1
|
Wan Z, Wang Y, Li C, Zheng D. SLC14A1 is a new biomarker in renal cancer. Clin Transl Oncol 2023:10.1007/s12094-023-03140-6. [PMID: 37004669 DOI: 10.1007/s12094-023-03140-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Renal cancer is one of the common malignant tumors of the urinary tract, prone to distant metastasis and drug resistance, with a poor clinical prognosis. SLC14A1 belongs to the solute transporter family, which plays a role in urinary concentration and urea nitrogen recycling in the renal, and is closely associated with the development of a variety of tumors. METHODS Transcription data for renal clear cell carcinoma (KIRC) were obtained from the public databases Gene Expression Omnibus database (GEO) and The Cancer Genome Atlas (TCGA), and we investigated the differences in SLC14A1 expression in cancerous and normal tissues of renal cancer, its correlation with the clinicopathological features of renal cancer patients. Then, we verified the expression levels of SLC14A1 in renal cancer tissues and their Paracancerous tissues using RT-PCR, Western-blotting and immunohistochemistry. Finally, we used renal endothelial cell line HEK-293 and renal cancer cell lines 786-O and ACHN to explore the effects of SLC14A1 on the biological behaviors of renal cancer cell proliferation, invasion and metastasis using EDU, MTT proliferation assay, Transwell invasion assay and scratch healing assay. RESULTS SLC14A1 was lowly expressed in renal cancer tissues and this was further validated by RT-PCR, Western blotting, and immunohistochemistry in our clinical samples. Analysis of KIRC single-cell data suggested that SLC14A1 was mainly expressed in endothelial cells. Survival analysis showed that low levels of SLC14A1 expression were associated with a better clinical prognosis. In biological behavioral studies, we found that upregulation of SLC14A1 expression levels inhibited the proliferation, invasion, and metastatic ability of renal cancer cells. CONCLUSION SLC14A1 plays an important role in the progression of renal cancer and has the potential to become a new biomarker for renal cancer.
Collapse
Affiliation(s)
| | - Yinglei Wang
- Yantai Affiliated Hospital of Binzhou Medical University, Shandong, China.
| | - Cheng Li
- Binzhou Medical University, Shandong, China
| | - Dongbing Zheng
- Yantai Affiliated Hospital of Binzhou Medical University, Shandong, China
| |
Collapse
|
2
|
Zhong C, Long R, Stewart GS. The role of rumen epithelial urea transport proteins in urea nitrogen salvage: A review. ANIMAL NUTRITION 2022; 9:304-313. [PMID: 35600543 PMCID: PMC9097623 DOI: 10.1016/j.aninu.2022.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 11/27/2022]
|
3
|
Huang B, Wang H, Zhong D, Meng J, Li M, Yang B, Ran J. Expression of Urea Transporter B in Normal and Injured Brain. Front Neuroanat 2021; 15:591726. [PMID: 34122018 PMCID: PMC8194276 DOI: 10.3389/fnana.2021.591726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Urea transporter B (UT-B) is a membrane channel protein widely distributed in mammals, and plays a significant physiological role by regulating urea and water transportation in different tissues. More and more studies have found that UT-B is related to neurological diseases, including myelinopathy and depression. When urea accumulates in the brains of UT-B knockout mice, the synaptic plasticity of neurons is reduced, and the morphology and function of glial cells are also changed. However, the distribution and expression change of UT-B remain unclear. The purpose of this study is to determine the expression characteristics of UT-B in the brain. Through single-cell RNA sequencing, UT-B was found to express universally and substantially throughout the various cells in the central nervous system except for endothelial and smooth muscle cells. UT-B was detected in the third cerebral ventricular wall, granule cell layer of the dentate gyrus, and other parts of the hippocampal, cerebral cortex, substantia nigra, habenular, and lateral hypothalamic nucleus by immunohistochemistry. Compared with the membrane expression of UT-B in glial cells, the subcellular localization of UT-B is in the Golgi apparatus of neurons. Further, the expression of UT-B was regulated by osmotic pressure in vitro. In the experimental traumatic brain injury model (TBI), the number of UT-B positive neurons near the ipsilateral cerebral cortex increased first and then decreased over time, peaking at the 24 h. We inferred that change in UT-B expression after the TBI was an adaptation to changed urea levels. The experimental data suggest that the UT-B may be a potential target for the treatment of TBI and white matter edema.
Collapse
Affiliation(s)
- Boyue Huang
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China.,Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Hongkai Wang
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China.,Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Dandan Zhong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jia Meng
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Min Li
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jianhua Ran
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Zhang S, Zhao Y, Wang S, Li M, Xu Y, Ran J, Geng X, He J, Meng J, Shao G, Zhou H, Ge Z, Chen G, Li R, Yang B. Discovery of novel diarylamides as orally active diuretics targeting urea transporters. Acta Pharm Sin B 2021; 11:181-202. [PMID: 33532188 PMCID: PMC7838058 DOI: 10.1016/j.apsb.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Urea transporters (UT) play a vital role in the mechanism of urine concentration and are recognized as novel targets for the development of salt-sparing diuretics. Thus, UT inhibitors are promising for development as novel diuretics. In the present study, a novel UT inhibitor with a diarylamide scaffold was discovered by high-throughput screening. Optimization of the inhibitor led to the identification of a promising preclinical candidate, N-[4-(acetylamino)phenyl]-5-nitrofuran-2-carboxamide (1H), with excellent in vitro UT inhibitory activity at the submicromolar level. The half maximal inhibitory concentrations of 1H against UT-B in mouse, rat, and human erythrocyte were 1.60, 0.64, and 0.13 μmol/L, respectively. Further investigation suggested that 8 μmol/L 1H more powerfully inhibited UT-A1 at a rate of 86.8% than UT-B at a rate of 73.9% in MDCK cell models. Most interestingly, we found for the first time that oral administration of 1H at a dose of 100 mg/kg showed superior diuretic effect in vivo without causing electrolyte imbalance in rats. Additionally, 1H did not exhibit apparent toxicity in vivo and in vitro, and possessed favorable pharmacokinetic characteristics. 1H shows promise as a novel diuretic to treat hyponatremia accompanied with volume expansion and may cause few side effects.
Collapse
Key Words
- AQP1, aquaporin 1
- BCRP, breast cancer resistance protein
- CCK-8, cell counting kit-8
- CMC-Na, carboxymethylcellulose sodium
- DMF, N,N-dimethylformamide
- Diuretic
- Fa, fraction absorbance
- GFR, glomerular filtration rate
- HDL-C and LDL-C, high- and low-density lipoprotein
- IC50, half maximal inhibitory concentration
- IMCD, inner medulla collecting duct
- Oral administration
- P-gp, P-glycoprotein
- PBS, phosphate buffered saline
- Papp, apparent permeability
- Structure optimization
- THF, tetrahydrofuran
- UT, urea transporter
- Urea transporter inhibitor
- r.t., room temperature
Collapse
|
5
|
Wang H, Huang B, Wang W, Li J, Chen Y, Flynn T, Zhao M, Zhou Z, Lin X, Zhang Y, Xu M, Li K, Tian K, Yuan D, Zhou P, Hu L, Zhong D, Zhu S, Li J, Chen D, Wang K, Liang J, He Q, Sun J, Shi J, Yan L, Sands JM, Xie Z, Lian X, Xu D, Ran J, Yang B. High urea induces depression and LTP impairment through mTOR signalling suppression caused by carbamylation. EBioMedicine 2019; 48:478-490. [PMID: 31628020 PMCID: PMC6838447 DOI: 10.1016/j.ebiom.2019.09.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Urea, the end product of protein metabolism, has been considered to have negligible toxicity for a long time. Our previous study showed a depression phenotype in urea transporter (UT) B knockout mice, which suggests that abnormal urea metabolism may cause depression. The purpose of this study was to determine if urea accumulation in brain is a key factor causing depression using clinical data and animal models. METHODS A meta-analysis was used to identify the relationship between depression and chronic diseases. Functional Magnetic Resonance Imaging (fMRI) brain scans and common biochemical indexes were compared between the patients and healthy controls. We used behavioural tests, electrophysiology, and molecular profiling techniques to investigate the functional role and molecular basis in mouse models. FINDINGS After performing a meta-analysis, we targeted the relevance between chronic kidney disease (CKD) and depression. In a CKD mouse model and a patient cohort, depression was induced by impairing the medial prefrontal cortex. The enlarged cohort suggested that urea was responsible for depression. In mice, urea was sufficient to induce depression, interrupt long-term potentiation (LTP) and cause loss of synapses in several models. The mTORC1-S6K pathway inhibition was necessary for the effect of urea. Lastly, we identified that the hydrolysate of urea, cyanate, was also involved in this pathophysiology. INTERPRETATION These data indicate that urea accumulation in brain is an independent factor causing depression, bypassing the psychosocial stress. Urea or cyanate carbamylates mTOR to inhibit the mTORC1-S6K dependent dendritic protein synthesis, inducing impairment of synaptic plasticity in mPFC and depression-like behaviour. CKD patients may be able to attenuate depression only by strict management of blood urea.
Collapse
Affiliation(s)
- Hongkai Wang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China; Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Boyue Huang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Weiling Wang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jinfang Li
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Chen
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Trevor Flynn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Meng Zhao
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiming Zhou
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojing Lin
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Yinan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China; National Institute on Drug Dependence, Peking University, Bejing, China
| | - Mengmeng Xu
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Keqiong Li
- Chongqing Cancer Research Institute, Chongqing, China
| | - Kuan Tian
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Dezhi Yuan
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zhou
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Ling Hu
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Dandan Zhong
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Shuai Zhu
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jing Li
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Dilong Chen
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China; Chongqing Three Gorges Medical College, Chongqing, China
| | - Kejian Wang
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Jianhui Liang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China; National Institute on Drug Dependence, Peking University, Bejing, China
| | - Qihua He
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Jianbin Sun
- Clinical Laboratory, Peking University Third Hospital, Beijing, China
| | - Jie Shi
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China; National Institute on Drug Dependence, Peking University, Bejing, China
| | - Li Yan
- Ion Channel Explorer Bioscience INC., Beijing, China
| | - Jeff M Sands
- Renal Division, Department of Medicine and Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zhengwei Xie
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xuemei Lian
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Jianhua Ran
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China.
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| |
Collapse
|
6
|
Nawata CM, Pannabecker TL. Mammalian urine concentration: a review of renal medullary architecture and membrane transporters. J Comp Physiol B 2018; 188:899-918. [PMID: 29797052 PMCID: PMC6186196 DOI: 10.1007/s00360-018-1164-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 01/10/2023]
Abstract
Mammalian kidneys play an essential role in balancing internal water and salt concentrations. When water needs to be conserved, the renal medulla produces concentrated urine. Central to this process of urine concentration is an osmotic gradient that increases from the corticomedullary boundary to the inner medullary tip. How this gradient is generated and maintained has been the subject of study since the 1940s. While it is generally accepted that the outer medulla contributes to the gradient by means of an active process involving countercurrent multiplication, the source of the gradient in the inner medulla is unclear. The last two decades have witnessed advances in our understanding of the urine-concentrating mechanism. Details of medullary architecture and permeability properties of the tubules and vessels suggest that the functional and anatomic relationships of these structures may contribute to the osmotic gradient necessary to concentrate urine. Additionally, we are learning more about the membrane transporters involved and their regulatory mechanisms. The role of medullary architecture and membrane transporters in the mammalian urine-concentrating mechanism are the focus of this review.
Collapse
Affiliation(s)
- C Michele Nawata
- Department of Physiology, Banner University Medical Center, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5051, USA.
| | - Thomas L Pannabecker
- Department of Physiology, Banner University Medical Center, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5051, USA
| |
Collapse
|
7
|
Pharmacokinetics, Tissue Distribution and Excretion of a Novel Diuretic (PU-48) in Rats. Pharmaceutics 2018; 10:pharmaceutics10030124. [PMID: 30096833 PMCID: PMC6160999 DOI: 10.3390/pharmaceutics10030124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/21/2018] [Accepted: 07/27/2018] [Indexed: 01/02/2023] Open
Abstract
Methyl 3-amino-6-methoxythieno [2,3-b] quinoline-2-carboxylate (PU-48) is a novel diuretic urea transporter inhibitor. The aim of this study is to investigate the profile of plasma pharmacokinetics, tissue distribution, and excretion by oral dosing of PU-48 in rats. Concentrations of PU-48 within biological samples are determined using a validated high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. After oral administration of PU-48 (3, 6, and 12 mg/kg, respectively) in self-nanomicroemulsifying drug delivery system (SNEDDS) formulation, the peak plasma concentrations (Cmax), and the area under the curve (AUC0⁻∞) were increased by the dose-dependent and linear manner, but the marked different of plasma half-life (t1/2) were not observed. This suggests that the pharmacokinetic profile of PU-48 prototype was first-order elimination kinetic characteristics within the oral three doses range in rat plasma. Moreover, the prototype of PU-48 was rapidly and extensively distributed into thirteen tissues, especially higher concentrations were detected in stomach, intestine, liver, kidney, and bladder. The total accumulative excretion of PU-48 in the urine, feces, and bile was less than 2%. This research is the first report on disposition via oral administration of PU-48 in rats, and it provides important information for further development of PU-48 as a diuretic drug candidate.
Collapse
|
8
|
Azouzi S, Collec E, Mohandas N, An X, Colin Y, Le Van Kim C. The human Kell blood group binds the erythroid 4.1R protein: new insights into the 4.1R-dependent red cell membrane complex. Br J Haematol 2015; 171:862-71. [PMID: 26455906 DOI: 10.1111/bjh.13778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022]
Abstract
Protein 4.1R plays an important role in maintaining the mechanical properties of the erythrocyte membrane. We analysed the expression of Kell blood group protein in erythrocytes from a patient with hereditary elliptocytosis associated with complete 4.1R deficiency (4.1(-) HE). Flow cytometry and Western blot analyses revealed a severe reduction of Kell. In vitro pull down and co-immunoprecipitation experiments from erythrocyte membranes showed a direct interaction between Kell and 4.1R. Using different recombinant domains of 4.1R and the cytoplasmic domain of Kell, we demonstrated that the R(46) R motif in the juxta-membrane region of Kell binds to lobe B of the 4.1R FERM domain. We also observed that 4.1R deficiency is associated with a reduction of XK and DARC (also termed ACKR1) proteins, the absence of the glycosylated form of the urea transporter B and a slight decrease of band 3. The functional alteration of the 4.1(-) HE erythrocyte membranes was also determined by measuring various transport activities. We documented a slower rate of HCO3 (-) /Cl(-) exchange, but normal water and ammonia transport across erythrocyte membrane in the absence of 4.1. These findings provide novel insights into the structural organization of blood group antigen proteins into the 4.1R complex of the human red cell membrane.
Collapse
Affiliation(s)
- Slim Azouzi
- Institut National de la Transfusion Sanguine, Paris, France.,Inserm, UMR_S1134, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, New York, NY, USA
| | - Emmanuel Collec
- Institut National de la Transfusion Sanguine, Paris, France.,Inserm, UMR_S1134, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, New York, NY, USA
| | | | - Xiuli An
- New York Blood Center, New York, NY, USA
| | - Yves Colin
- Institut National de la Transfusion Sanguine, Paris, France.,Inserm, UMR_S1134, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, New York, NY, USA
| | - Caroline Le Van Kim
- Institut National de la Transfusion Sanguine, Paris, France.,Inserm, UMR_S1134, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, New York, NY, USA
| |
Collapse
|
9
|
Guo L, Meng J, Xuan C, Ge J, Sun W, O'Rourke ST, Sun C. High salt-diet reduces SLC14A1 gene expression in the choroid plexus of Dahl salt sensitive rats. Biochem Biophys Res Commun 2015; 461:254-9. [PMID: 25869070 PMCID: PMC4428960 DOI: 10.1016/j.bbrc.2015.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/02/2015] [Indexed: 01/11/2023]
Abstract
Elevated Na(+) concentration ([Na(+)]) in the cerebrospinal fluid (CSF) contributes to the development of salt-sensitive hypertension. CSF is formed by the choroid plexus (CP) in cerebral ventricles, and [Na(+)] in CSF is controlled by transporters in CP. Here, we examined the effect of high salt diet on the expression of urea transporters (UTs) in the CP of Dahl S vs Dahl R rats using real time PCR. High salt intake (8%, for 2 weeks) did not alter the mRNA levels of UT-A (encoded by SLC14A2 gene) in the CP of either Dahl S or Dahl R rats. In contrast, the mRNA levels of UT-B (encoded by SLC14A1 gene) were significantly reduced in the CP of Dahl S rats on high salt diet as compared with Dahl R rats or Dahl S rats on normal salt diet. Reduced UT-B expression was associated with increased [Na(+)] in the CSF and elevated mean arterial pressure (MAP) in Dahl S rats treated with high salt diet, as measured by radiotelemetry. High salt diet-induced reduction in UT-B protein expression in the CP of Dahl S rats was confirmed by Western blot. Immunohistochemistry using UT-B specific antibodies demonstrated that UT-B protein was expressed on the epithelial cells in the CP. These data indicate that high salt diet induces elevations in CSF [Na(+)] and in MAP, both of which are associated with reduced UT-B expression in the CP of Dahl S rats, as compared with Dahl R rats. The results suggest that altered UT-B expression in the CP may contribute to an imbalance of water and electrolytes in the CSF of Dahl S rats on high salt diet, thereby leading to alterations in MAP.
Collapse
Affiliation(s)
- Lirong Guo
- Department of Pathophysiology, College of Basic Medical Sciences, and Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China; Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA.
| | - Jie Meng
- Department of Pathophysiology, College of Basic Medical Sciences, and Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | - Chengluan Xuan
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Jingyan Ge
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Wenzhu Sun
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Stephen T O'Rourke
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Chengwen Sun
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
10
|
Lu Z, Gui H, Yao L, Yan L, Martens H, Aschenbach JR, Shen Z. Short-chain fatty acids and acidic pH upregulate UT-B, GPR41, and GPR4 in rumen epithelial cells of goats. Am J Physiol Regul Integr Comp Physiol 2015; 308:R283-93. [PMID: 25519731 DOI: 10.1152/ajpregu.00323.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Currently, the mechanism(s) responsible for the regulation of urea transporter B (UT-B) expression levels in the epithelium of the rumen remain unclear. We hypothesized that rumen fermentation products affect ruminal UT-B expression. Therefore, the effects of short-chain fatty acids (SCFA), pH, ammonia, and urea on mRNA and protein levels of UT-B were assayed in primary rumen epithelial cell cultures and in rumen epithelium obtained from intact goats. In vitro, SCFA and acidic pH were found to synergetically stimulate both mRNA and protein expression of UT-B, whereas NH4Cl decreased mRNA and protein levels of UT-B at pH 6.8. Treatment with urea increased both levels at pH 7.4. When goats received a diet rich in nitrogen (N) and nonfiber carbohydrates (NFC), their rumen epithelium had higher levels of UT-B, and the rumen contained higher concentrations of SCFA and NH3-N with a lower pH. An increase in plasma urea-N concentration was also observed compared with the plasma of the goats that received a diet low in N and NFC. In a second feeding trial, goats that received a NFC-rich, but isonitrogenous, diet had higher mRNA and protein levels of UT-B, and higher levels of G protein-coupled receptor (GPR) 41 and GPR4, in their rumen epithelium. The ruminal concentrations of SCFA and NH3-N also increased, while a lower pH was detected. In contrast, the serum urea-N concentrations remained unchanged. These data indicate that ruminal SCFA and pH are key factors, via GPR4 and GPR41, in the dietary regulation of UT-B expression, and they have priority over changes in plasma urea.
Collapse
Affiliation(s)
- Zhongyan Lu
- Institute of Veterinary Physiology, Free University of Berlin, Berlin, Germany; and
| | - Hongbing Gui
- Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Lei Yao
- Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Lei Yan
- Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Holger Martens
- Institute of Veterinary Physiology, Free University of Berlin, Berlin, Germany; and
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Free University of Berlin, Berlin, Germany; and
| | - Zanming Shen
- Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Abstract
A urea transporter protein in the kidney was first proposed in 1987. The first urea transporter cDNA was cloned in 1993. The SLC14a urea transporter family contains two major subgroups: SLC14a1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14a2, the UT-A group originally isolated from kidney inner medulla. Slc14a1, the human UT-B gene, arises from a single locus located on chromosome 18q12.1-q21.1, which is located close to Slc14a2. Slc14a1 includes 11 exons, with the coding region extending from exon 4 to exon 11, and is approximately 30 kb in length. The Slc14a2 gene is a very large gene with 24 exons, is approximately 300 kb in length, and encodes 6 different isoforms. Slc14a2 contains two promoter elements: promoter I is located in the typical position, upstream of exon 1, and drives the transcription of UT-A1, UT-A1b, UT-A3, UT-A3b, and UT-A4; while promoter II is located within intron 12 and drives the transcription of UT-A2 and UT-A2b. UT-A1 and UT-A3 are located in the inner medullary collecting duct, UT-A2 in the thin descending limb and liver, UT-A5 in testis, UT-A6 in colon, UT-B1 primarily in descending vasa recta and erythrocytes, and UT-B2 in rumen.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine and Department of Physiology, Emory University School of Medicine, WMB Room 338, 1639 Pierce Drive, NE, Atlanta, GA, 30322, USA,
| | | |
Collapse
|
12
|
Abstract
Urea transporter gene knockout mice have been created for the study of the urine-concentrating mechanism. The major findings in studies of the renal phenotype of these mice are as follows: (1) Urea accumulation in the inner medullary interstitium is dependent on intrarenal urea recycling mediated by urea transporters; (2) urea transporters are essential for preventing urea-induced osmotic diuresis and thus for water conservation; (3) NaCl concentration in the inner medullary interstitium is not significantly affected by the absence of IMCD, descending limb of Henle and descending vasa recta urea transporters. Studies in urea transporter knockout mouse models have highlighted the essential role of urea for producing maximally concentrated urine.
Collapse
Affiliation(s)
- Robert A Fenton
- Department of Biomedicine, Interpret Center, Aarhus University, Aarhus, Building 233/234, 8000, Aarhus, Denmark,
| | | |
Collapse
|
13
|
Abstract
UT-A and UT-B families of urea transporters consist of multiple isoforms that are subject to regulation of both acutely and by long-term measures. This chapter provides a brief overview of the expression of the urea transporter forms and their locations in the kidney. Rapid regulation of UT-A1 results from the combination of phosphorylation and membrane accumulation. Phosphorylation of UT-A1 has been linked to vasopressin and hyperosmolality, although through different kinases. Other acute influences on urea transporter activity are ubiquitination and glycosylation, both of which influence the membrane association of the urea transporter, again through different mechanisms. Long-term regulation of urea transport is most closely associated with the environment that the kidney experiences. Low-protein diets may influence the amount of urea transporter available. Conditions of osmotic diuresis, where urea concentrations are low, will prompt an increase in urea transporter abundance. Although adrenal steroids affect urea transporter abundance, conflicting reports make conclusions tenuous. Urea transporters are upregulated when P2Y2 purinergic receptors are decreased, suggesting a role for these receptors in UT regulation. Hypercalcemia and hypokalemia both cause urine concentration deficiencies. Urea transporter abundances are reduced in aging animals and animals with angiotensin-converting enzyme deficiencies. This chapter will provide information about both rapid and long-term regulation of urea transporters and provide an introduction into the literature.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine and Department of Physiology, Emory University School of Medicine, WMB Room 3319B, 1639 Pierce Drive, NE, Atlanta, GA, 30322, USA,
| |
Collapse
|
14
|
Geyer RR, Musa-Aziz R, Enkavi G, Mahinthichaichan P, Tajkhorshid E, Boron WF. Movement of NH₃ through the human urea transporter B: a new gas channel. Am J Physiol Renal Physiol 2013; 304:F1447-57. [PMID: 23552862 PMCID: PMC3680674 DOI: 10.1152/ajprenal.00609.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 03/28/2013] [Indexed: 12/21/2022] Open
Abstract
Aquaporins and Rh proteins can function as gas (CO₂ and NH₃) channels. The present study explores the urea, H₂O, CO₂, and NH₃ permeability of the human urea transporter B (UT-B) (SLC14A1), expressed in Xenopus oocytes. We monitored urea uptake using [¹⁴C]urea and measured osmotic water permeability (Pf) using video microscopy. To obtain a semiquantitative measure of gas permeability, we used microelectrodes to record the maximum transient change in surface pH (ΔpHS) caused by exposing oocytes to 5% CO₂/33 mM HCO₃⁻ (pHS increase) or 0.5 mM NH₃/NH₄⁺ (pHS decrease). UT-B expression increased oocyte permeability to urea by >20-fold, and Pf by 8-fold vs. H₂O-injected control oocytes. UT-B expression had no effect on the CO₂-induced ΔpHS but doubled the NH₃-induced ΔpHS. Phloretin reduced UT-B-dependent urea uptake (Jurea*) by 45%, Pf* by 50%, and (- ΔpHS*)NH₃ by 70%. p-Chloromercuribenzene sulfonate reduced Jurea* by 25%, Pf* by 30%, and (ΔpHS*)NH₃ by 100%. Molecular dynamics (MD) simulations of membrane-embedded models of UT-B identified the monomeric UT-B pores as the main conduction pathway for both H₂O and NH₃ and characterized the energetics associated with permeation of these species through the channel. Mutating each of two conserved threonines lining the monomeric urea pores reduced H₂O and NH₃ permeability. Our data confirm that UT-B has significant H₂O permeability and for the first time demonstrate significant NH₃ permeability. Thus the UTs become the third family of gas channels. Inhibitor and mutagenesis studies and results of MD simulations suggest that NH₃ and H₂O pass through the three monomeric urea channels in UT-B.
Collapse
Affiliation(s)
- R Ryan Geyer
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Klein JD, Blount MA, Sands JM. Molecular mechanisms of urea transport in health and disease. Pflugers Arch 2012; 464:561-72. [PMID: 23007461 PMCID: PMC3514661 DOI: 10.1007/s00424-012-1157-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
In the late 1980s, urea permeability measurements produced values that could not be explained by paracellular transport or lipid phase diffusion. The existence of urea transport proteins were thus proposed and less than a decade later, the first urea transporter was cloned. The family of urea transporters has two major subgroups, designated SLC14A1 (or UT-B) and Slc14A2 (or UT-A). UT-B and UT-A gene products are glycoproteins located in various extra-renal tissues however, a majority of the resulting isoforms are found in the kidney. The UT-B (Slc14A1) urea transporter was originally isolated from erythrocytes and two isoforms have been reported. In kidney, UT-B is located primarily in the descending vasa recta. The UT-A (Slc14A2) urea transporter yields six distinct isoforms, of which three are found chiefly in the kidney medulla. UT-A1 and UT-A3 are found in the inner medullary collecting duct (IMCD), while UT-A2 is located in the thin descending limb. These transporters are crucial to the kidney's ability to concentrate urine. The regulation of urea transporter activity in the IMCD involves acute modification through phosphorylation and subsequent movement to the plasma membrane. UT-A1 and UT-A3 accumulate in the plasma membrane in response to stimulation by vasopressin or hypertonicity. Long-term regulation of the urea transporters in the IMCD involves altering protein abundance in response to changes in hydration status, low protein diets, or adrenal steroids. Urea transporters have been studied using animal models of disease including diabetes mellitus, lithium intoxication, hypertension, and nephrotoxic drug responses. Exciting new genetically engineered mouse models are being developed to study these transporters.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine, and Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
16
|
Starke S, Muscher AS, Hirschhausen N, Pfeffer E, Breves G, Huber K. Expression of urea transporters is affected by dietary nitrogen restriction in goat kidney. J Anim Sci 2012; 90:3889-97. [PMID: 22665662 DOI: 10.2527/jas.2011-4262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Ruminants are known to be able to very effectively recycle urinary urea and reuse it as a source of N for ruminal microbes. It is presumed that urea recycling is accomplished by specialized urea transporters (UT) which are localized in the kidney. This could be especially important in times of increased N requirement, such as during growth or during reduced dietary N intake. The aim of our study was to characterize and to localize UT in the goat (capra hircus) kidney and to investigate its response to reduced dietary N intake in growing goats. Therefore, 12 growing, male goats were fed either a diet containing high (17% CP in complete diet) or low (9% CP in complete diet) N content for 6 wk. After harvesting, blood and kidney samples were taken and analyzed. The mRNA of the different UT isoforms, UT-A1, UT-A2 and UT-B, were detected semiquantitatively in renal tissue by Northern blot analysis. For UT-A2 and UT-B, no statistically significant effect of dietary N restriction on renal mRNA expression could be detected (UT-A2: P = 0.26, UT-B: P = 0.07). However, renal mRNA abundance of UT-A1 significantly increased in the kidney of low-N-fed goats (P = 0.01). Furthermore, protein amounts of UT-B were verified by western blotting; and the localization of UT-A2 and UT-B protein was demonstrated by immunohistochemistry. No significant differences in protein amounts of UT-B could be observed comparing the 2 feeding groups (P = 0.78). The UT-B was localized in renal medulla and papilla, whereas UT-A2 was only found in renal medulla. In addition, comparison of UT-A and UT-BAA sequences of monogastric animals and ruminants showed a high degree of homology, indicating a similar function of the transporters among these species. In summary, we conclude that in ruminants, urea reabsorption in the kidney is most likely increased in response to a low-N diet via an upregulation of UT-A1 mRNA expression. Hypothetically, the reabsorbed urea can then be returned to the rumen via the bloodstream and thus be reused as a source of N for protein synthesis of ruminal microbial community.
Collapse
Affiliation(s)
- S Starke
- Department of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, D-30173 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Spector DA, Deng J, Stewart KJ. Dietary protein affects urea transport across rat urothelia. Am J Physiol Renal Physiol 2012; 303:F944-53. [DOI: 10.1152/ajprenal.00238.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recent evidence suggests that regulated solute transport occurs across mammalian lower urinary tract epithelia (urothelia). To study the effects of dietary protein on net urothelial transport of urea, creatinine, and water, we used an in vivo rat bladder model designed to mimic physiological conditions. We placed groups of rats on 3-wk diets differing only by protein content (40, 18, 6, and 2%) and instilled 0.3 ml of collected urine in the isolated bladder of anesthetized rats. After 1 h dwell, retrieved urine volumes were unchanged, but mean urea nitrogen (UN) and creatinine concentrations fell 17 and 4%, respectively, indicating transurothelial urea and creatinine reabsorption. The fall in UN (but not creatinine) concentration was greatest in high protein (40%) rats, 584 mg/dl, and progressively less in rats receiving lower protein content: 18% diet, 224 mg/dl; 6% diet, 135 mg/dl; and 2% diet, 87 mg/dl. The quantity of urea reabsorbed was directly related to a urine factor, likely the concentration of urea in the instilled urine. In contrast, the percentage of instilled urea reabsorbed was greater in the two dietary groups receiving the lowest protein (26 and 23%) than in those receiving higher protein (11 and 9%), suggesting the possibility that a bladder/urothelial factor, also affected by dietary protein, may have altered bladder permeability. These findings demonstrate significant regulated urea transport across the urothelium, resulting in alteration of urine excreted by the kidneys, and add to the growing evidence that the lower urinary tract may play an unappreciated role in mammalian solute homeostasis.
Collapse
Affiliation(s)
- David A. Spector
- Division of Renal Medicine, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Jie Deng
- Division of Renal Medicine, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Kerry J. Stewart
- Division of Cardiology, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Li X, Chen G, Yang B. Urea transporter physiology studied in knockout mice. Front Physiol 2012; 3:217. [PMID: 22745630 PMCID: PMC3383189 DOI: 10.3389/fphys.2012.00217] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/31/2012] [Indexed: 01/09/2023] Open
Abstract
In mammals, there are two types of urea transporters; urea transporter (UT)-A and UT-B. The UT-A transporters are mainly expressed in kidney epithelial cells while UT-B demonstrates a broader distribution in kidney, heart, brain, testis, urinary tract, and other tissues. Over the past few years, multiple urea transporter knockout mouse models have been generated enabling us to explore the physiological roles of the different urea transporters. In the kidney, deletion of UT-A1/UT-A3 results in polyuria and a severe urine concentrating defect, indicating that intrarenal recycling of urea plays a crucial role in the overall capacity to concentrate urine. Since UT-B has a wide tissue distribution, multiple phenotypic abnormalities have been found in UT-B null mice, such as defective urine concentration, exacerbated heart blockage with aging, depression-like behavior, and earlier male sexual maturation. This review summarizes the new insights of urea transporter functions in different organs, gleaned from studies of urea transporter knockout mice, and explores some of the potential pharmacological prospects of urea transporters.
Collapse
Affiliation(s)
- Xuechen Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education Beijing, China
| | | | | |
Collapse
|
19
|
Stewart G. The emerging physiological roles of the SLC14A family of urea transporters. Br J Pharmacol 2012; 164:1780-92. [PMID: 21449978 DOI: 10.1111/j.1476-5381.2011.01377.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In mammals, urea is the main nitrogenous breakdown product of protein catabolism and is produced in the liver. In certain tissues, the movement of urea across cell membranes is specifically mediated by a group of proteins known as the SLC14A family of facilitative urea transporters. These proteins are derived from two distinct genes, UT-A (SLC14A2) and UT-B (SLC14A1). Facilitative urea transporters play an important role in two major physiological processes - urinary concentration and urea nitrogen salvaging. Although UT-A and UT-B transporters both have a similar basic structure and mediate the transport of urea in a facilitative manner, there are a number of significant differences between them. UT-A transporters are mainly found in the kidney, are highly specific for urea, have relatively lower transport rates and are highly regulated at both gene expression and cellular localization levels. In contrast, UT-B transporters are more widespread in their tissue location, transport both urea and water, have a relatively high transport rate, are inhibited by mercurial compounds and currently appear to be less acutely regulated. This review details the fundamental research that has so far been performed to investigate the function and physiological significance of these two types of urea transporters.
Collapse
Affiliation(s)
- Gavin Stewart
- School of Biology & Environmental Science, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
20
|
Spector DA, Deng J, Stewart KJ. Hydration status affects urea transport across rat urothelia. Am J Physiol Renal Physiol 2011; 301:F1208-17. [PMID: 21900453 DOI: 10.1152/ajprenal.00386.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although mammalian urinary tract epithelium (urothelium) is generally considered impermeable to water and solutes, recent data suggest that urine constituents may be reabsorbed during urinary tract transit and storage. To study water and solute transport across the urothelium in an in vivo rat model, we instilled urine (obtained during various rat hydration conditions) into isolated in situ rat bladders and, after a 1-h dwell, retrieved the urine and measured the differences in urine volume and concentration and total quantity of urine urea nitrogen and creatinine between instilled and retrieved urine in rat groups differing by hydration status. Although urine volume did not change >1.9% in any group, concentration (and quantity) of urine urea nitrogen in retrieved urine fell significantly (indicating reabsorption of urea across bladder urothelia), by a mean of 18% (489 mg/dl, from an instilled 2,658 mg/dl) in rats receiving ad libitum water and by a mean of 39% (2,544 mg/dl, from an instilled 6,204 mg/dl) in water-deprived rats, but did not change (an increase of 15 mg/dl, P = not significant, from an instilled 300 mg/dl) in a water-loaded rat group. Two separate factors affected urea nitrogen reabsorption rates, a urinary factor related to hydration status, likely the concentration of urea nitrogen in the instilled urine, and a bladder factor(s), also dependent on the animal's state of hydration. Urine creatinine was also absorbed during the bladder dwell, and hydration group effects on the concentration and quantity of creatinine reabsorbed were qualitatively similar to the hydration group effect on urea transport. These findings support the notion(s) that urinary constituents may undergo transport across urinary tract epithelia, that such transport may be physiologically regulated, and that urine is modified during transit and storage through the urinary tract.
Collapse
Affiliation(s)
- David A Spector
- Division of Renal Medicine, Johns Hopkins Bayview Medical Center, 4940 Eastern Ave., Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
21
|
Abstract
Urea transport proteins were initially proposed to exist in the kidney in the late 1980s when studies of urea permeability revealed values in excess of those predicted by simple lipid-phase diffusion and paracellular transport. Less than a decade later, the first urea transporter was cloned. Currently, the SLC14A family of urea transporters contains two major subgroups: SLC14A1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14A2, the UT-A group with six distinct isoforms described to date. In the kidney, UT-A1 and UT-A3 are found in the inner medullary collecting duct; UT-A2 is located in the thin descending limb, and UT-B is located primarily in the descending vasa recta; all are glycoproteins. These transporters are crucial to the kidney's ability to concentrate urine. UT-A1 and UT-A3 are acutely regulated by vasopressin. UT-A1 has also been shown to be regulated by hypertonicity, angiotensin II, and oxytocin. Acute regulation of these transporters is through phosphorylation. Both UT-A1 and UT-A3 rapidly accumulate in the plasma membrane in response to stimulation by vasopressin or hypertonicity. Long-term regulation involves altering protein abundance in response to changes in hydration status, low protein diets, adrenal steroids, sustained diuresis, or antidiuresis. Urea transporters have been studied using animal models of disease including diabetes mellitus, lithium intoxication, hypertension, and nephrotoxic drug responses. Exciting new animal models are being developed to study these transporters and search for active urea transporters. Here we introduce urea and describe the current knowledge of the urea transporter proteins, their regulation, and their role in the kidney.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
22
|
Wester ES, Storry JR, Olsson ML. Characterization of Jk(a+(weak)): a new blood group phenotype associated with an altered JK*01 allele. Transfusion 2011; 51:380-92. [PMID: 21309779 DOI: 10.1111/j.1537-2995.2010.02795.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The clinically important Kidd (JK) blood group system is considered to be relatively uncomplicated, both serologically and genetically. The JK*01 and JK*02 alleles give rise to Jk(a) and Jk(b) antigens, respectively, and silenced alleles result in Jk(a-b-). Other inherited variants analogous to Fy(x) and weak D phenotypes have not been characterized for JK, although recent abstracts indicate their presence. STUDY DESIGN AND METHODS Six index samples from individuals whose RBCs reacted variably or weakly with different sources of anti-Jk(a) and 300 controls of the four known JK phenotypes were investigated by standard serology, flow cytometry, Western blotting, and the urea hemolysis test. Molecular analysis, including allele-specific polymerase chain reaction (PCR), DNA sequencing, and transcript analysis by real-time PCR, was performed. RESULTS All Jk(a+(w)b-) and Jk(a+(w)b+) index samples were homo- or heterozygous for an altered JK*01 allele carrying 130G>A (Glu44Lys) and the JK*02-associated silent SNPs 588G and Intron 9 -46g. Blood donor screening indicated an allele frequency of 0.042. Titration and flow cytometry with anti-Jk(a) gave lower values in index samples compared to controls, as did anti-Jk3 titers. Donors with 130A also showed significantly decreased Jk(a) density by flow cytometry versus 130G. Western blotting with anti-UT-B demonstrated weaker reactivity with Jk(a+(w)) membranes while JK mRNA levels could not discriminate index samples from controls. The urea hemolysis test was only moderately affected in two Jk(a+(w)b-) samples. CONCLUSIONS A new phenotype with weakened Jk(a) expression on RBCs is associated with a JK*01-like allele, which may constitute a risk for hemolytic transfusion reactions if antigen-positive units are missed by routine serology.
Collapse
Affiliation(s)
- Elisabet S Wester
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | |
Collapse
|
23
|
Collins D, Walpole C, Ryan E, Winter D, Baird A, Stewart G. UT-B1 mediates transepithelial urea flux in the rat gastrointestinal tract. J Membr Biol 2011; 239:123-30. [PMID: 21127847 DOI: 10.1007/s00232-010-9331-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 11/12/2010] [Indexed: 11/26/2022]
Abstract
The process of urea nitrogen salvaging plays a vital role in the symbiotic relationship between mammals and their intestinal bacteria. The first step in this process requires the movement of urea from the mammalian bloodstream into the gastrointestinal tract lumen via specialized proteins known as facilitative urea transporters. In this study, we examined both transepithelial urea fluxes and urea transporter protein abundance along the length of the rat gastrointestinal tract. Urea flux experiments that used rat gastrointestinal tissues showed significantly higher transepithelial urea transport was present in caecum and proximal colon (P < 0.01, n = 8, analysis of variance [ANOVA]). This large urea flux was significantly inhibited by 1,3,dimethylurea (P < 0.001, n = 8, ANOVA) and thiourea (P < 0.05, n = 6, unpaired t-test), both known blockers of facilitative urea transporters. Immunoblotting analysis failed to detect any UT-A protein within rat gastrointestinal tissue protein samples. In contrast, a 30-kDa UT-B1 protein was strongly detected in both caecum and proximal colon samples at significantly higher levels compared to the rest of the gastrointestinal tract (P < 0.01, n = 4, ANOVA). We therefore concluded that UT-B1 mediates the transepithelial movement of urea that occurs in specific distal regions of the rat gastrointestinal tract.
Collapse
Affiliation(s)
- Danielle Collins
- Institute for Clinical Outcomes Research and Education, St. Vincent's University Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Urea transporters (UTs) encoded by the Slc14a1 (UT-B) and Slc14a2 (UT-A) genes mediate urea flux across cellular membranes. Considerable research has accrued detailing the function and distribution of members of both subfamilies. Much research effort has focused on the kidney, where UTs are highly expressed and function to promote urine concentration. Interestingly, UTs are also expressed in several other tissues that are historically not primarily associated with urea metabolism. In this review, I describe the phenotypes of UT knockout and transgenic mice and highlight the major advances made possible by use of these animal models. Where pertinent, I contrast these findings with known human phenotypes associated with UT mutations.
Collapse
|
25
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Abstract
PURPOSE OF REVIEW Gene knockout mice have been created for the collecting duct urea transporters UT-A1 and UT-A3, the descending thin-limb urea transporter UT-A2 and the descending vasa recta isoform, UT-B. In this brief review, the new insights in our understanding of the role of urea in the urinary concentrating mechanism and kidney function resulting from studies in these mice are discussed. RECENT FINDINGS The major findings in studies on urea transporter knockout mice are as follows: rapid transport of urea from the inner medulla collecting duct lumen via UT-A1 or UT-A3 is essential for urea accumulation in the inner medullary interstitium; inner medulla collecting duct urea transporters are essential in water conservation by preventing urea-induced osmotic diuresis; an absence of inner medulla collecting duct urea transport does not prevent the concentration of sodium chloride in the inner medulla interstitium; deletion of the vasa recta isoform UT-B has a much greater effect on urinary concentration than deleting the descending limb isoform UT-A2. SUMMARY Multiple urea transport mechanisms within the kidney are essential for producing maximally concentrated urine.
Collapse
Affiliation(s)
- Robert A Fenton
- Water and Salt Research Center, Institute of Anatomy, University of Aarhus, Aarhus, Denmark.
| |
Collapse
|
27
|
Kamperis K, Rittig S, Radvanska E, Jørgensen KA, Djurhuus JC. The Effect of Desmopressin on Renal Water and Solute Handling in Desmopressin Resistant Monosymptomatic Nocturnal Enuresis. J Urol 2008; 180:707-13; discussion 713-4. [DOI: 10.1016/j.juro.2008.04.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Indexed: 11/25/2022]
Affiliation(s)
- Konstantinos Kamperis
- Institute of Clinical Medicine, University of Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Rittig
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Eva Radvanska
- Institute of Clinical Medicine, University of Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Kaj A. Jørgensen
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens C. Djurhuus
- Institute of Clinical Medicine, University of Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
28
|
Wester ES, Johnson ST, Copeland T, Malde R, Lee E, Storry JR, Olsson ML. Erythroid urea transporter deficiency due to novel JKnull alleles. Transfusion 2008; 48:365-72. [PMID: 18028269 DOI: 10.1111/j.1537-2995.2007.01532.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The Kidd blood group antigens Jka and Jkb are encoded by the red blood cell (RBC) urea transporter gene. Homozygosity for silent JK alleles results in the rare Jk(a-b-) phenotype. To date, seven JKnull alleles have been identified, and of these, two are more frequent in the Polynesians and Finns. This study reports the identification of other JKnull alleles in Jk(a-b-) individuals of different ethnic or geographic origins. STUDY DESIGN AND METHODS Nine Jk(a-b-) samples and a sample from a Jk(a-b+) mother of a Jk(a+b-) baby were investigated. Polymerase chain reaction amplification and sequence analysis of the JK gene was performed. Western blotting and urea lysis were used to confirm Jk(a-b-) RBCs. RESULTS Four novel alleles were identified: two different nonsense mutations, 202C>T (Gln68Stop) and 723delA (Ile262Stop) were identified on otherwise consensus JK*1 and JK*2 alleles, respectively. A missense mutation, 956C>T (Thr319Met), was identified in a JK*1 allele from an African-American and a JK*2 allele in two people of subcontinental Indian descent. Immunoblotting and urea lysis confirmed absence of JK glycoprotein in RBC membranes from a sample carrying the 956C>T mutation. Other previously described JKnull mutations were found in samples of origins other than in which they were first identified. CONCLUSION The molecular bases of the Jk(a-b-) phenotype are diverse and this is the first report of JKnull alleles in individuals of African and subcontinental Indian descent. Although rare, these alleles should be taken into consideration when planning genotyping strategies for blood donors and patients.
Collapse
Affiliation(s)
- Elisabet S Wester
- Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University and Blood Center, University Hospital, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
29
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
30
|
Fenton RA, Knepper MA. Urea and renal function in the 21st century: insights from knockout mice. J Am Soc Nephrol 2007; 18:679-88. [PMID: 17251384 DOI: 10.1681/asn.2006101108] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Since the turn of the 21st century, gene knockout mice have been created for all major urea transporters that are expressed in the kidney: the collecting duct urea transporters UT-A1 and UT-A3, the descending thin limb isoform UT-A2, and the descending vasa recta isoform UT-B. This article discusses the new insights that the results from studies in these mice have produced in the understanding of the role of urea in the urinary concentrating mechanism and kidney function. Following is a summary of the major findings: (1) Urea accumulation in the inner medullary interstitium depends on rapid transport of urea from the inner medullary collecting duct (IMCD) lumen via UT-A1 and/or UT-A3; (2) as proposed by Robert Berliner and colleagues in the 1950s, the role of IMCD urea transporters in water conservation is to prevent a urea-induced osmotic diuresis; (3) the absence of IMCD urea transport does not prevent the concentration of NaCl in the inner medulla, contrary to what would be predicted from the passive countercurrent multiplier mechanism in the form proposed by Kokko and Rector and Stephenson; (4) deletion of UT-B (vasa recta isoform) has a much greater effect on urinary concentration than deletion of UT-A2 (descending limb isoform), suggesting that the recycling of urea between the vasa recta and the renal tubules quantitatively is less important than classic countercurrent exchange; and (5) urea reabsorption from the IMCD and the process of urea recycling are not important elements of the mechanism of protein-induced increases in GFR. In addition, the clinical relevance of these studies is discussed, and it is suggested that inhibitors that specifically target collecting duct urea transporters have the potential for clinical use as potassium-sparing diuretics that function by creation of urea-dependent osmotic diuresis.
Collapse
Affiliation(s)
- Robert A Fenton
- Water and Salt Research Center, Institute of Anatomy, Building 233/234, University of Aarhus, DK-8000 Aarhus, Denmark.
| | | |
Collapse
|
31
|
Abstract
During the past decade significant progress has been made in our understanding of the role played by urea transporters in the production of concentrated urine by the kidney. Urea transporters have been cloned and characterized in a wide range of species. The genomic organization of the two major families of mammalian urea transporters, UT-A and UT-B, has been defined, providing new insight into the mechanisms that regulate their expression and function in physiological and pathological conditions. Beside the kidney, the presence of urea transporters has been documented in a variety of tissues, where their role is not fully known. Recently, mice with targeted deletion of the major urea transporters have been generated, which have shown variable impairment of urine concentrating ability, and have helped to clarify the physiological contribution of individual transporters to this process. This review focuses on the erythrocyte urea transporter UT-B.
Collapse
Affiliation(s)
- Serena M Bagnasco
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 20187, USA.
| |
Collapse
|
32
|
Doran JJ, Klein JD, Kim YH, Smith TD, Kozlowski SD, Gunn RB, Sands JM. Tissue distribution of UT-A and UT-B mRNA and protein in rat. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1446-59. [PMID: 16373440 DOI: 10.1152/ajpregu.00352.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian urea transporters are facilitated membrane transport proteins belonging to two families, UT-A and UT-B. They are best known for their role of maintaining the renal inner medullary urinary concentrating gradient. Urea transporters have also been identified in tissues not typically associated with urea metabolism. The purpose of this study was to survey the major organs in rat to determine the distribution of UT-A and UT-B mRNA transcripts and protein forms and determine their cellular localization. Five kidney subregions and 17 extrarenal tissues were screened by Northern blot analysis using two UT-A and three UT-B probes and by Western blot analysis using polyclonal COOH-terminal UT-A and UT-B antibodies. Immunohistochemistry was performed on 16 extrarenal tissues using the same antibodies. In kidney, we detected mRNA transcripts and protein bands consistent with previously-identified UT-A and UT-B isoforms, as well as novel forms. We found that UT-A mRNA and protein are widely expressed in extrarenal tissues in various forms that are different from the known isoforms. We determined the cellular localization of UT-A and UT-B in these tissues. We found that both UT-A and UT-B are ubiquitously expressed as numerous tissue-specific mRNA transcripts and protein forms that are localized to cell membranes, cytoplasm, or nuclei.
Collapse
Affiliation(s)
- John J Doran
- Emory Univ. School of Medicine, Renal Div., 1639 Pierce Dr. NE, WMB Rm. 338, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Saban R, Lin HK. How Far are We From a Urothelial Gene Chip? J Urol 2006; 175:14-5. [PMID: 16406861 DOI: 10.1016/s0022-5347(05)00248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Trinh-Trang-Tan MM, Cartron JP, Bankir L. Molecular basis for the dialysis disequilibrium syndrome: altered aquaporin and urea transporter expression in the brain. Nephrol Dial Transplant 2005; 20:1984-8. [PMID: 15985519 DOI: 10.1093/ndt/gfh877] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cerebral disorders caused by brain oedema characterize the dialysis disequilibrium syndrome, a complication of rapid haemodialysis. Brain oedema is presumably caused by the 'reverse urea effect', i.e. the significant urea gradient between blood and brain after dialysis, with, as a result, an inflow of water into the brain. To assess the molecular basis of this effect, we examined the expression of urea transporter UT-B1 and aquaporin (AQP) 4 and AQP9 in the brain of uraemic rats. METHODS Brain, kidneys and one testis were collected from four sham-operated (control) and four uraemic rats, 10 weeks after 5/6 nephrectomy (Nx). Protein abundance was measured by semi-quantitave immunoblotting using affinity-purified rabbit anti-rat antibodies applied on tissue crude homogenates. RESULTS The results are expressed as means+/-SE of band density (arbitrary units). In Nx compared with control rats, the brain expression of UT-B1 was reduced by half (32+/-3 vs 62+/-8, P<0.01) whereas that of AQ4 was doubled (251+/-13 vs 135+/-5, P<0.001), and that of AQP9 increased by 65% (253+/-22 vs 154+/-10, P<0.01). UT-B1 expression was also lowered by Nx in kidney medulla (45+/-21 vs 141+/-4, P<0.01) but was unchanged in testis. CONCLUSIONS The conjunction of a reduced expression of UT-B and an increased expression of AQPs in brain cells may bring a new clue to understanding the DDS mechanism. Because of low UT-B abundance, urea exit from astrocytes is most probably delayed during rapid removal of extracellular urea through fast dialysis. This creates an osmotic driving force that promotes water entry into the cells (favoured by abundant AQPs) and subsequent brain swelling.
Collapse
|
36
|
Inoue H, Kozlowski SD, Klein JD, Bailey JL, Sands JM, Bagnasco SM. Regulated expression of renal and intestinal UT-B urea transporter in response to varying urea load. Am J Physiol Renal Physiol 2005; 289:F451-8. [PMID: 15798087 DOI: 10.1152/ajprenal.00376.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Production, recycling, and elimination of urea are important to maintain nitrogen balance. Adaptation to varying loads of urea due to different protein intake or in renal failure may involve changes in urea transport and may possibly affect urea transporters. In this study, we examined the expression of the UT-B urea transporter in rats fed a low-protein diet (LPD), a high-protein diet (HPD), and a 20% urea-supplemented diet. In the kidney, UT-B protein abundance increased in the outer medulla of both LPD-fed rats and 20% urea-fed rats, without changes in the inner medulla of either group compared with controls. In HPD-fed rats, UT-B protein decreased significantly in both the outer and inner medulla. We identified expression of UT-B in the rat colon, as a 2-kb mRNA transcript and as an approximately 45-kDa protein, with apical localization in superficial colon epithelial cells. UT-B also is expressed in rat small intestine. In rat colon, UT-B protein abundance was mildly, but significantly, decreased in LPD-fed and 20% urea-fed rats. UT-B abundance also was examined in the colon of 7/8 nephrectomized, uremic rats and in HPD-fed rats and was not significantly different from that in control rats. These findings indicate that UT-B expression is regulated in response to different loads of urea, with a pattern that suggests involvement of tissue-specific regulatory mechanism in kidney and colon.
Collapse
Affiliation(s)
- Hideki Inoue
- Department of Pathology, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
37
|
Yang B, Bankir L. Urea and urine concentrating ability: new insights from studies in mice. Am J Physiol Renal Physiol 2005; 288:F881-96. [PMID: 15821253 DOI: 10.1152/ajprenal.00367.2004] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Urea is the most abundant solute in the urine in humans (on a Western-type diet) and laboratory rodents. It is far more concentrated in the urine than in plasma and extracellular fluids. This concentration depends on the accumulation of urea in the renal medulla, permitted by an intrarenal recycling of urea among collecting ducts, vasa recta and thin descending limbs, all equipped with specialized, facilitated urea transporters (UTs) (UT-A1 and 3, UT-B, and UT-A2, respectively). UT-B null mice have been recently generated by targeted gene deletion. This review describes 1) the renal handling of urea by the mammalian kidney; 2) the consequences of UT-B deletion on urinary concentrating ability; and 3) species differences among mice, rats, and humans related to their very different body size and metabolic rate, leading to considerably larger needs to excrete and to concentrate urea in smaller species (urea excretion per unit body weight in mice is 5 times that in rats and 23 times that in humans). UT-B null mice have a normal glomerular filtration rate but moderately reduced urea clearance. They exhibit a 30% reduction in urine concentrating ability with a more severe defect in the capacity to concentrate urea (50%) than other solutes, despite a twofold enhanced expression of UT-A2. The urea content of the medulla is reduced by half, whereas that of chloride is almost normal. When given an acute urea load, UT-B null mice are unable to raise their urinary osmolality, urine urea concentration (Uurea), and the concentration of non-urea solutes, as do wild-type mice. When fed diets with progressively increasing protein content (10, 20, and 40%), they cannot prevent a much larger increase in plasma urea than wild-type mice because they cannot raise Uurea. In both wild-type and UT-B null mice, urea clearance was higher than creatinine clearance, suggesting the possibility that urea could be secreted in the mouse kidney, thus allowing more efficient excretion of the disproportionately high urea load. On the whole, studies in UT-B null mice suggest that recycling of urea by countercurrent exchange in medullary vessels plays a more crucial role in the overall capacity to concentrate urine than its recycling in the loops of Henle.
Collapse
Affiliation(s)
- Baoxue Yang
- Department of Medicine, University of California, San Francisco, California 94143-0521, USA.
| | | |
Collapse
|
38
|
Lucien N, Bruneval P, Lasbennes F, Belair MF, Mandet C, Cartron JP, Bailly P, Trinh-Trang-Tan MM. UT-B1 urea transporter is expressed along the urinary and gastrointestinal tracts of the mouse. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1046-56. [PMID: 15563580 DOI: 10.1152/ajpregu.00286.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selective transporters account for rapid urea transport across plasma membranes of several cell types. UT-B1 urea transporter is widely distributed in rat and human tissues. Because mice exhibit high urea turnover and are the preferred species for gene engineering, we have delineated UT-B1 tissue expression in murine tissues. A cDNA was cloned from BALB/c mouse kidney, encoding a polypeptide that differed from C57BL/6 mouse UT-B1 by one residue (Val-8-Ala). UT-B1 mRNA was detected by RT-PCR in brain, kidney, bladder, testis, lung, spleen, and digestive tract (liver, stomach, jejunum, colon). Northern blotting revealed seven UT-B1 transcripts in mouse tissues. Immunoblots identified a nonglycosylated UT-B1 protein of 29 kDa in most tissues and of 36 and 32 kDa in testis and liver, respectively. UT-B1 protein of gastrointestinal tract did not undergo N-glycosylation. Immunohistochemistry and in situ hybridization localized UT-B1 in urinary tract urothelium (papillary surface, ureter, bladder, and urethra), prominently on plasma membranes and restricted to the basolateral area in umbrella cells. UT-B1 was found in endothelial cells of descending vasa recta in kidney medulla and in astrocyte processes in brain. Dehydration induced by water deprivation for 2 days caused a tissue-specific decrease in UT-B1 abundance in the urinary bladder and the ureter.
Collapse
Affiliation(s)
- N Lucien
- INSERM U76, Institut National de Transfusion Sanguine, 6, rue Alexandre Cabanel, F-75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim D, Klein JD, Racine S, Murrell BP, Sands JM. Urea may regulate urea transporter protein abundance during osmotic diuresis. Am J Physiol Renal Physiol 2005; 288:F188-97. [PMID: 15251864 DOI: 10.1152/ajprenal.00200.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rats with diabetes mellitus have an increase in UT-A1 urea transporter protein abundance and absolute urea excretion, but the relative amount (percentage) of urea in total urinary solute is actually decreased due to the marked glucosuria. Urea-specific signaling pathways have been identified in mIMCD3 cells and renal medulla, suggesting the possibility that changes in the percentage or concentration of urea could be a factor that regulates UT-A1 abundance. In this study, we tested the hypothesis that an increase in a urinary solute other than urea would increase UT-A1 abundance, similar to diabetes mellitus, whereas an increase in urine urea would not. In both inner medullary base and tip, UT-A1 protein abundance increased during NaCl- or glucose-induced osmotic diuresis but not during urea-induced osmotic diuresis. Next, rats undergoing NaCl or glucose diuresis were given supplemental urea to increase the percentage of urine urea to control values. UT-A1 abundance did not increase in these urea-supplemented rats compared with control rats. Additionally, both UT-A2 and UT-B protein abundances in the outer medulla increased during urea-induced osmotic diuresis but not in NaCl or glucose diuresis. We conclude that during osmotic diuresis, UT-A1 abundance increases when the percentage of urea in total urinary solute is low and UT-A2 and UT-B abundances increase when the urea concentration in the medullary interstitium is high. These findings suggest that a reduction in urine or interstitial urea results in an increase in UT-A1 protein abundance in an attempt to restore inner medullary interstitial urea and preserve urine-concentrating ability.
Collapse
Affiliation(s)
- Dongun Kim
- Emory University School of Medicine, Department of Medicine, Renal Division, 1639 Pierce Dr., NE, WMB Rm. 338, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
40
|
Ripoche P, Bertrand O, Gane P, Birkenmeier C, Colin Y, Cartron JP. Human Rhesus-associated glycoprotein mediates facilitated transport of NH(3) into red blood cells. Proc Natl Acad Sci U S A 2004; 101:17222-7. [PMID: 15572441 PMCID: PMC535366 DOI: 10.1073/pnas.0403704101] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Indexed: 11/18/2022] Open
Abstract
Rhesus (Rh) antigens are carried by a membrane complex that includes Rh proteins (D and CcEe), Rh-associated glycoproteins (RhAG), and accessory chains (LW and CD47) associated by noncovalent bonds. In heterologous expression systems, RhAG and its kidney orthologs function as ammonium transporters. In red blood cells (RBCs), it is generally accepted that NH(3) permeates by membrane lipid diffusion. We have revisited these issues by studying RBC and ghosts from human and mouse genetic variants with defects of proteins that comprise the Rh complex. In both normal and mutant cells, stopped-flow analyses of intracellular pH changes in the presence of inwardly directed methylammonium (CH(3)NH(+)(3)+CH(3)NH(2)) or ammonium (NH(+)(4)+NH(3)) gradients showed a rapid alkalinization phase. Cells from human and mouse variants exhibited a decrease in their kinetic rate constants that was strictly correlated to the degree of reduction of their RhAG/Rhag expression level. Rate constants were not affected by a reduction of Rh, CD47, or LW. CH(3)NH(2)/NH(3) transport was characterized by (i) a sensitivity to mercurials that is reversible by 2-mercaptoethanol and (ii) a reduction of alkalinization rate constants after bromelain digestion, which cleaves RhAG. The results show that RhAG facilitates CH(3)NH(2)/NH(3) movement across the RBC membrane and represents a potential example of a gas channel in mammalian cells. In RBCs, RhAG may transport NH(3) to detoxifying organs, like kidney and liver, and together with nonerythroid tissue orthologs may contribute to the regulation of the systemic acid-base balance.
Collapse
Affiliation(s)
- Pierre Ripoche
- Institut National de la Santé et de la Recherche Médicale Unite 76, and Institut National de la Transfusion Sanguine, 6 Rue Alexandre Cabanel, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
41
|
Spector DA, Yang Q, Liu J, Wade JB. Expression, localization, and regulation of urea transporter B in rat urothelia. Am J Physiol Renal Physiol 2004; 287:F102-8. [PMID: 15068976 DOI: 10.1152/ajprenal.00442.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although mammalian urothelia are generally considered impermeable to urinary constituents, in vivo studies in several species suggest urothelial transport of water, urea, and solutes under certain conditions. This study investigates the expression, localization, and regulation of urea transporter-B (UT-B) in rat renal pelvis, ureter, and bladder tissues. Immunoblots of homogenates of tissues identified characteristic approximately 40- to 55- and approximately 32-kDa bands in the ureter, bladder, and renal inner medulla, but not renal cortex. UT-B was localized by immunocytochemistry and was strongly expressed in all cell membranes (and to a limited extent in intracellular vesicles in the cytoplasm) of epithelial cells lining the rat bladder, ureter, and renal pelvis lumens except the apical membrane of the umbrella cells. It was also present in single-layer papillary surface epithelial cells. There was no difference in immunoblot expression of UT-B in the bladder or ureteral homogenates between groups of rats fed high- or low-protein or high- or low-sodium diets. Water restriction resulted in an increase in UT-B expression in ureters (49%, P = 0.001) but not in bladders (14%, P = not significant). The functional role of UT-B in the genitourinary tract epithelia is unknown. UT-B may participate in the regulation of epithelial cell volume and osmolality, in the dissipation of urea gradients, and in possible net urea transport across uroepithelia.
Collapse
Affiliation(s)
- David A Spector
- Division of Renal Medicine, Johns Hopkins Bayview Medical Center, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
42
|
Li C, Klein JD, Wang W, Knepper MA, Nielsen S, Sands JM, Frøkiaer J. Altered expression of urea transporters in response to ureteral obstruction. Am J Physiol Renal Physiol 2004; 286:F1154-62. [PMID: 14982816 DOI: 10.1152/ajprenal.00453.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Urea plays an important role in the urinary concentrating capacity. Renal inner medullary (IM) urea transporter expression was examined in rats with bilateral (BUO) or unilateral ureteral obstruction (UUO). BUO (24 h) was associated with markedly increased plasma urea (42.4 +/- 1.0 vs. 5.2 +/- 0.2 mmol/l) and a significant decrease in expression of UT-A1 (28 +/- 8% of sham levels), UT-A3 (45 +/- 11%), and UT-B (70 +/- 8%). Immunocytochemistry confirmed downregulation of UT-A1 and UT-A3 in IM collecting duct and UT-B in the descending vasa recta. Three days after release of BUO, UT-A1, UT-A3, and UT-B remained significantly downregulated (UT-A1: 37 +/- 6%; UT-A3: 25 +/- 6%; and UT-B: 10 +/- 5% of sham levels; P < 0.05) concurrent with a persistent polyuria and a marked reduction in solute-free water reabsorption (115 +/- 11 vs. 196 +/- 8 microl.min(-1).kg(-1), P < 0.05). Moreover, 14 days after release of BUO, total UT-A1, UT-A3, and UT-B remained significantly decreased compared with sham-operated controls and urine urea remained reduced (588 +/- 43 vs. 1,150 +/- 94 mmol/l). Consistent with increased levels of plasma urea 24 h after onset of UUO (7.4 +/- 0.3 vs. 4.8 +/- 0.3 mmol/l), the protein abundance of UT-A1, UT-A3, and UT-B in IM was markedly reduced in the obstructed kidney, which was confirmed by immunocytochemistry. In the nonobstructed kidney, the expression of urea transporters did not change. In conclusion, reduced expression of UT-A1, UT-A3, and UT-B levels in both BUO and UUO rats suggests that urea transporters play important roles in the impaired urinary concentrating capacity in response to urinary tract obstruction.
Collapse
Affiliation(s)
- Chunling Li
- The Water and Salt Research Center/Institute of Experimental Clinical Research, Aarhus Univ. Hospital-Skejby, DK-8200 Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
43
|
Stewart GS, Fenton RA, Thévenod F, Smith CP. Urea movement across mouse colonic plasma membranes is mediated by UT-A urea transporters. Gastroenterology 2004; 126:765-73. [PMID: 14988831 DOI: 10.1053/j.gastro.2003.11.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Urea is a major nitrogen source for commensal bacteria that inhabit the large intestine. UT-A urea transporters mediate urea movement across plasma membranes. The aim of this study was to determine whether UT-A proteins are expressed in the mouse colon and, if so, whether they have a functional role in transcellular urea transport. METHODS Mouse colonic UT-A transporters were investigated with Northern blot analysis, immunoblotting, immunolocalization, and refractive light flux experiments. RESULTS Northern blot analysis showed that 4 UT-A transcripts were present in mouse colon. Two peptide-targeted polyclonal antibodies showed the presence of UT-A immunoreactive proteins in mouse colon. Antiserum ML446 targeted to the N-terminus of mouse UT-A1 detected proteins of 34 and 48 kilodaltons. Antiserum ML194 targeted to the C-terminus of mouse UT-A1 detected proteins of 48, 75, and 100 kilodaltons. Immunolocalization studies using ML446 showed the presence of UT-A proteins in cells throughout the colonic crypts. ML194 specifically stained cells located in the proliferative and stem regions of the lower portion of colonic crypts. Differential centrifugation and immunoblotting of colonic epithelia showed that UT-A proteins were present in plasma membrane-enriched fractions. Refractive light flux experiments using colonic plasma membrane vesicles showed a significant urea flux, which was completely inhibited by the UT-A inhibitor phloretin. CONCLUSIONS Functional UT-A transporters are expressed in the plasma membranes of mouse colon, indicating that these proteins may play a key role in host/bacterial interaction.
Collapse
Affiliation(s)
- Gavin S Stewart
- School of Biological Sciences, University of Manchester, England
| | | | | | | |
Collapse
|
44
|
Shayakul C, Hediger MA. The SLC14 gene family of urea transporters. Pflugers Arch 2004; 447:603-9. [PMID: 12856182 DOI: 10.1007/s00424-003-1124-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 06/01/2003] [Indexed: 02/02/2023]
Abstract
Carrier-mediated urea transport allows rapid urea movement across the cell membrane, which is particularly important in the process of urinary concentration and for rapid urea equilibrium in non-renal tissues. Urea transporters mediate passive urea uptake that is inhibited by phloretin and urea analogues. Facilitated urea transporters are divided into two classes: (1) the renal tubular/testicular type of urea transporter, UT-A1 to -A5, encoded by alternative splicing of the SLC14A2 gene, and (2) the erythrocyte urea transporter UT-B1 encoded by the SLC14A1 gene. The primary structure of urea transporters is unique, consisting of two extended, hydrophobic, membrane-spanning domains and an extracellular glycosylated-connecting loop. UT-A1 is the result of a gene duplication of this two-halves-structure, and the duplicated portions are linked together by a large intracellular hydrophilic loop, carrying several putative protein kinase A (PKA) and -C (PKC) phosphorylation sites. UT-A1 is located in the apical membrane of the kidney inner medullary collecting duct cells, where it is stimulated acutely by cAMP-mediated phosphorylation in response to the antidiuretic hormone vasopressin. Vasopressin also up-regulates UT-A2 mRNA/protein expression in the descending thin limb of the loops of Henle. UT-A1 and UT-A2 are regulated independently and respond differently to changes in dietary protein content. UT-A3 and UT-A4 are located in the rat kidney medulla and UT-A5 in the mouse testis. The widely expressed UT-B participates in urea recycling in the descending vasa recta, as demonstrated by a relatively mild "urea-selective" urinary concentrating defect in transgenic UT-B null mice and individuals with the Jk(null) blood group.
Collapse
Affiliation(s)
- Chairat Shayakul
- Renal Unit, Department of Medicine, Siriraj Hospital, Mahidol University, 2 Prannok Rd, Bangkoknoi, Bangkok 10700, Thailand.
| | | |
Collapse
|
45
|
Bankir L, Chen K, Yang B. Lack of UT-B in vasa recta and red blood cells prevents urea-induced improvement of urinary concentrating ability. Am J Physiol Renal Physiol 2004; 286:F144-51. [PMID: 12965892 DOI: 10.1152/ajprenal.00205.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recycling of urea within the renal medulla is known to play an important role in the capacity of the kidney to concentrate urine. This recycling occurs simultaneously through a tubular and a vascular route (i.e., through the loops of Henle and vasa recta, respectively). In the present study, transgenic mice with a selective deficiency in UT-B (the urea transporter protein expressed in descending vasa recta and red blood cells), were used to evaluate the specific contribution of vascular urea recycling to overall urine-concentrating ability (UCA). The renal handling of urea was studied in normal conditions and after acute or chronic alterations in urea excretion (acute urea loading or variations in protein intake, respectively). In normal conditions, UT-B null mice exhibited a 44% elevation in plasma urea (Purea), a normal creatinine clearance, but a 25% decrease in urea clearance, with no change in that of sodium and potassium. Acute urea loading induced a progressive increase in urinary urea concentration (Uurea) in wild-type mice and a subsequent improvement in their UCA in contrast to UT-B null mice, in which urinary osmolality and Uurea did not rise, due to the failure to accumulate urea in the medulla. With increasing protein intake (from 10 to 40% protein in diet, leading to a 5-fold increase in urea excretion), Purea was further increased in null mice while little change was observed in wild-type mice, and null mice were not able to increase Uurea as did wild-type mice. In conclusion, this study in UT-B-deficient mice reveals that countercurrent exchange of urea in renal medullary vessels and red blood cells accounts for a major part of the kidney's concentrating ability and for the adaptation of renal urea handling during a high-protein intake.
Collapse
Affiliation(s)
- Lise Bankir
- Cardiovascular Research Institute, University of California, 1246 Health Sciences East Tower, San Francisco, CA 94143-0521, USA
| | | | | |
Collapse
|
46
|
Trinh-Trang-Tan MM, Geelen G, Teillet L, Corman B. Urea transporter expression in aging kidney and brain during dehydration. Am J Physiol Regul Integr Comp Physiol 2003; 285:R1355-65. [PMID: 12933359 DOI: 10.1152/ajpregu.00207.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging is commonly associated with defective urine-concentrating ability. The present study examined how the kidney and the brain of senescent (30-mo-old) female WAG/Rij rats respond to dehydration induced by 2 days of water deprivation in terms of urea transporter (UT) regulation. In euhydrated situation, senescent rats exhibited similar vasopressin plasma level but lower urine osmolality and papillary urea concentration and markedly reduced kidney UT-A1, UT-A3, and UT-B1 abundances compared with adult (10-mo-old) rats. Senescent rats responded to dehydration similarly to adult rats by a sixfold increase in vasopressin plasma level. Their papillary urea concentration was doubled, without, however, attaining that of dehydrated adult rats. Such an enhanced papillary urea sequestration occurred with a great fall of both UT-A1 and UT-A3 abundances in the tip of inner medulla and an increased UT-A1 abundance in the base of inner medulla. UT-A2 and UT-B1 were unchanged. These data suggest that the inability of control and thirsted senescent rats to concentrate urine as much as their younger counterparts derives from lower papillary urea concentration. In aging brain, UT-B1 abundance was increased twofold together with a fourfold increase in aquaporin-4 abundance. Dehydration did not alter the abundance of these transporters.
Collapse
Affiliation(s)
- M-M Trinh-Trang-Tan
- Institut National de la Santé et de la Recherche Médicale U76, Institut National de Transfusion Sanguine, 6, rue Alexandre Cabanel, F-75015 Paris, France.
| | | | | | | |
Collapse
|
47
|
Jung JY, Madsen KM, Han KH, Yang CW, Knepper MA, Sands JM, Kim J. Expression of urea transporters in potassium-depleted mouse kidney. Am J Physiol Renal Physiol 2003; 285:F1210-24. [PMID: 12952854 DOI: 10.1152/ajprenal.00111.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Urea transport in the kidney is mediated by a family of transporter proteins that include the renal urea transporter (UT-A) and the erythrocyte urea transporter (UT-B). The purpose of this study was to determine the location of the urea transporter isoforms in the mouse kidney and to examine the effects of prolonged potassium depletion on the expression and distribution of these transporters by ultrastructural immunocytochemistry. C57BL6 mice were fed a low-potassium diet for 2 wk, and control animals received normal chow. After 2 wk on a low-potassium diet, urinary volume increased and urinary osmolality decreased (833 +/- 30 vs. 1,919 +/- 174 mosmol/kgH2O), as previously demonstrated. Kidneys were processed for immunocytochemistry with antibodies against UT-A1 (L446), UT-A1 and UT-A2 (L194), UT-A3 (Q2), and UT-B. In normal mice, UT-A1 and UT-A3 were expressed mainly in the cytoplasm of the terminal inner medullary collecting duct (IMCD). UT-A2 immunoreactivity was observed mainly on the basolateral membrane of the type 1 epithelium of the descending thin limb (DTL) of short-looped nephrons. The intensity of UT-A1 and UT-A3 immunoreactivity in the IMCD was markedly reduced in potassium-depleted mice. In contrast, there was a significant increase in UT-A2 immunoreactivity in the DTL. The intensity of UT-B immunoreactivity in the descending vasa recta (DVR) was reduced in potassium-depleted animals compared with controls. In control animals, UT-B immunoreactivity was predominantly observed in the plasma membrane, whereas in potassium-depleted mice, it was mainly observed in cytoplasmic granules in endothelial cells of the DVR. In summary, potassium depletion is associated with reduced expression of UT-A1, UT-A3, and UT-B but increased expression of UT-A2. We conclude that reduced expression of urea transporters may play a role in the impaired urine-concentrating ability associated with potassium deprivation.
Collapse
Affiliation(s)
- Ju-Young Jung
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 505 Banpo-Dong, Socho-Gu, Seoul 137-701, Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Pallone TL, Turner MR, Edwards A, Jamison RL. Countercurrent exchange in the renal medulla. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1153-75. [PMID: 12676741 DOI: 10.1152/ajpregu.00657.2002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The microcirculation of the renal medulla traps NaCl and urea deposited to the interstitium by the loops of Henle and collecting ducts. Theories have predicted that countercurrent exchanger efficiency is favored by high permeability to solute. In contrast to the conceptualization of vasa recta as simple "U-tube" diffusive exchangers, many findings have revealed surprising complexity. Tubular-vascular relationships in the outer and inner medulla differ markedly. The wall structure and transport properties of descending vasa recta (DVR) and ascending vasa recta (AVR) are very different. The recent discoveries of aquaporin-1 (AQP1) water channels and the facilitated urea carrier UTB in DVR endothelia show that transcellular as well as paracellular pathways are involved in equilibration of DVR plasma with the interstitium. Efflux of water across AQP1 excludes NaCl and urea, leading to the conclusion that both water abstraction and diffusion contribute to transmural equilibration. Recent theory predicts that loss of water from DVR to the interstitium favors optimization of urinary concentration by shunting water to AVR, secondarily lowering blood flow to the inner medulla. Finally, DVR are vasoactive, arteriolar microvessels that are anatomically positioned to regulate total and regional blood flow to the outer and inner medulla. In this review, we provide historical perspective, describe the current state of knowledge, and suggest areas that are in need of further exploration.
Collapse
Affiliation(s)
- Thomas L Pallone
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
49
|
Abstract
Urea plays various roles in the biology of diverse organisms. The past decade has produced new information on the molecular structure of several urea transporters in various species. Availability of DNA probes has revealed that the presence of urea transporters is not confined to the mammalian kidney but is also evident in testis and brain, raising new questions about the possible physiological role of urea in these organs. Cloning of the genes encoding the two closely related mammalian urea transporters UT-A and UT-B has helped in identifying molecular mechanisms affecting expression of urea transporters in the kidney, such as transcriptional control for UT-A abundance. On the basis of analysis of genomic sequences of individuals lacking the UT-B transporter, mutations have been found that explain deficits in their capacity to concentrate urine. More urea transporters are being characterized in marine organisms and lower vertebrates, and studying the role and regulation of urea transport from an evolutionary perspective can certainly enrich our understanding of renal physiology.
Collapse
Affiliation(s)
- Serena M Bagnasco
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
50
|
Combet S, Geffroy N, Berthonaud V, Dick B, Teillet L, Verbavatz JM, Corman B, Trinh-Trang-Tan MM. Correction of age-related polyuria by dDAVP: molecular analysis of aquaporins and urea transporters. Am J Physiol Renal Physiol 2003; 284:F199-208. [PMID: 12388383 DOI: 10.1152/ajprenal.00167.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Senescent female WAG/Rij rats exhibit polyuria without obvious renal disease or defects in vasopressin plasma level or V(2) receptor mRNA expression. Normalization of urine flow rate by 1-desamino-8-d-arginine vasopressin (dDAVP) was investigated in these animals. Long-term dDAVP infusion into 30-mo-old rats reduced urine flow rate and increased urine osmolality to levels comparable to those in control 10-mo-old rats. The maximal urine osmolality in aging rat kidney was, however, lower than that in adult kidney, despite supramaximal administration of dDAVP. This improvement involved increased inner medullary osmolality and urea sequestration. This may result from upregulation of UT-A1, the vasopressin-regulated urea transporter, in initial inner medullary collecting duct (IMCD), but not in terminal IMCD, where UT-A1 remained low. Expression of UT-A2, which contributes to medullary urea recycling, was greatly increased. Regulation of IMCD aquaporin (AQP)-2 (AQP2) expression by dDAVP differed between adult and senescent rats: the low AQP2 abundance in senescent rats was normalized by dDAVP infusion, which also improved targeting of the channel; in adult rats, AQP2 expression was unaltered, suggesting that IMCD AQP2 expression is not regulated by dDAVP directly. Increased AQP3 expression in senescent rats may also be involved in improved urine-concentrating capacity owing to higher basolateral water and urea reabsorption capacity.
Collapse
Affiliation(s)
- Sophie Combet
- Service de Biologie Cellulaire, Commissariat à l'Energie Atomique/Saclay, F-91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|