1
|
Liu R, Zhu R, Guo J, Yi T, Jin D. High-quality reference genome of predatory mite Neoseiulus californicus McGregor (Acari: Phytoseiidae) provides insights into its biological traits and potential RNAi off-target effects. PEST MANAGEMENT SCIENCE 2025; 81:1638-1656. [PMID: 39686612 DOI: 10.1002/ps.8570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Neoseiulus californicus is a predatory mite that can control various spider mites and other small arthropods. Despite its acknowledged effectiveness in the natural enemy market, a crucial knowledge gap exists in understanding the genomic features related to its predatory traits and adaptation. With the increasing emphasis on modern pest management strategies and dynamic environmental changes in plant production trends, constructing a reliable genomic resource for N. californicus becomes imperative. RESULTS In this study, we provided a high-quality genome assembly and annotation of N. californicus, with a size of 188.43 Mb and 12 946 predicted genes. We identified genomic features and traits related to its detoxification, stress response, sensory system, mobility, secretory toxins, digestive enzymes and horizontally transferred genes (HGTs) by comparative genomics. We also predicted the potential off-target effects of double-stranded RNA (dsRNA) that could be used to control spider mites, based on public data and the N. californicus genome. CONCLUSION Our study provided a valuable genomic resource for a commercialized predatory mite, offering useful insights for the design of integrated pest management (IPM) strategies in the new era. Further studies are needed to explore the functional roles of key gene families in predatory mites, as well as their interactions with their prey and IPM strategies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rundong Liu
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang, China
| | - Rui Zhu
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang, China
- Guizhou Provincial Engineering Research Center of Medical Resourceful Healthcare Products, Guiyang Healthcare Vocational University, Guiyang, China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang, China
| | - Tianci Yi
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang, China
| | - Daochao Jin
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang, China
| |
Collapse
|
2
|
Wedemeyer SA, Jones NE, Raza IGA, Green FM, Xiao Y, Semwal MK, Garza AK, Archuleta KS, Wimberly KL, Venables T, Holländer GA, Griffith AV. Paracrine FGF21 dynamically modulates mTOR signaling to regulate thymus function across the lifespan. NATURE AGING 2025:10.1038/s43587-024-00801-1. [PMID: 39972173 DOI: 10.1038/s43587-024-00801-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Abstract
Consequences of age-associated thymic atrophy include declining T-cell responsiveness to pathogens and vaccines and diminished T-cell self-tolerance. Cortical thymic epithelial cells (cTECs) are primary targets of thymic aging, and recent studies suggested that their maintenance requires mTOR signaling downstream of medullary TEC (mTEC)-derived growth factors. Here, to test this hypothesis, we generated a knock-in mouse model in which FGF21 and mCherry are expressed by most mTECs. We find that mTEC-derived FGF21 promotes temporally distinct patterns of mTORC1 and mTORC2 signaling in cTECs, promotes thymus and individual cTEC growth and maintenance, increases T-cell responsiveness to viral infection, and diminishes indicators of peripheral autoimmunity in older mice. The effects of FGF21 overexpression on thymus size and mTOR signaling were abrogated by treatment with the mTOR inhibitor rapamycin. These results reveal a mechanism by which paracrine FGF21 signaling regulates thymus size and function throughout the lifespan, as well as potential therapeutic targets for improving T-cell function and tolerance in aging.
Collapse
Affiliation(s)
- Sarah A Wedemeyer
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Nicholas E Jones
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Iwan G A Raza
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Freedom M Green
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Yangming Xiao
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Manpreet K Semwal
- Sam and Ann Barshop Institute for Aging and Longevity Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Math and Science, Our Lady of the Lake University, San Antonio, TX, USA
| | - Aaron K Garza
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Kahealani S Archuleta
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Kymberly L Wimberly
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Thomas Venables
- Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Georg A Holländer
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital, Basel, Switzerland
- Developmental Immunology, Department of Biosystems and Engineering, ETH Zurich, Zurich, Switzerland
| | - Ann V Griffith
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA.
- Sam and Ann Barshop Institute for Aging and Longevity Studies, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
3
|
Singh E, Gupta A, Singh P, Jain M, Muthukumaran J, Singh RP, Singh AK. Exploring mammalian heme peroxidases: A comprehensive review on the structure and function of myeloperoxidase, lactoperoxidase, eosinophil peroxidase, thyroid peroxidase and peroxidasin. Arch Biochem Biophys 2024; 761:110155. [PMID: 39278306 DOI: 10.1016/j.abb.2024.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The peroxidase family of enzymes is a ubiquitous cluster of enzymes primarily responsible for the oxidation of organic and inorganic substrates. The mammalian heme peroxidase subfamily is characterized by a covalently linked heme prosthetic group which plays a key role in the oxidation of halides and psuedohalides into their respective hypohalous acid and hypothiocyanous acid under the influence of H2O2 as substrate. The members of the heme peroxidase family include Lactoperoxidase (LPO), Eosinophil peroxidase (EPO), Myeloperoxidase (MPO), Thyroid peroxidase (TPO) and Peroxidasin (PXDN). The biological activity of LPO, MPO and EPO pertains to antibacterial, antifungal and antiviral while TPO is involved in the biosynthesis of the thyroid hormone and PXDN helps maintain the ECM. While these enzymes play several immunomodulatory roles, aberrations in their activity have been implicated in diseases such as myocardial infarction, asthma and Alzheimer's amongst others. The sequence and structural similarities amongst the members of the family are strikingly high while the substrate specificities and subcellular locations vary. Hence, it becomes important to provide a consortium of information regarding the members to study their biochemical, pathological and clinical function.
Collapse
Affiliation(s)
- Ekampreet Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Ayushi Gupta
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Pratyaksha Singh
- School of Biotechnology, Gautam Buddha University, P.C. 201312, Greater Noida, U.P., India
| | - Monika Jain
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Rashmi Prabha Singh
- Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, P.C. 201310, Greater Noida, U.P., India.
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India.
| |
Collapse
|
4
|
Cho J, Kang D, Kong U, Lee J, Kim J, Lee C. Enhanced bactericidal effects of povidone-iodine in the presence of silver ions. CHEMOSPHERE 2024; 368:143734. [PMID: 39536830 DOI: 10.1016/j.chemosphere.2024.143734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
The rising prevalence of antibiotic-resistant infections worldwide necessitates the development of innovative antimicrobial systems for effective pathogen control. This study investigates the synergistic bactericidal effects of a combined system comprising povidone-iodine (PVP-I) and silver ions (Ag(I)). The PVP-I/Ag(I) system exhibited enhanced bactericidal activity against four key surrogate bacterial species: two Gram-negative bacteria, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), and two Gram-positive bacteria, Staphylococcus aureus (S. aureus) and Bacillus subtilis (B. subtilis). Our experiments revealed that Ag(I) interacts with iodide ions (I-) to form silver iodide (AgI). This reaction promotes the formation of hypoiodous acid (HOI), a more potent bactericidal agent than other reactive iodine species (RIS), by shifting the equilibrium of RIS released from PVP-I. Under representative conditions ([PVP-I]0 = 1 mg/L, [Ag(I)]0 = 5 μM, pH = 7.3), the concentration of HOI in the PVP-I/Ag(I) system was 2.4-3.9 times higher than in the PVP-I system alone, aligning with theoretical predictions. The bactericidal efficacy of the PVP-I/Ag(I) system was influenced by pH variations, affecting HOI formation. This system represents a promising tool for rapid and effective microbial control, potentially enhancing public health outcomes.
Collapse
Affiliation(s)
- Jiyoon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dongwoo Kang
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Uimin Kong
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Juri Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Joohyun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Almhöjd U, Fisic A, Cevik-Aras H, Tuomi L, Finizia C, Almståhl A. Explorative study of stimulated saliva proteome in head and neck cancer patients pre- and post-treatment. Heliyon 2024; 10:e39033. [PMID: 39640734 PMCID: PMC11620125 DOI: 10.1016/j.heliyon.2024.e39033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 12/07/2024] Open
Abstract
Objectives to compare saliva proteome of patients before treatment of head and neck cancer and six months post-treatment with controls. Design Five dentate patients and five age and gender-matched controls were included. The stimulated salivary secretion rate was determined, and saliva was stored at -80 °C. After thawing, 30 mg of each sample and a reference (aliqouts of all samples) was trypsin digested. The digested peptides were analyzed by mass spectrometry. The relative abundances were transformed to log2 and significant differences determined. Relative abundances of mucins were compared with patient's problems with dry mouth, sticky saliva and swallowing. Data are available via ProteomeXchange with identifier PXD047500. Results 966 proteins with ≥2 unique peptides were found. Compared with controls, 30 proteins were found in significantly lower relative abundances and 65 in higher at pre-treatment and 38 proteins in significantly lower relative abundances and 34 proteins in higher post-treatment. Regarding proteins from the salivary glands, a significantly lower relative abundance of Cystatins was detected pre-treatment and significantly lower relative abundances of Cystatin, Cysteine-rich secretory protein 3, Lactoperoxidase, Prolactin-inducible protein and Proline-rich protein 4 post-treatment. No clear relation between relative abundance of mucins and dry mouth, sticky saliva and problems with swallowing was detected. Conclusion Decreases in several salivary gland proteins post cancer treatment might lead to a reduced defense against oral disorders. Knowledge about changes in saliva proteins in connection with oral cancer treatment is important for planning dental care for these patients.
Collapse
Affiliation(s)
- Ulrica Almhöjd
- Dept of Cariology, Institute of Odontology, Sahlgrenska academy, University of Gothenburg, Sweden
| | - Amela Fisic
- Section 4- Oral health, Faculty of Odontology, Malmö University, Sweden
| | - Hülya Cevik-Aras
- Dept of Oral Pathology and Medicine, Institute of Odontology, Sahlgrenska academy, University of Gothenburg, Sweden
- Specialist Clinic for Orofacial Medicine, Norra Älvsborg County Hospital, Trollhättan, Public Dental Service, Region Västra Götaland, Sweden
| | - Lisa Tuomi
- Dept of Otorhinolaryngology, Head and Neck Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Speech and Language Pathology Unit, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Caterina Finizia
- Dept of Otorhinolaryngology, Head and Neck Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Speech and Language Pathology Unit, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Annica Almståhl
- Section 4- Oral health, Faculty of Odontology, Malmö University, Sweden
- Dept of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska academy, University of Gothenburg, Sweden
| |
Collapse
|
6
|
Jokumsen KV, Huhle VH, Hägglund PM, Davies MJ, Gamon LF. Elevated levels of iodide promote peroxidase-mediated protein iodination and inhibit protein chlorination. Free Radic Biol Med 2024; 220:207-221. [PMID: 38663830 DOI: 10.1016/j.freeradbiomed.2024.04.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/18/2024] [Indexed: 05/15/2024]
Abstract
At inflammatory sites, immune cells generate oxidants including H₂O₂. Myeloperoxidase (MPO), released by activated leukocytes employs H₂O₂ and halide/pseudohalides to form hypohalous acids that mediate pathogen killing. Hypochlorous acid (HOCl) is a major species formed. Excessive or misplaced HOCl formation damages host tissues with this linked to multiple inflammatory diseases. Previously (Redox Biology, 2020, 28, 101331) we reported that iodide (I⁻) modulates MPO-mediated protein damage by decreasing HOCl generation with concomitant hypoiodous acid (HOI) formation. HOI may however impact on protein structure, so in this study we examined whether and how HOI, from peroxidase/H₂O₂/I⁻ systems ± Cl⁻, modifies proteins. Experiments employed MPO and lactoperoxidase (LPO) and multiple proteins (serum albumins, anastellin), with both chemical (intact protein and peptide mass mapping, LC-MS) and structural (SDS-PAGE) changes assessed. LC-MS analyses revealed dose-dependent iodination of anastellin and albumins by LPO/H2O2 with increasing I⁻. Incubation of BSA with MPO/H2O2/Cl⁻ revealed modest chlorination (Tyr286, Tyr475, ∼4 %) and Met modification. Lower levels of these species, and extensive iodination at specific Tyr and His residues (>20 % modification with ≥10 μM I⁻) were detected with increasing I⁻. Anastellin dimerization was inhibited by increasing I⁻, but less marked changes were observed with albumins. These data confirm that I⁻ competes with Cl⁻ for MPO and is an efficient HOCl scavenger. These processes decrease protein chlorination and oxidation, but result in extensive iodination. This is consistent with published data on the presence of iodinated Tyr on neutrophil proteins. The biological implications of protein iodination relative to chlorination require further clarification.
Collapse
Affiliation(s)
| | - Valerie H Huhle
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Per M Hägglund
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luke F Gamon
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, Kupaeva N, Kotenkova E. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers (Basel) 2024; 16:1976. [PMID: 39065293 PMCID: PMC11280963 DOI: 10.3390/polym16141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging.
Collapse
Affiliation(s)
- Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Liliya Fedulova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Valentina Krylova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Viktoriya Pchelkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Tatyana Gustova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Vasilevskaya
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Sergey Karabanov
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Anastasiya Kibitkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Nadezhda Kupaeva
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| |
Collapse
|
8
|
Ashtiwi NM, Kim SO, Chandler JD, Rada B. The therapeutic potential of thiocyanate and hypothiocyanous acid against pulmonary infections. Free Radic Biol Med 2024; 219:104-111. [PMID: 38608822 PMCID: PMC11088529 DOI: 10.1016/j.freeradbiomed.2024.04.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Hypothiocyanous acid (HOSCN) is an endogenous oxidant produced by peroxidase oxidation of thiocyanate (SCN-), an ubiquitous sulfur-containing pseudohalide synthesized from cyanide. HOSCN serves as a potent microbicidal agent against pathogenic bacteria, viruses, and fungi, functioning through thiol-targeting mechanisms, independent of currently approved antimicrobials. Additionally, SCN- reacts with hypochlorous acid (HOCl), a highly reactive oxidant produced by myeloperoxidase (MPO) at sites of inflammation, also producing HOSCN. This imparts both antioxidant and antimicrobial potential to SCN-. In this review, we discuss roles of HOSCN/SCN- in immunity and potential therapeutic implications for combating infections.
Collapse
Affiliation(s)
- Nuha Milad Ashtiwi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Susan O Kim
- Pediatrics, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Joshua D Chandler
- Pediatrics, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
9
|
Beňo F, Velková A, Hruška F, Ševčík R. Use of Lactoperoxidase Inhibitory Effects to Extend the Shelf Life of Meat and Meat Products. Microorganisms 2024; 12:1010. [PMID: 38792839 PMCID: PMC11124385 DOI: 10.3390/microorganisms12051010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Lactoperoxidase (LP) is an important enzyme of the salivary and mammary glands. It has been proven to increase the shelf life of raw milk by inhibiting the growth of bacteria, especially Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, and Pseudomonas spp. The aim of this work was to verify the use of LP to extend the shelf life of meat products. In vitro experiments showed inhibitory effects on the selected bacteria (Listeria innocua (ATCC 33090), Staphylococcus saprophyticus (CP054440.1), and Pseudomonas fluorescens (ATCC 13525) due to a prolongation of the lag phase of growth curves. A lower increase in viable counts (p < 0.05) was also found by testing pork cubes' surface treated with LP solution (5%) + L. innocua and stored for 7 days at 15 °C. LP has also been studied at concentrations of 0.25 and 0.50% in meat products (pork ham and pâté) during refrigerated storage (4 °C for 28 days). Lower viable counts were observed throughout the storage experiment, especially for 0.50% LP (p < 0.05). Meat products containing LP also showed lower levels of oxidation (MAD) (p < 0.05). According to these results, LP could extend the shelf life of a wider range of products.
Collapse
Affiliation(s)
- Filip Beňo
- Department of Food Preservation, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | | | | | - Rudolf Ševčík
- Department of Food Preservation, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
10
|
Panasenko OM, Vladimirov YA, Sergienko VI. Free Radical Lipid Peroxidation Induced by Reactive Halogen Species. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S148-S179. [PMID: 38621749 DOI: 10.1134/s0006297924140098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 04/17/2024]
Abstract
The review is devoted to the mechanisms of free radical lipid peroxidation (LPO) initiated by reactive halogen species (RHS) produced in mammals, including humans, by heme peroxidase enzymes, primarily myeloperoxidase (MPO). It has been shown that RHS can participate in LPO both in the initiation and branching steps of the LPO chain reactions. The initiation step of RHS-induced LPO mainly involves formation of free radicals in the reactions of RHS with nitrite and/or with amino groups of phosphatidylethanolamine or Lys. The branching step of the oxidative chain is the reaction of RHS with lipid hydroperoxides, in which peroxyl and alkoxyl radicals are formed. The role of RHS-induced LPO in the development of human inflammatory diseases (cardiovascular and neurodegenerative diseases, cancer, diabetes, rheumatoid arthritis) is discussed in detail.
Collapse
Affiliation(s)
- Oleg M Panasenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia.
| | - Yury A Vladimirov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Valery I Sergienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
11
|
Magacz M, Alatorre-Santamaría S, Kędziora K, Klasa K, Mamica P, Pepasińska W, Lebiecka M, Kościelniak D, Pamuła E, Krzyściak W. Modified Lactoperoxidase System as a Promising Anticaries Agent: In Vitro Studies on Streptococcus mutans Biofilms. Int J Mol Sci 2023; 24:12136. [PMID: 37569513 PMCID: PMC10418824 DOI: 10.3390/ijms241512136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The lactoperoxidase (LPO) system shows promise in the prevention of dental caries, a common chronic disease. This system has antimicrobial properties and is part of the non-specific antimicrobial immune system. Understanding the efficacy of the LPO system in the fight against biofilms could provide information on alternative strategies for the prevention and treatment of caries. In this study, the enzymatic system was modified using four different (pseudo)halide substrates (thiocyanate, thiocyanate-iodide mixture, selenocyanate, and iodide). The study evaluated the metabolic effects of applying such modifications to Streptococcus mutans; in particular: (1) biofilm formation, (2) synthesis of insoluble polysaccharides, (3) lactate synthesis, (4) glucose and sucrose consumption, (5) intracellular NAD+ and NADH concentrations, and (6) transmembrane glucose transport efficiency (PTS activity). The results showed that the LPO-iodide system had the strongest inhibitory effect on biofilm growth and lactate synthesis (complete inhibition). This was associated with an increase in the NAD+/NADH ratio and an inhibition of glucose PTS activity. The LPO-selenocyanate system showed a moderate inhibitory effect on biofilm biomass growth and lactate synthesis. The other systems showed relatively small inhibition of lactate synthesis and glucose PTS but no effect on the growth of biofilm biomass. This study provides a basis for further research on the use of alternative substrates with the LPO system, particularly the LPO-iodide system, in the prevention and control of biofilm-related diseases.
Collapse
Affiliation(s)
- Marcin Magacz
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.M.); (K.K.); (K.K.); (P.M.); (W.P.); (M.L.)
- Doctoral School of Health and Medical Sciences, Jagiellonian University Medical College, św. Łazarza 16, 31-008 Kraków, Poland
| | - Sergio Alatorre-Santamaría
- Department of Biotechnology, Biological Science Division, Autonomous Metropolitan University, San Rafael Atlixco 186, Mexico City 09310, Mexico;
| | - Karolina Kędziora
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.M.); (K.K.); (K.K.); (P.M.); (W.P.); (M.L.)
| | - Kacper Klasa
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.M.); (K.K.); (K.K.); (P.M.); (W.P.); (M.L.)
| | - Paweł Mamica
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.M.); (K.K.); (K.K.); (P.M.); (W.P.); (M.L.)
| | - Wiktoria Pepasińska
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.M.); (K.K.); (K.K.); (P.M.); (W.P.); (M.L.)
| | - Magdalena Lebiecka
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.M.); (K.K.); (K.K.); (P.M.); (W.P.); (M.L.)
| | - Dorota Kościelniak
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Montelupich 4, 31-155 Krakow, Poland;
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.M.); (K.K.); (K.K.); (P.M.); (W.P.); (M.L.)
| |
Collapse
|
12
|
Pavlačková J, Pecháčková H, Egner P, Mokrejš P, Gál R, Janalíková M. The Effect of Cosmetic Treatment and Gel Laser Therapy on the Improvement of Comedogenic Skin Type. Gels 2023; 9:gels9050370. [PMID: 37232962 DOI: 10.3390/gels9050370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Comedogenic skin care receives little attention compared to the care or treatment of more serious acne manifestations. Traditional therapies may have limited success with potential side effects. Cosmetic care supported by the effect of a biostimulating laser may offer a desirable alternative. The aim of the study was to evaluate the biological effectiveness of combined cosmetic treatment with lasotherapy on comedogenic skin type using noninvasive bioengineering methods. Twelve volunteers with comedogenic skin type underwent a 28-week application of Lasocare Basic 645® cosmetic gel containing Lactoperoxidase and Lactoferrin in combination with laser therapy (Lasocare® method). The effect of treatment on skin condition was monitored using noninvasive diagnostic methods. The parameters were the amount of sebum, the pore count, the ultraviolet-induced red fluorescence assessment of comedonic lesions (percentage of the area and quantification of orange-red spots), hydration, transepidermal water loss, and pH. A statistically significant decrease in sebum production was observed on the skin of the treated volunteers, as well as a decrease in porphyrins, indicating the presence of Cutibacterium acnes populating comedones and causing enlarged pores. The balance of epidermal water in the skin was regulated adjusting the acidity of the skin coat in individual zones, which decreased the presence of Cutibacterium acnes. Cosmetic treatment in combination with the Lasocare® method successfully improved the condition of comedogenic skin. In addition to transient erythema, there were no other adverse effects. The chosen procedure appears to be a suitable and safe alternative to traditional treatment procedures known from dermatological practice.
Collapse
Affiliation(s)
- Jana Pavlačková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Hana Pecháčková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Pavlína Egner
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Pavel Mokrejš
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Robert Gál
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Magda Janalíková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| |
Collapse
|
13
|
Safety Assessment of the Modified Lactoperoxidase System-In Vitro Studies on Human Gingival Fibroblasts. Int J Mol Sci 2023; 24:ijms24032640. [PMID: 36768964 PMCID: PMC9916481 DOI: 10.3390/ijms24032640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
One strategy in caries prevention is to inhibit the formation of cariogenic biofilms. Attempts are being made to develop oral hygiene products enriched with various antimicrobial agents. One of them is lactoperoxidase-an enzyme that can oxidise (pseudo)halide ions to reactive products with antimicrobial activity. Currently, commercially available products utilise thiocyanate as a substrate; however, several alternatives that are oxidised to products with greater antimicrobial potential have been found. In this study, toxicity against human gingival fibroblasts of the lactoperoxidase system was evaluated using four different (pseudo)halide substrate systems-thiocyanate, iodide, selenocyanate, and a mixture of thiocyanate and iodide. For this purpose, cells were treated with the systems and then apoptosis, cell cycle, intracellular glutathione concentration, and mitochondrial superoxide production were assessed. The results showed that each system, after generating 250 µM of the product, inhibited cell divisions, increased apoptosis, and increased the percentage of dead cells. It was concluded that the mechanism of the observed phenomena was not related to increased superoxide production or the depletion of glutathione concentration. These findings emphasised the need for the further in vitro and in vivo toxicity investigation of the modified lactoperoxidase system to assess its safety and the possibility of use in oral hygiene products.
Collapse
|
14
|
Gruden Š, Oberčkal J, Matijašić BB, Ulrih NP. Insights into factors affecting lactoperoxidase conformation stability and enzymatic activity. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Dijck-Brouwer DAJ, Muskiet FAJ, Verheesen RH, Schaafsma G, Schaafsma A, Geurts JMW. Thyroidal and Extrathyroidal Requirements for Iodine and Selenium: A Combined Evolutionary and (Patho)Physiological Approach. Nutrients 2022; 14:3886. [PMID: 36235539 PMCID: PMC9571367 DOI: 10.3390/nu14193886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Iodide is an antioxidant, oxidant and thyroid hormone constituent. Selenoproteins are needed for triiodothyronine synthesis, its deactivation and iodine release. They also protect thyroidal and extrathyroidal tissues from hydrogen peroxide used in the 'peroxidase partner system'. This system produces thyroid hormone and reactive iodine in exocrine glands to kill microbes. Exocrine glands recycle iodine and with high urinary clearance require constant dietary supply, unlike the thyroid. Disbalanced iodine-selenium explains relations between thyroid autoimmune disease (TAD) and cancer of thyroid and exocrine organs, notably stomach, breast, and prostate. Seafood is iodine unconstrained, but selenium constrained. Terrestrial food contains little iodine while selenium ranges from highly deficient to highly toxic. Iodine vs. TAD is U-shaped, but only low selenium relates to TAD. Oxidative stress from low selenium, and infection from disbalanced iodine-selenium, may generate cancer of thyroid and exocrine glands. Traditional Japanese diet resembles our ancient seashore-based diet and relates to aforementioned diseases. Adequate iodine might be in the milligram range but is toxic at low selenium. Optimal selenoprotein-P at 105 µg selenium/day agrees with Japanese intakes. Selenium upper limit may remain at 300-400 µg/day. Seafood combines iodine, selenium and other critical nutrients. It brings us back to the seashore diet that made us what we currently still are.
Collapse
Affiliation(s)
- D A Janneke Dijck-Brouwer
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Frits A J Muskiet
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Richard H Verheesen
- Regionaal Reuma Centrum Z.O. Brabant Máxima Medisch Centrum, Ds. Th. Fliednerstraat 1, 5631 BM Eindhoven, The Netherlands
| | - Gertjan Schaafsma
- Schaafsma Advisory Services in Food, Health and Safety, Rembrandtlaan 12, 3925 VD Scherpenzeel, The Netherlands
| | | | | |
Collapse
|
16
|
Epithelial chemerin-CMKLR1 signaling restricts microbiota-driven colonic neutrophilia and tumorigenesis by up-regulating lactoperoxidase. Proc Natl Acad Sci U S A 2022; 119:e2205574119. [PMID: 35858331 PMCID: PMC9304024 DOI: 10.1073/pnas.2205574119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Intestinal barrier immunity is essential for controlling gut microbiota without eliciting harmful immune responses, while its defect contributes to the breakdown of intestinal homeostasis and colitis development. Chemerin, which is abundantly expressed in barrier tissues, has been demonstrated to regulate tissue inflammation via CMKLR1, its functional receptor. Several studies have reported the association between increased expression of chemerin-CMKLR1 and disease severity and immunotherapy resistance in inflammatory bowel disease (IBD) patients. However, the pathophysiological role of endogenous chemerin-CMKLR1 signaling in intestinal homeostasis remains elusive. We herein demonstrated that deficiency of chemerin or intestinal epithelial cell (IEC)-specific CMKLR1 conferred high susceptibility to microbiota-driven neutrophilic colon inflammation and subsequent tumorigenesis in mice following epithelial injury. Unexpectedly, we found that lack of chemerin-CMKLR1 signaling specifically reduced expression of lactoperoxidase (LPO), a peroxidase that is predominantly expressed in colonic ECs and utilizes H2O2 to oxidize thiocyanates to the antibiotic compound, thereby leading to the outgrowth and mucosal invasion of gram-negative bacteria and dysregulated CXCL1/2-mediated neutrophilia. Importantly, decreased LPO expression was causally linked to aggravated microbiota-driven colitis and associated tumorigenesis, as LPO supplementation could completely rescue such phenotypes in mice deficient in epithelial chemerin-CMKLR1 signaling. Moreover, epithelial chemerin-CMKLR1 signaling is necessary for early host defense against bacterial infection in an LPO-dependent manner. Collectively, our study reveals that the chemerin-CMKLR1/LPO axis represents an unrecognized immune mechanism that potentiates epithelial antimicrobial defense and restricts harmful colonic neutrophilia and suggests that LPO supplementation may be beneficial for microbiota dysbiosis in IBD patients with a defective innate antimicrobial mechanism.
Collapse
|
17
|
Fernández-Espejo E, Rodríguez de Fonseca F, Gavito AL, Córdoba-Fernández A, Chacón J, Martín de Pablos Á. Myeloperoxidase and Advanced Oxidation Protein Products in the Cerebrospinal Fluid in Women and Men with Parkinson's Disease. Antioxidants (Basel) 2022; 11:1088. [PMID: 35739985 PMCID: PMC9219636 DOI: 10.3390/antiox11061088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Myeloperoxidase (MPO) and advanced oxidation protein products, or AOPP (a type of MPO-derived chlorinated adducts), have been implicated in Parkinson´s disease (PD). Human MPO also show sex-based differences in PD. The objective was to study the relationship of MPO and AOPP in the cerebrospinal fluid (CSF) with motor features of idiopathic PD in male and female patients. Methods: MPO concentration and activity and AOPP content were measured in the CSF and serum in 34 patients and 30 controls. CSF leukocytes and the integrity of the blood-brain barrier were evaluated. Correlations of MPO and AOPP with clinical variables were examined. Results: The blood-brain barrier was intact and CSF leukocyte count was normal in all patients. CSF MPO concentration and activity were similar in the cohort of patients and controls, but CSF MPO content was significantly higher in male patients than in PD women (p = 0.0084). CSF MPO concentration correlated with disease duration in male and female patients (p < 0.01). CSF MPO concentration was significantly higher in men with disease duration ≥12 years versus the remainder of the male subjects (p < 0.01). Changes in CSF MPO in women were not significant. Serum MPO concentration and activity were significantly higher in all PD patients relative to controls (p < 0.0001). CSF MPO was not correlated with serum MPO. Serum AOPP were detected in all patients, but CSF AOPP was undetectable in 53% of patients. AOPP were not quantifiable in controls. Conclusions: CSF MPO is not a good biomarker for PD because mean CSF MPO concentration and activity are not different between the cohort of patients and controls. CSF MPO concentration positively correlated with disease duration in men and women, but CSF MPO is significantly enhanced only in male patients with disease duration longer than 12 years. It can be hypothesized that the MPO-related immune response in early-stage PD might be weak in all patients, but then the MPO-related immune response is progressively enhanced in men, not women. Since the blood-brain barrier is intact, and CSF MPO is not correlated with serum MPO, CSF myeloperoxidase would reflect MPO content in brain cells, not blood-derived cells. Finally, serum AOPP was detected in all patients, but not controls, which is consistent with the occurrence of chlorinative stress in blood serum in PD. The study of CSF AOPP as biomarker could not be assessed because the ELISA assay was hampered by its detection limit in the CSF.
Collapse
Affiliation(s)
- Emilio Fernández-Espejo
- Reial Acadèmia de Medicina de Catalunya, 08001 Barcelona, Spain
- Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain;
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain;
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, 29010 Málaga, Spain
| | - Ana Luisa Gavito
- Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain;
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, 29010 Málaga, Spain
| | | | - José Chacón
- Servicio de Neurología, Hospital Quirónsalud Infanta Luisa, 41010 Sevilla, Spain;
| | - Ángel Martín de Pablos
- Departamento de Cirugía, Universidad de Sevilla, 41009 Sevilla, Spain;
- Unidad de Anestesiología y Reanimación, Servicio de Cirugía, Hospital Macarena, 41009 Sevilla, Spain
| |
Collapse
|
18
|
Parmar A, Sharma V, Arora S, Raju Panjagari N. Activation of lactoperoxidase system in buffalo milk using dual enzyme (lactase & glucose oxidase) and its effect on milk constituents. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alka Parmar
- Dairy Chemistry Division ICAR‐National Dairy Research Institute Karnal Haryana 132001 India
| | - Vivek Sharma
- Dairy Chemistry Division ICAR‐National Dairy Research Institute Karnal Haryana 132001 India
| | - Sumit Arora
- Dairy Chemistry Division ICAR‐National Dairy Research Institute Karnal Haryana 132001 India
| | - Narender Raju Panjagari
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal Haryana 132001 India
| |
Collapse
|
19
|
Yousefi M, Nematollahi A, Shadnoush M, Mortazavian AM, Khorshidian N. Antimicrobial Activity of Films and Coatings Containing Lactoperoxidase System: A Review. Front Nutr 2022; 9:828065. [PMID: 35308287 PMCID: PMC8931696 DOI: 10.3389/fnut.2022.828065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The production of safe and healthy foodstuffs is considered as one of the most important challenges in the food industry, and achieving this important goal is impossible without using various processes and preservatives. However, recently, there has been a growing concern about the use of chemical preservatives and attention has been focused on minimal process and/or free of chemical preservatives in food products. Therefore, researchers and food manufacturers have been induced to utilize natural-based preservatives such as antimicrobial enzymes in their production. Lactoperoxidase, as an example of antimicrobial enzymes, is the second most abundant natural enzyme in the milk and due to its wide range of antibacterial activities, it could be potentially applied as a natural preservative in various food products. On the other hand, due to the diffusion of lactoperoxidase into the whole food matrix and its interaction and/or neutralization with food components, the direct use of lactoperoxidase in food can sometimes be restricted. In this regard, lactoperoxidase can be used as a part of packaging material, especially edible and coating, to keep its antimicrobial properties to extend food shelf-life and food safety maintenance. Therefore, this study aims to review various antimicrobial enzymes and introduce lactoperoxidase as a natural antimicrobial enzyme, its antimicrobial properties, and its functionality in combination with an edible film to extend the shelf-life of food products.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Nasim Khorshidian
| |
Collapse
|
20
|
Singh PK, Ahmad N, Yamini S, Singh RP, Singh AK, Sharma P, Smith ML, Sharma S, Singh TP. Structural evidence of the oxidation of iodide ion into hyper-reactive hypoiodite ion by mammalian heme lactoperoxidase. Protein Sci 2022; 31:384-395. [PMID: 34761444 PMCID: PMC8819834 DOI: 10.1002/pro.4230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023]
Abstract
Lactoperoxidase (1.11.1.7, LPO) is a mammalian heme peroxidase found in the extracellular fluids of mammals including plasma, saliva, airway epithelial lining fluids, nasal lining fluid, milk, tears, gastric juices, and intestinal mucosa. To perform its innate immune action against invading microbes, LPO utilizes hydrogen peroxide (H2 O2 ) to convert thiocyanate (SCN- ) and iodide (I- ) ions into the oxidizing compounds hypothiocyanite (OSCN- ) and hypoiodite (IO- ). Previously determined structures of the complexes of LPO with SCN- , OSCN- , and I- show that SCN- and I- occupy appropriate positions in the distal heme cavity as substrates while OSCN- binds in the distal heme cavity as a product inhibitor. We report here the structure of the complex of LPO with IO- as the first structural evidence of the conversion of iodide into hypoiodite by LPO. To obtain this complex, a solution of LPO was first incubated with H2 O2 , then mixed with ammonium iodide solution and the complex crystallized by the addition of PEG-3350, 20% (wt/vol). These crystals were used for X-ray intensity data collection and structure analysis. The structure determination revealed the presence of four hypoiodite ions in the substrate binding channel of LPO. In addition to these, six other hypoiodite ions were observed at different exterior sites. We surmise that the presence of hypoiodite ions in the distal heme cavity blocks the substrate binding site and inhibits catalysis. This was confirmed by activity experiments with the colorimetric substrate, ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-sulfonic acid)), in the presence of hypoiodite and iodide ions.
Collapse
Affiliation(s)
- Prashant K. Singh
- Department of BiophysicsAll India Institute of Medical SciencesNew DelhiIndia
| | - Nayeem Ahmad
- Department of BiophysicsAll India Institute of Medical SciencesNew DelhiIndia
| | - Shavait Yamini
- Department of BiophysicsAll India Institute of Medical SciencesNew DelhiIndia
| | - Rashmi P. Singh
- Department of BiophysicsAll India Institute of Medical SciencesNew DelhiIndia
| | - Amit K. Singh
- Department of BiophysicsAll India Institute of Medical SciencesNew DelhiIndia
| | - Pradeep Sharma
- Department of BiophysicsAll India Institute of Medical SciencesNew DelhiIndia
| | | | - Sujata Sharma
- Department of BiophysicsAll India Institute of Medical SciencesNew DelhiIndia
| | - Tej P. Singh
- Department of BiophysicsAll India Institute of Medical SciencesNew DelhiIndia
| |
Collapse
|
21
|
Gut AM, Vasiljevic T, Yeager T, Donkor ON. Anti-salmonella properties of kefir yeast isolates : An in vitro screening for potential infection control. Saudi J Biol Sci 2022; 29:550-563. [PMID: 35002451 PMCID: PMC8717153 DOI: 10.1016/j.sjbs.2021.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022] Open
Abstract
The rise of antibiotic resistance has increased the need for alternative ways of preventing and treating enteropathogenic bacterial infection. Various probiotic bacteria have been used in animal and human. However, Saccharomyces boulardii is the only yeast currently used in humans as probiotic. There is scarce research conducted on yeast species commonly found in kefir despite its claimed potential preventative and curative effects. This work focused on adhesion properties, and antibacterial metabolites produced by Kluyveromyces lactis and Saccharomyces unisporus isolated from traditional kefir grains compared to Saccharomyces boulardii strains. Adhesion and sedimentation assay, slide agglutination, microscopy and turbidimetry assay were used to analyze adhesion of Salmonella Arizonae and Salmonella Typhimurium onto yeast cells. Salmonella growth inhibition due to the antimicrobial metabolites produced by yeasts in killer toxin medium was analyzed by slab on the lawn, turbidimetry, tube dilution and solid agar plating assays. Alcohol and antimicrobial proteins production by yeasts in killer toxin medium were analyzed using gas chromatography and shotgun proteomics, respectively. Salmonella adhered onto viable and non-viable yeast isolates cell wall. Adhesion was visualized using scanning electron microscope. Yeasts-fermented killer toxin medium showed Salmonella growth inhibition. The highest alcohol concentration detected was 1.55%, and proteins with known antimicrobial properties including cathelicidin, xanthine dehydrogenase, mucin-1, lactadherin, lactoperoxidase, serum amyloid A protein and lactotransferrin were detected in yeasts fermented killer medium. These proteins are suggested to be responsible for the observed growth inhibition effect of yeasts-fermented killer toxin medium. Kluyveromyces lactis and Saccharomyces unisporus have anti-salmonella effect comparable to Saccharomyces boulardii strains, and therefore have potential to control Salmonella infection.
Collapse
Key Words
- AGC, Automatic Gain Control
- ATCC, American type Culture Collection
- ATP, Adenosine triphosphate
- CFS, Cell Free Supernatant
- CFU, Colony Forming Unit
- DNA, Deoxyribonucleic Acid
- DSR, Desk Sputter Coater
- DTT, Dithiothreitol
- FAO, Food Agriculture Organization
- GIT, The gastrointestinal tract
- HCL, Hydrochloric Acid
- HPLC, High-performance liquid chromatography
- IBM, International Business Machines
- KTM, Killer Toxin Cedium
- Kefir
- Kluyveromyces lactis
- LC-MS/MS, Liquid Chromatography with tandem mass spectrometry/Liquid Chromatography with tandem mass spectrometry
- LFQ, Label Free Quantitation
- Min, Minute
- NaOH, Sodium hydroxide
- PBS, Phosphate buffered saline
- Probiotics
- RNA, Ribonucleic Acid
- RSLC, Rapid Separation Liquid Chromatography
- SD, Standard Deviation
- SPSS, Statistical Package for the Social Sciences
- Saccharomyces boulardii
- Saccharomyces unisporus
- Salmonella
- Shotgun proteomics
- WHO, World Health Organization
- YEPDA, Yeast Extract Peptone Dextrose Agar
- YEPDB, Yeast Extract Peptone Dextrose Broth
- Yeasts
- h, Hour
- mL, Milliliter
Collapse
Affiliation(s)
- Abraham Majak Gut
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.,College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Todor Vasiljevic
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.,College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Thomas Yeager
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.,First YearCollege, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Osaana N Donkor
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.,College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| |
Collapse
|
22
|
Smith ML, Sharma S, Singh TP. Iodide supplementation of the anti-viral duox-lactoperoxidase activity may prevent some SARS-CoV-2 infections. Eur J Clin Nutr 2022; 76:629-630. [PMID: 34471253 PMCID: PMC8408568 DOI: 10.1038/s41430-021-00995-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Affiliation(s)
| | - Sujata Sharma
- grid.413618.90000 0004 1767 6103Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tej P. Singh
- grid.413618.90000 0004 1767 6103Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
23
|
Berman R, Rose CS, Downey GP, Day BJ, Chu HW. Role of Particulate Matter from Afghanistan and Iraq in Deployment-Related Lung Disease. Chem Res Toxicol 2021; 34:2408-2423. [PMID: 34808040 DOI: 10.1021/acs.chemrestox.1c00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Approximately 3 million United States military personnel and contractors were deployed to Southwest Asia and Afghanistan over the past two decades. After returning to the United States, many developed persistent respiratory symptoms, including those due to asthma, rhinosinusitis, bronchiolitis, and others, which we collectively refer to as deployment-related lung diseases (DRLD). The mechanisms of different DRLD have not been well defined. Limited studies from us and others suggest that multiple factors and biological signaling pathways contribute to the onset of DRLD. These include, but are not limited to, exposures to high levels of particulate matter (PM) from sandstorms, burn pit combustion products, improvised explosive devices, and diesel exhaust particles. Once inhaled, these hazardous substances can activate lung immune and structural cells to initiate numerous cell-signaling pathways such as oxidative stress, Toll-like receptors, and cytokine-driven cell injury (e.g., interleukin-33). These biological events may lead to a pro-inflammatory response and airway hyperresponsiveness. Additionally, exposures to PM and other environmental hazards may predispose military personnel and contractors to more severe disease due to the interactions of those hazardous materials with subsequent exposures to allergens and cigarette smoke. Understanding how airborne exposures during deployment contribute to DRLD may identify effective targets to alleviate respiratory diseases and improve quality of life in veterans and active duty military personnel.
Collapse
Affiliation(s)
- Reena Berman
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Cecile S Rose
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Gregory P Downey
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Brian J Day
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| |
Collapse
|
24
|
Welk A, Patjek S, Gärtner M, Baguhl R, Schwahn C, Below H. Antibacterial and antiplaque efficacy of a lactoperoxidase-thiocyanate-hydrogen-peroxide-system-containing lozenge. BMC Microbiol 2021; 21:302. [PMID: 34732139 PMCID: PMC8564979 DOI: 10.1186/s12866-021-02333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
Background Antimicrobial agents are considered valuable adjuncts to mechanical methods of plaque control. However, their long-term use can be limited because of side effects. Therefore, using physiological substances is promising due to no risk of development, for example, of microbial resistances, allergies or DNA damaging. The lactoperoxidase-thiocyanate-hydrogen peroxide system (LPO-system) is a highly effective antimicrobial system. This study aimed to evaluate in a randomized study with a four-replicate cross-over design the effectiveness of two oral hygiene lozenges containing LPO-system in oral hygiene. Results After using the mouth rinse as positive control (A) and allocated test lozenges (B) (0.083% H2O2) & (C) (0.04% H2O2) for 4 days instead of the normal oral hygiene procedures (tooth brushing etc.), Listerine rinse (A) was statistically significantly more effective than the LPO-system-lozenge with 0.083% H2O2, the LPO-system-lozenge with 0.04% H2O2, and the placebo lozenge (D) in inhibiting plaque. Lozenges B and C were statistically significantly more effective than the placebo lozenge, but no statistically significant differences could be observed between them. The LPO-system-lozenge (B) reduced statistically significantly more S. mutans than the LPO-system-lozenge with (C) and the placebo lozenge (D). The LPO-system-lozenge (C) reduced statistically significantly more Lactobacilli than Listerine (A), the LPO-system-lozenge (B) and the placebo lozenge (D). There were no statistically significant differences in the total CFUs between Listerine rinse, the LPO-system-lozenge with 0.083% H2O2 (B), the LPO-system-lozenge with 0.04% H2O2 (C), and the placebo lozenge (D). On day 5 there were no differences of the OSCN−-values between all A, B, C, and D. However, the SCN−-values increased over the days in both LPO-system-lozenges (B/C). The statistically significant differences between B/C and A/D on day 5 were as followed: A to B p = 0.0268; A to C p = 0.0035; B to D p = 0.0051; C to D p = 0.0007. Only in the group of Listerine (A) increased the NO3−/NO2−-quotient over the test time, which indicates a reduction of nitrate-reducing bacteria. On Day 5 the statistically significant difference between A and B was p = 0.0123. Conclusions The results indicate that lozenges containing a complete LPO-system, inhibiting plaque regrowth and reducing cariogenic bacteria, may be used in the daily oral hygiene.
Collapse
Affiliation(s)
- A Welk
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School of the University Medicine Greifswald, Walther-Rathenau-Str. 42a, 17475, Greifswald, Germany.
| | - S Patjek
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School of the University Medicine Greifswald, Walther-Rathenau-Str. 42a, 17475, Greifswald, Germany
| | - M Gärtner
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive and Pediatric Dentistry, Dental School of the University Medicine Greifswald, Walther-Rathenau-Str. 42a, 17475, Greifswald, Germany
| | - R Baguhl
- Institute of Hygiene and Environmental Medicine of the University Medicine Greifswald, Greifswald, Germany
| | - Ch Schwahn
- Dental School, Department of Prosthodontics, University of Greifswald, Greifswald, Germany
| | - H Below
- Institute of Hygiene and Environmental Medicine of the University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
25
|
Microbicidal Activity of Hypothiocyanite against Pneumococcus. Antibiotics (Basel) 2021; 10:antibiotics10111313. [PMID: 34827251 PMCID: PMC8614991 DOI: 10.3390/antibiotics10111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Infections caused by Streptococcus pneumoniae (pneumococcus, Spn) manifest in several forms such as pneumonia, meningitis, sinusitis or otitis media and are associated with severe morbidity and mortality worldwide. While current vaccines and antibiotics are available to treat Spn infections, the rise of antibiotic resistance and limitations of the vaccines to only certain Spn serotypes urge the development of novel treatments against Spn. Hypothiocyanite (OSCN-) is a natural antimicrobial product produced by the body's own innate immune system to fight a variety of pathogens. We recently showed that OSCN- is also capable of killing Spn in vitro. OSCN- is an oxidative agent attacking microbes in a nonspecific manner, is safe for the host and also has anti-inflammatory effects that make it an ideal candidate to treat a variety of infections in humans. However, OSCN- has a short life span that makes its use, dosage and administration more problematic. This minireview discusses the antimicrobial mechanism of action of OSCN- against Spn and elaborates on the potential therapeutic use of OSCN- against Spn and other infectious agents, either alone or in combination with other therapeutic approaches.
Collapse
|
26
|
Courtois P. Oral peroxidases: From antimicrobial agents to ecological actors (Review). Mol Med Rep 2021; 24:500. [PMID: 33982776 PMCID: PMC8134873 DOI: 10.3892/mmr.2021.12139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/07/2021] [Indexed: 11/05/2022] Open
Abstract
Sialoperoxidase and myeloperoxidase are the two main peroxidase enzymes found in the oral cavity. Sialoperoxidase is present in salivary secretions and in the biofilms that line the oral surfaces, while myeloperoxidase is abundant in the dento-gingival sulcus area. In the presence of hydrogen peroxide (H2O2), oral peroxidases catalyze the oxidation of the pseudohalide anion thiocyanate (SCN−) to hypothiocyanite (OSCN−), a strong oxidant that serves an antimicrobial role. Furthermore, oral peroxidases consume bacteria-produced H2O2 and could help inactivate toxic carcinogenic and genotoxic substances. Numerous in vitro studies have reported the antibacterial, antimycotic and antiviral role of peroxidases, suggesting possible applications in oral therapy. However, the use of oral hygiene products incorporating peroxidase systems has not yet been shown to be beneficial for the treatment or prevention of oral infections. This paradox reflects our incomplete knowledge of the physiological role of peroxidases in a complex environment, such as the oral region. While hygiene is crucial for restoring oral microbiota to a symbiotic state, there are no data to suggest that the addition of a peroxidase per se can create a dysbiotic state. Recent investigations have associated the presence of peroxidase activity with gram-positive cocci microbial flora, and its insufficiency with dysbiosis has been linked to pathologies, such as caries, periodontitis or infections of the oral mucosa. Therefore, oxidants generated by oral peroxidases appear to be an essential ecological determinant for oral health through the selection of a symbiotic microbiota capable of resisting oxidative stress. The objective of the present review was to update the current knowledge of the physiological aspects and applications of oral peroxidases in clinical practice.
Collapse
Affiliation(s)
- Philippe Courtois
- Faculty of Medicine, Université Libre de Bruxelles, B‑1070 Brussels, Belgium
| |
Collapse
|
27
|
Magacz M, Oszajca M, Nawrot-Hadzik I, Drożdż R, Jurczak A, Hadzik J, Smakosz A, Krzyściak W. Phenolic Compounds of Reynoutria sp. as Modulators of Oral Cavity Lactoperoxidase System. Antioxidants (Basel) 2021; 10:antiox10050676. [PMID: 33926051 PMCID: PMC8146912 DOI: 10.3390/antiox10050676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022] Open
Abstract
Lactoperoxidase (LPO) together with its (pseudo)halogenation cycle substrates, H2O2 and thiocyanate ions oxidized to hypothiocyanite ions, form one of the main systems involved in antimicrobial defense within the oral cavity. In bacterial diseases such as dental caries, lactoperoxidase is oxidized to a form known as Compound II, which is characterized by its inability to oxidize SCN–, resulting in a decreased generation of antimicrobial products. Reynoutria sp. rizome extracts, due to their high polyphenol content, have been tested as a source of compounds able to regenerate the antimicrobial activity of lactoperoxidase through converting the Compound II to the native LPO state. In the presented study, acetone extracts of R. japonica, R. sachalinensis, and R. x bohemica, together with their five fractions and four selected polyphenols dominating in the studied in extracts, were tested toward lactoperoxidase reactivating potential. For this purpose, IC50, EC50, and activation percentage were determined by Ellman’s method. Furthermore, the rate constants for the conversion of Compound I–Compound II and Compound II–native-LPO in the presence of extracts, extracts fractions, and selected polyphenols were determined. Finally, the ability to enhance the antimicrobial properties of the lactoperoxidase system was tested against Streptococcus mutans. We proved that Reynoutria sp. rhizome is the source of lactoperoxidase peroxidation cycle substrates, which can act as activators and inhibitors of the antimicrobial properties of that system. The presented study shows that the reactivation of lactoperoxidase could become a potential therapeutic target in prevention and treatment support in some infectious oral diseases.
Collapse
Affiliation(s)
- Marcin Magacz
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (M.M.); (R.D.)
- Doctoral School of Health and Medical Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Correspondence: (M.O.); (W.K.); Tel.: +48-12-62-05-760 (W.K.)
| | - Izabela Nawrot-Hadzik
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (I.N.-H.); (A.S.)
| | - Ryszard Drożdż
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (M.M.); (R.D.)
| | - Anna Jurczak
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, 31-155 Krakow, Poland;
| | - Jakub Hadzik
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Aleksander Smakosz
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (I.N.-H.); (A.S.)
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (M.M.); (R.D.)
- Correspondence: (M.O.); (W.K.); Tel.: +48-12-62-05-760 (W.K.)
| |
Collapse
|
28
|
Yamamoto S, Okamura K, Fujii R, Kawano T, Ueda K, Yajima Y, Shiba K. Specimen-specific drift of densities defines distinct subclasses of extracellular vesicles from human whole saliva. PLoS One 2021; 16:e0249526. [PMID: 33831057 PMCID: PMC8032098 DOI: 10.1371/journal.pone.0249526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/21/2021] [Indexed: 12/26/2022] Open
Abstract
Extracellular vesicles (EVs) in body fluids constitute heterogenous populations, which mirror their diverse parental cells as well as distinct EV-generation pathways. Various methodologies have been proposed to differentiate EVs in order to deepen the current understanding of EV biology. Equilibrium density-gradient centrifugation has often been used to separate EVs based on their buoyant densities; however, the standard conditions used for the method do not necessarily allow all EVs to move to their equilibrium density positions, which complicates the categorization of EVs. Here, by prolonging ultracentrifugation time to 96 h and fractionating EVs both by floating up or spinning down directions, we allowed 111 EV-associated protein markers from the whole saliva of three healthy volunteers to attain equilibrium. Interestingly, the determined buoyant densities of the markers drifted in a specimen-specific manner, and drift patterns differentiated EVs into at least two subclasses. One class carried classical exosomal markers, such as CD63 and CD81, and the other was characterized by the molecules involved in membrane remodeling or vesicle trafficking. Distinct patterns of density drift may represent the differences in generation pathways of EVs.
Collapse
Affiliation(s)
- Satoshi Yamamoto
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Center for Child Health and Development, Tokyo, Japan
| | - Risa Fujii
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takamasa Kawano
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba, Japan
| | - Koji Ueda
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasutomo Yajima
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- * E-mail:
| |
Collapse
|
29
|
|
30
|
Sienkiewicz M, Szymańska P, Fichna J. Supplementation of Bovine Colostrum in Inflammatory Bowel Disease: Benefits and Contraindications. Adv Nutr 2021; 12:533-545. [PMID: 33070186 PMCID: PMC8009748 DOI: 10.1093/advances/nmaa120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic relapsing disorders whose etiology has not been fully explained. Therefore, available therapeutic approaches for IBD patients are still insufficient. Current treatment strategies are targeted to immune system dysfunctions, often associated with alternations in the microbiota, which contribute to the development of chronic intestinal inflammation. Therapeutics include anti-inflammatory drugs such as aminosalicylates and corticosteroids, immunosuppressive agents, antibiotics, and biological agents such as infliximab and vedolizumab. Auxiliary therapies involve a balanced and personalized diet, healthy lifestyle, avoiding stress, as well as dietary supplements. In this review, we discuss the use of bovine colostrum (BC) as a therapeutic agent, including its advantages and contraindications. We summarize our knowledge on well-researched BC constituents and their effects on the gastrointestinal tract as evidenced in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Patrycja Szymańska
- Department of Hemostasis and Hemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
31
|
Fernández-Espejo E, Rodriguez de Fonseca F, Suárez J, Martín de Pablos Á. Cerebrospinal fluid lactoperoxidase level is enhanced in idiopathic Parkinson's disease, and correlates with levodopa equivalent daily dose. Brain Res 2021; 1761:147411. [PMID: 33676939 DOI: 10.1016/j.brainres.2021.147411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/08/2023]
Abstract
Lactoperoxidase (LPO) is proposed to play a role in the pathogenesis of Parkinson's disease (PD). This enzyme has been reported to be enhanced in the cerebrospinal fluid (CSF) in parkinsonian patients. The objective was to look at the relationship of LPO in the CSF and serum with clinical features of idiopathic PD. LPO concentration was analyzed through ELISA techniques. Correlation of CSF or serum LPO and MDS-UPDRS, dopaminergic medication, and other clinical parameters was examined. The findings revealed that LPO concentration in the CSF, not serum, was found to be elevated in patients with PD relative to controls (p < 0.001). CSF LPO concentration negatively correlated with MDS-UPDRS part-IV score (p < .0001), a rating scale that allows evaluating motor complications. CSF LPO level inversely correlated with the dose intensity of the dopaminergic medication regimen, as evaluated with levodopa equivalent dose or LED (mg/day; p < .0001). LED value positively correlated with MDS-UPDRS part-IV score (p < .0001). To sum up, the findings indicate that CSF LPO is found to be elevated in the CSF of PD patients, and this enzyme holds promise as potential biomarker for diagnosis of PD. Increasing the dose intensity of the dopaminergic medication regimen attenuates the elevation in LPO levels in the CSF, and it facilitates the development of motor complications in patients. The pathophysiological mechanisms that seem to be responsible for LPO increase would include dopamine deficiency, oxidative stress, and less likely, microbial infection.
Collapse
Affiliation(s)
- Emilio Fernández-Espejo
- Reial Acadèmia de Medicina de Catalunya, 08010 Barcelona, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain.
| | - Fernando Rodriguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain
| | - Ángel Martín de Pablos
- Departamento de Anestesiología, Servicio de Cirugía, Hospital Universitario Macarena, 41009 Sevilla, Spain
| |
Collapse
|
32
|
Wang S, Huang Y, Liu S, Lin Z, Zhang Y, Bao Y. Hemoglobins from Scapharca subcrenata (Bivalvia: Arcidae) likely play an bactericidal role through their peroxidase activity. Comp Biochem Physiol B Biochem Mol Biol 2020; 253:110545. [PMID: 33346114 DOI: 10.1016/j.cbpb.2020.110545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Hemoglobin (Hb) is an iron-containing respiratory protein present in all vertebrates and some invertebrates. The blood clam Scapharca subcrenata is one of the few invertebrates that have Hb-containing red hemocytes. In this study, we purified Hb (Ss-Hb), including Ss-HbI and Ss-HbII, from S. subcrenata hemocytes using gel chromatography with a recovery rate of 70.71%, and then characterized their peroxidase activities. Both Ss-Hbs possessed peroxidase activity with high affinity to the substrates guaiacol and H2O2. Moreover, both Ss-Hbs had structural similarities, such as type b heme, proximal histidine (His), distal His, and heme pocket arginine (Arg), with other peroxidases. The optimal peroxidase activity of both Ss-Hbs was at pH 5 and 35 °C, but this was inhibited in the presence of Cu2+ and Fe2+. Ss-Hbs produced [Formula: see text] in the presence of H2O2. β-phenylethylamine, a substrate of peroxidase, increased the [Formula: see text] generation, while Cu2+, an inhibitor of peroxidase, inhibited this reaction. These results indicated that the peroxidase cycle of Ss-Hb was involved in the production of [Formula: see text] . A large amount of [Formula: see text] may be generated by the peroxidase cycle if the substrate is sufficient. During the incubation of Ss-Hbs with Bacillus subtilis, it was speculated that trace H2O2, probably from autoxidation of Ss-Hbs or generated by B. subtilis, started the peroxidase cycle of Ss-Hb. and produced a large amount of [Formula: see text] in the presence of sufficient substrate in the culture medium. It is therefore reasonable to assume that Ss-Hbs played an antibacterial role owing to their peroxidase activity, which produced [Formula: see text] .
Collapse
Affiliation(s)
- Sufang Wang
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Yiyi Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315010, China
| | - Si Liu
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Zhihua Lin
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China.
| |
Collapse
|
33
|
El-Fakharany EM. Nanoformulation approach for improved stability and efficiency of lactoperoxidase. Prep Biochem Biotechnol 2020; 51:629-641. [PMID: 33243065 DOI: 10.1080/10826068.2020.1848866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Lactoperoxidase is a glycosylated protein with a molecular mass of 78 kDa, which being excreted in several mammalian secretions. Lactoperoxidase is included in many biological processes and well-known to have biocidal actions, attending as active antibiotics and antiviral agents. This wide-spectrum of biocidal activities mediates via a definite inhibitory system named lactoperoxidase system which acts a potent role in the innate immune response since its activity is not restricted by the antimicrobial effect, but might act a significant role in the hydrolysis of many toxins like aflatoxin. Hence with the current progresses in technology, nanoparticles can offer chances as an active candidate that might be utilized for stabilizing and potentiating the activity of LPO for use in several applications. Due to the variability functions of LPO, this enzyme considers an active target to be encapsulated or coated to NPs for developing novel nanocombinations with controlled surface characteristics. The development of approaches which might enhance conformational stabilization for several weeks of LPO via nanoformulation could improve the biopharmaceutical applicability of this bioactive ingredient. Nanoformulation of LPO enhances novel functions that can be useful in many biotechnological applications like food industry, cosmetic and pharmaceutical applications or to deliver and encapsulate bioactive components.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
34
|
Bilal M, Ashraf SS, Ferreira LFR, Cui J, Lou WY, Franco M, Iqbal HMN. Nanostructured materials as a host matrix to develop robust peroxidases-based nanobiocatalytic systems. Int J Biol Macromol 2020; 162:1906-1923. [PMID: 32818568 DOI: 10.1016/j.ijbiomac.2020.08.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/05/2023]
Abstract
Nanostructured materials constitute an interesting and novel class of support matrices for the immobilization of peroxidase enzymes. Owing to the high surface area, robust mechanical stability, outstanding optical, thermal, and electrical properties, nanomaterials have been rightly perceived as immobilization matrices for enzyme immobilization with applications in diverse areas such as nano-biocatalysis, biosensing, drug delivery, antimicrobial activities, solar cells, and environmental protection. Many nano-scale materials have been employed as support matrices for the immobilization of different classes of enzymes. Nanobiocatalysts, enzymes immobilized on nano-size materials, are more stable, catalytically robust, and could be reused and recycled in multiple reaction cycles. In this review, we illustrate the unique structural/functional features and potentialities of nanomaterials-immobilized peroxidase enzymes in different biotechnological applications. After a comprehensive introduction to the immobilized enzymes and nanocarriers, the first section reviewed carbonaceous nanomaterials (carbon nanotube, graphene, and its derivatives) as a host matrix to constitute robust peroxidases-based nanobiocatalytic systems. The second half covers metallic nanomaterials (metals, and metal oxides) and some other novel materials as host carriers for peroxidases immobilization. The next section vetted the potential biotechnological applications of the resulted nanomaterials-immobilized robust peroxidases-based nanobiocatalytic systems. Concluding remarks, trends, and future recommendations for nanomaterial immobilized enzymes are also given.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - S Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas 300, Farolândia, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300 - Prédio do ITP, Farolândia, 49032-490 Aracaju, SE, Brazil
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Marcelo Franco
- Department of Exact and Technological Sciences, State University of Santa Cruz, 45654-370 Ilhéus, Brazil
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
35
|
Tonoyan L, Montagner D, Friel R, O'Flaherty V. Antimicrobials offered from nature: Peroxidase-catalyzed systems and their mimics. Biochem Pharmacol 2020; 182:114281. [PMID: 33075313 DOI: 10.1016/j.bcp.2020.114281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
The control of antimicrobial resistance requires the development of novel antimicrobial alternatives and naturally occurring peroxidase-catalyzed systems may be of great value in this era of emerging antimicrobial resistance. In the peroxidase system, a peroxidase enzyme catalyzes the oxidation of a halide/pseudohalide, at the expense of hydrogen peroxide, to generate reactive products with broad antimicrobial properties. The appropriate use of peroxidase systems needs a better understanding of the identities and properties of the generated antimicrobial oxidants, specific targets in bacterial cells, their mode of action and the factors favoring or limiting their activity. Here, the ABCs (antibacterial activity, bacterial "backtalk" and cytotoxicity) of these systems and their mimics are discussed. Particular attention is paid to the concomitant use of thiocyanate and iodide dual substrates in peroxidase/peroxidase-free systems with implications on their antimicrobial activity. This review also provides a summary of actual applications of peroxidase systems as bio-preservatives in oral healthcare, milk industry, food/feed specialties and related products, mastitis and wound treatment; lastly, this review points to opportunities for further research and potential applications.
Collapse
Affiliation(s)
- Lilit Tonoyan
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - Diego Montagner
- Department of Chemistry, Maynooth University, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Ruairi Friel
- Westway Health, Unit 120, Business Innovation Centre, National University of Ireland Galway, Galway, Ireland
| | - Vincent O'Flaherty
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
36
|
Zou Z, Bauland J, Hewavitharana AK, Al-Shehri SS, Duley JA, Cowley DM, Koorts P, Shaw PN, Bansal N. A sensitive, high-throughput fluorescent method for the determination of lactoperoxidase activities in milk and comparison in human, bovine, goat and camel milk. Food Chem 2020; 339:128090. [PMID: 33152878 DOI: 10.1016/j.foodchem.2020.128090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
Lactoperoxidase (LPO) is one of the major antibacterial ingredients in milk and an extensively employed indicator for milk heat treatment. The traditional method for LPO activity measurement using ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonate) cannot achieve high sensitivity and is affected by indigenous milk thiocyanate. A more sensitive microplate fluorescent assay was developed by monitoring generation of red-fluorescent resorufin from LPO catalysed oxidation of Amplex® Red (1-(3,7-dihydroxyphenoxazin-10-yl)ethanone) in this study. The assay is particularly suitable for milk LPO activity measurement as it eliminates the influences of indigenous milk hydrogen peroxide and thiocyanate. The method limit of detection was 7.1x10-6 U/mL of LPO in milk and good intra-run and inter-run precision was obtained. The LPO activities ranked as bovine > goat > camel > human in the four types of milk analysed. The high sensitivity and low cost of this assay makes it suitable for LPO activity analyses in both laboratory and commercial scales.
Collapse
Affiliation(s)
- Zhengzheng Zou
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Julien Bauland
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia; Institut National Supérieur des Sciences Agronomiques, Agrosup Dijon, France
| | | | - Saad S Al-Shehri
- Department of Clinical Laboratories Science, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - John A Duley
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - David M Cowley
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Pieter Koorts
- Department of Neonatology, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Paul N Shaw
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
37
|
Cegolon L, Javanbakht M, Mastrangelo G. Nasal disinfection for the prevention and control of COVID-19: A scoping review on potential chemo-preventive agents. Int J Hyg Environ Health 2020; 230:113605. [PMID: 32898838 PMCID: PMC7434367 DOI: 10.1016/j.ijheh.2020.113605] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Neither pre-exposure nor post-exposure chemo-prophylaxis agents are currently available to prevent COVID-19. On the other hand, high loads of SARS-CoV-2 are shed from the nasal cavity before and after symptoms onset. OBJECTIVE To conduct a scoping review on the available evidence on tolerable nasal disinfectants with encouraging health outcomes against SARS-CoV-2, i.e., agents effective against at least two different viruses beyond SARS-CoV-2. METHODS Online databases were searched to identify papers published during 2010-2020. Publications were selected if they were relevant to the scoping review. The review was narrative, describing for each treatment the mechanism(s) of action, tolerability, in vitro and in vivo evidence of the effects against SARS-CoV-2 and whether the product had been marketed. RESULTS Eight treatments were scrutinized: hypothiocyanite, lactoferrin, N-chlorotaurine, interferon-alpha, povidone-iodine, quaternary ammonium compounds, alcohol-based nasal antiseptics and hydroxychloroquine. In vitro viricidal effect against SARS-CoV-2 was reported for ethanol, alcohol-based hand sanitizers and povidone-iodine. Inhibition of other coronaviruses was described for lactoferrin, ethanol, hydroxychloroquine and quaternary ammonium compound. No treatment has been tested against SARS-CoV-2 in randomized controlled clinical trials thus far. However, interferon-alpha, lactoferrin and hydroxychloroquine were tested in one-arm open label uncontrolled clinical trial. Oxidant activity (hypothiocyanite, N-chlorotaurine and povidone-iodine), enhancement of endocytic and lysosomal pH (quaternary ammonium compounds and hydroxychloroquine) and destruction of the viral capsid (quaternary ammonium compounds, alcohol-based nasal antiseptics) were the main mechanisms of action. Lactoferrin and interferon-alpha have subtle biological mechanisms. With the exception of N-chlorotaurine, all other products available on the market. CONCLUSIONS Effective and safe chemo-prophylactic drugs against SARS-CoV-2 do not exist yet but most eligible candidates are already in the market. Whilst the human nasal cavity is the port of entry for SARS-CoV-2, the mouth is involved as exit site through emission of respiratory droplets. The well-known hand-to-nose-to-hand cycle of contamination requires appropriate additional strategies for infection control. To narrow down the subsequent laboratory and clinical investigations, a case-control approach could be employed to compare the use of candidate drugs among individuals testing positive and negative to COVID-19 swabs.
Collapse
Affiliation(s)
- L Cegolon
- Public Health Department, Local Health Unit N. 2 "Marca Trevigiana", Treviso, Italy; Institute for Maternal & Child Health, IRCCS "Burlo Garofolo", Trieste, Italy.
| | - M Javanbakht
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - G Mastrangelo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
38
|
Li H, Sun X, Liao X, Gänzle M. Control of pathogenic and spoilage bacteria in meat and meat products by high pressure: Challenges and future perspectives. Compr Rev Food Sci Food Saf 2020; 19:3476-3500. [PMID: 33337070 DOI: 10.1111/1541-4337.12617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 01/18/2023]
Abstract
High-pressure processing is among the most widely used nonthermal intervention to reduce pathogenic and spoilage bacteria in meat and meat products. However, resistance of pathogenic bacteria strains in meats at the current maximum commercial equipment of 600 MPa questions the ability of inactivation by its application in meats. Pathogens including Escherichia coli, Listeria, and Salmonelle, and spoilage microbiota including lactic acid bacteria dominate in raw meat, ready-to-eat, and packaged meat products. Improved understanding on the mechanisms of the pressure resistance is needed for optimizing the conditions of pressure treatment to effectively decontaminate harmful bacteria. Effective control of the pressure-resistant pathogens and spoilage organisms in meats can be realized by the combination of high pressure with application of mild temperature and/or other hurdles including antimicrobial agents and/or competitive microbiota. This review summarized applications, mechanisms, and challenges of high pressure on meats from the perspective of microbiology, which are important for improving the understanding and optimizing the conditions of pressure treatment in the future.
Collapse
Affiliation(s)
- Hui Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohong Sun
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
39
|
Gingerich AD, Doja F, Thomason R, Tóth E, Bradshaw JL, Douglass MV, McDaniel LS, Rada B. Oxidative killing of encapsulated and nonencapsulated Streptococcus pneumoniae by lactoperoxidase-generated hypothiocyanite. PLoS One 2020; 15:e0236389. [PMID: 32730276 PMCID: PMC7392276 DOI: 10.1371/journal.pone.0236389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 07/06/2020] [Indexed: 01/04/2023] Open
Abstract
Streptococcus pneumoniae (Pneumococcus) infections affect millions of people worldwide, cause serious mortality and represent a major economic burden. Despite recent successes due to pneumococcal vaccination and antibiotic use, Pneumococcus remains a significant medical problem. Airway epithelial cells, the primary responders to pneumococcal infection, orchestrate an extracellular antimicrobial system consisting of lactoperoxidase (LPO), thiocyanate anion and hydrogen peroxide (H2O2). LPO oxidizes thiocyanate using H2O2 into the final product hypothiocyanite that has antimicrobial effects against a wide range of microorganisms. However, hypothiocyanite’s effect on Pneumococcus has never been studied. Our aim was to determine whether hypothiocyanite can kill S. pneumoniae. Bactericidal activity was measured in a cell-free in vitro system by determining the number of surviving pneumococci via colony forming units on agar plates, while bacteriostatic activity was assessed by measuring optical density of bacteria in liquid cultures. Our results indicate that hypothiocyanite generated by LPO exerted robust killing of both encapsulated and nonencapsulated pneumococcal strains. Killing of S. pneumoniae by a commercially available hypothiocyanite-generating product was even more pronounced than that achieved with laboratory reagents. Catalase, an H2O2 scavenger, inhibited killing of pneumococcal by hypothiocyanite under all circumstances. Furthermore, the presence of the bacterial capsule or lytA-dependent autolysis had no effect on hypothiocyanite-mediated killing of pneumococci. On the contrary, a pneumococcal mutant deficient in pyruvate oxidase (main bacterial H2O2 source) had enhanced susceptibility to hypothiocyanite compared to its wild-type strain. Overall, results shown here indicate that numerous pneumococcal strains are susceptible to LPO-generated hypothiocyanite.
Collapse
Affiliation(s)
- Aaron D. Gingerich
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Fayhaa Doja
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Rachel Thomason
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Eszter Tóth
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Jessica L. Bradshaw
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Martin V. Douglass
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Larry S. McDaniel
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
40
|
Effect of Sulfur and Urea Fortification of Fresh Cassava Root in Fermented Total Mixed Ration on the Improvement Milk Quality of Tropical Lactating Cows. Vet Sci 2020; 7:vetsci7030098. [PMID: 32718043 PMCID: PMC7558002 DOI: 10.3390/vetsci7030098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of the present research was to determine the influence of sulfur and urea combined with fresh cassava root in fermented total mixed ration (FTMR) on digestibility, fermentation in the rumen, blood metabolite, milk yield, and milk quality in tropical lactating dairy cows. Four mid-lactation Thai Holstein-Friesian crossbred cows were studied. Pre-experiment milk yield was 12.7 ± 0.30 kg/day, and the body weight was 495 ± 40.0 kg. Animals were evaluated in a 2 × 2 factorial in a 4 × 4 Latin square design to receive diets followed by: factor A, which was a dose of sulfur inclusion at 1.0% and 2.0%, and factor B, which was level of urea inclusion at 1.25% and 2.5% DM in FTMR. The hydrogen cyanide (HCN) concentrations reduced 99.3% to 99.4% compared with fresh cassava root when FTMR was supplemented with 1.0% and 2.0% sulfur, respectively. Intake of crude protein was increased based on urea level addition (p < 0.05). Blood thiocyanate concentration was increased by 21.6% when sulfur was supplemented at 2.0% compared to 1.0% (p < 0.05). There was no difference in protozoal concentration, whereas bacterial populations at 4 h after feeding were significantly greater by 6.1% with the FTMR supplemented with 2.0% sulfur and 2.5% urea (p < 0.01). Allantoin concentrations, excretion, absorption, and microbial crude protein showed significant interactions between sulfur levels and urea levels in cows fed diets supplemented with 2.0% sulfur and 2.5% urea (p < 0.05). The molar ratios of the volatile fatty acid (VFA) profile were affected by dietary FTMR (p < 0.01). Furthermore, propionic acid increased by 4.6% when diets were supplemented by 2.5% sulfur (p < 0.01). Milk fat and total solids increased when feed was supplemented with 2.0% sulfur and 2.5% urea (p < 0.05). The diets supplemented with 2.0% sulfur levels resulted in greater concentrations of milk thiocyanate (p < 0.05). The somatic cell count was significantly reduced throughout the experiment with increasing sulfur supplementation (p < 0.05). Animals fed diets supplemented with 2.0% sulfur exhibited a decreased somatic cell count by 18.3% compared with those fed diets supplemented with 1.0% sulfur. Thus, inclusion of 2.0% sulfur with 2.5% urea in FTMR containing fresh cassava root improved digestibility, ruminal fermentation, microbial crude protein synthesis, and milk qualities in dairy cows.
Collapse
|
41
|
Al-Shehri SS, Duley JA, Bansal N. Xanthine oxidase-lactoperoxidase system and innate immunity: Biochemical actions and physiological roles. Redox Biol 2020; 34:101524. [PMID: 32334145 PMCID: PMC7183230 DOI: 10.1016/j.redox.2020.101524] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/01/2023] Open
Abstract
The innate immune system in mammals is the first-line defense that plays an important protective role against a wide spectrum of pathogens, especially during early life before the adaptive immune system develops. The enzymes xanthine oxidase (XO) and lactoperoxidase (LPO) are widely distributed in mammalian tissues and secretions, and have a variety of biological functions including in innate immunity, provoking much interest for both in vitro and in vivo applications. The enzymes are characterized by their generation of reactive oxygen and nitrogen species, including hydrogen peroxide, hypothiocyanite, nitric oxide, and peroxynitrite. XO is a major generator of hydrogen peroxide and superoxide that subsequently trigger a cascade of oxidative radical pathways, including those produced by LPO, which have bactericidal and bacteriostatic effects against pathogens including opportunistic bacteria. In addition to their role in host microbial defense, reactive oxygen and nitrogen species play important physiological roles as second messenger cell signaling molecules, including cellular proliferation, differentiation and gene expression. There are several indications that the reactive species generated by peroxide have positive effects on human health, particularly in neonates; however, some important in vivo aspects of this system remain obscure. The primary dependence of the system on hydrogen peroxide has led us to propose it is particularly relevant to neonate mammals during milk feeding.
Collapse
Affiliation(s)
- Saad S Al-Shehri
- College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia.
| | - John A Duley
- School of Pharmacy, The University of Queensland, St Lucia, 4102, Australia
| | - Nidhi Bansal
- School of Pharmacy, The University of Queensland, St Lucia, 4102, Australia; School of Agriculture and Food Science, The University of Queensland, St Lucia, 4102, Australia
| |
Collapse
|
42
|
Mohamed C, Elise N, Etienne TV, Loiseau G, Montet D. Antifungal activity of edible coating made from chitosan and lactoperoxidase system against
Phomopsis
sp. RP257 and
Pestalotiopsis
sp. isolated from mango. J Food Saf 2020. [DOI: 10.1111/jfs.12785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Cissé Mohamed
- Department of Biochemistry, Research of Biological SciencesUniversity Peleforo Gon Coulibaly Korhogo Côte d'Ivoire
| | - N'guessan Elise
- Department of Biochemistry, Research of Biological SciencesUniversity Peleforo Gon Coulibaly Korhogo Côte d'Ivoire
| | - Tia V. Etienne
- Department of Biochemistry, Research of Biological SciencesUniversity Peleforo Gon Coulibaly Korhogo Côte d'Ivoire
| | | | | |
Collapse
|
43
|
Basmaeil Y, Rashid MA, Khatlani T, AlShabibi M, Bahattab E, Abdullah ML, Abomaray F, Kalionis B, Massoudi S, Abumaree M. Preconditioning of Human Decidua Basalis Mesenchymal Stem/Stromal Cells with Glucose Increased Their Engraftment and Anti-diabetic Properties. Tissue Eng Regen Med 2020; 17:209-222. [PMID: 32077075 PMCID: PMC7105536 DOI: 10.1007/s13770-020-00239-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/10/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Mesenchymal stem/stromal cells (MSCs) from the decidua basalis (DBMSCs) of the human placenta have important functions that make them potential candidates for cellular therapy. Previously, we showed that DBMSC functions do not change significantly in a high oxidative stress environment, which was induced by hydrogen peroxide (H2O2) and immune cells. Here, we studied the consequences of glucose, another oxidative stress inducer, on the phenotypic and functional changes in DBMSCs. Methods: DBMSCs were exposed to a high level of glucose, and its effect on DBMSC phenotypic and functional properties was determined. DBMSC expression of oxidative stress and immune molecules after exposure to glucose were also identified. Results: Conditioning of DBMSCs with glucose improved their adhesion and invasion. Glucose also increased DBMSC expression of genes with survival, proliferation, migration, invasion, anti-inflammatory, anti-chemoattractant and antimicrobial properties. In addition, DBMSC expression of B7H4, an inhibitor of T cell proliferation was also enhanced by glucose. Interestingly, glucose modulated DBMSC expression of genes involved in insulin secretion and prevention of diabetes. Conclusion: These data show the potentially beneficial effects of glucose on DBMSC functions. Preconditioning of DBMSCs with glucose may therefore be a rational strategy for increasing their therapeutic potential by enhancing their engraftment efficiency. In addition, glucose may program DBMSCs into insulin producing cells with ability to counteract inflammation and infection associated with diabetes. However, future in vitro and in vivo studies are essential to investigate the findings of this study further. Electronic supplementary material The online version of this article (10.1007/s13770-020-00239-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasser Basmaeil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia.
| | - Manar Al Rashid
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Tanvir Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Manal AlShabibi
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh, 11442, Kingdom of Saudi Arabia
| | - Eman Bahattab
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh, 11442, Kingdom of Saudi Arabia
| | - Meshan L Abdullah
- Experimental Medicine, King Abdullah International Medical Research Center MNG-HA, Ali Al Arini, Ar Rimayah, Riyadh, 11481, Kingdom of Saudi Arabia
| | - Fawaz Abomaray
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre and University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, 20 Flemington Rd, Parkville, VIC, 3052, Australia
| | - Safia Massoudi
- Department of Forensic Biology, College of Forensic Sciences, Naif Arab University for Security Sciences, Khurais Rd, Ar Rimayah, Riyadh, 14812, Kingdom of Saudi Arabia
| | - Mohammad Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia.,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 3124, P.O. Box 3660, Riyadh, 11481, Kingdom of Saudi Arabia
| |
Collapse
|
44
|
The impact of salivary lactoperoxidase and histatin-5 on early childhood caries severity in relation to nutritional status. Saudi Dent J 2020; 32:410-416. [PMID: 33304085 PMCID: PMC7714966 DOI: 10.1016/j.sdentj.2020.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/18/2020] [Accepted: 01/30/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction Early childhood caries is a multifactorial disease. Saliva plays an important role in initiation and protection against caries, and its composition is greatly affected by nutritional status. This study was conducted to determine the impact of salivary lactoperoxidase and histatin-5 on the severity of ECC in relation to nutritional status. Materials and methods The sample consisted of 120 children aged 5 years, classified into eight groups: mild ECC in underweight children, mild ECC in normalweight children, moderate ECC in underweight children, moderate in ECC normal weight children, severe ECC in underweight children, severe ECC in normalweight, caries-free (control) underweight children and caries-free normalweight children. Each group consisted of 15 children. Stimulated saliva was collected. Salivary lactoperoxidase was analysed using Human LPO/ Lactoperoxidase ELISA Kit (CLIA)-LS-F29892, and salivary histatin-5 was analysed using Human Histatin-5 ELISA Kit MBS705083_48T. Results Lactoperoxidase and histatin-5 concentrations were significantly higher in caries-free children than in children with ECC, and they were higher in children with mild ECC than in children with moderate ECC or in children with severe ECC. They were significantly higher among children with normal weight than among those who were underweight (p < 0.01). ECC and nutritional status recorded non-significant interactions with both LPO and HST-5 (p > 0.01), but there was significant interaction between these two variables and LPO and HST-5 together (p < 0.01). The Pearson's correlation coefficient test recorded significant negative correlations between ECC severity and both salivary lactoperoxidase and histatin-5 among the eight study groups, whereas significant positive correlations were recorded between BMI values and both salivary lactoperoxidase and histatin-5 among the eight study groups. Conclusion Salivary lactoperoxidase and histatin-5 may be affected by nutritional status, and these two parameters may play an important role in caries prevention at high concentrations. There is interaction between these two parameters and ECC severity and nutrition.
Collapse
|
45
|
Thum C, Ozturk G, McNabb WC, Roy NC, Leite Nobrega de Moura Bell JM. Effects of microwave processing conditions on microbial safety and antimicrobial proteins in bovine milk. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Caroline Thum
- Department of Food Science and Technology University of California Davis CA USA
- Biological and Agricultural Engineering University of California Davis CA USA
- Food Nutrition & Health Team AgResearch, Grasslands Research Centre Palmerston North New Zealand
- Riddet Institute Massey University Palmerston North New Zealand
| | - Gulustan Ozturk
- Department of Food Science and Technology University of California Davis CA USA
- Biological and Agricultural Engineering University of California Davis CA USA
| | | | - Nicole C. Roy
- Food Nutrition & Health Team AgResearch, Grasslands Research Centre Palmerston North New Zealand
- Riddet Institute Massey University Palmerston North New Zealand
- High‐Value Nutrition National Science Challenge Palmerston North New Zealand
| | | |
Collapse
|
46
|
Quinto EJ, Caro I, Villalobos-Delgado LH, Mateo J, De-Mateo-Silleras B, Redondo-Del-Río MP. Food Safety through Natural Antimicrobials. Antibiotics (Basel) 2019; 8:E208. [PMID: 31683578 PMCID: PMC6963522 DOI: 10.3390/antibiotics8040208] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Microbial pathogens are the cause of many foodborne diseases after the ingestion of contaminated food. Several preservation methods have been developed to assure microbial food safety, as well as nutritional values and sensory characteristics of food. However, the demand for natural antimicrobial agents is increasing due to consumers' concern on health issues. Moreover, the use of antibiotics is leading to multidrug resistant microorganisms reinforcing the focus of researchers and the food industry on natural antimicrobials. Natural antimicrobial compounds from plants, animals, bacteria, viruses, algae and mushrooms are covered. Finally, new perspectives from researchers in the field and the interest of the food industry in innovations are reviewed. These new approaches should be useful for controlling foodborne bacterial pathogens; furthermore, the shelf-life of food would be extended.
Collapse
Affiliation(s)
- Emiliano J Quinto
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain.
| | - Irma Caro
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain.
| | - Luz H Villalobos-Delgado
- Institute of Agroindustry, Technological University of the Mixteca, Huajuapan de León, Oaxaca 69000, Mexico.
| | - Javier Mateo
- Department of Hygiene and Food Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain.
| | - Beatriz De-Mateo-Silleras
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain.
| | - María P Redondo-Del-Río
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain.
| |
Collapse
|
47
|
Tunney MM, Payne JE, McGrath SJ, Einarsson GG, Ingram RJ, Gilpin DF, Juarez-Perez V, Elborn JS. Activity of hypothiocyanite and lactoferrin (ALX-009) against respiratory cystic fibrosis pathogens in sputum. J Antimicrob Chemother 2019; 73:3391-3397. [PMID: 30219825 DOI: 10.1093/jac/dky357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/10/2018] [Indexed: 11/13/2022] Open
Abstract
Objectives To determine the antimicrobial activity of ALX-009, a combination of bovine lactoferrin and hypothiocyanite, in sputum against Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc), key pathogens causing infection in the lungs of cystic fibrosis (CF) patients. Methods The antimicrobial activity of ALX-009 against clinical respiratory P. aeruginosa isolates was determined by time-kill assay. Sputum from CF patients was treated with ALX-009, either alone or in combination with tobramycin, and the effect on P. aeruginosa, Bcc and total sputum density was determined. Results Time-kill assay indicated that ALX-009 was bactericidal at 24 h against 4/4 P. aeruginosa isolates under aerobic conditions, and against 3/4 isolates under anaerobic conditions. ALX-009 was also bactericidal against P. aeruginosa in sputum samples at 6 h (n = 22/24 samples) and 24 h (n = 14/24 samples), and demonstrated significantly greater activity than tobramycin at both timepoints. Activity against Bcc in sputum samples (n = 9) was also demonstrated, but the magnitude of change in Bcc density was less than for P. aeruginosa. To determine the effect of treating sputum with two doses of ALX-009, similar to current regimens for inhaled antibiotics, aliquots of a further 10 sputum samples positive for P. aeruginosa were treated with one (t = 0 h) or two doses (t = 0 h, t = 12 h) of ALX-009; treatment with two doses resulted in bactericidal activity in 7/10 samples at 34 h compared with only 3/10 samples when treatment was with one dose. Conclusions ALX-009 demonstrates promise as a novel antimicrobial that could be used to decrease P. aeruginosa density in the lungs of people with CF.
Collapse
Affiliation(s)
- Michael M Tunney
- Halo Research Group, Queen's University Belfast, Belfast, UK.,School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Joanna E Payne
- Halo Research Group, Queen's University Belfast, Belfast, UK.,Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Stephanie J McGrath
- Halo Research Group, Queen's University Belfast, Belfast, UK.,School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Gisli G Einarsson
- Halo Research Group, Queen's University Belfast, Belfast, UK.,Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Rebecca J Ingram
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Deirdre F Gilpin
- Halo Research Group, Queen's University Belfast, Belfast, UK.,School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | - J Stuart Elborn
- Halo Research Group, Queen's University Belfast, Belfast, UK.,Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, UK.,Imperial College London and Royal Brompton Hospital, London, UK
| |
Collapse
|
48
|
Maki RA, Holzer M, Motamedchaboki K, Malle E, Masliah E, Marsche G, Reynolds WF. Human myeloperoxidase (hMPO) is expressed in neurons in the substantia nigra in Parkinson's disease and in the hMPO-α-synuclein-A53T mouse model, correlating with increased nitration and aggregation of α-synuclein and exacerbation of motor impairment. Free Radic Biol Med 2019; 141:115-140. [PMID: 31175983 PMCID: PMC6774439 DOI: 10.1016/j.freeradbiomed.2019.05.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
α-Synuclein (αSyn) is central to the neuropathology of Parkinson's disease (PD) due to its propensity for misfolding and aggregation into neurotoxic oligomers. Nitration/oxidation of αSyn leads to dityrosine crosslinking and aggregation. Myeloperoxidase (MPO) is an oxidant-generating enzyme implicated in neurodegenerative diseases. In the present work we have examined the impact of MPO in PD through analysis of postmortem PD brain and in a novel animal model in which we crossed a transgenic mouse expressing the human MPO (hMPO) gene to a mouse expressing human αSyn-A53T mutant (A53T) (hMPO-A53T). Surprisingly, our results show that in PD substantia nigra, the hMPO gene is expressed in neurons containing aggregates of nitrated αSyn as well as MPO-generated HOCl-modified epitopes. In our hMPO-A53T mouse model, we also saw hMPO expression in neurons but not mouse MPO. In the mouse model, hMPO was expressed in neurons colocalizing with nitrated αSyn, carbamylated lysine, nitrotyrosine, as well as HOCl-modified epitopes/proteins. RNAscope in situ hybridization confirmed hMPO mRNA expression in neurons. Interestingly, the hMPO protein expressed in hMPO-A53T brain is primarily the precursor proMPO, which enters the secretory pathway potentially resulting in interneuronal transmission of MPO and oxidative species. Importantly, the hMPO-A53T mouse model, when compared to the A53T model, exhibited significant exacerbation of motor impairment on rotating rods, balance beams, and wire hang tests. Further, hMPO expression in the A53T model resulted in earlier onset of end stage paralysis. Interestingly, there was a high concentration of αSyn aggregates in the stratum lacunosum moleculare of hippocampal CA2 region, which has been associated in humans with accumulation of αSyn pathology and neural atrophy in dementia with Lewy bodies. This accumulation of αSyn aggregates in CA2 was associated with markers of endoplasmic reticulum (ER) stress and the unfolded protein response with expression of activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), MPO, and cleaved caspase-3. Together these findings suggest that MPO plays an important role in nitrative and oxidative damage that contributes to αSyn pathology in synucleinopathies.
Collapse
Affiliation(s)
- Richard A Maki
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael Holzer
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Khatereh Motamedchaboki
- Tumor Initiation & Maintenance Program and NCI Cancer Centre Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ernst Malle
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA; Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA; Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Wanda F Reynolds
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
49
|
Nakano M, Suzuki M, Wakabayashi H, Hayama K, Yamauchi K, Abe F, Abe S. Synergistic anti-candida activities of lactoferrin and the lactoperoxidase system. Drug Discov Ther 2019; 13:28-33. [PMID: 30880319 DOI: 10.5582/ddt.2019.01010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Candida albicans is a commensal fungus in human mucosal surfaces, including the oral cavity. Lactoferrin (LF) and the lactoperoxidase (LPO) system, which are host protection components in exocrine secretions, each exhibit weak anti-candida activity. We herein examined the effects of the combination of LF and the LPO system on C. albicans. Morphological observations indicated that the combination of LF and the LPO system reduced the mycelial volume of C. albicans and changed the size and shape of cells more than each agent alone. The combination of LF and the LPO system also exerted strong inhibitory effects on the cellular metabolic activity and adhesive hyphal form of C. albicans. A checkerboard analysis revealed that the anti-candida activity of LF and the LPO system was synergistic. These results suggest that the combination of LF and the LPO system is useful for preventing candidiasis.
Collapse
Affiliation(s)
- Manabu Nakano
- Food Ingredients & Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd
| | | | - Hiroyuki Wakabayashi
- Food Ingredients & Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd
| | | | - Koji Yamauchi
- Food Ingredients & Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd
| | - Fumiaki Abe
- Food Ingredients & Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd
| | - Shigeru Abe
- Teikyo University Institute of Medical Mycology
| |
Collapse
|
50
|
Al-Baarri AN, Damayanti NT, Legowo AM, Tekiner İH, Hayakawa S. Enhanced Antibacterial Activity of Lactoperoxidase-Thiocyanate-Hydrogen Peroxide System in Reduced-Lactose Milk Whey. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2019; 2019:8013402. [PMID: 31179314 PMCID: PMC6507251 DOI: 10.1155/2019/8013402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/03/2019] [Accepted: 04/03/2019] [Indexed: 11/17/2022]
Abstract
The product of the lactoperoxidase system (LPOS) has been developed as a preservative agent to inhibit foodborne bacteria, but its action was, heretofore, limited to several original compounds in milk. This research was conducted to analyze the application of the lactoperoxidase system against Escherichia coli in fresh bovine milk and its derivative products to determine the strength of antibacterial activity. Lactoperoxidase was purified from bovine whey using the SP Sepharose Big Beads Column. The enzymatic reaction involving lactoperoxidase, thiocyanate, and hydrogen peroxide was used to generate the antibacterial agent from LPOS. This solution was then added to milk, skimmed milk, untreated whey, reduced-LPO whey, reduced-lactose whey, and high-lactose solution containing E. coli at an initial count of 6.0 log CFU/mL. LPOS showed the greatest reduction of bacteria (1.68 ± 0.1 log CFU/mL) in the reduced-lactose whey among the products tested. This result may lead to a method for enhancement of the antimicrobial activity of LPOS in milk and derived products.
Collapse
Affiliation(s)
| | - Novia Tri Damayanti
- Animal Sciences Department, Faculty of Animal and Agricultural Sciences, Diponegoro University, Indonesia
| | - Anang Mohamad Legowo
- Animal Sciences Department, Faculty of Animal and Agricultural Sciences, Diponegoro University, Indonesia
| | - İsmail Hakkı Tekiner
- Gastronomy Department, School of Applied Sciences, Istanbul Gelişim University, Turkey
| | - Shigeru Hayakawa
- Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Japan
| |
Collapse
|