zafari N, Marin ECS, Ekinci EI. Role of the adaptive immune system in diabetic kidney disease. J Diabetes Investig 2022; 13:213-226. [PMID: 34845863 PMCID: PMC8847140 DOI: 10.1111/jdi.13725] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is a highly prevalent complication of diabetes and the leading cause of end-stage kidney disease. Inflammation is recognized as an important driver of progression of DKD. Activation of the immune response promotes a pro-inflammatory milieu and subsequently renal fibrosis, and a progressive loss of renal function. Although the role of the innate immune system in diabetic renal disease has been well characterized, the potential contribution of the adaptive immune system remains poorly defined. Emerging evidence in experimental models of DKD indicates an increase in the number of T cells in the circulation and in the kidney cortex, that in turn triggers secretion of inflammatory mediators such as interferon-γ and tumor necrosis factor-α, and activation of cells in innate immune response. In human studies, the number of T cells residing in the interstitial region of the kidney correlates with the degree of albuminuria in people with type 2 diabetes. Here, we review the role of the adaptive immune system, and associated cytokines, in the development of DKD. Furthermore, the potential therapeutic benefits of targeting the adaptive immune system as a means of preventing the progression of DKD are discussed.
Collapse
Affiliation(s)
- Lingyun Kong
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
| | | | - Richard J MacIsaac
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
- Department of Endocrinology & DiabetesSt Vincent's Hospital MelbourneMelbourneVictoriaAustralia
| | - Laura K Mackay
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVictoriaAustralia
| | - David J Nikolic‐Paterson
- Department of NephrologyMonash Medical Center and Monash University Center for Inflammatory DiseasesMelbourneVictoriaAustralia
| | - Niloufar Torkamani
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
- Endocrine Center of ExcellenceAustin HealthMelbourneVictoriaAustralia
| | - Neda Zafari
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
| | - Evelyn C S Marin
- College of Sport and Exercise ScienceVictoria UniversityMelbourneVictoriaAustralia
| | - Elif I Ekinci
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
- Endocrine Center of ExcellenceAustin HealthMelbourneVictoriaAustralia
| |
Collapse
|
14
|
Wang Z, Chen X, Li C, Tang W. Application of weighted gene co-expression network analysis to identify novel key genes in diabetic nephropathy. J Diabetes Investig 2022; 13:112-124. [PMID: 34245661 PMCID: PMC8756323 DOI: 10.1111/jdi.13628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 02/05/2023] Open
Abstract
AIMS/INTRODUCTION Diabetic nephropathy (DN) is among the leading causes of end-stage renal disease worldwide. DN pathogenesis remains largely unknown. Weighted gene co-expression network analysis is a powerful bioinformatic tool for identifying key genes in diseases. MATERIALS AND METHODS The datasets GSE30122, GSE104948, GSE37463 and GSE47185 containing 23 DN and 23 normal glomeruli samples were obtained from the National Center for Biotechnology Information Gene Expression Omnibus database. After data pre-processing, weighted gene co-expression network analysis was carried out to cluster significant modules. Then, Gene Set Enrichment Analysis-based Gene Ontology analysis and visualization of network were carried out to screen the key genes in the most significant modules. The connectivity map analysis was carried out to find the significant chemical compounds. Finally, some key genes were validated in in vivo and in vitro experiments. RESULTS A total of 454 upregulated and 392 downregulated genes were identified. A total of 16 modules were clustered, and the most significant modules (green, red and yellow modules) were determined. The green module was associated with extracellular matrix organization, the red module was associated with immunity reaction and the yellow module was associated with kidney development. We found several key genes in these three modules separately, and part of them were validated in vivo and in vitro successfully. We found the top 15 chemical compounds that could perturb the overall expression of key genes in DN. CONCLUSION Weighted gene co-expression network analysis was applied to DN expression profiling in combination with connectivity map analysis. Several novel key genes and chemical compounds were screened out, providing new molecular targets for DN.
Collapse
Affiliation(s)
- Zheng Wang
- Department of NephrologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiaolei Chen
- Department of NephrologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Li
- Department of NephrologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Wanxin Tang
- Department of NephrologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
15
|
Liu J, Zhang Y, Sheng H, Liang C, Liu H, Moran Guerrero JA, Lu Z, Mao W, Dai Z, Liu X, Zhang L. Hyperoside Suppresses Renal Inflammation by Regulating Macrophage Polarization in Mice With Type 2 Diabetes Mellitus. Front Immunol 2021; 12:733808. [PMID: 34925317 PMCID: PMC8678409 DOI: 10.3389/fimmu.2021.733808] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/04/2021] [Indexed: 12/29/2022] Open
Abstract
Accumulating evidence reveals that both inflammation and lymphocyte dysfunction play a vital role in the development of diabetic nephropathy (DN). Hyperoside (HPS) or quercetin-3-O-galactoside is an active flavonoid glycoside mainly found in the Chinese herbal medicine Tu-Si-Zi. Although HPS has a variety of pharmacological effects, including anti-oxidative and anti-apoptotic activities as well as podocyte-protective effects, its underlying anti-inflammatory mechanisms remain unclear. Herein, we investigated the therapeutic effects of HPS on murine DN and the potential mechanisms responsible for its efficacy. We used C57BLKS/6J Lepdb/db mice and a high glucose (HG)-induced bone marrow-derived macrophage (BMDM) polarization system to investigate the potentially protective effects of HPS on DN. Our results showed that HPS markedly reduced diabetes-induced albuminuria and glomerular mesangial matrix expansion, accompanied with a significant improvement of fasting blood glucose level, hyperlipidaemia and body weight. Mechanistically, pretreatment with HPS effectively regulated macrophage polarization by shifting proinflammatory M1 macrophages (F4/80+CD11b+CD86+) to anti-inflammatory M2 ones (F4/80+CD11b+CD206+) in vivo and in bone marrow-derived macrophages (BMDMs) in vitro, resulting in the inhibition of renal proinflammatory macrophage infiltration and the reduction in expression of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF-α) and inducible nitric oxide synthase (iNOS) while increasing expression of anti-inflammatory cytokine Arg-1 and CD163/CD206 surface molecules. Unexpectedly, pretreatment with HPS suppressed CD4+ T cell proliferation in a coculture model of IL-4-induced M2 macrophages and splenic CD4+ T cells while promoting their differentiation into CD4+IL-4+ Th2 and CD4+Foxp3+ Treg cells. Taken together, we demonstrate that HPS ameliorates murine DN via promoting macrophage polarization from an M1 to M2 phenotype and CD4+ T cell differentiation into Th2 and Treg populations. Our findings may be implicated for the treatment of DN in clinic.
Collapse
Affiliation(s)
- Jialing Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yanmei Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongqin Sheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunling Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Huazhen Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | | | - Zhaoyu Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenhua Dai
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhenhua Dai, ; Xusheng Liu, ; Lei Zhang,
| | - Xusheng Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhenhua Dai, ; Xusheng Liu, ; Lei Zhang,
| | - Lei Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- *Correspondence: Zhenhua Dai, ; Xusheng Liu, ; Lei Zhang,
| |
Collapse
|
16
|
Li S, Liu Y, He Y, Rong W, Zhang M, Li L, Liu Z, Zen K. Podocytes present antigen to activate specific T cell immune responses in inflammatory renal disease. J Pathol 2020; 252:165-177. [PMID: 32686090 DOI: 10.1002/path.5508] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Infiltration of activated T cells into renal tissue plays an essential role in inflammatory nephropathy. However, the mechanism enabling the renal recruitment and activation of T cells remains elusive. Here we report that inflammatory cytokine-promoted antigen presentation by podocytes is a key for recruiting and activating specific T cells. Our results showed that diabetes-associated inflammatory cytokines IFNγ and IL-17 all upregulated expression of MHC-I, MHC-II, CD80 and CD86 on the podocyte surface. Both IFNγ and IL-17 stimulated the uptake and processing of ovalbumin (OVA) by mouse podocytes, resulting in presentation of OVA antigen peptide on the cell surface. OVA antigen presentation by podocytes was also validated using human podocytes. Furthermore, OVA antigen-presenting mouse podocytes were able to activate OT-I mouse T cell proliferation and inflammatory cytokine secretion, which in turn caused podocyte injury and apoptosis. Finally, OT-I mice subjected to direct renal injection of OVA plus IFNγ/IL-17 but not OVA alone exhibited OVA antigen presentation by podocytes and developed nephropathy in 4 weeks. In conclusion, antigen presentation by podocytes under inflammatory conditions plays an important role in activating T cell immune responses and facilitating immune-mediated glomerular disease development. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shan Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, PR China
| | - Ying Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, PR China
| | - Yueqin He
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, PR China
| | - Weiwei Rong
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, PR China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Limin Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, PR China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Ke Zen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, PR China
| |
Collapse
|
17
|
Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21113798. [PMID: 32471207 PMCID: PMC7312633 DOI: 10.3390/ijms21113798] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is associated with an increased morbidity and mortality, resulting in elevated cost for public health systems. DN is the main cause of chronic kidney disease (CKD) and its incidence increases the number of patients that develop the end-stage renal disease (ESRD). There are growing epidemiological and preclinical evidence about the close relationship between inflammatory response and the occurrence and progression of DN. Several anti-inflammatory strategies targeting specific inflammatory mediators (cell adhesion molecules, chemokines and cytokines) and intracellular signaling pathways have shown beneficial effects in experimental models of DN, decreasing proteinuria and renal lesions. A number of inflammatory molecules have been shown useful to identify diabetic patients at high risk of developing renal complications. In this review, we focus on the key role of inflammation in the genesis and progression of DN, with a special interest in effector molecules and activated intracellular pathways leading to renal damage, as well as a comprehensive update of new therapeutic strategies targeting inflammation to prevent and/or retard renal injury.
Collapse
|
18
|
Lampropoulou IT, Stangou Μ, Sarafidis P, Gouliovaki A, Giamalis P, Tsouchnikas I, Didangelos T, Papagianni Α. TNF-α pathway and T-cell immunity are activated early during the development of diabetic nephropathy in Type II Diabetes Mellitus. Clin Immunol 2020; 215:108423. [PMID: 32304735 DOI: 10.1016/j.clim.2020.108423] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Aim of the present study was to investigate the possible involvement of TNF-α signaling pathway and T-lymphocyte activation in DN. Eighty-two diabetic patients [39 male, age 69.5(56-78)years] were divided into three groups, according to Albumin/Creatinine ratio (ACR) levels, Group I (ACR < 30 μg/mg), Group II (ACR 30-300 μg/mg), Group III (ACR > 300 μg/mg). Urinary Tumor Necrosis Factor-α (TNF-α), and serum TNF-α, ΤNF-receptor 1 (TNFR1), TNFR2, B7-1, CD28, Cytoxic T-Lymphocyte-Associated protein-4 (CTLA4), were estimated. There were significant differences between Groups I, II, III regarding the concentration of urinary TNF-α (p < .001), serum TNFR1 (p < .001), serum TNFR2(p < .001), CTLA4 (p < .001) and CD28(p = .034). In multivariate analysis, independent parameters correlated with ACR were serum TNFR1 (p = .003), TNFR2 (p = .012) and urinary TNF-α (p = .015) levels. There was a significant correlation between markers of T-cell activation and TNF-α signaling pathway activation. Activation of TNF-α signaling pathway and T-lymphocytes seem to synergize and participate in the development of DN in type II DM.
Collapse
Affiliation(s)
| | - Μaria Stangou
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece.
| | - Pantelis Sarafidis
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | | | - Panagiotis Giamalis
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Ioannis Tsouchnikas
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Triantafillos Didangelos
- Diabetes Center, First Department of Internal Medicine, Medical School, AHEPA Hospital, Aristotle University, Thessaloniki, Greece
| | - Αikaterini Papagianni
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
19
|
Lavoz C, Rayego-Mateos S, Orejudo M, Opazo-Ríos L, Marchant V, Marquez-Exposito L, Tejera-Muñoz A, Navarro-González JF, Droguett A, Ortiz A, Egido J, Mezzano S, Rodrigues-Diez RR, Ruiz-Ortega M. Could IL-17A Be a Novel Therapeutic Target in Diabetic Nephropathy? J Clin Med 2020; 9:E272. [PMID: 31963845 PMCID: PMC7019373 DOI: 10.3390/jcm9010272] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease has become a major medical issue in recent years due to its high prevalence worldwide, its association with premature mortality, and its social and economic implications. A number of patients gradually progress to end-stage renal disease (ESRD), requiring then dialysis and kidney transplantation. Currently, approximately 40% of patients with diabetes develop kidney disease, making it the most prevalent cause of ESRD. Thus, more effective therapies for diabetic nephropathy are needed. In preclinical studies of diabetes, anti-inflammatory therapeutic strategies have been used to protect the kidneys. Recent evidence supports that immune cells play an active role in the pathogenesis of diabetic nephropathy. Th17 immune cells and their effector cytokine IL-17A have recently emerged as promising targets in several clinical conditions, including renal diseases. Here, we review current knowledge regarding the involvement of Th17/IL-17A in the genesis of diabetic renal injury, as well as the rationale behind targeting IL-17A as an additional therapy in patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Carolina Lavoz
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.L.); (V.M.); (A.D.); (S.M.)
| | - Sandra Rayego-Mateos
- Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), 25198 Lleida, Spain;
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
| | - Macarena Orejudo
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.O.-R.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Vanessa Marchant
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.L.); (V.M.); (A.D.); (S.M.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Laura Marquez-Exposito
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Antonio Tejera-Muñoz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
| | - Alejandra Droguett
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.L.); (V.M.); (A.D.); (S.M.)
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.O.-R.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergio Mezzano
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.L.); (V.M.); (A.D.); (S.M.)
| | - Raúl R. Rodrigues-Diez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Marta Ruiz-Ortega
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| |
Collapse
|
20
|
Eroglu FK, Orhan D, İnözü M, Duzova A, Gulhan B, Ozaltin F, Topaloglu R. CD80 expression and infiltrating regulatory T cells in idiopathic nephrotic syndrome of childhood. Pediatr Int 2019; 61:1250-1256. [PMID: 31513327 DOI: 10.1111/ped.14005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/05/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND CD80 (also known as B7-1) is a co-stimulatory molecule that is expressed in biopsies and also excreted in urine in patients with minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). CD80 is inhibited by the cytotoxic T-lymphocyte-associated-antigen 4 (CTLA4), which is mainly expressed on regulatory T cells (Tregs). Ineffective circulating Treg response is involved in the pathogenesis of nephrotic syndrome. In this study, we evaluated CD80 expression and infiltrating Tregs in children with MCD and FSGS. METHODS Evaluation of CD80 expression and semi-quantitative evaluation of Tregs (FOXP3-positive CD4 T cells) were carried out in 31 kidney biopsies (12 MCD, 19 FSGS) with immunofluorescence and immunohistochemistry staining. RESULTS All MCD sections were stained negative; whereas six out of 19 FSGS sections (all from steroid-resistant (SR) patients), including one from a Wilms' tumor 1 (WT1) mutation-positive FSGS patient, stained positive for anti-CD80 goat antibody, and negative for anti-CD80 rabbit antibody. FSGS biopsy specimens had significantly higher FOXP3-positive cells/mm2 compared with MCD and control samples (P < 0.001). Biopsy samples from SR-FSGS patients (n = 12) with positive CD80 staining (n = 6) had significantly less Tregs (FOXP3-positive CD4 T cells) compared with CD80 (-) biopsies (n = 6; P = 0.004). CONCLUSION CD80 expression was not detected in the majority of the archival biopsy sections and the results were not consistent across the different antibodies. In the SR-FSGS sections, however, CD80-positive biopsies had decreased FOXP3-positive CD4 T cells, suggesting that a decreased anti-inflammatory milieu may be the cause of increased CD80 expression.
Collapse
Affiliation(s)
- Fehime Kara Eroglu
- Division of Pediatric Nephrology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Diclehan Orhan
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mihriban İnözü
- Division of Pediatric Nephrology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ali Duzova
- Division of Pediatric Nephrology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Bora Gulhan
- Division of Pediatric Nephrology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Fatih Ozaltin
- Division of Pediatric Nephrology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Rezan Topaloglu
- Division of Pediatric Nephrology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
21
|
Human CTLA4-Ig therapy can give false-positive anti-pig antibody results in primates after xenotransplantation. Transpl Immunol 2019; 57:101243. [DOI: 10.1016/j.trim.2019.101243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 01/25/2023]
|
22
|
Li XQ, Chang DY, Chen M, Zhao MH. Deficiency of C3a receptor attenuates the development of diabetic nephropathy. BMJ Open Diabetes Res Care 2019; 7:e000817. [PMID: 31798904 PMCID: PMC6861086 DOI: 10.1136/bmjdrc-2019-000817] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/18/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
Objective Diabetic nephropathy (DN) is the leading cause of chronic kidney disease and end-stage renal disease. Emerging evidence suggests that complement activation is involved in the pathogenesis of DN. The aim of this study was to investigate the pathogenic role of C3a and C3a receptor (C3aR) in DN. Research design and methods The expression of C3aR was examined in the renal specimen of patients with DN. Using a C3aR gene knockout mice (C3aR-/-), we evaluated kidney injury in diabetic mice. The mouse gene expression microarray was performed to further explore the pathogenic role of C3aR. Then the underlying mechanism was investigated in vitro with macrophage treated with C3a. Results Compared with normal controls, the renal expression of C3aR was significantly increased in patients with DN. C3aR-/- diabetic mice developed less severe diabetic renal damage compared with wild-type (WT) diabetic mice, exhibiting significantly lower level of albuminuria and milder renal pathological injury. Microarray profiling uncovered significantly suppressed inflammatory responses and T-cell adaptive immunity in C3aR-/- diabetic mice compared with WT diabetic mice, and this result was further verified by immunohistochemical staining of renal CD4+, CD8+ T cells and macrophage infiltration. In vitro study demonstrated C3a can enhance macrophage-secreted cytokines which could induce inflammatory responses and differentiation of T-cell lineage. Conclusions C3aR deficiency could attenuate diabetic renal damage through suppressing inflammatory responses and T-cell adaptive immunity, possibly by influencing macrophage-secreted cytokines. Thus, C3aR may be a promising therapeutic target for DN.
Collapse
Affiliation(s)
- Xiao-Qian Li
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Dong-Yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
23
|
Berni E, Pritchard N, Jenkins‐Jones S, Ambery P, Jain M, Jermutus L, Scott LA, Currie CJ. Hospital admissions for severe infections in people with chronic kidney disease in relation to renal disease severity and diabetes status. Endocrinol Diabetes Metab 2018; 1:e00029. [PMID: 30815560 PMCID: PMC6354815 DOI: 10.1002/edm2.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/16/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Immunosuppressive agents are being investigated for the treatment of chronic kidney disease (CKD) but may increase risk of infection. This was a retrospective observational study intended to evaluate the risk of hospitalized infection in patients with CKD, by estimated glomerular filtration rate (eGFR) and proteinuria status, aiming to identify the most appropriate disease stage for immunosuppressive intervention. METHODS Routine UK primary-care and linked secondary-care data were extracted from the Clinical Practice Research Datalink. Patients with a record of CKD were identified and grouped into type 2, type 1 and nondiabetes cohorts. Time-dependent, Cox proportional hazard models were used to determine the likelihood of hospitalized infection. RESULTS We identified 97 839 patients with a record of CKD, of these 11 719 (12%) had type 2 diabetes. In these latter patients, the adjusted hazard ratios (aHR) were 1.00 (95% CI: 0.80-1.25), 1.00, 1.03 (95% CI: 0.92-1.15), 1.36 (95% CI: 0.20-1.54), 1.82 (95% CI: 1.54-2.15) and 2.41 (95% CI: 1.60-3.63) at eGFR stages G1, G2 (reference), G3a, G3b, G4 and G5, respectively; and 1.00, 1.45 (95% CI: 1.29-1.63) and 1.91 (95% CI: 1.67-2.20) at proteinuria stages A1 (reference), A2 and A3, respectively. All aHRs (except G1 and G3a) were significant, with similar patterns observed within the non-DM and overall cohorts. CONCLUSIONS eGFR and degree of albuminuria were independent markers of hospitalized infection in both patients with and without diabetes. The same patterns of hazard ratios of eGFR and proteinuria were seen in CKD patients regardless of diabetes status, with the risk of each outcome increasing with a decreasing eGFR and increasing proteinuria. Infection risk increased significantly from eGFR stage G3b and proteinuria stage A2 in type 2 diabetes. Treating type 2 DM patients with CKD at eGFR stages G1-G3a with immunosuppressive therapy may therefore provide a favourable risk-benefit ratio (G1-G3a in type 2 diabetes; G1-G2 in nondiabetes and overall cohorts) although the degree of proteinuria needs to be considered.
Collapse
Affiliation(s)
- Ellen Berni
- Global EpidemiologyPharmatelligenceCardiffUK
| | | | | | | | | | | | | | - Craig J. Currie
- Global EpidemiologyPharmatelligenceCardiffUK
- Institute of Population MedicineSchool of MedicineCardiff UniversityCardiffUK
| |
Collapse
|
24
|
Novelli R, Benigni A, Remuzzi G. The role of B7-1 in proteinuria of glomerular origin. Nat Rev Nephrol 2018; 14:589-596. [DOI: 10.1038/s41581-018-0037-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to examine the proposed role of immune modulation in the development and progression of diabetic kidney disease (DKD). RECENT FINDINGS Diabetic kidney disease has not historically been considered an immune-mediated disease; however, increasing evidence is emerging in support of an immune role in its pathophysiology. Both systemic and local renal inflammation have been associated with DKD. Infiltration of immune cells, predominantly macrophages, into the kidney has been reported in a number of both experimental and clinical studies. In addition, increased levels of circulating pro-inflammatory cytokines have been linked to disease progression. Consequently, a variety of therapeutic strategies involving modulation of the immune response are currently being investigated in diabetic kidney disease. Although no current therapies for DKD are directly based on immune modulation many of the therapies in clinical use have anti-inflammatory effects along with their primary actions. Macrophages emerge as the most likely beneficial immune cell target and compounds which reduce macrophage infiltration to the kidney have shown potential in both animal models and clinical trials.
Collapse
Affiliation(s)
- Fionnuala B Hickey
- Department of Clinical Medicine, Trinity College Dublin, Tallaght Hospital, Dublin, Dublin 24, Ireland
| | - Finian Martin
- School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
26
|
Han Q, Zhu H, Chen X, Liu Z. Non-genetic mechanisms of diabetic nephropathy. Front Med 2017; 11:319-332. [PMID: 28871454 DOI: 10.1007/s11684-017-0569-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes mellitus patients and is characterized by thickened glomerular basement membrane, increased extracellular matrix formation, and podocyte loss. These phenomena lead to proteinuria and altered glomerular filtration rate, that is, the rate initially increases but progressively decreases. DN has become the leading cause of end-stage renal disease. Its prevalence shows a rapid growth trend and causes heavy social and economic burden in many countries. However, this disease is multifactorial, and its mechanism is poorly understood due to the complex pathogenesis of DN. In this review, we highlight the new molecular insights about the pathogenesis of DN from the aspects of immune inflammation response, epithelial-mesenchymal transition, apoptosis and mitochondrial damage, epigenetics, and podocyte-endothelial communication. This work offers groundwork for understanding the initiation and progression of DN, as well as provides ideas for developing new prevention and treatment measures.
Collapse
Affiliation(s)
- Qiuxia Han
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hanyu Zhu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|