1
|
Howes OD, Dawkins E, Lobo MC, Kaar SJ, Beck K. New Drug Treatments for Schizophrenia: A Review of Approaches to Target Circuit Dysfunction. Biol Psychiatry 2024; 96:638-650. [PMID: 38815885 DOI: 10.1016/j.biopsych.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Schizophrenia is a leading cause of global disease burden. Current drug treatments are associated with significant side effects and have limited efficacy for many patients, highlighting the need to develop new approaches that target other aspects of the neurobiology of schizophrenia. Preclinical, in vivo imaging, postmortem, genetic, and pharmacological studies have highlighted the key role of cortical GABAergic (gamma-aminobutyric acidergic)-glutamatergic microcircuits and their projections to subcortical dopaminergic circuits in the pathoetiology of negative, cognitive, and psychotic symptoms. Antipsychotics primarily act downstream of the dopaminergic component of this circuit. However, multiple drugs are currently in development that could target other elements of this circuit to treat schizophrenia. These include drugs for GABAergic or glutamatergic targets, including glycine transporters, D-amino acid oxidase, sodium channels, or potassium channels. Other drugs in development are likely to primarily act on pathways that regulate the dopaminergic system, such as muscarinic or trace amine receptors or 5-HT2A receptors, while PDE10A inhibitors are being developed to modulate the downstream consequences of dopaminergic dysfunction. Our review considers where new drugs may act on this circuit and their latest clinical trial evidence in terms of indication, efficacy, and side effects. Limitations of the circuit model, including whether there are neurobiologically distinct subgroups of patients, and future directions are also considered. Several drugs based on the mechanisms reviewed have promising clinical data, with the muscarinic agonist KarXT most advanced. If these drugs are approved for clinical use, they have the potential to revolutionize understanding of the pathophysiology and treatment of schizophrenia.
Collapse
Affiliation(s)
- Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom.
| | - Eleanor Dawkins
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| | - Maria C Lobo
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| | - Stephen J Kaar
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Greater Manchester Mental Health National Health Service Foundation Trust, Manchester, United Kingdom
| | - Katherine Beck
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| |
Collapse
|
2
|
Bernhard FP, Schütte S, Heidenblut M, Oehme M, Rinné S, Decher N. A novel KCNC3 gene variant in the voltage-dependent Kv3.3 channel in an atypical form of SCA13 with dominant central vertigo. Front Cell Neurosci 2024; 18:1441257. [PMID: 39416683 PMCID: PMC11480015 DOI: 10.3389/fncel.2024.1441257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Potassium channel mutations play an important role in neurological diseases, such as spinocerebellar ataxia (SCA). SCA is a heterogeneous autosomal-dominant neurodegenerative disorder with multiple sub-entities, such as SCA13, which is characterized by mutations in the voltage-gated potassium channel Kv3.3 (KCNC3). In this study, we present a rare and atypical case of SCA13 with a predominant episodic central rotational vertigo, while the patient suffered only from mild progressive cerebellar symptoms, such as dysarthria, ataxia of gait and stand, and recently a cognitive impairment. In this patient, we identified a heterozygous variant in KCNC3 (c.2023G > A, p.Glu675Lys) by next-generation sequencing. This Kv3.3E675K variant was studied using voltage-clamp recordings in Xenopus oocytes. While typical SCA13 variants are dominant-negative, show shifts in the voltage-dependence of activation or an altered TBK1 regulation, the Kv3.3E675K variant caused only a reduction in current amplitude and a more pronounced cumulative inactivation. Thus, the differences to phenotypes observed in patients with classical SCA13 mutations may be related to the mechanism of the observed Kv3.3 loss-of-function. Treatment of our patient with riluzole, a drug that is known to also activate potassium channels, turned out to be partly beneficial. Strikingly, we found that the Kv3.3 and Kv3.3E675K inactivation and the frequency-dependent cumulative inactivation was antagonized by increased extracellular potassium levels. Thus, and most importantly, carefully elevated plasma potassium levels in the physiological range, or novel drugs attenuating Kv3.3 inactivation might provide novel therapeutic approaches to rescue potassium currents of SCA13 variants per se. In addition, our findings broaden the phenotypic spectrum of Kv3.3 variants, expanding it to atypical phenotypes of Kv3.3-associated neurological disorders.
Collapse
Affiliation(s)
- Felix P. Bernhard
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Sven Schütte
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Moritz Heidenblut
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Moritz Oehme
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
3
|
Faulkner IE, Pajak RZ, Harte MK, Glazier JD, Hager R. Voltage-gated potassium channels as a potential therapeutic target for the treatment of neurological and psychiatric disorders. Front Cell Neurosci 2024; 18:1449151. [PMID: 39411003 PMCID: PMC11473391 DOI: 10.3389/fncel.2024.1449151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Voltage-gated potassium channels are a widely distributed subgroup of potassium channels responsible for the efflux of potassium in the repolarisation of the cell membrane, and hence contribute to the latency and propagation of action potentials. As they are causal to synaptic transmission, alterations to the structure of these channels can lead to a variety of neurological and psychiatric diseases. The Kv3 subfamily of voltage-gated potassium channels are found on many neurons in the brain, including inhibitory interneurons where they contribute to fast-frequency firing. Changes to the firing ability of these interneurons can lead to an imbalance of inhibitory and excitatory neurotransmission. To date, we have little understanding of the mechanism by which excitatory and inhibitory inputs become imbalanced. This imbalance is associated with cognitive deficits seen across neurological and neuropsychiatric disorders, which are currently difficult to treat. In this review, we collate evidence supporting the hypothesis that voltage-gated potassium channels, specifically the Kv3 subfamily, are central to many neurological and psychiatric disorders, and may thus be considered as an effective drug target. The collective evidence provided by the studies reviewed here demonstrates that Kv3 channels may be amenable to novel treatments that modulate the activity of these channels, with the prospect of improved patient outcome.
Collapse
Affiliation(s)
- Isabel E. Faulkner
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Rachael Z. Pajak
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael K. Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Uliana DL, Lisboa JRF, Gomes FV, Grace AA. The excitatory-inhibitory balance as a target for the development of novel drugs to treat schizophrenia. Biochem Pharmacol 2024; 228:116298. [PMID: 38782077 PMCID: PMC11410545 DOI: 10.1016/j.bcp.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The intricate balance between excitation and inhibition (E/I) in the brain plays a crucial role in normative information processing. Dysfunctions in the E/I balance have been implicated in various psychiatric disorders, including schizophrenia (SCZ). In particular, abnormalities in GABAergic signaling, specifically in parvalbumin (PV)-containing interneurons, have been consistently observed in SCZ pathophysiology. PV interneuron function is vital for maintaining an ideal E/I balance, and alterations in PV interneuron-mediated inhibition contribute to circuit deficits observed in SCZ, including hippocampus hyperactivity and midbrain dopamine system overdrive. While current antipsychotic medications primarily target D2 dopamine receptors and are effective primarily in treating positive symptoms, novel therapeutic strategies aiming to restore the E/I balance could potentially mitigate not only positive symptoms but also negative symptoms and cognitive deficits. This could involve, for instance, increasing the inhibitory drive onto excitatory neurons or decreasing the putative enhanced pyramidal neuron activity due to functional loss of PV interneurons. Compounds targeting the glycine site at glutamate NMDA receptors and muscarinic acetylcholine receptors on PV interneurons that can increase PV interneuron drive, as well as drugs that increase the postsynaptic action of GABA, such as positive allosteric modulators of α5-GABA-A receptors, and decrease glutamatergic output, such as mGluR2/3 agonists, represent promising approaches. Preventive strategies aiming at E/I balance also represent a path to reduce the risk of transitioning to SCZ in high-risk individuals. Therefore, compounds with novel mechanisms targeting E/I balance provide optimism for more effective and tailored interventions in the management of SCZ.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joao Roberto F Lisboa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Conrad LJ, Grandi FC, Carlton AJ, Jeng JY, de Tomasi L, Zarecki P, Marcotti W, Johnson SL, Mustapha M. The upregulation of K + and HCN channels in developing spiral ganglion neurons is mediated by cochlear inner hair cells. J Physiol 2024; 602:5329-5351. [PMID: 39324853 DOI: 10.1113/jp286134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Spiral ganglion neurons (SGNs) are primary sensory afferent neurons that relay acoustic information from the cochlear inner hair cells (IHCs) to the brainstem. The response properties of different SGNs diverge to represent a wide range of sound intensities in an action-potential code. This biophysical heterogeneity is established during pre-hearing stages of development, a time when IHCs fire spontaneous Ca2+ action potentials that drive glutamate release from their ribbon synapses onto the SGN terminals. The role of spontaneous IHC activity in the refinement of SGN characteristics is still largely unknown. Using pre-hearing otoferlin knockout mice (Otof-/-), in which Ca2+-dependent exocytosis in IHCs is abolished, we found that developing SGNs fail to upregulate low-voltage-activated K+-channels and hyperpolarisation-activated cyclic-nucleotide-gated channels. This delayed maturation resulted in hyperexcitable SGNs with immature firing characteristics. We have also shown that SGNs that synapse with the pillar side of the IHCs selectively express a resurgent K+ current, highlighting a novel biophysical marker for these neurons. RNA-sequencing showed that several K+ channels are downregulated in Otof-/- mice, further supporting the electrophysiological recordings. Our data demonstrate that spontaneous Ca2+-dependent activity in pre-hearing IHCs regulates some of the key biophysical and molecular features of the developing SGNs. KEY POINTS: Ca2+-dependent exocytosis in inner hair cells (IHCs) is otoferlin-dependent as early as postnatal day 1. A lack of otoferlin in IHCs affects potassium channel expression in SGNs. The absence of otoferlin is associated with SGN hyperexcitability. We propose that type I spiral ganglion neuron functional maturation depends on IHC exocytosis.
Collapse
Affiliation(s)
- Linus J Conrad
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Fiorella C Grandi
- INSERM, Institute de Myologie, Centre de Recherche en Myologie F-75013, Sorbonne Université, Paris, France
| | - Adam J Carlton
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Jing-Yi Jeng
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Lara de Tomasi
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Patryk Zarecki
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Stuart L Johnson
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Mirna Mustapha
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Wu P, Tu Y, Cho H, Yu M, Wu Y, Wu S. An unidentified yet notable modification on I Na and I K (DR) caused by ramelteon. FASEB Bioadv 2024; 6:442-453. [PMID: 39372128 PMCID: PMC11452446 DOI: 10.1096/fba.2024-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 10/08/2024] Open
Abstract
Despite advancement in anti-seizure medications, 30% of patients continue to experience recurrent seizures. Previous data indicated the antiepileptic properties of melatonin and its agonists in several animal models. However, the underlying mechanisms of melatonin and its agonists on cellular excitability remain poorly understood. In this study, we demonstrated the electrophysiological changes of two main kinds of ion channels that are responsible for hyperexcitability of neurons after introduction of melatonin agonists- ramelteon (RAM). In Neuro-2a cells, the amplitude of voltage-gated Na+ (I Na) and delayed-rectifier K+ currents (I K (DR)) could be suppressed under RAM. The IC50 values of 8.7 and 2.9 μM, respectively. RAM also diminished the magnitude of window Na+ current (I Na (W)) elicited by short ascending ramp voltage, with unchanged the overall steady-state current-voltage relationship. The decaying time course of I Na during a train of depolarizing pulses arose upon the exposure to RAM. The conditioning train protocol which blocked I Na fitted the recovery time course into two exponential processes and increased the fast and slow time constant of recovery the presence of RAM. In pituitary tumor (GH3) cells, I Na amplitude was also effectively suppressed by the RAM. In addition, GH3-cells exposure to RAM decreased the firing frequency of spontaneous action potentials observed under current-clamp conditions. As a result, the RAM-mediated effect on INa was closely associated with its ability to decrease spontaneous action potentials. Collectively, we found the direct attenuation of I Na and I K (DR) caused by RAM besides the agonistic action on melatonin receptors, which could partially explain its anti-seizure activity.
Collapse
Affiliation(s)
- Po‐Ming Wu
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Yi‐Fang Tu
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Hsin‐Yen Cho
- Department of PhysiologyNational Cheng Kung University Medical CollegeTainanTaiwan
| | - Meng‐Cheng Yu
- Department of PhysiologyNational Cheng Kung University Medical CollegeTainanTaiwan
| | - Yen‐Hsien Wu
- Department of PediatricsKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Sheng‐Nan Wu
- Department of PhysiologyNational Cheng Kung University Medical CollegeTainanTaiwan
- Institute of Basic Medical SciencesNational Cheng Kung University Medical CollegeTainanTaiwan
- Department of Research and Education, An Nan HospitalChina Medical UniversityTainanTaiwan
| |
Collapse
|
7
|
Wengert ER, Cheng MA, Liebergall SR, Markwalter KH, Hong Y, Arias L, Marsh ED, Zhang X, Somarowthu A, Goldberg EM. Impaired excitability of fast-spiking neurons in a novel mouse model of KCNC1 epileptic encephalopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615463. [PMID: 39386579 PMCID: PMC11463657 DOI: 10.1101/2024.09.27.615463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The recurrent pathogenic variant KCNC1-p.Ala421Val (A421V) is a cause of developmental and epileptic encephalopathy characterized by moderate-to-severe developmental delay/intellectual disability, and infantile-onset treatment-resistant epilepsy with multiple seizure types including myoclonic seizures. Yet, the mechanistic basis of disease is unclear. KCNC1 encodes Kv3.1, a voltage-gated potassium channel subunit that is highly and selectively expressed in neurons capable of generating action potentials at high frequency, including parvalbumin-positive fast-spiking GABAergic inhibitory interneurons in cerebral cortex (PV-INs) known to be important for cognitive function and plasticity as well as control of network excitation to prevent seizures. In this study, we generate a novel transgenic mouse model with conditional expression of the Ala421Val pathogenic missense variant (Kcnc1-A421V/+ mice) to explore the physiological mechanisms of KCNC1 developmental and epileptic encephalopathy. Our results indicate that global heterozygous expression of the A421V variant leads to epilepsy and premature lethality. We observe decreased PV-IN cell surface expression of Kv3.1 via immunohistochemistry, decreased voltage-gated potassium current density in PV-INs using outside-out nucleated macropatch recordings in brain slice, and profound impairments in the intrinsic excitability of cerebral cortex PV-INs but not excitatory neurons in current-clamp electrophysiology. In vivo two-photon calcium imaging revealed hypersynchronous discharges correlated with brief paroxysmal movements, subsequently shown to be myoclonic seizures on electroencephalography. We found alterations in PV-IN-mediated inhibitory neurotransmission in young adult but not juvenile Kcnc1-A421V/+ mice relative to wild-type controls. Together, these results establish the impact of the recurrent Kv3.1-A421V variant on neuronal excitability and synaptic physiology across development to drive network dysfunction underlying KCNC1 epileptic encephalopathy.
Collapse
Affiliation(s)
- Eric R. Wengert
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
| | - Melody A. Cheng
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Sophie R. Liebergall
- The Medical Scientist Training Program, The University of Pennsylvania Perelman School of Medicine, Philadelphia, U.S.A
- Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, U.S.A
| | - Kelly H. Markwalter
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
| | - Yerahm Hong
- School of Engineering and Applied Sciences, The University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Leroy Arias
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Eric D. Marsh
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
- Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, U.S.A
| | - Xiaohong Zhang
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
| | - Ethan M. Goldberg
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
- The Epilepsy Neurogenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
- The Center for Brain Research in Development, Genetics, and Engineering (BRIDGE), The Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
- Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, U.S.A
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, U.S.A
| |
Collapse
|
8
|
Ma D, Gu C. Discovering functional interactions among schizophrenia-risk genes by combining behavioral genetics with cell biology. Neurosci Biobehav Rev 2024; 167:105897. [PMID: 39278606 DOI: 10.1016/j.neubiorev.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
Despite much progress in identifying risk genes for polygenic brain disorders, their core pathogenic mechanisms remain poorly understood. In particular, functions of many proteins encoded by schizophrenia risk genes appear diverse and unrelated, complicating the efforts to establish the causal relationship between genes and behavior. Using various mouse lines, recent studies indicate that alterations of parvalbumin-positive (PV+) GABAergic interneurons can lead to schizophrenia-like behavior. PV+ interneurons display fast spiking and contribute to excitation-inhibition balance and network oscillations via feedback and feedforward inhibition. Here, we first summarize different lines of genetically modified mice that display motor, cognitive, emotional, and social impairments used to model schizophrenia and related mental disorders. We highlight ten genes, encoding either a nuclear, cytosolic, or membrane protein. Next, we discuss their functional relationship in regulating fast spiking and other aspects of PV+ interneurons and in the context of other domains of schizophrenia. Future investigations combining behavioral genetics and cell biology should elucidate functional relationships among risk genes to identify the core pathogenic mechanisms underlying polygenic brain disorders.
Collapse
Affiliation(s)
- Di Ma
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Chen Gu
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Wu MW, Kourdougli N, Portera-Cailliau C. Network state transitions during cortical development. Nat Rev Neurosci 2024; 25:535-552. [PMID: 38783147 DOI: 10.1038/s41583-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mammalian cortical networks are active before synaptogenesis begins in earnest, before neuronal migration is complete, and well before an animal opens its eyes and begins to actively explore its surroundings. This early activity undergoes several transformations during development. The most important of these is a transition from episodic synchronous network events, which are necessary for patterning the neocortex into functionally related modules, to desynchronized activity that is computationally more powerful and efficient. Network desynchronization is perhaps the most dramatic and abrupt developmental event in an otherwise slow and gradual process of brain maturation. In this Review, we summarize what is known about the phenomenology of developmental synchronous activity in the rodent neocortex and speculate on the mechanisms that drive its eventual desynchronization. We argue that desynchronization of network activity is a fundamental step through which the cortex transitions from passive, bottom-up detection of sensory stimuli to active sensory processing with top-down modulation.
Collapse
Affiliation(s)
- Michelle W Wu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nazim Kourdougli
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Pizzirusso G, Preka E, Goikolea J, Aguilar-Ruiz C, Rodriguez-Rodriguez P, Vazquez-Cabrera G, Laterza S, Latorre-Leal M, Eroli F, Blomgren K, Maioli S, Nilsson P, Fragkopoulou A, Fisahn A, Arroyo-García LE. Dynamic microglia alterations associate with hippocampal network impairments: A turning point in amyloid pathology progression. Brain Behav Immun 2024; 119:286-300. [PMID: 38608739 DOI: 10.1016/j.bbi.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease is a progressive neurological disorder causing memory loss and cognitive decline. The underlying causes of cognitive deterioration and neurodegeneration remain unclear, leading to a lack of effective strategies to prevent dementia. Recent evidence highlights the role of neuroinflammation, particularly involving microglia, in Alzheimer's disease onset and progression. Characterizing the initial phase of Alzheimer's disease can lead to the discovery of new biomarkers and therapeutic targets, facilitating timely interventions for effective treatments. We used the AppNL-G-F knock-in mouse model, which resembles the amyloid pathology and neuroinflammatory characteristics of Alzheimer's disease, to investigate the transition from a pre-plaque to an early plaque stage with a combined functional and molecular approach. Our experiments show a progressive decrease in the power of cognition-relevant hippocampal gamma oscillations during the early stage of amyloid pathology, together with a modification of fast-spiking interneuron intrinsic properties and postsynaptic input. Consistently, transcriptomic analyses revealed that these effects are accompanied by changes in synaptic function-associated pathways. Concurrently, homeostasis- and inflammatory-related microglia signature genes were downregulated. Moreover, we found a decrease in Iba1-positive microglia in the hippocampus that correlates with plaque aggregation and neuronal dysfunction. Collectively, these findings support the hypothesis that microglia play a protective role during the early stages of amyloid pathology by preventing plaque aggregation, supporting neuronal homeostasis, and overall preserving the oscillatory network's functionality. These results suggest that the early alteration of microglia dynamics could be a pivotal event in the progression of Alzheimer's disease, potentially triggering plaque deposition, impairment of fast-spiking interneurons, and the breakdown of the oscillatory circuitry in the hippocampus.
Collapse
Affiliation(s)
- Giusy Pizzirusso
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Efthalia Preka
- Department of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Julen Goikolea
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Celia Aguilar-Ruiz
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Patricia Rodriguez-Rodriguez
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | | | - Simona Laterza
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Maria Latorre-Leal
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Francesca Eroli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Sweden; Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Silvia Maioli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden
| | | | - André Fisahn
- Department of Women's and Children's Health, Karolinska Institutet, Sweden.
| | - Luis Enrique Arroyo-García
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Sweden.
| |
Collapse
|
11
|
Shin HJ, Ko A, Kim SH, Lee JS, Kang HC. Unusual Voltage-Gated Sodium and Potassium Channelopathies Related to Epilepsy. J Clin Neurol 2024; 20:402-411. [PMID: 38951973 PMCID: PMC11220354 DOI: 10.3988/jcn.2023.0435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE There is extensive literature on monogenic epilepsies caused by mutations in familiar channelopathy genes such as SCN1A. However, information on other less-common channelopathy genes is scarce. This study aimed to explore the genetic and clinical characteristics of patients diagnosed with unusual voltage-gated sodium and potassium channelopathies related to epilepsy. METHODS This observational, retrospective study analyzed pediatric patients with epilepsy who carried pathogenic variants of unusual voltage-gated sodium and potassium channelopathy genes responsible for seizure-associated phenotypes. Targeted next-generation sequencing (NGS) panel tests were performed between November 2016 and June 2022 at Severance Children's Hospital, Seoul, South Korea. Clinical characteristics and the treatment responses to different types of antiseizure medications were further analyzed according to different types of gene mutation. RESULTS This study included 15 patients with the following unusual voltage-gated sodium and potassium channelopathy genes: SCN3A (n=1), SCN4A (n=1), KCNA1 (n=1), KCNA2 (n=4), KCNB1 (n=6), KCNC1 (n=1), and KCNMA1 (n=1). NGS-based genetic testing identified 13 missense mutations (87%), 1 splice-site variant (7%), and 1 copy-number variant (7%). Developmental and epileptic encephalopathy was diagnosed in nine (60%) patients. Seizure freedom was eventually achieved in eight (53%) patients, whereas seizures persisted in seven (47%) patients. CONCLUSIONS Our findings broaden the genotypic and phenotypic spectra of less-common voltage-gated sodium and potassium channelopathies associated with epilepsy.
Collapse
Affiliation(s)
- Hui Jin Shin
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ara Ko
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hee Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
Zeng Y, Sun ML, Liu D, Huang Y, Xie S, Zhao YX, Wu ZX, Liu Y, Ma G, Xie L, Dang YT, Hao LY, Wang QH, Wang HJ, Yang L, Xue ZY, Pan ZQ. Kv3.1 Interaction with UBR5 Is Required for Chronic Inflammatory Pain. Mol Neurobiol 2024:10.1007/s12035-024-04259-5. [PMID: 38865078 DOI: 10.1007/s12035-024-04259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
Chronic inflammatory pain caused by neuronal hyperactivity is a common and refractory disease. Kv3.1, a member of the Kv3 family of voltage-dependent K+ channels, is a major determinant of the ability of neurons to generate high-frequency action potentials. However, little is known about its role in chronic inflammatory pain. Here, we show that although Kv3.1 mRNA expression was unchanged, Kv3.1 protein expression was decreased in the dorsal spinal horn of mice after plantar injection of complete Freund's adjuvant (CFA), a mouse model of inflammatory pain. Upregulating Kv3.1 expression alleviated CFA-induced mechanical allodynia and heat hyperalgesia, whereas downregulating Kv3.1 induced nociception-like behaviors. Additionally, we found that ubiquitin protein ligase E3 component n-recognin 5 (UBR5), a key factor in the initiation of chronic pain, binds directly to Kv3.1 to drive its ubiquitin degradation. Intrathecal injection of the peptide TP-CH-401, a Kv3.1 ubiquitination motif sequence, rescued the decrease in Kv3.1 expression and Kv currents through competitive binding to UBR5, and consequently attenuated mechanical and thermal hypersensitivity. These findings demonstrate a previously unrecognized pathway of Kv3.1 abrogation by UBR5 and indicate that Kv3.1 is critically involved in the regulation of nociceptive behavior. Kv3.1 is thus a promising new target for treating inflammatory pain.
Collapse
Affiliation(s)
- Ying Zeng
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Meng-Lan Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Di Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Shan Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Ya-Xuan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Zi-Xuan Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Ya Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Gan Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Ling Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Yu-Tao Dang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Ling-Yun Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Hong-Jun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Zhou-Ya Xue
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China.
- Department of Anesthesiology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224008, China.
| | - Zhi-Qiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China.
| |
Collapse
|
13
|
Moribayashi T, Nakao Y, Ohtubo Y. Characteristics of A-type voltage-gated K + currents expressed on sour-sensing type III taste receptor cells in mice. Cell Tissue Res 2024; 396:353-369. [PMID: 38492001 PMCID: PMC11144136 DOI: 10.1007/s00441-024-03887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Sour taste is detected by type III taste receptor cells that generate membrane depolarization with action potentials in response to HCl applied to the apical membranes. The shape of action potentials in type III cells exhibits larger afterhyperpolarization due to activation of transient A-type voltage-gated K+ currents. Although action potentials play an important role in neurotransmitter release, the electrophysiological features of A-type K+ currents in taste buds remain unclear. Here, we examined the electrophysiological properties of A-type K+ currents in mouse fungiform taste bud cells using in-situ whole-cell patch clamping. Type III cells were identified with SNAP-25 immunoreactivity and/or electrophysiological features of voltage-gated currents. Type III cells expressed A-type K+ currents which were completely inhibited by 10 mM TEA, whereas IP3R3-immunoreactive type II cells did not. The half-maximal activation and steady-state inactivation of A-type K+ currents were 17.9 ± 4.5 (n = 17) and - 11.0 ± 5.7 (n = 17) mV, respectively, which are similar to the features of Kv3.3 and Kv3.4 channels (transient and high voltage-activated K+ channels). The recovery from inactivation was well fitted with a double exponential equation; the fast and slow time constants were 6.4 ± 0.6 ms and 0.76 ± 0.26 s (n = 6), respectively. RT-PCR experiments suggest that Kv3.3 and Kv3.4 mRNAs were detected at the taste bud level, but not at single-cell levels. As the phosphorylation of Kv3.3 and Kv3.4 channels generally leads to the modulation of cell excitability, neuromodulator-mediated A-type K+ channel phosphorylation likely affects the signal transduction of taste.
Collapse
Affiliation(s)
- Takeru Moribayashi
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu, 808-0196, Japan
| | - Yoshiki Nakao
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu, 808-0196, Japan
| | - Yoshitaka Ohtubo
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu, 808-0196, Japan.
| |
Collapse
|
14
|
Thapaliya B, Ray B, Farahdel B, Suresh P, Sapkota R, Holla B, Mahadevan J, Chen J, Vaidya N, Perrone-Bizzozero NI, Benegal V, Schumann G, Calhoun VD, Liu J. Cross-continental environmental and genome-wide association study on children and adolescent anxiety and depression. Front Psychiatry 2024; 15:1384298. [PMID: 38827440 PMCID: PMC11141390 DOI: 10.3389/fpsyt.2024.1384298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/17/2024] [Indexed: 06/04/2024] Open
Abstract
Anxiety and depression in children and adolescents warrant special attention as a public health concern given their devastating and long-term effects on development and mental health. Multiple factors, ranging from genetic vulnerabilities to environmental stressors, influence the risk for the disorders. This study aimed to understand how environmental factors and genomics affect children and adolescents anxiety and depression across three cohorts: Adolescent Brain and Cognitive Development Study (US, age of 9-10; N=11,875), Consortium on Vulnerability to Externalizing Disorders and Addictions (INDIA, age of 6-17; N=4,326) and IMAGEN (EUROPE, age of 14; N=1888). We performed data harmonization and identified the environmental impact on anxiety/depression using a linear mixed-effect model, recursive feature elimination regression, and the LASSO regression model. Subsequently, genome-wide association analyses with consideration of significant environmental factors were performed for all three cohorts by mega-analysis and meta-analysis, followed by functional annotations. The results showed that multiple environmental factors contributed to the risk of anxiety and depression during development, where early life stress and school support index had the most significant and consistent impact across all three cohorts. In both meta, and mega-analysis, SNP rs79878474 in chr11p15 emerged as a particularly promising candidate associated with anxiety and depression, despite not reaching genomic significance. Gene set analysis on the common genes mapped from top promising SNPs of both meta and mega analyses found significant enrichment in regions of chr11p15 and chr3q26, in the function of potassium channels and insulin secretion, in particular Kv3, Kir-6.2, SUR potassium channels encoded by the KCNC1, KCNJ11, and ABCCC8 genes respectively, in chr11p15. Tissue enrichment analysis showed significant enrichment in the small intestine, and a trend of enrichment in the cerebellum. Our findings provide evidences of consistent environmental impact from early life stress and school support index on anxiety and depression during development and also highlight the genetic association between mutations in potassium channels, which support the stress-depression connection via hypothalamic-pituitary-adrenal axis, along with the potential modulating role of potassium channels.
Collapse
Affiliation(s)
- Bishal Thapaliya
- Tri-Institutional Center for Translational Research in NeuroImaging and Data Science, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Bhaskar Ray
- Tri-Institutional Center for Translational Research in NeuroImaging and Data Science, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Britny Farahdel
- Tri-Institutional Center for Translational Research in NeuroImaging and Data Science, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Pranav Suresh
- Tri-Institutional Center for Translational Research in NeuroImaging and Data Science, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Ram Sapkota
- Tri-Institutional Center for Translational Research in NeuroImaging and Data Science, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Bharath Holla
- Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jayant Mahadevan
- Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in NeuroImaging and Data Science, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Nilakshi Vaidya
- Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
- Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Vivek Benegal
- Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine, Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in NeuroImaging and Data Science, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in NeuroImaging and Data Science, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
15
|
Bernat N, Campbell RR, Nam H, Basu M, Odesser T, Elyasaf G, Engeln M, Chandra R, Golden S, Ament S, Lobo MK, Kupchik YM. Multimodal Interrogation of Ventral Pallidum Projections Reveals Projection-Specific Signatures and Effects on Cocaine Reward. J Neurosci 2024; 44:e1469232024. [PMID: 38485256 PMCID: PMC11063828 DOI: 10.1523/jneurosci.1469-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/26/2024] Open
Abstract
The ventral pallidum (VP) is a central hub in the reward circuitry with diverse projections that have different behavioral roles attributed mostly to the connectivity with the downstream target. However, different VP projections may represent, as in the striatum, separate neuronal populations that differ in more than just connectivity. In this study, we performed in mice of both sexes a multimodal dissection of four major projections of the VP-to the lateral hypothalamus (VP→LH), ventral tegmental area (VP→VTA), lateral habenula (VP→LHb), and mediodorsal thalamus (VP→MDT)-with physiological, anatomical, genetic, and behavioral tools. We also tested for physiological differences between VP neurons receiving input from nucleus accumbens medium spiny neurons (MSNs) that express either the D1 (D1-MSNs) or the D2 (D2-MSNs) dopamine receptor. We show that each VP projection (1) when inhibited during a cocaine conditioned place preference (CPP) test affects performance differently, (2) receives a different pattern of inputs using rabies retrograde labeling, (3) shows differentially expressed genes using RNA sequencing, and (4) has projection-specific characteristics in excitability and synaptic input characteristics using whole-cell patch clamp. VP→LH and VP→VTA projections have different effects on CPP and show low overlap in circuit tracing experiments, as VP→VTA neurons receive more striatal input, while VP→LH neurons receive more olfactory input. Additionally, VP→VTA neurons are less excitable, while VP→LH neurons are more excitable than the average VP neuron, a difference driven mainly by D2-MSN-responding neurons. Thus, VP→VTA and VP→LH neurons may represent largely distinct populations of VP neurons.
Collapse
Affiliation(s)
- Nimrod Bernat
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- IMRIC Center for Addiction Research (ICARe), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Rianne R Campbell
- Departments of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Hyungwoo Nam
- Departments of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mahashweta Basu
- Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Tal Odesser
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Gal Elyasaf
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Michel Engeln
- Departments of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- CNRS, INCIA, UMR 5287, University of Bordeaux, Bordeaux F-33000, France
| | - Ramesh Chandra
- Departments of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Shana Golden
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Seth Ament
- Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mary Kay Lobo
- Departments of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yonatan M Kupchik
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- IMRIC Center for Addiction Research (ICARe), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
16
|
Wu J, Quraishi IH, Zhang Y, Bromwich M, Kaczmarek LK. Disease-causing Slack potassium channel mutations produce opposite effects on excitability of excitatory and inhibitory neurons. Cell Rep 2024; 43:113904. [PMID: 38457342 PMCID: PMC11013952 DOI: 10.1016/j.celrep.2024.113904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/18/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
The KCNT1 gene encodes the sodium-activated potassium channel Slack (KCNT1, KNa1.1), a regulator of neuronal excitability. Gain-of-function mutations in humans cause cortical network hyperexcitability, seizures, and severe intellectual disability. Using a mouse model expressing the Slack-R455H mutation, we find that Na+-dependent K+ (KNa) and voltage-dependent sodium (NaV) currents are increased in both excitatory and inhibitory cortical neurons. These increased currents, however, enhance the firing of excitability neurons but suppress that of inhibitory neurons. We further show that the expression of NaV channel subunits, particularly that of NaV1.6, is upregulated and that the length of the axon initial segment and of axonal NaV immunostaining is increased in both neuron types. Our study on the coordinate regulation of KNa currents and the expression of NaV channels may provide an avenue for understanding and treating epilepsies and other neurological disorders.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Imran H Quraishi
- Department of Neurology, Yale Comprehensive Epilepsy Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yalan Zhang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mark Bromwich
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
17
|
Liang Q, Chi G, Cirqueira L, Zhi L, Marasco A, Pilati N, Gunthorpe MJ, Alvaro G, Large CH, Sauer DB, Treptow W, Covarrubias M. The binding and mechanism of a positive allosteric modulator of Kv3 channels. Nat Commun 2024; 15:2533. [PMID: 38514618 PMCID: PMC10957983 DOI: 10.1038/s41467-024-46813-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Small-molecule modulators of diverse voltage-gated K+ (Kv) channels may help treat a wide range of neurological disorders. However, developing effective modulators requires understanding of their mechanism of action. We apply an orthogonal approach to elucidate the mechanism of action of an imidazolidinedione derivative (AUT5), a highly selective positive allosteric modulator of Kv3.1 and Kv3.2 channels. AUT5 modulation involves positive cooperativity and preferential stabilization of the open state. The cryo-EM structure of the Kv3.1/AUT5 complex at a resolution of 2.5 Å reveals four equivalent AUT5 binding sites at the extracellular inter-subunit interface between the voltage-sensing and pore domains of the channel's tetrameric assembly. Furthermore, we show that the unique extracellular turret regions of Kv3.1 and Kv3.2 essentially govern the selective positive modulation by AUT5. High-resolution apo and bound structures of Kv3.1 demonstrate how AUT5 binding promotes turret rearrangements and interactions with the voltage-sensing domain to favor the open conformation.
Collapse
Affiliation(s)
- Qiansheng Liang
- Department of Neuroscience,, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Jack and Vicki Farber Institute for Neuroscience and the Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Leonardo Cirqueira
- Laboratorio de Biologia Teorica e Computacional, University of Brasilia, Brasilia, Brazil
| | - Lianteng Zhi
- Department of Neuroscience,, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Jack and Vicki Farber Institute for Neuroscience and the Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Agostino Marasco
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Via Corso Stati Uniti, 4f, 35127, Padua, Italy
| | - Nadia Pilati
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Via Corso Stati Uniti, 4f, 35127, Padua, Italy
| | - Martin J Gunthorpe
- Autifony Therapeutics, Ltd, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, SG1 2FX, UK
| | - Giuseppe Alvaro
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Via Corso Stati Uniti, 4f, 35127, Padua, Italy
| | - Charles H Large
- Autifony Therapeutics, Ltd, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, SG1 2FX, UK
| | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Werner Treptow
- Laboratorio de Biologia Teorica e Computacional, University of Brasilia, Brasilia, Brazil
| | - Manuel Covarrubias
- Department of Neuroscience,, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Jack and Vicki Farber Institute for Neuroscience and the Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
18
|
Kaar SJ, Nottage JF, Angelescu I, Marques TR, Howes OD. Gamma Oscillations and Potassium Channel Modulation in Schizophrenia: Targeting GABAergic Dysfunction. Clin EEG Neurosci 2024; 55:203-213. [PMID: 36591873 PMCID: PMC10851642 DOI: 10.1177/15500594221148643] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023]
Abstract
Impairments in gamma-aminobutyric acid (GABAergic) interneuron function lead to gamma power abnormalities and are thought to underlie symptoms in people with schizophrenia. Voltage-gated potassium 3.1 (Kv3.1) and 3.2 (Kv3.2) channels on GABAergic interneurons are critical to the generation of gamma oscillations suggesting that targeting Kv3.1/3.2 could augment GABAergic function and modulate gamma oscillation generation. Here, we studied the effect of a novel potassium Kv3.1/3.2 channel modulator, AUT00206, on resting state frontal gamma power in people with schizophrenia. We found a significant positive correlation between frontal resting gamma (35-45 Hz) power (n = 22, r = 0.613, P < .002) and positive and negative syndrome scale (PANSS) positive symptom severity. We also found a significant reduction in frontal gamma power (t13 = 3.635, P = .003) from baseline in patients who received AUT00206. This provides initial evidence that the Kv3.1/3.2 potassium channel modulator, AUT00206, may address gamma oscillation abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Stephen J. Kaar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Division of Psychology and Mental Health, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Judith F. Nottage
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ilinca Angelescu
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research London, London, UK
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| |
Collapse
|
19
|
Xiao H, Xi K, Wang K, Zhou Y, Dong B, Xie J, Xie Y, Zhang H, Ma G, Wang W, Feng D, Guo B, Wu S. Restoring the Function of Thalamocortical Circuit Through Correcting Thalamic Kv3.2 Channelopathy Normalizes Fear Extinction Impairments in a PTSD Mouse Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305939. [PMID: 38102998 PMCID: PMC10916658 DOI: 10.1002/advs.202305939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Impaired extinction of fear memory is one of the most common symptoms in post-traumatic stress disorder (PTSD), with limited therapeutic strategies due to the poor understanding of its underlying neural substrates. In this study, functional screening is performed and identified hyperactivity in the mediodorsal thalamic nucleus (MD) during fear extinction. Furthermore, the encoding patterns of the hyperactivated MD is investigated during persistent fear responses using multiple machine learning algorithms. The anterior cingulate cortex (ACC) is also identified as a functional downstream region of the MD that mediates the extinction of fear memory. The thalamocortical circuit is comprehensively analyzed and found that the MD-ACC parvalbumin interneurons circuit is preferentially enhanced in PTSD mice, disrupting the local excitatory and inhibitory balance. It is found that decreased phosphorylation of the Kv3.2 channel contributed to the hyperactivated MD, primarily to the malfunctioning thalamocortical circuit. Using a lipid nanoparticle-based RNA therapy strategy, channelopathy is corrected via a methoxylated siRNA targeting the protein phosphatase 6 catalytic subunit and restored fear memory extinction in PTSD mice. These findings highlight the function of the thalamocortical circuit in PTSD-related impaired extinction of fear memory and provide therapeutic insights into Kv3.2-targeted RNA therapy for PTSD.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Kaiwen Xi
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Kaifang Wang
- Department of AnesthesiologyTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Yongsheng Zhou
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- Eastern Theater Air Force Hospital of PLANanjing210000China
| | - Baowen Dong
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Jinyi Xie
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Yuqiao Xie
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Haifeng Zhang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Guaiguai Ma
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Wenting Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Dayun Feng
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Baolin Guo
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Shengxi Wu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| |
Collapse
|
20
|
Feng H, Clatot J, Kaneko K, Flores-Mendez M, Wengert ER, Koutcher C, Hoddeson E, Lopez E, Lee D, Arias L, Liang Q, Zhang X, Somarowthu A, Covarrubias M, Gunthorpe MJ, Large CH, Akizu N, Goldberg EM. Targeted therapy improves cellular dysfunction, ataxia, and seizure susceptibility in a model of a progressive myoclonus epilepsy. Cell Rep Med 2024; 5:101389. [PMID: 38266642 PMCID: PMC10897515 DOI: 10.1016/j.xcrm.2023.101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
The recurrent variant KCNC1-p.Arg320His causes progressive myoclonus epilepsy (EPM) type 7, defined by progressive myoclonus, epilepsy, and ataxia, and is without effective treatment. KCNC1 encodes the voltage-gated potassium channel subunit Kv3.1, specifically expressed in high-frequency-firing neurons. Variant subunits act via loss of function; hence, EPM7 pathogenesis may involve impaired excitability of Kv3.1-expressing neurons, while enhancing Kv3 activity could represent a viable therapeutic strategy. We generate a mouse model, Kcnc1-p.Arg320His/+, which recapitulates the core features of EPM7, including progressive ataxia and seizure susceptibility. Kv3.1-expressing cerebellar granule cells and neocortical parvalbumin-positive GABAergic interneurons exhibit abnormalities consistent with Kv3 channel dysfunction. A Kv3-specific positive modulator (AUT00206) selectively enhances the firing frequency of Kv3.1-expressing neurons and improves motor function and seizure susceptibility in Kcnc1-Arg320His/+ mice. This work identifies a cellular and circuit basis of dysfunction in EPM7 and demonstrates that Kv3 positive modulators such as AUT00206 have therapeutic potential for the treatment of EPM7.
Collapse
Affiliation(s)
- Huijie Feng
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jerome Clatot
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Keisuke Kaneko
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Anesthesiology, Nihon University, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Marco Flores-Mendez
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eric R Wengert
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carly Koutcher
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emily Hoddeson
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emily Lopez
- The University of Pennsylvania School of Arts and Sciences, Philadelphia, PA, USA
| | - Demetrius Lee
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Leroy Arias
- The University of Pennsylvania School of Arts and Sciences, Philadelphia, PA, USA
| | - Qiansheng Liang
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xiaohong Zhang
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Manuel Covarrubias
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Martin J Gunthorpe
- Autifony Therapeutics, Ltd., Stevenage Bioscience Catalyst, Stevenage SG1 2FX, UK
| | - Charles H Large
- Autifony Therapeutics, Ltd., Stevenage Bioscience Catalyst, Stevenage SG1 2FX, UK
| | - Naiara Akizu
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Pathology & Laboratory Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Page CE, Coutellier L. Kv3.1 Voltage-gated Potassium Channels Modulate Anxiety-like Behaviors in Female Mice. Neuroscience 2024; 538:68-79. [PMID: 38157976 PMCID: PMC10872248 DOI: 10.1016/j.neuroscience.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Inhibitory parvalbumin (PV) interneurons regulate the activity of neural circuits within brain regions involved in emotional processing, including the prefrontal cortex (PFC). Recently, rodent studies have implicated a stress-induced increase in prefrontal PV neuron activity in the development of anxiety behaviors, particularly in females. However, the mechanisms through which stress increases activity of prefrontal PV neurons remain unknown. The fast-spiking properties of PV neurons in part come from their expression of voltage-gated potassium (K+) ion channels, particularly Kv3.1 channels. We therefore suggest that stress-induced changes in Kv3.1 channels contribute to the appearance of an anxious phenotype following chronic stress in female mice. Here, we first showed that unpredictable chronic mild stress (UCMS) increased expression of Kv3.1 channels on prefrontal PV neurons in female mice, a potential mechanism underlying the previously observed hyperactivity of these neurons after stress. We then showed that female mice deficient in Kv3.1 channels displayed resilience to UCMS-induced anxiety-like behaviors. Altogether, our findings implicate Kv3.1 channels in the development of anxiety-like behaviors following UCMS, particularly in females, providing a novel mechanism to understand sex-specific vulnerabilities to stress-induced psychopathologies.
Collapse
Affiliation(s)
- Chloe E Page
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Laurence Coutellier
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States; Department of Psychology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
22
|
Clatot J, Currin CB, Liang Q, Pipatpolkai T, Massey SL, Helbig I, Delemotte L, Vogels TP, Covarrubias M, Goldberg EM. A structurally precise mechanism links an epilepsy-associated KCNC2 potassium channel mutation to interneuron dysfunction. Proc Natl Acad Sci U S A 2024; 121:e2307776121. [PMID: 38194456 PMCID: PMC10801864 DOI: 10.1073/pnas.2307776121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/17/2023] [Indexed: 01/11/2024] Open
Abstract
De novo heterozygous variants in KCNC2 encoding the voltage-gated potassium (K+) channel subunit Kv3.2 are a recently described cause of developmental and epileptic encephalopathy (DEE). A de novo variant in KCNC2 c.374G > A (p.Cys125Tyr) was identified via exome sequencing in a patient with DEE. Relative to wild-type Kv3.2, Kv3.2-p.Cys125Tyr induces K+ currents exhibiting a large hyperpolarizing shift in the voltage dependence of activation, accelerated activation, and delayed deactivation consistent with a relative stabilization of the open conformation, along with increased current density. Leveraging the cryogenic electron microscopy (cryo-EM) structure of Kv3.1, molecular dynamic simulations suggest that a strong π-π stacking interaction between the variant Tyr125 and Tyr156 in the α-6 helix of the T1 domain promotes a relative stabilization of the open conformation of the channel, which underlies the observed gain of function. A multicompartment computational model of a Kv3-expressing parvalbumin-positive cerebral cortex fast-spiking γ-aminobutyric acidergic (GABAergic) interneuron (PV-IN) demonstrates how the Kv3.2-Cys125Tyr variant impairs neuronal excitability and dysregulates inhibition in cerebral cortex circuits to explain the resulting epilepsy.
Collapse
Affiliation(s)
- Jerome Clatot
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- The Epilepsy Neurogenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia,PA19104
| | | | - Qiansheng Liang
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Tanadet Pipatpolkai
- Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, SolnaSE-171 21, Sweden
| | - Shavonne L. Massey
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- The Epilepsy Neurogenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia,PA19104
- The Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| | - Ingo Helbig
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- The Epilepsy Neurogenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia,PA19104
- The Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Lucie Delemotte
- Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, SolnaSE-171 21, Sweden
| | - Tim P. Vogels
- The Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Manuel Covarrubias
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Ethan M. Goldberg
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- The Epilepsy Neurogenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia,PA19104
- The Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- The Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| |
Collapse
|
23
|
Pissas KP, Schilling M, Korkmaz A, Tian Y, Gründer S. Melatonin alters the excitability of mouse cerebellar granule neurons by inhibiting voltage-gated sodium, potassium, and calcium channels. J Pineal Res 2024; 76:e12919. [PMID: 37794846 DOI: 10.1111/jpi.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Besides its role in the circadian rhythm, the pineal gland hormone melatonin (MLT) also possesses antiepileptogenic, antineoplastic, and cardioprotective properties, among others. The dosages necessary to elicit beneficial effects in these diseases often far surpass physiological concentrations. Although even high doses of MLT are considered to be largely harmless to humans, the possible side effects of pharmacological concentrations are so far not well investigated. In the present study, we report that pharmacological doses of MLT (3 mM) strongly altered the electrophysiological characteristics of cultured primary mouse cerebellar granule cells (CGCs). Using whole-cell patch clamp and ratiometric Ca2+ imaging, we observed that pharmacological concentrations of MLT inhibited several types of voltage-gated Na+ , K+ , and Ca2+ channels in CGCs independently of known MLT-receptors, altering the character and pattern of elicited action potentials (APs) significantly, quickly and reversibly. Specifically, MLT reduced AP frequency, afterhyperpolarization, and rheobase, whereas AP amplitude and threshold potential remained unchanged. The altered biophysical profile of the cells could constitute a possible mechanism underlying the proposed beneficial effects of MLT in brain-related disorders, such as epilepsy. On the other hand, it suggests potential adverse effects of pharmacological MLT concentrations on neurons, which should be considered when using MLT as a pharmacological compound.
Collapse
Affiliation(s)
| | - Maria Schilling
- Medical faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Ahmet Korkmaz
- Medical faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Yuemin Tian
- Medical faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Stefan Gründer
- Medical faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
24
|
Lai H, Gao M, Yang H. The potassium channels: Neurobiology and pharmacology of tinnitus. J Neurosci Res 2024; 102:e25281. [PMID: 38284861 DOI: 10.1002/jnr.25281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024]
Abstract
Tinnitus is a widespread public health issue that imposes a significant social burden. The occurrence and maintenance of tinnitus have been shown to be associated with abnormal neuronal activity in the auditory pathway. Based on this view, neurobiological and pharmacological developments in tinnitus focus on ion channels and synaptic neurotransmitter receptors in neurons in the auditory pathway. With major breakthroughs in the pathophysiology and research methodology of tinnitus in recent years, the role of the largest family of ion channels, potassium ion channels, in modulating the excitability of neurons involved in tinnitus has been increasingly demonstrated. More and more potassium channels involved in the neural mechanism of tinnitus have been discovered, and corresponding drugs have been developed. In this article, we review animal (mouse, rat, hamster, and guinea-pig), human, and genetic studies on the different potassium channels involved in tinnitus, analyze the limitations of current clinical research on potassium channels, and propose future prospects. The aim of this review is to promote the understanding of the role of potassium ion channels in tinnitus and to advance the development of drugs targeting potassium ion channels for tinnitus.
Collapse
Affiliation(s)
- Haohong Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minqian Gao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| |
Collapse
|
25
|
Stubbendorff C, Hale E, Day HLL, Smith J, Alvaro GS, Large CH, Stevenson CW. Pharmacological modulation of Kv3 voltage-gated potassium channels regulates fear discrimination and expression in a response-dependent manner. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110829. [PMID: 37451593 DOI: 10.1016/j.pnpbp.2023.110829] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Various psychiatric diseases are characterized by aberrant cognition and emotional regulation. This includes inappropriately attributing affective salience to innocuous cues, which can be investigated using translationally relevant preclinical models of fear discrimination. Activity in the underpinning corticolimbic circuitry is governed by parvalbumin-expressing GABAergic interneurons, which also regulate fear discrimination. Kv3 voltage-gated potassium channels are highly expressed in these neurons and are important for controlling their activity, suggesting that pharmacological Kv3 modulation may regulate fear discrimination. We determined the effect of the positive Kv3 modulator AUT00206 given systemically to female rats undergoing limited or extended auditory fear discrimination training, which we have previously shown results in more discrimination or generalization, respectively, based on freezing at retrieval. We also characterized darting and other active fear-related responses. We found that limited training resulted in more discrimination based on freezing, which was unaffected by AUT00206. In contrast, extended training resulted in more generalization based on freezing and the emergence of discrimination based on darting during training and, to a lesser extent, at retrieval. Importantly, AUT00206 given before extended training had dissociable effects on fear discrimination and expression at retrieval depending on the response examined. While AUT00206 mitigated generalization without affecting expression based on freezing, it reduced expression without affecting discrimination based on darting, although darting levels were low overall. These results indicate that pharmacological Kv3 modulation regulates fear discrimination and expression in a response-dependent manner. They also raise the possibility that targeting Kv3 channels may ameliorate perturbed cognition and emotional regulation in psychiatric disease.
Collapse
Affiliation(s)
- Christine Stubbendorff
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Ed Hale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Harriet L L Day
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Jessica Smith
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Giuseppe S Alvaro
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage SG1 2FX, UK
| | - Charles H Large
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage SG1 2FX, UK
| | - Carl W Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
26
|
van Oostrum M, Blok TM, Giandomenico SL, Tom Dieck S, Tushev G, Fürst N, Langer JD, Schuman EM. The proteomic landscape of synaptic diversity across brain regions and cell types. Cell 2023; 186:5411-5427.e23. [PMID: 37918396 PMCID: PMC10686415 DOI: 10.1016/j.cell.2023.09.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/18/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023]
Abstract
Neurons build synaptic contacts using different protein combinations that define the specificity, function, and plasticity potential of synapses; however, the diversity of synaptic proteomes remains largely unexplored. We prepared synaptosomes from 7 different transgenic mouse lines with fluorescently labeled presynaptic terminals. Combining microdissection of 5 different brain regions with fluorescent-activated synaptosome sorting (FASS), we isolated and analyzed the proteomes of 18 different synapse types. We discovered ∼1,800 unique synapse-type-enriched proteins and allocated thousands of proteins to different types of synapses (https://syndive.org/). We identify shared synaptic protein modules and highlight the proteomic hotspots for synapse specialization. We reveal unique and common features of the striatal dopaminergic proteome and discover the proteome signatures that relate to the functional properties of different interneuron classes. This study provides a molecular systems-biology analysis of synapses and a framework to integrate proteomic information for synapse subtypes of interest with cellular or circuit-level experiments.
Collapse
Affiliation(s)
- Marc van Oostrum
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Thomas M Blok
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | | | | | - Georgi Tushev
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Nicole Fürst
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Julian D Langer
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany; Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
27
|
Barton JR, Londregan AK, Alexander TD, Entezari AA, Covarrubias M, Waldman SA. Enteroendocrine cell regulation of the gut-brain axis. Front Neurosci 2023; 17:1272955. [PMID: 38027512 PMCID: PMC10662325 DOI: 10.3389/fnins.2023.1272955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Enteroendocrine cells (EECs) are an essential interface between the gut and brain that communicate signals about nutrients, pain, and even information from our microbiome. EECs are hormone-producing cells expressed throughout the gastrointestinal epithelium and have been leveraged by pharmaceuticals like semaglutide (Ozempic, Wegovy), terzepatide (Mounjaro), and retatrutide (Phase 2) for diabetes and weight control, and linaclotide (Linzess) to treat irritable bowel syndrome (IBS) and visceral pain. This review focuses on role of intestinal EECs to communicate signals from the gut lumen to the brain. Canonically, EECs communicate information about the intestinal environment through a variety of hormones, dividing EECs into separate classes based on the hormone each cell type secretes. Recent studies have revealed more diverse hormone profiles and communication modalities for EECs including direct synaptic communication with peripheral neurons. EECs known as neuropod cells rapidly relay signals from gut to brain via a direct communication with vagal and primary sensory neurons. Further, this review discusses the complex information processing machinery within EECs, including receptors that transduce intraluminal signals and the ion channel complement that govern initiation and propagation of these signals. Deeper understanding of EEC physiology is necessary to safely treat devastating and pervasive conditions like irritable bowel syndrome and obesity.
Collapse
Affiliation(s)
- Joshua R. Barton
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Annie K. Londregan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tyler D. Alexander
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ariana A. Entezari
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Manuel Covarrubias
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
28
|
Chen YT, Hong MR, Zhang XJ, Kostas J, Li Y, Kraus RL, Santarelli VP, Wang D, Gomez-Llorente Y, Brooun A, Strickland C, Soisson SM, Klein DJ, Ginnetti AT, Marino MJ, Stachel SJ, Ishchenko A. Identification, structural, and biophysical characterization of a positive modulator of human Kv3.1 channels. Proc Natl Acad Sci U S A 2023; 120:e2220029120. [PMID: 37812700 PMCID: PMC10589703 DOI: 10.1073/pnas.2220029120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/16/2023] [Indexed: 10/11/2023] Open
Abstract
Voltage-gated potassium channels (Kv) are tetrameric membrane proteins that provide a highly selective pathway for potassium ions (K+) to diffuse across a hydrophobic cell membrane. These unique voltage-gated cation channels detect changes in membrane potential and, upon activation, help to return the depolarized cell to a resting state during the repolarization stage of each action potential. The Kv3 family of potassium channels is characterized by a high activation potential and rapid kinetics, which play a crucial role for the fast-spiking neuronal phenotype. Mutations in the Kv3.1 channel have been shown to have implications in various neurological diseases like epilepsy and Alzheimer's disease. Moreover, disruptions in neuronal circuitry involving Kv3.1 have been correlated with negative symptoms of schizophrenia. Here, we report the discovery of a novel positive modulator of Kv3.1, investigate its biophysical properties, and determine the cryo-EM structure of the compound in complex with Kv3.1. Structural analysis reveals the molecular determinants of positive modulation in Kv3.1 channels by this class of compounds and provides additional opportunities for rational drug design for the treatment of associated neurological disorders.
Collapse
Affiliation(s)
- Yun-Ting Chen
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ07033
| | - Mee Ra Hong
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA19486
| | - Xin-Jun Zhang
- Department of Neuroscience, Merck & Co., Inc., West Point, PA19486
| | - James Kostas
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA19486
| | - Yuxing Li
- Department of Neuroscience, Merck & Co., Inc., West Point, PA19486
| | - Richard L. Kraus
- Department of Neuroscience, Merck & Co., Inc., West Point, PA19486
| | | | - Deping Wang
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA19486
| | | | - Alexei Brooun
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA19486
| | - Corey Strickland
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ07033
| | - Stephen M. Soisson
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA19486
| | - Daniel J. Klein
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA19486
| | | | | | | | - Andrii Ishchenko
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA19486
| |
Collapse
|
29
|
Ma D, Sun C, Manne R, Guo T, Bosc C, Barry J, Magliery T, Andrieux A, Li H, Gu C. A cytoskeleton-membrane interaction conserved in fast-spiking neurons controls movement, emotion, and memory. Mol Psychiatry 2023; 28:3994-4010. [PMID: 37833406 PMCID: PMC10905646 DOI: 10.1038/s41380-023-02286-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
The pathogenesis of schizophrenia is believed to involve combined dysfunctions of many proteins including microtubule-associated protein 6 (MAP6) and Kv3.1 voltage-gated K+ (Kv) channel, but their relationship and functions in behavioral regulation are often not known. Here we report that MAP6 stabilizes Kv3.1 channels in parvalbumin-positive (PV+ ) fast-spiking GABAergic interneurons, regulating behavior. MAP6-/- and Kv3.1-/- mice display similar hyperactivity and avoidance reduction. Their proteins colocalize in PV+ interneurons and MAP6 deletion markedly reduces Kv3.1 protein level. We further show that two microtubule-binding modules of MAP6 bind the Kv3.1 tetramerization domain with high affinity, maintaining the channel level in both neuronal soma and axons. MAP6 knockdown by AAV-shRNA in the amygdala or the hippocampus reduces avoidance or causes hyperactivity and recognition memory deficit, respectively, through elevating projection neuron activity. Finally, knocking down Kv3.1 or disrupting the MAP6-Kv3.1 binding in these brain regions causes avoidance reduction and hyperactivity, consistent with the effects of MAP6 knockdown. Thus, disrupting this conserved cytoskeleton-membrane interaction in fast-spiking neurons causes different degrees of functional vulnerability in various neural circuits.
Collapse
Affiliation(s)
- Di Ma
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Chao Sun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- MCDB graduate program, The Ohio State University, Columbus, OH, USA
| | - Rahul Manne
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Tianqi Guo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Joshua Barry
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Houzhi Li
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Chen Gu
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
- MCDB graduate program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
30
|
Yang JJ, Huang RC. Afterhyperpolarization potential modulated by local [K +] o in K + diffusion-restricted extracellular space in the central clock of suprachiasmatic nucleus. Biomed J 2023; 46:100551. [PMID: 35863667 PMCID: PMC10345224 DOI: 10.1016/j.bj.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Intercellular coupling is essential for the suprachiasmatic nucleus (SCN) to serve as a coherent central clock. Synaptic release of neurotransmitters and neuropeptides is critical for synchronizing SCN neurons. However, intercellular coupling via non-synaptic mechanisms has also been demonstrated. In particular, the abundant perikaryal appositions with morphological specializations in the narrow extracellular space (ECS) may hinder molecular diffusion to allow for ion accumulation or depletion. METHODS The SCN neurons were recorded in the whole-cell current-clamp mode, with pipette filled with high (26 mM)-Na+ or low (6 mM)-Na+ solution. RESULTS Cells recorded with high-Na+ pipette solution could fire spontaneous action potentials (AP) with peak AHP more negative than the calculated value of K+ equilibrium potential (EK) and with peak AP more positive than calculated ENa. Cells recorded with low-Na+ pipette solution could also have peak AHP more negative than calculated EK. In contrast, the resting membrane potential (RMP) was always less negative to calculated EK. The distribution and the averaged amplitude of peak AHP, peak AP, or RMP was similar between cells recorded with high-Na+ and low-Na+ solution pipette. In a number of cells, the peak AHP could increase from more positive to become more negative than calculated EK spontaneously or after treatments to hyperpolarize the RMP. TTX blocked the Na+ -dependent APs and tetraethylammonium (TEA), but not Ba2+ or Cd2+, markedly reduced the peak AHP. Perforated-patch cells could also but rarely fire APs with peak AHP more negative than calculated EK. CONCLUSION The result of peak AHP negative to calculated EK indicates that local [K+]o sensed by the TEA-sensitive AHP K+ channels must be lower than bulk [K+]o, most likely due to K+ clearance from K+ diffusion-restricted ECS by the Na+/K+-ATPase. The K+ diffusion-restricted ECS may allow for K+-mediated ionic interactions among neurons to regulate SCN excitability.
Collapse
Affiliation(s)
- Jyh-Jeen Yang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Rong-Chi Huang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
31
|
Duncan PJ, Romanò N, Nair SV, Murray JF, Le Tissier P, Shipston MJ. Sex differences in pituitary corticotroph excitability. Front Physiol 2023; 14:1205162. [PMID: 37534368 PMCID: PMC10391550 DOI: 10.3389/fphys.2023.1205162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
Stress-related illness represents a major burden on health and society. Sex differences in stress-related disorders are well documented, with women having twice the lifetime rate of depression compared to men and most anxiety disorders. Anterior pituitary corticotrophs are central components of the hypothalamic-pituitary-adrenal (HPA) axis, receiving input from hypothalamic neuropeptides corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP), while regulating glucocorticoid output from the adrenal cortex. The dynamic control of electrical excitability by CRH/AVP and glucocorticoids is critical for corticotroph function; however, whether corticotrophs contribute to sexually differential responses of the HPA axis, which might underlie differences in stress-related disorders, is very poorly understood. Using perforated patch clamp electrophysiology in corticotrophs from mice expressing green fluorescent protein under the control of the Pomc promoter, we characterized basal and secretagogue-evoked excitability. Both male and female corticotrophs show predominantly single-spike action potentials under basal conditions; however, males predominantly display spikes with small-amplitude (<20 mV) afterhyperpolarizations (B-type), whereas females displayed a mixture of B-type spikes and spikes with a large-amplitude (>25 mV) afterhyperpolarization (A-type). In response to CRH, or CRH/AVP, male cells almost exclusively transition to a predominantly pseudo-plateau bursting, whereas only female B-type cells display bursting in response to CRH±AVP. Treatment of male or female corticotrophs with 1 nM estradiol (E2) for 24-72 h has no effect on the proportion of cells with A- or B-type spikes in either sex. However, E2 results in the cessation of CRH-induced bursting in both male and female corticotrophs, which can be partially reversed by adding a BK current using a dynamic clamp. RNA-seq analysis of purified corticotrophs reveals extensive differential gene expression at the transcriptional level, including more than 71 mRNAs encoding ion channel subunits. Interestingly, there is a two-fold lower level (p < 0.01) of BK channel pore-forming subunit (Kcnma1) expression in females compared to males, which may partially explain the decrease in CRH-induced bursting. This study identified sex differences at the level of the anterior pituitary corticotroph ion channel landscape and control of both spontaneous and CRH-evoked excitability. Determining the mechanisms of sex differences of corticotroph and HPA activity at the cellular level could be an important step for better understanding, diagnosing, and treating stress-related disorders.
Collapse
|
32
|
Seiffert S, Pendziwiat M, Hedrich UBS, Helbig I, Weber Y, Schwarz N. KCNC2 variants of uncertain significance are also associated to various forms of epilepsy. Front Neurol 2023; 14:1212079. [PMID: 37360341 PMCID: PMC10289024 DOI: 10.3389/fneur.2023.1212079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Recently, de novo variants in KCNC2, coding for the potassium channel subunit KV3.2, have been described as causative for various forms of epilepsy including genetic generalized epilepsy (GGE) and developmental and epileptic encephalopathy (DEE). Here, we report the functional characteristics of three additional KCNC2 variants of uncertain significance and one variant classified as pathogenic. Electrophysiological studies were performed in Xenopus laevis oocytes. The data presented here support that KCNC2 variants with uncertain significance may also be causative for various forms of epilepsy, as they show changes in the current amplitude and activation and deactivation kinetics of the channel, depending on the variant. In addition, we investigated the effect of valproic acid on KV3.2, as several patients carrying pathogenic variants in the KCNC2 gene achieved significant seizure reduction or seizure freedom with this drug. However, in our electrophysiological investigations, no change on the behavior of KV3.2 channels could be observed, suggesting that the therapeutic effect of VPA may be explained by other mechanisms.
Collapse
Affiliation(s)
- Simone Seiffert
- Department of Human Genetics, University Hospital Ulm, Ulm, Germany
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Manuela Pendziwiat
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Ulrike B. S. Hedrich
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ingo Helbig
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yvonne Weber
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Epileptology and Neurology, University of Aachen, Aachen, Germany
| | - Niklas Schwarz
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Jin X, Xie J, Yeh CW, Chen JC, Cheng CJ, Lien CC, Huang CL. WNK1 promotes water homeostasis by acting as a central osmolality sensor for arginine vasopressin release. J Clin Invest 2023; 133:e164222. [PMID: 37071482 PMCID: PMC10231991 DOI: 10.1172/jci164222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/14/2023] [Indexed: 04/19/2023] Open
Abstract
Maintaining internal osmolality constancy is essential for life. Release of arginine vasopressin (AVP) in response to hyperosmolality is critical. Current hypotheses for osmolality sensors in circumventricular organs (CVOs) of the brain focus on mechanosensitive membrane proteins. The present study demonstrated that intracellular protein kinase WNK1 was involved. Focusing on vascular-organ-of-lamina-terminalis (OVLT) nuclei, we showed that WNK1 kinase was activated by water restriction. Neuron-specific conditional KO (cKO) of Wnk1 caused polyuria with decreased urine osmolality that persisted in water restriction and blunted water restriction-induced AVP release. Wnk1 cKO also blunted mannitol-induced AVP release but had no effect on osmotic thirst response. The role of WNK1 in the osmosensory neurons in CVOs was supported by neuronal pathway tracing. Hyperosmolality-induced increases in action potential firing in OVLT neurons was blunted by Wnk1 deletion or pharmacological WNK inhibitors. Knockdown of Kv3.1 channel in OVLT by shRNA reproduced the phenotypes. Thus, WNK1 in osmosensory neurons in CVOs detects extracellular hypertonicity and mediates the increase in AVP release by activating Kv3.1 and increasing action potential firing from osmosensory neurons.
Collapse
Affiliation(s)
- Xin Jin
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jian Xie
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Jen-Chi Chen
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Chih-Jen Cheng
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Cheng-Chang Lien
- Institute of Neuroscience and
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chou-Long Huang
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
34
|
Zemel BM, Nevue AA, Tavares LES, Dagostin A, Lovell PV, Jin DZ, Mello CV, von Gersdorff H. Motor cortex analogue neurons in songbirds utilize Kv3 channels to generate ultranarrow spikes. eLife 2023; 12:e81992. [PMID: 37158590 PMCID: PMC10241522 DOI: 10.7554/elife.81992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/08/2023] [Indexed: 05/10/2023] Open
Abstract
Complex motor skills in vertebrates require specialized upper motor neurons with precise action potential (AP) firing. To examine how diverse populations of upper motor neurons subserve distinct functions and the specific repertoire of ion channels involved, we conducted a thorough study of the excitability of upper motor neurons controlling somatic motor function in the zebra finch. We found that robustus arcopallialis projection neurons (RAPNs), key command neurons for song production, exhibit ultranarrow spikes and higher firing rates compared to neurons controlling non-vocal somatic motor functions (dorsal intermediate arcopallium [AId] neurons). Pharmacological and molecular data indicate that this striking difference is associated with the higher expression in RAPNs of high threshold, fast-activating voltage-gated Kv3 channels, that likely contain Kv3.1 (KCNC1) subunits. The spike waveform and Kv3.1 expression in RAPNs mirror properties of Betz cells, specialized upper motor neurons involved in fine digit control in humans and other primates but absent in rodents. Our study thus provides evidence that songbirds and primates have convergently evolved the use of Kv3.1 to ensure precise, rapid AP firing in upper motor neurons controlling fast and complex motor skills.
Collapse
Affiliation(s)
- Benjamin M Zemel
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Alexander A Nevue
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Leonardo ES Tavares
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
- Department of Physics, Pennsylvania State UniversityUniversity ParkUnited States
| | - Andre Dagostin
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Dezhe Z Jin
- Department of Physics, Pennsylvania State UniversityUniversity ParkUnited States
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Henrique von Gersdorff
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
- Oregon Hearing Research Center, Oregon Health and Science UniversityPortlandUnited States
| |
Collapse
|
35
|
Kaczmarek LK. Modulation of potassium conductances optimizes fidelity of auditory information. Proc Natl Acad Sci U S A 2023; 120:e2216440120. [PMID: 36930599 PMCID: PMC10041146 DOI: 10.1073/pnas.2216440120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/08/2023] [Indexed: 03/18/2023] Open
Abstract
Potassium channels in auditory neurons are rapidly modified by changes in the auditory environment. In response to elevated auditory stimulation, short-term mechanisms such as protein phosphorylation and longer-term mechanisms such as accelerated channel synthesis increase the amplitude of currents that promote high-frequency firing. It has been suggested that this allows neurons to fire at high rates in response to high sound levels. We have carried out simple simulations of the response to postsynaptic neurons to patterns of neurotransmitter release triggered by auditory stimuli. These demonstrate that the amplitudes of potassium currents required for optimal encoding of a low-amplitude auditory signal differ from those for louder sounds. Specifically, the cross-correlation of the output of a neuron with an auditory stimulus is improved by increasing potassium currents as sound amplitude increases. Temporal fidelity for low-frequency stimuli is improved by increasing potassium currents that activate at negative potentials, while that for high-frequency stimuli requires increases in currents that activate at positive membrane potentials. These effects are independent of the firing rate. Moreover, levels of potassium currents that maximize the fidelity of the output of an ensemble of neurons differ from those that maximize fidelity for a single neuron. This suggests that the modulatory mechanisms must coordinate channel activity in groups of neurons or an entire nucleus. The simulations provide an explanation for the modulation of the intrinsic excitability of auditory brainstem neurons by changes in environmental sound levels, and the results may extend to information processing in other neural systems.
Collapse
Affiliation(s)
- Leonard K. Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT06520
| |
Collapse
|
36
|
Woodward E, Rangel-Barajas C, Ringland A, Logrip ML, Coutellier L. Sex-Specific Timelines for Adaptations of Prefrontal Parvalbumin Neurons in Response to Stress and Changes in Anxiety- and Depressive-Like Behaviors. eNeuro 2023; 10:ENEURO.0300-22.2023. [PMID: 36808099 PMCID: PMC9997696 DOI: 10.1523/eneuro.0300-22.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/22/2023] Open
Abstract
Women are twice as likely as men to experience emotional dysregulation after stress, resulting in substantially higher psychopathology for equivalent lifetime stress exposure, yet the mechanisms underlying this vulnerability remain unknown. Studies suggest changes in medial prefrontal cortex (mPFC) activity as a potential contributor. Whether maladaptive changes in inhibitory interneurons participate in this process, and whether adaptations in response to stress differ between men and women, producing sex-specific changes in emotional behaviors and mPFC activity, remained undetermined. This study examined whether unpredictable chronic mild stress (UCMS) in mice differentially alters behavior and mPFC parvalbumin (PV) interneuron activity by sex, and whether the activity of these neurons drives sex-specific behavioral changes. Four weeks of UCMS increased anxiety-like and depressive-like behaviors associated with FosB activation in mPFC PV neurons, particularly in females. After 8 weeks of UCMS, both sexes displayed these behavioral and neural changes. Chemogenetic activation of PV neurons in UCMS-exposed and nonstressed males induced significant changes in anxiety-like behaviors. Importantly, patch-clamp electrophysiology demonstrated altered excitability and basic neural properties on the same timeline as the emergence of behavioral effects: changes in females after 4 weeks and in males after 8 weeks of UCMS. These findings show, for the first time, that sex-specific changes in the excitability of prefrontal PV neurons parallel the emergence of anxiety-like behavior, revealing a potential novel mechanism underlying the enhanced vulnerability of females to stress-induced psychopathology and supporting further investigation of this neuronal population to identify new therapeutic targets for stress disorders.
Collapse
Affiliation(s)
- Emma Woodward
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Claudia Rangel-Barajas
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - Amanda Ringland
- Department of Psychology, The Ohio State University, Columbus, Ohio 43210
| | - Marian L Logrip
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Laurence Coutellier
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Department of Psychology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
37
|
Heteromerization of Dopamine D2 and Oxytocin Receptor in Adult Striatal Astrocytes. Int J Mol Sci 2023; 24:ijms24054677. [PMID: 36902106 PMCID: PMC10002782 DOI: 10.3390/ijms24054677] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The ability of oxytocin (OT) to interact with the dopaminergic system through facilitatory D2-OT receptor (OTR) receptor-receptor interaction in the limbic system is increasingly considered to play roles in social or emotional behavior, and suggested to serve as a potential therapeutic target. Although roles of astrocytes in the modulatory effects of OT and dopamine in the central nervous system are well recognized, the possibility of D2-OTR receptor-receptor interaction in astrocytes has been neglected. In purified astrocyte processes from adult rat striatum, we assessed OTR and dopamine D2 receptor expression by confocal analysis. The effects of activation of these receptors were evaluated in the processes through a neurochemical study of glutamate release evoked by 4-aminopyridine; D2-OTR heteromerization was assessed by co-immunoprecipitation and proximity ligation assay (PLA). The structure of the possible D2-OTR heterodimer was estimated by a bioinformatic approach. We found that both D2 and OTR were expressed on the same astrocyte processes and controlled the release of glutamate, showing a facilitatory receptor-receptor interaction in the D2-OTR heteromers. Biochemical and biophysical evidence confirmed D2-OTR heterodimers on striatal astrocytes. The residues in the transmembrane domains four and five of both receptors are predicted to be mainly involved in the heteromerization. In conclusion, roles for astrocytic D2-OTR in the control of glutamatergic synapse functioning through modulation of astrocytic glutamate release should be taken into consideration when considering interactions between oxytocinergic and dopaminergic systems in striatum.
Collapse
|
38
|
Wu XB, Zhu Q, Gao MH, Yan SX, Gu PY, Zhang PF, Xu ML, Gao YJ. Excitatory Projections from the Prefrontal Cortex to Nucleus Accumbens Core D1-MSNs and κ Opioid Receptor Modulate Itch-Related Scratching Behaviors. J Neurosci 2023; 43:1334-1347. [PMID: 36653189 PMCID: PMC9987576 DOI: 10.1523/jneurosci.1359-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Itch is an uncomfortable and complex sensation that elicits the desire to scratch. The nucleus accumbens (NAc) activity is important in driving sensation, motivation, and emotion. Excitatory afferents from the medial prefrontal cortex (mPFC), amygdala, and hippocampus are crucial in tuning the activity of dopamine receptor D1-expressing and D2-expressing medium spiny neurons (Drd1-MSN and Drd2-MSN) in the NAc. However, a cell-type and neural circuity-based mechanism of the NAc underlying acute itch remains unclear. We found that acute itch induced by compound 48/80 (C48/80) decreased the intrinsic membrane excitability in Drd1-MSNs, but not in Drd2-MSNs, in the NAc core of male mice. Chemogenetic activation of Drd1-MSNs alleviated C48/80-induced scratching behaviors but not itch-related anxiety-like behaviors. In addition, C48/80 enhanced the frequency of spontaneous EPSCs (sEPSCs) and reduced the paired-pulse ratio (PPR) of electrical stimulation-evoked EPSCs in Drd1-MSNs. Furthermore, C48/80 increased excitatory synaptic afferents to Drd1-MSNs from the mPFC, not from the basolateral amygdala (BLA) or ventral hippocampus (vHipp). Consistently, the intrinsic excitability of mPFC-NAc projecting pyramidal neurons was increased after C48/80 treatment. Chemogenetic inhibition of mPFC-NAc excitatory synaptic afferents relieved the scratching behaviors. Moreover, pharmacological activation of κ opioid receptor (KOR) in the NAc core suppressed C48/80-induced scratching behaviors, and the modulation of KOR activity in the NAc resulted in the changes of presynaptic excitatory inputs to Drd1-MSNs in C48/80-treated mice. Together, these results reveal the neural plasticity in synapses of NAc Drd1-MSNs from the mPFC underlying acute itch and indicate the modulatory role of the KOR in itch-related scratching behaviors.SIGNIFICANCE STATEMENT Itch stimuli cause strongly scratching desire and anxiety in patients. However, the related neural mechanisms remain largely unclear. In the present study, we demonstrated that the pruritogen compound 48/80 (C48/80) shapes the excitability of dopamine receptor D1-expressing medium spiny neurons (Drd1-MSNs) in the nucleus accumbens (NAc) core and the glutamatergic synaptic afferents from medial prefrontal cortex (mPFC) to these neurons. Chemogenetic activation of Drd1-MSNs or inhibition of mPFC-NAc excitatory synaptic afferents relieves the scratching behaviors. In addition, pharmacological activation of κ opioid receptor (KOR) in the NAc core alleviates C48/80-induced itch. Thus, targeting mPFC-NAc Drd1-MSNs or KOR may provide effective treatments for itch.
Collapse
Affiliation(s)
- Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Qian Zhu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Ming-Hui Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Sheng-Xiang Yan
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Pan-Yang Gu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Peng-Fei Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Meng-Lin Xu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| |
Collapse
|
39
|
Thapaliya B, Ray B, Farahdel B, Suresh P, Sapkota R, Holla B, Mahadevan J, Chen J, Vaidya N, Perrone-Bizzozero N, Benegal V, Schumann G, Calhoun VD, Liu J. Cross-continental environmental and genome-wide association study on children and adolescent anxiety and depression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.06.23285530. [PMID: 36798402 PMCID: PMC9934785 DOI: 10.1101/2023.02.06.23285530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Anxiety and depression in children and adolescents warrant special attention as a public health issue given their devastating and long-term effects on development and mental health. Multiple factors, ranging from genetic vulnerabilities to environmental stressors, influence the risk for the disorders. This study aimed to understand how environmental factors and genomics affect children and adolescents anxiety and depression across three cohorts: Adolescent Brain and Cognitive Development Study (US, age of 9-10), Consortium on Vulnerability to Externalizing Disorders and Addictions (INDIA, age of 6-17) and IMAGEN (EUROPE, age of 14). We performed data harmonization and identified the environmental impact on anxiety/depression using a linear mixed-effect model, recursive feature elimination regression, and the LASSO regression model. Subsequently, genome-wide association analyses with consideration of significant environmental factors were performed for all three cohorts by mega-analysis and meta-analysis, followed by functional annotations. The results showed that multiple environmental factors contributed to the risk of anxiety and depression during development, where early life stress and school risk had the most significant and consistent impact across all three cohorts. Both meta and mega-analysis identified a novel SNP rs79878474 in chr11p15 to be the most promising SNP associated with anxiety and depression. Gene set analysis on the common genes mapped from top promising SNPs of both meta and mega analyses found significant enrichment in regions of chr11p15 and chr3q26, in the function of potassium channels and insulin secretion, in particular Kv3, Kir-6.2, SUR potassium channels encoded by the KCNC1, KCNJ11, and ABCCC8 genes respectively, in chr11p15. Tissue enrichment analysis showed significant enrichment in the small intestine and a trend of enrichment in the cerebellum. Our findings provide evidence of consistent environmental impact from early life stress and school risks on anxiety and depression during development and also highlight the genetic association between mutations in potassium channels along with the potential role of the cerebellum region, which are worthy of further investigation.
Collapse
Affiliation(s)
- Bishal Thapaliya
- Tri-Institutional Center for Translational Research in Neuro Imaging and Data Science
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Bhaskar Ray
- Tri-Institutional Center for Translational Research in Neuro Imaging and Data Science
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Britny Farahdel
- Tri-Institutional Center for Translational Research in Neuro Imaging and Data Science
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Pranav Suresh
- Tri-Institutional Center for Translational Research in Neuro Imaging and Data Science
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Ram Sapkota
- Tri-Institutional Center for Translational Research in Neuro Imaging and Data Science
- Department of Computer Science, Georgia State University, Atlanta, USA
| | | | | | - Bharath Holla
- Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jayant Mahadevan
- Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuro Imaging and Data Science
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany
- Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Vivek Benegal
- Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine, Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuro Imaging and Data Science
- Department of Computer Science, Georgia State University, Atlanta, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuro Imaging and Data Science
- Department of Computer Science, Georgia State University, Atlanta, USA
| |
Collapse
|
40
|
Wang ZW, Trussell LO, Vedantham K. Regulation of Neurotransmitter Release by K + Channels. ADVANCES IN NEUROBIOLOGY 2023; 33:305-331. [PMID: 37615872 DOI: 10.1007/978-3-031-34229-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
K+ channels play potent roles in the process of neurotransmitter release by influencing the action potential waveform and modulating neuronal excitability and release probability. These diverse effects of K+ channel activation are ensured by the wide variety of K+ channel genes and their differential expression in different cell types. Accordingly, a variety of K+ channels have been implicated in regulating neurotransmitter release, including the Ca2+- and voltage-gated K+ channel Slo1 (also known as BK channel), voltage-gated K+ channels of the Kv3 (Shaw-type), Kv1 (Shaker-type), and Kv7 (KCNQ) families, G-protein-gated inwardly rectifying K+ (GIRK) channels, and SLO-2 (a Ca2+-. Cl-, and voltage-gated K+ channel in C. elegans). These channels vary in their expression patterns, subcellular localization, and biophysical properties. Their roles in neurotransmitter release may also vary depending on the synapse and physiological or experimental conditions. This chapter summarizes key findings about the roles of K+ channels in regulating neurotransmitter release.
Collapse
Affiliation(s)
- Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Laurence O Trussell
- Oregon Hearing Research Center & Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kiranmayi Vedantham
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
41
|
Zhang Q, Haselden WD, Charpak S, Drew PJ. Could respiration-driven blood oxygen changes modulate neural activity? Pflugers Arch 2023; 475:37-48. [PMID: 35761104 PMCID: PMC9794637 DOI: 10.1007/s00424-022-02721-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/26/2022] [Accepted: 06/16/2022] [Indexed: 01/31/2023]
Abstract
Oxygen is critical for neural metabolism, but under most physiological conditions, oxygen levels in the brain are far more than are required. Oxygen levels can be dynamically increased by increases in respiration rate that are tied to the arousal state of the brain and cognition, and not necessarily linked to exertion by the body. Why these changes in respiration occur when oxygen is already adequate has been a long-standing puzzle. In humans, performance on cognitive tasks can be affected by very high or very low oxygen levels, but whether the physiological changes in blood oxygenation produced by respiration have an appreciable effect is an open question. Oxygen has direct effects on potassium channels, increases the degradation rate of nitric oxide, and is rate limiting for the synthesis of some neuromodulators. We discuss whether oxygenation changes due to respiration contribute to neural dynamics associated with attention and arousal.
Collapse
Affiliation(s)
- Qingguang Zhang
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - William D Haselden
- Medical Scientist Training Program, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Serge Charpak
- Institut de La Vision, INSERM, CNRS, Sorbonne Université, Paris, France
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Neurosurgery, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
42
|
Lee HM, Yoon SH, Kim MG, Hahn SJ, Choi BH. Effects of rosiglitazone, an antidiabetic drug, on Kv3.1 channels. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:95-103. [PMID: 36575937 PMCID: PMC9806636 DOI: 10.4196/kjpp.2023.27.1.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 12/29/2022]
Abstract
Rosiglitazone is a thiazolidinedione-class antidiabetic drug that reduces blood glucose and glycated hemoglobin levels. We here investigated the interaction of rosiglitazone with Kv3.1 expressed in Chinese hamster ovary cells using the whole-cell patch-clamp technique. Rosiglitazone rapidly and reversibly inhibited Kv3.1 currents in a concentration-dependent manner (IC50 = 29.8 μM) and accelerated the decay of Kv3.1 currents without modifying the activation kinetics. The rosiglitazone-mediated inhibition of Kv3.1 channels increased steeply in a sigmoidal pattern over the voltage range of -20 to +30 mV, whereas it was voltage-independent in the voltage range above +30 mV, where the channels were fully activated. The deactivation of Kv3.1 current, measured along with tail currents, was also slowed by the drug. In addition, the steady-state inactivation curve of Kv3.1 by rosiglitazone shifts to a negative potential without significant change in the slope value. All the results with the use dependence of the rosiglitazone-mediated blockade suggest that rosiglitazone acts on Kv3.1 channels as an open channel blocker.
Collapse
Affiliation(s)
- Hyang Mi Lee
- Department of Pharmacology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54097, Korea
| | - Seong Han Yoon
- Department of Pharmacology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54097, Korea
| | - Min-Gul Kim
- Department of Pharmacology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54097, Korea
| | - Sang June Hahn
- Department of Physiology, Medical Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Bok Hee Choi
- Department of Pharmacology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54097, Korea,Correspondence Bok Hee Choi, E-mail:
| |
Collapse
|
43
|
Clatot J, Ginn N, Costain G, Goldberg EM. A KCNC1-related neurological disorder due to gain of Kv3.1 function. Ann Clin Transl Neurol 2022; 10:111-117. [PMID: 36419348 PMCID: PMC9852383 DOI: 10.1002/acn3.51707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To further clarify genotype:phenotype correlations associated with variants in KCNC1 encoding the voltage-gated potassium (K+) channel subunit Kv3.1 and which are an emerging cause of a spectrum of neurological disease including intellectual disability, isolated myoclonus, progressive myoclonus epilepsy, and developmental and epileptic encephalopathy. METHODS We describe the clinical and genetic characteristics of a series of three patients with de novo heterozygous missense variants in KCNC1 associated with nonspecific developmental delay/intellectual disability and central hypotonia without epilepsy or ataxia. All three variants lead to amino acids alterations with mild predicted differences in physicochemical properties yet are localized to the S6 pore region of the Kv3.1 protein between the selectivity filter and PXP motif important for K+ channel gating. We performed whole-cell voltage clamp electrophysiological recording of wild-type versus variants in a heterologous mammalian expression system. RESULTS We demonstrate a prominent leftward (hyperpolarized) shift in the voltage dependence of activation and slowed deactivation of all variants in the clinically defined series. INTERPRETATION Electrophysiological recordings are consistent with a gain of K+ channel function that is predicted to exert a loss of function on the excitability of Kv3-expressing high frequency- firing neurons based on the unique electrophysiological properties of Kv3 channels. These results define a clinical-genetic syndrome within the spectrum of KCNC1-related neurological disorders.
Collapse
Affiliation(s)
- Jerome Clatot
- Division of Neurology, Department of PediatricsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,The Epilepsy Neurogenetics InitiativeThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Natalie Ginn
- Division of Neurology, Department of PediatricsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,The Epilepsy Neurogenetics InitiativeThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Gregory Costain
- Division of Clinical and Metabolic GeneticsThe Hospital for Sick ChildrenTorontoOntarioCanada,Genetics and Genome BiologySickKids Research InstituteTorontoOntarioCanada
| | - Ethan M. Goldberg
- Division of Neurology, Department of PediatricsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,The Epilepsy Neurogenetics InitiativeThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of NeurologyThe University of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA,Department of NeuroscienceThe University of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
44
|
Alexander TD, Muqeem T, Zhi L, Tymanskyj SR, Covarrubias M. Tunable Action Potential Repolarization Governed by Kv3.4 Channels in Dorsal Root Ganglion Neurons. J Neurosci 2022; 42:8647-8657. [PMID: 36198500 PMCID: PMC9671581 DOI: 10.1523/jneurosci.1210-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/01/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
The Kv3.4 channel regulates action potential (AP) repolarization in nociceptors and excitatory synaptic transmission in the spinal cord. We hypothesize that this is a tunable role governed by protein kinase-C-dependent phosphorylation of the Kv3.4 cytoplasmic N-terminal inactivation domain (NTID) at four nonequivalent sites. However, there is a paucity of causation evidence linking the phosphorylation status of Kv3.4 to the properties of the AP. To establish this link, we used adeno-associated viral vectors to specifically manipulate the expression and the effective phosphorylation status of Kv3.4 in cultured dorsal root ganglion (DRG) neurons from mixed-sex rat embryos at embryonic day 18. These vectors encoded GFP (background control), wild-type (WT) Kv3.4, phosphonull (PN) Kv3.4 mutant (PN = S[8,9,15,21]A), phosphomimic (PM) Kv3.4 mutant (PM = S[8,9,15,21]D), and a Kv3.4 nonconducting dominant-negative (DN) pore mutant (DN = W429F). Following viral infection of the DRG neurons, we evaluated transduction efficiency and Kv3.4 expression and function via fluorescence microscopy and patch clamping. All functional Kv3.4 constructs induced current overexpression with similar voltage dependence of activation. However, whereas Kv3.4-WT and Kv3.4-PN induced fast transient currents, the Kv3.4-PM induced currents exhibiting impaired inactivation. In contrast, the Kv3.4-DN abolished the endogenous Kv3.4 current. Consequently, Kv3.4-DN and Kv3.4-PM produced APs with the longest and shortest durations, respectively, whereas Kv3.4-WT and Kv3.4-PN produced intermediate results. Moreover, the AP widths and maximum rates of AP repolarization from these groups are negatively correlated. We conclude that the expression and effective phosphorylation status of the Kv3.4 NTID confer a tunable mechanism of AP repolarization, which may provide exquisite regulation of pain signaling in DRG neurons.SIGNIFICANCE STATEMENT The AP is an all-or-none millisecond-long electrical impulse that encodes information in the frequency and patterns of repetitive firing. However, signaling may also depend on the plasticity and diversity of the AP waveform. For instance, the shape and duration of the AP may regulate nociceptive synaptic transmission between a primary sensory afferent to a secondary neuron in the spinal cord. Here, we used mutants of the Kv3.4 voltage-gated potassium channel to manipulate its expression and effective phosphorylation status in dorsal root ganglion neurons and directly show how the expression and malleable inactivation properties of Kv3.4 govern the AP duration and repolarization rate. These results elucidate a mechanism of neural AP plasticity that may regulate pain signaling.
Collapse
Affiliation(s)
- Tyler D Alexander
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Tanziyah Muqeem
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Lianteng Zhi
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Stephen R Tymanskyj
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Manuel Covarrubias
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
45
|
Mukherjee S, Cassini TA, Hu N, Yang T, Li B, Shen W, Moth CW, Rinker DC, Sheehan JH, Cogan JD, Newman JH, Hamid R, Macdonald RL, Roden DM, Meiler J, Kuenze G, Phillips JA, Capra JA. Personalized structural biology reveals the molecular mechanisms underlying heterogeneous epileptic phenotypes caused by de novo KCNC2 variants. HGG ADVANCES 2022; 3:100131. [PMID: 36035247 PMCID: PMC9399384 DOI: 10.1016/j.xhgg.2022.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Whole-exome sequencing (WES) in the clinic has identified several rare monogenic developmental and epileptic encephalopathies (DEE) caused by ion channel variants. However, WES often fails to provide actionable insight for rare diseases, such as DEEs, due to the challenges of interpreting variants of unknown significance (VUS). Here, we describe a "personalized structural biology" (PSB) approach that leverages recent innovations in the analysis of protein 3D structures to address this challenge. We illustrate this approach in an Undiagnosed Diseases Network (UDN) individual with DEE symptoms and a de novo VUS in KCNC2 (p.V469L), the Kv3.2 voltage-gated potassium channel. A nearby KCNC2 variant (p.V471L) was recently suggested to cause DEE-like phenotypes. Computational structural modeling suggests that both affect protein function. However, despite their proximity, the p.V469L variant is likely to sterically block the channel pore, while the p.V471L variant is likely to stabilize the open state. Biochemical and electrophysiological analyses demonstrate heterogeneous loss-of-function and gain-of-function effects, as well as differential response to 4-aminopyridine treatment. Molecular dynamics simulations illustrate that the pore of the p.V469L variant is more constricted, increasing the energetic barrier for K+ permeation, whereas the p.V471L variant stabilizes the open conformation. Our results implicate variants in KCNC2 as causative for DEE and guide the interpretation of a UDN individual. They further delineate the molecular basis for the heterogeneous clinical phenotypes resulting from two proximal pathogenic variants. This demonstrates how the PSB approach can provide an analytical framework for individualized hypothesis-driven interpretation of protein-coding VUS.
Collapse
Affiliation(s)
- Souhrid Mukherjee
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Thomas A. Cassini
- Department of Internal Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20814, USA
| | - Ningning Hu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tao Yang
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bian Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christopher W. Moth
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - David C. Rinker
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Jonathan H. Sheehan
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
- John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joy D. Cogan
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Undiagnosed Diseases Network
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Pulmonary Hypertension Center, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Internal Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20814, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC 04103, Germany
- Department of Chemistry, Leipzig University, Leipzig, SAC 04109, Germany
- Department of Computer Science, Leipzig University, Leipzig, SAC 04109, Germany
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John H. Newman
- Pulmonary Hypertension Center, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rizwan Hamid
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Robert L. Macdonald
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dan M. Roden
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC 04103, Germany
- Department of Chemistry, Leipzig University, Leipzig, SAC 04109, Germany
- Department of Computer Science, Leipzig University, Leipzig, SAC 04109, Germany
| | - Georg Kuenze
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC 04103, Germany
| | - John A. Phillips
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John A. Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
46
|
Moubarak E, Inglebert Y, Tell F, Goaillard JM. Morphological Determinants of Cell-to-Cell Variations in Action Potential Dynamics in Substantia Nigra Dopaminergic Neurons. J Neurosci 2022; 42:7530-7546. [PMID: 36658458 PMCID: PMC9546446 DOI: 10.1523/jneurosci.2331-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 02/02/2023] Open
Abstract
Action potential (AP) shape is a critical electrophysiological parameter, in particular because it strongly modulates neurotransmitter release. As it greatly varies between neuronal types, AP shape is also used to distinguish neuronal populations. For instance, AP duration ranges from hundreds of microseconds in cerebellar granule cells to 2-3 ms in SNc dopaminergic (DA) neurons. While most of this variation across cell types seems to arise from differences in the voltage- and calcium-gated ion channels expressed, a few studies suggested that dendritic morphology also affects AP shape. AP duration also displays significant variability in a same neuronal type, although the determinants of these variations are poorly known. Using electrophysiological recordings, morphological reconstructions, and realistic Hodgkin-Huxley modeling, we investigated the relationships between dendritic morphology and AP shape in rat SNc DA neurons from both sexes. In this neuronal type where the axon arises from an axon-bearing dendrite (ABD), the duration of the somatic AP could be predicted from a linear combination of the ABD and non-ABDs' complexities. Dendrotomy experiments and simulation showed that these correlations arise from the causal influence of dendritic topology on AP duration, due in particular to a high density of sodium channels in the somatodendritic compartment. Surprisingly, computational modeling suggested that this effect arises from the influence of sodium currents on the decaying phase of the AP. Consistent with previous findings, these results demonstrate that dendritic morphology plays a major role in defining the electrophysiological properties of SNc DA neurons and their cell-to-cell variations.SIGNIFICANCE STATEMENT Action potential (AP) shape is a critical electrophysiological parameter, in particular because it strongly modulates neurotransmitter release. AP shape (e.g., duration) greatly varies between neuronal types but also within a same neuronal type. While differences in ion channel expression seem to explain most of AP shape variation across cell types, the determinants of cell-to-cell variations in a same neuronal type are mostly unknown. We used electrophysiological recordings, neuronal reconstruction, and modeling to show that, because of the presence of sodium channels in the somatodendritic compartment, a large part of cell-to-cell variations in somatic AP duration in substantia nigra pars compacta dopaminergic neurons is explained by variations in dendritic topology.
Collapse
Affiliation(s)
- Estelle Moubarak
- Unité Mixte de Recherche_S 1072, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Secteur Nord, Marseille, France 13015
| | - Yanis Inglebert
- Unité Mixte de Recherche_S 1072, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Secteur Nord, Marseille, France 13015
| | - Fabien Tell
- Unité Mixte de Recherche_S 1072, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Secteur Nord, Marseille, France 13015
| | - Jean-Marc Goaillard
- Unité Mixte de Recherche_S 1072, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Secteur Nord, Marseille, France 13015
| |
Collapse
|
47
|
Wang S, Yu Y, Wang X, Deng X, Ma J, Liu Z, Gu W, Sun D. Emerging evidence of genotype–phenotype associations of developmental and epileptic encephalopathy due to KCNC2 mutation: Identification of novel R405G. Front Mol Neurosci 2022; 15:950255. [PMID: 36090251 PMCID: PMC9453199 DOI: 10.3389/fnmol.2022.950255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) have high genetic heterogeneity, and DEE due to the potassium voltage-gated channel subfamily C member 2 (KCNC2) variant remains poorly understood, given the scarcity of related case studies. We report on two unrelated Chinese patients, an 11-year-old boy and a 5-year-old girl, diagnosed with global developmental delay (GDD), intellectual disability (ID), and focal impaired awareness seizure characterized by generalized spike and wave complexes on electroencephalogram (EEG) in the absence of significant brain lesions. Whole-exome sequencing (WES) and electrophysiological analysis were performed to detect genetic variants and evaluate functional changes of the mutant KCNC2, respectively. Importantly, we identified a novel gain-of-function KCNC2 variant, R405G, in both patients. Previously reported variants, V471L, R351K, T437A, and T437N, and novel R405G were found in multiple unrelated patients with DEE, showing consistent genotype–phenotype associations. These findings emphasize that the KCNC2 gene is causative for DEE and facilitates treatment and prognosis in patients with DEE due to KCNC2 mutations.
Collapse
Affiliation(s)
- Sumei Wang
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yejing Yu
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Wang
- Department of Neurology, Changchun Children’s Hospital, Changchun, China
| | - Xiaolong Deng
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiehui Ma
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhisheng Liu
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center Co. Ltd., Beijing, China
| | - Dan Sun
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dan Sun,
| |
Collapse
|
48
|
McCullagh EA, Peacock J, Lucas A, Poleg S, Greene NT, Gaut A, Lagestee S, Zhang Y, Kaczmarek LK, Park TJ, Tollin DJ, Klug A. Auditory brainstem development of naked mole-rats ( Heterocephalus glaber). Proc Biol Sci 2022; 289:20220878. [PMID: 35946148 PMCID: PMC9363996 DOI: 10.1098/rspb.2022.0878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/15/2022] [Indexed: 01/12/2023] Open
Abstract
Life underground often leads to animals having specialized auditory systems to accommodate the constraints of acoustic transmission in tunnels. Despite living underground, naked mole-rats use a highly vocal communication system, implying that they rely on central auditory processing. However, little is known about these animals' central auditory system, and whether it follows a similar developmental time course as other rodents. Naked mole-rats show slowed development in the hippocampus suggesting they have altered brain development compared to other rodents. Here, we measured morphological characteristics and voltage-gated potassium channel Kv3.3 expression and protein levels at different key developmental time points (postnatal days 9, 14, 21 and adulthood) to determine whether the auditory brainstem (lateral superior olive and medial nucleus of the trapezoid body) develops similarly to two common auditory rodent model species: gerbils and mice. Additionally, we measured the hearing onset of naked mole-rats using auditory brainstem response recordings at the same developmental timepoints. In contrast with other work in naked mole-rats showing that they are highly divergent in many aspects of their physiology, we show that naked mole-rats have a similar hearing onset, between postnatal day (P) 9 and P14, to many other rodents. On the other hand, we show some developmental differences, such as a unique morphology and Kv3.3 protein levels in the brainstem.
Collapse
Affiliation(s)
| | - John Peacock
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Lucas
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shani Poleg
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nathaniel T. Greene
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Addison Gaut
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Samantha Lagestee
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Yalan Zhang
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Leonard K. Kaczmarek
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Thomas J. Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Daniel J. Tollin
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
49
|
A missense mutation in Kcnc3 causes hippocampal learning deficits in mice. Proc Natl Acad Sci U S A 2022; 119:e2204901119. [PMID: 35881790 PMCID: PMC9351536 DOI: 10.1073/pnas.2204901119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although a wide variety of genetic tools has been developed to study learning and memory, the molecular basis of memory encoding remains incompletely understood. Here, we undertook an unbiased approach to identify novel genes critical for memory encoding. From a large-scale, in vivo mutagenesis screen using contextual fear conditioning, we isolated in mice a mutant, named Clueless, with spatial learning deficits. A causative missense mutation (G434V) was found in the voltage-gated potassium channel, subfamily C member 3 (Kcnc3) gene in a region that encodes a transmembrane voltage sensor. Generation of a Kcnc3G434V CRISPR mutant mouse confirmed this mutation as the cause of the learning defects. While G434V had no effect on transcription, translation, or trafficking of the channel, electrophysiological analysis of the G434V mutant channel revealed a complete loss of voltage-gated conductance, a broadening of the action potential, and decreased neuronal firing. Together, our findings have revealed a role for Kcnc3 in learning and memory.
Collapse
|
50
|
Saccadic premotor burst neurons and histochemical correlates of their firing patterns in rhesus monkey. J Neurol Sci 2022; 439:120328. [DOI: 10.1016/j.jns.2022.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022]
|