1
|
Hemmati F, Akinpelu A, Nweze DC, Mistriotis P. 3D confinement alters smooth muscle cell responses to chemical and mechanical cues. APL Bioeng 2024; 8:046103. [PMID: 39464377 PMCID: PMC11512639 DOI: 10.1063/5.0225569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Smooth muscle cell (SMC) phenotypic switching is a hallmark of many vascular diseases. Although prior work has established that chemical and mechanical cues contribute to SMC phenotypic switching, the impact of three-dimensional (3D) confinement on this process remains elusive. Yet, in vivo, arterial SMCs reside within confined environments. In this study, we designed a microfluidic assay to investigate the interplay between 3D confinement and different environmental stimuli in SMC function. Our results show that tightly, but not moderately, confined SMCs acquire a contractile phenotype when exposed to collagen I. Elevated compressive forces induced by hydrostatic pressure abolish this upregulation of the contractile phenotype and compromise SMC survival, particularly in tightly confined spaces. Transforming growth factor beta 1, which promotes the contractile state in moderate confinement, fails to enhance the contractility of tightly confined cells. Fibronectin and engagement of cadherin 2 suppress the contractile phenotype of SMCs regardless of the degree of confinement. In contrast, homophilic engagement of cadherin 11 upregulates SMC-specific genes and enhances contractility in both moderately and tightly confined cells. Overall, our work introduces 3D confinement as a regulator of SMC phenotypic responses to chemical and mechanical signals.
Collapse
Affiliation(s)
- Farnaz Hemmati
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA
| | - Ayuba Akinpelu
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA
| | - Daniel Chinedu Nweze
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA
| | | |
Collapse
|
2
|
Lin Z, Zhao M, Zhang X, Piao J, Zheng X, Shu S, Zhao L, Zhang M, Shi GP, Lei Y, Cui R, Yue X, Cheng XW. CD8 + T-cell deficiency protects mice from abdominal aortic aneurysm formation in response to calcium chloride 2. J Hypertens 2024; 42:1966-1975. [PMID: 39146540 PMCID: PMC11451972 DOI: 10.1097/hjh.0000000000003823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is an aneurysm-like dilated and highly fatal cardiovascular disease. CD8 + T cells have been shown to be critical for vascular pathological processes, but the contribution of these lymphocytes to vascular diseases remains elusive. METHODS AND RESULTS Eight-week-old male wildtype (CD8 +/+ ) and Cd8a knockout (CD8 -/- ) mice were used in a calcium chloride 2 (CaCl 2 )-induced experimental AAA model. At 6 weeks after surgery, CD8 + T-cell deletion prevented the formation of AAA, accompanied by reductions of the levels of inflammatory (interferon-γ [IFN-γ], interleukin-1β, monocyte chemoattractant protein-1, intracellular adhesion molecule-1, vascular cell adhesion molecule-1, NOD-like receptor protein 3, caspase-1), oxidative stress [NADPH oxidase and gp91 phox ], and proteolysis (cathepsin S, cathepsin K, matrix metalloproteinase-2 [MMP-2] and MMP-9) proteins and/or genes in plasma and/or AAA tissues. Immunoreactivities of MMP-2 and MMP-9 were observed in macrophages. An injection of IFN-γ and adoptive transfer of CD8 + T cells of IFN-γ +/+ mice diminished CD8 -/- -mediated vasculoprotective actions in the AAA mice. In vitro, IFN-γ enhanced MMP-2 and MMP-9 gelatinolytic activities in macrophage and/or vascular smooth muscle cells. CONCLUSION The vasculoprotective effects of CD8 + T-cell deletion in a mouse CaCl 2 -induced AAA model were likely attributable to, at least in part, the attenuation of IFN-γ-dependent inflammation action, oxidative stress production, and proteolysis, suggesting a novel therapeutic target for AAA formation by regulating CD8 + T-cell-derived IFN-γ secretion.
Collapse
Affiliation(s)
- Zhuo Lin
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin
| | - Mantong Zhao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui
| | - Jinshun Piao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Xintong Zheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Shangzhi Shu
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, Jilin PR, China
| | - Longguo Zhao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Meiping Zhang
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yanna Lei
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Rihua Cui
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Xueling Yue
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| |
Collapse
|
3
|
Bohara S, Bagheri A, Ertugral EG, Radzikh I, Sandlers Y, Jiang P, Kothapalli CR. Integrative analysis of gene expression, protein abundance, and metabolomic profiling elucidates complex relationships in chronic hyperglycemia-induced changes in human aortic smooth muscle cells. J Biol Eng 2024; 18:61. [PMID: 39473010 PMCID: PMC11523773 DOI: 10.1186/s13036-024-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major public health concern with significant cardiovascular complications (CVD). Despite extensive epidemiological data, the molecular mechanisms relating hyperglycemia to CVD remain incompletely understood. We here investigated the impact of chronic hyperglycemia on human aortic smooth muscle cells (HASMCs) cultured under varying glucose conditions in vitro, mimicking normal (5 mmol/L), pre-diabetic (10 mmol/L), and diabetic (20 mmol/L) conditions, respectively. Normal HASMC cultures served as baseline controls, and patient-derived T2DM-SMCs served as disease controls. Results showed significant increases in cellular proliferation, area, perimeter, and F-actin expression with increasing glucose concentration (p < 0.01), albeit not exceeding the levels in T2DM cells. Atomic force microscopy analysis revealed significant decreases in Young's moduli, membrane tether forces, membrane tension, and surface adhesion in SMCs at higher glucose levels (p < 0.001), with T2DM-SMCs being the lowest among all the cases (p < 0.001). T2DM-SMCs exhibited elevated levels of selected pro-inflammatory markers (e.g., ILs-6, 8, 23; MCP-1; M-CSF; MMPs-1, 2, 3) compared to glucose-treated SMCs (p < 0.01). Conversely, growth factors (e.g., VEGF-A, PDGF-AA, TGF-β1) were higher in SMCs exposed to high glucose levels but lower in T2DM-SMCs (p < 0.01). Pathway enrichment analysis showed significant increases in the expression of inflammatory cytokine-associated pathways, especially involving IL-10, IL-4 and IL-13 signaling in genes that are up-regulated by elevated glucose levels. Differentially regulated gene analysis showed that compared to SMCs receiving normal glucose, 513 genes were upregulated and 590 genes were downregulated in T2DM-SMCs; fewer genes were differentially expressed in SMCs receiving higher glucose levels. Finally, the altered levels in genes involved in ECM organization, elastic fiber synthesis and formation, laminin interactions, and ECM proteoglycans were identified. Growing literature suggests that phenotypic switching in SMCs lead to arterial wall remodeling (e.g., change in stiffness, calcific deposits formation), with direct implications in the onset of CVD complications. Our results suggest that chronic hyperglycemia is one such factor that leads to morphological, biomechanical, and functional alterations in vascular SMCs, potentially contributing to the pathogenesis of T2DM-associated arterial remodeling. The observed differences in gene expression patterns between in vitro hyperglycemic models and patient-derived T2DM-SMCs highlight the complexity of T2DM pathophysiology and underline the need for further studies.
Collapse
Affiliation(s)
- Smriti Bohara
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Atefeh Bagheri
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, 44115, USA
| | - Elif G Ertugral
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Igor Radzikh
- Department of Chemistry, Cleveland State University, Cleveland, OH, 44115, USA
| | - Yana Sandlers
- Department of Chemistry, Cleveland State University, Cleveland, OH, 44115, USA
| | - Peng Jiang
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, 44115, USA.
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, 44115, USA.
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| | - Chandrasekhar R Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA.
| |
Collapse
|
4
|
Abdelazim H, Barnes A, Stupin J, Hasson R, Muñoz-Ballester C, Young KL, Robel S, Smyth JW, Lamouille S, Chappell JC. Optimized Enrichment of Murine Blood-Brain Barrier Vessels with a Critical Focus on Network Hierarchy in Post-Collection Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613898. [PMID: 39345630 PMCID: PMC11429916 DOI: 10.1101/2024.09.19.613898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cerebrovascular networks contain a unique region of interconnected capillaries known as the blood-brain barrier (BBB). Positioned between upstream arteries and downstream veins, these microvessels have unique structural features, such as the absence of vascular smooth muscle cells (vSMCs) and a relatively thin basement membrane, to facilitate highly efficient yet selective exchange between the circulation and the brain interstitium. This vital role in neurological health and function has garnered significant attention from the scientific community and inspired methodology for enriching BBB capillaries. Extensive characterization of the isolates from such protocols is essential for framing the results of follow-on experiments and analyses, providing the most accurate interpretation and assignment of BBB properties. Seeking to aid in these efforts, here we visually screened output samples using fluorescent labels and found considerable reduction of non-vascular cells following density gradient centrifugation (DGC) and subsequent filtration. Comparatively, this protocol enriched brain capillaries, though larger diameter vessels associated with vSMCs could not be fully excluded. Protein analysis further underscored the enrichment of vascular markers following DGC, with filtration preserving BBB-associated markers and reducing - though not fully removing - arterial/venous contributions. Transcriptional profiling followed similar trends of DGC plus filtration generating isolates with less non-vascular and non- capillary material included. Considering vascular network hierarchy inspired a more comprehensive assessment of the material yielded from brain microvasculature isolation protocols. This approach is important for providing an accurate representation of the cerebrovascular segments being used for data collection and assigning BBB properties specifically to capillaries relative to other regions of the brain vasculature. HIGHLIGHTS We optimized a protocol for the enrichment of murine capillaries using density gradient centrifugation and follow-on filtration.We offer an approach to analyzing post-collection cerebrovascular fragments and cells with respect to vascular network hierarchy.Assessing arterial and venous markers alongside those associated with the BBB provides a more comprehensive view of material collected.Enhanced insight into isolate composition is critical for a more accurate view of BBB biology relative to larger diameter cerebrovasculature. MOTIVATION The recent surge in studies investigating the cerebrovasculature, and the blood-brain barrier (BBB) in particular, has inspired a broad range of approaches to target and observe these specialized blood vessels within murine models. To capture transcriptional and molecular changes during a specific intervention or disease model, techniques have been developed to isolate brain capillary networks and collect their cellular constituents for downstream analysis. Here, we sought to highlight the benefits and cautions of isolating and enriching microvessels from murine brain tissue. Specifically, through rigorous assessment of the output material following application of specific protocols, we presented the benefits of specific approaches to reducing the inclusion of non-vascular cells and non-capillary vessel segments, verified by analysis of vascular-related proteins and transcripts. We also emphasized the levels of larger- caliber vessels (i.e. arteries/arterioles and veins/venules) that are collected alongside cerebral capillaries with each method. Distinguishing these vascular regions with greater precision is critical for attributing specific characteristics exclusively to the BBB where metabolic, ion, and waste exchange occurs. While the addition of larger vessels to molecular / transcriptional analyses or follow-on experiments may not be substantial for a given protocol, it is essential to gauge and report their level of inclusion, as their contributions may be inadvertently assigned to the BBB. Therefore, we present this optimized brain microvessel isolation protocol and associated evaluation methods to underscore the need for increased rigor in characterizing vascular regions that are collected and analyzed within a given study.
Collapse
|
5
|
Vanalderwiert L, Henry A, Wahart A, Carvajal Berrio DA, Brauchle EM, El Kaakour L, Schenke-Layland K, Brinckmann J, Steenbock H, Debelle L, Six I, Faury G, Jaisson S, Gillery P, Durlach V, Sartelet H, Maurice P, Bennasroune A, Martiny L, Duca L, Romier B, Blaise S. Metabolic syndrome-associated murine aortic wall stiffening is associated with premature elastic fibers aging. Am J Physiol Cell Physiol 2024; 327:C698-C715. [PMID: 38946422 DOI: 10.1152/ajpcell.00615.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
Type 2 diabetes (T2D) constitutes a major public health problem, and despite prevention efforts, this pandemic disease is one of the deadliest diseases in the world. In 2022, 6.7 million patients with T2D died prematurely from vascular complications. Indeed, diabetes increases the risk of myocardial infarction or stroke eightfold. The identification of the molecular factors involved in the occurrence of cardiovascular complications and their prevention are therefore major axes. Our hypothesis is that factors brought into play during physiological aging appear prematurely with diabetes progression. Our study focused on the aging of the extracellular matrix (ECM), a major element in the maintenance of vascular homeostasis. We characterized the morphological and functional aspects of aorta, with a focus on the collagen and elastic fibers of diabetic mice aged from 6 mo to nondiabetic mice aged 6 mo and 20 mo. The comparison with the two nondiabetic models (young and old) highlighted an exacerbated activity of proteases, which could explain a disturbance in the collagen accumulation and an excessive degradation of elastic fibers. Moreover, the generation of circulating elastin-derived peptides reflects premature aging of the ECM. These extracellular elements contribute to the appearance of vascular rigidity, often the origin of pathologies such as hypertension and atherosclerosis. In conclusion, we show that diabetic mice aged 6 mo present the same characteristics of ECM wear as those observed in mice aged 20 mo. This accelerated aortic wall remodeling could then explain the early onset of cardiovascular diseases and, therefore, the premature death of patients with T2D.NEW & NOTEWORTHY Aortic elastic fibers of young (6-mo old) individuals with diabetes degrade prematurely and exhibit an appearance like that found in aged (20-mo old) nondiabetic mice. Exacerbated elastolysis and elastin-derived peptide production are characteristic elements, contributing to early aortic wall rigidity and hypertension development. Therefore, limiting this early aging could be a judicious therapeutic approach to reduce cardiovascular complications and premature death in patients with diabetes.
Collapse
MESH Headings
- Animals
- Elastic Tissue/metabolism
- Elastic Tissue/pathology
- Vascular Stiffness/physiology
- Mice
- Aorta/metabolism
- Aorta/pathology
- Aorta/physiopathology
- Mice, Inbred C57BL
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Male
- Metabolic Syndrome/metabolism
- Metabolic Syndrome/pathology
- Metabolic Syndrome/physiopathology
- Elastin/metabolism
- Collagen/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Aging/pathology
- Aging/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Aging, Premature/metabolism
- Aging, Premature/pathology
- Aging, Premature/physiopathology
Collapse
Affiliation(s)
| | - Auberi Henry
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Amandine Wahart
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Daniel A Carvajal Berrio
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Eva M Brauchle
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute, Reutlingen, Germany
| | - Lara El Kaakour
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Katja Schenke-Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute, Reutlingen, Germany
- Division of Cardiology, Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Juergen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Laurent Debelle
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Isabelle Six
- Research Unit 7517, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), University of Picardie Jules Verne, Amiens, France
| | - Gilles Faury
- University Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Stéphane Jaisson
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
- Biochemistry Department, University Hospital of Reims, Reims, France
| | - Philippe Gillery
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
- Biochemistry Department, University Hospital of Reims, Reims, France
| | - Vincent Durlach
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
- Cardiovascular and Thoracic Division, Hôpital Robert Debré, Reims, France
| | - Hervé Sartelet
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Pascal Maurice
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Amar Bennasroune
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Laurent Martiny
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Laurent Duca
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Béatrice Romier
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Sébastien Blaise
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
6
|
Chen YG, Dombaxe C, D'Amato AR, Van Herck S, Welch H, Fu Q, Zhang S, Wang Y. Transformation of metallo-elastomer grafts in a carotid artery interposition model over a year. Biomaterials 2024; 309:122598. [PMID: 38696943 DOI: 10.1016/j.biomaterials.2024.122598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Current vascular grafts, primarily Gore-Tex® and Dacron®, don't integrate with the host and have low patency in small-diameter vessels (<6 mm). Biomaterials that possess appropriate viscoelasticity, compliance, and high biocompatibility are essential for their application in small blood vessels. We have developed metal ion crosslinked poly(propanediol-co-(hydroxyphenyl methylene)amino-propanediol sebacate) (M-PAS), a biodegradable elastomer with a wide range of mechanical properties. We call these materials metallo-elastomers. An initial test on Zn-, Fe-, and Cu-PAS grafts reveals that Cu-PAS is the most suitable because of its excellent elastic recoil and well-balanced polymer degradation/tissue regeneration rate. Here we report host remodeling of Cu-PAS vascular grafts in rats over one year. 76 % of the grafts remain patent and >90 % of the synthetic polymer is degraded by 12 months. Extensive cell infiltration leads to a positive host remodeling. The remodeled grafts feature a fully endothelialized lumen. Circumferentially organized smooth muscle cells, elastin fibers, and widespread mature collagen give the neoarteries mechanical properties similar to native arteries. Proteomic analysis further reveals the presence of important vascular proteins in the neoarteries. Evidence suggests that Cu-PAS is a promising material for engineering small blood vessels.
Collapse
Affiliation(s)
- Ying Grace Chen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Catia Dombaxe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | | | - Simon Van Herck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Halle Welch
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Qin Fu
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14850, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14850, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
7
|
Joglekar MM, Bekker NJ, Koloko Ngassie ML, Vonk JM, Borghuis T, Reinders-Luinge M, Bakker J, Woldhuis RR, Pouwels SD, Melgert BN, Timens W, Brandsma CA, Burgess JK. The lung extracellular matrix protein landscape in severe early-onset and moderate chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2024; 327:L304-L318. [PMID: 38915286 DOI: 10.1152/ajplung.00332.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
Extracellular matrix (ECM) remodeling has been implicated in the irreversible obstruction of airways and destruction of alveolar tissue in chronic obstructive pulmonary disease (COPD). Studies investigating differences in the lung ECM in COPD have mainly focused on some collagens and elastin, leaving an array of ECM components unexplored. We investigated the differences in the ECM landscape comparing severe-early onset (SEO)-COPD and moderate COPD to control lung tissue for collagen type I α chain 1 (COL1A1), collagen type VI α chain 1 (COL6A1); collagen type VI α chain 2 (COL6A2), collagen type XIV α chain 1 (COL14A1), fibulin 2 and 5 (FBLN2 and FBLN5), latent transforming growth factor β binding protein 4 (LTBP4), lumican (LUM), versican (VCAN), decorin (DCN), and elastin (ELN) using image analysis and statistical modeling. Percentage area and/or mean intensity of expression of LUM in the parenchyma, and COL1A1, FBLN2, LTBP4, DCN, and VCAN in the airway walls, was proportionally lower in COPD compared to controls. Lowered levels of most ECM proteins were associated with decreasing forced expiratory volume in 1 s (FEV1) measurements, indicating a relationship with disease severity. Furthermore, we identified six unique ECM signatures where LUM and COL6A1 in parenchyma and COL1A1, FBLN5, DCN, and VCAN in airway walls appear essential in reflecting the presence and severity of COPD. These signatures emphasize the need to examine groups of proteins to represent an overall difference in the ECM landscape in COPD that are more likely to be related to functional effects than individual proteins. Our study revealed differences in the lung ECM landscape between control and COPD and between SEO and moderate COPD signifying distinct pathological processes in the different subgroups.NEW & NOTEWORTHY Our study identified chronic obstructive pulmonary disease (COPD)-associated differences in the lung extracellular matrix (ECM) composition. We highlight the compartmental differences in the ECM landscape in different subtypes of COPD. The most prominent differences were observed for severe-early onset COPD. Moreover, we identified unique ECM signatures that describe airway walls and parenchyma providing insight into the intertwined nature and complexity of ECM changes in COPD that together drive ECM remodeling and may contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Mugdha M Joglekar
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Nicolaas J Bekker
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Maunick Lefin Koloko Ngassie
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Marjan Reinders-Luinge
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Janna Bakker
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Roy R Woldhuis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Simon D Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - Barbro N Melgert
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences, KOLFF Institute, Groningen, The Netherlands
| |
Collapse
|
8
|
Chanduri M, Kumar A, Weiss D, Emuna N, Barsukov I, Shi M, Tanaka K, Wang X, Datye A, Kanyo J, Collin F, Lam T, Schwarz UD, Bai S, Nottoli T, Goult BT, Humphrey JD, Schwartz MA. Cellular stiffness sensing through talin 1 in tissue mechanical homeostasis. SCIENCE ADVANCES 2024; 10:eadi6286. [PMID: 39167642 PMCID: PMC11338229 DOI: 10.1126/sciadv.adi6286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Tissue mechanical properties are determined mainly by the extracellular matrix (ECM) and actively maintained by resident cells. Despite its broad importance to biology and medicine, tissue mechanical homeostasis remains poorly understood. To explore cell-mediated control of tissue stiffness, we developed mutations in the mechanosensitive protein talin 1 to alter cellular sensing of ECM. Mutation of a mechanosensitive site between talin 1 rod-domain helix bundles R1 and R2 increased cell spreading and tension exertion on compliant substrates. These mutations promote binding of the ARP2/3 complex subunit ARPC5L, which mediates the change in substrate stiffness sensing. Ascending aortas from mice bearing these mutations showed less fibrillar collagen, reduced axial stiffness, and lower rupture pressure. Together, these results demonstrate that cellular stiffness sensing contributes to ECM mechanics, directly supporting the mechanical homeostasis hypothesis and identifying a mechanosensitive interaction within talin that contributes to this mechanism.
Collapse
Affiliation(s)
- Manasa Chanduri
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Abhishek Kumar
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Nir Emuna
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Igor Barsukov
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Miusi Shi
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Keiichiro Tanaka
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Xinzhe Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, USA
| | - Amit Datye
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Florine Collin
- Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
| | - TuKiet Lam
- Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Udo D. Schwarz
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, USA
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06510, USA
| | - Suxia Bai
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Timothy Nottoli
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Benjamin T Goult
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- School of Biosciences, University of Kent, Canterbury, UK
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
9
|
Łopianiak I, Kawecka A, Civelek M, Wojasiński M, Cicha I, Ciach T, Butruk-Raszeja BA. Characterization of Blow-Spun Polyurethane Scaffolds-Influence of Fiber Alignment and Fiber Diameter on Pericyte Growth. ACS Biomater Sci Eng 2024; 10:4388-4399. [PMID: 38856968 PMCID: PMC11234331 DOI: 10.1021/acsbiomaterials.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In this study, fibrous polyurethane (PU) materials with average fiber diameter of 200, 500, and 1000 nm were produced using a solution blow spinning (SBS) process. The effects of the rotation speed of the collector (in the range of 200-25 000 rpm) on the fiber alignment and diameter were investigated. The results showed that fiber alignment was influenced by the rotation speed of the collector, and such alignment was possible when the fiber diameter was within a specific range. Homogeneously oriented fibers were obtained only for a fiber diameter ≥500 nm. Moreover, the changes in fiber orientation and fiber diameter (resulting from changes in the rotation speed of the collector) were more noticeable for materials with an average fiber diameter of 1000 nm in comparison to 500 nm, which suggests that the larger the fiber diameter, the better the controlled architectures that can be obtained. The porosity of the produced scaffolds was about 65-70%, except for materials with a fiber diameter of 1000 nm and aligned fibers, which had a higher porosity (76%). Thus, the scaffold pore size increased with increasing fiber diameter but decreased with increasing fiber alignment. The mechanical properties of fibrous materials strongly depend on the direction of stretching, whereby the fiber orientation influences the mechanical strength only for materials with a fiber diameter of 1000 nm. Furthermore, the fiber diameter and alignment affected the pericyte growth. Significant differences in cell growth were observed after 7 days of cell culture between materials with a fiber diameter of 1000 nm (cell coverage 96-99%) and those with a fiber diameter of 500 nm (cell coverage 70-90%). By appropriately setting the SBS process parameters, scaffolds can be easily adapted to the cell requirements, which is of great importance in producing complex 3D structures for guided tissue regeneration.
Collapse
Affiliation(s)
- Iwona Łopianiak
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
- Doctoral School of Warsaw University of Technology, Plac Politechniki 1, Warsaw 00-661, Poland
| | - Aleksandra Kawecka
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Mehtap Civelek
- Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, ENT-Department, Universitätsklinikum, GluckstraBe 10a, Erlangen 91054, Germany
| | - Michał Wojasiński
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Iwona Cicha
- Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, ENT-Department, Universitätsklinikum, GluckstraBe 10a, Erlangen 91054, Germany
| | - Tomasz Ciach
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Beata A Butruk-Raszeja
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| |
Collapse
|
10
|
Ellis MW, Riaz M, Huang Y, Anderson CW, Hoareau M, Li X, Luo H, Lee S, Park J, Luo J, Batty LD, Huang Q, Lopez CA, Reinhardt DP, Tellides G, Qyang Y. De Novo Elastin Assembly Alleviates Development of Supravalvular Aortic Stenosis-Brief Report. Arterioscler Thromb Vasc Biol 2024; 44:1674-1682. [PMID: 38752350 PMCID: PMC11209776 DOI: 10.1161/atvbaha.124.320790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND A series of incurable cardiovascular disorders arise due to improper formation of elastin during development. Supravalvular aortic stenosis (SVAS), resulting from a haploinsufficiency of ELN, is caused by improper stress sensing by medial vascular smooth muscle cells, leading to progressive luminal occlusion and heart failure. SVAS remains incurable, as current therapies do not address the root issue of defective elastin. METHODS We use SVAS here as a model of vascular proliferative disease using both human induced pluripotent stem cell-derived vascular smooth muscle cells and developmental Eln+/- mouse models to establish de novo elastin assembly as a new therapeutic intervention. RESULTS We demonstrate mitigation of vascular proliferative abnormalities following de novo extracellular elastin assembly through the addition of the polyphenol epigallocatechin gallate to SVAS human induced pluripotent stem cell-derived vascular smooth muscle cells and in utero to Eln+/- mice. CONCLUSIONS We demonstrate de novo elastin deposition normalizes SVAS human induced pluripotent stem cell-derived vascular smooth muscle cell hyperproliferation and rescues hypertension and aortic mechanics in Eln+/- mice, providing critical preclinical findings for the future application of epigallocatechin gallate treatment in humans.
Collapse
MESH Headings
- Elastin/metabolism
- Animals
- Humans
- Catechin/analogs & derivatives
- Catechin/pharmacology
- Disease Models, Animal
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Aortic Stenosis, Supravalvular/metabolism
- Aortic Stenosis, Supravalvular/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Cell Proliferation/drug effects
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/drug effects
- Mice
- Cells, Cultured
- Mice, Inbred C57BL
- Female
- Male
- Mice, Knockout
Collapse
Affiliation(s)
- Matthew W. Ellis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, 06519, USA
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Yan Huang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Christopher W. Anderson
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
- Department of Pathology, Yale University, New Haven, CT, 06520, USA
| | - Marie Hoareau
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Xin Li
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Hangqi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Seoyeon Lee
- Biological and Biomedical Sciences, Yale University, New Haven, CT 06511, USA
| | - Jinkyu Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Luke D. Batty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
- Department of Pathology, Yale University, New Haven, CT, 06520, USA
| | - Qunhua Huang
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Colleen A. Lopez
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Dieter P. Reinhardt
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - George Tellides
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
- Department of Pathology, Yale University, New Haven, CT, 06520, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
11
|
Zhao W, Li B, Hao J, Sun R, He P, Lv H, He M, Shen J, Han Y. Therapeutic potential of natural products and underlying targets for the treatment of aortic aneurysm. Pharmacol Ther 2024; 259:108652. [PMID: 38657777 DOI: 10.1016/j.pharmthera.2024.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Aortic aneurysm is a vascular disease characterized by irreversible vasodilatation that can lead to dissection and rupture of the aortic aneurysm, a life-threatening condition. Thoracic aortic aneurysm (TAA) and abdominal aortic aneurysm (AAA) are two main types. The typical treatments for aortic aneurysms are open surgery and endovascular aortic repair, which are only indicated for more severe patients. Most patients with aneurysms have an insidious onset and slow progression, and there are no effective drugs to treat this stage. The inability of current animal models to perfectly simulate all the pathophysiological states of human aneurysms may be the key to this issue. Therefore, elucidating the molecular mechanisms of this disease, finding new therapeutic targets, and developing effective drugs to inhibit the development of aneurysms are the main issues of current research. Natural products have been applied for thousands of years to treat cardiovascular disease (CVD) in China and other Asian countries. In recent years, natural products have combined multi-omics, computational biology, and integrated pharmacology to accurately analyze drug components and targets. Therefore, the multi-component and multi-target complexity of natural products have made them a potentially ideal treatment for multifactorial diseases such as aortic aneurysms. Natural products have regained popularity worldwide. This review provides an overview of the known natural products for the treatment of TAA and AAA and searches for potential cardiovascular-targeted natural products that may treat TAA and AAA based on various cellular molecular mechanisms associated with aneurysm development.
Collapse
Affiliation(s)
- Wenwen Zhao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Bufan Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jinjun Hao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Ruochen Sun
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Peng He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Hongyu Lv
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Mou He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jie Shen
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yantao Han
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
12
|
Vargas AI, Tarraf SA, Jennings T, Bellini C, Amini R. Vascular Remodeling During Late-Gestation Pregnancy: An In-Vitro Assessment of the Murine Ascending Thoracic Aorta. J Biomech Eng 2024; 146:071004. [PMID: 38345599 DOI: 10.1115/1.4064744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 03/20/2024]
Abstract
Maternal mortality due to cardiovascular disease is a rising concern in the U.S. Pregnancy triggers changes in the circulatory system, potentially influencing the structure of the central vasculature. Evidence suggests a link between a woman's pregnancy history and future cardiovascular health, but our understanding remains limited. To fill this gap, we examined the passive mechanics of the murine ascending thoracic aorta during late gestation. By performing biaxial mechanical testing on the ascending aorta, we were able to characterize the mechanical properties of both control and late-gestation tissues. By examining mechanical, structural, and geometric properties, we confirmed that remodeling of the aortic wall occurred. Morphological and mechanical properties of the tissue indicated an outward expansion of the tissue, as reflected in changes in wall thickness (∼12% increase) and luminal diameter (∼6% increase) at its physiologically loaded state in the pregnant group. With these geometric adaptations and despite increased hemodynamic loads, pregnancy did not induce significant changes in the tensile wall stress at the similar physiological pressure levels of the pregnant and control tissues. The alterations also included reduced intrinsic stiffness in the circumferential direction (∼18%) and reduced structural stiffness (∼26%) in the pregnant group. The observed vascular remodeling maintained the elastic stored energy of the aortic wall under systolic loads, indicating preservation of vascular function. Data from our study of pregnancy-related vascular remodeling will provide valuable insights for future investigations of maternal cardiovascular health.
Collapse
Affiliation(s)
- Ana I Vargas
- Department of Bioengineering, Northeastern University, Boston, MA 02115
| | - Samar A Tarraf
- Department of Bioengineering, Northeastern University, Boston, MA 02115
- Northeastern University
| | - Turner Jennings
- Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, MA 02115
- Northeastern University
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA 02115
| | - Rouzbeh Amini
- Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, MA 02115
| |
Collapse
|
13
|
Rosellini E, Giordano C, Guidi L, Cascone MG. Biomimetic Approaches in Scaffold-Based Blood Vessel Tissue Engineering. Biomimetics (Basel) 2024; 9:377. [PMID: 39056818 PMCID: PMC11274842 DOI: 10.3390/biomimetics9070377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular diseases remain a leading cause of mortality globally, with atherosclerosis representing a significant pathological means, often leading to myocardial infarction. Coronary artery bypass surgery, a common procedure used to treat coronary artery disease, presents challenges due to the limited autologous tissue availability or the shortcomings of synthetic grafts. Consequently, there is a growing interest in tissue engineering approaches to develop vascular substitutes. This review offers an updated picture of the state of the art in vascular tissue engineering, emphasising the design of scaffolds and dynamic culture conditions following a biomimetic approach. By emulating native vessel properties and, in particular, by mimicking the three-layer structure of the vascular wall, tissue-engineered grafts can improve long-term patency and clinical outcomes. Furthermore, ongoing research focuses on enhancing biomimicry through innovative scaffold materials, surface functionalisation strategies, and the use of bioreactors mimicking the physiological microenvironment. Through a multidisciplinary lens, this review provides insight into the latest advancements and future directions of vascular tissue engineering, with particular reference to employing biomimicry to create systems capable of reproducing the structure-function relationships present in the arterial wall. Despite the existence of a gap between benchtop innovation and clinical translation, it appears that the biomimetic technologies developed to date demonstrate promising results in preventing vascular occlusion due to blood clotting under laboratory conditions and in preclinical studies. Therefore, a multifaceted biomimetic approach could represent a winning strategy to ensure the translation of vascular tissue engineering into clinical practice.
Collapse
Affiliation(s)
- Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (C.G.); (L.G.)
| | | | | | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (C.G.); (L.G.)
| |
Collapse
|
14
|
Horvat D, Agoston-Coldea L. A spotlight on the aged pulmonary artery. Adv Clin Chem 2024; 123:157-177. [PMID: 39181621 DOI: 10.1016/bs.acc.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The ever-increasing life expectancy of the global population introduces a critical perspective on the impact of aging as an immutable cardiovascular risk factor, particularly manifesting in the alterations observed in the pulmonary artery (PA). Mechanisms contributing to aging-induced changes in PA include endothelial dysfunction, chronic inflammation, and structural changes in the arterial wall over time. These alterations extend beyond mere elasticity, exerting profound effects on pulmonary hemodynamics. The propensity of PAs to develop atherosclerotic plaques underscores an intriguing facet of vascular aging, although the available literature is currently insufficient to comprehensively assess their true incidence. While recognizing the inherent risk of periprocedural complications, right heart catheterization (RHC) stands out as the gold standard for precise hemodynamic evaluation. Echocardiography, a widely employed method, proves valuable for screening pulmonary hypertension (PH), yet falls short of diagnostic capability. Technological advancements usher in a new era with non-invasive modalities such as cardiac magnetic resonance (CMR) imaging emerging as promising tools. These innovations demonstrate their prowess in providing accurate assessments of PA stiffness and hemodynamics, offering a glimpse into the future landscape of diagnostic methodologies. As we navigate the intersection of aging and pulmonary vascular health, this review aims to address mechanisms and techniques for assessing PA aging, highlighting the need for comprehensive assessments to guide clinical decision making in an increasingly aging population.
Collapse
Affiliation(s)
- Dalma Horvat
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucia Agoston-Coldea
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; 2nd Department of Internal Medicine, Emergency County Hospital, Cluj-Napoca, Romania.
| |
Collapse
|
15
|
Yrigoin K, Davis GE. Selective mural cell recruitment of pericytes to networks of assembling endothelial cell-lined tubes. Front Cell Dev Biol 2024; 12:1389607. [PMID: 38961866 PMCID: PMC11219904 DOI: 10.3389/fcell.2024.1389607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
Mural cells are critically important for the development, maturation, and maintenance of the blood vasculature. Pericytes are predominantly observed in capillaries and venules, while vascular smooth muscle cells (VSMCs) are found in arterioles, arteries, and veins. In this study, we have investigated functional differences between human pericytes and human coronary artery smooth muscle cells (CASMCs) as a model VSMC type. We compared the ability of these two mural cells to invade three-dimensional (3D) collagen matrices, recruit to developing human endothelial cell (EC)-lined tubes in 3D matrices and induce vascular basement membrane matrix assembly around these tubes. Here, we show that pericytes selectively invade, recruit, and induce basement membrane deposition on EC tubes under defined conditions, while CASMCs fail to respond equivalently. Pericytes dramatically invade 3D collagen matrices in response to the EC-derived factors, platelet-derived growth factor (PDGF)-BB, PDGF-DD, and endothelin-1, while minimal invasion occurs with CASMCs. Furthermore, pericytes recruit to EC tube networks, and induce basement membrane deposition around assembling EC tubes (narrow and elongated tubes) when these cells are co-cultured. In contrast, CASMCs are markedly less able to perform these functions showing minimal recruitment, little to no basement membrane deposition, with wider and shorter tubes. Our new findings suggest that pericytes demonstrate much greater functional ability to invade 3D matrix environments, recruit to EC-lined tubes and induce vascular basement membrane matrix deposition in response to and in conjunction with ECs.
Collapse
Affiliation(s)
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| |
Collapse
|
16
|
Wang X, Li K, Yuan Y, Zhang N, Zou Z, Wang Y, Yan S, Li X, Zhao P, Li Q. Nonlinear Elasticity of Blood Vessels and Vascular Grafts. ACS Biomater Sci Eng 2024; 10:3631-3654. [PMID: 38815169 DOI: 10.1021/acsbiomaterials.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The transplantation of vascular grafts has emerged as a prevailing approach to address vascular disorders. However, the development of small-diameter vascular grafts is still in progress, as they serve in a more complicated mechanical environment than their counterparts with larger diameters. The biocompatibility and functional characteristics of small-diameter vascular grafts have been well developed; however, mismatch in mechanical properties between the vascular grafts and native arteries has not been accomplished, which might facilitate the long-term patency of small-diameter vascular grafts. From a point of view in mechanics, mimicking the nonlinear elastic mechanical behavior exhibited by natural blood vessels might be the state-of-the-art in designing vascular grafts. This review centers on elucidating the nonlinear elastic behavior of natural blood vessels and vascular grafts. The biological functionality and limitations associated with as-reported vascular grafts are meticulously reviewed and the future trajectory for fabricating biomimetic small-diameter grafts is discussed. This review might provide a different insight from the traditional design and fabrication of artificial vascular grafts.
Collapse
Affiliation(s)
- Xiaofeng Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Kecheng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Yuan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Zhang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zifan Zou
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yun Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shujie Yan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Qian Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Lu S, Jolly AJ, Dubner AM, Strand KA, Mutryn MF, Hinthorn T, Noble T, Nemenoff RA, Moulton KS, Majesky MW, Weiser-Evans MC. KLF4 in smooth muscle cell-derived progenitor cells is essential for angiotensin II-induced cardiac inflammation and fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597485. [PMID: 38895472 PMCID: PMC11185732 DOI: 10.1101/2024.06.04.597485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cardiac fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) material resulting in cardiac tissue scarring and dysfunction. While it is commonly accepted that myofibroblasts are the major contributors to ECM deposition in cardiac fibrosis, their origin remains debated. By combining lineage tracing and RNA sequencing, our group made the paradigm-shifting discovery that a subpopulation of resident vascular stem cells residing within the aortic, carotid artery, and femoral aartery adventitia (termed AdvSca1-SM cells) originate from mature vascular smooth muscle cells (SMCs) through an in situ reprogramming process. SMC-to-AdvSca1-SM reprogramming and AdvSca1-SM cell maintenance is dependent on induction and activity of the transcription factor, KLF4. However, the molecular mechanism whereby KLF4 regulates AdvSca1-SM phenotype remains unclear. In the current study, leveraging a highly specific AdvSca1-SM cell reporter system, single-cell RNA-sequencing (scRNA-seq), and spatial transcriptomic approaches, we demonstrate the profibrotic differentiation trajectory of coronary artery-associated AdvSca1-SM cells in the setting of Angiotensin II (AngII)-induced cardiac fibrosis. Differentiation was characterized by loss of stemness-related genes, including Klf4 , but gain of expression of a profibrotic phenotype. Importantly, these changes were recapitulated in human cardiac hypertrophic tissue, supporting the translational significance of profibrotic transition of AdvSca1-SM-like cells in human cardiomyopathy. Surprisingly and paradoxically, AdvSca1-SM-specific genetic knockout of Klf4 prior to AngII treatment protected against cardiac inflammation and fibrosis, indicating that Klf4 is essential for the profibrotic response of AdvSca1-SM cells. Overall, our data reveal the contribution of AdvSca1-SM cells to myofibroblasts in the setting of AngII-induced cardiac fibrosis. KLF4 not only maintains the stemness of AdvSca1-SM cells, but also orchestrates their response to profibrotic stimuli, and may serve as a therapeutic target in cardiac fibrosis.
Collapse
|
18
|
Rachedi NS, Tang Y, Tai YY, Zhao J, Chauvet C, Grynblat J, Akoumia KKF, Estephan L, Torrino S, Sbai C, Ait-Mouffok A, Latoche JD, Al Aaraj Y, Brau F, Abélanet S, Clavel S, Zhang Y, Guillermier C, Kumar NVG, Tavakoli S, Mercier O, Risbano MG, Yao ZK, Yang G, Ouerfelli O, Lewis JS, Montani D, Humbert M, Steinhauser ML, Anderson CJ, Oldham WM, Perros F, Bertero T, Chan SY. Dietary intake and glutamine-serine metabolism control pathologic vascular stiffness. Cell Metab 2024; 36:1335-1350.e8. [PMID: 38701775 PMCID: PMC11152997 DOI: 10.1016/j.cmet.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Perivascular collagen deposition by activated fibroblasts promotes vascular stiffening and drives cardiovascular diseases such as pulmonary hypertension (PH). Whether and how vascular fibroblasts rewire their metabolism to sustain collagen biosynthesis remains unknown. Here, we found that inflammation, hypoxia, and mechanical stress converge on activating the transcriptional coactivators YAP and TAZ (WWTR1) in pulmonary arterial adventitial fibroblasts (PAAFs). Consequently, YAP and TAZ drive glutamine and serine catabolism to sustain proline and glycine anabolism and promote collagen biosynthesis. Pharmacologic or dietary intervention on proline and glycine anabolic demand decreases vascular stiffening and improves cardiovascular function in PH rodent models. By identifying the limiting metabolic pathways for vascular collagen biosynthesis, our findings provide guidance for incorporating metabolic and dietary interventions for treating cardiopulmonary vascular disease.
Collapse
Affiliation(s)
- Nesrine S Rachedi
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Caroline Chauvet
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Julien Grynblat
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Pôle Thoracique, Vasculaire et Transplantations, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Kouamé Kan Firmin Akoumia
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Leonard Estephan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Stéphanie Torrino
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Chaima Sbai
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Amel Ait-Mouffok
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Joseph D Latoche
- Hillman Cancer Center, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Frederic Brau
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Sophie Abélanet
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Stephan Clavel
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Yingze Zhang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Christelle Guillermier
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Naveen V G Kumar
- Aging Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Sina Tavakoli
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA; Department of Radiology, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Olaf Mercier
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Assistance PubliqueHôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Michael G Risbano
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Zhong-Ke Yao
- Molecular Pharmacology and Chemistry Program and Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guangli Yang
- Molecular Pharmacology and Chemistry Program and Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ouathek Ouerfelli
- Molecular Pharmacology and Chemistry Program and Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason S Lewis
- Molecular Pharmacology and Chemistry Program and Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Montani
- Pôle Thoracique, Vasculaire et Transplantations, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance PubliqueHôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Assistance PubliqueHôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Matthew L Steinhauser
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Aging Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | | | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frédéric Perros
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, 69310 Pierre-Bénite, France
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France.
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Chao CL, Applewhite B, Reddy NK, Matiuto N, Dang C, Jiang B. Advances and challenges in regenerative therapies for abdominal aortic aneurysm. Front Cardiovasc Med 2024; 11:1369785. [PMID: 38895536 PMCID: PMC11183335 DOI: 10.3389/fcvm.2024.1369785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a significant source of mortality worldwide and carries a mortality of greater than 80% after rupture. Despite extensive efforts to develop pharmacological treatments, there is currently no effective agent to prevent aneurysm growth and rupture. Current treatment paradigms only rely on the identification and surveillance of small aneurysms, prior to ultimate open surgical or endovascular repair. Recently, regenerative therapies have emerged as promising avenues to address the degenerative changes observed in AAA. This review briefly outlines current clinical management principles, characteristics, and pharmaceutical targets of AAA. Subsequently, a thorough discussion of regenerative approaches is provided. These include cellular approaches (vascular smooth muscle cells, endothelial cells, and mesenchymal stem cells) as well as the delivery of therapeutic molecules, gene therapies, and regenerative biomaterials. Lastly, additional barriers and considerations for clinical translation are provided. In conclusion, regenerative approaches hold significant promise for in situ reversal of tissue damages in AAA, necessitating sustained research and innovation to achieve successful and translatable therapies in a new era in AAA management.
Collapse
Affiliation(s)
- Calvin L. Chao
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brandon Applewhite
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL, United States
| | - Nidhi K. Reddy
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Natalia Matiuto
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Caitlyn Dang
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bin Jiang
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL, United States
| |
Collapse
|
20
|
Zimmermann S, Weißenfels M, Krümmer N, Härtig W, Weise G, Branzan D, Michalski D, Pelz JO. Elevated serum levels of anti-collagen type I antibodies in patients with spontaneous cervical artery dissection and ischemic stroke: a prospective multicenter study. Front Immunol 2024; 15:1348430. [PMID: 38840911 PMCID: PMC11150572 DOI: 10.3389/fimmu.2024.1348430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Spontaneous cervical artery dissection (sCAD) is a rare vasculopathy whose trigger is still unknown. We hypothesized that autoimmunity against components of the vascular wall might play a critical role in sCAD and examined anti-collagen type I antibodies in patients with sCAD, acute ischemic stroke, patients with thromboendarterectomy, and controls. Methods Fifty-seven patients with sCAD (age 45.7 ± 10.2 years, female 18 (31.6%)) were prospectively enrolled in four German stroke centers. Blood samples were collected at baseline, at day 10 ± 3, and after 6 ± 1 months. Patients with ischemic stroke not related to CAD (n=54, age 56.7 ± 13.7 years, female 15 (27.8%)), healthy probands (n=80, age 57.4 ± 12.9 years, female 56 (70%)), and patients undergoing thromboendarterectomy of the carotid artery (n=9, age 70.7 ± 9.3 years, female 2 (22.2%)) served as controls. Anti-collagen type I antibodies were determined by enzyme-linked immunosorbent assays (ELISAs). Results Patients with acute sCAD had higher serum levels of anti-collagen type I antibodies (33.9 ± 24.6 µg/ml) than probands (18.5 ± 11.0 µg/ml; p <0.001) but lower levels than patients with ischemic stroke not related to sCAD (47.8 ± 28.4 µg/ml; p=0.003). In patients with sCAD, serum levels of anti-collagen type I antibodies were similar in the acute, subacute, and chronic phase. Levels of anti-collagen type I antibodies significantly correlated with circulating collagen type I (rho=0.207, p=0.003). Conclusion Anti-collagen type I antibodies seem not to represent a trigger for acute sCAD or ischemic stroke but may rather be linked to the metabolism and turnover of collagen type I.
Collapse
Affiliation(s)
- Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | | | - Norma Krümmer
- Department of Neurology, Klinikum Altenburger Land, Altenburg, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute – Center of Neuropathology and Brain Research, University of Leipzig, Leipzig, Germany
| | - Gesa Weise
- Department of Neurology, Sana Kliniken Leipziger Land, Borna, Germany
| | - Daniela Branzan
- Department of Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Johann Otto Pelz
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
Soliman BG, Longoni A, Major GS, Lindberg GCJ, Choi YS, Zhang YS, Woodfield TBF, Lim KS. Harnessing Macromolecular Chemistry to Design Hydrogel Micro- and Macro-Environments. Macromol Biosci 2024; 24:e2300457. [PMID: 38035637 DOI: 10.1002/mabi.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Cell encapsulation within three-dimensional hydrogels is a promising approach to mimic tissues. However, true biomimicry of the intricate microenvironment, biophysical and biochemical gradients, and the macroscale hierarchical spatial organizations of native tissues is an unmet challenge within tissue engineering. This review provides an overview of the macromolecular chemistries that have been applied toward the design of cell-friendly hydrogels, as well as their application toward controlling biophysical and biochemical bulk and gradient properties of the microenvironment. Furthermore, biofabrication technologies provide the opportunity to simultaneously replicate macroscale features of native tissues. Biofabrication strategies are reviewed in detail with a particular focus on the compatibility of these strategies with the current macromolecular toolkit described for hydrogel design and the challenges associated with their clinical translation. This review identifies that the convergence of the ever-expanding macromolecular toolkit and technological advancements within the field of biofabrication, along with an improved biological understanding, represents a promising strategy toward the successful tissue regeneration.
Collapse
Affiliation(s)
- Bram G Soliman
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Alessia Longoni
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
| | - Gretel S Major
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gabriella C J Lindberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02115, USA
| | - Tim B F Woodfield
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Khoon S Lim
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- School of Medical Sciences, University of Sydney, Sydney, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
22
|
Mensah EA, Daneshtalab N, Tabrizchi R. Effects of vasoactive substances on biomechanics of small resistance arteries of male and female Dahl salt-sensitive rats. Pharmacol Res Perspect 2024; 12:e1180. [PMID: 38421097 PMCID: PMC10902908 DOI: 10.1002/prp2.1180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Changes in vascular biomechanics leading to increase in arterial stiffness play a pivotal role in circulatory dysfunction. Our objectives were to examine sex-specific pharmacological changes related to the biomechanics and any structural modifications in small resistance arteries of Dahl salt-sensitive male and female rats. The composite Young modulus (CYM) was determined using pressure myograph recordings, and immunohistochemistry was used for the evaluation of any structural changes in the third-order mesenteric arteries (n = 6). Animals on high-salt diet developed hypertension with significant elevation in central and peripheral blood pressures and pulse wave velocity compared to those on regular diet. There were no significant differences observed in the CYM between any of the groups (i.e., males and females) in vehicle-treated time-control studies. The presence of verapamil (0.3 μM) significantly reduced CYM in hypertensive males without changes within females compared to vehicle. This effect was abolished by phenylephrine (0.3 μM). BaCl2 (100 μM), ouabain (100 μM), and L-NAME (0.3 μM) combined significantly increased CYM in vessels from in normotensive males and females but not in hypertensive males compared to vehicle. The increase in CYM was abolished in the presence of phenylephrine. Sodium nitroprusside (0.3 μM), in the presence of phenylephrine, significantly reduced CYM in male normotensive versus hypertensive, with no differences within females. Significant differences were observed in immunohistochemical assessment of biomechanical markers of arterial stiffness between males and females. Our findings suggest sex possibly due to pressure differences to be responsible for adaptive changes in biomechanics, and varied pharmacological responses in hypertensive state.
Collapse
Affiliation(s)
- Eric A. Mensah
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Noriko Daneshtalab
- School of PharmacyMemorial University NewfoundlandSt. John'sNewfoundlandCanada
| | - Reza Tabrizchi
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| |
Collapse
|
23
|
Gibson Hughes TA, Dona MSI, Sobey CG, Pinto AR, Drummond GR, Vinh A, Jelinic M. Aortic Cellular Heterogeneity in Health and Disease: Novel Insights Into Aortic Diseases From Single-Cell RNA Transcriptomic Data Sets. Hypertension 2024; 81:738-751. [PMID: 38318714 DOI: 10.1161/hypertensionaha.123.20597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Aortic diseases such as atherosclerosis, aortic aneurysms, and aortic stiffening are significant complications that can have significant impact on end-stage cardiovascular disease. With limited pharmacological therapeutic strategies that target the structural changes in the aorta, surgical intervention remains the only option for some patients with these diseases. Although there have been significant contributions to our understanding of the cellular architecture of the diseased aorta, particularly in the context of atherosclerosis, furthering our insight into the cellular drivers of disease is required. The major cell types of the aorta are well defined; however, the advent of single-cell RNA sequencing provides unrivaled insights into the cellular heterogeneity of each aortic cell type and the inferred biological processes associated with each cell in health and disease. This review discusses previous concepts that have now been enhanced with recent advances made by single-cell RNA sequencing with a focus on aortic cellular heterogeneity.
Collapse
Affiliation(s)
- Tayla A Gibson Hughes
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Malathi S I Dona
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (M.S.I.D., A.R.P.)
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Alexander R Pinto
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (M.S.I.D., A.R.P.)
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| |
Collapse
|
24
|
Chi C, Roland TJ, Song K. Differentiation of Pluripotent Stem Cells for Disease Modeling: Learning from Heart Development. Pharmaceuticals (Basel) 2024; 17:337. [PMID: 38543122 PMCID: PMC10975450 DOI: 10.3390/ph17030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
Heart disease is a pressing public health problem and the leading cause of death worldwide. The heart is the first organ to gain function during embryogenesis in mammals. Heart development involves cell determination, expansion, migration, and crosstalk, which are orchestrated by numerous signaling pathways, such as the Wnt, TGF-β, IGF, and Retinoic acid signaling pathways. Human-induced pluripotent stem cell-based platforms are emerging as promising approaches for modeling heart disease in vitro. Understanding the signaling pathways that are essential for cardiac development has shed light on the molecular mechanisms of congenital heart defects and postnatal heart diseases, significantly advancing stem cell-based platforms to model heart diseases. This review summarizes signaling pathways that are crucial for heart development and discusses how these findings improve the strategies for modeling human heart disease in vitro.
Collapse
Affiliation(s)
- Congwu Chi
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Truman J. Roland
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kunhua Song
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
25
|
Paloschi V, Pauli J, Winski G, Wu Z, Li Z, Botti L, Meucci S, Conti P, Rogowitz F, Glukha N, Hummel N, Busch A, Chernogubova E, Jin H, Sachs N, Eckstein H, Dueck A, Boon RA, Bausch AR, Maegdefessel L. Utilization of an Artery-on-a-Chip to Unravel Novel Regulators and Therapeutic Targets in Vascular Diseases. Adv Healthc Mater 2024; 13:e2302907. [PMID: 37797407 PMCID: PMC11468405 DOI: 10.1002/adhm.202302907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Indexed: 10/07/2023]
Abstract
In this study, organ-on-chip technology is used to develop an in vitro model of medium-to-large size arteries, the artery-on-a-chip (AoC), with the objective to recapitulate the structure of the arterial wall and the relevant hemodynamic forces affecting luminal cells. AoCs exposed either to in vivo-like shear stress values or kept in static conditions are assessed to generate a panel of novel genes modulated by shear stress. Considering the crucial role played by shear stress alterations in carotid arteries affected by atherosclerosis (CAD) and abdominal aortic aneurysms (AAA) disease development/progression, a patient cohort of hemodynamically relevant specimens is utilized, consisting of diseased and non-diseased (internal control) vessel regions from the same patient. Genes activated by shear stress follow the same expression pattern in non-diseased segments of human vessels. Single cell RNA sequencing (scRNA-seq) enables to discriminate the unique cell subpopulations between non-diseased and diseased vessel portions, revealing an enrichment of flow activated genes in structural cells originating from non-diseased specimens. Furthermore, the AoC served as a platform for drug-testing. It reproduced the effects of a therapeutic agent (lenvatinib) previously used in preclinical AAA studies, therefore extending the understanding of its therapeutic effect through a multicellular structure.
Collapse
Affiliation(s)
- Valentina Paloschi
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
| | - Jessica Pauli
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
| | - Greg Winski
- Department of Medicine, Cardiovascular UnitKarolinska Institute171 77StockholmSweden
| | - Zhiyuan Wu
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- Department of Vascular SurgeryBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical ScienceBeijing10073P. R. China
| | - Zhaolong Li
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Lorenzo Botti
- Department of Engineering and Applied SciencesUniversity of BergamoBergamo24129Italy
| | - Sandro Meucci
- Micronit MicrotechnologiesEnschede15 7521The Netherlands
| | - Pierangelo Conti
- Department of Engineering and Applied SciencesUniversity of BergamoBergamo24129Italy
| | | | - Nadiya Glukha
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Nora Hummel
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Albert Busch
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- Division of Vascular and Endovascular SurgeryDepartment for VisceralThoracic and Vascular SurgeryMedical Faculty Carl Gustav Carus and University HospitalTechnical University Dresden01069DresdenGermany
| | | | - Hong Jin
- Department of Medicine, Cardiovascular UnitKarolinska Institute171 77StockholmSweden
| | - Nadja Sachs
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Hans‐Henning Eckstein
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Anne Dueck
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
- Institute of Pharmacology and ToxicologyTechnical University of Munich80333MunichGermany
| | - Reinier A. Boon
- Department of PhysiologyAmsterdam Cardiovascular Sciences (ACS)Amsterdam UMCVU University Medical CenterAmsterdam1081 HVThe Netherlands
- Institute of Cardiovascular RegenerationCenter of Molecular MedicineGoethe‐University60323FrankfurtGermany
- German Center for Cardiovascular Research DZHKPartner Site Frankfurt Rhine‐Main10785BerlinGermany
| | - Andreas R. Bausch
- Department of Cellular BiophysicsTechnical University of Munich80333MunichGermany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
- Department of Medicine, Cardiovascular UnitKarolinska Institute171 77StockholmSweden
| |
Collapse
|
26
|
Jiang S, Wise SG, Kovacic JC, Rnjak-Kovacina J, Lord MS. Biomaterials containing extracellular matrix molecules as biomimetic next-generation vascular grafts. Trends Biotechnol 2024; 42:369-381. [PMID: 37852854 DOI: 10.1016/j.tibtech.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
The performance of synthetic biomaterial vascular grafts for the bypass of stenotic and dysfunctional blood vessels remains an intractable challenge in small-diameter applications. The functionalization of biomaterials with extracellular matrix (ECM) molecules is a promising approach because these molecules can regulate multiple biological processes in vascular tissues. In this review, we critically examine emerging approaches to ECM-containing vascular graft biomaterials and explore opportunities for future research and development toward clinical use.
Collapse
Affiliation(s)
- Shouyuan Jiang
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Steven G Wise
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
27
|
Petrova M, Li Y, Gholipour A, Kiat H, McLachlan CS. The influence of aortic stiffness on carotid stiffness: computational simulations using a human aorta carotid model. ROYAL SOCIETY OPEN SCIENCE 2024; 11:230264. [PMID: 38511082 PMCID: PMC10951721 DOI: 10.1098/rsos.230264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/11/2023] [Indexed: 03/22/2024]
Abstract
Increased aortic and carotid stiffness are independent predictors of adverse cardiovascular events. Arterial stiffness is not uniform across the arterial tree and its accurate assessment is challenging. The complex interactions and influence of aortic stiffness on carotid stiffness have not been investigated. The aim of this study was to evaluate the effect of aortic stiffness on carotid stiffness under physiological pressure conditions. A realistic patient-specific geometry was used based on magnetic resonance images obtained from the OsiriX library. The luminal aortic-carotid model was reconstructed from magnetic resonance images using 3D Slicer. A series of aortic stiffness simulations were performed at different regional aortic areas (levels). By applying variable Young's modulus to the aortic wall under two pulse pressure conditions, one could examine the deformation, compliance and von Mises stress between the aorta and carotid arteries. An increase of Young's modulus in an aortic area resulted in a notable difference in the mechanical properties of the aortic tree. Regional deformation, compliance and von Mises stress changes across the aorta and carotid arteries were noted with an increase of the aortic Young's modulus. Our results indicate that increased carotid stiffness may be associated with increased aortic stiffness. Large-scale clinical validation is warranted to examine the influence of aortic stiffness on carotid stiffness.
Collapse
Affiliation(s)
- Marjana Petrova
- Centre for Healthy Futures, Torrens University Australia Surrey Hills, New South Wales 2010, Australia
| | - Yujie Li
- Centre for Healthy Futures, Torrens University Australia Surrey Hills, New South Wales 2010, Australia
| | - Alireza Gholipour
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Hosen Kiat
- Centre for Healthy Futures, Torrens University Australia Surrey Hills, New South Wales 2010, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- School of Rural Medicine, University of New South Wales, New South Wales 2640, Australia
| | - Craig S. McLachlan
- Centre for Healthy Futures, Torrens University Australia Surrey Hills, New South Wales 2010, Australia
| |
Collapse
|
28
|
Uiterwijk M, Coolen B, Rijswijk van JW, Söntjens S, van Houtem M, Szymczyk W, Rijns L, Janssen H, Wal van der A, Mol de B, Bouten C, Strijkers G, Dankers P, Kluin J. BALANCING SCAFFOLD DEGRADATION AND NEO-TISSUE FORMATION IN IN-SITU TISSUE ENGINEERED VASCULAR GRAFTS. Tissue Eng Part A 2024. [PMID: 38420632 DOI: 10.1089/ten.tea.2023.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
An essential aspect of cardiovascular in situ tissue engineering (TE) is to ensure balance between scaffold degradation and neo-tissue formation. We evaluated the degradation velocity and neo-tissue formation of three electrospun supramolecular bisurea-based biodegradable scaffolds that differ in their soft-block backbone compositions only. Scaffolds were implanted as interposition grafts in the abdominal aorta in rats, and evaluated at different time points (t = 1, 6, 12, 24 and 40 weeks) on function, tissue formation, strength and scaffold degradation. The fully carbonate-based biomaterial showed minor degradation after 40 weeks in vivo, while the other two ester-containing biomaterials showed (near) complete degradation within 6 to 12 weeks. Local dilatation was only observed in these faster degrading scaffolds. All materials showed to some extent calcifications, at early as well as late time points. Histological evaluation showed equal and non-native like neo-tissue formation after total degradation. The fully carbonate based scaffolds lagged in neo-tissue formation, presumably as its degradation was (far from) complete at 40 weeks. A significant difference in vessel wall contrast enhancement was observed by MRI between grafts with total compared to minimal degraded scaffolds.
Collapse
Affiliation(s)
- Marcelle Uiterwijk
- Amsterdam UMC Location AMC, 26066, Cardiothoracic surgery, Meibergdreef 9, Amsterdam, Netherlands, 1105 AZ;
| | - Bram Coolen
- Amsterdam UMC Locatie AMC, 26066, Department of Biomedical Engineering & Physics, Amsterdam, Netherlands;
| | | | - Serge Söntjens
- Eindhoven University of Technology, 3169, Symochem b.v., Eindhoven, Netherlands;
| | - Michel van Houtem
- Eindhoven University of Technology, 3169, Symochem b.v. , Eindhoven, Netherlands;
| | - Wojciech Szymczyk
- Eindhoven University of Technology, 3169, Department of Biomedical Engineering, Eindhoven, Netherlands;
| | - Laura Rijns
- Eindhoven University of Technology, 3169, Biomedical Engineering, Eindhoven, Netherlands
- Eindhoven University of Technology, 3169, Institute for Complex Molecular Systems, Eindhoven, Netherlands;
| | - Henk Janssen
- Eindhoven University of Technology, 3169, Symochem b.v. , Eindhoven, Noord-Brabant, Netherlands;
| | | | - Bas Mol de
- Amsterdam UMC Location AMC, 26066, Cardiothoracic surgery, Amsterdam, Netherlands;
| | - Carlijn Bouten
- Eindhoven University of Technology, 3169, Biomedical Engineering, Eindhoven, Netherlands
- Eindhoven University of Technology, 3169, Institute for Complex Molecular Systems, Eindhoven, Netherlands;
| | - Gustav Strijkers
- Amsterdam UMC Locatie AMC, 26066, Biomedical Engineering and Physics, Amsterdam, Netherlands;
| | - Patricia Dankers
- Eindhoven University of Technology, 3169, Biomedical Engineering, Eindhoven, Netherlands
- Eindhoven University of Technology, 3169, Institute for Complex Molecular Systems, Eindhoven, Netherlands;
| | - Jolanda Kluin
- Erasmus Medical Center, 6993, Cardiothoracic surgery, Rotterdam, Netherlands;
| |
Collapse
|
29
|
Jensen LJ. Functional, Structural and Proteomic Effects of Ageing in Resistance Arteries. Int J Mol Sci 2024; 25:2601. [PMID: 38473847 DOI: 10.3390/ijms25052601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The normal ageing process affects resistance arteries, leading to various functional and structural changes. Systolic hypertension is a common occurrence in human ageing, and it is associated with large artery stiffening, heightened pulsatility, small artery remodeling, and damage to critical microvascular structures. Starting from young adulthood, a progressive elevation in the mean arterial pressure is evidenced by clinical and epidemiological data as well as findings from animal models. The myogenic response, a protective mechanism for the microcirculation, may face disruptions during ageing. The dysregulation of calcium entry channels (L-type, T-type, and TRP channels), dysfunction in intracellular calcium storage and extrusion mechanisms, altered expression of potassium channels, and a change in smooth muscle calcium sensitization may contribute to the age-related dysregulation of myogenic tone. Flow-mediated vasodilation, a hallmark of endothelial function, is compromised in ageing. This endothelial dysfunction is related to increased oxidative stress, lower nitric oxide bioavailability, and a low-grade inflammatory response, further exacerbating vascular dysfunction. Resistance artery remodeling in ageing emerges as a hypertrophic response of the vessel wall that is typically observed in conjunction with outward remodeling (in normotension), or as inward hypertrophic remodeling (in hypertension). The remodeling process involves oxidative stress, inflammation, reorganization of actin cytoskeletal components, and extracellular matrix fiber proteins. Reactive oxygen species (ROS) signaling and chronic low-grade inflammation play substantial roles in age-related vascular dysfunction. Due to its role in the regulation of vascular tone and structural proteins, the RhoA/Rho-kinase pathway is an important target in age-related vascular dysfunction and diseases. Understanding the intricate interplay of these factors is crucial for developing targeted interventions to mitigate the consequences of ageing on resistance arteries and enhance the overall vascular health.
Collapse
Affiliation(s)
- Lars Jørn Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
30
|
Schellinger IN, Dannert A, Hoffmann A, Chodisetti G, Mattern K, Petzold A, Klöting N, Schuster A, Wagenhäuser MU, Emrich F, Stumvoll M, Hasenfuß G, Raaz U. Angiotensin Receptor-Neprilysin Inhibition (Sacubitril/Valsartan) Reduces Structural Arterial Stiffness in Middle-Aged Mice. J Am Heart Assoc 2024; 13:e032641. [PMID: 38348796 PMCID: PMC11010079 DOI: 10.1161/jaha.123.032641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Increasing arterial stiffness is a prominent feature of the aging cardiovascular system. Arterial stiffening leads to fundamental alterations in central hemodynamics with widespread detrimental implications for organ function resulting in significant morbidity and death, and specific therapies to address the underlying age-related structural arterial remodeling remain elusive. The present study investigates the potential of the recently clinically available dual angiotensin receptor-neprilysin inhibitor (ARNI) sacubitril/valsartan (LCZ696) to counteract age-related arterial fibrotic remodeling and stiffening in 1-year-old mice. METHODS AND RESULTS Treatment of in 1-year-old mice with ARNI (sacubitril/valsartan), in contrast to angiotensin receptor blocker monotherapy (valsartan) and vehicle treatment (controls), significantly decreases structural aortic stiffness (as measured by in vivo pulse-wave velocity and ex vivo aortic pressure myography). This phenomenon appears, at least partly, independent of (indirect) blood pressure effects and may be related to a direct antifibrotic interference with aortic smooth muscle cell collagen production. Furthermore, we find aortic remodeling and destiffening due to ARNI treatment to be associated with improved parameters of cardiac diastolic function in aged mice. CONCLUSIONS This study provides preclinical mechanistic evidence indicating that ARNI-based interventions may counteract age-related arterial stiffening and may therefore be further investigated as a promising strategy to improve cardiovascular outcomes in the elderly.
Collapse
Affiliation(s)
- Isabel N. Schellinger
- Department of Cardiology and PneumologyHeart Center at the University Medical Center GöttingenGöttingenGermany
- German Center for Cardiovascular Research (DZHK) e.V. Partner site GöttingenGöttingenGermany
- Department for Endocrinology, Nephrology and RheumatologyUniversity Medical Center Leipzig, University of LeipzigLeipzigGermany
| | - Angelika Dannert
- Department of Cardiology and PneumologyHeart Center at the University Medical Center GöttingenGöttingenGermany
| | - Annet Hoffmann
- Department for Endocrinology, Nephrology and RheumatologyUniversity Medical Center Leipzig, University of LeipzigLeipzigGermany
| | - Giriprakash Chodisetti
- Department of Cardiology and PneumologyHeart Center at the University Medical Center GöttingenGöttingenGermany
| | - Karin Mattern
- Department of Cardiology and PneumologyHeart Center at the University Medical Center GöttingenGöttingenGermany
| | - Anne Petzold
- Department of Cardiology and PneumologyHeart Center at the University Medical Center GöttingenGöttingenGermany
| | - Nora Klöting
- Department for Endocrinology, Nephrology and RheumatologyUniversity Medical Center Leipzig, University of LeipzigLeipzigGermany
| | - Andreas Schuster
- Department of Cardiology and PneumologyHeart Center at the University Medical Center GöttingenGöttingenGermany
- German Center for Cardiovascular Research (DZHK) e.V. Partner site GöttingenGöttingenGermany
| | - Markus U. Wagenhäuser
- Department of Vascular and Endovascular SurgeryUniversity Hospital Düsseldorf, Heinrich‐Heine‐UniversityDüsseldorfGermany
| | - Fabian Emrich
- Department of Cardiothoracic and Vascular SurgeryGoethe University Hospital FrankfurtFrankfurtGermany
| | - Michael Stumvoll
- Department for Endocrinology, Nephrology and RheumatologyUniversity Medical Center Leipzig, University of LeipzigLeipzigGermany
| | - Gerd Hasenfuß
- Department of Cardiology and PneumologyHeart Center at the University Medical Center GöttingenGöttingenGermany
- German Center for Cardiovascular Research (DZHK) e.V. Partner site GöttingenGöttingenGermany
| | - Uwe Raaz
- Department of Cardiology and PneumologyHeart Center at the University Medical Center GöttingenGöttingenGermany
- German Center for Cardiovascular Research (DZHK) e.V. Partner site GöttingenGöttingenGermany
| |
Collapse
|
31
|
Singh AA, Shetty DK, Jacob AG, Bayraktar S, Sinha S. Understanding genomic medicine for thoracic aortic disease through the lens of induced pluripotent stem cells. Front Cardiovasc Med 2024; 11:1349548. [PMID: 38440211 PMCID: PMC10910110 DOI: 10.3389/fcvm.2024.1349548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Thoracic aortic disease (TAD) is often silent until a life-threatening complication occurs. However, genetic information can inform both identification and treatment at an early stage. Indeed, a diagnosis is important for personalised surveillance and intervention plans, as well as cascade screening of family members. Currently, only 20% of heritable TAD patients have a causative mutation identified and, consequently, further advances in genetic coverage are required to define the remaining molecular landscape. The rapid expansion of next generation sequencing technologies is providing a huge resource of genetic data, but a critical issue remains in functionally validating these findings. Induced pluripotent stem cells (iPSCs) are patient-derived, reprogrammed cell lines which allow mechanistic insights, complex modelling of genetic disease and a platform to study aortic genetic variants. This review will address the need for iPSCs as a frontline diagnostic tool to evaluate variants identified by genomic discovery studies and explore their evolving role in biological insight through to drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| |
Collapse
|
32
|
Chanduri MVL, Kumar A, Weiss D, Emuna N, Barsukov I, Shi M, Tanaka K, Wang X, Datye A, Kanyo J, Collin F, Lam T, Schwarz UD, Bai S, Nottoli T, Goult BT, Humphrey JD, Schwartz MA. Mechanosensing through talin 1 contributes to tissue mechanical homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.03.556084. [PMID: 38328095 PMCID: PMC10849504 DOI: 10.1101/2023.09.03.556084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
It is widely believed that tissue mechanical properties, determined mainly by the extracellular matrix (ECM), are actively maintained. However, despite its broad importance to biology and medicine, tissue mechanical homeostasis is poorly understood. To explore this hypothesis, we developed mutations in the mechanosensitive protein talin1 that alter cellular sensing of ECM stiffness. Mutation of a novel mechanosensitive site between talin1 rod domain helix bundles 1 and 2 (R1 and R2) shifted cellular stiffness sensing curves, enabling cells to spread and exert tension on compliant substrates. Opening of the R1-R2 interface promotes binding of the ARP2/3 complex subunit ARPC5L, which mediates the altered stiffness sensing. Ascending aortas from mice bearing these mutations show increased compliance, less fibrillar collagen, and rupture at lower pressure. Together, these results demonstrate that cellular stiffness sensing regulates ECM mechanical properties. These data thus directly support the mechanical homeostasis hypothesis and identify a novel mechanosensitive interaction within talin that contributes to this mechanism.
Collapse
|
33
|
Ma Z, Liu K, Hu Y, Hu X, Wang B, Li Z. Comparison Between Drug-Coated Balloon and Stents in Large De Novo Coronary Artery Disease: A Systematic Review and Meta-Analysis of RCT Data. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07548-2. [PMID: 38270690 DOI: 10.1007/s10557-024-07548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE Although a number of studies involving small-vessel de novo coronary disease showed clinical benefits of drug-coated balloons (DCB), the role of DCB in large vessel lesions is still unclear. METHODS We searched main electronic databases for randomized controlled trials (RCTs) comparing DCB with stents for large vessel de novo coronary artery disease. The primary endpoint was major cardiovascular adverse events (MACE), composite cardiovascular death (CD), myocardial infarction (MI), or target lesion revascularization (TLR). RESULTS This study included 7 RCTs with 770 participants. DCB were associated with a marked risk reduction in MACE [Risk Ratio (RR): 0.48; 95% confidence interval [CI]: 0.24 to 0.97; P = 0.04], TLR (RR: 0.53; 95% CI: 0.25 to 1.14; P = 0.10), and late lumen loss [standard mean difference (SMD): -0.57; 95% CI: -1.09 to -0.05; P = 0.03] as compared with stents. There is no significant difference in MI (RR: 0.58; 95% CI: 0.21 to 1.54; P = 0.27), CD (RR: 0.33; 95% CI: 0.06 to 1.78; P = 0.19), and minimal lumen diameter (SMD: -0.34; 95% CI: -0.72 to 0.05; P = 0.08) between groups. In subgroup analyses, the risk reduction of MACE persisted in patients with chronic coronary syndrome (RR: 0.25; 95% CI: 0.07 to 0.89; P = 0.03), and patients receiving DCB vs. bare metal stent (RR: 0.19; 95% CI: 0.05 to 0.73; P = 0.01). In addition, there was no significant difference between the DCB group and the drug eluting stent group for MACE (RR: 0.69; 95% CI: 0.30 to 1.60; P = 0.38). CONCLUSION DCB may be an effective therapeutic option in patients with large vessel de novo coronary artery disease.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Division of Cardiology, Departments of Internal Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, People's Republic of China
| | - Kanling Liu
- Division of Cardiology, Departments of Internal Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, People's Republic of China
| | - Yanhui Hu
- Division of Cardiology, Departments of Internal Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, People's Republic of China
| | - Xiwen Hu
- Division of Cardiology, Departments of Internal Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, People's Republic of China
| | - Binyu Wang
- Division of Cardiology, Departments of Internal Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, People's Republic of China
| | - Zhengyi Li
- Division of Cardiology, Departments of Internal Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, People's Republic of China.
| |
Collapse
|
34
|
Wang L, Liang F, Shang Y, Liu X, Yin M, Shen J, Yuan J. Endothelium-Mimicking Bilayer Vascular Grafts with Dual-Releasing of NO/H 2S for Anti-Inflammation and Anticalcification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:318-331. [PMID: 38156407 DOI: 10.1021/acsami.3c15176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Vascular complications caused by diabetes impair the activities of endothelial nitric oxide synthase (eNOS) and cystathionine γ-lyase (CSE), resulting in decreased physiological levels of nitric oxide (NO) and hydrogen sulfide (H2S). The low bioavailability of NO and H2S hinders the endothelialization of vascular grafts. In this study, endothelium-mimicking bilayer vascular grafts were designed with spatiotemporally controlled dual releases of NO and H2S for in situ endothelialization and angiogenesis. Keratin-based H2S donor was synthesized and electrospun with poly(l-lactide-co-ε-caprolactone) (PLCL) as the outer layer of the graft to release H2S. Hyaluronic acid, one of the major glycosaminoglycans in endothelial glycocalyx, was complexed with Cu ions as the inner layer to mimic glutathione peroxidase (GPx) and maintain long-term physiological NO flux. The synergistic effects of NO and H2S of bilayer grafts selectively promoted the regeneration and migration of human umbilical vascular endothelial cells (HUVECs), while inhibiting the overproliferation of human umbilical artery smooth muscle cells (HUASMCs). Bilayer grafts could effectively prevent vascular calcification, reduce inflammation, and alleviate endothelial dysfunction. The in vivo study in a rat abdominal aorta replacement model for 1 month showed that the graft had a good patency rate and had potential for vascular remodeling in situ.
Collapse
Affiliation(s)
- Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Fubang Liang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
35
|
Shi J, Yu W, Liang C, Shi H, Cao D, Ran Y, Qiao H, Dong Z, Liu J. S100A4 Is a Key Facilitator of Thoracic Aortic Dissection. Int J Biol Sci 2024; 20:29-46. [PMID: 38164183 PMCID: PMC10750273 DOI: 10.7150/ijbs.83091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Thoracic aortic dissection (TAD) is one of the cardiovascular diseases with high incidence and fatality rates. Vascular smooth muscle cells (VSMCs) play a vital role in TAD formation. Recent studies have shown that extracellular S100A4 may participate in VSMCs regulation. However, the mechanism(s) underlying this association remains elusive. Consequently, this study investigated the role of S100A4 in VSMCs regulation and TAD formation. Methods: Hub genes were screened based on the transcriptome data of aortic dissection in the Gene Expression Synthesis database. Three-week-old male S100A4 overexpression (AAV9- S100A4 OE) and S100A4 knockdown (AAV9- S100A4 KD) mice were exposed to β-aminopropionitrile monofumarate through drinking water for 28 days to create the murine TAD model. Results: S100A4 was observed to be the hub gene in aortic dissection. Furthermore, overexpression of S100A4 was exacerbated, whereas inhibition of S100A4 significantly improved TAD progression. In the TAD model, the S100A4 was observed to aggravate the phenotypic transition of VSMCs. Additionally, lysyl oxidase (LOX) was an important target of S100A4 in TAD. S100A4 interacted with LOX in VSMCs, reduced mature LOX (m-LOX), and decreased elastic fiber deposition, thereby disrupting extracellular matrix homeostasis and promoting TAD development. Elastic fiber deposition in human aortic tissues was negatively correlated with the expression of S100A4, which in turn, was negatively correlated with LOX. Conclusions: Our data showed that S100A4 modulates TADprogression, induces lysosomal degradation of m-LOX, and reduces the deposition of elastic fibers by interacting with LOX, thus contributing to the disruption of extracellular matrix homeostasis in TAD. These findings suggest that S100A4 may be a new target for the prevention and treatment of TAD.
Collapse
Affiliation(s)
- Jiajun Shi
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wenjun Yu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| | - Chuan Liang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| | - Hongjie Shi
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Dengwei Cao
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yong Ran
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Haisen Qiao
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhe Dong
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| |
Collapse
|
36
|
Balà N, Aranda A, Teixidó P, Molhoek C, Moreno-Jiménez I, Febas G, López-Guimet J, Groothuis A, Edelman ER, Balcells M, Borrós S, Martorell J, Riambau V. In Vivo Efficacy of an Adhesive Bioresorbable Patch to Treat Aortic Dissections. JACC Basic Transl Sci 2024; 9:65-77. [PMID: 38362347 PMCID: PMC10864981 DOI: 10.1016/j.jacbts.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/21/2023] [Accepted: 08/02/2023] [Indexed: 02/17/2024]
Abstract
Endovascular repair of aortic dissection still presents significant limitations. Preserving the mechanical and biological properties set by the aortic microstructure is critical to the success of implantable grafts. In this paper, we present the performance of an adhesive bioresorbable patch designed to cover the entry tear of aortic dissections. We demonstrate the power of using a biomimetic scaffold in a vascular environment.
Collapse
Affiliation(s)
- Noemí Balà
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
- Aortyx SL, Teia, Spain
| | - Alejandro Aranda
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
- Aortyx SL, Teia, Spain
| | - Pau Teixidó
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
- Aortyx SL, Teia, Spain
| | - Carlota Molhoek
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
- Aortyx SL, Teia, Spain
| | | | | | | | - Adam Groothuis
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Elazer Reuven Edelman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mercedes Balcells
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Salvador Borrós
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
- Aortyx SL, Teia, Spain
| | - Jordi Martorell
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
- Aortyx SL, Teia, Spain
| | - Vicente Riambau
- Aortyx SL, Teia, Spain
- Vascular Surgery Department, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Roth L, Dogan S, Tuna BG, Aranyi T, Benitez S, Borrell-Pages M, Bozaykut P, De Meyer GRY, Duca L, Durmus N, Fonseca D, Fraenkel E, Gillery P, Giudici A, Jaisson S, Johansson M, Julve J, Lucas-Herald AK, Martinet W, Maurice P, McDonnell BJ, Ozbek EN, Pucci G, Pugh CJA, Rochfort KD, Roks AJM, Rotllan N, Shadiow J, Sohrabi Y, Spronck B, Szeri F, Terentes-Printzios D, Tunc Aydin E, Tura-Ceide O, Ucar E, Yetik-Anacak G. Pharmacological modulation of vascular ageing: A review from VascAgeNet. Ageing Res Rev 2023; 92:102122. [PMID: 37956927 DOI: 10.1016/j.arr.2023.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.
Collapse
Affiliation(s)
- Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Sonia Benitez
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Biochemistry, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Perinur Bozaykut
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkiye
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Nergiz Durmus
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkiye
| | - Diogo Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Košice, Slovakia
| | - Philippe Gillery
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | | | - Josep Julve
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Endocrinology, Diabetes and Nutrition group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Barry J McDonnell
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Emine Nur Ozbek
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christopher J A Pugh
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin, Ireland
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands
| | - Noemi Rotllan
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Pathophysiology of lipid-related diseases, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Yahya Sohrabi
- Molecular Cardiology, Dept. of Cardiology I - Coronary and Peripheral Vascular Disease, University Hospital Münster, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czechia
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Flora Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elif Tunc Aydin
- Department of Cardiology, Hospital of Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkiye
| | - Olga Tura-Ceide
- Biomedical Research Institute-IDIBGI, Girona, Spain; Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Eda Ucar
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Acıbadem Mehmet Aydinlar University, Istanbul, Turkiye.
| |
Collapse
|
38
|
Cheng L, Yue H, Zhang H, Liu Q, Du L, Liu X, Xie J, Shen Y. The influence of microenvironment stiffness on endothelial cell fate: Implication for occurrence and progression of atherosclerosis. Life Sci 2023; 334:122233. [PMID: 37918628 DOI: 10.1016/j.lfs.2023.122233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Atherosclerosis, the primary cause of cardiovascular diseases (CVDs), is characterized by phenotypic changes in fibrous proliferation, chronic inflammation and lipid accumulation mediated by vascular endothelial cells (ECs) and vascular smooth muscle cells (SMCs) which are correlated with the stiffening and ectopic remodeling of local extracellular matrix (ECM). The native residents, ECs and SMCs, are not only affected by various chemical factors including inflammatory mediators and chemokines, but also by a range of physical stimuli, such as shear stress and ECM stiffness, presented in the microenvironmental niche. Especially, ECs, as a semi-selective barrier, can sense mechanical forces, respond quickly to changes in mechanical loading and provide context-specific adaptive responses to restore homeostasis. However, blood arteries undergo stiffening and lose their elasticity with age. Reports have shown that the ECM stiffening could influence EC fate by changing the cell adhesion, spreading, proliferation, cell to cell contact, migration and even communication with SMCs. The cell behaviour changes mediated by ECM stiffening are dependent on the activation of a signaling cascade of mechanoperception and mechanotransduction. Although the substantial evidence directly indicates the importance of ECM stiffening on the native ECs, the understanding about this complex interplay is still largely limited. In this review, we systematically summarize the roles of ECM stiffening on the behaviours of endothelial cells and elucidate the underlying details in biological mechanism, aiming to provide the process of how ECs integrate ECM mechanics and the highlights for bioaffinity of tissue-specific engineered scaffolds.
Collapse
Affiliation(s)
- Lin Cheng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hongyan Yue
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Huaiyi Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Qiao Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lingyu Du
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; JinFeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
39
|
Ito S, Amioka N, Franklin MK, Wang P, Liang CL, Katsumata Y, Cai L, Temel RE, Daugherty A, Lu HS, Sawada H. Association of NOTCH3 With Elastic Fiber Dispersion in the Infrarenal Abdominal Aorta of Cynomolgus Monkeys. Arterioscler Thromb Vasc Biol 2023; 43:2301-2311. [PMID: 37855127 PMCID: PMC10843096 DOI: 10.1161/atvbaha.123.319244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The regional heterogeneity of vascular components and transcriptomes is an important determinant of aortic biology. This notion has been explored in multiple mouse studies. In the present study, we examined the regional heterogeneity of aortas in nonhuman primates. METHODS Aortic samples were harvested from the ascending, descending thoracic, suprarenal, and infrarenal regions of young control monkeys and adult monkeys with high fructose consumption for 3 years. The regional heterogeneity of aortic structure and transcriptomes was examined by histological and bulk RNA sequencing analyses, respectively. RESULTS Immunostaining of CD31 and αSMA (alpha-smooth muscle actin) revealed that endothelial and smooth muscle cells were distributed homogeneously across the aortic regions. In contrast, elastic fibers were less abundant and dispersed in the infrarenal aorta compared with other regions and associated with collagen deposition. Bulk RNA sequencing identified a distinct transcriptome related to the Notch signaling pathway in the infrarenal aorta with significantly increased NOTCH3 mRNA compared with other regions. Immunostaining revealed that NOTCH3 protein was increased in the media of the infrarenal aorta. The abundance of medial NOTCH3 was positively correlated with the dispersion of elastic fibers. Adult cynomolgus monkeys with high fructose consumption displayed vascular wall remodeling, such as smooth muscle cell loss and elastic fiber disruption, predominantly in the infrarenal region. The correlation between NOTCH3 and elastic fiber dispersion was enhanced in these monkeys. CONCLUSIONS Aortas of young cynomolgus monkeys display regional heterogeneity of their transcriptome and the structure of elastin and collagens. Elastic fibers in the infrarenal aorta are dispersed along with upregulation of medial NOTCH3.
Collapse
Affiliation(s)
- Sohei Ito
- Saha Cardiovascular Research Center, College of Medicine
| | - Naofumi Amioka
- Saha Cardiovascular Research Center, College of Medicine
| | | | - Pengjun Wang
- Saha Cardiovascular Research Center, College of Medicine
| | | | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, KY
- Sanders-Brown Center on Aging, University of Kentucky, KY
| | - Lei Cai
- Saha Cardiovascular Research Center, College of Medicine
| | - Ryan E. Temel
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| |
Collapse
|
40
|
Tilahun HG, Mullagura HN, Humphrey JD, Baek S. A biochemomechanical model of collagen turnover in arterial adaptations to hemodynamic loading. Biomech Model Mechanobiol 2023; 22:2063-2082. [PMID: 37505299 DOI: 10.1007/s10237-023-01750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
The production, removal, and remodeling of fibrillar collagen is fundamental to mechanical homeostasis in arteries, including dynamic morphological and microstructural changes that occur in response to sustained changes in blood flow and pressure under physiological conditions. These dynamic processes involve complex, coupled biological, chemical, and mechanical mechanisms that are not completely understood. Nevertheless, recent simulations using constrained mixture models with phenomenologically motivated constitutive relations have proven able to predict salient features of the progression of certain vascular adaptations as well as disease processes. Collagen turnover is modeled, in part, via stress-dependent changes in collagen half-life, typically within the range of 10-70 days. By contrast, in this work we introduce a biochemomechanical approach to model the cellular synthesis of procollagen as well as its transition from an intermediate state of assembled microfibrils to mature cross-linked fibers, with mechano-regulated removal. The resulting model can simulate temporal changes in geometry, composition, and stress during early vascular adaptation (weeks to months) for modest changes in blood flow or pressure. It is shown that these simulations capture salient features from data presented in the literature from different animal models.
Collapse
Affiliation(s)
- Hailu G Tilahun
- Department of Mechanical Engineering, Michigan State University, 3259 Engineering Building, East Lansing, MI, 48824, USA
| | - Haritha N Mullagura
- Department of Mechanical Engineering, Michigan State University, 3259 Engineering Building, East Lansing, MI, 48824, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Seungik Baek
- Department of Mechanical Engineering, Michigan State University, 3259 Engineering Building, East Lansing, MI, 48824, USA.
| |
Collapse
|
41
|
Yu Y, Wang S, Chen X, Gao Z, Dai K, Wang J, Liu C. Sulfated oligosaccharide activates endothelial Notch for inducing macrophage-associated arteriogenesis to treat ischemic diseases. Proc Natl Acad Sci U S A 2023; 120:e2307480120. [PMID: 37943835 PMCID: PMC10655224 DOI: 10.1073/pnas.2307480120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/01/2023] [Indexed: 11/12/2023] Open
Abstract
Ischemic diseases lead to considerable morbidity and mortality, yet conventional clinical treatment strategies for therapeutic angiogenesis fall short of being impactful. Despite the potential of biomaterials to deliver pro-angiogenic molecules at the infarct site to induce angiogenesis, their efficacy has been impeded by aberrant vascular activation and off-target circulation. Here, we present a semisynthetic low-molecular sulfated chitosan oligosaccharide (SCOS) that efficiently induces therapeutic arteriogenesis with a spontaneous generation of collateral circulation and blood reperfusion in rodent models of hind limb ischemia and myocardial infarction. SCOS elicits anti-inflammatory macrophages' (Mφs') differentiation into perivascular Mφs, which in turn directs artery formation via a cell-to-cell communication rather than secretory factor regulation. SCOS-mediated arteriogenesis requires a canonical Notch signaling pathway in Mφs via the glycosylation of protein O-glucosyltransferases 2, which results in promoting arterial differentiation and tissue repair in ischemia. Thus, this highly bioactive oligosaccharide can be harnessed to direct efficiently therapeutic arteriogenesis and perfusion for the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Yuanman Yu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Shuang Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Xinye Chen
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Zehua Gao
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Kai Dai
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Changsheng Liu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| |
Collapse
|
42
|
Zimmermann S, Weißenfels M, Krümmer N, Michalski D, Weise G, Branzan D, Pelz JO. Long-Term Course of Circulating Elastin, Collagen Type I, and Collagen Type III in Patients with Spontaneous Cervical Artery Dissection: a Prospective Multicenter Study. Transl Stroke Res 2023:10.1007/s12975-023-01207-8. [PMID: 37945800 DOI: 10.1007/s12975-023-01207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
An impaired integrity of vascular elements and the extracellular matrix (ECM) has been discussed to play a critical role in the pathophysiology of spontaneous cervical artery dissection (sCAD). This study aimed to explore the temporal course of circulating elastin, collagen type I, and collagen type III in patients with sCAD and evaluated their eligibility as diagnostic biomarkers. Patients with sCAD were prospectively enrolled in four German stroke centers. Blood samples were collected at baseline (acute phase), at day 10 ± 3 (subacute phase), and after 6 ± 1 months (chronic phase). Patients with acute ischemic stroke not related to sCAD, healthy probands, and patients undergoing thromboendarterectomy of the carotid artery served as control groups. Serum levels of elastin and collagen types I and III were determined by ELISAs. Fifty-seven patients with sCAD were enrolled. Compared to all three control groups, patients with sCAD had significantly lower levels of elastin and collagen type III at baseline and after 6 months. Compared to healthy probands, patients with sCAD showed similar collagen type I levels at baseline and in the subacute phase, but significantly increased levels after 6 months. As serum levels of elastin, collagen types I and III were not elevated in the acute phase, they do not appear eligible as biomarkers for the diagnosis of sCAD. Persisting low serum levels of elastin and collagen type III towards the chronic phase of sCAD strengthens the hypothesis of a subtle, in most cases clinically inapparent affection of the ECM in patients with sCAD.
Collapse
Affiliation(s)
- Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | | | - Norma Krümmer
- Department of Neurology, Klinikum Altenburger Land, Altenburg, Germany
| | - Dominik Michalski
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Gesa Weise
- Department of Neurology, Sana Kliniken Leipziger Land, Borna, Germany
| | - Daniela Branzan
- Department of Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Johann Otto Pelz
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
43
|
Kojima T, Nakamura T, Saito J, Hidaka Y, Akimoto T, Inoue H, Chick CN, Usuki T, Kaneko M, Miyagi E, Ishikawa Y, Yokoyama U. Hydrostatic pressure under hypoxia facilitates fabrication of tissue-engineered vascular grafts derived from human vascular smooth muscle cells in vitro. Acta Biomater 2023; 171:209-222. [PMID: 37793599 DOI: 10.1016/j.actbio.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Biologically compatible vascular grafts are urgently required. The scaffoldless multi-layered vascular wall is considered to offer theoretical advantages, such as facilitating cells to form cell-cell and cell-matrix junctions and natural extracellular matrix networks. Simple methods are desired for fabricating physiological scaffoldless tissue-engineered vascular grafts. Here, we showed that periodic hydrostatic pressurization under hypoxia (HP/HYP) facilitated the fabrication of multi-layered tunica media entirely from human vascular smooth muscle cells. Compared with normoxic atmospheric pressure, HP/HYP increased expression of N-myc downstream-regulated 1 (NDRG1) and the collagen-cross-linking enzyme lysyl oxidase in human umbilical artery smooth muscle cells. HP/HYP increased N-cadherin-mediated cell-cell adhesion via NDRG1, cell-matrix interaction (i.e., clustering of integrin α5β1 and fibronectin), and collagen fibrils. We then fabricated vascular grafts using HP/HYP during repeated cell seeding and obtained 10-layered smooth muscle grafts with tensile rupture strength of 0.218-0.396 MPa within 5 weeks. Implanted grafts into the rat aorta were endothelialized after 1 week and patent after 5 months, at which time most implanted cells had been replaced by recipient-derived cells. These results suggest that HP/HYP enables fabrication of scaffoldless human vascular mimetics that have a spatial arrangement of cells and matrices, providing potential clinical applications for cardiovascular diseases. STATEMENT OF SIGNIFICANCE: Tissue-engineered vascular grafts (TEVGs) are theoretically more biocompatible than prosthetic materials in terms of mechanical properties and recipient cell-mediated tissue reconstruction. Although some promising results have been shown, TEVG fabrication processes are complex, and the ideal method is still desired. We focused on the environment in which the vessels develop in utero and found that mechanical loading combined with hypoxia facilitated formation of cell-cell and cell-matrix junctions and natural extracellular matrix networks in vitro, which resulted in the fabrication of multi-layered tunica media entirely from human umbilical artery smooth muscle cells. These scaffoldless TEVGs, produced using a simple process, were implantable and have potential clinical applications for cardiovascular diseases.
Collapse
Affiliation(s)
- Tomoyuki Kojima
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan; Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Takashi Nakamura
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Junichi Saito
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yuko Hidaka
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Taisuke Akimoto
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Hana Inoue
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Christian Nanga Chick
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Makoto Kaneko
- Graduate School of Science and Engineering, Meijo University, Aichi 468-8502, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan.
| |
Collapse
|
44
|
Burke-Kleinman J, Gotlieb AI. Progression of Arterial Vasa Vasorum from Regulator of Arterial Homeostasis to Promoter of Atherogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1468-1484. [PMID: 37356574 DOI: 10.1016/j.ajpath.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
The vasa vasorum (vessels of vessels) are a dynamic microvascular system uniquely distributed to maintain physiological homeostasis of the artery wall by supplying nutrients and oxygen to the outer layers of the artery wall, adventitia, and perivascular adipose tissue, and in large arteries, to the outer portion of the medial layer. Vasa vasorum endothelium and contractile mural cells regulate direct access of bioactive cells and factors present in both the systemic circulation and the arterial perivascular adipose tissue and adventitia to the artery wall. Experimental and human data show that proatherogenic factors and cells gain direct access to the artery wall via the vasa vasorum and may initiate, promote, and destabilize the plaque. Activation and growth of vasa vasorum occur in all blood vessel layers primarily by angiogenesis, producing fragile and permeable new microvessels that may cause plaque hemorrhage and fibrous cap rupture. Ironically, invasive therapies, such as angioplasty and coronary artery bypass grafting, injure the vasa vasorum, leading to treatment failures. The vasa vasorum function both as a master integrator of arterial homeostasis and, once perturbed or injured, as a promotor of atherogenesis. Future studies need to be directed at establishing reliable in vivo and in vitro models to investigate the cellular and molecular regulation of the function and dysfunction of the arterial vasa vasorum.
Collapse
Affiliation(s)
- Jonah Burke-Kleinman
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Avrum I Gotlieb
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Pineda-Castillo SA, Acar H, Detamore MS, Holzapfel GA, Lee CH. Modulation of Smooth Muscle Cell Phenotype for Translation of Tissue-Engineered Vascular Grafts. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:574-588. [PMID: 37166394 PMCID: PMC10618830 DOI: 10.1089/ten.teb.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Translation of small-diameter tissue-engineered vascular grafts (TEVGs) for the treatment of coronary artery disease (CAD) remains an unfulfilled promise. This is largely due to the limited integration of TEVGs into the native vascular wall-a process hampered by the insufficient smooth muscle cell (SMC) infiltration and extracellular matrix deposition, and low vasoactivity. These processes can be promoted through the judicious modulation of the SMC toward a synthetic phenotype to promote remodeling and vascular integration; however, the expression of synthetic markers is often accompanied by a decrease in the expression of contractile proteins. Therefore, techniques that can precisely modulate the SMC phenotypical behavior could have the potential to advance the translation of TEVGs. In this review, we describe the phenotypic diversity of SMCs and the different environmental cues that allow the modulation of SMC gene expression. Furthermore, we describe the emerging biomaterial approaches to modulate the SMC phenotype in TEVG design and discuss the limitations of current techniques. In addition, we found that current studies in tissue engineering limit the analysis of the SMC phenotype to a few markers, which are often the characteristic of early differentiation only. This limited scope has reduced the potential of tissue engineering to modulate the SMC toward specific behaviors and applications. Therefore, we recommend using the techniques presented in this review, in addition to modern single-cell proteomics analysis techniques to comprehensively characterize the phenotypic modulation of SMCs. Expanding the holistic potential of SMC modulation presents a great opportunity to advance the translation of living conduits for CAD therapeutics.
Collapse
Affiliation(s)
- Sergio A. Pineda-Castillo
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
| | - Handan Acar
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
46
|
Guo T, Zou X, Sundar S, Jia X, Dhong C. In situ measurement of viscoelastic properties of cellular monolayers via graphene strain sensing of elastohydrodynamic phenomena. LAB ON A CHIP 2023; 23:4067-4078. [PMID: 37610268 PMCID: PMC10498944 DOI: 10.1039/d3lc00457k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Recent advances recognize that the viscoelastic properties of epithelial structures play important roles in biology and disease modeling. However, accessing the viscoelastic properties of multicellular structures in mechanistic or drug-screening applications has challenges in repeatability, accuracy, and practical implementation. Here, we present a microfluidic platform that leverages elastohydrodynamic phenomena, sensed by strain sensors made from graphene decorated with palladium nanoislands, to measure the viscoelasticity of cellular monolayers in situ, without using chemical labels or specialized equipment. We demonstrate platform utility with two systems: cell dissociation following trypsinization, where viscoelastic properties change over minutes, and epithelial-to-mesenchymal transition, where changes occur over days. These cellular events could only be resolved with our platform's higher resolution: viscoelastic relaxation time constants of λ = 14.5 ± 0.4 s-1 for intact epithelial monolayers, compared to λ = 13.4 ± 15.0 s-1 in other platforms, which represents a 30-fold improvement. By rapidly assessing combined contributions from cell stiffness and intercellular interactions, we anticipate that the platform will hasten the translation of new mechanical biomarkers.
Collapse
Affiliation(s)
- Tianzheng Guo
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA.
| | - Xiaoyu Zou
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA.
| | - Shalini Sundar
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Charles Dhong
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
47
|
Lin PK, Davis GE. Extracellular Matrix Remodeling in Vascular Disease: Defining Its Regulators and Pathological Influence. Arterioscler Thromb Vasc Biol 2023; 43:1599-1616. [PMID: 37409533 PMCID: PMC10527588 DOI: 10.1161/atvbaha.123.318237] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Because of structural and cellular differences (ie, degrees of matrix abundance and cross-linking, mural cell density, and adventitia), large and medium-sized vessels, in comparison to capillaries, react in a unique manner to stimuli that induce vascular disease. A stereotypical vascular injury response is ECM (extracellular matrix) remodeling that occurs particularly in larger vessels in response to injurious stimuli, such as elevated angiotensin II, hyperlipidemia, hyperglycemia, genetic deficiencies, inflammatory cell infiltration, or exposure to proinflammatory mediators. Even with substantial and prolonged vascular damage, large- and medium-sized arteries, persist, but become modified by (1) changes in vascular wall cellularity; (2) modifications in the differentiation status of endothelial cells, vascular smooth muscle cells, or adventitial stem cells (each can become activated); (3) infiltration of the vascular wall by various leukocyte types; (4) increased exposure to critical growth factors and proinflammatory mediators; and (5) marked changes in the vascular ECM, that remodels from a homeostatic, prodifferentiation ECM environment to matrices that instead promote tissue reparative responses. This latter ECM presents previously hidden matricryptic sites that bind integrins to signal vascular cells and infiltrating leukocytes (in coordination with other mediators) to proliferate, invade, secrete ECM-degrading proteinases, and deposit injury-induced matrices (predisposing to vessel wall fibrosis). In contrast, in response to similar stimuli, capillaries can undergo regression responses (rarefaction). In summary, we have described the molecular events controlling ECM remodeling in major vascular diseases as well as the differential responses of arteries versus capillaries to key mediators inducing vascular injury.
Collapse
Affiliation(s)
- Prisca K. Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| |
Collapse
|
48
|
An DW, Hansen TW, Aparicio LS, Chori B, Huang QF, Wei FF, Cheng YB, Yu YL, Sheng CS, Gilis-Malinowska N, Boggia J, Wojciechowska W, Niiranen TJ, Tikhonoff V, Casiglia E, Narkiewicz K, Stolarz-Skrzypek K, Kawecka-Jaszcz K, Jula AM, Yang WY, Woodiwiss AJ, Filipovský J, Wang JG, Rajzer MW, Verhamme P, Nawrot TS, Staessen JA, Li Y. Derivation of an Outcome-Driven Threshold for Aortic Pulse Wave Velocity: An Individual-Participant Meta-Analysis. Hypertension 2023; 80:1949-1959. [PMID: 37470187 PMCID: PMC10424824 DOI: 10.1161/hypertensionaha.123.21318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/08/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Aortic pulse wave velocity (PWV) predicts cardiovascular events (CVEs) and total mortality (TM), but previous studies proposing actionable PWV thresholds have limited generalizability. This individual-participant meta-analysis is aimed at defining, testing calibration, and validating an outcome-driven threshold for PWV, using 2 populations studies, respectively, for derivation IDCARS (International Database of Central Arterial Properties for Risk Stratification) and replication MONICA (Monitoring of Trends and Determinants in Cardiovascular Disease Health Survey - Copenhagen). METHODS A risk-carrying PWV threshold for CVE and TM was defined by multivariable Cox regression, using stepwise increasing PWV thresholds and by determining the threshold yielding a 5-year risk equivalent with systolic blood pressure of 140 mm Hg. The predictive performance of the PWV threshold was assessed by computing the integrated discrimination improvement and the net reclassification improvement. RESULTS In well-calibrated models in IDCARS, the risk-carrying PWV thresholds converged at 9 m/s (10 m/s considering the anatomic pulse wave travel distance). With full adjustments applied, the threshold predicted CVE (hazard ratio [CI]: 1.68 [1.15-2.45]) and TM (1.61 [1.01-2.55]) in IDCARS and in MONICA (1.40 [1.09-1.79] and 1.55 [1.23-1.95]). In IDCARS and MONICA, the predictive accuracy of the threshold for both end points was ≈0.75. Integrated discrimination improvement was significant for TM in IDCARS and for both TM and CVE in MONICA, whereas net reclassification improvement was not for any outcome. CONCLUSIONS PWV integrates multiple risk factors into a single variable and might replace a large panel of traditional risk factors. Exceeding the outcome-driven PWV threshold should motivate clinicians to stringent management of risk factors, in particular hypertension, which over a person's lifetime causes stiffening of the elastic arteries as waypoint to CVE and death.
Collapse
Affiliation(s)
- De-Wei An
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (D.-W.A., Q.-F.H., Y. B.C., C. S.S., J. G.W., Y.L.)
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Belgium (D.-W.A, T.W.H, B.C., Y.-L.Y., J.A.S.)
- Research Unit Environment and Health, Department of Public Health and Primary Care, University of Leuven, Belgium (D.-W.A, Y.-L.Y., T.S.N.)
| | - Tine W. Hansen
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Belgium (D.-W.A, T.W.H, B.C., Y.-L.Y., J.A.S.)
- The Steno Diabetes Center Copenhagen, Herlev, and Center for Health, Capital Region of Denmark, Copenhagen (T.W.H.)
| | - Lucas S. Aparicio
- Servicio de Clínica Médica, Sección Hipertensión Arterial, Hospital Italiano de Buenos Aires, Argentina (L.S.A.)
| | - Babangida Chori
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Belgium (D.-W.A, T.W.H, B.C., Y.-L.Y., J.A.S.)
- Centre for Environmental Sciences, Hasselt University, Belgium (B.C., T.S.N.)
- Department of Internal Medicine, Faculty of Clinical Sciences, College of Health Sciences, University of Abuja, Nigeria (B.C.)
| | - Qi-Fang Huang
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (D.-W.A., Q.-F.H., Y. B.C., C. S.S., J. G.W., Y.L.)
| | - Fang-Fei Wei
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (F.-F.W.)
| | - Yi-Bang Cheng
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (D.-W.A., Q.-F.H., Y. B.C., C. S.S., J. G.W., Y.L.)
| | - Yu-Ling Yu
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Belgium (D.-W.A, T.W.H, B.C., Y.-L.Y., J.A.S.)
- Research Unit Environment and Health, Department of Public Health and Primary Care, University of Leuven, Belgium (D.-W.A, Y.-L.Y., T.S.N.)
| | - Chang-Sheng Sheng
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (D.-W.A., Q.-F.H., Y. B.C., C. S.S., J. G.W., Y.L.)
| | - Natasza Gilis-Malinowska
- Hypertension Unit, Department of Hypertension and Diabetology, Medical University of Gdańsk, Poland (N.G.-M., K.N.)
| | - José Boggia
- Centro de Nefrología and Departamento de Fisiopatología, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay (J.B.)
| | - Wiktoria Wojciechowska
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Kraków, Poland (W.W., K.S.-S., M.R., K.K.-J)
| | - Teemu J. Niiranen
- Department of Chronic Disease Prevention, Finnish Institute for Health and Welfare, Turku, Finland (T.J.N., A.M.J.)
- Department of Medicine, Turku University Hospital and University of Turku, Finland (T.J.N., A.M.J.)
| | | | - Edoardo Casiglia
- Department of Medicine, University of Padova, Italy (V.T., E.C.)
| | - Krzysztof Narkiewicz
- Hypertension Unit, Department of Hypertension and Diabetology, Medical University of Gdańsk, Poland (N.G.-M., K.N.)
| | - Katarzyna Stolarz-Skrzypek
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Kraków, Poland (W.W., K.S.-S., M.R., K.K.-J)
| | - Kalina Kawecka-Jaszcz
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Kraków, Poland (W.W., K.S.-S., M.R., K.K.-J)
| | - Antti M. Jula
- Department of Chronic Disease Prevention, Finnish Institute for Health and Welfare, Turku, Finland (T.J.N., A.M.J.)
- Department of Medicine, Turku University Hospital and University of Turku, Finland (T.J.N., A.M.J.)
| | - Wen-Yi Yang
- Department of Cardiology, Shanghai General Hospital, China (W.-Y.Y.)
| | - Angela J. Woodiwiss
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa (A.W.)
| | - Jan Filipovský
- Faculty of Medicine, Charles University, Pilsen, Czech Republic (J.F.)
| | - Ji-Guang Wang
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (D.-W.A., Q.-F.H., Y. B.C., C. S.S., J. G.W., Y.L.)
| | - Marek W. Rajzer
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Kraków, Poland (W.W., K.S.-S., M.R., K.K.-J)
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (P.V.)
| | - Tim S. Nawrot
- Research Unit Environment and Health, Department of Public Health and Primary Care, University of Leuven, Belgium (D.-W.A, Y.-L.Y., T.S.N.)
- Centre for Environmental Sciences, Hasselt University, Belgium (B.C., T.S.N.)
| | - Jan A. Staessen
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Belgium (D.-W.A, T.W.H, B.C., Y.-L.Y., J.A.S.)
- Biomedical Science Group, Faculty of Medicine, University of Leuven, Belgium (J.A.S.)
| | - Yan Li
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (D.-W.A., Q.-F.H., Y. B.C., C. S.S., J. G.W., Y.L.)
| |
Collapse
|
49
|
Ito S, Amioka N, Franklin MK, Wang P, Liang CL, Katsumata Y, Cai L, Temel RE, Daugherty A, Lu HS, Sawada H. Association of NOTCH3 with Elastic Fiber Dispersion in the Infrarenal Abdominal Aorta of Cynomolgus Monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.04.530901. [PMID: 37767086 PMCID: PMC10522327 DOI: 10.1101/2023.03.04.530901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Background The regional heterogeneity of vascular components and transcriptomes is an important determinant of aortic biology. This notion has been explored in multiple mouse studies. In the present study, we examined the regional heterogeneity of aortas in non-human primates. Methods Aortic samples were harvested from the ascending, descending, suprarenal, and infrarenal regions of young control monkeys and adult monkeys provided with high fructose for 3 years. The regional heterogeneity of aortic structure and transcriptomes was examined by histological and bulk RNA sequencing analyses. Results Immunostaining of CD31 and αSMA revealed that endothelial and smooth muscle cells were distributed homogeneously across the aortic regions. In contrast, elastic fibers were less abundant and dispersed in the infrarenal aorta compared to other regions and associated with collagen deposition. Bulk RNA sequencing identified a distinct transcriptome related to the Notch signaling pathway in the infrarenal aorta with significantly increased NOTCH3 mRNA compared to other regions. Immunostaining revealed that NOTCH3 protein was increased in the media of the infrarenal aorta. The abundance of medial NOTCH3 was positively correlated with the dispersion of elastic fibers. Adult cynomolgus monkeys provided with high fructose displayed vascular wall remodeling, such as smooth muscle cell loss and elastic fiber disruption, predominantly in the infrarenal region. The correlation between NOTCH3 and elastic fiber dispersion was enhanced in these monkeys. Conclusions Aortas of young cynomolgus monkeys display regional heterogeneity of their transcriptome and the structure of elastin and collagens. Elastic fibers in the infrarenal aorta are dispersed along with upregulation of medial NOTCH3. HIGHLIGHTS - The present study determined the regional heterogeneity of aortas from cynomolgus monkeys.- Aortas of young cynomolgus monkeys displayed region-specific aortic structure and transcriptomes.- Elastic fibers were dispersed in the infrarenal aorta along with increased NOTCH3 abundance in the media. GRAPHIC ABSTRACT
Collapse
|
50
|
Nourian Z, Hong K, Li M, Castorena-Gonzalez JA, Martinez-Lemus LA, Clifford PS, Meininger GA, Hill MA. Postnatal development of extracellular matrix and vascular function in small arteries of the rat. Front Pharmacol 2023; 14:1210128. [PMID: 37649891 PMCID: PMC10464837 DOI: 10.3389/fphar.2023.1210128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction: Vascular extracellular matrix (ECM) is dominated by elastic fibers (elastin with fibrillin-rich microfibrils) and collagens. Current understanding of ECM protein development largely comes from studies of conduit vessels (e.g., aorta) while resistance vessel data are sparse. With an emphasis on elastin, we examined whether changes in postnatal expression of arteriolar wall ECM would correlate with development of local vasoregulatory mechanisms such as the myogenic response and endothelium-dependent dilation. Methods: Rat cerebral and mesenteric arteries were isolated at ages 3, 7, 11, 14, 19 days, 2 months, and 2 years. Using qPCR mRNA expression patterns were examined for elastin, collagen types I, II, III, IV, fibrillin-1, and -2, lysyl oxidase (LOX), and transglutaminase 2. Results: Elastin, LOX and fibrillar collagens I and III mRNA peaked at day 11-14 in both vasculatures before declining at later time-points. 3D confocal imaging for elastin showed continuous remodeling in the adventitia and the internal elastic lamina for both cerebral and mesenteric vessels. Myogenic responsiveness in cannulated cerebral arteries was detectable at day 3 with constriction shifted to higher intraluminal pressures by day 19. Myogenic responsiveness of mesenteric vessels appeared fully developed by day 3. Functional studies were performed to investigate developmental changes in endothelial-dependent dilation. Endothelial-dependent dilation to acetylcholine was less at day 3 compared to day 19 and at day 3 lacked an endothelial-derived hyperpolarizing factor component that was evident at day 19. Conclusion: Collectively, in the rat small artery structural remodeling and aspects of functional control continue to develop in the immediate postnatal period.
Collapse
Affiliation(s)
- Zahra Nourian
- Dalton Cardiovascular Research Center, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology and University of Missouri, Columbia, MO, United States
| | - Kwangseok Hong
- Dalton Cardiovascular Research Center, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology and University of Missouri, Columbia, MO, United States
- Department of Physical Education, College of Education, Chung-Ang University, Seoul, Republic of Korea
| | - Min Li
- Dalton Cardiovascular Research Center, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology and University of Missouri, Columbia, MO, United States
| | - Jorge A. Castorena-Gonzalez
- Dalton Cardiovascular Research Center, Columbia, MO, United States
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology and University of Missouri, Columbia, MO, United States
| | - Philip S. Clifford
- College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology and University of Missouri, Columbia, MO, United States
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology and University of Missouri, Columbia, MO, United States
| |
Collapse
|