1
|
Presta M, Zoratto F, Mulder D, Ottomana AM, Pisa E, Arias Vásquez A, Slattery DA, Glennon JC, Macrì S. Hyperglycemia and cognitive impairments anticipate the onset of an overt type 2 diabetes-like phenotype in TALLYHO/JngJ mice. Psychoneuroendocrinology 2024; 167:107102. [PMID: 38896988 DOI: 10.1016/j.psyneuen.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
Type 2 Diabetes mellitus (T2DM) is a metabolic disorder characterized by chronic hyperglycemia, resulting from deficits in insulin secretion, insulin action, or both. Whilst the role of insulin in the peripheral nervous system has been ascertained in countless studies, its role in the central nervous system (CNS) is emerging only recently. Brain insulin has been lately associated with brain disorders like Alzheimer's disease, obsessive compulsive disorder, and attention deficit hyperactivity disorder. Thus, understanding the role of insulin as a common risk factor for mental and somatic comorbidities may disclose novel preventative and therapeutic approaches. We evaluated general metabolism (glucose tolerance, insulin sensitivity, energy expenditure, lipid metabolism, and polydipsia) and cognitive capabilities (attention, cognitive flexibility, and memory), in adolescent, young adult, and adult male and female TALLYHO/JngJ mice (TH, previously reported to constitute a valid experimental model of T2DM due to impaired insulin signaling). Adult TH mice have also been studied for alterations in gut microbiota diversity and composition. While TH mice exhibited profound deficits in cognitive flexibility and altered glucose metabolism, we observed that these alterations emerged either much earlier (males) or independent of (females) a comprehensive constellation of symptoms, isomorphic to an overt T2DM-like phenotype (insulin resistance, polydipsia, higher energy expenditure, and altered lipid metabolism). We also observed significant sex-dependent alterations in gut microbiota alpha diversity and taxonomy in adult TH mice. Deficits in insulin signaling may represent a common risk factor for both T2DM and CNS-related deficits, which may stem from (partly) independent mechanisms.
Collapse
Affiliation(s)
- Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy
| | - Francesca Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Danique Mulder
- Donders Institute for Brain, Cognition and Behaviour, Departments of Psychiatry and Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy; Neuroscience Unit, Department of Medicine, University of Parma, Parma 43100, Italy
| | - Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Alejandro Arias Vásquez
- Donders Institute for Brain, Cognition and Behaviour, Departments of Psychiatry and Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Jeffrey C Glennon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy.
| |
Collapse
|
2
|
E96V Mutation in the Kdelr3 Gene Is Associated with Type 2 Diabetes Susceptibility in Obese NZO Mice. Int J Mol Sci 2023; 24:ijms24010845. [PMID: 36614300 PMCID: PMC9820861 DOI: 10.3390/ijms24010845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Type 2 diabetes (T2D) represents a multifactorial metabolic disease with a strong genetic predisposition. Despite elaborate efforts in identifying the genetic variants determining individual susceptibility towards T2D, the majority of genetic factors driving disease development remain poorly understood. With the aim to identify novel T2D risk genes we previously generated an N2 outcross population using the two inbred mouse strains New Zealand obese (NZO) and C3HeB/FeJ (C3H). A linkage study performed in this population led to the identification of the novel T2D-associated quantitative trait locus (QTL) Nbg15 (NZO blood glucose on chromosome 15, Logarithm of odds (LOD) 6.6). In this study we used a combined approach of positional cloning, gene expression analyses and in silico predictions of DNA polymorphism on gene/protein function to dissect the genetic variants linking Nbg15 to the development of T2D. Moreover, we have generated congenic strains that associated the distal sublocus of Nbg15 to mechanisms altering pancreatic beta cell function. In this sublocus, Cbx6, Fam135b and Kdelr3 were nominated as potential causative genes associated with the Nbg15 driven effects. Moreover, a putative mutation in the Kdelr3 gene from NZO was identified, negatively influencing adaptive responses associated with pancreatic beta cell death and induction of endoplasmic reticulum stress. Importantly, knockdown of Kdelr3 in cultured Min6 beta cells altered insulin granules maturation and pro-insulin levels, pointing towards a crucial role of this gene in islets function and T2D susceptibility.
Collapse
|
3
|
Jonas W, Kluth O, Helms A, Voß S, Jähnert M, Gottmann P, Speckmann T, Knebel B, Chadt A, Al-Hasani H, Schürmann A, Vogel H. Identification of Novel Genes Involved in Hyperglycemia in Mice. Int J Mol Sci 2022; 23:3205. [PMID: 35328627 PMCID: PMC8949927 DOI: 10.3390/ijms23063205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Current attempts to prevent and manage type 2 diabetes have been moderately effective, and a better understanding of the molecular roots of this complex disease is important to develop more successful and precise treatment options. Recently, we initiated the collective diabetes cross, where four mouse inbred strains differing in their diabetes susceptibility were crossed with the obese and diabetes-prone NZO strain and identified the quantitative trait loci (QTL) Nidd13/NZO, a genomic region on chromosome 13 that correlates with hyperglycemia in NZO allele carriers compared to B6 controls. Subsequent analysis of the critical region, harboring 644 genes, included expression studies in pancreatic islets of congenic Nidd13/NZO mice, integration of single-cell data from parental NZO and B6 islets as well as haplotype analysis. Finally, of the five genes (Acot12, S100z, Ankrd55, Rnf180, and Iqgap2) within the polymorphic haplotype block that are differently expressed in islets of B6 compared to NZO mice, we identified the calcium-binding protein S100z gene to affect islet cell proliferation as well as apoptosis when overexpressed in MIN6 cells. In summary, we define S100z as the most striking gene to be causal for the diabetes QTL Nidd13/NZO by affecting β-cell proliferation and apoptosis. Thus, S100z is an entirely novel diabetes gene regulating islet cell function.
Collapse
Affiliation(s)
- Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Oliver Kluth
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Anett Helms
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Sarah Voß
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Thilo Speckmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Birgit Knebel
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
- German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Alexandra Chadt
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
- German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
- German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
- Institute of Nutritional Sciences, University of Potsdam, 14558 Nuthetal, Germany
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
- Research Group Genetics of Obesity, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, 14469 Potsdam, Germany
| |
Collapse
|
4
|
Lone IM, Iraqi FA. Genetics of murine type 2 diabetes and comorbidities. Mamm Genome 2022; 33:421-436. [PMID: 35113203 DOI: 10.1007/s00335-022-09948-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
ABSTRAC Type 2 diabetes (T2D) is a polygenic and multifactorial complex disease, defined as chronic metabolic disorder. It's a major global health concern with an estimated 463 million adults aged 20-79 years with diabetes and projected to increase up to 700 million by 2045. T2D was reported to be one of the four leading causes of non-communicable disease (NCD) deaths in 2012. Environmental factors play a part in the development of polygenic forms of diabetes. Polygenic forms of diabetes often run-in families. Fortunately, T2D, which accounts for 90-95% of the entire four types of diabetes including, Type 1 diabetes (T1D), T2D, monogenic diabetes syndromes (MGDS), and Gestational diabetes mellitus, can be prevented or delayed through nutrition and lifestyle changes as well as through pharmacologic interventions. Typical symptom of the T2D is high blood glucose levels and comprehensive insulin resistance of the body, producing an impaired glucose tolerance. Impaired glucose tolerance of T2D is accompanied by extensive health complications, including cardiovascular diseases (CVD) that vary in morbidity and mortality among populations. The pathogenesis of T2D varies between populations and/or ethnic groupings and is known to be attributed extremely by genetic components and environmental factors. It is evident that genetic background plays a critical role in determining the host response toward certain environmental conditions, whether or not of developing T2D (susceptibility versus resistant). T2D is considered as a silent disease that can progress for years before its diagnosis. Once T2D is diagnosed, many metabolic malfunctions are observed whether as side effects or as independent comorbidity. Mouse models have been proven to be a powerful tool for mapping genetic factors that underline the susceptibility to T2D development as well its comorbidities. Here, we have conducted a comprehensive search throughout the published data covering the time span from early 1990s till the time of writing this review, for already reported quantitative trait locus (QTL) associated with murine T2D and comorbidities in different mouse models, which contain different genetic backgrounds. Our search has resulted in finding 54 QTLs associated with T2D in addition to 72 QTLs associated with comorbidities associated with the disease. We summarized the genomic locations of these mapped QTLs in graphical formats, so as to show the overlapping positions between of these mapped QTLs, which may suggest that some of these QTLs could be underlined by sharing gene/s. Finally, we reviewed and addressed published reports that show the success of translation of the identified mouse QTLs/genes associated with the disease in humans.
Collapse
Affiliation(s)
- Iqbal M Lone
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - Fuad A Iraqi
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel.
| |
Collapse
|
5
|
Zou J, Gopalakrishnan S, Parker CC, Nicod J, Mott R, Cai N, Lionikas A, Davies RW, Palmer AA, Flint J. Analysis of independent cohorts of outbred CFW mice reveals novel loci for behavioral and physiological traits and identifies factors determining reproducibility. G3 (BETHESDA, MD.) 2022; 12:jkab394. [PMID: 34791208 PMCID: PMC8728023 DOI: 10.1093/g3journal/jkab394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Combining samples for genetic association is standard practice in human genetic analysis of complex traits, but is rarely undertaken in rodent genetics. Here, using 23 phenotypes and genotypes from two independent laboratories, we obtained a sample size of 3076 commercially available outbred mice and identified 70 loci, more than double the number of loci identified in the component studies. Fine-mapping in the combined sample reduced the number of likely causal variants, with a median reduction in set size of 51%, and indicated novel gene associations, including Pnpo, Ttll6, and GM11545 with bone mineral density, and Psmb9 with weight. However, replication at a nominal threshold of 0.05 between the two component studies was low, with less than one-third of loci identified in one study replicated in the second. In addition to overestimates in the effect size in the discovery sample (Winner's Curse), we also found that heterogeneity between studies explained the poor replication, but the contribution of these two factors varied among traits. Leveraging these observations, we integrated information about replication rates, study-specific heterogeneity, and Winner's Curse corrected estimates of power to assign variants to one of four confidence levels. Our approach addresses concerns about reproducibility and demonstrates how to obtain robust results from mapping complex traits in any genome-wide association study.
Collapse
Affiliation(s)
- Jennifer Zou
- Department of Computer Science, University of California, Los Angeles, CA 90024, USA
| | - Shyam Gopalakrishnan
- Faculty of Health and Medical Sciences, GLOBE Institute, University of Copenhagen, Copenhagen DK-1353, Denmark
| | - Clarissa C Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | | | - Richard Mott
- UCL Department of Genetics, Evolution & Environment, UCL Genetics Institute, London WC1E 6BT, UK
| | - Na Cai
- Helmholtz Zentrum Muenchen, Helmoltz Pioneer Campus, Neuherberg 85764, Germany
| | - Arimantas Lionikas
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Robert W Davies
- Department of Statistics, University of Oxford, Oxford OX1 2JD, UK
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan Flint
- Department of Biobehavioral Sciences, University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
6
|
Schwerbel K, Kamitz A, Krahmer N, Hallahan N, Jähnert M, Gottmann P, Lebek S, Schallschmidt T, Arends D, Schumacher F, Kleuser B, Haltenhof T, Heyd F, Gancheva S, Broman KW, Roden M, Joost HG, Chadt A, Al-Hasani H, Vogel H, Jonas W, Schürmann A. Immunity-related GTPase induces lipophagy to prevent excess hepatic lipid accumulation. J Hepatol 2020; 73:771-782. [PMID: 32376415 PMCID: PMC7957830 DOI: 10.1016/j.jhep.2020.04.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Currently, only a few genetic variants explain the heritability of fatty liver disease. Quantitative trait loci (QTL) analysis of mouse strains has identified the susceptibility locus Ltg/NZO (liver triglycerides from New Zealand obese [NZO] alleles) on chromosome 18 as associating with increased hepatic triglycerides. Herein, we aimed to identify genomic variants responsible for this association. METHODS Recombinant congenic mice carrying 5.3 Mbp of Ltg/NZO were fed a high-fat diet and characterized for liver fat. Bioinformatic analysis, mRNA profiles and electrophoretic mobility shift assays were performed to identify genes responsible for the Ltg/NZO phenotype. Candidate genes were manipulated in vivo by injecting specific microRNAs into C57BL/6 mice. Pulldown coupled with mass spectrometry-based proteomics and immunoprecipitation were performed to identify interaction partners of IFGGA2. RESULTS Through positional cloning, we identified 2 immunity-related GTPases (Ifgga2, Ifgga4) that prevent hepatic lipid storage. Expression of both murine genes and the human orthologue IRGM was significantly lower in fatty livers. Accordingly, liver-specific suppression of either Ifgga2 or Ifgga4 led to a 3-4-fold greater increase in hepatic fat content. In the liver of low-fat diet-fed mice, IFGGA2 localized to endosomes/lysosomes, while on a high-fat diet it associated with lipid droplets. Pulldown experiments and proteomics identified the lipase ATGL as a binding partner of IFGGA2 which was confirmed by co-immunoprecipitation. Both proteins partially co-localized with the autophagic marker LC3B. Ifgga2 suppression in hepatocytes reduced the amount of LC3B-II, whereas overexpression of Ifgga2 increased the association of LC3B with lipid droplets and decreased triglyceride storage. CONCLUSION IFGGA2 interacts with ATGL and protects against hepatic steatosis, most likely by enhancing the binding of LC3B to lipid droplets. LAY SUMMARY The genetic basis of non-alcoholic fatty liver disease remains incompletely defined. Herein, we identified members of the immunity-related GTPase family in mice and humans that act as regulators of hepatic fat accumulation, with links to autophagy. Overexpression of the gene Ifgga2 was shown to reduce hepatic lipid storage and could be a therapeutic target for the treatment of fatty liver disease.
Collapse
Affiliation(s)
- Kristin Schwerbel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany
| | - Anne Kamitz
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany
| | - Natalie Krahmer
- German Center for Diabetes Research, D-85764 München-Neuherberg, Germany; Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, D-82152 Martinsried, Germany; Institute for Diabetes and Obesity, Helmholtz Zentrum München, D-85764 München-Neuherberg, Germany
| | - Nicole Hallahan
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany
| | - Sandra Lebek
- German Center for Diabetes Research, D-85764 München-Neuherberg, Germany; Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Tanja Schallschmidt
- German Center for Diabetes Research, D-85764 München-Neuherberg, Germany; Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Danny Arends
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Fabian Schumacher
- Institute of Nutritional Science, Department of Toxicology, University of Potsdam, D-14558 Nuthetal, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, Department of Toxicology, University of Potsdam, D-14558 Nuthetal, Germany
| | - Tom Haltenhof
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, D-14195 Berlin, Germany
| | - Florian Heyd
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, D-14195 Berlin, Germany
| | - Sofiya Gancheva
- German Center for Diabetes Research, D-85764 München-Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Karl W Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin, WI 53706 Madison, Wisconsin, United States
| | - Michael Roden
- German Center for Diabetes Research, D-85764 München-Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany
| | - Alexandra Chadt
- German Center for Diabetes Research, D-85764 München-Neuherberg, Germany; Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research, D-85764 München-Neuherberg, Germany; Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany.
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany; German Center for Diabetes Research, D-85764 München-Neuherberg, Germany; University of Potsdam, Institute of Nutritional Sciences, D-14558 Nuthetal, Germany.
| |
Collapse
|
7
|
Kumar M, Srivastav AK, Parmar D. Genetic analysis and epistatic interaction association of lipid traits in a C57xBalb/c F2 mice. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Genetic locus responsible for diabetic phenotype in the insulin hyposecretion (ihs) mouse. PLoS One 2020; 15:e0234132. [PMID: 32502168 PMCID: PMC7274380 DOI: 10.1371/journal.pone.0234132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Diabetic animal models have made significant contributions to understanding the etiology of diabetes and to the development of new medications. Our research group recently developed a novel diabetic mouse strain, the insulin hyposecretion (ihs)mouse. The strain involves neither obesity nor insulitis but exhibits notable pancreatic β-cell dysfunction, distinguishing it from other well-characterized animal models. In ihs mice, severe impairment of insulin secretion from pancreas has been elicited by glucose or potassium chloride stimulation. To clarify the genetic basis of impaired insulin secretion, beginning with identifying the causative gene, genetic linkage analysis was performed using [(C57BL/6 × ihs) F1 × ihs] backcross progeny. Genetic linkage analysis and quantitative trait loci analysis for blood glucose after oral glucose loading indicated that a recessively acting locus responsible for impaired glucose tolerance was mapped to a 14.9-Mb region of chromosome 18 between D18Mit233 and D18Mit235 (the ihs locus). To confirm the gene responsible for the ihs locus, a congenic strain harboring the ihs locus on the C57BL/6 genetic background was developed. Phenotypic analysis of B6.ihs-(D18Mit233-D18Mit235) mice showed significant glucose tolerance impairment and markedly lower plasma insulin levels during an oral glucose tolerance test. Whole-genome sequencing and Sanger sequencing analyses on the ihs genome detected two ihs-specific variants changing amino acids within the ihs locus; both variants in Slc25a46 and Tcerg1 were predicted to disrupt the protein function. Based on information regarding gene functions involving diabetes mellitus and insulin secretion, reverse-transcription quantitative polymerase chain reaction analysis revealed that the relative abundance of Reep2 and Sil1 transcripts from ihs islets was significantly decreased whereas that of Syt4 transcripts were significantly increased compared with those of control C57BL/6 mice. Thus, Slc25a46, Tcerg1, Syt4, Reep2 and Sil1 are potential candidate genes for the ihs locus. This will be the focus of future studies in both mice and humans.
Collapse
|
9
|
Vogel H, Kamitz A, Hallahan N, Lebek S, Schallschmidt T, Jonas W, Jähnert M, Gottmann P, Zellner L, Kanzleiter T, Damen M, Altenhofen D, Burkhardt R, Renner S, Dahlhoff M, Wolf E, Müller TD, Blüher M, Joost HG, Chadt A, Al-Hasani H, Schürmann A. A collective diabetes cross in combination with a computational framework to dissect the genetics of human obesity and Type 2 diabetes. Hum Mol Genet 2019; 27:3099-3112. [PMID: 29893858 PMCID: PMC6097155 DOI: 10.1093/hmg/ddy217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
To explore the genetic determinants of obesity and Type 2 diabetes (T2D), the German Center for Diabetes Research (DZD) conducted crossbreedings of the obese and diabetes-prone New Zealand Obese mouse strain with four different lean strains (B6, DBA, C3H, 129P2) that vary in their susceptibility to develop T2D. Genome-wide linkage analyses localized more than 290 quantitative trait loci (QTL) for obesity, 190 QTL for diabetes-related traits and 100 QTL for plasma metabolites in the outcross populations. A computational framework was developed that allowed to refine critical regions and to nominate a small number of candidate genes by integrating reciprocal haplotype mapping and transcriptome data. The efficiency of the complex procedure was demonstrated for one obesity QTL. The genomic interval of 35 Mb with 502 annotated candidate genes was narrowed down to six candidates. Accordingly, congenic mice retained the obesity phenotype owing to an interval that contains three of the six candidate genes. Among these the phospholipase PLA2G4A exhibited an elevated expression in adipose tissue of obese human subjects and is therefore a critical regulator of the obesity locus. Together, our broad and complex approach demonstrates that combined- and comparative-cross analysis exhibits improved mapping resolution and represents a valid tool for the identification of disease genes.
Collapse
Affiliation(s)
- Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Anne Kamitz
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Nicole Hallahan
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Sandra Lebek
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Tanja Schallschmidt
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Lisa Zellner
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Timo Kanzleiter
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Mareike Damen
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Delsi Altenhofen
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Ralph Burkhardt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig D-04303, Germany
| | - Simone Renner
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, D-81377 Munich, Germany
| | - Maik Dahlhoff
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, D-81377 Munich, Germany
| | - Eckhard Wolf
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, D-81377 Munich, Germany
| | - Timo D Müller
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich D-80333, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig D-04103, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany
| | - Alexandra Chadt
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal D-14558, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg D-85764, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal D-14558, Germany
| |
Collapse
|
10
|
Quantitative trait loci that determine plasma insulin levels in
$$\hbox {F}_{2}$$
F
2
intercross populations produced from crosses between DDD/Sgn and C57BL/6J inbred mice. J Genet 2018. [DOI: 10.1007/s12041-018-1040-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Two Novel Candidate Genes for Insulin Secretion Identified by Comparative Genomics of Multiple Backcross Mouse Populations. Genetics 2018; 210:1527-1542. [PMID: 30341086 DOI: 10.1534/genetics.118.301578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022] Open
Abstract
To identify novel disease genes for type 2 diabetes (T2D) we generated two backcross populations of obese and diabetes-susceptible New Zealand Obese (NZO/HI) mice with the two lean mouse strains 129P2/OlaHsd and C3HeB/FeJ. Subsequent whole-genome linkage scans revealed 30 novel quantitative trait loci (QTL) for T2D-associated traits. The strongest association with blood glucose [12 cM, logarithm of the odds (LOD) 13.3] and plasma insulin (17 cM, LOD 4.8) was detected on proximal chromosome 7 (designated Nbg7p, NZO blood glucose on proximal chromosome 7) exclusively in the NZOxC3H crossbreeding, suggesting that the causal gene is contributed by the C3H genome. Introgression of the critical C3H fragment into the genetic NZO background by generating recombinant congenic strains and metabolic phenotyping validated the phenotype. For the detection of candidate genes in the critical region (30-46 Mb), we used a combined approach of haplotype and gene expression analysis to search for C3H-specific gene variants in the pancreatic islets, which appeared to be the most likely target tissue for the QTL. Two genes, Atp4a and Pop4, fulfilled the criteria from our candidate gene approaches. The knockdown of both genes in MIN6 cells led to decreased glucose-stimulated insulin secretion, indicating a regulatory role of both genes in insulin secretion, thereby possibly contributing to the phenotype linked to Nbg7p In conclusion, our combined- and comparative-cross analysis approach has successfully led to the identification of two novel diabetes susceptibility candidate genes, and thus has been proven to be a valuable tool for the discovery of novel disease genes.
Collapse
|
12
|
Chung B, Stadion M, Schulz N, Jain D, Scherneck S, Joost HG, Schürmann A. The diabetes gene Zfp69 modulates hepatic insulin sensitivity in mice. Diabetologia 2015; 58:2403-13. [PMID: 26232096 PMCID: PMC4572078 DOI: 10.1007/s00125-015-3703-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Zfp69 was previously identified by positional cloning as a candidate gene for obesity-associated diabetes. C57BL/6J and New Zealand obese (NZO) mice carry a loss-of-function mutation due to the integration of a retrotransposon. On the NZO background, the Zfp69 locus caused severe hyperglycaemia and loss of beta cells. To provide direct evidence for a causal role of Zfp69, we investigated the effects of its overexpression on both a lean [B6-Tg(Zfp69)] and an obese [NZO/B6-Tg(Zfp69)] background. METHODS Zfp69 transgenic mice were generated by integrating the cDNA into the ROSA locus of the C57BL/6 genome and characterised. RESULTS B6-Tg(Zfp69) mice were normoglycaemic, developed hyperinsulinaemia, and exhibited increased expression of G6pc and Pck1 and slightly reduced phospho-Akt levels in the liver. During OGTTs, glucose clearance was normal but insulin levels were significantly higher in the B6-Tg(Zfp69) than in control mice. The liver fat content and plasma triacylglycerol levels were significantly increased in B6-Tg(Zfp69) and NZO/B6-Tg(Zfp69) mice on a high-fat diet compared with controls. Liver transcriptome analysis of B6-Tg(Zfp69) mice revealed a downregulation of genes involved in glucose and lipid metabolism. Specifically, expression of Nampt, Lpin2, Map2k6, Gys2, Bnip3, Fitm2, Slc2a2, Ppargc1α and Insr was significantly decreased in the liver of B6-Tg(Zfp69) mice compared with wild-type animals. However, overexpression of Zfp69 did not induce overt diabetes with hyperglycaemia and beta cell loss. CONCLUSIONS/INTERPRETATION Zfp69 mediates hyperlipidaemia, liver fat accumulation and mild insulin resistance. However, it does not induce type 2 diabetes, suggesting that the diabetogenic effect of the Zfp69 locus requires synergy with other as yet unidentified genes.
Collapse
Affiliation(s)
- Bomee Chung
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rebruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rebruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Nadja Schulz
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rebruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Deepak Jain
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Metabolic Physiology, Heinrich Heine University of Düsseldorf, Universitätsstrasse, 1, D-40225, Duesseldorf, Germany
| | - Stephan Scherneck
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rebruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rebruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rebruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
13
|
Babaya N, Ueda H, Noso S, Hiromine Y, Itoi-Babaya M, Kobayashi M, Fujisawa T, Ikegami H. Genetic dissection of susceptibility genes for diabetes and related phenotypes on mouse chromosome 14 by means of congenic strains. BMC Genet 2014; 15:93. [PMID: 25167881 PMCID: PMC4152764 DOI: 10.1186/s12863-014-0093-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/14/2014] [Indexed: 11/13/2022] Open
Abstract
Background A susceptibility locus, Nidd2n, for type 2 diabetes has been mapped to mouse chromosome 14 (Chr 14) and confirmed using the consomic strain (C3H-Chr 14NSY) of the Nagoya-Shibata-Yasuda (NSY) mouse, an animal model of spontaneous type 2 diabetes. The aim of this study was to localize and characterize Nidd2n. Results We constructed two novel congenic strains homozygous for different segments of NSY-Chr 14 on the control C3H/HeNcrj (C3H) background: R1 (C3H.NSY-(D14Mit206-D14Mit5)) possesses the proximal and middle segment, and R2 (C3H.NSY-(D14Mit206-D14Mit186)) possesses the most proximal segment of NSY-Chr 14. Diabetes-related phenotypes were studied in comparison with those of consomic C3H-Chr 14NSY (R0) and parental NSY and C3H strains. Congenic R1 and R2 showed significantly higher post-challenge glucose than that in C3H mice. Fasting glucose, in contrast, was significantly lower in R1 and R2 than in C3H mice. Insulin sensitivity was significantly impaired in R1 and R2 compared to C3H mice. R2 showed significantly higher body weight and fat-pad weight than those in C3H and R1. Leptin level was significantly higher in R0, R1 and R2 than in C3H mice, with R2 showing the highest level, similar to that in NSY mice. Serum adiponectin level was significantly lower in R0, R1 and R2 than in C3H mice, while it was significantly higher in NSY than in C3H mice. Conclusions These data indicate that Chr 14 harbors multiple genes for diabetes-related phenotypes. The original Nidd2n, which is located in the middle region of Chr 14, was divided into two segments; Nidd2.1n in proximal Chr 14 and Nidd2.2n in distal Chr 14. Nidd2.1n contributes to post-challenge hyperglycemia, insulin resistance and adiposity. Nidd2.2n contributes to fasting as well as post-challenge hyperglycemia and insulin resistance. Adp1n, which contributes to decreased adiposity and increased insulin sensitivity, rather than a diabetogenic gene, was mapped in the middle segment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hiroshi Ikegami
- Department of Endocrinology, Metabolism and Diabetes, Kinki University School of Medicine, 377-2 Ohno-higashi, Osaka-sayama 589-8511, Osaka, Japan.
| |
Collapse
|
14
|
Kobayashi M, Ohno T, Ihara K, Murai A, Kumazawa M, Hoshino H, Iwanaga K, Iwai H, Hamana Y, Ito M, Ohno K, Horio F. Searching for genomic region of high-fat diet-induced type 2 diabetes in mouse chromosome 2 by analysis of congenic strains. PLoS One 2014; 9:e96271. [PMID: 24789282 PMCID: PMC4006839 DOI: 10.1371/journal.pone.0096271] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/05/2014] [Indexed: 11/19/2022] Open
Abstract
SMXA-5 mice are a high-fat diet-induced type 2 diabetes animal model established from non-diabetic SM/J and A/J mice. By using F2 intercross mice between SMXA-5 and SM/J mice under feeding with a high-fat diet, we previously mapped a major diabetogenic QTL (T2dm2sa) on chromosome 2. We then produced the congenic strain (SM.A-T2dm2sa (R0), 20.8–163.0 Mb) and demonstrated that the A/J allele of T2dm2sa impaired glucose tolerance and increased body weight and body mass index in the congenic strain compared to SM/J mice. We also showed that the combination of T2dm2sa and other diabetogenic loci was needed to develop the high-fat diet-induced type 2 diabetes. In this study, to narrow the potential genomic region containing the gene(s) responsible for T2dm2sa, we constructed R1 and R2 congenic strains. Both R1 (69.6–163.0 Mb) and R2 (20.8–128.2 Mb) congenic mice exhibited increases in body weight and abdominal fat weight and impaired glucose tolerance compared to SM/J mice. The R1 and R2 congenic analyses strongly suggested that the responsible genes existed in the overlapping genomic interval (69.6–128.2 Mb) between R1 and R2. In addition, studies using the newly established R1A congenic strain showed that the narrowed genomic region (69.6–75.4 Mb) affected not only obesity but also glucose tolerance. To search for candidate genes within the R1A genomic region, we performed exome sequencing analysis between SM/J and A/J mice and extracted 4 genes (Itga6, Zak, Gpr155, and Mtx2) with non-synonymous coding SNPs. These four genes might be candidate genes for type 2 diabetes caused by gene-gene interactions. This study indicated that one of the genes responsible for high-fat diet-induced diabetes exists in the 5.8 Mb genomic interval on mouse chromosome 2.
Collapse
MESH Headings
- Abdominal Fat/metabolism
- Animals
- Blood Glucose/metabolism
- Chromosomes, Mammalian/genetics
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Diet, High-Fat
- Epistasis, Genetic
- Genetic Association Studies
- Genetic Predisposition to Disease
- Integrin alpha6/genetics
- MAP Kinase Kinase Kinases/genetics
- Membrane Proteins/genetics
- Mice
- Mice, Congenic
- Mitochondrial Proteins/genetics
- Molecular Sequence Data
- Polymorphism, Single Nucleotide
- Receptors, G-Protein-Coupled/genetics
- Sequence Analysis, DNA
- Weight Gain
Collapse
Affiliation(s)
- Misato Kobayashi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Center for Promotion of Medical Research and Education, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Aichi, Japan
| | - Atsushi Murai
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Mayumi Kumazawa
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hiromi Hoshino
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Koichiro Iwanaga
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hiroshi Iwai
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Yoshiki Hamana
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Fumihiko Horio
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
- * E-mail:
| |
Collapse
|
15
|
The genetic basis of obesity-associated type 2 diabetes (diabesity) in polygenic mouse models. Mamm Genome 2014; 25:401-12. [PMID: 24752583 PMCID: PMC4164836 DOI: 10.1007/s00335-014-9514-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/25/2014] [Indexed: 11/08/2022]
Abstract
Obesity-associated diabetes (“diabesity”) in mouse strains is characterized by severe insulin resistance, hyperglycaemia and progressive failure, and loss of beta cells. This condition is observed in inbred obese mouse strains such as the New Zealand Obese (NZO/HlLt and NZO/HlBomDife) or the TALLYHO/JngJ mouse. In lean strains such as C57BLKS/J, BTBR T+tf/J or DBA/2 J carrying diabetes susceptibility genes (“diabetes susceptible” background), it can be induced by introgression of the obesity-causing mutations Lep<ob> (ob) or Lepr<db> (db). Outcross populations of these models have been employed in the genome-wide search for mouse diabetes genes, and have led to positional cloning of the strong candidates Pctp, Tbc1d1, Zfp69, and Ifi202b (NZO-derived obesity) and Sorcs1,Lisch-like, Tomosyn-2, App, Tsc2, and Ube2l6 (obesity caused by the ob or db mutation). Some of these genes have been shown to play a role in the regulation of the human glucose or lipid metabolism. Thus, dissection of the genetic basis of obesity and diabetes in mouse models can identify regulatory mechanisms that are relevant for the human disease.
Collapse
|
16
|
Dokas J, Chadt A, Nolden T, Himmelbauer H, Zierath JR, Joost HG, Al-Hasani H. Conventional knockout of Tbc1d1 in mice impairs insulin- and AICAR-stimulated glucose uptake in skeletal muscle. Endocrinology 2013; 154:3502-14. [PMID: 23892475 DOI: 10.1210/en.2012-2147] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the obesity-resistant SJL mouse strain, we previously identified a naturally occurring loss-of-function mutation in the gene for Tbc1d1. Characterization of recombinant inbred mice that carried the Tbc1d1(SJL) allele on a C57BL/6J background indicated that loss of TBC1D1 protects from obesity, presumably by increasing the use of fat as energy source. To provide direct functional evidence for an involvement of TBC1D1 in energy substrate metabolism, we generated and characterized conventional Tbc1d1 knockout mice. TBC1D1-deficient mice showed moderately reduced body weight, decreased respiratory quotient, and an elevated resting metabolic rate. Ex vivo analysis of intact isolated skeletal muscle revealed a severe impairment in insulin- and AICAR-stimulated glucose uptake in glycolytic extensor digitorum longus muscle and a substantially increased rate of fatty acid oxidation in oxidative soleus muscle. Our results provide direct evidence that TBC1D1 plays a major role in glucose and lipid utilization, and energy substrate preference in skeletal muscle.
Collapse
Affiliation(s)
- Janine Dokas
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Sheng X, Yang J. Truncated Product Methods for Panel Unit Root Tests. OXFORD BULLETIN OF ECONOMICS AND STATISTICS 2013; 75:624-636. [PMID: 23869116 PMCID: PMC3711747 DOI: 10.1111/j.1468-0084.2012.00705.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper proposes two new panel unit root tests based on Zaykin et al. (2002)'s truncated product method. The first one assumes constant correlation between p-values and the second one uses sieve bootstrap to allow for general forms of cross-section dependence in the panel units. Monte Carlo simulation shows that both tests have reasonably good size and are powerful in cases of some very large p-values. The proposed tests are applied to a panel of real GDP and inflation density forecasts, resulting in evidence that professional forecasters may not update their forecast precision in an optimal Bayesian way.
Collapse
Affiliation(s)
- Xuguang Sheng
- Department of Economics, American University, Washington, DC 20016, USA
| | | |
Collapse
|
18
|
Brockmann GA, Neuschl C. Positional cloning of diabetes genes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 933:275-89. [PMID: 22893414 DOI: 10.1007/978-1-62703-068-7_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Several mouse strains are diabetic already at the juvenile age or develop diabetes mellitus during their life. Before these strains become diabetic, they often show several or all features of the metabolic syndrome, which is very similar to the etiology of diabetes in humans. Under the assumption that natural mutations are responsible for the development of diabetes in those mouse strains, they are valuable resources for the identification of diabetes genes and modifiers. Usually, several steps are necessary to detect the causative genes in the genome. These include the initial identification of the genomic regions contributing to the disease which is typically done by linkage mapping in an F(2) intercross or backcross population, fine mapping of the identified chromosomal interval to narrow down the target region carrying the causative genetic variation and subsequent functional and genetic characterization of the target gene or a small subset of genes. Here, we give a general overview on genetic models and the strategy for identifying diabetes genes and provide a specific protocol for the mapping and fine mapping of chromosomal regions carrying diabetes genes.
Collapse
Affiliation(s)
- Gudrun A Brockmann
- Breeding Biology and Molecular Genetics, Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
| | | |
Collapse
|
19
|
Abstract
β-Cell dysfunction is a critical component in the development of type 2 diabetes. Whilst both genetic and environmental factors contribute to the development of the disease, relatively little is known about the molecular network that is responsible for diet-induced functional changes in pancreatic β-cells. Recent genome-wide association studies for diabetes-related traits have generated a large number of candidate genes that constitute possible links between dietary factors and the genetic susceptibility for β-cell failure. Here, we summarize recent approaches for identifying nutritionally regulated transcripts in islets on a genome-wide scale. Polygenic mouse models for type 2 diabetes have been instrumental for investigating the mechanism of diet-induced β-cell dysfunction. Enhanced oxidative metabolism, triggered by a combination of dietary carbohydrates and fat, appears to play a critical role in the pathophysiology of diet-induced impairment of islets. More systematic studies of gene-diet interactions in β-cells of rodent models in combination with genetic profiling might reveal the regulatory circuits fundamental for the understanding of diet-induced impairments of β-cell function in humans.
Collapse
Affiliation(s)
- A Chadt
- German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | |
Collapse
|
20
|
Schnitzler M, Fisch P. A role for microchimerism in obesity and evolution? Med Hypotheses 2012; 78:528-32. [PMID: 22325989 DOI: 10.1016/j.mehy.2012.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 12/14/2011] [Accepted: 01/16/2012] [Indexed: 11/16/2022]
Abstract
Cells exchanged between individuals, such as those passing the placenta from the mother to the child and vice versa, may survive in the fetal or maternal circulation and tissues for decades and result in microchimerism. Microchimeric cells may play a role in tissue repair, but they have also been implicated as inducers of chronic inflammation, leading to autoimmunity or even cancer. Here we propose that microchimerism may play a more fundamental role in health and evolution by setting a limit to genomic variability within populations. This means that microchimerism allows immune recognition of genomic differences between donor and host which may, depending on the level of variability, cause chronic inflammation. Since chronic inflammation has been experimentally linked to metabolic syndrome, we propose that genomic variability could affect the individual's weight. Thus, metabolic syndrome, which is a growing health problem, may not only result from our lifestyle, but in part be caused by global migration and the increasingly diverse origin of the present human population. Moreover, since in nature weight gain is associated with an increased risk of predation, we discuss the possibility that immunological incompatibility normally promotes the continuous development of new species.
Collapse
Affiliation(s)
- Marc Schnitzler
- Department of Hematology and Oncology, Freiburg University Medical Center, Hugstetter Str. 55, 79106 Freiburg, Germany.
| | | |
Collapse
|
21
|
Kim JH, Saxton AM. The TALLYHO mouse as a model of human type 2 diabetes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 933:75-87. [PMID: 22893402 DOI: 10.1007/978-1-62703-068-7_6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The TALLYHO/Jng (TH) mouse is an inbred polygenic model for type 2 diabetes (T2D) with moderate obesity. Both male and female TH mice are characterized by increased body and fat pad weights, hyperleptinemia, hyperinsulinemia, and hyperlipidemia. Glucose intolerance and hyperglycemia are exhibited only in males. Reduced 2-deoxy-glucose uptake occurs in adipose tissue and skeletal muscle of male TH mice. While both sexes of TH mice exhibit enlarged pancreatic islets, only males have degranulation and abnormal architecture in islets. Endothelial dysfunction and considerably decreased bone density are also observed in male TH mice. The blood pressure of male TH mice is normal. Genetic outcross experiments with non-diabetic strains revealed multiple susceptibility loci (quantitative trait loci) for obesity, hypertriglyceridemia, hypercholesterolemia, and hyperglycemia. In conclusion, TH mice encompass many aspects of polygenic human diabetes and are a very useful model for T2D.
Collapse
Affiliation(s)
- Jung Han Kim
- Department of Pharmacology, Physiology and Toxicology, Marshall University School of Medicine, Huntington, WV, USA.
| | | |
Collapse
|
22
|
Kluth O, Mirhashemi F, Scherneck S, Kaiser D, Kluge R, Neschen S, Joost HG, Schürmann A. Dissociation of lipotoxicity and glucotoxicity in a mouse model of obesity associated diabetes: role of forkhead box O1 (FOXO1) in glucose-induced beta cell failure. Diabetologia 2011; 54:605-16. [PMID: 21107520 PMCID: PMC3034032 DOI: 10.1007/s00125-010-1973-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/20/2010] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Carbohydrate-free diet prevents hyperglycaemia and beta cell destruction in the New Zealand Obese (NZO) mouse model. Here we have used a sequential dietary regimen to dissociate the effects of obesity and hyperglycaemia on beta cell function and integrity, and to study glucose-induced alterations of key transcription factors over 16 days. METHODS Mice were rendered obese by feeding a carbohydrate-free diet for 18 weeks. Thereafter, a carbohydrate-containing diet was given. Plasma glucose, plasma insulin and total pancreatic insulin were determined, and forkhead box O1 protein (FOXO1) phosphorylation and the transcription factors pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 protein (NKX6.1) and v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A (avian) (MAFA) were monitored by immunohistochemistry for 16 days. RESULTS Dietary carbohydrates produced a rapid and continuous increase in plasma glucose in NZO mice between day 2 and 16 after the dietary challenge. Hyperglycaemia caused a dramatic dephosphorylation of FOXO1 at day 2, followed by a progressive depletion of insulin stores. The loss of beta cells was triggered by apoptosis (detectable at day 8), associated with reduction of crucial transcription factors (PDX1, NKX6.1 and MAFA). Incubation of isolated islets from carbohydrate-restricted NZO mice or MIN6 cells with palmitate and glucose for 48 h resulted in a dephosphorylation of FOXO1 and thymoma viral proto-oncogene 1 (AKT) without changing the protein levels of both proteins. CONCLUSIONS/INTERPRETATION The dietary regimen dissociates the effects of obesity (lipotoxicity) from those of hyperglycaemia (glucotoxicity) in NZO mice. Obese NZO mice are unable to compensate for the carbohydrate challenge by increasing insulin secretion or synthesising adequate amounts of insulin. In response to the hyperglycaemia, FOXO1 is dephosphorylated, leading to reduced levels of beta cell-specific transcription factors and to apoptosis of the cells.
Collapse
Affiliation(s)
- O. Kluth
- Departments of Pharmacology and Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - F. Mirhashemi
- Departments of Pharmacology and Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - S. Scherneck
- Departments of Pharmacology and Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - D. Kaiser
- Departments of Pharmacology and Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - R. Kluge
- Departments of Pharmacology and Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - S. Neschen
- Departments of Pharmacology and Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - H.-G. Joost
- Departments of Pharmacology and Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - A. Schürmann
- Departments of Pharmacology and Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| |
Collapse
|
23
|
Chang CL, Cai JJ, Cheng PJ, Chueh HY, Hsu SYT. Identification of metabolic modifiers that underlie phenotypic variations in energy-balance regulation. Diabetes 2011; 60:726-34. [PMID: 21300845 PMCID: PMC3046833 DOI: 10.2337/db10-1331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Although recent studies have shown that human genomes contain hundreds of loci that exhibit signatures of positive selection, variants that are associated with adaptation in energy-balance regulation remain elusive. We reasoned that the difficulty in identifying such variants could be due to heterogeneity in selection pressure and that an integrative approach that incorporated experiment-based evidence and population genetics-based statistical judgments would be needed to reveal important metabolic modifiers in humans. RESEARCH DESIGN AND METHODS To identify common metabolic modifiers that underlie phenotypic variation in diabetes-associated or obesity-associated traits in humans, or both, we screened 207 candidate loci for regulatory single nucleotide polymorphisms (SNPs) that exhibited evidence of gene-environmental interactions. RESULTS Three SNPs (rs3895874, rs3848460, and rs937301) at the 5' gene region of human GIP were identified as prime metabolic-modifier candidates at the enteroinsular axis. Functional studies have shown that GIP promoter reporters carrying derived alleles of these three SNPs (haplotype GIP(-1920A)) have significantly lower transcriptional activities than those with ancestral alleles at corresponding positions (haplotype GIP(-1920G)). Consistently, studies of pregnant women who have undergone a screening test for gestational diabetes have shown that patients with a homozygous GIP(-1920A/A) genotype have significantly lower serum concentrations of glucose-dependent insulinotropic polypeptide (GIP) than those carrying an ancestral GIP(-1920G) haplotype. After controlling for a GIPR variation, we showed that serum glucose concentrations of patients carrying GIP(-1920A/A) homozygotes are significantly higher than that of those carrying an ancestral GIP(-1920G) haplotype (odds ratio 3.53). CONCLUSIONS Our proof-of-concept study indicates that common regulatory GIP variants impart a difference in GIP and glucose metabolism. The study also provides a rare example that identified the common variant-common phenotypic variation pattern based on evidence of moderate gene-environmental interactions.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - James J. Cai
- Department of Biology, Stanford University, Stanford, California
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Po Jen Cheng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ho Yen Chueh
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Sheau Yu Teddy Hsu
- Reproductive Biology and Stem Cell Research Program, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California
- Corresponding author: Sheau Yu Teddy Hsu,
| |
Collapse
|
24
|
Abstract
The use of mouse models in medical research has greatly contributed to our understanding of the development of type 2 diabetes mellitus and the mechanisms of disease progression in the context of insulin resistance and β-cell dysfunction. Maintenance of glucose homeostasis involves a complex interplay of many genes and their actions in response to exogenous stimuli. In recent years, the availability of large population-based cohorts and the capacity to genotype enormous numbers of common genetic variants have driven various large-scale genome-wide association studies, which has greatly accelerated the identification of novel genes likely to be involved in the development of type 2 diabetes. The increasing demand for verifying novel genes is met by the timely development of new mouse resources established as various collaborative projects involving major transgenic and phenotyping centres and laboratories worldwide. The surge of new data will ultimately enable translational research into potential improvement and refinement of current type 2 diabetes therapy options, and hopefully restore quality of life for patients.
Collapse
|
25
|
Joost HG. The genetic basis of obesity and type 2 diabetes: lessons from the new zealand obese mouse, a polygenic model of the metabolic syndrome. Results Probl Cell Differ 2011; 52:1-11. [PMID: 20865367 DOI: 10.1007/978-3-642-14426-4_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The New Zealand obese (NZO) mouse is a polygenic model of severe obesity and type 2 diabetes-like hyperglycaemia. Outcross experiments with lean strains have led to the identification of numerous susceptibility loci (quantitative trait loci (QTL)) for adiposity and/or hyperglycaemia. Several major QTL were successfully introgressed into lean strains, and two responsible genes, the RabGAP Tbc1d1 and the transcription factor Zfp69, were so far identified by a conventional strategy of positional cloning. Tbc1d1 controls substrate utilization in muscle; SJL mice carry a loss-of-function variant that shifts substrate oxidation from glucose to fat and suppresses adiposity as well as development of diabetes. The zinc finger domain transcription factor Zfp69 appears to regulate triglyceride storage in adipose tissue. Its normal allele Zfp69 causes a redistribution of triglycerides from gonadal stores to liver, and consequently enhances diabetes when introgressed from SJL into NZO, whereas the loss-of-function variant present in NZO and C57BL/6J reduces the prevalence of diabetes. Data from human patients suggest that the orthologs of both genes may play a role in the pathogenesis of the human metabolic syndrome. In addition to Tbc1d1 and Zfp69, variants of Lepr, Pctp, Abcg1, and Nmur2 located in other QTL were identified as potential candidates by sequencing and functional studies. These results indicate that dissection of the genetic basis of obesity and diabetes in mouse models can identify novel regulatory mechanisms that are relevant for the human disease.
Collapse
Affiliation(s)
- Hans-Georg Joost
- German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
26
|
Stewart TP, Kim HY, Saxton AM, Kim JH. Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice. BMC Genomics 2010; 11:713. [PMID: 21167066 PMCID: PMC3022919 DOI: 10.1186/1471-2164-11-713] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 12/19/2010] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. RESULTS In order to determine the genetic factors that contribute to these T2D related characteristics in TH mice, we interbred TH mice with C57BL/6J (B6) mice. The parental, F1, and F2 mice were phenotyped at 8, 12, 16, 20, and 24 weeks of age for 4-hour fasting plasma triglyceride, cholesterol, insulin, and glucose levels and body, fat pad and carcass weights. The F2 mice were genotyped genome-wide and used for quantitative trait locus (QTL) mapping. We also applied a genetical genomic approach using a subset of the F2 mice to seek candidate genes underlying the QTLs. Major QTLs were detected on chromosomes (Chrs) 1, 11, 4, and 8 for hypertriglyceridemia, 1 and 3 for hypercholesterolemia, 4 for hyperglycemia, 11 and 1 for body weight, 1 for fat pad weight, and 11 and 14 for carcass weight. Most alleles, except for Chr 3 and 14 QTLs, increased phenotypic values when contributed by the TH strain. Fourteen pairs of interacting loci were detected, none of which overlapped the major QTLs. The QTL interval linked to hypercholesterolemia and hypertriglyceridemia on distal Chr 1 contains Apoa2 gene. Sequencing analysis revealed polymorphisms of Apoa2 in TH mice, suggesting Apoa2 as the candidate gene for the hyperlipidemia QTL. Gene expression analysis added novel information and aided in selection of candidates underlying the QTLs. CONCLUSIONS We identified several genetic loci that affect the quantitative variations of plasma lipid and glucose levels and obesity traits in a TH × B6 intercross. Polymorphisms in Apoa2 gene are suggested to be responsible for the Chr 1 QTL linked to hypercholesterolemia and hypertriglyceridemia. Further, genetical genomic analysis led to potential candidate genes for the QTLs.
Collapse
Affiliation(s)
- Taryn P Stewart
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Hyoung Yon Kim
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Jung Han Kim
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
27
|
Mori MA, Liu M, Bezy O, Almind K, Shapiro H, Kasif S, Kahn CR. A systems biology approach identifies inflammatory abnormalities between mouse strains prior to development of metabolic disease. Diabetes 2010; 59:2960-71. [PMID: 20713682 PMCID: PMC2963557 DOI: 10.2337/db10-0367] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Type 2 diabetes and obesity are increasingly affecting human populations around the world. Our goal was to identify early molecular signatures predicting genetic risk to these metabolic diseases using two strains of mice that differ greatly in disease susceptibility. RESEARCH DESIGN AND METHODS We integrated metabolic characterization, gene expression, protein-protein interaction networks, RT-PCR, and flow cytometry analyses of adipose, skeletal muscle, and liver tissue of diabetes-prone C57BL/6NTac (B6) mice and diabetes-resistant 129S6/SvEvTac (129) mice at 6 weeks and 6 months of age. RESULTS At 6 weeks of age, B6 mice were metabolically indistinguishable from 129 mice, however, adipose tissue showed a consistent gene expression signature that differentiated between the strains. In particular, immune system gene networks and inflammatory biomarkers were upregulated in adipose tissue of B6 mice, despite a low normal fat mass. This was accompanied by increased T-cell and macrophage infiltration. The expression of the same networks and biomarkers, particularly those related to T-cells, further increased in adipose tissue of B6 mice, but only minimally in 129 mice, in response to weight gain promoted by age or high-fat diet, further exacerbating the differences between strains. CONCLUSIONS Insulin resistance in mice with differential susceptibility to diabetes and metabolic syndrome is preceded by differences in the inflammatory response of adipose tissue. This phenomenon may serve as an early indicator of disease and contribute to disease susceptibility and progression.
Collapse
Affiliation(s)
- Marcelo A. Mori
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Manway Liu
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Olivier Bezy
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Katrine Almind
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Hagit Shapiro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Simon Kasif
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
- Corresponding author: C. Ronald Kahn,
| |
Collapse
|
28
|
Oka T, Nishimura Y, Zang L, Hirano M, Shimada Y, Wang Z, Umemoto N, Kuroyanagi J, Nishimura N, Tanaka T. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC PHYSIOLOGY 2010; 10:21. [PMID: 20961460 PMCID: PMC2972245 DOI: 10.1186/1472-6793-10-21] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 10/21/2010] [Indexed: 02/07/2023]
Abstract
Background Obesity is a multifactorial disorder influenced by genetic and environmental factors. Animal models of obesity are required to help us understand the signaling pathways underlying this condition. Zebrafish possess many structural and functional similarities with humans and have been used to model various human diseases, including a genetic model of obesity. The purpose of this study was to establish a zebrafish model of diet-induced obesity (DIO). Results Zebrafish were assigned into two dietary groups. One group of zebrafish was overfed with Artemia (60 mg dry weight/day/fish), a living prey consisting of a relatively high amount of fat. The other group of zebrafish was fed with Artemia sufficient to meet their energy requirements (5 mg dry weight/day/fish). Zebrafish were fed under these dietary protocols for 8 weeks. The zebrafish overfed with Artemia exhibited increased body mass index, which was calculated by dividing the body weight by the square of the body length, hypertriglyceridemia and hepatosteatosis, unlike the control zebrafish. Calorie restriction for 2 weeks was applied to zebrafish after the 8-week overfeeding period. The increased body weight and plasma triglyceride level were improved by calorie restriction. We also performed comparative transcriptome analysis of visceral adipose tissue from DIO zebrafish, DIO rats, DIO mice and obese humans. This analysis revealed that obese zebrafish and mammals share common pathophysiological pathways related to the coagulation cascade and lipid metabolism. Furthermore, several regulators were identified in zebrafish and mammals, including APOH, IL-6 and IL-1β in the coagulation cascade, and SREBF1, PPARα/γ, NR1H3 and LEP in lipid metabolism. Conclusion We established a zebrafish model of DIO that shared common pathophysiological pathways with mammalian obesity. The DIO zebrafish can be used to identify putative pharmacological targets and to test novel drugs for the treatment of human obesity.
Collapse
Affiliation(s)
- Takehiko Oka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 2010; 107:18933-8. [PMID: 20937875 DOI: 10.1073/pnas.1007028107] [Citation(s) in RCA: 892] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In vertebrates, including humans, individuals harbor gut microbial communities whose species composition and relative proportions of dominant microbial groups are tremendously varied. Although external and stochastic factors clearly contribute to the individuality of the microbiota, the fundamental principles dictating how environmental factors and host genetic factors combine to shape this complex ecosystem are largely unknown and require systematic study. Here we examined factors that affect microbiota composition in a large (n = 645) mouse advanced intercross line originating from a cross between C57BL/6J and an ICR-derived outbred line (HR). Quantitative pyrosequencing of the microbiota defined a core measurable microbiota (CMM) of 64 conserved taxonomic groups that varied quantitatively across most animals in the population. Although some of this variation can be explained by litter and cohort effects, individual host genotype had a measurable contribution. Testing of the CMM abundances for cosegregation with 530 fully informative SNP markers identified 18 host quantitative trait loci (QTL) that show significant or suggestive genome-wide linkage with relative abundances of specific microbial taxa. These QTL affect microbiota composition in three ways; some loci control individual microbial species, some control groups of related taxa, and some have putative pleiotropic effects on groups of distantly related organisms. These data provide clear evidence for the importance of host genetic control in shaping individual microbiome diversity in mammals, a key step toward understanding the factors that govern the assemblages of gut microbiota associated with complex diseases.
Collapse
|
30
|
Combining QTL data for HDL cholesterol levels from two different species leads to smaller confidence intervals. Heredity (Edinb) 2010; 105:426-32. [PMID: 20551980 PMCID: PMC2958246 DOI: 10.1038/hdy.2010.75] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Quantitative trait locus (QTL) analysis detects regions of a genome that are linked to a complex trait. Once a QTL is detected, the region is narrowed by positional cloning in the hope of determining the underlying candidate gene-methods used include creating congenic strains, comparative genomics and gene expression analysis. Combined cross analysis may also be used for species such as the mouse, if the QTL is detected in multiple crosses. This process involves the recoding of QTL data on a per-chromosome basis, with the genotype recoded on the basis of high- and low-allele status. The data are then combined and analyzed; a successful analysis results in a narrowed and more significant QTL. Using parallel methods, we show that it is possible to narrow a QTL by combining data from two different species, the rat and the mouse. We combined standardized high-density lipoprotein phenotype values and genotype data for the rat and mouse using information from one rat cross and two mouse crosses. We successfully combined data within homologous regions from rat Chr 6 onto mouse Chr 12, and from rat Chr 10 onto mouse Chr 11. The combinations and analyses resulted in QTL with smaller confidence intervals and increased logarithm of the odds ratio scores. The numbers of candidate genes encompassed by the QTL on mouse Chr 11 and 12 were reduced from 1343 to 761 genes and from 613 to 304 genes, respectively. This is the first time that QTL data from different species were successfully combined; this method promises to be a useful tool for narrowing QTL intervals.
Collapse
|
31
|
Dreja T, Jovanovic Z, Rasche A, Kluge R, Herwig R, Tung YCL, Joost HG, Yeo GSH, Al-Hasani H. Diet-induced gene expression of isolated pancreatic islets from a polygenic mouse model of the metabolic syndrome. Diabetologia 2010; 53:309-20. [PMID: 19902174 PMCID: PMC2797618 DOI: 10.1007/s00125-009-1576-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 09/21/2009] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Numerous new genes have recently been identified in genome-wide association studies for type 2 diabetes. Most are highly expressed in beta cells and presumably play important roles in their function. However, these genes account for only a small proportion of total risk and there are likely to be additional candidate genes not detected by current methodology. We therefore investigated islets from the polygenic New Zealand mouse (NZL) model of diet-induced beta cell dysfunction to identify novel genes and pathways that may play a role in the pathogenesis of diabetes. METHODS NZL mice were fed a diabetogenic high-fat diet (HF) or a diabetes-protective carbohydrate-free HF diet (CHF). Pancreatic islets were isolated by laser capture microdissection (LCM) and subjected to genome-wide transcriptome analyses. RESULTS In the prediabetic state, 2,109 islet transcripts were differentially regulated (>1.5-fold) between HF and CHF diets. Of the genes identified, 39 (e.g. Cacna1d, Chd2, Clip2, Igf2bp2, Dach1, Tspan8) correlated with data from the Diabetes Genetics Initiative and Wellcome Trust Case Control Consortium genome-wide scans for type 2 diabetes, thus validating our approach. HF diet induced early changes in gene expression associated with increased cell-cycle progression, proliferation and differentiation of islet cells, and oxidative stress (e.g. Cdkn1b, Tmem27, Pax6, Cat, Prdx4 and Txnip). In addition, pathway analysis identified oxidative phosphorylation as the predominant gene-set that was significantly upregulated in response to the diabetogenic HF diet. CONCLUSIONS/INTERPRETATION We demonstrated that LCM of pancreatic islet cells in combination with transcriptional profiling can be successfully used to identify novel candidate genes for diabetes. Our data strongly implicate glucose-induced oxidative stress in disease progression.
Collapse
Affiliation(s)
- T. Dreja
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany
| | - Z. Jovanovic
- Institute of Metabolic Science, Level 4, University of Cambridge Metabolic Research Laboratories, Box 289, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
| | - A. Rasche
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - R. Kluge
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany
| | - R. Herwig
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Y. C. L. Tung
- Institute of Metabolic Science, Level 4, University of Cambridge Metabolic Research Laboratories, Box 289, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
| | - H. G. Joost
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany
| | - G. S. H. Yeo
- Institute of Metabolic Science, Level 4, University of Cambridge Metabolic Research Laboratories, Box 289, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
| | - H. Al-Hasani
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany
| |
Collapse
|
32
|
Scherneck S, Nestler M, Vogel H, Blüher M, Block MD, Diaz MB, Herzig S, Schulz N, Teichert M, Tischer S, Al-Hasani H, Kluge R, Schürmann A, Joost HG. Positional cloning of zinc finger domain transcription factor Zfp69, a candidate gene for obesity-associated diabetes contributed by mouse locus Nidd/SJL. PLoS Genet 2009; 5:e1000541. [PMID: 19578398 PMCID: PMC2696593 DOI: 10.1371/journal.pgen.1000541] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 06/01/2009] [Indexed: 01/24/2023] Open
Abstract
Polygenic type 2 diabetes in mouse models is associated with obesity and results from a combination of adipogenic and diabetogenic alleles. Here we report the identification of a candidate gene for the diabetogenic effect of a QTL (Nidd/SJL, Nidd1) contributed by the SJL, NON, and NZB strains in outcross populations with New Zealand Obese (NZO) mice. A critical interval of distal chromosome 4 (2.1 Mbp) conferring the diabetic phenotype was identified by interval-specific congenic introgression of SJL into diabetes-resistant C57BL/6J, and subsequent reporter cross with NZO. Analysis of the 10 genes in the critical interval by sequencing, qRT–PCR, and RACE–PCR revealed a striking allelic variance of Zfp69 encoding zinc finger domain transcription factor 69. In NZO and C57BL/6J, a retrotransposon (IAPLTR1a) in intron 3 disrupted the gene by formation of a truncated mRNA that lacked the coding sequence for the KRAB (Krüppel-associated box) and Znf-C2H2 domains of Zfp69, whereas the diabetogenic SJL, NON, and NZB alleles generated a normal mRNA. When combined with the B6.V-Lepob background, the diabetogenic Zfp69SJL allele produced hyperglycaemia, reduced gonadal fat, and increased plasma and liver triglycerides. mRNA levels of the human orthologue of Zfp69, ZNF642, were significantly increased in adipose tissue from patients with type 2 diabetes. We conclude that Zfp69 is the most likely candidate for the diabetogenic effect of Nidd/SJL, and that retrotransposon IAPLTR1a contributes substantially to the genetic heterogeneity of mouse strains. Expression of the transcription factor in adipose tissue may play a role in the pathogenesis of type 2 diabetes. Type 2 diabetes in humans as well as in obese mice is caused by a combination of adipogenic and diabetogenic gene variants. We have identified a gene that appears to be involved in the pathogenesis of hyperglycaemia in obese mice: in some mouse strains, the gene Zfp69 is disrupted by a retroviral transposon (IAPLTR1a), which generates a truncated mRNA. Disruption of the gene was associated with a reduced susceptibility for diabetes, whereas the normal allele enhanced hyperglycaemia in obese mice. Zfp69 encodes a transcription factor which appears to interfere with lipid storage in adipose tissue, and thereby enhances lipid deposition in liver. In humans with type 2 diabetes, mRNA levels of the human orthologue of Zfp69 (ZNF642) were increased in adipose tissue. Thus, the transcription factor ZFP69/ZNF642 may be involved in the pathogenesis of obesity-associated diabetes.
Collapse
Affiliation(s)
- Stephan Scherneck
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Matthias Nestler
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Heike Vogel
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Marcel-Dominique Block
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Mauricio Berriel Diaz
- Emmy Noether and Marie Curie Research Group Molecular Metabolic Control, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Stephan Herzig
- Emmy Noether and Marie Curie Research Group Molecular Metabolic Control, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Nadja Schulz
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Marko Teichert
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Sina Tischer
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Hadi Al-Hasani
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Reinhart Kluge
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Annette Schürmann
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Hans-Georg Joost
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- * E-mail:
| |
Collapse
|
33
|
Vogel H, Nestler M, Rüschendorf F, Block MD, Tischer S, Kluge R, Schürmann A, Joost HG, Scherneck S. Characterization of Nob3, a major quantitative trait locus for obesity and hyperglycemia on mouse chromosome 1. Physiol Genomics 2009; 38:226-32. [PMID: 19470805 DOI: 10.1152/physiolgenomics.00011.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
New Zealand obese (NZO) mice present a metabolic syndrome of obesity, insulin resistance, and diabetes. To identify chromosomal segments associated with these traits, we intercrossed NZO mice with the lean and diabetes-resistant C57BL/6J (B6) strain. Obesity and hyperglycemia in the (NZO x B6)F2 intercross population were predominantly due to a broad quantitative trait locus (QTL) on chromosome 1 (Nob3; logarithm of the odds score 16.1, 16.0, 4.0 for body weight, body fat, and blood glucose, respectively), producing a difference between genotypes of 12.7 or 5.2 g of body weight and 12.0 or 4.0 g of body fat in females or males, respectively. In addition, significant QTL on chromosomes 3 and 13 and suggestive QTL on chromosomes 4, 6, 9, 12, 14, and 19 contributed to the obese phenotype. Distal chromosome 5 was significantly linked with plasma cholesterol (LOD score 10.7). Introgression of two segments of Nob3 into B6 confirmed the adipogenic effect of the QTL and suggested the presence of at least one causal gene. Haplotype mapping reduced the critical region of the distal part of the QTL to 31 Mbp containing the potential candidates Nr1i3, Apoa2, Atp1a2, Prox1, and Hsd11b1. We conclude that obesity and hyperglycemia of NZO is to a large part caused by variant genes located in Nob3 on chromosome 1. Since these exert robust effects on a B6 background, the QTL Nob3 is a prime target for identification of a novel diabesity gene.
Collapse
Affiliation(s)
- Heike Vogel
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Blizard DA, Lionikas A, Vandenbergh DJ, Vasilopoulos T, Gerhard GS, Griffith JW, Klein LC, Stout JT, Mack HA, Lakoski JM, Larsson L, Spicer JM, Vogler GP, McClearn GE. Blood pressure and heart rate QTL in mice of the B6/D2 lineage: sex differences and environmental influences. Physiol Genomics 2008; 36:158-66. [PMID: 19066325 DOI: 10.1152/physiolgenomics.00035.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A quantitative trait locus (QTL) approach was used to define the genetic architecture underlying variation in systolic blood pressure (SBP) and heart rate (HR), measured indirectly on seven occasions by the tail cuff procedure. The tests were conducted in 395 F(2) adult mice (197 males, 198 females) derived from a cross of the C57BL/6J (B6) and DBA/2J (D2) strains and in 22 BXD recombinant-inbred (RI) strains. Interval mapping of F(2) data for the first 5 days of measurement nominated one statistically significant and one suggestive QTL for SBP on chromosomes (Chr) 4 and 14, respectively, and two statistically significant QTL for HR on Chr 1 (which was specific to female mice) and Chr 5. New suggestive QTL emerged for SBP on Chr 3 (female-specific) and 8 and for HR on Chr 11 for measurements recorded several weeks after mice had undergone stressful blood sampling procedures. The two statistically significant HR QTL were confirmed by analyses of BXD RI strain means. Male and female F(2) mice did not differ in SBP or HR but RI strain analyses showed pronounced strain-by-sex interactions and a negative genetic correlation between the two measures in both sexes. Evidence for a role for mitochondrial DNA was found for both HR and SBP. QTL for HR and SBP may differ in males and females and may be sensitive to different environmental contexts.
Collapse
Affiliation(s)
- David A Blizard
- Center for Developmental & Health Genetics, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Su Z, Wang X, Tsaih SW, Zhang A, Cox A, Sheehan S, Paigen B. Genetic basis of HDL variation in 129/SvImJ and C57BL/6J mice: importance of testing candidate genes in targeted mutant mice. J Lipid Res 2008; 50:116-25. [PMID: 18772481 DOI: 10.1194/jlr.m800411-jlr200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the effect of genetic background on high-density lipoprotein cholesterol (HDL) levels in Soat1(-/-) mice, we backcrossed sterol O-acyltransferase 1 (Soat1)(-/-) mice, originally reported to have elevated HDL levels, to C57BL/6 mice and constructed a congenic strain with only a small region (3.3Mb) of 129 alleles, specifically excluding the nearby apolipoprotein A-II (Apoa2) gene from 129. HDL levels in these Soat1(-/-) mice were no different from C57BL/6, indicating that the passenger gene Apoa2 caused the previously reported elevation of HDL in these Soat1(-/-) mice. Because many knockouts are made in strain 129 and then subsequently backcrossed into C57BL/6, it is important to identify quantitative trait loci (QTL) that differ between 129 and C57BL/6 so that one can guard against effects ascribed to a knockout but really caused by a passenger gene from 129. To provide such data, we generated 528 F(2) progeny from an intercross of 129S1/SvImJ and C57BL/6 and measured HDL concentrations in F(2) animals first fed chow and then atherogenic diet. A genome wide scan using 508 single-nucleotide polymorphisms (SNPs) identified 19 QTL, 2 of which were male specific and 2 were female specific. Using comparative genomics and haplotype analysis, we narrowed QTL on chromosomes 3, 5, 8, 17, and 18 to 0.5, 6.3, 2.6, 1.1, and 0.6 Mb, respectively. These data will serve as a reference for any effort to test the impact of candidate genes on HDL using a knockout strategy.
Collapse
Affiliation(s)
- Zhiguang Su
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Mirhashemi F, Kluth O, Scherneck S, Vogel H, Kluge R, Schürmann A, Joost HG, Neschen S. High-fat, carbohydrate-free diet markedly aggravates obesity but prevents beta-cell loss and diabetes in the obese, diabetes-susceptible db/db strain. Obes Facts 2008; 1:292-7. [PMID: 20054191 PMCID: PMC6452171 DOI: 10.1159/000176064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE We have previously reported that a high-fat, carbohydrate-free diet prevents diabetes and beta-cell destruction in the New Zealand Obese (NZO) mouse strain. Here we investigated the effect of diets with and without carbohydrates on obesity and development of beta-cell failure in a second mouse model of type 2 diabetes, the db/db mouse. RESULTS When kept on a carbohydrate-containing standard (SD; with (w/w) 5.1, 58.3, and 17.6% fat, carbohydrates and protein, respectively) or high-fat diet (HFD; 14.6, 46.7 and 17.1%), db/db mice developed severe diabetes (blood glucose >20 mmol/l, weight loss, polydipsia and polyurea) associated with a selective loss of pancreatic beta-cells, reduced GLUT2 expression in the remaining beta-cells, and reduced plasma insulin levels. In contrast, db/db mice kept on a high-fat, carbohydrate-free diet (CFD; with 30.2 and 26.4% (w/w) fat or protein) did not develop diabetes and exhibited near-normal, hyperplastic islets in spite of a morbid obesity (fat content >60%) associated with hyperinsulinaemia. CONCLUSION These data indicate that in genetically different mouse models of obesity-associated diabetes, obesity and dietary fat are not sufficient, and dietary carbohydrates are required, for beta-cell destruction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hans-Georg Joost
- *Prof. Dr. Hans-Georg Joost, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114–116, 14558, Nuthetal, Germany Tel. +49 33200 88-216, Fax -555,
| | | |
Collapse
|