1
|
Jiang C, Wang B, Wang J, Qu Y, Zhang X. Curvilinear association between Framingham Steatosis Index and chronic kidney disease: a nationwide cross-sectional study. Front Med (Lausanne) 2025; 11:1518202. [PMID: 39876873 PMCID: PMC11772482 DOI: 10.3389/fmed.2024.1518202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Fatty liver disease is potentially linked to chronic kidney disease (CKD), yet the association between the Framingham Steatosis Index (FSI) and CKD remains uncharted. Our study thoroughly investigated the correlation between FSI and CKD, aiming to elucidate the underlying links between these two conditions. Methods The relationship between FSI and CKD was evaluated using a weighted multivariate logistic regression model, and the curvilinear relationship between FSI and CKD was explored through smooth curve fitting. We engaged a recursive partitioning algorithm in conjunction with a two-stage linear regression model to determine the inflection point. By conducting stratified analyses, the heterogeneity within subpopulations was explored. Results In the fully adjusted Model 3, which accounted for all covariates, the odds ratios (ORs) (95% CI) for the association between FSI and CKD were 1.01 (0.97, 1.06), indicating no significant statistical association. Sensitivity analysis confirms the stability of the relationship between FSI and CKD. Smooth curve fitting discloses a non-linear association between FSI and CKD. The two-piecewise linear regression model, applied to explore this non-linearity, identified an inflection point at an FSI value of -3.21. Below this threshold, the OR (95% CI) was 0.25 (0.17, 0.37), signifying an inverse correlation between FSI and CKD. Above the inflection point, the OR (95% CI) was 1.19 (1.13, 1.25), suggesting a positive correlation. In the stratified curve analysis, the results were essentially consistent with the overall findings, except for the subgroups with BMI > 30 and age > 50. Conclusion We found a curvilinear relationship between FSI and CKD.
Collapse
Affiliation(s)
- Chunqi Jiang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Bo Wang
- Central Hospital of Jinan City, Jinan, Shandong, China
| | - Jun Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yinuo Qu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- College of Acupuncture - Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Wang B, Jiang C, Qu Y, Wang J, Yan C, Zhang X. Nonlinear association between atherogenic index of plasma and chronic kidney disease: a nationwide cross-sectional study. Lipids Health Dis 2024; 23:312. [PMID: 39334373 PMCID: PMC11429454 DOI: 10.1186/s12944-024-02288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The interplay between metabolic disorders and chronic kidney disease (CKD) has been well-documented. However, the connection between CKD and atherogenic index of plasma (AIP) remains understudied. This research delves into the correlation between these two factors, aiming to shed new light on their potential association. METHODS The relationship between AIP and CKD was evaluated using a weighted multivariate logistic regression model, and the curvilinear relationship between AIP and CKD was explored through smooth curve fitting. We engaged a recursive partitioning algorithm in conjunction with a two-stage linear regression model to precisely determine the inflection point. By conducting stratified analyses, the heterogeneity within subpopulations was explored. RESULTS In the regression model that accounted for all covariates, ORs (95% CI) for the association between CKD and AIP were 1.12 (0.91, 1.36), indicating no significant association between AIP and CKD. However, sensitivity analyses suggested that the relationship between them may be non-linear. Smooth curve analysis confirmed the non-linear relationship between AIP and CKD, identifying an inflection point at -0.55. Below this threshold, AIP exhibited a significant inverse correlation with CKD. Conversely, above this threshold, a pronounced positive correlation was detected. Stratified analyses elucidated that a non-linear association between AIP and CKD was observed among female participants and those aged 50 and above. CONCLUSION We found a curvilinear relationship between chronic kidney disease and atherogenic index of plasma.
Collapse
Affiliation(s)
- Bo Wang
- Central Hospital of Jinan City, No. 105, Jiefang Road, Jinan City, Shandong Province, China
| | - Chunqi Jiang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan City, Shandong Province, China
| | - Yinuo Qu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan City, Shandong Province, China
| | - Jun Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan City, Shandong Province, China
| | - Chuanzhu Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan City, Shandong Province, China
| | - Xin Zhang
- Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan City, Shandong Province, China.
| |
Collapse
|
3
|
Ren L, Ju F, Liu S, Cai Y, Gang X, Wang G. New Perspectives on Obesity-Associated Nephropathy from Pathophysiology to Therapeutics: Revealing the Promise of GLP-1 RA Therapy. Drug Des Devel Ther 2024; 18:4257-4272. [PMID: 39347536 PMCID: PMC11437658 DOI: 10.2147/dddt.s476815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Obesity represents a substantial risk factor for a multitude of metabolic disorders, which seriously threatens human life and health. As the global obesity epidemic intensifies, obesity-related nephropathy (ORN) has attracted great attention. ORN arises from both physical/mechanical and non-physical insults to the glomerular and tubular structures precipitated by obesity, culminating in structural impairments and functional aberrations within the kidneys. Physical injury factors include changes in renal hemodynamics, renal compression, and mechanical stretching of podocytes. Non-physical injury factors include overactivation of the RAAS system, insulin resistance, lipotoxicity, inflammation, and dysregulation of bile acid metabolism. Exploring molecules that target modulation of physical or nonphysical injury factors is a potential approach to ORN treatment. ORN is characterized clinically by microproteinuria and pathologically by glomerulomegaly, which is atypical and makes early diagnosis difficult. Investigating early diagnostic markers for ORN thus emerges as a critical direction for future research. Additionally, there is no specific drug for ORN in clinical treatment, which mainly focuses on weight reduction, mitigating proteinuria, and preserving renal function. In our review, we delineate a progressive therapeutic approach involving enhancements in lifestyle, pharmacotherapy, and bariatric surgery. Our emphasis underscores glucagon-like peptide-1 receptor agonists (GLP-1 RAs) as poised to emerge as pivotal therapeutic modalities for ORN in forthcoming clinical avenues.
Collapse
Affiliation(s)
- Linan Ren
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Feng Ju
- Department of Orthopedics, Yuci District People’s Hospital, Yuci, Shanxi, 030600, People’s Republic of China
| | - Siyuan Liu
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Yunjia Cai
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| |
Collapse
|
4
|
Haznedaroglu IC, Malkan UY. Lipotoxicity-Related Hematological Disorders in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:575-594. [PMID: 39287865 DOI: 10.1007/978-3-031-63657-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lipotoxicity can mediate endothelial dysfunction in obesity. Altered endothelial cell phenotype during the pathobiological course of the lipotoxicity may lead to hemostatic abnormalities, which is a hallmark of several hematological disorders. Impaired hemostasis could also be directly related to numerous metabolic diseases such as hypertension, diabetes, and atherosclerosis. On the other hand, the local hematopoietic bone marrow (BM) renin-angiotensin system (RAS) contributes to the development of atherosclerosis via acting on the lipotoxicity processes. Local BM RAS, principally an autocrine/paracrine/intracrine hematological system, is located at the crossroads of cellular regulation, molecular interactions, and lipotoxicity-mediated vascular endothelial dysfunction. The positive regulatory role of plasma LDL on AT1 receptor-mediated hematopoietic stem cell (HSC) differentiation and the production of pro-atherogenic monocytes have been described. LDL-regulated HSC function may explain in part hypercholesterolemia-induced inflammation as well as the anti-inflammatory and anti-atherosclerotic effects of AT1 receptor blockers. The role of local adipose tissue RAS is directly related to the pathogenesis of metabolic derangements in obesity. There may be a crosstalk between local BM RAS and local adipose tissue RAS at the genomics and transcriptomics levels. This chapter aims to review hematological alterations propagating the pathological influences of lipotoxicity on the vascular endothelium.
Collapse
Affiliation(s)
| | - Umit Yavuz Malkan
- Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey
| |
Collapse
|
5
|
Wu X, Wang A, Xu L, Li M, Zhai Q, Wang W, Li C, Jin L. Valsartan Attenuated Homocysteine-Induced Impaired Autophagy and ER Stress in Human Umbilical Vein Endothelial Cells. Cardiovasc Ther 2023; 2023:8817431. [PMID: 38125704 PMCID: PMC10733040 DOI: 10.1155/2023/8817431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Hyperhomocysteinemia is a risk factor for various cardiovascular diseases. However, the mechanism underlying homocysteine- (Hcy-) induced vascular injury remains unclear. The purpose of the present study was to examine a potential mechanism by which Hcy induced injury in human umbilical vascular endothelial cells (HUVEC). The protein abundance of autophagy-related markers was markedly decreased after Hcy treatment, which was associated with endoplasmic reticulum (ER) stress and apoptosis in HUVECs. Protein expression level of angiotensin II type 1 receptor (AT1 receptor) was dramatically increased in response to Hcy. Valsartan, an AT1 receptor blocker, improved autophagy and prevented ER stress and apoptosis in HUVECs treated with Hcy. Consistent with this, silence of AT1 receptor with siRNA decreased the protein abundance of ER stress markers, prevented apoptosis, and promoted autophagy in HUVECs. Inhibition or knockdown of AT1 receptor was shown to be associated with suppression of p-GSK3β/GSK3β-p-mTOR/mTOR signaling pathway. Additionally, inhibition of autophagy by 3-MA aggravated Hcy-induced apoptosis, while amelioration of ER stress by 4-PBA prevented Hcy-induced injury in HUVECs. Hcy-induced HUVEC injury was likely attributed to AT1 receptor activation, leading to impaired autophagy, ER stress, and apoptosis.
Collapse
Affiliation(s)
- Xinyan Wu
- Department of Cardiology, The 5th Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ani Wang
- Department of Cardiology, The 5th Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Long Xu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qingxian Zhai
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Lizi Jin
- Department of Cardiology, The 5th Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
6
|
Muso E, Kakita H, Suzuki H, Tsukamoto T. Updated evidence of beneficial effect of LDL apheresis for refractory nephrotic syndrome due to a variety of causative diseases for nationwide and global approval. Ther Apher Dial 2023; 27:987-999. [PMID: 37593995 DOI: 10.1111/1744-9987.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/23/2023] [Indexed: 08/19/2023]
Abstract
Low-density lipoprotein apheresis (LDL-A) therapy has shown reasonable efficacy in treating nephrotic syndrome (NS) refractory to initial drug therapy and has been covered by National Health Insurance for the indication of drug-resistant focal segmental glomerulosclerosis (FSGS) since 1992 in Japan and has contributed to liberating substantial number of patients of this disease from entering into end-stage renal disease by easier practical application in actual clinical settings. Subsequently, various beneficial evidence of this treatment has accumulated on those other than FSGS, however, due to the limitation of covered disease insurance only for FSGS, patients with diseases other than FSGS are unlikely to benefit from this treatment in practice. This review summarizes the therapeutic evidence of the beneficial effect of LDL-A accumulated to date and the mechanisms of action analyzed from multifaceted perspectives. examines the applicability of expanding insurance coverage for diseases other than FSGS.
Collapse
Affiliation(s)
- Eri Muso
- Department of Food and Nutrition, Faculty of Contemporary Home Economics, Kyoto Kacho University, Kyoto, Japan
- Department of Nephrology, Kitano Hospital, the Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Hiroko Kakita
- Department of Nephrology, Kitano Hospital, the Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Hiroyuki Suzuki
- Department of Nephrology, Kitano Hospital, the Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Tatsuo Tsukamoto
- Department of Nephrology, Kitano Hospital, the Tazuke Kofukai Medical Research Institute, Osaka, Japan
| |
Collapse
|
7
|
Altamura S, Pietropaoli D, Lombardi F, Del Pinto R, Ferri C. An Overview of Chronic Kidney Disease Pathophysiology: The Impact of Gut Dysbiosis and Oral Disease. Biomedicines 2023; 11:3033. [PMID: 38002033 PMCID: PMC10669155 DOI: 10.3390/biomedicines11113033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic kidney disease (CKD) is a severe condition and a significant public health issue worldwide, carrying the burden of an increased risk of cardiovascular events and mortality. The traditional factors that promote the onset and progression of CKD are cardiometabolic risk factors like hypertension and diabetes, but non-traditional contributors are escalating. Moreover, gut dysbiosis, inflammation, and an impaired immune response are emerging as crucial mechanisms in the disease pathology. The gut microbiome and kidney disease exert a reciprocal influence commonly referred to as "the gut-kidney axis" through the induction of metabolic, immunological, and endocrine alterations. Periodontal diseases are strictly involved in the gut-kidney axis for their impact on the gut microbiota composition and for the metabolic and immunological alterations occurring in and reciprocally affecting both conditions. This review aims to provide an overview of the dynamic biological interconnections between oral health status, gut, and renal pathophysiology, spotlighting the dynamic oral-gut-kidney axis and raising whether periodontal diseases and gut microbiota can be disease modifiers in CKD. By doing so, we try to offer new insights into therapeutic strategies that may enhance the clinical trajectory of CKD patients, ultimately advancing our quest for improved patient outcomes and well-being.
Collapse
Affiliation(s)
- Serena Altamura
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (D.P.); (C.F.)
- PhD School in Medicine and Public Health, Center of Oral Diseases, Prevention and Translational Research—Dental Clinic, 67100 L’Aquila, Italy
- Oral Diseases and Systemic Interactions Study Group (ODISSY Group), 67100 L’Aquila, Italy
| | - Davide Pietropaoli
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (D.P.); (C.F.)
- Oral Diseases and Systemic Interactions Study Group (ODISSY Group), 67100 L’Aquila, Italy
- Center of Oral Diseases, Prevention and Translational Research—Dental Clinic, 67100 L’Aquila, Italy
| | - Francesca Lombardi
- Laboratory of Immunology and Immunopathology, Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Rita Del Pinto
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (D.P.); (C.F.)
- Oral Diseases and Systemic Interactions Study Group (ODISSY Group), 67100 L’Aquila, Italy
- Unit of Internal Medicine and Nephrology, Center for Hypertension and Cardiovascular Prevention, San Salvatore Hospital, 67100 L’Aquila, Italy
| | - Claudio Ferri
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (D.P.); (C.F.)
- Oral Diseases and Systemic Interactions Study Group (ODISSY Group), 67100 L’Aquila, Italy
- Unit of Internal Medicine and Nephrology, Center for Hypertension and Cardiovascular Prevention, San Salvatore Hospital, 67100 L’Aquila, Italy
| |
Collapse
|
8
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Endoplasmic reticulum homeostasis: a potential target for diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1182848. [PMID: 37383398 PMCID: PMC10296190 DOI: 10.3389/fendo.2023.1182848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
The endoplasmic reticulum (ER) is the most vigorous organelle in intracellular metabolism and is involved in physiological processes such as protein and lipid synthesis and calcium ion transport. Recently, the abnormal function of the ER has also been reported to be involved in the progression of kidney disease, especially in diabetic nephropathy (DN). Here, we reviewed the function of the ER and summarized the regulation of homeostasis through the UPR and ER-phagy. Then, we also reviewed the role of abnormal ER homeostasis in residential renal cells in DN. Finally, some ER stress activators and inhibitors were also summarized, and the possibility of maintaining ER homeostasis as a potential therapeutic target for DN was discussed.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
9
|
Liu HY, Lee CH, Hsu CN, Tain YL. Maternal High-Fat Diet Controls Offspring Kidney Health and Disease. Nutrients 2023; 15:2698. [PMID: 37375602 DOI: 10.3390/nu15122698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A balanced diet during gestation is critical for fetal development, and excessive intake of saturated fats during gestation and lactation is related to an increased risk of offspring kidney disease. Emerging evidence indicates that a maternal high-fat diet influences kidney health and disease of the offspring via so-called renal programming. This review summarizes preclinical research documenting the connection between a maternal high-fat diet during gestation and lactation and offspring kidney disease, as well as the molecular mechanisms behind renal programming, and early-life interventions to offset adverse programming processes. Animal models indicate that offspring kidney health can be improved via perinatal polyunsaturated fatty acid supplementation, gut microbiota changes, and modulation of nutrient-sensing signals. These findings reinforce the significance of a balanced maternal diet for the kidney health of offspring.
Collapse
Affiliation(s)
- Hsi-Yun Liu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chen-Hao Lee
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
10
|
Suh SH, Oh TR, Choi HS, Kim CS, Bae EH, Oh KH, Han SH, Ma SK, Kim SW. Serum triglycerides level is independently associated with renal outcomes in patients with non-dialysis chronic kidney disease: Results from KNOW-CKD study. Front Nutr 2022; 9:1037618. [PMID: 36505239 PMCID: PMC9729769 DOI: 10.3389/fnut.2022.1037618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
To investigate whether high serum triglycerides (TG) level is associated with adverse renal outcomes in patients with non-dialysis chronic kidney disease (CKD), a total of 2,158 subjects from a prospective cohort study (Korean Cohort Study for Outcome in Patients With Chronic Kidney Disease) were divided into the quartile by serum TG level. The primary outcomes were composite renal events, which is defined as a composite of decline of kidney function (the first occurrence of > 50% decline of estimated glomerular filtration rate or doubling of serum creatinine from the baseline) or onset of end-stage renal disease (initiation of dialysis or kidney transplantation). During the median follow-up of 6.940 years, the cumulative incidence of composite renal event was significantly differed by serum TG level in Kaplan-Meier curve analysis (P < 0.001, by Log-rank test). Cox regression analysis demonstrated that, compared to that of the 1st quartile, the risk of composite renal event was significantly higher in the 4th quartile (adjusted hazard ratio 1.433, 95% confidence interval 1.046 to 1.964). The association between high serum TG level and adverse renal outcome remained consistent in the cause-specific hazard model. Subgroup analyses revealed that the association is modified by age, estimated glomerular filtration rate, and spot urine albumin-to-creatinine ratio. In conclusion, high serum TG level is independently associated with adverse renal outcomes in patients with non-dialysis CKD. Interventional studies are warranted to determine whether lowering serum TG levels may alter the natural course of CKD.
Collapse
Affiliation(s)
- Sang Heon Suh
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, South Korea
| | - Tae Ryom Oh
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, South Korea
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, South Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, South Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, South Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, South Korea,*Correspondence: Seong Kwon Ma
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, South Korea,Soo Wan Kim
| |
Collapse
|
11
|
Rinaldi A, Lazareth H, Poindessous V, Nemazanyy I, Sampaio JL, Malpetti D, Bignon Y, Naesens M, Rabant M, Anglicheau D, Cippà PE, Pallet N. Impaired fatty acid metabolism perpetuates lipotoxicity along the transition to chronic kidney injury. JCI Insight 2022; 7:161783. [PMID: 35998043 DOI: 10.1172/jci.insight.161783] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Energy metabolism failure in proximal tubule cells (PTC) is a hallmark of chronic kidney injury. We combined transcriptomic, metabolomic and lipidomic approaches in experimental models and patient cohorts to investigate the molecular bases of the progression to chronic kidney allograft injury initiated by ischemia-reperfusion injury (IRI). The urinary metabolome of kidney transplant recipients with chronic allograft injury and who experienced severe IRI was significantly enriched with long chain fatty acids (FA). We identified a renal FA-related gene signature with low levels of Cpt2 and Acsm5 and high levels of Acsl4 and Acsm5 associated with IRI, transition to chronic injury, and established CKD in mouse models and kidney transplant recipients. The findings were consistent with the presence of Cpt2-, Acsl4+, Acsl5+, Acsm5- PTC failing to recover from IRI as identified by snRNAseq. In vitro experiments indicated that endoplasmic reticulum (ER) stress contributes to CPT2 repression, which, in turn, promotes lipids accumulation, drives profibrogenic epithelial phenotypic changes, and activates the unfolded protein response. ER stress through CPT2 inhibition and lipid accumulation, engages an auto-amplification loop leading to lipotoxicity and self-sustained cellular stress. Thus, IRI imprints a persistent FA metabolism disturbance in the proximal tubule sustaining the progression to chronic kidney allograft injury.
Collapse
Affiliation(s)
- Anna Rinaldi
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Hélène Lazareth
- Centre de Recherche des Cordeliers, INSERM U1138, Paris, France
| | | | - Ivan Nemazanyy
- PMM: The Metabolism-Metabolome Platform, Necker Federative Research Structu, INSERM US24/CNRS, UMS3633, Paris, France
| | - Julio L Sampaio
- CurieCoreTech Metabolomics and Lipidomics Technology Platform, Paris, France
| | - Daniele Malpetti
- Instituto Dalle Molle di Studi sull'Intelligenza Artificiale, Lugano, Switzerland
| | - Yohan Bignon
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Marion Rabant
- Department of Pathology, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Dany Anglicheau
- Department of Kidney Transplantation, Necker Hospital, Paris, France
| | - Pietro E Cippà
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Nicolas Pallet
- Centre de Recherche des Cordeliers, INSERM U1138, Paris, France
| |
Collapse
|
12
|
Maternal High-Fat Diet and Offspring Hypertension. Int J Mol Sci 2022; 23:ijms23158179. [PMID: 35897755 PMCID: PMC9332200 DOI: 10.3390/ijms23158179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
The incidence of hypertension has increased to epidemic levels in the past decades. Increasing evidence reveals that maternal dietary habits play a crucial role in the development of hypertension in adult offspring. In humans, increased fat consumption has been considered responsible for obesity and associated diseases. Maternal diets rich in saturated fats have been widely employed in animal models to study various adverse offspring outcomes. In this review, we discussed current evidence linking maternal high-fat diet to offspring hypertension. We also provided an in-depth overview of the potential mechanisms underlying hypertension of developmental origins that are programmed by maternal high-fat intake from animal studies. Furthermore, this review also presented an overview of how reprogramming interventions can prevent maternal high-fat-diet-induced hypertension in adult offspring. Overall, recent advances in understanding mechanisms behind programming and reprogramming of maternal high-fat diet on hypertension of developmental origins might provide the answers to curtail this epidemic. Still, more research is needed to translate research findings into practice.
Collapse
|
13
|
Stasi A, Cosola C, Caggiano G, Cimmarusti MT, Palieri R, Acquaviva PM, Rana G, Gesualdo L. Obesity-Related Chronic Kidney Disease: Principal Mechanisms and New Approaches in Nutritional Management. Front Nutr 2022; 9:925619. [PMID: 35811945 PMCID: PMC9263700 DOI: 10.3389/fnut.2022.925619] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is the epidemic of our era and its incidence is supposed to increase by more than 30% by 2030. It is commonly defined as a chronic and metabolic disease with an excessive accumulation of body fat in relation to fat-free mass, both in terms of quantity and distribution at specific points on the body. The effects of obesity have an important impact on different clinical areas, particularly endocrinology, cardiology, and nephrology. Indeed, increased rates of obesity have been associated with increased risk of cardiovascular disease (CVD), cancer, type 2 diabetes (T2D), dyslipidemia, hypertension, renal diseases, and neurocognitive impairment. Obesity-related chronic kidney disease (CKD) has been ascribed to intrarenal fat accumulation along the proximal tubule, glomeruli, renal sinus, and around the kidney capsule, and to hemodynamic changes with hyperfiltration, albuminuria, and impaired glomerular filtration rate. In addition, hypertension, dyslipidemia, and diabetes, which arise as a consequence of overweight, contribute to amplifying renal dysfunction in both the native and transplanted kidney. Overall, several mechanisms are closely related to the onset and progression of CKD in the general population, including changes in renal hemodynamics, neurohumoral pathways, renal adiposity, local and systemic inflammation, dysbiosis of microbiota, insulin resistance, and fibrotic process. Unfortunately, there are no clinical practice guidelines for the management of patients with obesity-related CKD. Therefore, dietary management is based on the clinical practice guidelines for the nutritional care of adults with CKD, developed and published by the National Kidney Foundation, Kidney Disease Outcome Quality Initiative and common recommendations for the healthy population. Optimal nutritional management of these patients should follow the guidelines of the Mediterranean diet, which is known to be associated with a lower incidence of CVD and beneficial effects on chronic diseases such as diabetes, obesity, and cognitive health. Mediterranean-style diets are often unsuccessful in promoting efficient weight loss, especially in patients with altered glucose metabolism. For this purpose, this review also discusses the use of non-classical weight loss approaches in CKD, including intermittent fasting and ketogenic diet to contrast the onset and progression of obesity-related CKD.
Collapse
|
14
|
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022; 7:182. [PMID: 35680856 PMCID: PMC9184651 DOI: 10.1038/s41392-022-01036-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic renal dysfunction syndrome that is characterized by nephron loss, inflammation, myofibroblasts activation, and extracellular matrix (ECM) deposition. Lipotoxicity and oxidative stress are the driving force for the loss of nephron including tubules, glomerulus, and endothelium. NLRP3 inflammasome signaling, MAPK signaling, PI3K/Akt signaling, and RAAS signaling involves in lipotoxicity. The upregulated Nox expression and the decreased Nrf2 expression result in oxidative stress directly. The injured renal resident cells release proinflammatory cytokines and chemokines to recruit immune cells such as macrophages from bone marrow. NF-κB signaling, NLRP3 inflammasome signaling, JAK-STAT signaling, Toll-like receptor signaling, and cGAS-STING signaling are major signaling pathways that mediate inflammation in inflammatory cells including immune cells and injured renal resident cells. The inflammatory cells produce and secret a great number of profibrotic cytokines such as TGF-β1, Wnt ligands, and angiotensin II. TGF-β signaling, Wnt signaling, RAAS signaling, and Notch signaling evoke the activation of myofibroblasts and promote the generation of ECM. The potential therapies targeted to these signaling pathways are also introduced here. In this review, we update the key signaling pathways of lipotoxicity, oxidative stress, inflammation, and myofibroblasts activation in kidneys with chronic injury, and the targeted drugs based on the latest studies. Unifying these pathways and the targeted therapies will be instrumental to advance further basic and clinical investigation in CKD.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
15
|
Wu Z, Yu S, Kang X, Liu Y, Xu Z, Li Z, Wang J, Miao X, Liu X, Li X, Zhang J, Wang W, Tao L, Guo X. Association of visceral adiposity index with incident nephropathy and retinopathy: a cohort study in the diabetic population. Cardiovasc Diabetol 2022; 21:32. [PMID: 35209907 PMCID: PMC8876445 DOI: 10.1186/s12933-022-01464-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background The association between visceral adiposity index (VAI) and diabetic complications has been reported in cross-sectional studies, while the effect of VAI on complication development remains unclear. This study aims to evaluate the longitudinal association of VAI and Chinese VAI (CVAI) with the incidence of diabetic nephropathy and retinopathy using a Chinese cohort. Methods A total of 8 948 participants with type 2 diabetes from Beijing Health Management Cohort were enrolled during 2013–2014, and followed until December 31, 2019. Nephropathy was confirmed by urine albumin/creatinine ratio and estimated glomerular filtration rate; retinopathy was diagnosed using fundus photograph. Results The mean (SD) age was 53.35 (14.66) years, and 6 154 (68.8%) were men. During a median follow-up of 4.82 years, 467 participants developed nephropathy and 90 participants developed retinopathy. One-SD increase in VAI and CVAI levels were significantly associated with an increased risk of nephropathy, and the adjusted hazard ratios (HR) were 1.127 (95% CI 1.050–1.210) and 1.165 (95% CI 1.003–1.353), respectively. On contrary, VAI and CVAI level were not associated with retinopathy after adjusting confounding factors. Conclusion VAI and CVAI are independently associated with the development of nephropathy, but not retinopathy in Chinese adults with diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01464-1.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China.,Centre for Precision Health, Edith Cowan University, Perth, Australia
| | - Siqi Yu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | | | - Yue Liu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Zongkai Xu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Zhiwei Li
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Jinqi Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Xinlei Miao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Xiangtong Liu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne, Australia
| | - Jingbo Zhang
- Beijing Physical Examination Center, Beijing, China
| | - Wei Wang
- Centre for Precision Health, Edith Cowan University, Perth, Australia
| | - Lixin Tao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China.
| | - Xiuhua Guo
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China. .,Centre for Precision Health, Edith Cowan University, Perth, Australia.
| |
Collapse
|
16
|
Chen S, Chen J, Li S, Guo F, Li A, Wu H, Chen J, Pan Q, Liao S, Liu HF, Pan Q. High-Fat Diet-Induced Renal Proximal Tubular Inflammatory Injury: Emerging Risk Factor of Chronic Kidney Disease. Front Physiol 2021; 12:786599. [PMID: 34950058 PMCID: PMC8688947 DOI: 10.3389/fphys.2021.786599] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Nowadays, with the improvements in living standards and changes in living habits, high-fat diet (HFD) has become much more common in the populations worldwide. Recent studies have shown that HFD could induce lipid accumulation, and structural and functional abnormalities, accompanied by the release of large amounts of pro-inflammatory cytokines, in proximal tubular epithelial cells (PTECs). These findings indicate that, as an emerging risk factor, PTEC injury-induced by HFD may be closely related to inflammation; however, the potential mechanisms underlying this phenomenon is still not well-known, but may involve the several inflammatory pathways, including oxidative stress-related signaling pathways, mitochondrial dysfunction, the myeloid differentiation factor 2/Toll like receptor 4 (MD2/TLR4) signaling pathway, the ERK1/2-kidney injury molecule 1 (KIM-1)-related pathway, and nuclear factor-κB (NF-κB) activation, etc., and the detailed molecular mechanisms underlying these pathways still need further investigated in the future. Based on lipid abnormalities-induced inflammation is closely related to the development and progression of chronic kidney disease (CKD), to summarize the potential mechanisms underlying HFD-induced renal proximal tubular inflammatory injury, may provide novel approaches for CKD treatment.
Collapse
Affiliation(s)
- Shuxian Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinxia Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shangmei Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Han Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaxuan Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Quanren Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
17
|
Castro BBA, Foresto-Neto O, Saraiva-Camara NO, Sanders-Pinheiro H. Renal lipotoxicity: Insights from experimental models. Clin Exp Pharmacol Physiol 2021; 48:1579-1588. [PMID: 34314523 DOI: 10.1111/1440-1681.13556] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
In recent decades, there has been a progressive increase in the prevalence of obesity and chronic kidney disease. Renal lipotoxicity has been associated with obesity. Although lipids play fundamental physiological roles, the accumulation of lipids in kidney cells may cause dysfunction and/or renal fibrosis. Adipose tissue that exceeds their lipid storage capacity begins to release triglycerides into the bloodstream that can get stored in several organs, including the kidneys. The mechanisms underlying renal lipotoxicity involve intracellular lipid accumulation and organelle dysfunction, which trigger oxidative stress and inflammation that consequently result in insulin resistance and albuminuria. However, the specific pathways involved in renal lipotoxicity have not yet been fully understood. We aimed to summarize the current knowledge on the mechanisms by which lipotoxicity affects the renal morphology and function in experimental models of obesity. The accumulation of fatty acids in tubular cells has been described as the main mechanism of lipotoxicity; however, lipids and their metabolism also affect the function and the survival of podocytes. In this review, we presented indication of mitochondrial, lysosomal and endoplasmic reticulum alterations involved in kidney damage caused by obesity. The kidney is vulnerable to lipotoxicity, and studies of the mechanisms underlying renal injury caused by obesity can help identify therapeutic targets to control renal dysfunction.
Collapse
Affiliation(s)
- Barbara Bruna Abreu Castro
- Laboratory of Experimental Nephrology, Nucleus of Animal Experimentation (NIDEAL), Centre of Reproductive Biology (CBR), Federal University of Juiz de Fora (UFJF, Juiz de Fora, Minas Gerais, Brazil
- Nephrology Division and Interdisciplinary Nucleus of Studies and Research in Nephrology (NIEPEN), Federal University of Juiz de Fora (UFJF, Juiz de Fora, Minas Gerais, Brazil
| | - Orestes Foresto-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP, São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva-Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP, São Paulo, São Paulo, Brazil
| | - Helady Sanders-Pinheiro
- Laboratory of Experimental Nephrology, Nucleus of Animal Experimentation (NIDEAL), Centre of Reproductive Biology (CBR), Federal University of Juiz de Fora (UFJF, Juiz de Fora, Minas Gerais, Brazil
- Nephrology Division and Interdisciplinary Nucleus of Studies and Research in Nephrology (NIEPEN), Federal University of Juiz de Fora (UFJF, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
18
|
Kale A, Sankrityayan H, Anders HJ, Gaikwad AB. Klotho in kidney diseases: A crosstalk between the renin-angiotensin system and endoplasmic reticulum stress. Nephrol Dial Transplant 2021; 38:819-825. [PMID: 34850136 DOI: 10.1093/ndt/gfab340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 11/15/2022] Open
Abstract
Klotho is a transmembrane anti-ageing protein that exists in three forms, i.e., α-Klotho, β-Klotho, and γ-Klotho with distinct organ-specific expression and functions in the body. Here we focus on α-Klotho (mentioned as 'Klotho' only), abundantly expressed by the distal and proximal convoluted tubules of the kidney. Significant decline in systemic and renal Klotho level is a new hallmark for kidney disease progression. Emerging research portrays Klotho as a promising diagnostic as well as a therapeutic target for diabetic and non-diabetic kidney disease. Even so, the underlying mechanisms of Klotho regulation and the strategies to restore its systemic as well as the renal level are still lacking. Angiotensin-converting enzyme inhibitors (ACEi) and/or angiotensin receptor blockers (ARBs) are the current standard of care for kidney diseases where the molecular mechanisms for their nephroprotective action are still ambiguous. Moreover, endoplasmic reticulum stress (ER stress) also plays a crucial role in kidney disease progression. Few studies have claimed that RAAS has a direct relation with ER stress generation and vice versa in kidney disease. Interestingly, RAAS and ER stress modulation is associated with Klotho regulation in kidney disease. Here we focus on how the RAAS and ER stress connects with Klotho regulation in kidney disease. We also discuss Klotho and ER stress in an alliance with the concept of hemodynamic and metabolic overload in kidney disease. In addition, we highlight novel approaches to implement Klotho as a therapeutic target via RAAS and ER stress modulation for the treatment of diabetic and non-diabetic kidney disease.
Collapse
Affiliation(s)
- Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India
| | - Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India
| |
Collapse
|
19
|
Wang H, Zhang S, Guo J. Lipotoxic Proximal Tubular Injury: A Primary Event in Diabetic Kidney Disease. Front Med (Lausanne) 2021; 8:751529. [PMID: 34760900 PMCID: PMC8573085 DOI: 10.3389/fmed.2021.751529] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
The pathogenesis of diabetic nephropathy is a complex process that has a great relationship with lipotoxicity. Since the concept of “nephrotoxicity” was proposed, many studies have confirmed that lipotoxicity plays a significant role in the progression of diabetic nephropathy and causes various renal dysfunction. This review will make a brief summary of renal injury caused by lipotoxicity that occurs primarily and predominantly in renal tubules during diabetic progression, further leading to glomerular dysfunction. The latest research suggests that lipotoxicity-mediated tubular injury may be a major event in diabetic nephropathy.
Collapse
Affiliation(s)
- Hua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Nephrology, Nephropathy Research Institutes of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Abstract
The kidney is one of the target organs that may show health disorders as a result of obesity. Obesity-related glomerulopathy (ORG) is a kidney disease category based on a biopsy diagnosis that may occur secondary to obesity. Detailed clinicopathologic observations of ORG have provided significant knowledge regarding obesity-associated renal complications. Glomerulomegaly with focal segmental glomerulosclerosis of perihilar locations is a typical renal histopathologic finding in ORG, which has long been considered to represent a state of single-nephron glomerular hyperfiltration. This hypothesis was recently confirmed in ORG patients by estimating single-nephron glomerular filtration rate using a combined image analysis and biopsy-based stereology. Overshooting in glomerulotubular and tubuloglomerular interactions may lead to glomerular hyperfiltration/hypertension, podocyte failure, tubular protein-traffic overload, and tubulointerstitial scarring, constituting a vicious cycle of a common pathway to the further loss of functioning nephrons and the progression of kidney functional impairment.
Collapse
Affiliation(s)
- Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Yusuke Okabayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Lipid Disorders in NAFLD and Chronic Kidney Disease. Biomedicines 2021; 9:biomedicines9101405. [PMID: 34680522 PMCID: PMC8533451 DOI: 10.3390/biomedicines9101405] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver dysfunction and is characterized by exaggerated lipid accumulation, inflammation and even fibrosis. It has been shown that NAFLD increases the risk of other chronic diseases, particularly chronic kidney disease (CKD). Lipid in excess could lead to liver and kidney lesions and even end-stage disease through diverse pathways. Dysregulation of lipid uptake, oxidation or de novo lipogenesis contributes to the toxic effects of ectopic lipids which promotes the development and progression of NAFLD and CKD via triggering oxidative stress, apoptosis, pro-inflammatory and profibrotic responses. Importantly, dyslipidemia and release of pro-inflammatory cytokines caused by NAFLD (specifically, nonalcoholic steatohepatitis) are considered to play important roles in the pathological progression of CKD. Growing evidence of similarities between the pathogenic mechanisms of NAFLD and those of CKD has attracted attention and urged researchers to discover their common therapeutic targets. Here, we summarize the current understanding of molecular aberrations underlying the lipid metabolism of NAFLD and CKD and clinical evidence that suggests the relevance of these pathways in humans. This review also highlights the orchestrated inter-organ cross-talk in lipid disorders, as well as therapeutic options and opportunities to counteract NAFLD and CKD.
Collapse
|
22
|
Liu HH, Li XQ, Liu JF, Cui S, Liu H, Hu B, Huang SB, Wang L, Yang W, Wang CC, Meng Y. miR-6869-5p Transported by Plasma Extracellular Vesicles Mediates Renal Tubule Injury and Renin-Angiotensin System Activation in Obesity. Front Med (Lausanne) 2021; 8:725598. [PMID: 34568382 PMCID: PMC8455906 DOI: 10.3389/fmed.2021.725598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity increases the risk of other diseases, including kidney disease. Local renal tubular renin-angiotensin system (RAS) activation may play a role in obesity-associated kidney disease. Extracellular vehicles (EVs) transmit necessary information in obesity and cause remote organ damage, but the mechanism is unclear. The aim of the study was to investigate whether the plasma EVs cargo miR-6869-5p causes RAS activation and renal tubular damage. We isolated plasma EVs from obese and lean subjects and analyzed differentially-expressed miRNAs using RNA-seq. Then, EVs were co-cultured with human proximal renal tubular epithelial cells (PTECs) in vitro. Immunohistochemical pathology was used to assess the degree of RAS activation and tubule injury in vivo. The tubule damage-associated protein and RAS activation components were detected by Western blot. Obesity led to renal tubule injury and RAS activation in humans and mice. Obese-EVs induce RAS activation and renal tubular injury in PTECs. Importantly, miR-6869-5p-treated PTECs caused RAS activation and renal tubular injury, similar to Obese-EVs. Inhibiting miR-6869-5p decreased RAS activation and renal tubular damage. Our findings indicate that plasma Obese-EVs induce renal tubule injury and RAS activation via miR-6869-5p transport. Thus, miR-6869-5p in plasma Obese-EVs could be a therapeutic target for local RAS activation in obesity-associated kidney disease.
Collapse
Affiliation(s)
- Huan-Huan Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xia-Qing Li
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jin-Feng Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuang Cui
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Han Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bo Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Si-Bo Huang
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Wang
- Nephrology Department, Southern Medical University Affiliated Longhua People's Hospital, Shenzhen, China
| | - Wah Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Jinan University Institute of Obesity and Metabolic Disorders, Guangzhou, China
| | - Cun-Chuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Jinan University Institute of Obesity and Metabolic Disorders, Guangzhou, China
| | - Yu Meng
- Central Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan, China.,Jinan University Institute of Nephrology, Guangzhou, China
| |
Collapse
|
23
|
Effects of Virgin Olive Oil on Blood Pressure and Renal Aminopeptidase Activities in Male Wistar Rats. Int J Mol Sci 2021; 22:ijms22105388. [PMID: 34065436 PMCID: PMC8161085 DOI: 10.3390/ijms22105388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
High saturated fat diets have been associated with the development of obesity and hypertension, along with other pathologies related to the metabolic syndrome. In contrast, the Mediterranean diet, characterized by its high content of monounsaturated fatty acids, has been proposed as a dietary factor capable of positively regulating cardiovascular function. These effects have been linked to changes in the local renal renin angiotensin system (RAS) and the activity of the sympathetic nervous system. The main goal of this study was to analyze the role of two dietary fat sources on aminopeptidases activities involved in local kidney RAS. Male Wistar rats (six months old) were fed during 24 weeks with three different diets: the standard diet (S), the standard diet supplemented with virgin olive oil (20%) (VOO), or the standard diet enriched with butter (20%) plus cholesterol (0.1%) (Bch). Kidney samples were separated in medulla and cortex for aminopeptidase activities (AP) assay. Urine samples were collected for routine analysis by chemical tests. Aminopeptidase activities were determined by fluorometric methods in soluble (sol) and membrane-bound (mb) fractions of renal tissue, using arylamide derivatives as substrates. After the experimental period, the systolic blood pressure (SBP) values were similar in standard and VOO animals, and significantly lower than in the Bch group. At the same time, a significant increase in GluAP and IRAP activities were found in renal medulla of Bch animals. However, in VOO group the increase of GluAP activity in renal medulla was lower, while AspAP activity decreased in the renal cortex. Furthermore, the VOO diet also affected other aminopeptidase activities, such as TyrAP and pGluAP, related to the regulation of the sympathetic nervous system and the metabolic rate. These results support the beneficial effect of VOO in the regulation of SBP through changes in local AP activities of the kidney.
Collapse
|
24
|
Lubojemska A, Stefana MI, Sorge S, Bailey AP, Lampe L, Yoshimura A, Burrell A, Collinson L, Gould AP. Adipose triglyceride lipase protects renal cell endocytosis in a Drosophila dietary model of chronic kidney disease. PLoS Biol 2021; 19:e3001230. [PMID: 33945525 PMCID: PMC8121332 DOI: 10.1371/journal.pbio.3001230] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 05/14/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity-related renal lipotoxicity and chronic kidney disease (CKD) are prevalent pathologies with complex aetiologies. One hallmark of renal lipotoxicity is the ectopic accumulation of lipid droplets in kidney podocytes and in proximal tubule cells. Renal lipid droplets are observed in human CKD patients and in high-fat diet (HFD) rodent models, but their precise role remains unclear. Here, we establish a HFD model in Drosophila that recapitulates renal lipid droplets and several other aspects of mammalian CKD. Cell type-specific genetic manipulations show that lipid can overflow from adipose tissue and is taken up by renal cells called nephrocytes. A HFD drives nephrocyte lipid uptake via the multiligand receptor Cubilin (Cubn), leading to the ectopic accumulation of lipid droplets. These nephrocyte lipid droplets correlate with endoplasmic reticulum (ER) and mitochondrial deficits, as well as with impaired macromolecular endocytosis, a key conserved function of renal cells. Nephrocyte knockdown of diglyceride acyltransferase 1 (DGAT1), overexpression of adipose triglyceride lipase (ATGL), and epistasis tests together reveal that fatty acid flux through the lipid droplet triglyceride compartment protects the ER, mitochondria, and endocytosis of renal cells. Strikingly, boosting nephrocyte expression of the lipid droplet resident enzyme ATGL is sufficient to rescue HFD-induced defects in renal endocytosis. Moreover, endocytic rescue requires a conserved mitochondrial regulator, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1α). This study demonstrates that lipid droplet lipolysis counteracts the harmful effects of a HFD via a mitochondrial pathway that protects renal endocytosis. It also provides a genetic strategy for determining whether lipid droplets in different biological contexts function primarily to release beneficial or to sequester toxic lipids.
Collapse
Affiliation(s)
- Aleksandra Lubojemska
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - M. Irina Stefana
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sebastian Sorge
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrew P. Bailey
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Lena Lampe
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Azumi Yoshimura
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Alana Burrell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Alex P. Gould
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Salman AA, Salman MA, Shawkat M, Hassan SA, Saad EH, Hussein AM, Refaie ORM, Tourky MS, Shaaban HED, Abd Allah N, El Domiaty HF, Elkassar H. Effect of laparoscopic sleeve gastrectomy on vasoactive mediators in obese hypertensive patients: A prospective study. Clin Endocrinol (Oxf) 2021; 94:193-203. [PMID: 33064869 DOI: 10.1111/cen.14352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The causal relationship between obesity and high blood pressure is established; however, the detailed pathways for such association are still under research. This work aims to assess the changes in neprilysin, vasoconstrictor and vasodilatory molecules in obese hypertensive patients undergoing laparoscopic sleeve gastrectomy (LSG). PATIENTS The present prospective study was done on 59 hypertensive obese patients in whom LGS was performed. Blood pressure, as well as blood samples for neprilysin, angiotensinogen, angiotensin II, renin, endothelin-1 "ET-1", aldosterone, atrial natriuretic peptide "ANP" and B-type natriuretic peptide "BNP", were assessed before and 15 months after surgery. Patients were divided into two groups according to the remission of hypertension (HTN). RESULTS After 15 months, remission of hypertension was seen in 42 patients (71%). The declines in the following measurements were significantly higher in patients with remission than those with persistent HTN: aldosterone (p = .029567), angiotensin II (p < .000001), angiotensinogen (p = .000021), neprilysin (p = .000601), renin (p = .000454) and endothelin-1(p = .000030). There was a significantly higher increment in ANP (p = .000002) and a non-significant increment in BNP (p = .081740). Angiotensin II 15 months after LSG and Δ ANP % were significant independent predictors of persistent HTN. CONCLUSION In the setting of LSG, aldosterone, angiotensinogen, angiotensin II, renin and neprilysin were significantly lower in patients with remission of HTN after 15 months than those with persistent HTN, and natriuretic peptides were significantly higher. A lower postoperative level of angiotensin II and a larger percentage increment of ANP are independently associated with hypertension remission after LSG.
Collapse
Affiliation(s)
| | | | - Mohamed Shawkat
- Internal Medicine Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Shady A Hassan
- Internal Medicine Department, Faculty of medicine, Cairo University, Cairo, Egypt
| | - Eman H Saad
- Internal Medicine Department, Faculty of medicine, Cairo University, Cairo, Egypt
| | | | - Osama R M Refaie
- General Surgery Department, Faculty of medicine, Cairo University, Cairo, Egypt
| | | | - Hossam El-Din Shaaban
- Gastroenterology & Hepatology Department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Nesrin Abd Allah
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Al Minufiyah, Egypt
| | - Heba Fathy El Domiaty
- Clinical Physiology Department, Faculty of Medicine, Menoufia University, Al Minufiyah, Egypt
| | - Hesham Elkassar
- Internal Medicine Department, Faculty of medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
26
|
Kong Y, Zhao X, Qiu M, Lin Y, Feng P, Li S, Liang B, Zhu Q, Huang H, Li C, Wang W. Tubular Mas receptor mediates lipid-induced kidney injury. Cell Death Dis 2021; 12:110. [PMID: 33479200 PMCID: PMC7817966 DOI: 10.1038/s41419-020-03375-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Obesity-related kidney diseases are becoming serious health problems worldwide, yet the mechanism by which obesity causes kidney injury is not fully understood. The purpose of current study was to investigate the role of Mas receptor in lipid-induced kidney injury. In mice fed with high-fat diet (HFD), the protein abundance of markers of autophagy, endoplasmic reticulum stress (ER stress) and apoptosis was dramatically increased in the kidney cortex, which was markedly prevented by Mas deletion (Mas-/-) or Mas receptor antagonist A779. Palmitic acid (PA) induced persistently increased autophagy, ER stress, and apoptosis as well as mitochondrial injuries in primary cultured proximal tubular cells from wild type, but not from Mas-/- mice. In human proximal tubular HK2 cells, PA-induced autophagy and ER stress was aggravated by Mas agonists Ang (1-7) or AVE0991, but attenuated by A779 or Mas knockdown. Stimulation of Mas resulted in elevated intracellular calcium levels [Ca2+]i in HK2 cells treated with PA, whereas inhibition or knockdown of Mas decreased [Ca2+]i. Mitochondrial outer membrane located voltage-dependent anion channel (VDAC1) was markedly upregulated in HK2 cells treated with PA, which was associated with impaired mitochondrial morphology and depolarization. These were enhanced by AVE0991 and suppressed by A779 or Mas knockdown. Mas knockdown in HK2 cells prevented impaired interactions among VDAC1, autophagy adaptor P62, and ubiquitin, induced by PA, leading to a potential ubiquitination of VDAC1. In conclusion, Mas receptor-mediated lipid-induced impaired autophagy and ER stress in the kidney, likely contributing to tubular injuries in obesity-related kidney diseases.
Collapse
Affiliation(s)
- Yonglun Kong
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoduo Zhao
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Miaojuan Qiu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Research Center, The Seventh Affliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yu Lin
- Department of Pathology, Zhujiang Hospitial, Southern Medical University, Guangzhou, 510282, China
| | - Pinning Feng
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Suchun Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Baien Liang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Zhu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Department of Nephrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
27
|
Delgado-Valero B, de la Fuente-Chávez L, Romero-Miranda A, Visitación Bartolomé M, Ramchandani B, Islas F, Luaces M, Cachofeiro V, Martínez-Martínez E. Role of endoplasmic reticulum stress in renal damage after myocardial infarction. Clin Sci (Lond) 2021; 135:143-159. [PMID: 33355632 DOI: 10.1042/cs20201137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is associated with renal alterations resulting in poor outcomes in patients with MI. Renal fibrosis is a potent predictor of progression in patients and is often accompanied by inflammation and oxidative stress; however, the mechanisms involved in these alterations are not well established. Endoplasmic reticulum (ER) plays a central role in protein processing and folding. An accumulation of unfolded proteins leads to ER dysfunction, termed ER stress. Since the kidney is the organ with highest protein synthesis fractional rate, we herein investigated the effects of MI on ER stress at renal level, as well as the possible role of ER stress on renal alterations after MI. Patients and MI male Wistar rats showed an increase in the kidney injury marker neutrophil gelatinase-associated lipocalin (NGAL) at circulating level or renal level respectively. Four weeks post-MI rats presented renal fibrosis, oxidative stress and inflammation accompanied by ER stress activation characterized by enhanced immunoglobin binding protein (BiP), protein disulfide-isomerase A6 (PDIA6) and activating transcription factor 6-alpha (ATF6α) protein levels. In renal fibroblasts, palmitic acid (PA; 50-200 µM) and angiotensin II (Ang II; 10-8 to 10-6M) promoted extracellular matrix, superoxide anion production and inflammatory markers up-regulation. The presence of the ER stress inhibitor, 4-phenylbutyric acid (4-PBA; 4 µM), was able to prevent all of these modifications in renal cells. Therefore, the data show that ER stress mediates the deleterious effects of PA and Ang II in renal cells and support the potential role of ER stress on renal alterations associated with MI.
Collapse
Affiliation(s)
- Beatriz Delgado-Valero
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Lucía de la Fuente-Chávez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Ana Romero-Miranda
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María Visitación Bartolomé
- Departmento de Inmunología, Oftalmología y Otorrinolaringología, Facultad de Psicología, Universidad Complutense Madrid, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Bunty Ramchandani
- Servicio de Cirugía Cardiaca Infantil, Hospital La Paz, Madrid, Spain
| | - Fabián Islas
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, Madrid, Spain
| | - María Luaces
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, Madrid, Spain
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
28
|
Brennan E, Kantharidis P, Cooper ME, Godson C. Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function. Nat Rev Nephrol 2021; 17:725-739. [PMID: 34282342 PMCID: PMC8287849 DOI: 10.1038/s41581-021-00454-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
Obesity, diabetes mellitus, hypertension and cardiovascular disease are risk factors for chronic kidney disease (CKD) and kidney failure. Chronic, low-grade inflammation is recognized as a major pathogenic mechanism that underlies the association between CKD and obesity, impaired glucose tolerance, insulin resistance and diabetes, through interaction between resident and/or circulating immune cells with parenchymal cells. Thus, considerable interest exists in approaches that target inflammation as a strategy to manage CKD. The initial phase of the inflammatory response to injury or metabolic dysfunction reflects the release of pro-inflammatory mediators including peptides, lipids and cytokines, and the recruitment of leukocytes. In self-limiting inflammation, the evolving inflammatory response is coupled to distinct processes that promote the resolution of inflammation and restore homeostasis. The discovery of endogenously generated lipid mediators - specialized pro-resolving lipid mediators and branched fatty acid esters of hydroxy fatty acids - which promote the resolution of inflammation and attenuate the microvascular and macrovascular complications of obesity and diabetes mellitus highlights novel opportunities for potential therapeutic intervention through the targeting of pro-resolution, rather than anti-inflammatory pathways.
Collapse
Affiliation(s)
- Eoin Brennan
- grid.7886.10000 0001 0768 2743Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Phillip Kantharidis
- grid.1002.30000 0004 1936 7857Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria Australia
| | - Mark E. Cooper
- grid.1002.30000 0004 1936 7857Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria Australia
| | - Catherine Godson
- grid.7886.10000 0001 0768 2743Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Mai X, Yin X, Chen P, Zhang M. Salvianolic Acid B Protects Against Fatty Acid-Induced Renal Tubular Injury via Inhibition of Endoplasmic Reticulum Stress. Front Pharmacol 2020; 11:574229. [PMID: 33384598 PMCID: PMC7770132 DOI: 10.3389/fphar.2020.574229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Background/Aims: Obesity-related kidney disease is associated with elevated levels of saturated free fatty acids (SFA). SFA lipotoxicity in tubular cells contributes to significant cellular apoptosis and injury. Salvianolic acid B (SalB) is the most abundant bioactive molecule from Radix Salviae Miltiorrhizae. In this study, we investigated the effect of SalB on SFA-induced renal tubular injury and endoplasmic reticulum (ER) stress, in vivo and in vitro. Methods: C57BL/6 mice were assigned to five groups: a control group with normal diet (Nor), high-fat diet group (HFD), and HFD with three different SalB treatment doses, low (SalBL; 3 mg/kg), medium (SalBM; 6.25 mg/kg), and high (SalBH; 12.5 mg/kg) doses. SalB was intraperitoneally injected daily for 4 weeks after 8 weeks of HFD. After 12 weeks, mice were sacrificed and kidneys and sera were collected. Apoptosis and ER stress were induced in human proximal tubule epitelial (HK2) cells by palmitic acid (PA, 0.6 mM), tunicamycin (TM, 1 μg/ml), or thapsigargin (TG, 200 nM) in vitro. Results: C57BL/6 mice fed a high-fat diet (HFD) for 12 weeks exhibited increased apoptosis (Bax and cleaved caspase-3) and ER stress (BIP, P-eIF2α, ATF4, CHOP, ATF6, IRE1α, and XBP1s) markers expression in the kidney, compared with control mice, which were remarkably suppressed by SalB treatment. In vitro studies showed that PA (0.6 mM) induced apoptosis and ER stress in cultured HK2 cells. SalB treatment attenuated all the adverse effects of PA. However, SalB failed to inhibit TM or TG-induced ER stress in HK2 cells. Conclusion: The study indicated that SalB may play an important role in obesity-related kidney injury via mediating SFA-induced ER stress.
Collapse
Affiliation(s)
- Xiaoyi Mai
- Department of Critical-care Medicine, Guangdong Provincial Hospital of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,AMI Key Lab of Chinese Medicine in Guangzhou, Guangzhou, China
| | - Xin Yin
- Department of Critical-care Medicine, Guangdong Provincial Hospital of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peipei Chen
- Department of Critical-care Medicine, Guangdong Provincial Hospital of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,AMI Key Lab of Chinese Medicine in Guangzhou, Guangzhou, China
| | - Minzhou Zhang
- Department of Critical-care Medicine, Guangdong Provincial Hospital of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,AMI Key Lab of Chinese Medicine in Guangzhou, Guangzhou, China
| |
Collapse
|
30
|
Engin AB, Engin ED, Engin A. Two important controversial risk factors in SARS-CoV-2 infection: Obesity and smoking. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 78:103411. [PMID: 32422280 PMCID: PMC7227557 DOI: 10.1016/j.etap.2020.103411] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 05/09/2023]
Abstract
The effects of obesity and smoking in the coronavirus disease 2019 (COVID-19) pandemic remain controversial. Angiotensin converting enzyme 2 (ACE2), a component of the renin-angiotensin system (RAS), is the human cell receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. ACE2 expression increases on lung alveolar epithelial cells and adipose tissue due to obesity, smoking and air pollution. A significant relationship exists between air pollution and SARS-CoV-2 infection, as more severe COVID-19 symptoms occur in smokers; comorbid conditions due to obesity or excess ectopic fat accumulation as underlying risk factors for severe COVID-19 strongly encourage the virus/ACE2 receptor-ligand interaction concept. Indeed, obesity, air pollution and smoking associated risk factors share underlying pathophysiologies that are related to the Renin-Angiotensin-System in SARS-CoV-2 infection. The aim of this review is to emphasize the mechanism of receptor-ligand interaction and its impact on the enhanced risk of death due to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Hipodrom, Ankara, Turkey.
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Gumusdere Campus, Kecioren, Ankara, Turkey
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Besevler, Ankara, Turkey
| |
Collapse
|
31
|
Lin YC, Wang JC, Wu MS, Lin YF, Chen CR, Chen CY, Chen KC, Peng CC. Nifedipine Exacerbates Lipogenesis in the Kidney via KIM-1, CD36, and SREBP Upregulation: Implications from an Animal Model for Human Study. Int J Mol Sci 2020; 21:ijms21124359. [PMID: 32575412 PMCID: PMC7352626 DOI: 10.3390/ijms21124359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of fatty acid oxidation and accumulation of fatty acids can cause kidney injury. Nifedipine modulates lipogenesis-related transcriptional factor SREBP-1/2 in proximal tubular cells by inhibiting the Adenosine 5‘-monophosphate (AMP)-activated protein kinase (AMPK) pathway in vitro. However, the mechanisms by which nifedipine (NF) modulates lipotoxicity in vivo are unclear. Here, we examined the effect of NF in a doxorubicin (DR)-induced kidney injury rat model. Twenty-four Sprague–Dawley rats were divided into control, DR, DR+NF, and high-fat diet (HFD) groups. The DR, DR+NF, and HFD groups showed hypertension and proteinuria. Western blotting and immunohistochemical analysis showed that NF significantly induced TNF-α, CD36, SREBP-1/2, and acetyl-CoA carboxylase expression and renal fibrosis, and reduced fatty acid synthase and AMPK compared to other groups (p < 0.05). Additionally, 18 patients with chronic kidney disease (CKD) who received renal transplants were enrolled to examine their graft fibrosis and lipid contents via transient elastography. Low-density lipoprotein levels in patients with CKD strongly correlated with lipid contents and fibrosis in grafted kidneys (p < 0.05). Thus, NF may initiate lipogenesis through the SREBP-1/2/AMPK pathway and lipid uptake by CD36 upregulation and aggravate renal fibrosis in vivo. Higher low-density lipoprotein levels may correlate with renal fibrosis and lipid accumulation in grafted kidneys of patients with CKD.
Collapse
Affiliation(s)
- Yen-Chung Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-S.W.); (Y.-F.L.)
- TMU-Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Jhih-Cheng Wang
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan City 71004, Taiwan;
- Department of Electric Engineering, Southern Taiwan University of Science and Technology, Tainan City 71005, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-S.W.); (Y.-F.L.)
- TMU-Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-S.W.); (Y.-F.L.)
- TMU-Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Chang-Rong Chen
- International Medical Doctor Program, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Chang-Yu Chen
- Program of Biomedical Sciences, College of Arts and Sciences, California Baptist University, Riverside, CA 92504, USA;
| | - Kuan-Chou Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- TMU-Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (K.-C.C.); (C.-C.P.); Tel.: +886-02-22490088 (K.-C.C.); +886-02-27361661 (C.-C.P.)
| | - Chiung-Chi Peng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Correspondence: (K.-C.C.); (C.-C.P.); Tel.: +886-02-22490088 (K.-C.C.); +886-02-27361661 (C.-C.P.)
| |
Collapse
|
32
|
Pessoa EDA, Convento MB, Castino B, Leme AM, de Oliveira AS, Aragão A, Fernandes SM, Carbonel A, Dezoti C, Vattimo MDF, Schor N, Borges FT. Beneficial Effects of Isoflavones in the Kidney of Obese Rats Are Mediated by PPAR-Gamma Expression. Nutrients 2020; 12:nu12061624. [PMID: 32492810 PMCID: PMC7352183 DOI: 10.3390/nu12061624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Several studies have demonstrated an important association between altered lipid metabolism and the development of kidney injury because of a high-fat diet. Fructose is also closely associated with renal injury. We opted for a combination of fructose and saturated fats in a diet (DH) that is a model known to induce renal damage in order to evaluate whether soy isoflavones could have promising use in the treatment of renal alterations. After two months of ingestion, there was an expansion of visceral fat, which was associated with long-term metabolic disorders, such as sustained hyperglycemia, insulin resistance, polyuria, dyslipidemia, and hypertension. Additionally, we found a decrease in renal blood flow and an increase in renal vascular resistance. Biochemical markers of chronic kidney disease were detected; there was an infiltration of inflammatory cells with an elevated expression of proinflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-6, and IL-1β), the activation of the renin–angiotensin system, and oxidative/nitrosative stress. Notably, in rats exposed to the DH diet for 120 days, the concomitant treatment with isoflavones after 60 days was able to revert metabolic parameters, renal alterations, and oxidative/nitrosative stress. The beneficial effects of isoflavones in the kidney of the obese rats were found to be mediated by expression of peroxisome proliferator-activated receptor gamma (PPAR-γ).
Collapse
Affiliation(s)
- Edson de Andrade Pessoa
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo SP 04023-900, Brazil; (E.d.A.P.); (M.B.C.); (A.M.L.); (A.S.d.O.); (N.S.)
| | - Márcia Bastos Convento
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo SP 04023-900, Brazil; (E.d.A.P.); (M.B.C.); (A.M.L.); (A.S.d.O.); (N.S.)
| | - Bianca Castino
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo SP 01506-000, Brazil; (B.C.); (A.A.)
| | - Ala Moana Leme
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo SP 04023-900, Brazil; (E.d.A.P.); (M.B.C.); (A.M.L.); (A.S.d.O.); (N.S.)
| | - Andréia Silva de Oliveira
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo SP 04023-900, Brazil; (E.d.A.P.); (M.B.C.); (A.M.L.); (A.S.d.O.); (N.S.)
| | - Alef Aragão
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo SP 01506-000, Brazil; (B.C.); (A.A.)
| | - Sheila Marques Fernandes
- Experimentation Laboratory in Animal Model, School of Nursing, Universidade de São Paulo, São Paulo SP 05403-000, Brazil; (S.M.F.); (C.D.)
| | - Adriana Carbonel
- Histology and Structural Biology Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo SP 04039-032, Brazil;
| | - Cassiane Dezoti
- Experimentation Laboratory in Animal Model, School of Nursing, Universidade de São Paulo, São Paulo SP 05403-000, Brazil; (S.M.F.); (C.D.)
| | - Maria de Fátima Vattimo
- Department Medical-Surgical Nursing, School of Nursing, Universidade de São Paulo, São Paulo SP 05403-000, Brazil;
| | - Nestor Schor
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo SP 04023-900, Brazil; (E.d.A.P.); (M.B.C.); (A.M.L.); (A.S.d.O.); (N.S.)
| | - Fernanda Teixeira Borges
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo SP 04023-900, Brazil; (E.d.A.P.); (M.B.C.); (A.M.L.); (A.S.d.O.); (N.S.)
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo SP 01506-000, Brazil; (B.C.); (A.A.)
- Correspondence: ; Tel.: +55-11-5576-4242
| |
Collapse
|
33
|
Pei K, Gui T, Li C, Zhang Q, Feng H, Li Y, Wu J, Gai Z. Recent Progress on Lipid Intake and Chronic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3680397. [PMID: 32382547 PMCID: PMC7196967 DOI: 10.1155/2020/3680397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022]
Abstract
The incidence of chronic kidney disease (CKD) is associated with major abnormalities in circulating lipoproteins and renal lipid metabolism. This article elaborates on the mechanisms of CKD and lipid uptake abnormalities. The viewpoint we supported is that lipid abnormalities directly cause CKD, resulting in forming a vicious cycle. On the theoretical and experiment fronts, this inference has been verified by elaborately elucidating the role of lipid intake and accumulation as well as their influences on CKD. Taken together, these findings suggest that further understanding of lipid metabolism in CKD may lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Ke Pei
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chao Li
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huichao Feng
- Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunlun Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
34
|
Bamba R, Okamura T, Hashimoto Y, Hamaguchi M, Obora A, Kojima T, Fukui M. The Visceral Adiposity Index Is a Predictor of Incident Chronic Kidney Disease: A Population-Based Longitudinal Study. Kidney Blood Press Res 2020; 45:407-418. [PMID: 32224619 DOI: 10.1159/000506461] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 02/11/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIMS Visceral adiposity index (VAI), calculated with body mass index, high density lipoprotein-cholesterol, triglycerides and waist circumference, has been proposed as a marker of visceral fat accumulation and dysfunction in adipose tissue. METHODS The impact of VAI on incident chronic kidney disease (CKD) in a historical cohort study of 15,159 (8,260 men and 6,899 women) participants was investigated. CKD was defined when estimated glomerular filtration rate was <60 mL/min/1.73 m2 or proteinuria (positive: ≥1+). We divided the participants into 2 groups according to sex and into quartiles according to VAI (Q1-4). We performed Cox proportional hazard models, adjusting for age, smoking status, exercise, alcohol consumption, systolic blood pressure, hemoglobin A1c, uric acid, and creatinine. RESULTS During the median 3.3-year follow-up for men and 3.2-year follow-up for women, 1,078 participants (629 men and 449 women) developed CKD. The 4,000 days cumulative incidence rate of CKD for men and women were 3.7 and 3.9% in Q1, 5.2 and 5.9% in Q2, 6.5 and 7.0% in Q3, and 8.4 and 9.3% in Q4 respectively. Compared to Q1, the hazard ratios of incident CKD in Q2, Q3 and Q4 for men and women were 1.23 (95% CI 0.91-1.66, p = 0.184) and 1.30 (0.87-1.96, p = 0.203), 1.42 (1.06-1.90, p = 0.018) and 1.38 (0.94-2.05, p = 0.105), and 1.51 (1.12-2.02, p = 0.006) and 1.65 (1.12-2.46, p = 0.013) respectively. Additionally, the area under the curve of VAI for incidence of CKD was superior to that of VAI in men (0.595 vs. 0.552, p < 0.001) and equal to in women (0.597 vs. 0.591, p = 0.708). CONCLUSIONS The VAI can be a predictor of incident CKD.
Collapse
Affiliation(s)
- Ryo Bamba
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan,
| | - Akihiro Obora
- Department of Gastroenterology, Asahi University Hospital, Gifu, Japan
| | - Takao Kojima
- Department of Gastroenterology, Asahi University Hospital, Gifu, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
35
|
Cuevas S, Villar VAM, Jose PA. Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation. THE PHARMACOGENOMICS JOURNAL 2019; 19:315-336. [PMID: 30723314 PMCID: PMC6650341 DOI: 10.1038/s41397-019-0082-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/19/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023]
Abstract
Hypertension is the most prevalent cause of cardiovascular disease and kidney failure, but only about 50% of patients achieve adequate blood pressure control, in part, due to inter-individual genetic variations in the response to antihypertensive medication. Significant strides have been made toward the understanding of the role of reactive oxygen species (ROS) in the regulation of the cardiovascular system. However, the role of ROS in human hypertension is still unclear. Polymorphisms of some genes involved in the regulation of ROS production are associated with hypertension, suggesting their potential influence on blood pressure control and response to antihypertensive medication. This review provides an update on the genes associated with the regulation of ROS production in hypertension and discusses the controversies on the use of antioxidants in the treatment of hypertension, including the antioxidant effects of antihypertensive drugs.
Collapse
Affiliation(s)
- Santiago Cuevas
- Center for Translational Science, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010, USA.
| | - Van Anthony M Villar
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| |
Collapse
|
36
|
Pandey VK, Mathur A, Kakkar P. Emerging role of Unfolded Protein Response (UPR) mediated proteotoxic apoptosis in diabetes. Life Sci 2018; 216:246-258. [PMID: 30471281 DOI: 10.1016/j.lfs.2018.11.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Endoplasmic reticulum (ER) is a crucial single membrane organelle that acts as a quality control system for cellular proteins as it is intricately involved in their synthesis, folding and trafficking to the respective targets. Type 2 diabetes is characterized by enhanced blood glucose level that promotes insulin resistance and hampers cellular glucose metabolism. Hyperglycemia provokes mitochondrial ROS production and glycation of proteins which exert a tremendous load on ER for conventional refolding of misfolded/unfolded and nascent proteins that perturb ER homeostasis resulting in apoptotic cell death. Impairment in ER functions is suspected to be through specific ER membrane-bound proteins known as Unfolded Protein Response (UPR) sensor proteins. Conformational changes in these proteins induce oligomerization and cross-autophosphorylation which facilitate processes required for the restoration of ER homeostatic imbalance. Multiple studies have reported the involvement of UPR mediated autophagy and apoptotic pathways in the progression of metabolic disorders including diabetes, cardiac ischemia/reperfusion injury and hypoxia-mediated cell death. In this review, the involvement of UPR pathways in the progression of diabetes associated complications have been addressed, which underscores molecular crosstalks during neuropathy, nephropathy, hepatic injury and retinopathy. A better understanding of these molecular interventions may reveal advanced therapeutic approaches for preventing diabetic comorbidities. The article also highlights the importance of phytochemicals that are emerging as novel ER stress inhibitors and are being explored for targeted interaction in preventing cell death responses during diabetes.
Collapse
Affiliation(s)
- Vivek Kumar Pandey
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Alpana Mathur
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Poonam Kakkar
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
37
|
Jaikumkao K, Pongchaidecha A, Chueakula N, Thongnak LO, Wanchai K, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats. Diabetes Obes Metab 2018; 20:2617-2626. [PMID: 29923295 DOI: 10.1111/dom.13441] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/05/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
AIM To evaluate the renoprotective roles of dapagliflozin in prediabetic rats in order to elucidate the effects of this sodium-glucose co-transporter-2 (SGLT2) inhibitor on the renal complications associated with metabolic dysfunction in diet-induced obesity. METHODS Obesity was induced by feeding a high-fat diet (HFD) to male Wistar rats for 16 weeks. HFD-fed rats were treated with dapagliflozin (1 mg/kg/d) or metformin (30 mg/kg/d) by oral gavage for 4 weeks after insulin resistance had been established. The metabolic characteristics and renal function associated with lipid accumulation, inflammation, fibrosis, endoplasmic reticulum (ER) stress and apoptosis in the renal tissue were examined. RESULTS The results showed that HFD-fed rats developed both obesity and impaired renal function, along with increased renal triglyceride accumulation. Importantly, dapagliflozin had greater efficacy in improving renal function and reducing both body weight and visceral fat accumulation than metformin treatment. Dapagliflozin and metformin were found to have similar effects regarding the suppression of renal triglycerides, superoxide dismutase (SOD) expression and malondialdehyde (MDA) levels, subsequently leading to a decrease in renal inflammation and fibrosis. Renal ER stress and apoptosis were increased in HFD-fed rats and were effectively reduced after administration of dapagliflozin. The expression of renal SGLT2 was not affected by administration of dapagliflozin or metformin. CONCLUSION Collectively, these findings indicate that dapagliflozin exerts renoprotective effects by alleviating obesity-induced renal inflammation, fibrosis, ER stress, apoptosis and lipid accumulation in the prediabetic condition.
Collapse
Affiliation(s)
- Krit Jaikumkao
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttawud Chueakula
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - La-Ongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Keerati Wanchai
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | | | - Nipon Chattipakorn
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Centre, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Centre for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
38
|
Qiu M, Li S, Jin L, Feng P, Kong Y, Zhao X, Lin Y, Xu Y, Li C, Wang W. Combination of Chymostatin and Aliskiren attenuates ER stress induced by lipid overload in kidney tubular cells. Lipids Health Dis 2018; 17:183. [PMID: 30064425 PMCID: PMC6069859 DOI: 10.1186/s12944-018-0818-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022] Open
Abstract
Background Lipotoxicity plays an important role in the pathogenesis of kidney injury. Our previous study demonstrated that activation of local renin-angiotensin system (RAS) was involved in saturated free fatty acids palmitic acid (PA)-induced tubular cell injuries. The current study aims to investigate whether suppression of RAS by combination of direct renin inhibitor aliskiren and noncanonical RAS pathway chymase inhibitor chymostatin attenuates PA or cholesterol induced-endoplasmic reticulum stress (ER stress) and apopotosis in cultured human proximal tubular HK2 cells. Methods HK2 cells were treated with saturated fatty acid PA (0.6 mM) for 24 h or cholesterol (10 μg/ml) for 6d with or without chymostatin and/or aliskiren. Expressions of the ER stress associated proteins and apoptosis markers were detected by western blotting. The mRNA levels of RAS components were measured by real-time qPCR. Results Combination treatment of chymostatin and aliskiren markedly suppressed PA or cholesterol-induced ER stress, as reflected by increased BiP, IRE1α, phosphorylated-eIF2α and ATF4 as well as proapoptotic transcription factor CHOP. The ratio of Bax/Bcl-2 and cleaved caspase-3, two markers of apoptosis were upregulated by PA or cholesterol treatment. PA treatment was also associated with increased levels of angiotensinogen and angiotensin type 1 receptor (AT1R) mRNA expression. Combination treatment of chymostatin and aliskiren markedly suppressed PA or cholesterol-induced ER stress and apoptosis. The protective effect of two inhibitors was also observed in primary cultured cortical tubular cells treated with PA. In contrast, chymostatin and/or aliskiren failed to prevent ER stress induced by tunicamycin. Conclusions These results suggested that combination treatment of chymostatin and aliskiren attenuates lipid-induced renal tubular cell injury, likely through suppressing activation of intracellular RAS. Electronic supplementary material The online version of this article (10.1186/s12944-018-0818-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miaojuan Qiu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Suchun Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Lizi Jin
- Department of Cardiology, The 5th Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Pinning Feng
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yonglun Kong
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xiaoduo Zhao
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Yu Lin
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yunyun Xu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
39
|
Choy KW, Murugan D, Mustafa MR. Natural products targeting ER stress pathway for the treatment of cardiovascular diseases. Pharmacol Res 2018; 132:119-129. [PMID: 29684674 DOI: 10.1016/j.phrs.2018.04.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/06/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022]
Abstract
Endoplasmic reticulum (ER) is the main organelle for the synthesis, folding, and processing of secretory and transmembrane proteins. Pathological stimuli including hypoxia, ischaemia, inflammation and oxidative stress interrupt the homeostatic function of ER, leading to accumulation of unfolded proteins, a condition referred to as ER stress. ER stress triggers a complex signalling network referred as the unfolded protein response (UPR). Extensive studies have demonstrated that ER stress plays an important role in the pathogenesis of various cardiovascular diseases such as heart failure, ischemic heart disease and atherosclerosis. The importance of natural products in modern medicine are well recognized and continues to be of interests as a source of novel lead compounds. Natural products targeting components of UPR and reducing ER stress offers an innovative strategic approach to treat cardiovascular diseases. In this review, we discussed several therapeutic interventions using natural products with potential cardiovascular protective properties targeting ER stress signalling pathways.
Collapse
Affiliation(s)
- Ker Woon Choy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Dharmani Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Natural Products Research and Drug Discovery (CENAR), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
40
|
Adeosun SO, Gordon DM, Weeks MF, Moore KH, Hall JE, Hinds TD, Stec DE. Loss of biliverdin reductase-A promotes lipid accumulation and lipotoxicity in mouse proximal tubule cells. Am J Physiol Renal Physiol 2018; 315:F323-F331. [PMID: 29631357 DOI: 10.1152/ajprenal.00495.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Obesity and increased lipid availability have been implicated in the development and progression of chronic kidney disease. One of the major sites of renal lipid accumulation is in the proximal tubule cells of the kidney, suggesting that these cells may be susceptible to lipotoxicity. We previously demonstrated that loss of hepatic biliverdin reductase A (BVRA) causes fat accumulation in livers of mice on a high-fat diet. To determine the role of BVRA in mouse proximal tubule cells, we generated a CRISPR targeting BVRA for a knockout in mouse proximal tubule cells (BVRA KO). The BVRA KO cells had significantly less metabolic potential and mitochondrial respiration, which was exacerbated by treatment with palmitic acid, a saturated fatty acid. The BVRA KO cells also showed increased intracellular triglycerides which were associated with higher fatty acid uptake gene cluster of differentiation 36 as well as increased de novo lipogenesis as measured by higher neutral lipids. Additionally, neutrophil gelatinase-associated lipocalin 1 expression, annexin-V FITC staining, and lactate dehydrogenase assays all demonstrated that BVRA KO cells are more sensitive to palmitic acid-induced lipotoxicity than wild-type cells. Phosphorylation of BAD which plays a role in cell survival pathways, was significantly reduced in palmitic acid-treated BVRA KO cells. These data demonstrate the protective role of BVRA in proximal tubule cells against saturated fatty acid-induced lipotoxicity and suggest that activating BVRA could provide a benefit in protecting from obesity-induced kidney injury.
Collapse
Affiliation(s)
- Samuel O Adeosun
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center , Jackson, Mississippi
| | - Darren M Gordon
- Department of Physiology and Pharmacology, University of Toledo College of Medicine , Toledo, Ohio
| | - Mary Frances Weeks
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center , Jackson, Mississippi
| | - Kyle H Moore
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center , Jackson, Mississippi
| | - John E Hall
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center , Jackson, Mississippi
| | - Terry D Hinds
- Department of Physiology and Pharmacology, University of Toledo College of Medicine , Toledo, Ohio
| | - David E Stec
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
41
|
Abstract
Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to "re-program" renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin-angiotensin-aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application. Early nutritional concepts with specific modifications in macro- or micronutrients are among the most promising approaches to improve future renal health.
Collapse
Affiliation(s)
- Eva Nüsken
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Lutz T Weber
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Kai-Dietrich Nüsken
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
42
|
Abstract
Nephrotic syndrome is a highly prevalent disease that is associated with high morbidity despite notable advances in its treatment. Many of the complications of nephrotic syndrome, including the increased risk of atherosclerosis and thromboembolism, can be linked to dysregulated lipid metabolism and dyslipidaemia. These abnormalities include elevated plasma levels of cholesterol, triglycerides and the apolipoprotein B-containing lipoproteins VLDL and IDL; decreased lipoprotein lipase activity in the endothelium, muscle and adipose tissues; decreased hepatic lipase activity; and increased levels of the enzyme PCSK9. In addition, there is an increase in the plasma levels of immature HDL particles and reduced cholesterol efflux. Studies from the past few years have markedly improved our understanding of the molecular pathogenesis of nephrotic syndrome-associated dyslipidaemia, and also heightened our awareness of the associated exacerbated risks of cardiovascular complications, progressive kidney disease and thromboembolism. Despite the absence of clear guidelines regarding treatment, various strategies are being increasingly utilized, including statins, bile acid sequestrants, fibrates, nicotinic acid and ezetimibe, as well as lipid apheresis, which seem to also induce partial or complete clinical remission of nephrotic syndrome in a substantial percentage of patients. Future potential treatments will likely also include inhibition of PCSK9 using recently-developed anti-PCSK9 monoclonal antibodies and small inhibitory RNAs, as well as targeting newly identified molecular regulators of lipid metabolism that are dysregulated in nephrotic syndrome.
Collapse
|
43
|
Harlan SM, Heinz-Taheny KM, Sullivan JM, Wei T, Baker HE, Jaqua DL, Qi Z, Cramer MS, Shiyanova TL, Breyer MD, Heuer JG. Progressive Renal Disease Established by Renin-Coding Adeno-Associated Virus-Driven Hypertension in Diverse Diabetic Models. J Am Soc Nephrol 2017; 29:477-491. [PMID: 29061652 DOI: 10.1681/asn.2017040385] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/23/2017] [Indexed: 12/18/2022] Open
Abstract
Progress in research and developing therapeutics to prevent diabetic kidney disease (DKD) is limited by a lack of animal models exhibiting progressive kidney disease. Chronic hypertension, a driving factor of disease progression in human patients, is lacking in most available models of diabetes. We hypothesized that superimposition of hypertension on diabetic mouse models would accelerate DKD. To test this possibility, we induced persistent hypertension in three mouse models of type 1 diabetes and two models of type 2 diabetes by adeno-associated virus delivery of renin (ReninAAV). Compared with LacZAAV-treated counterparts, ReninAAV-treated type 1 diabetic Akita/129 mice exhibited a substantial increase in albumin-to-creatinine ratio (ACR) and serum creatinine level and more severe renal lesions. In type 2 models of diabetes (C57BKLS db/db and BTBR ob/ob mice), compared with LacZAAV, ReninAAV induced significant elevations in ACR and increased the incidence and severity of histopathologic findings, with increased serum creatinine detected only in the ReninAAV-treated db/db mice. The uninephrectomized ReninAAV db/db model was the most progressive model examined and further characterized. In this model, separate treatment of hyperglycemia with rosiglitazone or hypertension with lisinopril partially reduced ACR, consistent with independent contributions of these disorders to renal disease. Microarray analysis and comparison with human DKD showed common pathways affected in human disease and this model. These results identify novel models of progressive DKD that provide researchers with a facile and reliable method to study disease pathogenesis and support the development of therapeutics.
Collapse
Affiliation(s)
- Shannon M Harlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | | | - John M Sullivan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Tao Wei
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Hana E Baker
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Dianna L Jaqua
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Zhonghua Qi
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Martin S Cramer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | | | - Matthew D Breyer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Josef G Heuer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
44
|
Role of albumin and its modifications in glomerular injury. Pflugers Arch 2017; 469:975-982. [PMID: 28735420 DOI: 10.1007/s00424-017-2029-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 02/06/2023]
Abstract
Albuminuria is both a characteristic hallmark and a known risk factor for progressive glomerular disease. Although the molecular basis for a potential causative role for albuminuria in progressive chronic kidney disease remains poorly understood, there have been several recent advances in our understanding of the role of albumin, and its molecular modifications, in the development and progression of glomerular disease. This review discusses recent findings related to the ability of albumin and its associated factors to directly induce podocyte and glomerular injury. Additional recent studies confirming the ability and mechanisms by which podocytes endocytose albumin are also discussed. Lastly, we present several known molecular modifications in the albumin molecule itself, as well as substances bound to it, which may be important and potentially clinically relevant mediators of albumin-induced glomerular injury. These recent findings may create entirely new opportunities to develop novel future therapies directed at albumin that could potentially help reduce podocyte and renal tubular injury and slow the progression of chronic glomerular disease.
Collapse
|
45
|
Guo H, Li H, Wang B, Ding W, Ling L, Yang M, Gu Y, Niu J. Protective Effects of Glucagon-Like Peptide-1 Analog on Renal Tubular Injury in Mice on High-Fat Diet. Cell Physiol Biochem 2017; 41:1113-1124. [DOI: 10.1159/000464118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/04/2017] [Indexed: 12/22/2022] Open
Abstract
Aims: The study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a high-fat diet (HFD). Methods: Twenty C57BL/6 mice were fed HFD for 12 weeks. Ten of these mice were treated with GLP-1 at 200 µg/kg subcutaneously twice daily for 4 weeks (HFDG group), and the other ten mice received vehicle only (HFD group). Ten mice fed standard rodent chow served as controls (Con group). Body weight, kidney weight, food intake, and systolic blood pressure were measured. The expression of endoplasmic reticulum stress (ERS) markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis in the kidney were examined utilizing western blotting, immunohistochemistry and TUNEL, respectively. Angiotensin II and angiotensin II type 1 receptor (AT1R) were examined by ELISA. Human proximal tubule epithelial cells (HK2) were treated with GLP-1(150 nM) followed by treatment with palmitic acid (500 nM [PA]) for 24 h. HK2 cells treated with BSA were used as controls. The protein levels of ERS markers, apoptosis-associated protein, and AT1R were measured by western blotting. Results: Increase of body weight, food intake, and systolic blood pressure was less pronounced in GLP-1 treated HFDG mice compared to HFD mice. The levels of ERS markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis decreased following GLP-1 treatment in vivo and in vitro (p<0.05). Increased AT1R induced by HFD and PA were blocked with GLP-1 treatment. In contrast, the level of angiotensin II after GLP-1 treatment was not significantly different between the HFD and HFDG mice. Conclusion: The study indicated that saturated fatty acids induced ERS and apoptosis in the kidney and increased AT1R expression. GLP-1 treatment exerted renoprotective effects against saturated fatty acid-induced kidney tubular cell ERS and apoptosis together with inhibition of AT1R expression in vivo and in vitro.
Collapse
|
46
|
Tsuboi N, Okabayashi Y, Shimizu A, Yokoo T. The Renal Pathology of Obesity. Kidney Int Rep 2017; 2:251-260. [PMID: 29142961 PMCID: PMC5678647 DOI: 10.1016/j.ekir.2017.01.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/16/2017] [Indexed: 01/25/2023] Open
Abstract
Obesity causes various structural, hemodynamic, and metabolic alterations in the kidney. Most of these are likely to be compensatory responses to the systemic increase in metabolic demand that is seen with obesity. In some cases, however, renal injury becomes clinically apparent as a result of compensatory failure. Obesity-related glomerulopathy is the best known of such disease states. Factors that may sensitize obese individuals to renal compensatory failure and associated injury include the severity and number of obesity-associated conditions or complications, including components of metabolic syndrome, and the mismatch of body size to nephron mass, due to nephron reductions of congenital or acquired origin.
Collapse
Affiliation(s)
- Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Okabayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Lipotoxicity-Related Hematological Disorders in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:469-487. [DOI: 10.1007/978-3-319-48382-5_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Sohn M, Kim K, Uddin MJ, Lee G, Hwang I, Kang H, Kim H, Lee JH, Ha H. Delayed treatment with fenofibrate protects against high-fat diet-induced kidney injury in mice: the possible role of AMPK autophagy. Am J Physiol Renal Physiol 2016; 312:F323-F334. [PMID: 27465995 DOI: 10.1152/ajprenal.00596.2015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/22/2016] [Indexed: 11/22/2022] Open
Abstract
Fenofibrate activates not only peroxisome proliferator-activated receptor-α (PPARα) but also adenosine monophosphate-activated protein kinase (AMPK). AMPK-mediated cellular responses protect kidney from high-fat diet (HFD)-induced injury, and autophagy resulting from AMPK activation has been regarded as a stress-response mechanism. Thus the present study examined the role of AMPK and autophagy in the renotherapeutic effects of fenofibrate. C57BL/6J mice were divided into three groups: normal diet (ND), HFD, and HFD + fenofibrate (HFD + FF). Fenofibrate was administered 4 wk after the initiation of the HFD when renal injury was initiated. Mouse proximal tubule cells (mProx24) were used to clarify the role of AMPK. Feeding mice with HFD for 12 wk induced insulin resistance and kidney injury such as albuminuria, glomerulosclerosis, tubular injury, and inflammation, which were effectively inhibited by fenofibrate. In addition, fenofibrate treatment resulted in the activation of renal AMPK, upregulation of fatty acid oxidation (FAO) enzymes and antioxidants, and induction of autophagy in the HFD mice. In mProx24 cells, fenofibrate activated AMPK in a concentration-dependent manner, upregulated FAO enzymes and antioxidants, and induced autophagy, all of which were inhibited by treatment of compound C, an AMPK inhibitor. Fenofibrate-induced autophagy was also significantly blocked by AMPKα1 siRNA but not by PPARα siRNA. Collectively, these results demonstrate that delayed treatment with fenofibrate has a therapeutic effect on HFD-induced kidney injury, at least in part, through the activation of AMPK and induction of subsequent downstream effectors: autophagy, FAO enzymes, and antioxidants.
Collapse
Affiliation(s)
- Minji Sohn
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Keumji Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Gayoung Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Inah Hwang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hyeji Kang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hyunji Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jung Hwa Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
49
|
Zheng P, Lin Y, Wang F, Luo R, Zhang T, Hu S, Feng P, Liang X, Li C, Wang W. 4-PBA improves lithium-induced nephrogenic diabetes insipidus by attenuating ER stress. Am J Physiol Renal Physiol 2016; 311:F763-F776. [PMID: 27385737 DOI: 10.1152/ajprenal.00225.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has been implicated in some types of glomerular and tubular disorders. The objectives of this study were to elucidate the role of ER stress in lithium-induced nephrogenic diabetes insipidus (NDI) and to investigate whether attenuation of ER stress by 4-phenylbutyric acid (4-PBA) improves urinary concentrating defect in lithium-treated rats. Wistar rats received lithium (40 mmol/kg food), 4-PBA (320 mg/kg body wt by gavage every day), or no treatment (control) for 2 wk, and they were dehydrated for 24 h before euthanasia. Lithium treatment resulted in increased urine output and decreased urinary osmolality, which was significantly improved by 4-PBA. 4-PBA also prevented reduced protein expression of aquaporin-2 (AQP2), pS256-AQP2, and pS261-AQP2 in the inner medulla of kidneys from lithium-treated rats after 24-h dehydration. Lithium treatment resulted in increased expression of ER stress markers in the inner medulla, which was associated with dilated cisternae and expansion of ER in the inner medullary collecting duct (IMCD) principal cells. Confocal immunofluorescence studies showed colocalization of a molecular chaperone, binding IgG protein (BiP), with AQP2 in principal cells. Immunohistochemistry demonstrated increased intracellular expression of BiP and decreased AQP2 expression in IMCD principal cells of kidneys from lithium-treated rats. 4-PBA attenuated expression of ER stress markers and recovered ER morphology. In IMCD suspensions isolated from lithium-treated rats, 4-PBA incubation was also associated with increased AQP2 expression and ameliorated ER stress. In conclusion, in experimental lithium-induced NDI, 4-PBA improved the urinary concentrating defect and increased AQP2 expression, likely via attenuating ER stress in IMCD principal cells.
Collapse
Affiliation(s)
- Peili Zheng
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu Lin
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Feifei Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Renfei Luo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tiezheng Zhang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pinning Feng
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; and
| | - Xinling Liang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China;
| |
Collapse
|