1
|
Shentu W, Kong Q, Zhang Y, Li W, Chen Q, Yan S, Wang J, Lai Q, Xu Q, Qiao S. Functional abnormalities of the glymphatic system in cognitive disorders. Neural Regen Res 2025; 20:3430-3447. [PMID: 39820293 PMCID: PMC11974647 DOI: 10.4103/nrr.nrr-d-24-01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 01/19/2025] Open
Abstract
Various pathological mechanisms represent distinct therapeutic targets for cognitive disorders, but a balance between clearance and production is essential for maintaining the stability of the brain's internal environment. Thus, the glymphatic system may represent a common pathway by which to address cognitive disorders. Using the established model of the glymphatic system as our foundation, this review disentangles and analyzes the components of its clearance mechanism, including the initial inflow of cerebrospinal fluid, the mixing of cerebrospinal fluid with interstitial fluid, and the outflow of the mixed fluid and the clearance. Each section summarizes evidence from experimental animal models and human studies, highlighting the normal physiological properties of key structures alongside their pathological manifestations in cognitive disorders. The same pathologic manifestations of different cognitive disorders appearing in the glymphatic system and the same upstream influences are main points of interest of this review. We conclude this article by discussing new findings and outlining the limitations identified in current research progress.
Collapse
Affiliation(s)
- Wuyue Shentu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qi Kong
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Yier Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Wenyao Li
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qiulu Chen
- Department of Neurology, Zhejiang Medical & Health Group Hangzhou Hospital, Hangzhou, Zhejiang Province, China
| | - Sicheng Yan
- Department of Neurology, Liuzhou People’s Hospital, Liuzhou, Guangxi Zhuang Autonomous Region, China
| | - Junjun Wang
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Qilun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Qi Xu
- Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Song Qiao
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Li Y, Lin S, Guo Z, Liang Q, Zhang Y, Lin X, Chen S, Wei F, Zhu L, Li S, Qiu Y. Decoupling of global signal and cerebrospinal fluid inflow is associated with cognitive decline in patients with obstructive sleep apnoea. Sleep Med 2025; 129:330-338. [PMID: 40088762 DOI: 10.1016/j.sleep.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
OBJECTIVES The role of cortical glymphatic dysfunction in the cognitive impairment of the obstructive sleep apnea (OSA) requires further study. To compare the coupling between the resting-state blood-oxygen-level-dependent (BOLD) signals and cerebrospinal fluid (CSF) signals (BOLD-CSF coupling), a proxy for the cortical glymphatic function, across patients with differing severities of OSA and relate them with disease characteristics and treatment. METHODS A total of 153 participants (89 OSA patients and 64 matched controls) were prospectively included. OSA patients were classified into three groups (mild, moderate, and severe OSA) according to the apnea-hypopnea index (AHI). All participants underwent neuropsychological assessment and BOLD functional magnetic resonance imaging. BOLD-CSF coupling was assessed at global and regional levels and correlated with the cognitive impairment. Alterations in BOLD-CSF coupling and cognitive performance after treatment were assessed in OSA patients. RESULT Severe OSA patients exhibited weaker global and anterior BOLD-CSF coupling than mild OSA patients, moderate OSA patients, and healthy controls (HCs). Furthermore, the weaker global and anterior BOLD-CSF coupling was associated with poor cognitive performance in all OSA patients. Notably, cognitive performance and cortical glymphatic function improved significantly in patients with OSA after treatment. CONCLUSION Our findings demonstrated cortical glymphatic dysfunction in severe OSA patients, especially in the anterior region of the brain. Cortical glymphatic dysfunction may underlie the cognitive impairment in OSA patients, both of which would improve in OSA patients after treatment.
Collapse
Affiliation(s)
- Ying Li
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750000, China; Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Zheng Guo
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, 518000, China
| | - Qunjun Liang
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Yanyu Zhang
- Department of Radiology, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Xiaoshan Lin
- Department of Radiology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523000, China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Fajian Wei
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Li Zhu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750000, China.
| | - Shuo Li
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China; Prevention and Control Center, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China.
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China.
| |
Collapse
|
3
|
Massoud AT, Noltensmeyer DA, Juranek J, Cox CS, Velasquez FC, Zhu B, Sevick-Muraca EM, Shah MN. Insights into the Role of the Glymphatic System in the Pathogenesis of Post-hemorrhagic Hydrocephalus. Mol Neurobiol 2025; 62:6537-6543. [PMID: 39821726 PMCID: PMC11952971 DOI: 10.1007/s12035-025-04692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Recently, it has been well-established that the glymphatic or glial-lymphatic system plays a vital role in the pathophysiology of various neurological compromise, especially hydrocephalus (HCP). Till now, the complete pathway is not yet fully understood, and little evidence is available from the literature that links hydrocephalus to disorders of the glymphatic system. Most published molecular studies and animal research have shown that, in models with hydrocephalus, the drainage of cerebrospinal fluid (CSF) via the glymphatic system is disrupted. This is strongly observed in normal pressure and post-hemorrhagic hydrocephalus cases. A thorough search of the literature to date yields scarce evidence on studies conducted on humans. Despite major similarities between non-human and human glymphatic pathways, the need for studies conducted on humans is becoming more urgent as the glymphatic pathway has been shown to be a good candidate for therapeutic intervention. In this review, we collect and report the most updated evidence addressing the glymphatic drainage pathways and their associations with the development of various types of hydrocephalus. In addition, we reveal the current scientific gap in human studies and our recommendations for the conduction of future clinical studies.
Collapse
Affiliation(s)
- Ahmed T Massoud
- Department of Pediatric Surgery, Division of Neurosurgery, McGovern Medical School at UTHealth, Houston, TX, USA.
- Department of Neurosurgery, McGovern Medical School, UTHealth Houston, Houston, TX, USA.
| | - Dillon A Noltensmeyer
- Department of Neurosurgery, McGovern Medical School, UTHealth Houston, Houston, TX, USA
| | - Jenifer Juranek
- Department of Pediatric Surgery, Division of Neurosurgery, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Charles S Cox
- Department of Pediatric Surgery, Division of Neurosurgery, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Fred Christian Velasquez
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Banghe Zhu
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Eva M Sevick-Muraca
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Manish N Shah
- Department of Pediatric Surgery, Division of Neurosurgery, McGovern Medical School at UTHealth, Houston, TX, USA
- Department of Neurosurgery, McGovern Medical School, UTHealth Houston, Houston, TX, USA
| |
Collapse
|
4
|
McGee Talkington G, Ouvrier B, White AL, Hall G, Umar M, Bix GJ. Imaging Interstitial Fluids and Extracellular Matrix in Cerebrovascular Disorders: Current Perspectives and Clinical Applications. Neuroimaging Clin N Am 2025; 35:181-189. [PMID: 40210376 PMCID: PMC11995915 DOI: 10.1016/j.nic.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
This article provides a comprehensive review of current neuroimaging techniques for visualizing and quantifying extracellular matrix (ECM) components and interstitial fluid (ISF) dynamics in cerebrovascular disorders. It examines how alterations in ECM composition and ISF movement patterns correlate with various cerebrovascular pathologies, including ischemic stroke, frontotemporal dementia, cerebral small vessel disease, Alzhheimer's disease, and vascular dementia. The review emphasizes novel imaging markers specific to ECM/ISF alterations and their utility in differentiating various cerebrovascular pathologies. Special attention is given to the clinical applications of these imaging techniques for early disease detection, monitoring progression, and guiding therapeutic interventions.
Collapse
Affiliation(s)
- Grant McGee Talkington
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA.
| | - Blake Ouvrier
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Amanda Louise White
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gregory Hall
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Meenakshi Umar
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gregory Jaye Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Ashenagar B, Gomez DEP, Lewis LD. Modeling dynamic inflow effects in fMRI to quantify cerebrospinal fluid flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647027. [PMID: 40236215 PMCID: PMC11996551 DOI: 10.1101/2025.04.03.647027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Cerebrospinal fluid (CSF) flow in the brain is tightly regulated and essential for brain health, and imaging techniques are needed to quantitatively establish the properties of this flow system. Flow-sensitive fMRI has recently emerged as a tool to measure large scale CSF flow dynamics with high sensitivity and temporal resolution; however, the measured signal is not quantitative. Here, we developed a dynamic model to simulate and infer time-varying flow velocities from fMRI data. We validated the model in both human and phantom data, and used it to identify important properties of the fMRI inflow signal that inform how the signal should be interpreted. Additionally, we developed a physics-based deep learning framework to invert the model, which enables direct estimation of velocity using fMRI inflow data. This work allows new quantitative information to be obtained from fMRI, which will enable neuroimaging researchers to take advantage of the high sensitivity, high temporal resolution, and wide availability of fMRI to obtain flow signals that are physically interpretable.
Collapse
|
6
|
Li E, Niu W, Lu C, Wang M, Xu X, Xu K, Xu P. Interoception and aging. Ageing Res Rev 2025; 108:102743. [PMID: 40188990 DOI: 10.1016/j.arr.2025.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/04/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Interoception refers to the body's perception and regulation of internal physiological states and involves complex neural mechanisms and sensory systems. The current definition of interoception falls short of capturing the breadth of related research; here, we propose an updated definition. Homeostasis, a foundational principle of integrated physiology, is the process by which organisms dynamically maintain optimal balance across all conditions through neural, endocrine, and behavioral functions. This review examines the role of interoception in body homeostasis. Aging is a complex process influenced by multiple factors and involving multiple levels, including physical, psychological, and cognitive. However, interoceptive and aging interoceptive interactions are lacking. A new perspective on interoception and aging holds significant implications for understanding how aging regulates interoception and how interoception affects the aging process. Finally, we summarize that arachidonic acid metabolites show promise as biomarkers of interoception-aging. The aim of this study is to comprehensively analyze interoceptive-aging interactions, understand the aging mechanism from a novel perspective, and provide a theoretical basis for exploring anti-aging strategies.
Collapse
Affiliation(s)
- Erliang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an 710000, China.
| | - Wenjing Niu
- Changlefang Community Health Service Center, Xi'an 710000, China
| | - Chao Lu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China
| | - Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an 710000, China
| | - Xin Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China
| | - Ke Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China.
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an 710000, China.
| |
Collapse
|
7
|
Rzepliński R, Proulx ST, Tarka S, Stępień T, Ciszek B. CSF outflow from the human spinal canal: preliminary results from an anatomical specimen-based model. Fluids Barriers CNS 2025; 22:32. [PMID: 40176136 PMCID: PMC11963703 DOI: 10.1186/s12987-025-00645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Recent discoveries focused on the role of cerebrospinal fluid (CSF) in metabolite clearance have initiated intense research on CSF circulation and outflow pathways. These studies have focused on the cranial subarachnoid space, whereas spinal outflow has been relatively less investigated. Moreover, most studies have been performed on rodent models, which allows thorough anatomical investigation, whereas evidence from humans has been generated primarily from in vivo neuroimaging techniques. In this paper, we introduce an anatomical specimen-based preparation for studying spinal CSF outflow in humans and present preliminary results from our initial studies. METHODS Unfixed anatomical specimens of the thoracolumbar spinal dural sac along with the spinal nerves were obtained from cadavers. Experiments involving low-pressure infusion of contrast medium (barium sulfate) into the spinal subarachnoid space with video recording of contrast spread were performed. After fixation, contrast agent distribution of the samples was assessed via histological and radiological analyses including 3D X-ray microscopy. RESULTS Five human anatomical specimens of the dural sac were assessed. Filling of spaces extending to the spinal dura (arachnoid granulations, cuffs around the proximal spinal nerves) and unrestricted outflow from postganglionic spinal nerve cross-sections were both observed. Histological and radiological results confirmed the presence of contrast around the spinal nerve fascicles under the perineurium, in the arachnoid granulations and within the lumens of vessels within the dura or in the surrounding epidural adipose tissue. CONCLUSIONS The described model makes it possible to examine CSF outflow routes from the human spinal subarachnoid space. The methodology is reproducible, feasible, and does not require specialized equipment. Preliminary results have revealed two potential CSF outflow pathways that have been previously observed in animal models: along the spinal nerves and to the epidural tissue and vessels.
Collapse
Affiliation(s)
- Radosław Rzepliński
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland.
- First Department of Anesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, Poland.
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Sylwia Tarka
- Department of Neuropathology, Institute of Psychiatry and Neurology, Warsaw, Poland
- Department of Forensic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Stępień
- Department of Neuropathology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Bogdan Ciszek
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland
- Department of Pediatric Neurosurgery, Bogdanowicz Memorial Hospital for Children, Warsaw, Poland
| |
Collapse
|
8
|
Lawrence AB, Brown SM, Bradford BM, Mabbott NA, Bombail V, Rutherford KMD. Non-neuronal brain biology and its relevance to animal welfare. Neurosci Biobehav Rev 2025:106136. [PMID: 40185375 DOI: 10.1016/j.neubiorev.2025.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Non-neuronal cells constitute a significant portion of brain tissue and are seen as having key roles in brain homeostasis and responses to challenges. This review illustrates how non-neuronal biology can bring new perspectives to animal welfare through understanding mechanisms that determine welfare outcomes and highlighting interventions to improve welfare. Most obvious in this respect is the largely unrecognised relevance of neuroinflammation to animal welfare which is increasingly found to have roles in determining how animals respond to challenges. We start by introducing non-neuronal cells and review their involvement in affective states and cognition often seen as core psychological elements of animal welfare. We find that the evidence for a causal involvement of glia in cognition is currently more advanced than the corresponding evidence for affective states. We propose that translational research on affective disorders could usefully apply welfare science derived approaches for assessing affective states. Using evidence from translational research, we illustrate the involvement of non-neuronal cells and neuroinflammatory processes as mechanisms modulating resilience to welfare challenges including disease, pain, and social stress. We review research on impoverished environments and environmental enrichment which suggests that environmental conditions which improve animal welfare also improve resilience to challenges through balancing pro- and anti-inflammatory non-neuronal processes. We speculate that non-neuronal biology has relevance to animal welfare beyond neuro-inflammation including facilitating positive affective states. We acknowledge the relevance of neuronal biology to animal welfare whilst proposing that non-neuronal biology provides additional and relevant insights to improve animals' lives.
Collapse
Affiliation(s)
- Alistair B Lawrence
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; Scotland's Rural College (SRUC), Edinburgh, EH9 3JG, UK.
| | - Sarah M Brown
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Barry M Bradford
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Neil A Mabbott
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | | | | |
Collapse
|
9
|
Tian A, Bhattacharya A, Muffat J, Li Y. Expanding the neuroimmune research toolkit with in vivo brain organoid technologies. Dis Model Mech 2025; 18:dmm052200. [PMID: 40231345 DOI: 10.1242/dmm.052200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Human pluripotent stem cell-derived microglia-like cells (MLCs) and brain organoid systems have revolutionized the study of neuroimmune interactions, providing new opportunities to model human-specific brain development and disease. Over the past decade, advances in protocol design have improved the fidelity, reproducibility and scalability of MLC and brain organoid generation. Co-culturing of MLCs and brain organoids have enabled direct investigations of human microglial interactions in vitro, although opportunities remain to improve microglial maturation and long-term survival. To address these limitations, innovative xenotransplantation approaches have introduced MLCs, organoids or neuroimmune organoids into the rodent brain, providing a vascularized environment that supports prolonged development and potential behavioral readouts. These expanding in vitro and in vivo toolkits offer complementary strategies to study neuroimmune interactions in health and disease. In this Perspective, we discuss the strengths, limitations and synergies of these models, highlighting important considerations for their future applications.
Collapse
Affiliation(s)
- Ai Tian
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Afrin Bhattacharya
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Yun Li
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
10
|
Wu C, Yuan J, Tian Y, Wang Y, He X, Zhao K, Huang J, Jiang R. Tauopathy after long-term cervical lymphadenectomy. Alzheimers Dement 2025; 21:e70136. [PMID: 40189841 PMCID: PMC11973124 DOI: 10.1002/alz.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION This study examined the effects of long-term cervical lymphadenectomy (cLE) on cognitive and Alzheimer's disease (AD)-like tauopathy changes. METHODS Male C57BL/6 mice were used to assess cLE impacts on sleep, brain pathways, and pathologies. RNA sequencing and proteomics analyzed gene/protein changes, with results verified by western blotting and immunofluorescence. RESULTS CLE led to sleep and psychiatric disorders, linked to mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) pathway activation. Activation of ERK may interfere with autophagy and is associated with phosphorylated tau accumulation. Peripheral blood analysis shows decreased brain waste in the peripheral blood post-cLE, implicating impaired lymphatic drainage and brain waste build-up. DISCUSSION These findings suggest a potential connection between cLE and AD-like tauopathy, potentially influencing surgical decisions. HIGHLIGHTS Cervical lymphadenectomy (cLE) is the cornerstone of head and neck cancers, affecting millions of people each year. We provide the first evidence of mildly impaired cognitive functioning with significant anxiety-depressive disorders in mice after long-term cLE. Long-term cLE not only directly impairs brain wastes (amyloid beta, phosphorylated tau [p-tau]) drainage, but also activates the Erk1/2 signaling pathway leading to attenuation of autophagy. We found for the first time that long-term cLE accelerated the deposition of p-tau in young mice. Patients after clinical cervical lymph node dissection showed reduced brain waste in peripheral blood consistent with mouse models. This study suggests the need for further evaluation of the neurologic effects of cervical lymph node dissection, a procedure that affects millions of people each year.
Collapse
Affiliation(s)
- Chenrui Wu
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
- Department of NeurosurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jiangyuan Yuan
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
| | - Yu Tian
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
| | - Youlin Wang
- Department of General SurgeryTianjin Medical University General HospitalTianjinChina
| | - Xianghui He
- Department of General SurgeryTianjin Medical University General HospitalTianjinChina
| | - Ke Zhao
- Department of General SurgeryTianjin Medical University General HospitalTianjinChina
| | - Jinhao Huang
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
| | - Rongcai Jiang
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Alipour M, Rausch J, Mednick SC, Cook JD, Plante DT, Malerba P. The Space-Time Organisation of Sleep Slow Oscillations as Potential Biomarker for Hypersomnolence. J Sleep Res 2025:e70059. [PMID: 40170232 DOI: 10.1111/jsr.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/21/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Research suggests that the spatial profile of slow wave activity (SWA) could be altered in hypersomnolence. Slow oscillations (SOs; 0.5-1.5 Hz), single waveform events contributing to SWA, can be labelled as Global, Frontal, or Local depending on their presentation on the scalp. We showed that SO space-time types differentiate in their amplitudes, coordination with sleep spindles, and propagation patterns. This study applies our data-driven analysis to the nocturnal sleep of adults with and without hypersomnolence and major depressive disorder (MDD) to explore the potential relevance of SO space-time patterns as hypersomnolence signatures in the sleep EEG. We leverage an existing dataset of nocturnal polysomnography with high-density EEG in 83 adults, organised in four groups depending on the presence/absence of hypersomnolence and on the presence/absence of MDD. Group comparisons were conducted considering either two groups (hypersomnolence status) or the four groups separately. Data shows enhanced Frontal SO activity compared with Global activity in hypersomnolence, with or without MDD, and a loss of Global SO amplitude at central regions in hypersomnolence without MDD compared to controls. As Global SOs travel fronto-parietally, we interpret these results as likely driven by a loss of coordination of Global SO activity in hypersomnolence without MDD, resulting in an overabundance of Frontal SOs. This study suggests that characteristics of Frontal SO and Global SOs may have the potential to differentiate individuals with hypersomnolence without MDD, and that the space-time organisation of SOs could be a mechanistically relevant indicator of changes in sleep brain dynamics related to hypersomnolence.
Collapse
Affiliation(s)
- Mahmoud Alipour
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- The Ohio State University, College of Medicine, Columbus, Ohio, USA
| | - Joseph Rausch
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- The Ohio State University, College of Medicine, Columbus, Ohio, USA
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine, California, USA
| | - Jesse D Cook
- Department of Psychiatry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David T Plante
- Department of Psychiatry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paola Malerba
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- The Ohio State University, College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
12
|
Duyvesteyn E, Vizcarra VS, Waight E, Balbuena E, Hablitz LM. Biological Fluid Flows: Signaling Mediums for Circadian Timing. J Biol Rhythms 2025:7487304251323318. [PMID: 40145493 DOI: 10.1177/07487304251323318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
While there is extensive literature on both the neuronal circuitry of rhythms and the intracellular molecular clock, there is a large component of signaling that has been understudied: interstitial fluid (ISF)-fluid that surrounds the cells in the extracellular space of tissue. In this review, we highlight evidence in the circadian literature supporting ISF signaling as key to circadian synchronization and entrainment and propose new mechanisms of how fluid movement between the brain and periphery may act as zeitgebers by examining the main ISF pathways of the body, focusing on circadian regulation of the glymphatic and lymphatic systems. We identify key pieces of circadian research that point to ISF as an important timing medium, expand on the basics of cerebrospinal fluid (CSF) and ISF production, and outline the basic structure and function of the glymphatic and lymphatic systems.
Collapse
Affiliation(s)
- Evalien Duyvesteyn
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Velia S Vizcarra
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Emma Waight
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Estephanie Balbuena
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
13
|
Wang Y, Zhou L, Wang N, Qiu B, Yao D, Yu J, He M, Li T, Xie Y, Yu X, Bi Z, Sun X, Ji X, Li Z, Mo D, Ge WP. Comprehensive characterization of metabolic consumption and production by the human brain. Neuron 2025:S0896-6273(25)00175-8. [PMID: 40147438 DOI: 10.1016/j.neuron.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 12/06/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Metabolism is vital for brain function. However, a systematic investigation to understand the metabolic exchange between the human brain and circulatory system has been lacking. Here, we compared metabolomes and lipidomes of blood samples from the cerebral venous sinus and femoral artery to profile the brain's uptake and release of metabolites and lipids (1,365 metabolites and 140 lipids). We observed a high net uptake of glucose, taurine, and hypoxanthine and identified glutamine and pyruvate as significantly released metabolites by the brain. Triacylglycerols are the most prominent class of lipid consumed by the brain. The brain with cerebral venous sinus stenosis (CVSS) consumed more glucose and lactate and released more glucose metabolism byproducts than the brain with cerebral venous sinus thrombosis (CVST). Our data also showed age-related alterations in the uptake and release of metabolites. These results provide a comprehensive view of metabolic consumption and production processes within the human brain.
Collapse
Affiliation(s)
- Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, School of Basic Medical Sciences, Capital Medical University, Beijing 100070, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China; China National Clinical Research Center for Neurological Diseases, National Center for Neurological Disorders, Beijing 100070, China.
| | - Lebo Zhou
- Department of Neurology, Beijing Tiantan Hospital, School of Basic Medical Sciences, Capital Medical University, Beijing 100070, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Nan Wang
- Department of Neurology, Beijing Tiantan Hospital, School of Basic Medical Sciences, Capital Medical University, Beijing 100070, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Baoshan Qiu
- Department of Neurology, Beijing Tiantan Hospital, School of Basic Medical Sciences, Capital Medical University, Beijing 100070, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Di Yao
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Jie Yu
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Miaoqing He
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
| | - Tong Li
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Yufeng Xie
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Department of Biochemistry and Molecular Biology, Peking Union Medical College, Beijing 100730, China; Changping Laboratory, Beijing 102206, China
| | - Xiaoqian Yu
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Zhanying Bi
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiangli Sun
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
| | - Dapeng Mo
- Department of Neurology, Beijing Tiantan Hospital, School of Basic Medical Sciences, Capital Medical University, Beijing 100070, China; Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Changping Laboratory, Beijing 102206, China; Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
14
|
Keshari R, Dewani M, Kaur N, Patel GK, Singh SK, Chandra P, Prasad R, Srivastava R. Lipid Nanocarriers as Precision Delivery Systems for Brain Tumors. Bioconjug Chem 2025; 36:347-366. [PMID: 39937652 DOI: 10.1021/acs.bioconjchem.5c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Brain tumors, particularly glioblastomas, represent the most complicated cancers to treat and manage due to their highly invasive nature and the protective barriers of the brain, including the blood-brain barrier (BBB). The efficacy of currently available treatments, viz., radiotherapy, chemotherapy, and immunotherapy, are frequently limited by major side effects, drug resistance, and restricted drug penetration into the brain. Lipid nanoparticles (LNPs) have emerged as a promising and targeted delivery system for brain tumors. Lipid nanocarriers have gained tremendous attention for brain tumor therapeutics due to multiple drug encapsulation abilities, controlled release, better biocompatibility, and ability to cross the BBB. Herein, a detailed analysis of the design, mechanisms, and therapeutic benefits of LNPs in brain tumor treatment is discussed. Moreover, we also discuss the safety issues and clinical developments of LNPs and their current and future challenges. Further, we also focused on the clinical transformation of LNPs in brain tumor therapy by eliminating side effects and engineering the LNPs to overcome the related biological barriers, which provide personalized, affordable, and low-risk treatment options.
Collapse
Affiliation(s)
- Roshan Keshari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mahima Dewani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Navneet Kaur
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Girijesh Kumar Patel
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India-211004
| | - Sumit Kumar Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
15
|
Sánchez-Benavides G, Iranzo A, Grau-Rivera O, Giraldo DM, Buongiorno M. Olfactory Dysfunction as a Clinical Marker of Early Glymphatic Failure in Neurodegenerative Diseases. Diagnostics (Basel) 2025; 15:719. [PMID: 40150062 PMCID: PMC11941644 DOI: 10.3390/diagnostics15060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
An abnormal accumulation of misfolded proteins is a common feature shared by most neurodegenerative disorders. Olfactory dysfunction (OD) is common in the elderly population and is present in 90% of patients with Alzheimer's or Parkinson's disease, usually preceding the cognitive and motor symptoms onset by several years. Early Aβ, tau, and α-synuclein protein aggregates deposit in brain structures involved in odor processing (olfactory bulb and tract, piriform cortex, amygdala, entorhinal cortex, and hippocampus) and seem to underly OD. The glymphatic system is a glial-associated fluid transport system that facilitates the movement of brain fluids and removes brain waste during specific sleep stages. Notably, the glymphatic system became less functional in aging and it is impaired in several conditions, including neurodegenerative diseases. As the nasal pathway has been recently described as the main outflow exit of cerebrospinal fluid and solutes, we hypothesized that OD may indeed be a clinical marker of early glymphatic dysfunction through abnormal accumulation of pathological proteins in olfactory structures. This effect may be more pronounced in peri- and postmenopausal women due to the well-documented impact of estrogen loss on the locus coeruleus, which may disrupt multiple mechanisms involved in glymphatic clearance. If this hypothesis is confirmed, olfactory dysfunction might be considered as a clinical proxy of glymphatic failure in neurodegenerative diseases.
Collapse
Affiliation(s)
- Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (G.S.-B.); (O.G.-R.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
| | - Alex Iranzo
- Sleep Disorders Center, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, 28031 Madrid, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (G.S.-B.); (O.G.-R.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
| | - Darly Milena Giraldo
- Neurology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
- Neurovascular Diseases Research Group, Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Mariateresa Buongiorno
- Neurology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
- Neurovascular Diseases Research Group, Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| |
Collapse
|
16
|
Barakat R, Al-Sarraf H, Redzic Z. Hypoxemia exerts detrimental effects on the choroid plexuses and cerebrospinal fluid system in rats. Fluids Barriers CNS 2025; 22:27. [PMID: 40075475 PMCID: PMC11905537 DOI: 10.1186/s12987-024-00613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/20/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Hypoxemia can cause secondary acute brain injury, but the mechanisms behind it are not entirely clear and could involve disturbances in the brain extracellular fluids. We aimed to explore the effects of hypoxemia on the choroid plexus (CPs) and cerebrospinal fluid (CSF) system in rats. METHODS Male Sprague Dawley rats were kept in O2 control in vivo cabinet with either 21% (normoxia) or 8% O2 (hypoxemia) for up to 48 h. In some cases, signaling of selected cytokines was inhibited prior to hypoxemia. CSF and blood samples were collected by Cisterna Magna puncture and through venous catheters, respectively. The percentages of dead cells in the CPs and ependymal layers (EL) after hypoxemia or normoxia was estimated using TUNEL staining. CP's ultrastructure was analyzed by transmission electron microscopy. Protein concentration in the CSF and plasma was measured and the CSF albumin-to-total protein ratios were estimated. Concentrations of hypoxia-related cytokines in the CSF and plasma samples were estimated using the multiplex immunoassay. Data was analyzed by one-way ANOVA followed by either Bonferroni or Tukey's multiple comparison tests, or Student's t-test. Results are presented as mean ± SD; p < 0.05 was considered statistically significant. RESULTS Duration of hypoxemia exerted significant effects on the cell viability in the CPs (p < 0.01) and EL (p < 0.01) and caused apoptosis-related changes in the CP. Hypoxemia had significant effects on the protein concentration in the CSF (p < 0.05), but not in plasma (p > 0.05), with a significant increase in the CSF albumin-to-total protein ratio after 6 h hypoxemia (p < 0.05). Thirty-two cytokines were detected in the CSF. Hypoxemia caused a statistically significant reduction in the concentrations of 12 cytokines, while concentrations of erythropoietin (EPO) and vascular endothelial growth factor (VEGF) increased significantly. Exposure to hypoxemia after inhibitions of EPO, VEGF, or tumor necrosis factor alpha (TNFα) signaling resulted in more dead cells (p < 0.01), less dead cells (p < 0.01) and more dead cells (p < 0.01) in the CPs, respectively, when compared to the number of dead cells when these cytokines were not inhibited. The density of macrophages in the CPs decreased significantly during hypoxemia; that effect was cancelled out by TNFα inhibition. CONCLUSION Hypoxemia had detrimental effects on the CPs and CSF system, which was modulated by hypoxia- and inflammation-related cytokines.
Collapse
Affiliation(s)
- Rawan Barakat
- Department of Physiology, College of Medicine, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait
| | - Hameed Al-Sarraf
- Department of Physiology, College of Medicine, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait
| | - Zoran Redzic
- Department of Physiology, College of Medicine, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait.
| |
Collapse
|
17
|
Kritsilis M, Vanherle L, Rosenholm M, in ‘t Zandt R, Yao Y, Swanberg KM, Weikop P, Gottschalk M, Shanbhag NC, Luo J, Boster K, Nedergaard M, Meissner A, Lundgaard I. Loss of glymphatic homeostasis in heart failure. Brain 2025; 148:985-1000. [PMID: 39693238 PMCID: PMC11884761 DOI: 10.1093/brain/awae411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/04/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Heart failure is associated with progressive reduction in cerebral blood flow and neurodegenerative changes leading to cognitive decline. The glymphatic system is crucial for the brain's waste removal, and its dysfunction is linked to neurodegeneration. In this study, we used a mouse model of heart failure, induced by myocardial infarction, to investigate the effects of heart failure with reduced ejection fraction on the brain's glymphatic function. Using dynamic contrast-enhanced MRI and high-resolution fluorescence microscopy, we found increased solute influx from the CSF spaces to the brain, i.e. glymphatic influx, at 12 weeks post-myocardial infarction. Two-photon microscopy revealed that cerebral arterial pulsatility, a major driver of the glymphatic system, was potentiated at this time point, and could explain this increase in glymphatic influx. However, clearance of proteins from the brain parenchyma did not increase proportionately with influx, while a relative increase in brain parenchyma volume was found at 12 weeks post-myocardial infarction, suggesting dysregulation of brain fluid dynamics. Additionally, our results showed a correlation between brain clearance and cerebral blood flow. These findings highlight the role of cerebral blood flow as a key regulator of the glymphatic system, suggesting its involvement in the development of brain disorders associated with reduced cerebral blood flow. This study paves the way for future investigations into the effects of cardiovascular diseases on the brain's clearance mechanisms, which may provide novel insights into the prevention and treatment of cognitive decline.
Collapse
Affiliation(s)
- Marios Kritsilis
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Lotte Vanherle
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Department of Physiology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Marko Rosenholm
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - René in ‘t Zandt
- Lund University Bioimaging Centre, Lund University, 22184 Lund, Sweden
| | - Yuan Yao
- Department of Computer Science, University of Rochester, Rochester, NY 14627, USA
| | - Kelley M Swanberg
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Pia Weikop
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Nagesh C Shanbhag
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Jiebo Luo
- Department of Computer Science, University of Rochester, Rochester, NY 14627, USA
| | - Kimberly Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14642, USA
| | - Anja Meissner
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Department of Physiology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
| |
Collapse
|
18
|
Jackson ON, Keenan TF, Nelson-Maney NP, Rommel SA, McLellan WA, Pabst DA, Costidis AM, Caron KM, Kernagis DN, Rotstein DS, Thayer VG, Harms CA, Piscitelli-Doshkov MA, Doshkov P, Schweikert LE, Yopak KE, Braun M, Tift MS. Meningeal Lymphatic and Glymphatic Structures in a Pelagic Delphinid ( Delphinus delphis). Animals (Basel) 2025; 15:729. [PMID: 40076012 PMCID: PMC11899484 DOI: 10.3390/ani15050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
The glymphatic system, an analog of the peripheral lymphatic system in the brain, and the meningeal lymphatic system are critical to central nervous system health. The glymphatic system functions to distribute cerebrospinal fluid and important compounds throughout the brain and to remove metabolic waste. The flow of cerebrospinal fluid through this system is affected by changes in cerebral blood flow, intracranial pressure, and vascular tone. Cetaceans experience profound cardiorespiratory alterations while diving that can directly affect cerebrospinal fluid and blood flow and, thus, glymphatic function. Our goal was to investigate glymphatic and lymphatic system structures, including perivascular spaces, aquaporin-4 water channels, meningeal lymphatic, and dural venous sinus vessels in the common dolphin (Delphinus delphis), using immunofluorescent labeling, histochemical staining, and postmortem computed tomography (CT) angiography. We highlight perivascular spaces and aquaporin-4 water channels surrounding blood vessels in the parenchyma and demonstrate evidence of meningeal lymphatic vessels and associated dural venous sinuses. These results demonstrate that common dolphins possess the key anatomical structures required for functional glymphatic and meningeal lymphatic systems. Future studies can build upon these anatomical discoveries to study the function and role of these systems in brain health in this species.
Collapse
Affiliation(s)
- Olivia N. Jackson
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
| | - Tiffany F. Keenan
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
| | - Nathan P. Nelson-Maney
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (N.P.N.-M.); (K.M.C.)
| | - Sentiel A. Rommel
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
| | - William A. McLellan
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
| | - D. Ann Pabst
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
| | - Alexander M. Costidis
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
- Marine Mammal Solutions LLC, Norfolk, VA 23502, USA
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (N.P.N.-M.); (K.M.C.)
| | - Dawn N. Kernagis
- DEEP, Bristol BS11 8AR, UK;
- Department of Neurosurgery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Victoria G. Thayer
- Center for Marine Science and Technologies, North Carolina State University, Morehead City, NC 28557, USA; (V.G.T.); (C.A.H.)
- North Carolina Marine Fisheries, Department of Environmental Quality, Morehead City, NC 28557, USA
| | - Craig A. Harms
- Center for Marine Science and Technologies, North Carolina State University, Morehead City, NC 28557, USA; (V.G.T.); (C.A.H.)
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Paul Doshkov
- Cape Hatteras National Seashore, Manteo, NC 27954, USA;
| | - Lorian E. Schweikert
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
| | - Kara E. Yopak
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
| | - Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
| |
Collapse
|
19
|
Jia G, Yang X, Yu Y, Li Y, Zhang Z, Tang X, Wang Q, Zheng H, Xiao Y, Li S, Wang Y. Quercetin carbon quantum dots: dual-target therapy for intracerebral hemorrhage in mice. Mol Brain 2025; 18:17. [PMID: 40033442 DOI: 10.1186/s13041-024-01159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/12/2024] [Indexed: 03/05/2025] Open
Abstract
Following intracerebral hemorrhage, mitigating oxidative stress and removing excess iron are critical strategies for reducing secondary brain injury and improving neurological outcomes. In vitro, we synthesized quercetin-ethylenediamine carbon quantum dots (QECQDs) with diameters of 2-11 nm and found that QECQDs effectively scavenge ABTS+· and DPPH· free radicals, defending HT22 cells against hemin-induced oxidative stress. In vivo, QECQDs predominantly accumulate in the pia mater, subarachnoid space, and dura mater after intrathecal injection. Compared to the ICH injury group, QECQDs treatment effectively improves cerebral blood flow, inhibits oxidative stress damage, and reduces neuron death. Importantly, QECQDs treatment reduced hemorrhage volume, alleviated edema, and improved neurological function. This lays a foundation for developing multi-target drugs for treating ICH.
Collapse
Affiliation(s)
- Guangyu Jia
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China
| | - Xinyu Yang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China
| | - Yamei Yu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China
| | - Yuanyuan Li
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China
| | - Zhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China
| | - Xiaolong Tang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China
| | - Qi Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China
| | - Heqing Zheng
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China
| | - Yao Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China.
| | - Shiyong Li
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China.
| | - Ye Wang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
20
|
Eide PK, Undseth RM, Pripp A, Lashkarivand A, Nedregaard B, Sletteberg R, Rønning PA, Sorteberg AG, Ringstad G, Valnes LM. Impact of Subarachnoid Hemorrhage on Human Glymphatic Function: A Time-Evolution Magnetic Resonance Imaging Study. Stroke 2025; 56:678-691. [PMID: 39781915 DOI: 10.1161/strokeaha.124.047739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is associated with significant mortality and morbidity. The impact of SAH on human glymphatic function remains unknown. METHODS This prospective, controlled study investigated whether human glymphatic function is altered after SAH, how it differs over time, and possible underlying mechanisms. Glymphatic enrichment was examined by intrathecal contrast-enhanced magnetic resonance imaging (MRI, glymphatic MRI), utilizing the MRI contrast agent gadobutrol (Gadovist, Bayer AG, GE; 0.50 mmol) as a cerebrospinal fluid (CSF) tracer. The distribution of the tracer in the brain and the subarachnoid and ventricular CSF spaces was assessed using standardized multi-phase MRI T1 sequences, and between-group differences in percentage change of standardized T1 signal unit ratios over time were analyzed by linear mixed models. RESULTS The study comprised 27 patients with SAH (19 female/8 male; 59.3±10.2 years) who were examined <3 months (n=5), 3 to 6 months (n=10), 6 to 12 months (n=5), or >12 months (n=7) after bleed. A sex- and age-matched control group of 22 individuals (15 female/7 male; 55.5±10.5 years) underwent the same glymphatic MRI protocol but had no neurological or CSF disease. The patients with SAH showed a marked impairment of glymphatic enrichment throughout the brain (particularly addressing the cerebral cortex and subcortical white matter), especially after 24 hours. The glymphatic impairment was accompanied by redistribution of CSF tracer from subarachnoid spaces toward ventricles. These alterations were most pronounced after 3 to 6 months and less after 12 months, though with interindividual variation. CSF tracer transport within perivascular subarachnoid spaces was impaired and coincided with impaired glymphatic enrichment. CONCLUSIONS Human glymphatic function is severely impaired by SAH, particularly shortly after the event. Glymphatic failure is associated with redistribution of CSF from subarachnoid spaces toward ventricles. SAH-related impairment of fluid transport within perivascular subarachnoid spaces may contribute to reduced glymphatic influx. Since patient groups are small, care should be made when concluding about the impact of time on glymphatic function.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Norway (P.K.E., A.L., P.A.R., A.G.S., L.M.V.)
- Institute of Clinical Medicine, Faculty of Medicine (P.K.E., A.L., A.G.S., G.R.), University of Oslo, Norway
- KG Jebsen Centre for Brain Fluid Research (P.K.E., G.R.), University of Oslo, Norway
| | | | - Are Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Norway (A.P.)
- Faculty of Health Sciences, Oslo Metropolitan University, Norway (A.P.)
| | - Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Norway (P.K.E., A.L., P.A.R., A.G.S., L.M.V.)
- Institute of Clinical Medicine, Faculty of Medicine (P.K.E., A.L., A.G.S., G.R.), University of Oslo, Norway
| | - Bård Nedregaard
- Department of Radiology (B.N., R.S., G.R.), Oslo University Hospital, Rikshospitalet, Norway
| | - Ruth Sletteberg
- Department of Radiology (B.N., R.S., G.R.), Oslo University Hospital, Rikshospitalet, Norway
| | - Pål Andre Rønning
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Norway (P.K.E., A.L., P.A.R., A.G.S., L.M.V.)
| | - Angelika G Sorteberg
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Norway (P.K.E., A.L., P.A.R., A.G.S., L.M.V.)
- Institute of Clinical Medicine, Faculty of Medicine (P.K.E., A.L., A.G.S., G.R.), University of Oslo, Norway
| | - Geir Ringstad
- Institute of Clinical Medicine, Faculty of Medicine (P.K.E., A.L., A.G.S., G.R.), University of Oslo, Norway
- KG Jebsen Centre for Brain Fluid Research (P.K.E., G.R.), University of Oslo, Norway
- Department of Radiology (B.N., R.S., G.R.), Oslo University Hospital, Rikshospitalet, Norway
- Department of Geriatrics and Internal medicine, Sorlandet Hospital, Arendal, Norway (G.R.)
| | - Lars Magnus Valnes
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Norway (P.K.E., A.L., P.A.R., A.G.S., L.M.V.)
- Department of Mathematics (L.M.V.), University of Oslo, Norway
| |
Collapse
|
21
|
Liu J, Wang T, Dong J, Lu Y. The blood-brain barriers: novel nanocarriers for central nervous system diseases. J Nanobiotechnology 2025; 23:146. [PMID: 40011926 DOI: 10.1186/s12951-025-03247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
The central nervous system (CNS) diseases are major contributors to death and disability worldwide. However, the blood-brain barrier (BBB) often prevents drugs intended for CNS diseases from effectively crossing into the brain parenchyma to deliver their therapeutic effects. The blood-brain barrier is a semi-permeable barrier with high selectivity. The BBB primarily manages the transport of substances between the blood and the CNS. To enhance drug delivery for CNS disease treatment, various brain-based drug delivery strategies overcoming the BBB have been developed. Among them, nanoparticles (NPs) have been emphasized due to their multiple excellent properties. This review starts with an overview of the BBB's anatomical structure and physiological roles, and then explores the mechanisms, both endogenous and exogenous, that facilitate the NP passage across the BBB. The text also delves into how nanoparticles' shape, charge, size, and surface ligands affect their ability to cross the BBB and offers an overview of different nanoparticle classifications. This review concludes with an examination of the current challenges in utilizing nanomaterials for brain drug delivery and discusses corresponding directions for solutions. This review aims to propose innovative diagnostic and therapeutic approaches for CNS diseases and enhance drug design for more effective delivery across the BBB.
Collapse
Affiliation(s)
- Jiajun Liu
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ting Wang
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian Dong
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuan Lu
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
22
|
Mei X, Yang Z, Wang X, Shi A, Blanchard J, Elahi F, Kang H, Orive G, Zhang YS. Integrating microfluidic and bioprinting technologies: advanced strategies for tissue vascularization. LAB ON A CHIP 2025; 25:764-786. [PMID: 39775452 DOI: 10.1039/d4lc00280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tissue engineering offers immense potential for addressing the unmet needs in repairing tissue damage and organ failure. Vascularization, the development of intricate blood vessel networks, is crucial for the survival and functions of engineered tissues. Nevertheless, the persistent challenge of ensuring an ample nutrient supply within implanted tissues remains, primarily due to the inadequate formation of blood vessels. This issue underscores the vital role of the human vascular system in sustaining cellular functions, facilitating nutrient exchange, and removing metabolic waste products. In response to this challenge, new approaches have been explored. Microfluidic devices, emulating natural blood vessels, serve as valuable tools for investigating angiogenesis and allowing the formation of microvascular networks. In parallel, bioprinting technologies enable precise placement of cells and biomaterials, culminating in vascular structures that closely resemble the native vessels. To this end, the synergy of microfluidics and bioprinting has further opened up exciting possibilities in vascularization, encompassing innovations such as microfluidic bioprinting. These advancements hold great promise in regenerative medicine, facilitating the creation of functional tissues for applications ranging from transplantation to disease modeling and drug testing. This review explores the potentially transformative impact of microfluidic and bioprinting technologies on vascularization strategies within the scope of tissue engineering.
Collapse
Affiliation(s)
- Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Ziyi Yang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
- School of Biological Science, University of California Irvine, Irvine, CA 92697, USA
| | - Xiran Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA 92161, USA
| | - Alan Shi
- Brookline High School, Brookline, MA 02445, USA
| | - Joel Blanchard
- Departments of Neurology, Neuroscience, and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fanny Elahi
- Departments of Neurology, Neuroscience, and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
- College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, 01007, Spain
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Gong Y, Xu K, Ye D, Yang Y, Miller MJ, Feng Z, Hu S, Chen H. In vivo two-photon microscopy imaging of focused ultrasound-mediated glymphatic transport in the mouse brain. J Cereb Blood Flow Metab 2025:271678X251323369. [PMID: 39985197 PMCID: PMC11846094 DOI: 10.1177/0271678x251323369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/10/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
The glymphatic system regulates cerebrospinal fluid (CSF) transport and brain waste clearance. Focused ultrasound combined with microbubbles (FUSMB) has shown feasibility for manipulating glymphatic transport, yet its mechanisms remain poorly understood. In this work, we used in vivo two-photon microscopy to reveal how FUSMB manipulates the CSF tracer transport in the mouse brain. A FUS transducer was confocally aligned with the objective of a two-photon microscope. Fluorescently labeled albumin was infused into the CSF via cisterna magna. FUS sonication was applied following an intravenous injection of microbubbles. Dynamic imaging was performed through a cranial window to record local changes in vessel and tracer dynamics. The fluorescence intensity of the CSF tracer within the treated region decreased rapidly upon FUSMB treatment. Concurrently, vessel deformation was observed, and the fastest diameter changes were observed during FUSMB treatment. A linear correlation was identified between the rate of vessel diameter change and the rate of tracer intensity change. Moreover, given the same rate of vessel diameter change, the tracer intensity changed faster around larger vessels than smaller vessels. These findings offer insight into the potential biophysical mechanism of FUSMB-mediated glymphatic transport.
Collapse
Affiliation(s)
- Yan Gong
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Kevin Xu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Mark J Miller
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ziang Feng
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Song Hu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
24
|
Lei K, Zhou L, Dan M, Yang F, Jian T, Xin J, Yu Z, Wang Y. Trojan Horse Delivery Strategies of Natural Medicine Monomers: Challenges and Limitations in Improving Brain Targeting. Pharmaceutics 2025; 17:280. [PMID: 40142943 PMCID: PMC11945504 DOI: 10.3390/pharmaceutics17030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Central nervous system (CNS) diseases, such as brain tumors, Alzheimer's disease, and Parkinson's disease, significantly impact patients' quality of life and impose substantial economic burdens on society. The blood-brain barrier (BBB) limits the effective delivery of most therapeutic drugs, especially natural products, despite their potential therapeutic effects. The Trojan Horse strategy, using nanotechnology to disguise drugs as "cargo", enables them to bypass the BBB, enhancing targeting and therapeutic efficacy. This review explores the applications of natural products in the treatment of CNS diseases, discusses the challenges posed by the BBB, and analyzes the advantages and limitations of the Trojan Horse strategy. Despite the existing technical challenges, future research is expected to enhance the application of natural drugs in CNS treatment by integrating nanotechnology, improving delivery mechanisms, and optimizing targeting characteristics.
Collapse
Affiliation(s)
- Kelu Lei
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Lanyu Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Min Dan
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Fei Yang
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Tiantian Jian
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Juan Xin
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Zhigang Yu
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Yue Wang
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| |
Collapse
|
25
|
Mellanson K, Zhou L, Michurina T, Mikhailik A, Benveniste H, Samaras D, Enikolopov G, Peunova N. Ciliated cell domains with locally coordinated ciliary motion generate a mosaic of microflows in the brain's lateral ventricles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638730. [PMID: 40027612 PMCID: PMC11870595 DOI: 10.1101/2025.02.19.638730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Circulation of cerebrospinal fluid (CSF) through the brain's ventricles is essential for maintaining brain homeostasis and supporting neurogenesis. CSF flow is supported by the structural polarization of multiciliated cells, which align with the flow direction. However, it remains unclear how the organization of tissue-wide polarity across the ciliary epithelium comprised of thousands of cells, determines the trajectory of the flow and efficient distribution of the CSF. Here, we used new approaches to analyze the organization of translational polarity across extensive areas of the lateral ventricular wall. We also used live imaging to examine cilia motion, flow trajectories, and ciliary beat frequency (CBF) in live preparations of ventricles. In addition to the primary flow running across the ventricular wall from the posterior area to the anterior (P-A), we found multiple local microflows with both direct and curved trajectories that deviate from the mainstream P-A direction. Our results suggest that the ciliated epithelium in the lateral ventricles varies in the alignment of ciliated cell translational polarity: whereas in the narrow dorsal area translational polarity is aligned with the direction of the mainstream flow, in the periphery of the mainstream it is organized into distinct cell clusters with locally aligned polarity vectors. We posit that the cluster organization of the multiciliated ependymal cells underpins the generation of a complex mosaic of flows, with the local microflows facilitating the wide spreading of the CSF across the ependyma. We demonstrate that nNOS is involved in the control of translational polarity, cluster organization, microflows, and CBF in the ependyma. Significance The flow of cerebrospinal fluid (CSF) is crucial for brain homeostasis. This flow is driven by the coordinated beating of cilia on thousands of ciliated cells. Planar polarity vector of the ciliated cells is aligned with the flow direction in the areas of the ependyma underlying the mainstream flow (1). However, the overall alignment of planar cell polarity and flow across the whole tissue is unclear. Here we report a discovery of complex flow patterns over the ependyma, consisting of numerous microflows in the periphery of the mainstream flow. Using new approaches, we found that planar polarity of the ependymal ciliated cells on the periphery of the mainstream flow aligns only locally, indicating a clustered organization of the ependyma that supports various flow directions.
Collapse
|
26
|
Lüthi A, Nedergaard M. Anything but small: Microarousals stand at the crossroad between noradrenaline signaling and key sleep functions. Neuron 2025; 113:509-523. [PMID: 39809276 DOI: 10.1016/j.neuron.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/16/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Continuous sleep restores the brain and body, whereas fragmented sleep harms cognition and health. Microarousals (MAs), brief (3- to 15-s-long) wake intrusions into sleep, are clinical markers for various sleep disorders. Recent rodent studies show that MAs during healthy non-rapid eye movement (NREM) sleep are driven by infraslow fluctuations of noradrenaline (NA) in coordination with electrophysiological rhythms, vasomotor activity, cerebral blood volume, and glymphatic flow. MAs are hence part of healthy sleep dynamics, raising questions about their biological roles. We propose that MAs bolster NREM sleep's benefits associated with NA fluctuations, according to an inverted U-shaped curve. Weakened noradrenergic fluctuations, as may occur in neurodegenerative diseases or with sleep aids, reduce MAs, whereas exacerbated fluctuations caused by stress fragment NREM sleep and collapse NA signaling. We suggest that MAs are crucial for the restorative and plasticity-promoting functions of sleep and advance our insight into normal and pathological arousal dynamics from sleep.
Collapse
Affiliation(s)
- Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
27
|
Tesfay B, Ashina H, Christensen RH, Al-Khazali HM, Karlsson WK, Amin FM, Jawad BN, Andersen O, Ashina M. Association of plasma soluble urokinase plasminogen activator receptor concentrations and migraine with aura: a REFORM study. Brain Commun 2025; 7:fcae475. [PMID: 39963289 PMCID: PMC11831075 DOI: 10.1093/braincomms/fcae475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/22/2024] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Soluble urokinase plasminogen activator receptor (suPAR) has garnered attention as a potential blood-based biomarker for low-grade chronic inflammation. However, its specific association with migraine, including its subtypes, remains to be elucidated. We sought to examine the association of plasma suPAR levels with migraine and its subtypes. In this single-centre, cross-sectional study, plasma was collected at a single time point in adults with migraine and sex-matched healthy controls from October 2020 to June 2022. The quantification of plasma suPAR levels was performed in a blinded fashion using a validated enzyme-linked immunosorbent assay. Plasma suPAR levels were compared between participants with migraine (including subgroups) and healthy controls. Plasma samples were analysed from 634 eligible participants with migraine [mean (SD) age, 44.0 (12.2) years; 568 (89.6%) females] and 154 healthy controls [mean (SD), 41.3 (11.8%) years; 132 (86%) females]. Plasma suPAR levels were 6.7% higher (95% CI: 0.1-13.6%; P = 0.045, adjusted for age, sex, body mass index and smoking) in participants with migraine with aura, when compared with healthy controls. Further analysis revealed no difference in plasma suPAR levels between the overall migraine group and healthy controls (3.7%; 95% CI: -0.7-8.2%; P = 0.097), as well as between participants with migraine without aura and healthy controls (2.5%; 95% CI: -2.9-8.3%; P = 0.81). Similarly, plasma suPAR levels did not differ across participants with episodic migraine, chronic migraine and healthy controls. Finally, we found no difference when comparing participants with migraine at time of blood sampling with participants with non-migraine headache (1.0%; 95% CI: -5.7-8.2; P > 0.99), participants without headache (1.2%; 95% CI: -4.2-7.0%; P > 0.99) or healthy controls (4.5%; 95% CI: -1.9-11.3%; P = 0.39). Elevated plasma suPAR levels in migraine with aura indicate the presence of low-grade chronic inflammation. Future research should explore the role of suPAR in the neurobiologic underpinnings of migraine with aura.
Collapse
Affiliation(s)
- Betel Tesfay
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Translational Research Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
| | - Rune Häckert Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Translational Research Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
| | - Haidar M Al-Khazali
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Translational Research Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
| | - William Kristian Karlsson
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Faisal Mohammad Amin
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Baker Nawfal Jawad
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Clinical Research, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre 2650, Denmark
| | - Ove Andersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Clinical Research, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre 2650, Denmark
- Department of Emergency Medicine, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre 2650, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Danish Knowledge Center on Headache Disorders, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
| |
Collapse
|
28
|
Nguyen T, Ong J, Brunstetter T, Gibson CR, Macias BR, Laurie S, Mader T, Hargens A, Buckey JC, Lan M, Wostyn P, Kadipasaoglu C, Smith SM, Zwart SR, Frankfort BJ, Aman S, Scott JM, Waisberg E, Masalkhi M, Lee AG. Spaceflight Associated Neuro-ocular Syndrome (SANS) and its countermeasures. Prog Retin Eye Res 2025; 106:101340. [PMID: 39971096 DOI: 10.1016/j.preteyeres.2025.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Astronauts can develop a distinct collection of neuro-ophthalmic findings during long duration spaceflight, collectively known as Spaceflight Associated Neuro-ocular Syndrome (SANS). These clinical characteristics include optic disc edema, hyperopic refractive shifts, globe flattening, and chorioretinal folds, which may pose a health risk for future space exploration. Obtaining knowledge of SANS and countermeasures for its prevention is crucial for upcoming crewed space missions and warrants a multidisciplinary approach. This review examines the potential causes and countermeasures of SANS, including space anticipation glasses, lower body negative pressure, venoconstrictive thigh cuffs, impedance threshold devices, translaminar pressure gradient modulation, centrifugation, artificial gravity, pharmaceuticals, and precision nutritional supplementation. This paper highlights future research directions for understanding the genetic, anthropometric, behavioral, and environmental susceptibilities to SANS as well as how to use terrestrial analogs for testing future mitigation strategies.
Collapse
Affiliation(s)
- Tuan Nguyen
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York City, New York, USA
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | | | - C Robert Gibson
- KBR, NASA Space Medicine Operations Division, Houston, TX, USA; South Shore Eye Center, League City, TX, USA
| | | | - Steven Laurie
- KBR, NASA Space Medicine Operations Division, Houston, TX, USA
| | | | - Alan Hargens
- Department of Orthopaedic Surgery, University of California, Altman Clinical and Translational Research Institute, La Jolla, CA, San Diego, USA
| | - Jay C Buckey
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, USA
| | - Mimi Lan
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, USA
| | - Peter Wostyn
- Department of Psychiatry, PC Sint-Amandus, Beernem, Belgium
| | | | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | - Benjamin J Frankfort
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Sarah Aman
- Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Jessica M Scott
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | | | - Mouayad Masalkhi
- University College Dublin School of Medicine, Belfield, Dublin, Ireland
| | - Andrew G Lee
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA; Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA; University of Texas MD Anderson Cancer Center, Houston, TX, USA; Texas A&M College of Medicine, Bryan, TX, USA; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
29
|
Wen Q, Muskat J, Babbs CF, Wright AM, Zhao Y, Zhou X, Zhu C, Tong Y, Wu YC, Risacher SL, Saykin AJ. Dynamic diffusion-weighted imaging of intracranial cardiac impulse propagation along arteries to arterioles in the aging brain. J Cereb Blood Flow Metab 2025:271678X251320902. [PMID: 39947901 PMCID: PMC11826823 DOI: 10.1177/0271678x251320902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025]
Abstract
Intracranial cardiac impulse propagation along penetrating arterioles is vital for both nutrient supply via blood circulation and waste clearance via CSF circulation. However, current neuroimaging methods are limited to simultaneously detecting impulse propagation at pial arteries, arterioles, and between them. We hypothesized that this propagation could be detected via paravascular CSF dynamics and that it may change with aging. Using dynamic diffusion-weighted imaging (dynDWI), we detected oscillatory CSF motion synchronized with the finger photoplethysmography in the subarachnoid space (SAS) and cerebral cortex, with a delay revealing an impulse propagation pathway from the SAS to the cortex, averaging 84 milliseconds. Data from 70 subjects aged 18 to 85 years showed a bimodal age-related change in the SAS-Cortex travel time: it initially increases with age, peaks around 45 years, then decreases. Computational biomechanical modeling of the cardiovascular system was performed and replicated this 84-millisecond delay. Sensitivity analysis suggests that age-related variations in travel time are primarily driven by changes in arteriolar compliance. These findings support the use of dynDWI for measuring intracranial impulse propagation and highlight its potential in assessing related vascular and waste clearance functions.
Collapse
Affiliation(s)
- Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering Department, Purdue University, West Lafayette, IN, USA
| | - Joseph Muskat
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Charles F Babbs
- Weldon School of Biomedical Engineering Department, Purdue University, West Lafayette, IN, USA
| | - Adam M Wright
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering Department, Purdue University, West Lafayette, IN, USA
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaopeng Zhou
- College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Chengcheng Zhu
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Yunjie Tong
- Weldon School of Biomedical Engineering Department, Purdue University, West Lafayette, IN, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering Department, Purdue University, West Lafayette, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
30
|
Ediriweera GR, Sivaram AJ, Cowin G, Brown ML, McAlary L, Lum JS, Fletcher NL, Robinson L, Simpson JD, Chen L, Wasielewska JM, Byrne E, Finnie JW, Manavis J, White AR, Yerbury JJ, Thurecht KJ, Vine KL. Lipid nanoparticles and transcranial focused ultrasound enhance the delivery of SOD1 antisense oligonucleotides to the murine brain for ALS therapy. J Control Release 2025; 378:221-235. [PMID: 39645085 DOI: 10.1016/j.jconrel.2024.11.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with extremely limited therapeutic options. One key pathological feature of ALS is the abnormal accumulation of misfolded proteins within motor neurons. Hence, reducing the burden of misfolded protein has emerged as a promising therapeutic approach. Antisense oligonucleotides (ASOs) have the potential to effectively silence proteins with gain-of-function mutations, such as superoxide dismutase 1 (SOD1). However, ASO delivery to the central nervous system (CNS) is hindered by poor blood-brain barrier (BBB) penetration and the invasiveness of intrathecal administration. In the current study, we demonstrate effective systemic delivery of a next-generation SOD1 ASO (Tofersen) into the brain of wildtype and G93A-SOD1 transgenic C57BL/6 mice using calcium phosphate lipid nanoparticles (CaP lipid NPs). We show that transcranial focused ultrasound (FUS) with intravenously administered microbubbles can significantly enhance ASO-loaded nanoparticle delivery into the mouse brain. Magnetic resonance imaging (MRI) and immunohistological analysis showed reduced SOD1 expression in the FUS-exposed brain regions and increased motor neuron count in the spinal cord of treated mice suggesting decreased motor neuron degeneration. Importantly, the BBB opening was transient without evidence of structural changes, neuroinflammation or damage to the brain tissue, indicating that the treatment is well tolerated. Overall, our results highlight FUS-assisted nanoparticle delivery of ASOs as a promising non-invasive therapeutic strategy for the treatment of ALS and CNS diseases more broadly.
Collapse
Affiliation(s)
- Gayathri R Ediriweera
- Centre for Advanced Imaging and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Amal J Sivaram
- Centre for Advanced Imaging and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gary Cowin
- Centre for Advanced Imaging and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; National Imaging Facility, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mikayla L Brown
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Luke McAlary
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jeremy S Lum
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Liam Robinson
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Joshua D Simpson
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Liyu Chen
- Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joanna M Wasielewska
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ella Byrne
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - John W Finnie
- Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Jim Manavis
- Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Anthony R White
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Justin J Yerbury
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kara L Vine
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
31
|
Hauglund NL, Andersen M, Tokarska K, Radovanovic T, Kjaerby C, Sørensen FL, Bojarowska Z, Untiet V, Ballestero SB, Kolmos MG, Weikop P, Hirase H, Nedergaard M. Norepinephrine-mediated slow vasomotion drives glymphatic clearance during sleep. Cell 2025; 188:606-622.e17. [PMID: 39788123 DOI: 10.1016/j.cell.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/29/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025]
Abstract
As the brain transitions from wakefulness to sleep, processing of external information diminishes while restorative processes, such as glymphatic removal of waste products, are activated. Yet, it is not known what drives brain clearance during sleep. We here employed an array of technologies and identified tightly synchronized oscillations in norepinephrine, cerebral blood volume, and cerebrospinal fluid (CSF) as the strongest predictors of glymphatic clearance during NREM sleep. Optogenetic stimulation of the locus coeruleus induced anti-correlated changes in vasomotion and CSF signal. Furthermore, stimulation of arterial oscillations enhanced CSF inflow, demonstrating that vasomotion acts as a pump driving CSF into the brain. On the contrary, the sleep aid zolpidem suppressed norepinephrine oscillations and glymphatic flow, highlighting the critical role of norepinephrine-driven vascular dynamics in brain clearance. Thus, the micro-architectural organization of NREM sleep, driven by norepinephrine fluctuations and vascular dynamics, is a key determinant for glymphatic clearance.
Collapse
Affiliation(s)
- Natalie L Hauglund
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, 2600 Glostrup, Denmark
| | - Mie Andersen
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Klaudia Tokarska
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Tessa Radovanovic
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Celia Kjaerby
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Frederikke L Sørensen
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Zuzanna Bojarowska
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Verena Untiet
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Sheyla B Ballestero
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Mie G Kolmos
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Hajime Hirase
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
32
|
Garborg CS, Ghitti B, Zhang Q, Ricotta JM, Frank N, Mueller SJ, Greenawalt DI, Turner KL, Kedarasetti RT, Mostafa M, Lee H, Costanzo F, Drew PJ. Gut-Brain Hydraulics: Brain motion and CSF circulation is driven by mechanical coupling with the abdomen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635779. [PMID: 39974937 PMCID: PMC11838368 DOI: 10.1101/2025.01.30.635779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The brain moves within the skull, but the drivers and function of this motion are not understood. We visualized brain motion relative to the skull in awake head-fixed mice using high-speed, multi-plane two-photon microscopy. Brain motion was primarily rostrally and laterally directed, and was tightly correlated with locomotion, but not with respiration or the cardiac cycle. Electromyography recordings in abdominal muscles and microCT reconstructions of the trunk and spinal vasculature showed that brain motion was driven by abdominal muscle contractions that activate a hydraulic-like vascular connection between the nervous system and the abdominal cavity. Externally-applied abdominal pressure generated brain motion similar to those seen during abdominal muscle contractions. Simulations showed that brain motion drives substantial volumes of interstitial fluid through and out of the brain (at volumetric rates several times higher than production) into the subarachnoid space, in the opposite direction of fluid flow seen during sleep. The brain is hydraulically linked to the abdominal compartment, and fluid flow in the brain is coupled to body movements, providing a mechanism by which the mechanics of the viscera directly impact brain health.
Collapse
|
33
|
Sun YR, Lv QK, Liu JY, Wang F, Liu CF. New perspectives on the glymphatic system and the relationship between glymphatic system and neurodegenerative diseases. Neurobiol Dis 2025; 205:106791. [PMID: 39778750 DOI: 10.1016/j.nbd.2025.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Neurodegenerative diseases (ND) are characterized by the accumulation of aggregated proteins. The glymphatic system, through its rapid exchange mechanisms between cerebrospinal fluid (CSF) and interstitial fluid (ISF), facilitates the movement of metabolic substances within the brain, serving functions akin to those of the peripheral lymphatic system. This emerging waste clearance mechanism offers a novel perspective on the removal of pathological substances in ND. This article elucidates recent discoveries regarding the glymphatic system and updates relevant concepts within its model. It discusses the potential roles of the glymphatic system in ND, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple system atrophy (MSA), and proposes the glymphatic system as a novel therapeutic target for these conditions.
Collapse
Affiliation(s)
- Yan-Rui Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Qian-Kun Lv
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake hospital affilicated to Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| |
Collapse
|
34
|
Forrester JV, McMenamin PG. Evolution of the ocular immune system. Eye (Lond) 2025; 39:468-477. [PMID: 39653763 PMCID: PMC11794555 DOI: 10.1038/s41433-024-03512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 02/06/2025] Open
Abstract
The evolution of the ocular immune system should be viewed within the context of the evolution of the immune system, and indeed organisms, as a whole. Since the earliest time, the most primitive responses of single cell organisms involved molecules such as anti-microbial peptides and behaviours such as phagocytosis. Innate immunity took shape ~2.5 billion years ago while adaptive immunity and antigen specificity appeared with vertebrate evolution ~ 500 million years ago. The invention of the microscope and the germ theory of disease precipitated debate on cellular versus humoral immunity, resolved by the discovery of B and T cells. Most recently, our understanding of the microbiome and consideration of the host existing symbiotically with trillions of microbial genes (the holobiont), suggests that the immune system is a sensor of homoeostasis rather than simply a responder to pathogens. Each tissue type in multicellular organisms, such as vertebrates, has a customised response to immune challenge, with powerful reactions most evident in barrier tissues such as the skin and gut mucosa, while the eye and brain occupy the opposite extreme where responses are attenuated. The experimental background which historically led to the concept of immune privilege is discussed in this review; however, we propose that the ocular immune response should not be viewed as unique but simply an example of how the tissues variably respond in nature, more or less to the same challenge (or danger).
Collapse
Affiliation(s)
- John V Forrester
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK.
| | | |
Collapse
|
35
|
Matys T, Massoud TF, Czosnyka M, Czosnyka Z. Cerebrospinal Fluid Pressure Measurement and Infusion Studies Using Lumbar Puncture. Neuroimaging Clin N Am 2025; 35:27-40. [PMID: 39521525 DOI: 10.1016/j.nic.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Lumbar puncture provides an easy way of accessing the subarachnoid space. Measuring of the opening cerebrospinal fluid pressure is the most commonly used method of evaluating intracranial pressure but provides basic snapshot information only. Further insights into cerebrospinal fluid dynamics can be obtained through infusion studies, which rely on measurement of the degree of pressure change in response to addition of fluid volume into the subarachnoid space. The authors describe applications of these 2 techniques pertinent to a practicing neuroradiologist, who may be asked to assist with fluoroscopy-guided lumbar puncture in patients with increased body mass index or difficult spine anatomy.
Collapse
Affiliation(s)
- Tomasz Matys
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK.
| | - Tarik F Massoud
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford Health Centre, Palo Alto, CA, USA
| | - Marek Czosnyka
- Brain Physics Lab, Division of Neurosurgery, Department of Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK. https://twitter.com/BrainPhysics
| | - Zofia Czosnyka
- Brain Physics Lab, Division of Neurosurgery, Department of Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
36
|
Zhu Y, Zhu J, Ni C, Chen A, Li L, Gao Y, Shoffstall AJ, Yu X. Impact of infusion conditions and anesthesia on CSF tracer dynamics in mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634133. [PMID: 39896601 PMCID: PMC11785030 DOI: 10.1101/2025.01.21.634133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Tracer imaging has been instrumental in mapping the brain's solute transport pathways facilitated by cerebrospinal fluid (CSF) flow. However, the impact of tracer infusion parameters on CSF flow remains incompletely understood. This study evaluated the influence of infusion location, rate, and anesthetic regimens on tracer transport using dynamic contrast-enhanced MRI with Gd-DTPA as a CSF tracer. Infusion rate effects were assessed by administering Gd-DTPA into the cisterna magna (ICM) at two rates under isoflurane anesthesia. Anesthetic effects were evaluated by comparing transport patterns between isoflurane and ketamine/xylazine (K/X) anesthesia at the slower rate. Gd-DTPA transport was also examined after lateral ventricle (ICV) infusion, the primary site of CSF production. The results demonstrate that, besides anesthesia, both the location and rate of infusion substantially affected solute transport within the brain. ICV infusion led to rapid, extensive transport into deep brain regions, while slower ICM infusion resulted in more pronounced transport to dorsal brain regions. Cross-correlation and hierarchical clustering analyses of region-specific Gd-DTPA signal time courses revealed that ICM infusion facilitated transport along periarterial spaces, while ICV infusion favored transport across the ventricular-parenchymal interface. These findings underscore the importance of experimental conditions in influencing tracer kinetics and spatial distribution in the brain.
Collapse
Affiliation(s)
- Yuran Zhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Junqing Zhu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chenxin Ni
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anbang Chen
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Longshun Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yue Gao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew J. Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
37
|
Dörner M, Pfister M, Tyndall A, von Känel R, Neumann K, Schreiber F, Arndt P, Fuchs E, Garz C, Glanz W, Butryn M, John AC, Hildebrand A, Euler S, Hofmann AB, Machetanz L, Kirchebner J, Tacik P, Grimm A, Jansen R, Pawlitzki M, Henneicke S, Perosa V, Labeit B, Düzel E, Meuth SG, Vielhaber S, Mattern H, Bernal J, Schreiber S. Associations of inferior frontal sulcal hyperintensities on brain MRI with cerebral small vessel disease, cognitive function, and depression symptoms. Sci Rep 2025; 15:2999. [PMID: 39849098 PMCID: PMC11758024 DOI: 10.1038/s41598-025-87493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025] Open
Abstract
Inferior frontal sulcal hyperintensities (IFSH) observed on fluid-attenuated inversion recovery (FLAIR) MRI have been proposed as indicators of elevated cerebrospinal fluid waste accumulation in cerebral small vessel disease (CSVD). However, to validate IFSH as a reliable imaging biomarker, further replication studies are required. The objective of this study was to investigate associations between IFSH and CSVD, and their potential repercussions, i.e., cognitive impairment and depression. We prospectively recruited 47 patients with CSVD and 29 cognitively normal controls (NC). IFSH were rated visually based on FLAIR MRI. Using different regression models, we explored the relationship between IFSH, group status (CSVD vs. NC), CSVD severity assessed with MRI, cognitive function, and symptoms of depression. Patients with CSVD were more likely to have higher IFSH scores compared to NC (OR 5.64, 95% CI 1.91-16.60), and greater CSVD severity on MRI predicted more severe IFSH (OR 1.47, 95% CI 1.14-1.88). Higher IFSH scores were associated with lower cognitive function (-0.96, 95% CI -1.81 to -0.10), and higher levels of depression (0.33, 95% CI 0.01-0.65). CSVD and IFSH may be tightly linked to each other, and the accumulation of waste products, indicated by IFSH, could have detrimental effects on cognitive function and symptoms of depression.
Collapse
Affiliation(s)
- Marc Dörner
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany.
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Culmannstrasse 8, Zurich, 8091, Switzerland.
| | - Malte Pfister
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Anthony Tyndall
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland
| | - Roland von Känel
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Culmannstrasse 8, Zurich, 8091, Switzerland
| | - Katja Neumann
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Frank Schreiber
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Philipp Arndt
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Erelle Fuchs
- Department of Neuroradiology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Cornelia Garz
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Michaela Butryn
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Anna-Charlotte John
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Annkatrin Hildebrand
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Sebastian Euler
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Culmannstrasse 8, Zurich, 8091, Switzerland
| | - Andreas B Hofmann
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, 8032, Switzerland
| | - Lena Machetanz
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, 8032, Switzerland
- Department of Forensic Psychiatry, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, 8032, Switzerland
| | - Johannes Kirchebner
- Department of Forensic Psychiatry, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, 8032, Switzerland
| | - Pawel Tacik
- Department of Parkinson's Disease, Sleep and Movement Disorders, University Hospital Bonn, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 53127, Bonn, Germany
| | - Alexander Grimm
- Center for Neurology, Tuebingen University Hospital and Hertie-Institute for Clinical Brain Research, Eberhard Karls University, 72076, Tuebingen, Tuebingen, Germany
| | - Robin Jansen
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Solveig Henneicke
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Valentina Perosa
- Massachusetts General Hospital, J. Philip Kistler Stroke Research Center, 02114, Boston, MA, Germany
| | - Bendix Labeit
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Center for Behavioural Brain Sciences (CBBS), 39120, Magdeburg, Germany
- Biomedical Magnetic Resonance, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Jose Bernal
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120, Magdeburg, Germany
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, EH16 4SB, Edinburgh, United Kingdom
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
- Center for Behavioural Brain Sciences (CBBS), 39120, Magdeburg, Germany
| |
Collapse
|
38
|
Chen Z, Jiang D, Kong Y, Zhang J, Min C, Bi S, Yan S, Ye H, Li J, Wang L, Lu J, Wu L. Association of Glymphatic Function With Clinical Characteristics in Patients With Clinical and Asymptomatic Creutzfeldt-Jakob Disease. Neurology 2025; 104:e210055. [PMID: 39671544 DOI: 10.1212/wnl.0000000000210055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/10/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Abnormal glymphatic system-related proteins have been identified in a small-scale pathologic study of patients with Creutzfeldt-Jakob disease (CJD). However, it remains unclear whether glymphatic dysfunction occurs in vivo in patients with CJD and whether this decline begins during the preclinical stage. This study aimed to investigate the relationship between glymphatic dysfunction and clinical characteristics in patients with CJD, as well as potential glymphatic impairment in preclinical CJD. METHODS This prospective cohort study recruited patients with CJD and healthy controls (HCs) from the Department of Neurology at Xuanwu Hospital, Capital Medical University, Beijing, China, from 2018 to 2022. In addition, a family with preclinical genetic CJD carrying the G114V pathogenic variant was followed over 6 years with 3 evaluations. All participants underwent diffusion tensor imaging along the perivascular space (DTI-ALPS) to measure glymphatic function in vivo and 18F-fludeoxyglucose-PET to identify CJD-related metabolic patterns. Associations between the DTI-ALPS index and Medical Research Council Prion Disease Rating Scale (MRC-PDRS) score were evaluated using multiple linear regression. RESULTS We enrolled 35 patients with CJD (mean age 59.6 ± 10.7 years, 40% female, with the time from onset to glymphatic dysfunction assessment averaging 39% of the total disease course), 28 age-matched and sex-matched HCs, and a family with preclinical genetic CJD consisting of 7 carriers and 7 noncarriers. Patients with CJD exhibited lower DTI-ALPS values compared with HCs (p < 0.001). Partial correlation analyses revealed significant correlations between the DTI-ALPS index and MRC-PDRS score (r = 0.346, p = 0.049) and disease progression (r = -0.468, p = 0.006), but not with disease duration or cognitive severity after adjusting for age and sex. Multivariate linear analysis demonstrated that poorer MRC-PDRS scores (β = 0.702, p = 0.014) were associated with a lower DTI-ALPS index. The DTI-ALPS index of asymptomatic G114V carriers showed no significant difference compared with noncarriers. However, a preclinical CJD case exhibited an 8.2% decrease in the DTI-ALPS index 3.3 years before onset. No significant correlation was found between regional metabolic standardized uptake value ratios and DTI-ALPS index. DISCUSSION Our study indicates that glymphatic dysfunction is associated with CJD severity and disease progression. Glymphatic dysfunction may occur in the preclinical stage, but these findings should be interpreted with caution because they are based on individual findings.
Collapse
Affiliation(s)
- Zhongyun Chen
- From the Department of Neurology (Z.C., D.J., Y.K., J.Z., C.M., H.Y., J. Li, L. Wang, L. Wu), and Department of Radiology and Nuclear Medicine (S.B., S.Y., J. Lu), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Deming Jiang
- From the Department of Neurology (Z.C., D.J., Y.K., J.Z., C.M., H.Y., J. Li, L. Wang, L. Wu), and Department of Radiology and Nuclear Medicine (S.B., S.Y., J. Lu), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Kong
- From the Department of Neurology (Z.C., D.J., Y.K., J.Z., C.M., H.Y., J. Li, L. Wang, L. Wu), and Department of Radiology and Nuclear Medicine (S.B., S.Y., J. Lu), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- From the Department of Neurology (Z.C., D.J., Y.K., J.Z., C.M., H.Y., J. Li, L. Wang, L. Wu), and Department of Radiology and Nuclear Medicine (S.B., S.Y., J. Lu), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chu Min
- From the Department of Neurology (Z.C., D.J., Y.K., J.Z., C.M., H.Y., J. Li, L. Wang, L. Wu), and Department of Radiology and Nuclear Medicine (S.B., S.Y., J. Lu), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sheng Bi
- From the Department of Neurology (Z.C., D.J., Y.K., J.Z., C.M., H.Y., J. Li, L. Wang, L. Wu), and Department of Radiology and Nuclear Medicine (S.B., S.Y., J. Lu), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shaozhen Yan
- From the Department of Neurology (Z.C., D.J., Y.K., J.Z., C.M., H.Y., J. Li, L. Wang, L. Wu), and Department of Radiology and Nuclear Medicine (S.B., S.Y., J. Lu), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hong Ye
- From the Department of Neurology (Z.C., D.J., Y.K., J.Z., C.M., H.Y., J. Li, L. Wang, L. Wu), and Department of Radiology and Nuclear Medicine (S.B., S.Y., J. Lu), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junjie Li
- From the Department of Neurology (Z.C., D.J., Y.K., J.Z., C.M., H.Y., J. Li, L. Wang, L. Wu), and Department of Radiology and Nuclear Medicine (S.B., S.Y., J. Lu), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lin Wang
- From the Department of Neurology (Z.C., D.J., Y.K., J.Z., C.M., H.Y., J. Li, L. Wang, L. Wu), and Department of Radiology and Nuclear Medicine (S.B., S.Y., J. Lu), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- From the Department of Neurology (Z.C., D.J., Y.K., J.Z., C.M., H.Y., J. Li, L. Wang, L. Wu), and Department of Radiology and Nuclear Medicine (S.B., S.Y., J. Lu), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liyong Wu
- From the Department of Neurology (Z.C., D.J., Y.K., J.Z., C.M., H.Y., J. Li, L. Wang, L. Wu), and Department of Radiology and Nuclear Medicine (S.B., S.Y., J. Lu), Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Jiang-Xie LF, Drieu A, Kipnis J. Waste clearance shapes aging brain health. Neuron 2025; 113:71-81. [PMID: 39395409 PMCID: PMC11717645 DOI: 10.1016/j.neuron.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024]
Abstract
Brain health is intimately connected to fluid flow dynamics that cleanse the brain of potentially harmful waste material. This system is regulated by vascular dynamics, the maintenance of perivascular spaces, neural activity during sleep, and lymphatic drainage in the meningeal layers. However, aging can impinge on each of these layers of regulation, leading to impaired brain cleansing and the emergence of various age-associated neurological disorders, including Alzheimer's and Parkinson's diseases. Understanding the intricacies of fluid flow regulation in the brain and how this becomes altered with age could reveal new targets and therapeutic strategies to tackle age-associated neurological decline.
Collapse
Affiliation(s)
- Li-Feng Jiang-Xie
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Antoine Drieu
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
40
|
Wu W, Zhao Y, Cheng X, Xie X, Zeng Y, Tao Q, Yang Y, Xiao C, Zhang Z, Pang J, Jin J, He H, Lin Y, Li B, Ma J, Ye X, Lin WJ. Modulation of glymphatic system by visual circuit activation alleviates memory impairment and apathy in a mouse model of Alzheimer's disease. Nat Commun 2025; 16:63. [PMID: 39747869 PMCID: PMC11696061 DOI: 10.1038/s41467-024-55678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Alzheimer's disease is characterized by progressive amyloid deposition and cognitive decline, yet the pathological mechanisms and treatments remain elusive. Here we report the therapeutic potential of low-intensity 40 hertz blue light exposure in a 5xFAD mouse model of Alzheimer's disease. Our findings reveal that light treatment prevents memory decline in 4-month-old 5xFAD mice and motivation loss in 14-month-old 5xFAD mice, accompanied by restoration of glial water channel aquaporin-4 polarity, improved brain drainage efficiency, and a reduction in hippocampal lipid accumulation. We further demonstrate the beneficial effects of 40 hertz blue light are mediated through the activation of the vLGN/IGL-Re visual circuit. Notably, concomitant use of anti-Aβ antibody with 40 hertz blue light demonstrates improved soluble Aβ clearance and cognitive performance in 5xFAD mice. These findings offer functional evidence on the therapeutic effects of 40 hertz blue light in Aβ-related pathologies and suggest its potential as a supplementary strategy to augment the efficacy of antibody-based therapy.
Collapse
Affiliation(s)
- Wen Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Yubai Zhao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical and Rehabilitation Medicine, Guiyang Healthcare Vocational University, Guizhou, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoru Xie
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Yixiu Zeng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Quan Tao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yishuai Yang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chuan Xiao
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Zhan Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Jiahui Pang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Jin
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbo He
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yangyang Lin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Rehabilitation Medicine, Guangzhou, China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Boxing Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Junxian Ma
- Tianfu Xinglong Lake Laboratory, Chengdu, China.
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China.
| |
Collapse
|
41
|
Normoyle KP, Lillis KP, Egawa K, McNally MA, Paulchakrabarti M, Coudhury BP, Lau L, Shiu FH, Staley KJ. Displacement of extracellular chloride by immobile anionic constituents of the brain's extracellular matrix. J Physiol 2025; 603:353-378. [PMID: 39621449 PMCID: PMC11747837 DOI: 10.1113/jp285463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/01/2024] [Indexed: 01/19/2025] Open
Abstract
GABA is the primary inhibitory neurotransmitter. Membrane currents evoked by GABAA receptor activation have uniquely small driving forces: their reversal potential (EGABA) is very close to the resting membrane potential. As a consequence, GABAA currents can flow in either direction, depending on both the membrane potential and the local intra and extracellular concentrations of the primary permeant ion, chloride (Cl). Local cytoplasmic Cl concentrations vary widely because of displacement of mobile Cl ions by relatively immobile anions. Here, we use new reporters of extracellular chloride (Cl- o) to demonstrate that Cl is displaced in the extracellular space by high and spatially heterogenous concentrations of immobile anions including sulfated glycosaminoglycans (sGAGs). Cl- o varies widely, and the mean Cl- o is only half the canonical concentration (i.e. the Cl concentration in the cerebrospinal fluid). These unexpectedly low and heterogenous Cl- o domains provide a mechanism to link the varied but highly stable distribution of sGAGs and other immobile anions in the brain's extracellular space to neuronal signal processing via the effects on the amplitude and direction of GABAA transmembrane Cl currents. KEY POINTS: Extracellular chloride concentrations in the brain were measured using a new chloride-sensitive organic fluorophore and two-photon fluorescence lifetime imaging. In vivo, the extracellular chloride concentration was spatially heterogenous and only half of the cerebrospinal fluid chloride concentration Stable displacement of extracellular chloride by immobile extracellular anions was responsible for the low extracellular chloride concentration The changes in extracellular chloride were of sufficient magnitude to alter the conductance and reversal potential of GABAA chloride currents The stability of the extracellular matrix, the impact of the component immobile anions, including sulfated glycosaminoglycans on extracellular chloride concentrations, and the consequent effect on GABAA signalling suggests a previously unappreciated mechanism for modulating GABAA signalling.
Collapse
Affiliation(s)
- Kieran P Normoyle
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kyle P Lillis
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kiyoshi Egawa
- Department of Medicine, Hokaiddo University, Sapporo, Hokaiddo, Japan
| | - Melanie A McNally
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Biswa P Coudhury
- GlycoAnalytics Core, University of California San Diego, La Jolla, CA, USA
| | - Lauren Lau
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Fu Hung Shiu
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kevin J Staley
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Ghanizada H, Nedergaard M. The glymphatic system. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:161-170. [PMID: 40122623 DOI: 10.1016/b978-0-443-19104-6.00006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The glymphatic system, a brain-wide network-supporting cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange, is essential for removing metabolic waste from the brain. This system's proper functioning is crucial for maintaining neural health and preventing the accumulation of harmful substances that can lead to neurodegenerative diseases. This chapter explores the glymphatic system's mechanisms, its dysfunction in various neurologic disorders, and potential therapeutic strategies. Recent discoveries reveal the glymphatic system's involvement in aging, sleep, cerebral edema, and conditions, such as Alzheimer, Parkinson, Huntington diseases, amyotrophic lateral sclerosis, small vessel disease, hydrocephalus, migraine, stroke, traumatic brain injury, and psychiatric disorders, where impaired waste clearance contributes to disease pathogenesis. Moreover, therapeutic interventions targeting glymphatic dysfunction present promising avenues for mitigating the effects of neurodegenerative diseases. The chapter underscores the potential of integrating glymphatic research into broader clinical practices, offering new strategies for disease management and prevention.
Collapse
Affiliation(s)
- Hashmat Ghanizada
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
43
|
Ferreira Machado M, Muela HCS, Costa-Hong VA, Cristina Moraes N, Maia Memória C, Sanches Yassuda M, Bor-Seng-Shu E, Nitrini R, Aparecido Bortolotto L, de Carvalho Nogueira R. Angiotensin-converting enzyme inhibitors: a therapeutic option for controlling blood pressure associated with delayed cognitive processing speed. J Hum Hypertens 2025; 39:15-21. [PMID: 39367178 DOI: 10.1038/s41371-024-00965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Antihypertensive treatment (AT) is essential for preventing hypertension-related cognitive decline. The goals of this observational study were to compare cognitive performance (CP) between non-hypertensive (NH) volunteers and hypertensive patients and to evaluate the correlation between CP and antihypertensive drugs (AHD). Three groups were constituted: NH (n = 30) [group 1], hypertensive with systolic blood pressure (SBP) < 140 mmHg and diastolic blood pressure (DBP) < 90 mmHg (n = 54) [group 2] and hypertensive with SBP ≥ 140 or DBP ≥ 90 (n = 31) [group 3]. To analyze the cognitive domains, a neuropsychological battery was applied and the raw performance values in these tests were transformed into z-scores. The domain was considered impaired if it presented a z-score below -1.5 SD. Compared to group 1, both groups of hypertensive were older (51 [ ± 12] years) and showed a worse CP in episodic memory (p = 0.014), language (p = 0.003) and processing speed (PS) [p = 0.05]. Angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARB) were the most used AHD (46.3%, p = 0.01 [group 2] and 64.5%, p = 0.005 [group 3]) and showed correlations with PS. Linear regression models revealed a negative association of PS with the use of ACEi (β = -0.230, p = 0.004), but not with the use of ARB (β = 0.208, p = 0.008). The effect of AT on cognition appears to go beyond the search for lower blood pressure targets and also includes the mechanism of action of AHD on the brain, so that additional benefits may possibly be achieved with simple adaptations in the treatment regimen, particularly in patients without clinically manifest cognitive impairment.
Collapse
Affiliation(s)
- Michel Ferreira Machado
- Department of Neurology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil.
| | | | | | - Natalia Cristina Moraes
- Department of Neurology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Claudia Maia Memória
- Department of Neurology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Monica Sanches Yassuda
- Gerontology, School of Arts, Sciences and Humanities, University of São Paulo Medical School, São Paulo, Brazil
| | - Edson Bor-Seng-Shu
- Department of Neurology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Luiz Aparecido Bortolotto
- Hypertension Unit, Instituto do Coração (INCOR), University of São Paulo Medical School, São Paulo, Brazil
| | | |
Collapse
|
44
|
Verkhratsky A, Semyanov A. Physiology of neuroglia of the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:69-91. [PMID: 40122632 DOI: 10.1016/b978-0-443-19104-6.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Neuroglia of the central nervous system (CNS) are a diverse and highly heterogeneous population of cells of ectodermal, neuroepithelial origin (macroglia, that includes astroglia and oligodendroglia) and mesodermal, myeloid origin (microglia). Neuroglia are primary homeostatic cells of the CNS, responsible for the support, defense, and protection of the nervous tissue. The extended class of astroglia (which includes numerous parenchymal astrocytes, such as protoplasmic, fibrous, velate, marginal, etc., radial astrocytes such as Bergmann glia, Muller glia, etc., and ependymoglia lining the walls of brain ventricles and central canal of the spinal cord) is primarily responsible for overall homeostasis of the nervous tissue. Astroglial cells control homeostasis of ions, neurotransmitters, hormones, metabolites, and are responsible for neuroprotection and defense of the CNS. Oligodendroglia provide for myelination of axons, hence supporting and sustaining CNS connectome. Microglia are tissue macrophages adapted to the CNS environment which contribute to the host of physiologic functions including regulation of synaptic connectivity through synaptic pruning, regulation of neurogenesis, and even modifying neuronal excitability. Neuroglial cells express numerous receptors, transporters, and channels that allow neuroglia to perceive and follow neuronal activity. Activation of these receptors triggers intracellular ionic signals that govern various homeostatic cascades underlying glial supportive and defensive capabilities. Ionic signaling therefore represents the substrate of glial excitability.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, Jiaxing, Zhejiang, China
| |
Collapse
|
45
|
Roefs ECA, Eiling I, de Bresser J, van Osch MJP, Hirschler L. BOLD-CSF dynamics assessed using real-time phase contrast CSF flow interleaved with cortical BOLD MRI. Fluids Barriers CNS 2024; 21:107. [PMID: 39719574 DOI: 10.1186/s12987-024-00607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) motion and pulsatility has been proposed to play a crucial role in clearing brain waste. Although its driving forces remain debated, increasing evidence suggests that large amplitude vasomotion drives such CSF fluctuations. Recently, a fast blood-oxygen-level-dependent (BOLD) fMRI sequence was used to measure the coupling between CSF fluctuations and low-frequency hemodynamic oscillations in the human cortex. However, this technique is not quantitative, only captures unidirectional flow and is sensitive to B0-fluctuations. Real-time phase contrast (pcCSF) instead measures CSF flow dynamics in a fast, quantitative, bidirectional and B0-insensitive manner, but lacks information on hemodynamic brain oscillations. In this study we propose to combine the strengths of both sequences by interleaving real-time phase contrast with a cortical BOLD scan, thereby enabling the quantification of the interaction between CSF flow and cortical BOLD. METHODS Two experiments were performed. First, we compared the CSF flow measured using real-time phase contrast (pcCSF) with the inflow-sensitized BOLD (iCSF) measurements by interleaving both techniques at the repetition level and planning them at the same location. Next, we compared the BOLD-CSF coupling obtained using the novel pcCSF interleaved with cortical BOLD to the coupling obtained with the original iCSF. To time-lock the CSF fluctuations, participants were instructed to perform slow, abdominal paced breathing. RESULTS pcCSF captures bidirectional CSF dynamics with a more pronounced in- and outflow curve than the original iCSF method. With the pcCSF method, the BOLD-CSF coupling was stronger (mean cross-correlation peak increase = 0.22, p = .008) and with a 1.9 s shorter temporal lag (p = .016), as compared to using the original iCSF technique. CONCLUSIONS In this study, we introduce a new method to study the coupling of CSF flow measured in the fourth ventricle to cortical BOLD fluctuations. In contrast to the original approach, the use of phase contrast MRI to measure CSF flow provides a quantitative in- and outflow curve, and improved BOLD-CSF coupling metrics.
Collapse
Affiliation(s)
- Emiel C A Roefs
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Ingmar Eiling
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Jeroen de Bresser
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias J P van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lydiane Hirschler
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
46
|
Eraky AM, Yerramalla Y, Khan A, Mokhtar Y, Wright A, Alsabbagh W, Franco Valle K, Haleem M, Kennedy K, Boulware C. Complexities, Benefits, Risks, and Clinical Implications of Sodium Bicarbonate Administration in Critically Ill Patients: A State-of-the-Art Review. J Clin Med 2024; 13:7822. [PMID: 39768744 PMCID: PMC11678678 DOI: 10.3390/jcm13247822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Sodium bicarbonate has been used in the treatment of different pathologies, such as hyperkalemia, cardiac arrest, tricyclic antidepressant toxicity, aspirin toxicity, acute acidosis, lactic acidosis, diabetic ketoacidosis, rhabdomyolysis, and adrenergic receptors' resistance to catecholamine in patients with shock. An ongoing debate about bicarbonate's efficacy and potential harm has been raised for decades because of the lack of evidence supporting its potential efficacy. Despite the guidelines' restrictions, sodium bicarbonate has been overused in clinical practice. The overuse of sodium bicarbonate could be because of the desire to correct the arterial blood gas parameters rapidly instead of achieving homeostasis by treating the cause of the metabolic acidosis. Moreover, it is believed that sodium bicarbonate may reverse acidosis-induced myocardial depression, hemodynamic instability, ventricular arrhythmias, impaired cellular energy production, resistance to catecholamines, altered metabolism, enzyme suppression, immune dysfunction, and ineffective oxygen delivery. On the other hand, it is crucial to pay attention to the potential harm that could be caused by excessive sodium bicarbonate administration. Sodium bicarbonate may cause paradoxical respiratory acidosis, intracellular acidosis, hypokalemia, hypocalcemia, alkalosis, impaired oxygen delivery, cerebrospinal fluid acidosis, and neurologic dysfunction. In this review, we discuss the pathophysiology of sodium bicarbonate-induced adverse effects and potential benefits. We also review the most recent clinical trials, observational studies, and guidelines discussing the use of sodium bicarbonate in different pathologies.
Collapse
Affiliation(s)
- Akram M. Eraky
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (K.K.); (C.B.)
- Graduate Medical Education, Kansas City University, Kansas City, MO 64106, USA
| | - Yashwanth Yerramalla
- Pulmonology and Critical Care Medicine, Freeman Health System, Joplin, MO 64804, USA; (Y.Y.); (A.K.); (Y.M.)
| | - Adnan Khan
- Pulmonology and Critical Care Medicine, Freeman Health System, Joplin, MO 64804, USA; (Y.Y.); (A.K.); (Y.M.)
| | - Yasser Mokhtar
- Pulmonology and Critical Care Medicine, Freeman Health System, Joplin, MO 64804, USA; (Y.Y.); (A.K.); (Y.M.)
| | - Alisha Wright
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (K.K.); (C.B.)
| | - Walaa Alsabbagh
- Internal Medicine, Northern General Hospital, Sheffield S5 7AU, UK;
| | - Kevin Franco Valle
- Anesthesiology Department, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mina Haleem
- Nephrology Unit, Department of Clinical and Experimental Internal Medicine, Medical Research Institute, Alexandria University, Alexandria 5422031, Egypt;
| | - Kyle Kennedy
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (K.K.); (C.B.)
| | - Chad Boulware
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (K.K.); (C.B.)
| |
Collapse
|
47
|
Nicholls JK, Lecchini-Visintini A, Ince J, Pallett E, Minhas JS, Oura M, Chung EML. A brief history of the development of transcranial tissue Doppler ultrasound. Interface Focus 2024; 14:20240031. [PMID: 39649445 PMCID: PMC11620822 DOI: 10.1098/rsfs.2024.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/10/2024] Open
Abstract
This article documents the early development of the first transcranial Doppler (TCD)-based ultrasound system for continuous monitoring of brain tissue pulsations (BTPs). Transcranial tissue Doppler (TCTD) uses a lightweight, wearable single-element ultrasound probe to track tissue motion perpendicular to the skin's surface, providing tissue displacement estimates along a single beam line. Feasibility tests using an adapted TCD system confirmed that brain tissue motion data can be obtained from existing TCD hardware. Brain Tissue Velocimetry (Brain TV), a TCTD data acquisition system, was then developed to provide a lightweight and portable means of continuously recording TCTD data in real-time. Brain TV measurements are synchronized to a 3-lead electrocardiogram and can be recorded alongside other physiological measurements, such as blood pressure, heart rate and end-tidal carbon dioxide. We have shown that Brain TV is able to record BTPs from sample depths ranging from 22 to 80 mm below the probe's surface and from multiple positions on the head. Studies in healthy volunteers, stroke patients and ultrasound phantom brain models demonstrate how TCTD might provide insights into the relationships between physiological measurements and brain tissue motion and show promise for rapid clinical assessment and continuous monitoring of BTPs.
Collapse
Affiliation(s)
- Jennifer K. Nicholls
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group University of Leicester, LeicesterLE1 5WW, UK
- University Hospitals of Leicester NHS Trust, LeicesterLE1 5WW, UK
| | | | - Jonathan Ince
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group University of Leicester, LeicesterLE1 5WW, UK
| | - Edward Pallett
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group University of Leicester, LeicesterLE1 5WW, UK
- University Hospitals of Leicester NHS Trust, LeicesterLE1 5WW, UK
| | - Jatinder S. Minhas
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group University of Leicester, LeicesterLE1 5WW, UK
- University Hospitals of Leicester NHS Trust, LeicesterLE1 5WW, UK
- National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, LeicesterLE5 4PW, UK
| | - Mitsuhiro Oura
- Nihon Kohden Corporation Tokorozawa-shi, Saitama359-0037, Japan
| | - Emma M. L. Chung
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group University of Leicester, LeicesterLE1 5WW, UK
- University Hospitals of Leicester NHS Trust, LeicesterLE1 5WW, UK
- Department of Women and Children’s Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, LondonSE1 7EH, UK
| |
Collapse
|
48
|
Buongiorno M, Sánchez-Benavides G, Marzal-Espí C, Giraldo DM, Krupinski J, Cullell N, Grau-Rivera O, Suárez-Calvet M, Gispert JD, de la Sierra A. Blood-brain barrier permeable β-blockers association with Alzheimer's disease cerebrospinal fluid biomarkers levels in non-demented individuals. J Alzheimers Dis 2024; 102:975-980. [PMID: 39584306 DOI: 10.1177/13872877241293812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
β-blockers that easily cross the blood-brain barrier (BBB) seem to diminish the risk of Alzheimer's disease (AD), hypothetically facilitating waste clearance. However, their effect on AD pathophysiological markers is unknown. We compared cerebrospinal fluid (CSF) AD biomarker levels among non-demented individuals taking low, intermediate, or high BBB permeable β-blockers in two samples (ADNI: n = 216; EPAD: n = 79). We found that CSF amyloid-β levels were higher in individuals taking highly permeable β-blockers in the ADNI sample. This result was not replicated in EPAD, in which diminished levels of pTau181 and tTau were observed. These data suggest that β-blockers may impact AD pathophysiology.
Collapse
Affiliation(s)
- Mariateresa Buongiorno
- Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Neurovascular Diseases Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Clara Marzal-Espí
- Department of Neurology, Fundació Assistencial Mútua Terrassa, Terrassa, Spain
| | - Darly Milena Giraldo
- Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Neurovascular Diseases Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Jerzy Krupinski
- Department of Neurology, Fundació Assistencial Mútua Terrassa, Terrassa, Spain
- Fundació per a Docència i Recerca, Mútua Terrassa, Terrassa, Spain
- Faculty of Science and Engineering, Department of Life Sciences John Dalton Building, Manchester Metropolitan University, Manchester, UK
| | - Natalia Cullell
- Fundació per a Docència i Recerca, Mútua Terrassa, Terrassa, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Alex de la Sierra
- Fundació per a Docència i Recerca, Mútua Terrassa, Terrassa, Spain
- Internal Medicine Department, University Hospital Mutua de Terrassa, University of Barcelona, Terrassa, Spain
| |
Collapse
|
49
|
Schreiber S, Arndt P, Morton L, Garza AP, Müller P, Neumann K, Mattern H, Dörner M, Bernal J, Vielhaber S, Meuth SG, Dunay IR, Dityatev A, Henneicke S. Immune system activation and cognitive impairment in arterial hypertension. Am J Physiol Cell Physiol 2024; 327:C1577-C1590. [PMID: 39495252 PMCID: PMC11684865 DOI: 10.1152/ajpcell.00219.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Chronic arterial hypertension disrupts the integrity of the cerebral microvasculature, doubling the risk of age-related dementia. Despite sufficient antihypertensive therapy in still a significant proportion of individuals blood pressure lowering alone does not preserve cognitive health. Accumulating evidence highlights the role of inflammatory mechanisms in the pathogenesis of hypertension. In this review, we introduce a temporal framework to explore how early immune system activation and interactions at neurovascular-immune interfaces pave the way to cognitive impairment. The overall paradigm suggests that prohypertensive stimuli induce mechanical stress and systemic inflammatory responses that shift peripheral and meningeal immune effector mechanisms toward a proinflammatory state. Neurovascular-immune interfaces in the brain include a dysfunctional blood-brain barrier, crossed by peripheral immune cells; the perivascular space, in which macrophages respond to cerebrospinal fluid- and blood-derived immune regulators; and the meningeal immune reservoir, particularly T cells. Immune responses at these interfaces bridge peripheral and neurovascular unit inflammation, directly contributing to impaired brain perfusion, clearance of toxic metabolites, and synaptic function. We propose that deep immunophenotyping in biofluids together with advanced neuroimaging could aid in the translational determination of sequential immune and brain endotypes specific to arterial hypertension. This could close knowledge gaps on how and when immune system activation transits into neurovascular dysfunction and cognitive impairment. In the future, targeting specific immune mechanisms could prevent and halt hypertension disease progression before clinical symptoms arise, addressing the need for new interventions against one of the leading threats to cognitive health.
Collapse
Affiliation(s)
- Stefanie Schreiber
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Arndt
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
| | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Alejandra P Garza
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Patrick Müller
- Department of Cardiology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Katja Neumann
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Marc Dörner
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Switzerland
| | - Jose Bernal
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stefan Vielhaber
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ildiko R Dunay
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Solveig Henneicke
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
| |
Collapse
|
50
|
Wu X, He Q, Yin Y, Tan S, Zhang B, Li W, Hsu YC, Xue R, Bai R. Relaxation-exchange magnetic resonance imaging (REXI): a non-invasive imaging method for evaluating trans-barrier water exchange in the choroid plexus. Fluids Barriers CNS 2024; 21:94. [PMID: 39593112 PMCID: PMC11590242 DOI: 10.1186/s12987-024-00589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The choroid plexus (CP) plays a crucial role in cerebrospinal fluid (CSF) production and brain homeostasis. However, non-invasive imaging techniques to assess its function remain limited. This study was conducted to develop a novel, contrast-agent-free MRI technique, termed relaxation-exchange magnetic resonance imaging (REXI), for evaluating CP-CSF water transport, a potential biomarker of CP function. METHODS REXI utilizes the inherent and large difference in magnetic resonance transverse relaxation times (T2s) between CP tissue (e.g., blood vessels and epithelial cells) and CSF. It uses a filter block to remove most CP tissue magnetization (shorter T2), a mixing block for CP-CSF water exchange with mixing time tm, and a detection block with multi-echo acquisition to determine the CP/CSF component fraction after exchange. The REXI pulse sequence was implemented on a 9.4 T preclinical MRI scanner. For validation of REXI's ability to measure exchange, we conducted preliminary tests on urea-water proton-exchange phantoms with various pH levels. We measured the steady-state water efflux rate from CP to CSF in rats and tested the sensitivity of REXI in detecting CP dysfunction induced by the carbonic anhydrase inhibitor acetazolamide. RESULTS REXI pulse sequence successfully captured changes in the proton exchange rate (from short-T2 component to long-T2 component [i.e., ksl]) of urea-water phantoms at varying pH, demonstrating its sensitivity to exchange processes. In rat CP, REXI significantly suppressed the CP tissue signal, reducing the short-T2 fraction (fshort) from 0.44 to 0.23 (p < 0.0001), with significant recovery to 0.28 after a mixing time of 400 ms (p = 0.014). The changes in fshort at various mixing times can be accurately described by a two-site exchange model, yielding a steady-state water efflux rate from CP to CSF (i.e., kbc) of 0.49 s-1. A scan-rescan experiment demonstrated that REXI had excellent reproducibility in measuring kbc (intraclass correlation coefficient = 0.90). Notably, acetazolamide-induced CSF reduction resulted in a 66% decrease in kbc within rat CP. CONCLUSIONS This proof-of-concept study demonstrates the feasibility of REXI for measuring trans-barrier water exchange in the CP, offering a promising biomarker for future assessments of CP function.
Collapse
Affiliation(s)
- Xuetao Wu
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingping He
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Interdisciplinary Institute of Neuroscience and Technology and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Yin
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Shuyuan Tan
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Baogui Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiyun Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
| |
Collapse
|