1
|
Klein JA, St-Pierre J, Choi D, Lopez J, Rubin DT. Dramatic Changes in Thiopurine Metabolite Levels in a Patient With Inflammatory Bowel Disease Treated With Tirzepatide for Weight Loss. ACG Case Rep J 2024; 11:e01544. [PMID: 39507506 PMCID: PMC11540429 DOI: 10.14309/crj.0000000000001544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Thiopurines can be used to maintain remission in patients with inflammatory bowel disease. Thiopurines require regular blood count monitoring and, in specific patients, thiopurine metabolites for assessment of optimization and safety. We present the case of a 42-year-old woman with ulcerative colitis postcolectomy and ileal pouch-anal anastomosis with subsequent antibiotic-resistant diffuse pouchitis and prepouch ileitis. She was in stable remission with thiopurine monotherapy. Following tirzepatide initiation, she experienced elevated liver enzymes associated with a significant increase in thiopurine metabolite levels. This case underlines the importance of monitoring metabolite levels in patients with inflammatory bowel disease initiated on glucagon-like peptide 1-targeted therapies.
Collapse
Affiliation(s)
- Jeremy A. Klein
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, IL
| | - Joëlle St-Pierre
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, IL
| | - David Choi
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, IL
| | - Jacqueline Lopez
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, IL
| | - David T. Rubin
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, IL
| |
Collapse
|
2
|
Stoicovy RA, Cora N, Perez A, Nagliya D, Del Calvo G, Lopez TB, Weinstein EC, Borges JI, Maning J, Lymperopoulos A. Cyclic adenosine monophosphate critically modulates cardiac GLP-1 receptor's anti-inflammatory effects. Inflamm Res 2024; 73:2043-2056. [PMID: 39305297 DOI: 10.1007/s00011-024-01950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Glucagon-like peptide (GLP)-1 receptor (GLP1R) agonists exert a multitude of beneficial cardiovascular effects beyond control of blood glucose levels and obesity reduction. They also have anti-inflammatory actions through both central and peripheral mechanisms. GLP1R is a G protein-coupled receptor (GPCR), coupling to adenylyl cyclase (AC)-stimulatory Gs proteins to raise cyclic 3`-5`-adenosine monophosphate (cAMP) levels in cells. cAMP exerts various anti-apoptotic and anti-inflammatory effects via its effectors protein kinase A (PKA) and Exchange protein directly activated by cAMP (Epac). However, the precise role and importance of cAMP in mediating GLP1R`s anti-inflammatory actions, at least in the heart, remains to be determined. To this end, we tested the effects of the GLP1R agonist liraglutide on lipopolysaccharide (LPS)-induced acute inflammatory injury in H9c2 cardiac cells, either in the absence of cAMP production (AC inhibition) or upon enhancement of cAMP levels via phosphodiesterase (PDE)-4 inhibition with roflumilast. METHODS & RESULTS Liraglutide dose-dependently inhibited LPS-induced apoptosis and increased cAMP levels in H9c2 cells, with roflumilast but also PDE8 inhibition further enhancing cAMP production by liraglutide. GLP1R-stimulated cAMP markedly suppressed the LPS-dependent induction of pro-inflammatory tumor necrosis factor (TNF)-a, interleukin (IL)-1b, and IL-6 cytokine expression, of inducible nitric oxide synthase (iNOS) expression and nuclear factor (NF)-kB activity, of matrix metalloproteinases (MMP)-2 and MMP-9 levels and activities, and of myocardial injury markers in H9c2 cardiac cells. The effects of liraglutide were mediated by the GLP1R since they were abolished by the GLP1R antagonist exendin(9-39). Importantly, AC inhibition completely abrogated liraglutide`s suppression of LPS-dependent inflammatory injury, whereas roflumilast significantly enhanced the protective effects of liraglutide against LPS-induced inflammation. Finally, PKA inhibition or Epac1/2 inhibition alone only partially blocked liraglutide`s suppression of LPS-induced inflammation in H9c2 cardiac cells, but, together, PKA and Epac1/2 inhibition fully prevented liraglutide from reducing LPS-dependent inflammation. CONCLUSIONS cAMP, via activation of both PKA and Epac, is essential for GLP1R`s anti-inflammatory signaling in cardiac cells and that cAMP levels crucially regulate the anti-inflammatory efficacy of GLP1R agonists in the heart. Strategies that elevate cardiac cAMP levels, such as PDE4 inhibition, may potentiate the cardiovascular, including anti-inflammatory, benefits of GLP1R agonist drugs.
Collapse
Affiliation(s)
- Renee A Stoicovy
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Arianna Perez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Deepika Nagliya
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Giselle Del Calvo
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Teresa Baggio Lopez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Emma C Weinstein
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA.
- , University Dr., HPD (Terry) Bldg./Room 1350, Fort Lauderdale, FL, 33328-2018, USA.
| |
Collapse
|
3
|
Pinto S, Viegas J, Cristelo C, Pacheco C, Barros S, Buckley ST, Garousi J, Gräslund T, Santos HA, Sarmento B. Bioengineered Nanomedicines Targeting the Intestinal Fc Receptor Achieve the Improved Glucoregulatory Effect of Semaglutide in a Type 2 Diabetic Mice Model. ACS NANO 2024; 18:28406-28424. [PMID: 39356547 DOI: 10.1021/acsnano.4c11172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The oral administration of the glucagon-like peptide-1 analogue, semaglutide, remains a hurdle due to its limited bioavailability. Herein, neonatal Fc receptor (FcRn)-targeted nanoparticles (NPs) were designed to enhance the oral delivery of semaglutide. The nanocarriers were covalently linked to the FcRn-binding peptide FcBP or the affibody molecule ZFcRn that specifically binds to the human FcRn (hFcRn) in a pH-dependent manner. These FcRn-targeted ligands were selected over the endogenous ligands of the receptor (albumin and IgG) due to their smaller size and simpler structure, which could facilitate the transport of functionalized NPs through the tissues. The capacity of FcRn-targeted semaglutide-NPs in controlling the blood glucose levels was evaluated in an hFcRn transgenic mice model, where type 2 diabetes mellitus (T2DM) was induced via intraperitoneal injection of nicotinamide followed by streptozotocin. The encapsulation of semaglutide into FcRn-targeted NPs was translated in an improved glucoregulatory effect in T2DM-induced mice when compared to the oral free semaglutide or nontargeted NP groups, after daily oral administrations for 7 days. Notably, a similar glucose-lowering response was observed between both FcRn-targeted NPs and the subcutaneous semaglutide groups. An increase in insulin pancreatic content and a recovery in β cell mass were visualized in the mice treated with FcRn-targeted semaglutide-NPs. The biodistribution of fluorescently labeled NPs through the gastrointestinal tract demonstrated that the nanosystems targeting the hFcRn are retained longer in the ileum and colorectum, where the expression of FcRn is more prevalent, than nontargeted NPs. Therefore, FcRn-targeted nanocarriers proved to be an effective platform for improving the pharmacological effect of semaglutide in a T2DM-induced mice model.
Collapse
Affiliation(s)
- Soraia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Juliana Viegas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Cecília Cristelo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Catarina Pacheco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra 1317, Gandra 4585-116, Portugal
| | - Sofia Barros
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Stephen T Buckley
- Global Research Technologies, Novo Nordisk, Novo Nordisk Park 1, Måløv 2760, Denmark
| | - Javad Garousi
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 114 17, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 114 17, Sweden
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV Groningen 9713, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra 1317, Gandra 4585-116, Portugal
| |
Collapse
|
4
|
Wang ZQ, Zhang JY, Tang X, Zhou JB. Hypoglycemic drugs, circulating inflammatory proteins, and gallbladder diseases: A mediation mendelian randomization study. Diabetes Res Clin Pract 2024; 217:111882. [PMID: 39366640 DOI: 10.1016/j.diabres.2024.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND The relationship of hypoglycemic drugs, inflammatory proteins and gallbladder diseases remain unknown. METHODS Four hypoglycemic drugs were selected as exposure: glucagon-like peptide-1 receptor agonists (GLP-1RA), dipeptidyl peptidase-4 inhibitors (DPP-4i), sodium-glucose cotransporter 2 inhibitors (SGLT-2i), and metformin. The outcome were two gallbladder diseases: cholecystitis and cholelithiasis. Mendelian Randomization (MR) was employed to determine the association between hypoglycemic drugs and gallbladder diseases. RESULTS DPP-4i and SGLT-2i had no effect on cholecystitis and cholelithiasis. However, a causal relationship was found between inhibition of ETFDH gene, a target of metformin expressed in cultured fibroblasts, and cholelithiasis (OR: 0.84, 95 %CI: (0.72,0.97), p = 0.021), as well as between GLP1R expression in the brain caudate basal ganglia and cholecystitis (OR: 1.29, 95 %CI: (1.11,1.49), p = 0.001). The effect of ETFDH inhibition on cholelithiasis through Interleukin-10 receptor subunit beta (IL-10RB) levels and Neurotrophin-3 (NT-3) levels, with a mediated proportion of 8 % and 8 %, respectively. CONCLUSION Metformin plays a protective role in cholelithiasis, while GLP-1RA have a harmful effect on the risk of cholecystitis. Metformin may reduce the risk of cholelithiasis by modulating the levels of Neurotrophin-3 (NT-3) and Interleukin-10 receptor subunit beta (IL-10RB). Further clinical and mechanistic studies are required to confirm these findings.
Collapse
Affiliation(s)
- Zi-Qi Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jin-Yan Zhang
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | - Jian-Bo Zhou
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Martínez-López AL, Reboredo C, González-Navarro CJ, Solas M, Puerta E, Javier Ramírez M, Vizmanos JL, Irache JM. Zein nanoparticles extend lifespan in C. elegans and SAMP8 mice. Int J Pharm 2024; 666:124798. [PMID: 39366528 DOI: 10.1016/j.ijpharm.2024.124798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Empty zein nanoparticles (NP) have been shown to lower glycemia in rats by stimulating the secretion of endogenous GLP-1. This study evaluated the effect of these nanoparticles on the lifespan of two animal models: C. elegans fed with a glucose-rich diet and the senescence accelerated mouse-prone 8 (SAMP8 mice). In C. elegans, NP increased the mean lifespan of worms by 7 days (from 17.1 for control to 24.5 days). This observation was in line with the observed significant reductions of glucose and fat contents, lipofuscin accumulation, and ROS expression. Furthermore, NP supplementation led to an upregulation of the expression of daf-16 and skn-1 genes. DAF-16 (orthologue of the FOXO family) and SKN-1 (orthologue of mammalian Nrf/CNC proteins) are implicated in activating detoxification mechanisms against oxidative damage. In SAMP8, oral administration of NP also extended the mean lifespan of mice (by 28 % compared to controls), corroborating the protective effect of these nanoparticles.
Collapse
Affiliation(s)
- Ana L Martínez-López
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain
| | - Cristian Reboredo
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain
| | | | - Maite Solas
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain; Institute for Health Research (IdiSNA), Pamplona 31080, Spain
| | - Elena Puerta
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain; Institute for Health Research (IdiSNA), Pamplona 31080, Spain
| | - María Javier Ramírez
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain; Institute for Health Research (IdiSNA), Pamplona 31080, Spain
| | - José L Vizmanos
- Department of Biochemistry & Genetics, University of Navarra, 31008, Pamplona, Spain
| | - Juan M Irache
- Department of Pharmaceutical Sciences, University of Navarra, 31008, Pamplona, Spain; Institute for Health Research (IdiSNA), Pamplona 31080, Spain.
| |
Collapse
|
6
|
Neha, Chaudhary S, Tiwari P, Parvez S. Amelioration of Phytanic Acid-Induced Neurotoxicity by Nutraceuticals: Mechanistic Insights. Mol Neurobiol 2024; 61:7303-7318. [PMID: 38374317 DOI: 10.1007/s12035-024-03985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Phytanic acid (PA) (3,7,11,15-tetramethylhexadecanoic acid) is a methyl-branched fatty acid that enters the body through food consumption, primarily through red meat, dairy products, and fatty marine foods. The metabolic byproduct of phytol is PA, which is then oxidized by the ruminal microbiota and some marine species. The first methyl group at the 3-position prevents the β-oxidation of branched-chain fatty acid (BCFA). Instead, α-oxidation of PA results in the production of pristanic acid (2,10,14-tetramethylpentadecanoic acid) with CO2. This fatty acid (FA) builds up in individuals with certain peroxisomal disorders and is historically linked to neurological impairment. It also causes oxidative stress in synaptosomes, as demonstrated by an increase in the production of reactive oxygen species (ROS), which is a sign of oxidative stress. This review concludes that the nutraceuticals (melatonin, piperine, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), coenzyme Q10, ω-3 FA) can reduce oxidative stress and enhanced the activity of mitochondria. Furthermore, the use of nutraceuticals completely reversed the neurotoxic effects of PA on NO level and membrane potential. Additionally, the review further emphasizes the urgent need for more research into dairy-derived BCFAs and their impact on human health.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Shaista Chaudhary
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Prachi Tiwari
- Department of Physiotherapy, School of Nursing Sciences and Allied Health, Jamia Hamdard, New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India.
| |
Collapse
|
7
|
Scheen AJ. GLP-1 Receptor Agonists and SGLT2 Inhibitors in Type 2 Diabetes: Pleiotropic Cardiometabolic Effects and Add-on Value of a Combined Therapy. Drugs 2024:10.1007/s40265-024-02090-9. [PMID: 39342059 DOI: 10.1007/s40265-024-02090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 10/01/2024]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter 2 inhibitors (SGLT2is) have proven efficacy and safety in randomized clinical trials and observational real-life studies. Besides improving glucose control, reducing body weight, and lowering arterial blood pressure (surrogate endpoints), the breakthroughs were the demonstration of a significant reduction in cardiovascular and renal events in patients with type 2 diabetes at high risk. GLP-1RAs reduce events linked to atherogenic cardiovascular disease (especially ischemic stroke) and also renal outcomes (FLOW trial with semaglutide), with a limited effect on heart failure. The most striking protective effects of SGLT2is were a marked reduction in hospitalization for heart failure and a remarkable reduced progression of chronic kidney disease. These benefits have been attributed to numerous pleiotropic effects beyond glucose-lowering action. Underlying mechanisms contributing to cardiovascular and renal protection are at least partially different between GLP-1RAs (mainly anti-atherogenic and vascular effects) and SGLT2is (mainly systemic and intrarenal hemodynamic changes). Thus, patients at high risk may benefit from complementary actions when being treated with a GLP-1RA/SGLT2i combination. Such combination has proven its efficacy on surrogate endpoints. Furthermore, post hoc subgroup analyses of cardiovascular outcome trials have suggested a greater cardiorenal protection in patients treated with a combination versus either monotherapy. The benefits of a combined therapy have been confirmed in a few retrospective cohort studies. A dedicated prospective trial comparing a combined therapy versus either monotherapy is ongoing (PRECIDENTD); however, several challenges still remain, especially the higher cost of a combined therapy and the worldwide underuse of either GLP-1RAs or SGLT2is in clinical practice, even in patients at high cardiorenal risk.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, CHU Liège, Liège, Belgium.
- Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), Liège University, Liège, Belgium.
| |
Collapse
|
8
|
Stefanou MI, Palaiodimou L, Theodorou A, Safouris A, Fischer U, Kelly PJ, Dawson J, Katan M, Katsanos AH, Lambadiari V, Giannopoulos S, Alexandrov AV, Siasos G, Tsivgoulis G. Risk of major adverse cardiovascular events and all-cause mortality under treatment with GLP-1 RAs or the dual GIP/GLP-1 receptor agonist tirzepatide in overweight or obese adults without diabetes: a systematic review and meta-analysis. Ther Adv Neurol Disord 2024; 17:17562864241281903. [PMID: 39345822 PMCID: PMC11437580 DOI: 10.1177/17562864241281903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
Background Among the currently approved antiobesity medications, the glucagon-like-peptide-1 receptor-agonists (GLP-1 RAs) liraglutide and semaglutide, and the dual glucose-dependent-insulinotropic-polypeptide (GIP)/GLP-1 RA tirzepatide have been suggested to reduce cardiovascular-risk in overweight or obesity without diabetes. Objectives The objective of this study was to evaluate the cardio- and neuroprotective potential of these novel agents in the nondiabetic overweight/obese adult population. Data sources and methods A systematic review and meta-analysis of randomized-controlled clinical trials (RCTs) was performed to estimate the risk of major adverse cardiovascular events (MACE), all-cause and cardiovascular mortality in overweight or obese adults without diabetes treated with GLP-1 or GIP/GLP-1 RAs (vs placebo). Secondary outcomes included the risk of myocardial infarction (MI) and stroke. Results Sixteen RCTs (13 and 3 on GLP-1 RAs and tirzepatide, respectively) comprising 28,168 participants were included. GLP-1 or GIP/GLP-1 RAs reduced MACE (odds ratio (OR): 0.79; 95% confidence interval (CI): 0.71-0.89; p < 0.01; I 2 = 0) and all-cause mortality (OR: 0.80; 95% CI: 0.70-0.92; p < 0.01; I 2 = 0), while there was a trend toward lower cardiovascular-mortality (OR: 0.84; 95% CI: 0.71-1.01; p = 0.06; I 2 = 0%) compared to placebo. Additionally, GLP-1 or GIP/GLP-1 RAs reduced the odds of MI (OR: 0.72; 95% CI: 0.61-0.86; p < 0.01; I 2 = 0%) and nonfatal-MI (OR: 0.72; 95% CI: 0.61-0.85; p < 0.01; I 2 = 0%); while no associations between antiobesity treatment and fatal-MI, stroke, nonfatal, or fatal stroke were uncovered. Conclusion GLP-1 and GIP/GLP-1 RAs reduce cardiovascular-risk and all-cause mortality in overweight or obese adults without diabetes. Additionally, GLP-1 RAs and GIP/GLP-1 RAs attenuate the risk of MI. Since data on stroke are still limited, future RCTs are warranted to evaluate the neuroprotective potential of these novel antiobesity agents. Trial registration PROSPERO CRD42024515966.
Collapse
Affiliation(s)
- Maria-Ioanna Stefanou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Lina Palaiodimou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Theodorou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolos Safouris
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Stroke Unit, Metropolitan Hospital, Piraeus, Greece
| | - Urs Fischer
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Peter J Kelly
- Stroke Service, Mater University Hospital and University College Dublin, Dublin, Ireland
| | - Jesse Dawson
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Mira Katan
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Aristeidis H Katsanos
- Division of Neurology, McMaster University/Population Health Research Institute, Hamilton, ON, Canada
| | - Vaia Lambadiari
- Second Department of Internal Medicine, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andrei V Alexandrov
- Department of Neurology, University of Tennessee Health Science Center, Memphis, USA
| | - Gerasimos Siasos
- Third Department of Cardiology, Sotiria Thoracic Diseases General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini 1, Chaidari, Athens 12462, Greece
| |
Collapse
|
9
|
Liu M, Guo S, Li X, Tian Y, Yu Y, Tang L, Sun Q, Zhang T, Fan M, Zhang L, Xu Y, An J, Gao X, Han L, Zhang L. Semaglutide Alleviates Ovary Inflammation via the AMPK/SIRT1/NF‑κB Signaling Pathway in Polycystic Ovary Syndrome Mice. Drug Des Devel Ther 2024; 18:3925-3938. [PMID: 39247793 PMCID: PMC11380913 DOI: 10.2147/dddt.s484531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Background GLP-1 receptor agonists (GLP-1 RA) have been proven to treat several metabolic diseases; however, the effects of GLP-1 RA on polycystic ovary syndrome (PCOS) remain unclear. Here, we aimed to investigate whether semaglutide, a novel GLP-1 RA, could alleviate ovarian inflammation in PCOS mice. Methods Female C57BL/6J mice were subcutaneously injected with dehydroepiandrosterone for 21 days to establish the PCOS model. Then the mice were randomly divided into three groups: PCOS group (n = 6), S-0.42 group (semaglutide 0.42 mg/kg/w, n = 6), and S-0.84 group (semaglutide 0.84 mg/kg/w, n = 6). The remaining six mice were used as controls (NC). After 28 days of intervention, serum sex hormones and inflammatory cytokine levels were measured. Hematoxylin and eosin staining was used to observe the ovarian morphology. Immunohistochemical staining was used to detect the relative expression of CYP19A1, TNF-α, IL-6, IL-1β, and NF-κB in ovaries. CYP17A1 and StAR were detected using immunofluorescence staining. Finally, the relative expressions of AMPK, pAMPK, SIRT1, NF-κB, IκBα, pIκBα, TNF-α, IL-6, and IL-1β were measured using Western blotting. Results First, after intervention with semaglutide, the weight of the mice decreased, insulin resistance improved, and the estrous cycle returned to normal. Serum testosterone and IL-1β levels decreased significantly, whereas estradiol and progestin levels increased significantly. Follicular cystic dilation significantly improved. The expression of TNF-α, IL-6, IL-1β, NF-κB, CYP17A1, and StAR in the ovary was significantly downregulated, whereas CYP19A1 expression was upregulated after the intervention. Finally, we confirmed that semaglutide alleviates ovarian tissue inflammation and improves PCOS through the AMPK/SIRT1/NF-κB signaling pathway. Conclusion Semaglutide alleviates ovarian inflammation via the AMPK/SIRT1/NF‑κB signaling pathway in PCOS mice.
Collapse
Affiliation(s)
- Mei Liu
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Sili Guo
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Xiaohan Li
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Yang Tian
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Yanjie Yu
- Department of Ultrasound Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Lili Tang
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Qimei Sun
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Ting Zhang
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Mingwei Fan
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Lili Zhang
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Yingjiang Xu
- Department of Interventional Vascular Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Jiajia An
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Xiangqian Gao
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Lei Han
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Lei Zhang
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| |
Collapse
|
10
|
Janez A, Muzurovic E, Bogdanski P, Czupryniak L, Fabryova L, Fras Z, Guja C, Haluzik M, Kempler P, Lalic N, Mullerova D, Stoian AP, Papanas N, Rahelic D, Silva-Nunes J, Tankova T, Yumuk V, Rizzo M. Modern Management of Cardiometabolic Continuum: From Overweight/Obesity to Prediabetes/Type 2 Diabetes Mellitus. Recommendations from the Eastern and Southern Europe Diabetes and Obesity Expert Group. Diabetes Ther 2024; 15:1865-1892. [PMID: 38990471 PMCID: PMC11330437 DOI: 10.1007/s13300-024-01615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
The increasing global incidence of obesity and type 2 diabetes mellitus (T2D) underscores the urgency of addressing these interconnected health challenges. Obesity enhances genetic and environmental influences on T2D, being not only a primary risk factor but also exacerbating its severity. The complex mechanisms linking obesity and T2D involve adiposity-driven changes in β-cell function, adipose tissue functioning, and multi-organ insulin resistance (IR). Early detection and tailored treatment of T2D and obesity are crucial to mitigate future complications. Moreover, personalized and early intensified therapy considering the presence of comorbidities can delay disease progression and diminish the risk of cardiorenal complications. Employing combination therapies and embracing a disease-modifying strategy are paramount. Clinical trials provide evidence confirming the efficacy and safety of glucagon-like peptide 1 receptor agonists (GLP-1 RAs). Their use is associated with substantial and durable body weight reduction, exceeding 15%, and improved glucose control which further translate into T2D prevention, possible disease remission, and improvement of cardiometabolic risk factors and associated complications. Therefore, on the basis of clinical experience and current evidence, the Eastern and Southern Europe Diabetes and Obesity Expert Group recommends a personalized, polymodal approach (comprising GLP-1 RAs) tailored to individual patient's disease phenotype to optimize diabetes and obesity therapy. We also expect that the increasing availability of dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) agonists will significantly contribute to the modern management of the cardiometabolic continuum.
Collapse
Affiliation(s)
- Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.
| | - Emir Muzurovic
- Department of Internal Medicine, Endocrinology Section, Clinical Centre of Montenegro, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Pawel Bogdanski
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, University of Medical Sciences, Poznan, Poland
| | - Leszek Czupryniak
- Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Lubomira Fabryova
- MetabolKLINIK sro, Department for Diabetes and Metabolic Disorders, Lipid Clinic, MED PED Centre, Biomedical Research Centre of Slovak Academy of Sciences, Slovak Health University, Bratislava, Slovak Republic
| | - Zlatko Fras
- Preventive Cardiology Unit, Division of Medicine, University Medical Centre Ljubljana and Chair of Internal Medicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Cristian Guja
- Clinic of Diabetes, Nutrition and Metabolic Diseases, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21, Prague 4, Czech Republic
| | - Peter Kempler
- Department of Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Nebojsa Lalic
- Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dana Mullerova
- Faculty of Medicine in Pilsen, Department of Public Health and Preventive Medicine and Faculty Hospital in Pilsen, 1st Internal Clinic, Charles University, Pilsen, Czech Republic
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dario Rahelic
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Zagreb, Croatia
- Catholic University of Croatia School of Medicine, Zagreb, Croatia
- Josip Juraj Strossmayer, University of Osijek School of Medicine, Osijek, Croatia
| | - José Silva-Nunes
- NOVA Medical School, New University of Lisbon, Lisbon, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Unidade Local de Saúde São José, Lisbon, Portugal
| | - Tsvetalina Tankova
- Department of Endocrinology, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Volkan Yumuk
- Division of Endocrinology, Metabolism and Diabetes, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
Binvignat M, Sellam J, Berenbaum F, Felson DT. The role of obesity and adipose tissue dysfunction in osteoarthritis pain. Nat Rev Rheumatol 2024; 20:565-584. [PMID: 39112603 DOI: 10.1038/s41584-024-01143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
Obesity has a pivotal and multifaceted role in pain associated with osteoarthritis (OA), extending beyond the mechanistic influence of BMI. It exerts its effects both directly and indirectly through various modifiable risk factors associated with OA-related pain. Adipose tissue dysfunction is highly involved in OA-related pain through local and systemic inflammation, immune dysfunction, and the production of pro-inflammatory cytokines and adipokines. Adipose tissue dysfunction is intricately connected with metabolic syndrome, which independently exerts specific effects on OA-related pain, distinct from its association with BMI. The interplay among obesity, adipose tissue dysfunction and metabolic syndrome influences OA-related pain through diverse pain mechanisms, including nociceptive pain, peripheral sensitization and central sensitization. These complex interactions contribute to the heightened pain experience observed in individuals with OA and obesity. In addition, pain management strategies are less efficient in individuals with obesity. Importantly, therapeutic interventions targeting obesity and metabolic syndrome hold promise in managing OA-related pain. A deeper understanding of the intricate relationship between obesity, metabolic syndrome and OA-related pain is crucial and could have important implications for improving pain management and developing innovative therapeutic options in OA.
Collapse
Affiliation(s)
- Marie Binvignat
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
- Sorbonne University, INSERM UMRS_959, I3 Lab Immunology Immunopathology Immunotherapy, Paris, France
| | - Jérémie Sellam
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France.
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| | - Francis Berenbaum
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - David T Felson
- Boston University School of Medicine, Department of Medicine, Section of Rheumatology, Boston, MA, USA
| |
Collapse
|
12
|
Mo C, Lou X, Xue J, Shi Z, Zhao Y, Wang F, Chen G. The influence of Akkermansia muciniphila on intestinal barrier function. Gut Pathog 2024; 16:41. [PMID: 39097746 PMCID: PMC11297771 DOI: 10.1186/s13099-024-00635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024] Open
Abstract
Intestinal barriers play a crucial role in human physiology, both in homeostatic and pathological conditions. Disruption of the intestinal barrier is a significant factor in the pathogenesis of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. The profound influence of the gut microbiota on intestinal diseases has sparked considerable interest in manipulating it through dietary interventions, probiotics, and fecal microbiota transplantation as potential approaches to enhance the integrity of the intestinal barrier. Numerous studies have underscored the protective effects of specific microbiota and their associated metabolites. In recent years, an increasing body of research has demonstrated that Akkermansia muciniphila (A. muciniphila, Am) plays a beneficial role in various diseases, including diabetes, obesity, aging, cancer, and metabolic syndrome. It is gaining popularity as a regulator that influences the intestinal flora and intestinal barrier and is recognized as a 'new generation of probiotics'. Consequently, it may represent a potential target and promising therapy option for intestinal diseases. This article systematically summarizes the role of Am in the gut. Specifically, we carefully discuss key scientific issues that need resolution in the future regarding beneficial bacteria represented by Am, which may provide insights for the application of drugs targeting Am in clinical treatment.
Collapse
Affiliation(s)
- Chunyan Mo
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Xiran Lou
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Jinfang Xue
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Zhuange Shi
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Yifang Zhao
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Fuping Wang
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Guobing Chen
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China.
| |
Collapse
|
13
|
Kuswanto W, Baker MC. Repurposing drugs for the treatment of osteoarthritis. Osteoarthritis Cartilage 2024; 32:886-895. [PMID: 38821468 DOI: 10.1016/j.joca.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVE Currently, no disease-modifying therapies for osteoarthritis (OA) exist, and attempts to identify novel cellular targets have been challenging. Risk factors for OA include advanced age, obesity, and metabolic syndrome. This creates an attractive opportunity to repurpose existing drugs that are used to treat comorbidities commonly encountered in patients with OA, if those drugs possess OA disease modifying properties. METHODS This narrative review incorporates findings from knee or hand OA randomized clinical trials, post-hoc clinical trial analyses, prospective cohort studies, and observational data. RESULTS Drugs used for the treatment of rheumatoid arthritis (methotrexate; TNFa, IL-1, and IL-6 pathway inhibitors; hydroxychloroquine), atopic/allergic disease (anti-histamines), osteoporosis (bisphosphonates and vitamin D), type 2 diabetes (metformin and GLP-1 agonists), and cardiovascular disease (atorvastatin, fish oil, and beta blockers) were reviewed for their potential benefit in OA. This review outlines the successful attributes of repurposed drugs, the challenges in repurposing drugs, and strategies for future clinical trials to support OA drug repurposing. Potential drug candidates for OA may be identified through the use of existing datasets and via collaborations with researchers in other fields to include OA endpoints in future clinical trials. CONCLUSION Given the association of OA with several commonly treated comorbidities, drug repurposing is an appealing approach that could provide a favorable benefit-to-risk ratio for chronic OA treatment.
Collapse
Affiliation(s)
- Wilson Kuswanto
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Gilead Sciences Inc, Foster City, CA, USA
| | - Matthew C Baker
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Diz-Chaves Y, Maastor Z, Spuch C, Lamas JA, González-Matías LC, Mallo F. Glucagon-like peptide 1 receptor activation: anti-inflammatory effects in the brain. Neural Regen Res 2024; 19:1671-1677. [PMID: 38103230 PMCID: PMC10960307 DOI: 10.4103/1673-5374.389626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/08/2023] [Accepted: 10/14/2023] [Indexed: 12/18/2023] Open
Abstract
The glucagon-like peptide 1 is a pleiotropic hormone that has potent insulinotropic effects and is key in treating metabolic diseases such as diabetes and obesity. Glucagon-like peptide 1 exerts its effects by activating a membrane receptor identified in many tissues, including different brain regions. Glucagon-like peptide 1 activates several signaling pathways related to neuroprotection, like the support of cell growth/survival, enhancement promotion of synapse formation, autophagy, and inhibition of the secretion of proinflammatory cytokines, microglial activation, and apoptosis during neural morphogenesis. The glial cells, including astrocytes and microglia, maintain metabolic homeostasis and defense against pathogens in the central nervous system. After brain insult, microglia are the first cells to respond, followed by reactive astrocytosis. These activated cells produce proinflammatory mediators like cytokines or chemokines to react to the insult. Furthermore, under these circumstances, microglia can become chronically inflammatory by losing their homeostatic molecular signature and, consequently, their functions during many diseases. Several processes promote the development of neurological disorders and influence their pathological evolution: like the formation of protein aggregates, the accumulation of abnormally modified cellular constituents, the formation and release by injured neurons or synapses of molecules that can dampen neural function, and, of critical importance, the dysregulation of inflammatory control mechanisms. The glucagon-like peptide 1 receptor agonist emerges as a critical tool in treating brain-related inflammatory pathologies, restoring brain cell homeostasis under inflammatory conditions, modulating microglia activity, and decreasing the inflammatory response. This review summarizes recent advances linked to the anti-inflammatory properties of glucagon-like peptide 1 receptor activation in the brain related to multiple sclerosis, Alzheimer's disease, Parkinson's disease, vascular dementia, or chronic migraine.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- Biomedical Research Centre (CINBIO), Laboratory of Endocrinology, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| | - Zainab Maastor
- Biomedical Research Centre (CINBIO), Laboratory of Endocrinology, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Sala Investigación, Estrada Clara Campoamor, Vigo, Spain
| | - José Antonio Lamas
- Biomedical Research Centre (CINBIO), Laboratory of Neuroscience, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| | - Lucas C. González-Matías
- Biomedical Research Centre (CINBIO), Laboratory of Endocrinology, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| | - Federico Mallo
- Biomedical Research Centre (CINBIO), Laboratory of Endocrinology, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| |
Collapse
|
15
|
Chan DC, Lin YC, Tzeng HP, Yang RS, Chiang MT, Liu SH. Exendin-4, a glucagon-like peptide-1 receptor agonist, alleviates muscular dysfunction and wasting in a streptozotocin-induced diabetic mouse model compared to metformin. Tissue Cell 2024; 89:102479. [PMID: 39018713 DOI: 10.1016/j.tice.2024.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Diabetic muscular atrophy is becoming a fast-growing problem worldwide, including sarcopenia, which is associated with substantial mortality and morbidity risk. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been marketed and suggested to exert protective effects on not only glycemic control but also diabetic complications in diabetic patients. In this study, we investigated the therapeutic use of GLP-1RAs exendin-4, compared to antidiabetic drug metformin, for the intervention of muscular dysfunction during diabetic conditions using a streptozotocin (STZ)-induced diabetic mouse model. The results showed that both exendin-4 and metformin could effectively alleviate hyperglycemia in diabetic mice, and also counteract diabetes-induced muscle weight loss, weaker grip, and changes in muscle fiber cross-sectional area distribution. Unexpectedly, exendin-4, but not metformin, enhanced the increased kidney weight and histological change in diabetic mice. Taken together, these findings suggest that both exendin-4 and metformin could effectively improve the diabetic hyperglycemia and muscular dysfunction; but exendin-4 may aggravate the nephropathy in STZ-induced diabetic mice.
Collapse
Affiliation(s)
- Ding-Cheng Chan
- Department of Geriatrics and Gerontology, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yuan-Cheng Lin
- Institute of Toxicology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Huei-Ping Tzeng
- Institute of Toxicology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Rong-Sen Yang
- Department of Orthopedics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Meng-Tsan Chiang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, Republic of China.
| | - Shing-Hwa Liu
- Institute of Toxicology, National Taiwan University, Taipei, Taiwan, Republic of China; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China; Department of Pediatrics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
16
|
Halabitska I, Babinets L, Oksenych V, Kamyshnyi O. Diabetes and Osteoarthritis: Exploring the Interactions and Therapeutic Implications of Insulin, Metformin, and GLP-1-Based Interventions. Biomedicines 2024; 12:1630. [PMID: 39200096 PMCID: PMC11351146 DOI: 10.3390/biomedicines12081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Diabetes mellitus (DM) and osteoarthritis (OA) are prevalent chronic conditions with shared pathophysiological links, including inflammation and metabolic dysregulation. This study investigates the potential impact of insulin, metformin, and GLP-1-based therapies on OA progression. Methods involved a literature review of clinical trials and mechanistic studies exploring the effects of these medications on OA outcomes. Results indicate that insulin, beyond its role in glycemic control, may modulate inflammatory pathways relevant to OA, potentially influencing joint health. Metformin, recognized for its anti-inflammatory properties via AMPK activation, shows promise in mitigating OA progression by preserving cartilage integrity and reducing inflammatory markers. GLP-1-based therapies, known for enhancing insulin secretion and improving metabolic profiles in DM, also exhibit anti-inflammatory effects that may benefit OA by suppressing cytokine-mediated joint inflammation and supporting cartilage repair mechanisms. Conclusions suggest that these medications, while primarily indicated for diabetes management, hold therapeutic potential in OA by targeting common underlying mechanisms. Further clinical trials are warranted to validate these findings and explore optimal therapeutic strategies for managing both DM and OA comorbidities effectively.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Liliia Babinets
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
17
|
Masson W, Lobo M, Nogueira JP, Rodriguez-Granillo AM, Barbagelata LE, Siniawski D. Anti-inflammatory effect of semaglutide: updated systematic review and meta-analysis. Front Cardiovasc Med 2024; 11:1379189. [PMID: 39055657 PMCID: PMC11270812 DOI: 10.3389/fcvm.2024.1379189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Background The anti-inflammatory effect could be one of the mechanisms by which semaglutide reduces cardiovascular risk in patients with type 2 diabetes mellitus (T2DM) and/or obesity. Determining the anti-inflammatory effect of semaglutide was the objective of this systematic review and meta-analysis. Methods This meta-analysis was performed according to the PRISMA guidelines. A literature search was performed to detect randomised clinical trials that have quantified the effect of semaglutide on C-reactive protein (CRP) levels compared to placebo or a control group (other glucose-lowering drugs). The primary outcome was CRP index (final CRP/basal CRP). A random-effects model was used. Results Thirteen randomised clinical trials were considered eligible (n = 26,131). Overall, semaglutide therapy was associated with lower CRP index values compared to the placebo group (SMD -0.56; 95% CI -0.69 to -0.43, I 2 92%) or the control group (SMD -0.45; 95% CI -0.68 to -0.23, I 2 82%).Such an association was similarly observed when different treatment regimens (subcutaneous vs. oral) or different populations (patients with or without T2DM) were analysed. The sensitivity analysis showed that the results were robust. Conclusion The present meta-analysis demonstrated that the use of semaglutide was associated with a reduction in inflammation irrespective of the population evaluated or the treatment regimen used. These findings would explain one of the mechanisms by which semaglutide reduces cardiovascular events. Systematic Review Registration PROSPERO [CRD42024500551].
Collapse
Affiliation(s)
- Walter Masson
- Department of Cardiology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Martín Lobo
- Department of Cardiology, Hospital Militar Campo de Mayo, Buenos Aires, Argentina
| | - Juan Patricio Nogueira
- Endocrinology, Nutrition and Metabolism Research Center, Faculty of Health Sciences, Universidad Nacional de Formosa, Formosa, Argentina
- Medicine and Surgery Department, Universidad Internacional de las Américas, San José, Costa Rica
| | - Alfredo Matias Rodriguez-Granillo
- Clinical Research Department, Centro de Estudios en Cardiologia Intervencionista (CECI), Buenos Aires, Argentina
- Department of Interventional Cardiology, Sanatorio Otamendi, Buenos Aires, Argentina
| | | | - Daniel Siniawski
- Department of Cardiology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
18
|
Su YC, Hsieh PC, Lai ECC, Lin YC, Lin YC. Risks of carpal tunnel syndrome and carpal tunnel release surgery in users of sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide-1 receptor agonists: A target trial emulation study. DIABETES & METABOLISM 2024; 50:101545. [PMID: 38777141 DOI: 10.1016/j.diabet.2024.101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
AIM Preclinical studies have shown that sodium-glucose cotransporter 2 inhibitors (SGLT2is) have a neuroprotective effect. This study compared the risks of carpal tunnel syndrome and carpal tunnel release surgery between new users of SGLT2is and new users of glucagon-like peptide-1 receptor agonists (GLP-1RAs). METHODS A retrospective new-user active comparator cohort study with a target trial design was conducted by using the TriNetX platform. Patients with type 2 diabetes mellitus prescribed SGLT2is or GLP-1RAs were identified. Covariates were balanced using propensity score matching to form 2 homogenous treatment groups. Outcomes were the risk of carpal tunnel syndrome and the risk of carpal tunnel release surgery. Hazard ratios (HRs) with 95 % confidence intervals (CIs) were calculated using the TriNetX platform. RESULTS The crude cohort included 86,188 and 100,244 patients in the SGLT2is group and GLP-1RAs group, respectively. After matching, each group included 65,464 patients. The SGLT2is group had an average age of 59.6 years, and 46 % were women. The GLP-1RAs group had an average age of 59.5 years, and 45.9 % were women. The incidences of carpal tunnel syndrome (HR: 0.928; 95 % CI: 0.869 to 0.991) and carpal tunnel release surgery (HR: 0.840; 95 % CI: 0.726 to 0.971) were significantly lower in the SGLT2is group than in the GLP-1RAs group. CONCLUSION In patients with type 2 diabetes mellitus, SGLT2is seem to decrease the risk of carpal tunnel syndrome and the need for carpal tunnel release surgery. Prospective studies are required to confirm our results.
Collapse
Affiliation(s)
- Yu-Chi Su
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chun Hsieh
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Edward Chia-Cheng Lai
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Cian Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Ching Lin
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Physical Medicine and Rehabilitation, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
19
|
Colhoun HM, Lingvay I, Brown PM, Deanfield J, Brown-Frandsen K, Kahn SE, Plutzky J, Node K, Parkhomenko A, Rydén L, Wilding JPH, Mann JFE, Tuttle KR, Idorn T, Rathor N, Lincoff AM. Long-term kidney outcomes of semaglutide in obesity and cardiovascular disease in the SELECT trial. Nat Med 2024; 30:2058-2066. [PMID: 38796653 PMCID: PMC11271413 DOI: 10.1038/s41591-024-03015-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 05/28/2024]
Abstract
The SELECT trial previously reported a 20% reduction in major adverse cardiovascular events with semaglutide (n = 8,803) versus placebo (n = 8,801) in patients with overweight/obesity and established cardiovascular disease, without diabetes. In the present study, we examined the effect of once-weekly semaglutide 2.4 mg on kidney outcomes in the SELECT trial. The incidence of the pre-specified main composite kidney endpoint (death from kidney disease, initiation of chronic kidney replacement therapy, onset of persistent estimated glomerular filtration rate (eGFR) < 15 ml min-1 1.73 m-2, persistent ≥50% reduction in eGFR or onset of persistent macroalbuminuria) was lower with semaglutide (1.8%) versus placebo (2.2%): hazard ratio (HR) = 0.78; 95% confidence interval (CI) 0.63, 0.96; P = 0.02. The treatment benefit at 104 weeks for eGFR was 0.75 ml min-1 1.73 m-2 (95% CI 0.43, 1.06; P < 0.001) overall and 2.19 ml min-1 1.73 m-2 (95% CI 1.00, 3.38; P < 0.001) in patients with baseline eGFR <60 ml min-1 1.73 m-2. These results suggest a benefit of semaglutide on kidney outcomes in individuals with overweight/obesity, without diabetes.ClinicalTrials.gov identifier: NCT03574597 .
Collapse
Affiliation(s)
- Helen M Colhoun
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Ildiko Lingvay
- Department of Internal Medicine/Endocrinology, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - John Deanfield
- Institute of Cardiovascular Sciences, University College London, London, UK
| | | | - Steven E Kahn
- Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA, USA
| | - Jorge Plutzky
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | | | - Lars Rydén
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - John P H Wilding
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Johannes F E Mann
- KfH Kidney Centre, München, Germany, and Department of Nephrology and Hypertension, University Hospital, Friedrich-Alexander University, Erlangen, Germany
| | - Katherine R Tuttle
- Kidney Research Institute and Division of Nephrology, University of Washington, Seattle, WA, USA
| | | | | | - A Michael Lincoff
- Department of Cardiovascular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
20
|
Villaschi A, Ferrante G, Cannata F, Pini D, Pagnesi M, Corrada E, Reimers B, Mehran R, Federici M, Savarese G, Metra M, Condorelli G, Stefanini GG, Chiarito M. GLP-1-ra and heart failure-related outcomes in patients with and without history of heart failure: an updated systematic review and meta-analysis. Clin Res Cardiol 2024; 113:898-909. [PMID: 38252145 DOI: 10.1007/s00392-023-02362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024]
Abstract
AIMS Glucagon-like peptide-1 receptor agonists (GLP1-ra) have shown to reduce cardiovascular (CV) events in patients with diabetes, including heart failure (HF) hospitalizations. However, whether such benefit consistently occurs in patients with history of HF remains uncertain. We performed a systematic review and meta-analysis to assess the impact of GLP1-ra on CV outcomes in patients with and without HF history. METHODS AND RESULTS All randomized, placebo-controlled trials evaluating GLP1-ra and reporting CV outcomes stratified by HF history were searched in Pubmed from inception to November 12th, 2023. The primary outcome was HF hospitalizations. Secondary outcomes included CV death, the composite of CV death and hospitalizations for HF, and major adverse cardiovascular events (MACE). Hazard ratio (HR) and 95% confidence interval (CIs) were used as effect estimates and calculated with a random-effects model. 68,653 patients (GLP1-ra = 34,301, placebo = 34,352) from 10 trials were included. GLP1-ra reduced HF hospitalization (no HF: HR = 0.79, 95% CI 0.63-0.98; HF: HR = 1.00, 95% CI 0.82-1.24, pinteraction = 0.12), CV death (no HF: HR = 0.81, 95% CI 0.71-0.92; HF: HR = 0.97, 95% CI 0.81-1.15, pinteraction = 0.11), and the composite of HF hospitalizations and CV death (no HF: HR = 0.80, 95% CI 0.72-0.89; HF: HR = 1.00 95% CI 0.88-1.15, pinteraction = 0.010) only in patients without history of HF, despite a significant interaction between HF history and treatment effect was detected only for the latter. MACE were reduced in both subgroups without significant interaction between HF history and treatment effect (no HF: HR = 0.86, 95% CI 0.78-0.96; HF: HR = 0.83, 95% CI 0.72-0.95, pinteraction = 0.69). CONCLUSION GLP1-ra do not decrease HF-hospitalization risk, despite a potential benefit in patients without history of HF, but are effective in reducing ischemic events irrespective of the presence of HF. PROSPERO-registered (CRD42022371264).
Collapse
Affiliation(s)
- Alessandro Villaschi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy
| | - Giuseppe Ferrante
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy
| | - Francesco Cannata
- Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Daniela Pini
- Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy
| | - Matteo Pagnesi
- Institute of Cardiology, ASST Spedali Civili, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Elena Corrada
- Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy
| | | | - Roxana Mehran
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Center for Atherosclerosis, Policlinico Tor Vergata University Hospital, Rome, Italy
| | - Gianluigi Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marco Metra
- Institute of Cardiology, ASST Spedali Civili, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy
| | - Giulio G Stefanini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
- Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy.
| | - Mauro Chiarito
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
- Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy.
| |
Collapse
|
21
|
Lymperopoulos A, Borges JI, Stoicovy RA. Cyclic Adenosine Monophosphate in Cardiac and Sympathoadrenal GLP-1 Receptor Signaling: Focus on Anti-Inflammatory Effects. Pharmaceutics 2024; 16:693. [PMID: 38931817 PMCID: PMC11206770 DOI: 10.3390/pharmaceutics16060693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a multifunctional incretin hormone with various physiological effects beyond its well-characterized effect of stimulating glucose-dependent insulin secretion in the pancreas. An emerging role for GLP-1 and its receptor, GLP-1R, in brain neuroprotection and in the suppression of inflammation, has been documented in recent years. GLP-1R is a G protein-coupled receptor (GPCR) that couples to Gs proteins that stimulate the production of the second messenger cyclic 3',5'-adenosine monophosphate (cAMP). cAMP, acting through its two main effectors, protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), exerts several anti-inflammatory (and some pro-inflammatory) effects in cells, depending on the cell type. The present review discusses the cAMP-dependent molecular signaling pathways elicited by the GLP-1R in cardiomyocytes, cardiac fibroblasts, central neurons, and even in adrenal chromaffin cells, with a particular focus on those that lead to anti-inflammatory effects by the GLP-1R. Fully elucidating the role cAMP plays in GLP-1R's anti-inflammatory properties can lead to new and more precise targets for drug development and/or provide the foundation for novel therapeutic combinations of the GLP-1R agonist medications currently on the market with other classes of drugs for additive anti-inflammatory effect.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA; (J.I.B.); (R.A.S.)
| | | | | |
Collapse
|
22
|
Lee J, Li Y, Cheng JT, Liu IM, Cheng KC. Development of Syringaldehyde as an Agonist of the GLP-1 Receptor to Alleviate Diabetic Disorders in Animal Models. Pharmaceuticals (Basel) 2024; 17:538. [PMID: 38675498 PMCID: PMC11054907 DOI: 10.3390/ph17040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The phenolic aldehyde syringaldehyde (SA) has been shown to have an antihyperglycemic effect in diabetic rats due to increased glucose utilization and insulin sensitivity. To understand the direct effect of SA on the GLP-1 receptor, STZ-induced diabetic rats were used. The levels of pro-inflammatory cytokines, liver enzymes, and renal function were measured using specific ELISA kits. The mechanisms of SA effects were investigated using CHO-K1 cells, pancreatic Min-6 cells, and cardiomyocyte H9c2 cells. The results indicated that the antihyperglycemic effect of SA in diabetic rats was abolished by blocking the GLP-1 receptor with an antagonist. SA has a direct effect on the GLP-1 receptor when using CHO-K1 cells transfected with the exogenous GLP-1 receptor gene. In addition, SA stimulated insulin production in Min-6 cells by activating GLP-1 receptors. SA caused a dose-dependent rise in GLP-1 receptor mRNA levels in cardiac H9c2 cells. These in vitro results support the notion that SA has a direct effect on the GLP-1 receptor. Otherwise, SA inhibited the increase of pro-inflammatory cytokines, including interleukins and tumor TNF-α, in type 1 diabetic rats in a dose-dependent manner. Moreover, as with liraglutide, SA reduced plasma lipid profiles, including total cholesterol and triglyceride, in mixed diet-induced type 2 diabetic rats. Intriguingly, chronic treatment with SA (as with liraglutide) reversed the functions of both the liver and the kidney in these diabetic rats. SA displayed less efficiency in reducing body weight and food consumption compared to liraglutide. In conclusion, SA effectively activates GLP-1 receptors, resulting in a reduction in diabetic-related complications in rats. Therefore, it is beneficial to develop SA as a chemical agonist for clinical applications in the future.
Collapse
Affiliation(s)
- Jenpei Lee
- Department of Neurosurgery, Da Chien General Hospital, Miaoli City 36052, Taiwan;
| | - Yingxiao Li
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City 970302, Taiwan;
| | - Juei-Tang Cheng
- Graduate Institute of Medical Science, Chang Jung Christian University, Tainan City 71101, Taiwan
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan;
| | - Kai-Chun Cheng
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan;
| |
Collapse
|
23
|
O'Callaghan M, Le Roux C, Fabre A, McCarthy C. Weight loss with GLP-1 analogues in preparation for transplantation. BMJ Case Rep 2024; 17:e256099. [PMID: 38594196 PMCID: PMC11015230 DOI: 10.1136/bcr-2023-256099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
This case describes a woman in her 20s with a 6-month history of progressive exertional dyspnoea and cough. Examination revealed hypoxia on room air, sinus tachycardia, finger clubbing and bibasal inspiratory crackles. Inflammatory markers were mildly elevated and empirical antimicrobial therapy was commenced. A multidisciplinary discussion consensus diagnosis of acute interstitial pneumonitis was made based on the findings of high-resolution CT of the chest, macrophage predominant bronchoalveolar lavage cell differential and surgical lung biopsy. There was clinical and radiological deterioration despite glucocorticoids and antifibrotic therapy. A body mass index of 37.5 kg/m2 precluded her from lung transplant assessment and consideration. Following consultation with the weight management service, she was commenced on glucagon-like peptide 1 (GLP-1) analogue therapy. She had a remarkable response within 6 months, was listed for lung transplantation, and within 18 months of her initial presentation, a double lung transplantation was performed.
Collapse
Affiliation(s)
- Marissa O'Callaghan
- Department of Respiratory Medicine, St Vincent's University Hospital, Dublin, Ireland
- University College Dublin, Dublin, Ireland
| | | | - Aurelie Fabre
- Department of Histopathology, St Vincent's University Hospital, Dublin, Ireland
| | - Cormac McCarthy
- Department of Respiratory Medicine, St Vincent's University Hospital, Dublin, Ireland
- University College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Wang Y, Shi Y, Peng X, Li T, Liang C, Wang W, Zhou M, Yang J, Cheng J, Zhang Z, Hou L. Biochemotaxis-Oriented Engineering Bacteria Expressing GLP-1 Enhance Diabetes Therapy by Regulating the Balance of Immune. Adv Healthc Mater 2024; 13:e2303958. [PMID: 38253022 DOI: 10.1002/adhm.202303958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/24/2024]
Abstract
Glucagon like peptide-1 (GLP-1) is an effective hypoglycemic drug that can repair the pancreas β cells and promote insulin secretion. However, GLP-1 has poor stability and lacks of target ability, which makes it difficult to reach the site of action to exert its efficacy. Here, GLP-1-expressing plasmids are introduced into the Escherichia coli Nissle 1917 (EcN) and a lipid membrane is formed through simple self-assembly on its surface, resulting in an oral delivery system (LEG) capable of resisting the harsh environment of the gastrointestinal tract. The system utilizes the chemotactic properties of probiotics to achieve efficient enrichment at the pancreatic site, and protects islet β cells from destruction by regulating the balance of immune cells. More interestingly, LEG not only continuously produces GLP-1 to restore pancreatic islet β cell function and secrete insulin to control blood sugar levels, but also regulates the intestinal flora and increases the richness and diversity of probiotics. In mice diabetes models, oral administration of LEG only once every other day has good biosafety and compliance, and achieves long-term control of blood glucose. Therefore, this strategy not only provides an oral delivery platform for pancreatic targeting, but also opens up new avenues for reversing diabetes.
Collapse
Affiliation(s)
- Yifei Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yupeng Shi
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xueyuan Peng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Tongtong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenglin Liang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenhao Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mengyang Zhou
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiali Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
25
|
Magruder ML, Miskiewicz MJ, Rodriguez AN, Mont MA. Semaglutide Use Prior to Total Hip Arthroplasty Results in Fewer Postoperative Prosthetic Joint Infections and Readmissions. J Arthroplasty 2024; 39:716-720. [PMID: 38122837 DOI: 10.1016/j.arth.2023.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Semaglutide, a novel diabetes management medication, is known for its efficacy in inducing weight loss. Despite this, its impact on outcomes after total hip arthroplasty (THA) remains unclear. The aim of this study was to evaluate if THA patients on semaglutide demonstrate: (1) fewer medical complications; (2) fewer implant-related complications; (3) fewer readmissions; and (4) lower costs. METHODS Using a national claims database from 2010 to 2021, we retrospectively examined diabetic patients prescribed semaglutide who underwent primary THA. This yielded 9,465 patients (Semaglutide = 1,653; Control = 7,812). Multivariable logistic regression was used to evaluate the following outcomes: 90-day postoperative medical complications, 2-year implant-related complications, 90-day readmissions, in-hospital lengths of stay, and day-of-surgery and 90-day episode of care costs. RESULTS Semaglutide users exhibited lower 90-day readmission rates (6.2 versus 8.8%; odds ratio 0.68; P < .01) and reduced prosthetic joint infections (1.6 versus 2.9%; odds ratio 0.56; P < .01). However, medical complication rates, hospital stays, same-day surgical costs, and 90-day episode costs showed no significant differences. CONCLUSIONS This study highlights semaglutide users undergoing THA with fewer 90-day readmissions and 2-year prosthetic joint infections. Although no variance appeared in medical complications, hospital stays, or costs, the medication's notable glycemic control and weight loss benefits could prompt pre-surgery consideration. Further research is essential for a comprehensive understanding of semaglutide's impact on post-THA outcomes.
Collapse
Affiliation(s)
- Matthew L Magruder
- Department of Orthopaedic Surgery, Maimonides Medical Center, Brooklyn, New York
| | - Michael J Miskiewicz
- Renaissance School of Medicine at Stony Brook University Medical Center, Stony Brook, New York
| | - Ariel N Rodriguez
- Department of Orthopaedic Surgery, Maimonides Medical Center, Brooklyn, New York
| | - Michael A Mont
- Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland
| |
Collapse
|
26
|
Puddu A, Maggi D. Special Issue: "Anti-inflammatory Effects of Glucagon-like Peptide-1". Int J Mol Sci 2024; 25:1997. [PMID: 38396675 PMCID: PMC10888676 DOI: 10.3390/ijms25041997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
From the failure of gut extracts in diabetic patients' therapy to the effective action in cardiovascular outcomes [...].
Collapse
Affiliation(s)
- Alessandra Puddu
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
| | | |
Collapse
|
27
|
Neha, Wali Z, Pinky, Hattiwale SH, Jamal A, Parvez S. GLP-1/Sigma/RAGE receptors: An evolving picture of Alzheimer's disease pathology and treatment. Ageing Res Rev 2024; 93:102134. [PMID: 38008402 DOI: 10.1016/j.arr.2023.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
According to the facts and figures 2023stated that 6.7 million Americans over the age of 65 have Alzheimer's disease (AD). The scenario of AD has reached up to the maximum, of 4.1 million individuals, 2/3rd are female patients, and approximately 1 in 9 adults over the age of 65 have dementia with AD dementia. The fact that there are now no viable treatments for AD indicates that the underlying disease mechanisms are not fully understood. The progressive neurodegenerative disease, AD is characterized by amyloid plaques and neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau protein and senile plaques (SPs), which are brought on by the buildup of amyloid beta (Aβ). Numerous attempts have been made to produce compounds that interfere with these characteristics because of significant research efforts into the primary pathogenic hallmark of this disorder. Here, we summarize several research that highlights interesting therapy strategies and the neuroprotective effects of GLP-1, Sigma, and, AGE-RAGE receptors in pre-clinical and clinical AD models.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Zitin Wali
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pinky
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Shaheenkousar H Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
28
|
Sourris KC, Ding Y, Maxwell SS, Al-Sharea A, Kantharidis P, Mohan M, Rosado CJ, Penfold SA, Haase C, Xu Y, Forbes JM, Crawford S, Ramm G, Harcourt BE, Jandeleit-Dahm K, Advani A, Murphy AJ, Timmermann DB, Karihaloo A, Knudsen LB, El-Osta A, Drucker DJ, Cooper ME, Coughlan MT. Glucagon-like peptide-1 receptor signaling modifies the extent of diabetic kidney disease through dampening the receptor for advanced glycation end products-induced inflammation. Kidney Int 2024; 105:132-149. [PMID: 38069998 DOI: 10.1016/j.kint.2023.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 01/07/2024]
Abstract
Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.
Collapse
Affiliation(s)
- Karly C Sourris
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia.
| | - Yi Ding
- Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Diabetes Complications Research, Novo Nordisk, Måløv, Denmark
| | - Scott S Maxwell
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Annas Al-Sharea
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Phillip Kantharidis
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Muthukumar Mohan
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Carlos J Rosado
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Sally A Penfold
- Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Claus Haase
- Diabetes Complications Research, Novo Nordisk, Måløv, Denmark
| | - Yangsong Xu
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Josephine M Forbes
- Mater Research Institute, the University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Simon Crawford
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Brooke E Harcourt
- Murdoch Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michaels Hospital, Toronto, Ontario, Canada
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Anil Karihaloo
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington, USA
| | | | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark E Cooper
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia.
| |
Collapse
|
29
|
Kukułowicz J, Pietrzak-Lichwa K, Klimończyk K, Idlin N, Bajda M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol Rev 2023; 76:142-193. [PMID: 37940347 DOI: 10.1124/pharmrev.123.000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pietrzak-Lichwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Klimończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Nathalie Idlin
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
30
|
Zaky DA, Abdallah DM, El-Abhar HS. Intranasal Exendin-4 modifies necroptosis-mediated innate immune response to combat septic encephalopathy in rats: Role of mTORC1 in immunogenic and tolerogenic cell demise. Eur J Pharmacol 2023; 961:176191. [PMID: 37967645 DOI: 10.1016/j.ejphar.2023.176191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Septic encephalopathy (SE) is a critical mental status associated with potential long-term cognitive deficits and higher mortality rates in ICU patients. The shortfall in comprehending its pathophysiology limits effective treatment options, however, GLP-1 agonists opened an entry point for future neurodegenerative disease management. This work aims to explore the mTORC1 prospective role in the pathogenesis of SE using rapamycin (RAPA) and investigate the involvement of this complex in exendin-4 (EX4) neurotherapeutic potential using cecal ligation and puncturing (CLP)-induced SE model, focusing on necroptosis as a novel intervention besides necrosis and apoptosis. EX4 was administered intranasally alone or preceded by RAPA, which was also solely given to male Sprague-Dawley rats subjected to CLP. First, opposite to the SE effect, RAPA inhibited mTORC1 and blunted TNF-α-induced necroptosis and Drp1, a mitochondrial fission marker. However, RAPA worsened the SE effect on endotoxemia, functional/cortical structures, and apoptotic/necrotic cell deaths. Second, EX4 increased mTORC1 assembly in the cerebral cortex and reduced sepsis-induced endotoxemia and behavioral/cerebral histopathology deficits in an mTOR-dependent manner. EX4 also reduced the inflammatory marker TNF-α and necroptosis as indicated by RIPK-1/RIPK-3/MLKL dephosphorylation and deactivated PGAM/Drp1 axis. Besides, EX4 turned off the apoptotic cue, caspase-3&8/cytochrome-C. However, RAPA pre-administration nullified the EX4 effect on apoptosis and HMGB1-induced necrosis. In conclusion, our research declares that targeting mTORC1 could be a promising approach for managing SE. Additionally, we highlight that the novel neuroprotective effect of EX4 in ameliorating SE is achieved by reducing necroptosis and utilizing the anti-apoptotic and anti-necrotic properties of mTORC1.
Collapse
Affiliation(s)
- Doaa A Zaky
- Department of Pharmacology and Toxicology, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology & Toxicology, Future University in Egypt, Cairo, P.O. Box 11835, Egypt
| |
Collapse
|
31
|
Rajagopal S, Alruwaili F, Mavratsas V, Serna MK, Murthy VL, Raji M. Glucagon-Like Peptide-1 Receptor Agonists in the Treatment of Idiopathic Inflammatory Myopathy: From Mechanisms of Action to Clinical Applications. Cureus 2023; 15:e51352. [PMID: 38292961 PMCID: PMC10824603 DOI: 10.7759/cureus.51352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2023] [Indexed: 02/01/2024] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) result in proximal muscle weakness and other intramuscular and extramuscular manifestations. Pharmacologic treatments in use for IIMs are limited to corticosteroids and immunosuppressants in addition to supportive physical and occupational therapy. Glucagon-like peptide-1 receptor (GLP-1R) agonists are currently utilized in the treatment of type II diabetes and obesity but may play a role in the treatment of IIMs. The current scoping review of extant literature aims to synthesize findings from studies assessing the therapeutic effects of GLP-1R agonists in the management of inflammatory myopathy and muscle atrophy. A literature search was conducted through PubMed, resulting in a total of 19 research-based articles included in this review. Mice and human studies showed, with varying levels of significance, that GLP-1R agonists led to decreases in muscle atrophy, inflammation, adiposity, and weakness; improvement in muscle microvasculature and endurance; and promotion of muscle mitochondria biogenesis. The potential for GLP-1R agonists to improve muscle function and architecture underscores the need for large randomized controlled, clinically comparative trials of GLP-1R agonists in patients with IIM.
Collapse
Affiliation(s)
- Shilpa Rajagopal
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, USA
| | | | - Vasilis Mavratsas
- Department of Internal Medicine and Aerospace Medicine, University of Texas Medical Branch, Galveston, USA
| | - Myrna K Serna
- Division of General Medicine, Department of Internal Medicine, University of Texas Medical Branch, Galveston, USA
| | - Vijaya L Murthy
- Division of Rheumatology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, USA
| | - Mukaila Raji
- Division of Geriatrics and Palliative Medicine, Department of Internal Medicine; Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, USA
| |
Collapse
|
32
|
Monda VM, Voci C, Strollo F, Passaro A, Greco S, Monesi M, Bigoni R, Porcellati F, Piani D, Satta E, Gentile S. Protective Effects of Home T2DM Treatment with Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Co-transporter-2 Inhibitors Against Intensive Care Unit Admission and Mortality in the Acute Phase of the COVID-19 Pandemic: A Retrospective Observational Study in Italy. Diabetes Ther 2023; 14:2127-2142. [PMID: 37801224 PMCID: PMC10597965 DOI: 10.1007/s13300-023-01472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is a relevant risk factor for severe forms of COVID-19 (SARS coronavrus 2 [SARS-CoV-2] disease 2019), and calls for caution because of the high prevalence of T2DM worldwide and the high mortality rates observed in patients with T2DM who are infected with SARS-CoV-2. People with T2DM often take dipeptidyl peptidase-4 inhibitors (DPP-4is), glucagon-like peptide-1 receptor agonists (GLP-1ras), or sodium-glucose co-transporter-2 inhibitors (SGLT-2is), all of which have clear anti-inflammatory effects. The study aimed to compare (i) the severity and duration of hospital stay between patients with T2DM categorized by pre-hospitalization drug class utilization and (ii) the COVID-19-related death rates of those three groups. METHODS We designed an observational, retrospective, multi-center, population-based study and extracted the hospital admission data from the health care records of 1916 T2DM patients over 18 years old who were previously on GLP-1ra, SGLT-2i, or DPP-4i monotherapy and were hospitalized for COVID-19 (diagnosis based on ICD.9/10 codes) between January 2020 and December 2021 in 14 hospitals throughout Italy. We analyzed general data, pre-admission treatment schedules, date of admission or transfer to the intensive care unit (ICU) (i.e., the index date; taken as a marker of increased COVID-19 disease severity), and death (if it had occurred). Statistics analyzed the impact of drug classes on in-hospital mortality using propensity score logistic regressions for (i) those admitted to intensive care and (ii) those not admitted to intensive care, with a random match procedure used to generate a 1:1 comparison without diabetes cohort replacement for each drug therapy group by applying the nearest neighbor method. After propensity score matching, we checked the balance achieved across selected variables if a balance was ever achieved. We then used propensity score matching between the three drug classes to assemble a sample in which each patient receiving an SGLT-2i was matched to one on a GLP-1ra, and each patient on a DPP-4i was matched to one on a GLP-1ra, adjusting for covariates. We finally used GLP-1ras as references in the logistic regression. RESULTS The overall mortality rate (MR) of the patients was 14.29%. The MR in patients with COVID was 53.62%, and it was as high as 42.42% in the case of associated T2DM, regardless of any glucose-lowering therapy. In those on DPP-4is, there was excess mortality; in those treated with GLP-1ras and SGLT-2is, the death rate was significantly lower, i.e., almost a quarter of the overall mortality observed in COVID-19 patients with T2DM. Indeed, the odds ratio (OR) in the logistic regression resulted in an extremely high risk of in-hospital death in individuals previously treated with DPP-4is [incidence rate (IR) 4.02, 95% confidence interval (CI) 2.2-5.7) and only a slight, nonsignificantly higher risk in those previously treated with SGLT-2is (IR 1.42, 95% CI 0.6-2.1) compared to those on GLP-1ras. Moreover, the longer the stay, the higher the death rate, which ranged from 22.3% for ≤ 3-day stays to 40.3% for 4- to 14-day stays (p < 0.01 vs. the former) and 77.4% for over-14-day stays (p < 0.001 vs. both the others). DISCUSSION Our data do not support a protective role of DPP-4is; indeed, this role has already been questioned due to previous observations. However, the data do show a strong protective effect of SGLT-2is and GLP-1ras. Beyond lowering circulating glucose levels, those two drug classes were found to exert marked anti-phlogistic effects: SGLT-2is increased adiponectin and reduced urate, leptin, and insulin concentrations, thus positively affecting overall low-grade inflammation, and GLP-1ras may also greatly help at the lung tissue level, meaning that their extra-glycemic effects extend well beyond those acknowledged in the cardiovascular and renal fields. CONCLUSIONS The aforedescribed observational clinical data relating to a population of Italian inpatients with T2DM suggest that GLP-1ras and SGLT-2is can be considered antidiabetic drugs of choice against COVID-19, and might even prove beneficial in the event of any upcoming pandemic that has life-threatening effects on the pulmonary and cardiovascular systems.
Collapse
Affiliation(s)
- Vincenzo M. Monda
- Primary Care Department, Diabetes Unit “Santissima Annunziata” Hospital, Cento, Ferrara Italy
| | - Claudio Voci
- University Hospital of the City of Health and Science, Turin, Italy
| | - Felice Strollo
- Department of Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Salvatore Greco
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Internal Medicine, Delta Hospital, Ferrara, Lagosanto Italy
| | - Marcello Monesi
- Primary Care Department, Diabetes Unit, Ferrara “Sant’Anna” Hospital, Ferrara, Italy
| | - Renato Bigoni
- Department of Internal Medicine, Delta Hospital, Ferrara, Lagosanto Italy
| | - Francesca Porcellati
- Section of Internal Medicine, Endocrinology and Metabolism, Department of Medicine, Perugia University School of Medicine, Perugia, Italy
| | - Daniela Piani
- Unit of Internal Medicine and Diabetology, Department of Primary Care, AUSL Modena, Modena, Italy
| | - Ersilia Satta
- Nefrocenter Research Network, Cava dè Tirreni, Salerno, Italy
| | - Sandro Gentile
- Nefrocenter Research Network, Cava dè Tirreni, Salerno, Italy
- Department of Precision Medicine, Campania University “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
33
|
Stenlid R, Cerenius SY, Wen Q, Aydin BK, Manell H, Chowdhury A, Kristinsson H, Ciba I, Gjessing ES, Mörwald K, Gomahr J, Heu V, Weghuber D, Forslund A, Bergsten P. Adolescents with obesity treated with exenatide maintain endogenous GLP-1, reduce DPP-4, and improve glycemic control. Front Endocrinol (Lausanne) 2023; 14:1293093. [PMID: 38027106 PMCID: PMC10646558 DOI: 10.3389/fendo.2023.1293093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Background GLP-1 receptor agonists (GLP-1RA) are increasingly used to treat adolescent obesity. However, the effect on endogenous GLP-1 secretory patterns following treatment in adolescents is unknown. The GLP-1RA exenatide was shown to significantly lower BMI and 2-hour glucose in adolescents with obesity, in the placebo-controlled, randomized controlled trial Combat-JUDO. The aim of this study was to evaluate effects of weekly injections of 2 mg exenatide extended release on secretory patterns of endogenous hormones during OGTT. Subjects and Measurements This study was a pre-planned sub-study of the Combat-JUDO trial, set at the Pediatric clinic at Uppsala University Hospital, Sweden and Paracelsus Medical University, Austria. 44 adolescents with obesity were included and randomized 1:1 to treatment:placebo. 19 patients in the treatment group and 18 in the placebo group completed the trial. Before and after treatment, GLP-1, glucose, insulin, glucagon and glicentin levels were measured during OGTT; DPP-4 and proinsulin were measured at fasting. A per-protocol approach was used in the analyses. Results Exenatide treatment did not affect GLP-1 levels during OGTT. Treatment significantly lowered DPP-4, proinsulin and the proinsulin-to-insulin ratio at fasting, increased glicentin levels but did not affect insulin, C-peptide or glucagon levels during OGTT. Conclusion Weekly s.c. injections with 2 mg of exenatide maintains endogenous total GLP-1 levels and lowers circulating DPP-4 levels. This adds an argument in favor of using exenatide in the treatment of pediatric obesity. Clinical trial registration clinicaltrials.gov, identifier NCT02794402.
Collapse
Affiliation(s)
- Rasmus Stenlid
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Sara Y. Cerenius
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Quan Wen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Banu Küçükemre Aydin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Hannes Manell
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Azazul Chowdhury
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Iris Ciba
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Erik S. Gjessing
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Katharina Mörwald
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Julian Gomahr
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Verena Heu
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Anders Forslund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| |
Collapse
|
34
|
Rella S, Onyiah J, Baker C, Singh V, Her A, Rasouli N. Design and rationale for the SIB trial: a randomized parallel comparison of semaglutide versus placebo on intestinal barrier function in type 2 diabetes mellitus. Ther Adv Endocrinol Metab 2023; 14:20420188231207348. [PMID: 37916028 PMCID: PMC10617296 DOI: 10.1177/20420188231207348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Objective To describe the rationale and design of the SIB trial, an interventional clinical trial testing the hypothesis that subcutaneous (s.c.) once-weekly semaglutide can improve intestinal permeability and reduce systemic inflammation in participants with type 2 diabetes (T2D) and obesity. Methods SIB (NCT04979130) is an investigator-initiated, single-center randomized, double-blinded, placebo-controlled clinical study being conducted at the University of Colorado Anschutz Medical Campus. The primary objective of this novel trial is to test the hypothesis that subcutaneous (s.c.) once-weekly semaglutide could improve intestinal permeability and reduce systemic inflammation in participants with T2D and obesity. Eligible participants had a diagnosis of type 2 diabetes, elevated body mass index, and evidence of systemic inflammation. Participants were randomized 1:1 to s.c. semaglutide or placebo. Participants were assessed for intestinal permeability and markers of inflammation at baseline, mid-study, and at the end of the study. Efficacy assessments were based on the analysis of the following: lactulose:mannitol ratio test, serum lipopolysaccharide-binding protein (LBP), fecal calprotectin, inflammatory biomarkers (IL-6, TNF, IL-1, IL-8, hs-CRP), and HbA1c. All participants who enrolled in the trial provided written informed consent after having received written and oral information on the trial. The risks of semaglutide use were minimized by administration according to FDA-labeled use and close monitoring for adverse events. Discussion SIB is the first study to examine the effects of GLP-1 receptor agonists on intestinal permeability in humans and will provide important data on their impact on systemic inflammation and intestinal permeability in the setting of T2D and obesity.
Collapse
Affiliation(s)
- Steven Rella
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Mail Stop 8106, 12631 East 17th Avenue, Aurora, CO 80045-2559, USA
| | - Joseph Onyiah
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chelsea Baker
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vatsala Singh
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Her
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neda Rasouli
- University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
35
|
López-Méndez I, Maldonado-Rojas ADC, Uribe M, Juárez-Hernández E. Hunger & satiety signals: another key mechanism involved in the NAFLD pathway. Front Endocrinol (Lausanne) 2023; 14:1213372. [PMID: 37753211 PMCID: PMC10518611 DOI: 10.3389/fendo.2023.1213372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic disease, although prevalence could change according to region, nowadays is considered a public health problem whose real impact on the health system is unknown. NAFLD has a multifactorial and complex pathophysiology, due to this, developing a unique and effective pharmacological treatment has not been successful in reverting or avoiding the progression of this liver disease. Even though NAFLD pathophysiology is known, all actual treatments are focused on modifying or regulating the metabolic pathways, some of which interplay with obesity. It has been known that impairments in hunger and satiety signals are associated with obesity, however, abnormalities in these signals in patients with NAFLD and obesity are not fully elucidated. To describe these mechanisms opens an additional option as a therapeutic target sharing metabolic pathways with NAFLD, therefore, this review aims to describe the hormones and peptides implicated in both hunger-satiety in NAFLD. It has been established that NAFLD pharmacological treatment cannot be focused on a single purpose; hence, identifying interplays that lead to adding or modifying current treatment options could also have an impact on another related outcome such as hunger or satiety signals.
Collapse
Affiliation(s)
- Iván López-Méndez
- Hepatology and Transplants Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
36
|
Baer B, Putz ND, Riedmann K, Gonski S, Lin J, Ware LB, Toki S, Peebles RS, Cahill KN, Bastarache JA. Liraglutide pretreatment attenuates sepsis-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L368-L384. [PMID: 37489855 PMCID: PMC10639010 DOI: 10.1152/ajplung.00041.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/26/2023] Open
Abstract
There are no effective targeted therapies to treat acute respiratory distress syndrome (ARDS). Recently, the commonly used diabetes and obesity medications, glucagon-like peptide-1 (GLP-1) receptor agonists, have been found to have anti-inflammatory properties. We, therefore, hypothesized that liraglutide pretreatment would attenuate murine sepsis-induced acute lung injury (ALI). We used a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced by intraperitoneal injection of cecal slurry (CS; 2.4 mg/g) or 5% dextrose (control) followed by hyperoxia [HO; fraction of inspired oxygen ([Formula: see text]) = 0.95] or room air (control; [Formula: see text] = 0.21). Mice were pretreated twice daily with subcutaneous injections of liraglutide (0.1 mg/kg) or saline for 3 days before initiation of CS+HO. At 24-h post CS+HO, physiological dysfunction was measured by weight loss, severity of illness score, and survival. Animals were euthanized, and bronchoalveolar lavage (BAL) fluid, lung, and spleen tissues were collected. Bacterial burden was assessed in the lung and spleen. Lung inflammation was assessed by BAL inflammatory cell numbers, cytokine concentrations, lung tissue myeloperoxidase activity, and cytokine expression. Disruption of the alveolar-capillary barrier was measured by lung wet-to-dry weight ratios, BAL protein, and epithelial injury markers (receptor for advanced glycation end products and sulfated glycosaminoglycans). Histological evidence of lung injury was quantified using a five-point score with four parameters: inflammation, edema, septal thickening, and red blood cells (RBCs) in the alveolar space. Compared with saline treatment, liraglutide improved sepsis-induced physiological dysfunction and reduced lung inflammation, alveolar-capillary barrier disruption, and lung injury. GLP-1 receptor activation may hold promise as a novel treatment strategy for sepsis-induced ARDS. Additional studies are needed to better elucidate its mechanism of action.NEW & NOTEWORTHY In this study, pretreatment with liraglutide, a commonly used diabetes medication and glucagon-like peptide-1 (GLP-1) receptor agonist, attenuated sepsis-induced acute lung injury in a two-hit mouse model (sepsis + hyperoxia). Septic mice who received the drug were less sick, lived longer, and displayed reduced lung inflammation, edema, and injury. These therapeutic effects were not dependent on weight loss. GLP-1 receptor activation may hold promise as a new treatment strategy for sepsis-induced acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Brandon Baer
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nathan D Putz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kyle Riedmann
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Samantha Gonski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jason Lin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Shinji Toki
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- United States Department of Veterans Affairs, Nashville, Tennessee, United States
| | - Katherine N Cahill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
37
|
Sheth S, Patel A, Foreman M, Mumtaz M, Reddy A, Sharaf R, Sheth S, Lucke-Wold B. The protective role of GLP-1 in neuro-ophthalmology. EXPLORATION OF DRUG SCIENCE 2023; 1:221-238. [PMID: 37711214 PMCID: PMC10501042 DOI: 10.37349/eds.2023.00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/22/2023] [Indexed: 09/16/2023]
Abstract
Despite recent advancements in the field of neuro-ophthalmology, the rising rates of neurological and ophthalmological conditions, mismatches between supply and demand of clinicians, and an aging population underscore the urgent need to explore new therapeutic approaches within the field. Glucagon-like peptide 1 receptor agonists (GLP-1RAs), traditionally used in the treatment of type 2 diabetes, are becoming increasingly appreciated for their diverse applications. Recently, GLP-1RAs have been approved for the treatment of obesity and recognized for their cardioprotective effects. Emerging evidence indicates some GLP-1RAs can cross the blood-brain barrier and may have neuroprotective effects. Therefore, this article aims to review the literature on the neurologic and neuro-ophthalmic role of glucagon-like peptide 1 (GLP-1). This article describes GLP-1 peptide characteristics and the mechanisms mediating its known role in increasing insulin, decreasing glucagon, delaying gastric emptying, and promoting satiety. This article identifies the sources and targets of GLP-1 in the brain and review the mechanisms which mediate its neuroprotective effects, as well as implications for Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, the preclinical works which unravel the effects of GLP-1 in ocular dynamics and the preclinical literature regarding GLP-1RA use in the management of several neuro-ophthalmic conditions, including diabetic retinopathy (DR), glaucoma, and idiopathic intracranial hypertension (IIH) are discussed.
Collapse
Affiliation(s)
- Sohum Sheth
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Aashay Patel
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Marco Foreman
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Mohammed Mumtaz
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Akshay Reddy
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Ramy Sharaf
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Siddharth Sheth
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
38
|
Greco S, Monda VM, Valpiani G, Napoli N, Crespini C, Pieraccini F, Marra A, Passaro A. The Impact of GLP-1 RAs and DPP-4is on Hospitalisation and Mortality in the COVID-19 Era: A Two-Year Observational Study. Biomedicines 2023; 11:2292. [PMID: 37626788 PMCID: PMC10452157 DOI: 10.3390/biomedicines11082292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Novel antidiabetic drugs have the ability to produce anti-inflammatory effects regardless of their glucose-lowering action. For this reason, these molecules (including GLP-1 RAs and DPP-4is) were hypothesized to be effective against COVID-19, which is characterized by cytokines hyperactivity and multiorgan inflammation. The aim of our work is to explore the potential protective role of GLP-1 RAs and DPP-4is in COVID-19 (with the disease intended to be a model of an acute stressor) and non-COVID-19 patients over a two-year observation period. Retrospective and one-versus-one analyses were conducted to assess the impact of antidiabetic drugs on the need for hospitalization (in both COVID-19- and non-COVID-19-related cases), in-hospital mortality, and two-year mortality. Logistic regression analyses were conducted to identify the variables associated with these outcomes. Additionally, log-rank tests were used to plot survival curves for each group of subjects, based on their antidiabetic treatment. The performed analyses revealed that despite similar hospitalization rates, subjects undergoing home therapy with GLP-1 RAs exhibited significantly lower mortality rates, even over a two-year period. These individuals demonstrated improved survival estimates both within hospital and non-hospital settings, even during a longer observation period.
Collapse
Affiliation(s)
- Salvatore Greco
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, 46, I-44121 Ferrara, FE, Italy;
- Department of Internal Medicine, Ospedale del Delta, Via Valle Oppio, 2, I-44023 Lagosanto, FE, Italy
| | - Vincenzo M. Monda
- Primary Care Department, Diabetes Unit of “SS. Annunziata” Hospital, Via Giovanni Vicini 2, I-44042 Cento, FE, Italy;
| | - Giorgia Valpiani
- Research and Innovation Section, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, I-44124 Cona, FE, Italy;
| | - Nicola Napoli
- Programming and Management Control Unit, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, I-44124 Cona, FE, Italy;
| | - Carlo Crespini
- Pharmaceutical Department, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, I-44124 Cona, FE, Italy; (C.C.); (A.M.)
| | - Fabio Pieraccini
- Pharmaceutical Care Department, Azienda Unità Sanitaria Locale della Romagna, Via Carlo Forlanini 34, I-47121 Forlì, FC, Italy;
| | - Anna Marra
- Pharmaceutical Department, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, I-44124 Cona, FE, Italy; (C.C.); (A.M.)
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, 46, I-44121 Ferrara, FE, Italy;
- Research and Innovation Section, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, I-44124 Cona, FE, Italy;
- Department of Internal Medicine, University Hospital of Ferrara Arcispedale Sant’Anna, Via Aldo Moro 8, I-44124 Cona, FE, Italy
| |
Collapse
|
39
|
Wang W, Zhang C, Zhang H, Li L, Fan T, Jin Z. The alleviating effect and mechanism of GLP-1 on ulcerative colitis. Aging (Albany NY) 2023; 15:8044-8060. [PMID: 37595257 PMCID: PMC10496996 DOI: 10.18632/aging.204953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/17/2023] [Indexed: 08/20/2023]
Abstract
Ulcerative Colitis (UC) is a major type of chronic inflammatory bowel disease of the colonic mucosa and exhibits progressive morbidity. The incidence and prevalence of UC is increasing worldwide. The global burden of UC, which can substantially reduce quality of life, is clearly increasing. These data highlight the need for research into prevention of UC and innovations in health-care systems to manage this complex and costly disease. Glucagon-like peptide-1 (GLP-1), a new antidiabetic drug, is used to treat Type 2 Diabetes Mellitus (T2DM). Accumulating evidence suggests that GLP-1 has additional roles other than glucose-lowering effects. Despite the abundance of GLP-1 research, studies in UC have been less consistent, especially body weight; for example, body weight, colon length, colon injury score, intestinal microbiota, remain to be studied further. To date, the molecular mechanism of the protective effect of GLP-1 on UC remains obscure. The effect of GLP-1 was studied by using a dextran sulfate sodium (DSS)-induced colitic mice and lipopolysaccharide (LPS) treated RAW264.7 cells (macrophage cell line) under in vivo and in vitro conditions, respectively. Our results indicate that GLP-1 significantly relieves ulcerative colitis as it represses the production of proinflammatory mediators. In addition, GLP-1 blocks the activation of the protein kinase B (AKT)/nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways. GLP-1 also alleviates DSS-induced injury to the intestinal mucosa and dysbiosis of gut microbiota. Altogether, GLP-1 has protection effect on ulcerative colitis. Thus, GLP-1 can be considered as a potential therapeutic candidate for the treatment of UC.
Collapse
Affiliation(s)
- Wenrui Wang
- Department of Hepatopancreatobiliary Medicine, Digestive Diseases Center, The Second Hospital, Jilin University, Changchun 130000, PR China
| | - Chuan Zhang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Haolong Zhang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union, Hospital of Jilin University, Changchun 130000, PR China
| | - Luyao Li
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Tingting Fan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Zhenjing Jin
- Department of Hepatopancreatobiliary Medicine, Digestive Diseases Center, The Second Hospital, Jilin University, Changchun 130000, PR China
| |
Collapse
|
40
|
Anala AD, Saifudeen ISH, Ibrahim M, Nanda M, Naaz N, Atkin SL. The Potential Utility of Tirzepatide for the Management of Polycystic Ovary Syndrome. J Clin Med 2023; 12:4575. [PMID: 37510690 PMCID: PMC10380206 DOI: 10.3390/jcm12144575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrinopathy in women of reproductive age. The metabolic dysfunction associated with PCOS increases the probability of developing type 2 diabetes (T2D), endometrial cancer, and cardiovascular disease. Research has shown that the metabolic features of PCOS may be improved by weight loss following treatment with glucagon-like peptide-1 receptor (GLP-1R) agonists. Tirzepatide is a dual GLP-GIP (gastric inhibitory polypeptide) receptor agonist that shares a very similar mechanism of action with GLP-1R agonists, and it is hypothesized that it may be a potential contender in the treatment of PCOS. The success of GLP-1R agonists is usually hindered by their adverse gastrointestinal effects, leading to reduced compliance. The mechanism of action of Tirzepatide partly addresses this issue, as its dual receptor affinity may reduce the intensity of gastrointestinal symptoms. Tirzepatide has been licensed for the treatment of type 2 diabetes and given the metabolic issues and obesity that accompanies PCOS, it may be of value in its management for those PCOS patients who are obese with metabolic syndrome, although it may not benefit those who are of normal weight. This study reviews the current therapies for the treatment of PCOS and evaluates the potential use of Tirzepatide to address the symptoms of PCOS, including reproductive dysfunction, obesity, and insulin resistance.
Collapse
Affiliation(s)
- Alekya Devi Anala
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain
| | | | - Maryam Ibrahim
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain
| | - Moksha Nanda
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain
| | - Nida Naaz
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain
| | - Stephen L Atkin
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain
| |
Collapse
|
41
|
Castro MC, Villagarcía HG, Schinella G, Massa ML, Francini F. Mechanism of preventive effects of exendin-4 and des-fluoro-sitagliptin in a murine model of fructose-induced prediabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159363. [PMID: 37429413 DOI: 10.1016/j.bbalip.2023.159363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Protective effects of exendin-4 (glucagon-like peptide-1 -GLP-1- receptor agonist) and des-fluoro-sitagliptin (dipeptidyl peptidase-4 inhibitor) on fructose-induced hepatic disturbances were evaluated in prediabetic rats. Complementary, a possible direct effect of exendin-4 in human hepatoblastoma-derived cell line HepG2 incubated with fructose in presence/absence of exendin-9-39 (GLP-1 receptor antagonist) was investigated. In vivo, after 21 days of fructose rich diet, we determined: glycemia, insulinemia, and triglyceridemia; hepatic fructokinase, AMP-deaminase, and G-6-P dehydrogenase (G-6-P DH) activities; carbohydrate-responsive element-binding protein (ChREBP) expression; triglyceride content and lipogenic gene expression (glycerol-3-phosphate acyltransferase -GPAT-, fatty acid synthase -FAS-, sterol regulatory element-binding protein-1c -SREBP-1c); oxidative stress and inflammatory markers expression. In HepG2 cells we measured fructokinase activity and triglyceride content. Hypertriglyceridemia, hyperinsulinemia, enhanced liver fructokinase, AMP-deaminase, and G-6-P DH activities, increased ChREBP and lipogenic genes expression, enhanced triglyceride level, oxidative stress and inflammatory markers recorded in fructose fed animals, were prevented by co-administration of either exendin-4 or des-fluoro-sitagliptin. Exendin-4 prevented fructose-induced increase in fructokinase activity and triglyceride contain in HepG2 cells. These effects were blunted co-incubating with exendin-9-39. The results demonstrated for the first time that exendin-4/des-fluro-sitagliptin prevented fructose-induced endocrine-metabolic oxidative stress and inflammatory changes probably acting on the purine degradation pathway. Exendin 9-39 blunted in vitro protective exendin-4 effects, thereby suggesting a direct effect of this compound on hepatocytes through GLP-1 receptor. Direct effect on fructokinase and AMP-deaminase activities, with a key role in the pathogenesis of liver dysfunction induced by fructose, suggests purine degradation pathway constitute a potential therapeutic objective for GLP-1 receptor agonists.
Collapse
Affiliation(s)
- María Cecilia Castro
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| | - Hernán Gonzalo Villagarcía
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| | - Guillermo Schinella
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina; Instituto de Ciencias de la Salud, UNAJ-CICPBA, Street Avenue Calchaqui 6200, Florencio Varela 1888, Argentina.
| | - María Laura Massa
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| | - Flavio Francini
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| |
Collapse
|
42
|
Hardonova M, Siarnik P, Sivakova M, Sucha B, Penesova A, Radikova Z, Havranova A, Imrich R, Vlcek M, Zitnanova I, Krastev G, Kiacikova M, Kollar B, Turcani P. Endothelial Function in Patients with Multiple Sclerosis: The Role of GLP-1 Agonists, Lipoprotein Subfractions, and Redox Balance. Int J Mol Sci 2023; 24:11162. [PMID: 37446338 DOI: 10.3390/ijms241311162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION Epidemiological studies have suggested an increased vascular risk in patients with multiple sclerosis (MS). There is increasing evidence of the beneficial effects of GLP-1 agonists (GLP-1a) in preventing vascular complications and slowing the progression of neurodegeneration. Our objective was to explore the changes in the endothelial function of MS patients after 12 months of GLP-1a therapy. We also explored the role of lipoprotein subfractions and the antioxidant capacity of plasma. METHODS MS patients were enrolled in a prospective, unicentric study. GLP-1a (dulaglutide) was administered to 13 patients. The control population consisted of 12 subjects. Endothelial function was determined by peripheral arterial tonometry and expressed as reperfusion hyperemia index (RHI). Trolox equivalent antioxidant capacity (TEAC) was used to assess the total antioxidant capacity of the plasma. The levels of lipoprotein subfractions were evaluated. RESULTS The GLP-1a group did not have a significant change in their RHIs after 12 months (2.1 ± 0.6 vs. 2.1 ± 0.7; p = 0.807). However, a significant increase in their TEACs was observed (4.1 ± 1.4 vs. 5.2 ± 0.5 mmol/L, p = 0.010). On the contrary, the subjects in the control group had a significant worsening of their RHIs (2.1 ± 0.5 vs. 1.8 ± 0.6; p = 0.030), without significant changes in their TEACs. Except for a significant decrease in very-low-density lipoprotein (VLDL) (30.8 ± 10.2 vs. 22.6 ± 8.3 mg/dL, p = 0.043), no other significant changes in the variables were observed in the control group. VLDL levels (beta = -0.637, p = 0.001), the use of GLP-1a therapy (beta = 0.560, p = 0.003), and small LDL (beta = 0.339, p = 0.043) were the only significant variables in the model that predicted the follow-up RHI. CONCLUSION Our results suggest that the application of additional GLP-1a therapy may have atheroprotective and antioxidant effects in MS patients with high MS activity and thus may prospectively mitigate their vascular risk. However, the lipoprotein profile may also play an important role in the atherogenic risk of MS subjects.
Collapse
Affiliation(s)
- Miroslava Hardonova
- 1st Department of Neurology, Faculty of Medicine, Comenius University, 813 69 Bratislava, Slovakia
| | - Pavel Siarnik
- 1st Department of Neurology, Faculty of Medicine, Comenius University, 813 69 Bratislava, Slovakia
| | - Monika Sivakova
- 1st Department of Neurology, Faculty of Medicine, Comenius University, 813 69 Bratislava, Slovakia
| | - Bianka Sucha
- 1st Department of Neurology, Faculty of Medicine, Comenius University, 813 69 Bratislava, Slovakia
| | - Adela Penesova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Zofia Radikova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Andrea Havranova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Richard Imrich
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Miroslav Vlcek
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Ingrid Zitnanova
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Georgi Krastev
- Department of Neurology, Faculty Hospital, 917 75 Trnava, Slovakia
| | - Maria Kiacikova
- Department of Neurology, Faculty Hospital, 911 01 Trencin, Slovakia
| | - Branislav Kollar
- 1st Department of Neurology, Faculty of Medicine, Comenius University, 813 69 Bratislava, Slovakia
| | - Peter Turcani
- 1st Department of Neurology, Faculty of Medicine, Comenius University, 813 69 Bratislava, Slovakia
| |
Collapse
|
43
|
Kumar S, Basu M, Ghosh P, Pal U, Ghosh MK. COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery. Genes Dis 2023; 10:1402-1428. [PMID: 37334160 PMCID: PMC10079314 DOI: 10.1016/j.gendis.2022.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes the complicated disease COVID-19. Clinicians are continuously facing huge problems in the treatment of patients, as COVID-19-specific drugs are not available, hence the principle of drug repurposing serves as a one-and-only hope. Globally, the repurposing of many drugs is underway; few of them are already approved by the regulatory bodies for their clinical use and most of them are in different phases of clinical trials. Here in this review, our main aim is to discuss in detail the up-to-date information on the target-based pharmacological classification of repurposed drugs, the potential mechanism of actions, and the current clinical trial status of various drugs which are under repurposing since early 2020. At last, we briefly proposed the probable pharmacological and therapeutic drug targets that may be preferred as a futuristic drug discovery approach in the development of effective medicines.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, West Bengal 743372, India
| | - Pratyasha Ghosh
- Department of Economics, Bethune College, University of Calcutta, Kolkata 700006, India
| | - Uttam Pal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
44
|
Kongmalai T, Srinonprasert V, Anothaisintawee T, Kongmalai P, McKay G, Attia J, Thakkinstian A. New anti-diabetic agents for the treatment of non-alcoholic fatty liver disease: a systematic review and network meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2023; 14:1182037. [PMID: 37441498 PMCID: PMC10335801 DOI: 10.3389/fendo.2023.1182037] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 07/15/2023] Open
Abstract
Objectives This network meta-analysis aims to compare the efficacy and safety of new anti-diabetic medications for the treatment of non-alcoholic fatty liver disease (NAFLD). Materials and methods PubMed and Scopus were searched from inception to 27th March 2022 to identify all randomized controlled trials (RCTs) in NAFLD patients. Outcomes included reductions in intrahepatic steatosis (IHS) and liver enzyme levels. The efficacy and safety of DPP-4 inhibitors, GLP-1 agonists, SGLT-2 inhibitors, and other therapies were indirectly compared using a NMA approach. Unstandardized mean difference (USMD) with 95% confidence intervals (CI) were calculated. Results 2,252 patients from 31 RCTs were included. "Add-on" GLP-1 agonists with standard of care (SoC) treatment showed significantly reduced IHS compared to SoC alone [USMD (95%CI) -3.93% (-6.54%, -1.33%)]. Surface under the cumulative ranking curve (SUCRA) identified GLP-1 receptor agonists with the highest probability to reduce IHS (SUCRA 88.5%), followed by DPP-4 inhibitors (SUCRA 69.6%) and pioglitazone (SUCRA 62.2%). "Add-on" GLP-1 receptor agonists were also the most effective treatment for reducing liver enzyme levels; AST [USMD of -5.04 (-8.46, -1.62)], ALT [USMD of -9.84 (-16.84, -2.85)] and GGT [USMD of -15.53 (-22.09, -8.97)] compared to SoC alone. However, GLP-1 agonists were most likely to be associated with an adverse event compared to other interventions. Conclusion GLP-1 agonists may represent the most promising anti-diabetic treatment to reduce hepatic steatosis and liver enzyme activity in T2DM and NAFLD patients. Nevertheless, longer-term studies are required to determine whether this delays progression of liver cirrhosis in patients with NAFLD and T2DM. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021259336.1.
Collapse
Affiliation(s)
- Tanawan Kongmalai
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Varalak Srinonprasert
- Siriraj Health Policy Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Mahidol University Health Technology Assessment Graduate Program, Mahidol University, Bangkok, Thailand
| | - Thunyarat Anothaisintawee
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pinkawas Kongmalai
- Department of Orthopaedics, Faculty of Medicine, Srinakharinwirot University, Ongkharak, Nakhon Nayok, Thailand
| | - Gareth McKay
- Centre for Public Health, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University, Belfast, Ireland
| | - John Attia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Ammarin Thakkinstian
- Mahidol University Health Technology Assessment Graduate Program, Mahidol University, Bangkok, Thailand
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
45
|
Panfili E, Frontino G, Pallotta MT. GLP-1 receptor agonists as promising disease-modifying agents in WFS1 spectrum disorder. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1171091. [PMID: 37333802 PMCID: PMC10275359 DOI: 10.3389/fcdhc.2023.1171091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
WFS1 spectrum disorder (WFS1-SD) is a rare monogenic neurodegenerative disorder whose cardinal symptoms are childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus, and neurological signs ranging from mild to severe. The prognosis is poor as most patients die prematurely with severe neurological disabilities such as bulbar dysfunction and organic brain syndrome. Mutation of the WFS1 gene is recognized as the prime mover of the disease and responsible for a dysregulated ER stress signaling, which leads to neuron and pancreatic β-cell death. There is no currently cure and no treatment that definitively arrests the progression of the disease. GLP-1 receptor agonists appear to be an efficient way to reduce elevated ER stress in vitro and in vivo, and increasing findings suggest they could be effective in delaying the progression of WFS1-SD. Here, we summarize the characteristics of GLP-1 receptor agonists and preclinical and clinical data obtained by testing them in WFS1-SD as a feasible strategy for managing this disease.
Collapse
Affiliation(s)
- Eleonora Panfili
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giulio Frontino
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Hospital, Milano, Italy
| | | |
Collapse
|
46
|
Michos ED, Bakris GL, Rodbard HW, Tuttle KR. Glucagon-like peptide-1 receptor agonists in diabetic kidney disease: A review of their kidney and heart protection. Am J Prev Cardiol 2023; 14:100502. [PMID: 37313358 PMCID: PMC10258236 DOI: 10.1016/j.ajpc.2023.100502] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/07/2023] [Accepted: 05/12/2023] [Indexed: 06/15/2023] Open
Abstract
Importance Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of morbidity and mortality for patients with type 2 diabetes (T2D) and chronic kidney disease (CKD). However, testing for albuminuria among patients with T2D is substantially underutilized in clinical practice; many patients with CKD go unrecognized. For patients with T2D at high cardiovascular risk, or with established CVD, the glucagon-like peptide-1 receptor agonists (GLP1-RA) have been shown to reduce ASCVD in cardiovascular outcome trials, while potential kidney outcomes are being explored. Observations A recent meta-analysis found that GLP1-RA reduced 3-point major adverse cardiovascular events by 14% [HR, 0.86 (95% CI, 0.80-0.93)] in patients with T2D. The benefits of GLP1-RA to reduce ASCVD were at least as large among people with estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2. GLP1-RA also conferred a 21% reduction in the composite kidney outcome [HR, 0.79 (0.73-0.87)]; however, this result was achieved largely through reduction in albuminuria. It remains uncertain whether GLP1-RA would confer similar favorable results for eGFR decline and/or progression to end-stage kidney disease. Postulated mechanisms by which GLP1-RA confer protection against CVD and CKD include blood pressure lowering, weight loss, improved glucose control, and decreasing oxidative stress. Ongoing studies in T2D and CKD include a kidney outcome trial with semaglutide (FLOW, NCT03819153) and a mechanism of action study (REMODEL, NCT04865770) examining semaglutide's effect on kidney inflammation and fibrosis. Ongoing cardiovascular outcome studies are examining an oral GLP1-RA (NCT03914326), GLP1-RA in patients without T2D (NCT03574597), and dual GIP/GLP1-RA agonists (NCT04255433); the secondary kidney outcomes of these trials will be informative. Conclusions and relevance Despite their well-described ASCVD benefits and potential kidney protective mechanisms, GLP1-RA remain underutilized in clinical practice. This highlights the need for cardiovascular clinicians to influence and implement use of GLP1-RA in appropriate patients, including those with T2D and CKD at higher risk for ASCVD.
Collapse
Affiliation(s)
- Erin D. Michos
- Division of Cardiology, Johns Hopkins University School of Medicine, Blalock 524-B, 600N. Wolfe Street, Baltimore, MD 21287, United States
| | - George L. Bakris
- Department of Medicine, University of Chicago Medicine, Chicago, IL, United States
| | | | - Katherine R. Tuttle
- Providence Medical Research Center, Providence Health Care, Spokane, WA, United States
- Nephrology Division, Kidney Research Institute and Institute of Translational Health Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
47
|
Mehdi SF, Pusapati S, Anwar MS, Lohana D, Kumar P, Nandula SA, Nawaz FK, Tracey K, Yang H, LeRoith D, Brownstein MJ, Roth J. Glucagon-like peptide-1: a multi-faceted anti-inflammatory agent. Front Immunol 2023; 14:1148209. [PMID: 37266425 PMCID: PMC10230051 DOI: 10.3389/fimmu.2023.1148209] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammation contributes to many chronic conditions. It is often associated with circulating pro-inflammatory cytokines and immune cells. GLP-1 levels correlate with disease severity. They are often elevated and can serve as markers of inflammation. Previous studies have shown that oxytocin, hCG, ghrelin, alpha-MSH and ACTH have receptor-mediated anti-inflammatory properties that can rescue cells from damage and death. These peptides have been studied well in the past century. In contrast, GLP-1 and its anti-inflammatory properties have been recognized only recently. GLP-1 has been proven to be a useful adjuvant therapy in type-2 diabetes mellitus, metabolic syndrome, and hyperglycemia. It also lowers HbA1C and protects cells of the cardiovascular and nervous systems by reducing inflammation and apoptosis. In this review we have explored the link between GLP-1, inflammation, and sepsis.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Suma Pusapati
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Muhammad Saad Anwar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Durga Lohana
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Parkash Kumar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Fatima Kausar Nawaz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kevin Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Huan Yang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
48
|
Atanga R, Singh V, In JG. Intestinal Enteroendocrine Cells: Present and Future Druggable Targets. Int J Mol Sci 2023; 24:ijms24108836. [PMID: 37240181 DOI: 10.3390/ijms24108836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enteroendocrine cells are specialized secretory lineage cells in the small and large intestines that secrete hormones and peptides in response to luminal contents. The various hormones and peptides can act upon neighboring cells and as part of the endocrine system, circulate systemically via immune cells and the enteric nervous system. Locally, enteroendocrine cells have a major role in gastrointestinal motility, nutrient sensing, and glucose metabolism. Targeting the intestinal enteroendocrine cells or mimicking hormone secretion has been an important field of study in obesity and other metabolic diseases. Studies on the importance of these cells in inflammatory and auto-immune diseases have only recently been reported. The rapid global increase in metabolic and inflammatory diseases suggests that increased understanding and novel therapies are needed. This review will focus on the association between enteroendocrine changes and metabolic and inflammatory disease progression and conclude with the future of enteroendocrine cells as potential druggable targets.
Collapse
Affiliation(s)
- Roger Atanga
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Varsha Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie G In
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
49
|
Hui-Yuen J, Jiang K, Malkiel S, Eberhard BA, Walters H, Diamond B, Jarvis J. B lymphocytes in treatment-naive paediatric patients with lupus are epigenetically distinct from healthy children. Lupus Sci Med 2023; 10:10/1/e000921. [PMID: 37202122 DOI: 10.1136/lupus-2023-000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND SLE is likely triggered by gene-environment interactions. We have shown that most SLE-associated haplotypes encompass genomic regions enriched for epigenetic marks associated with enhancer function in lymphocytes, suggesting genetic risk is exerted through altered gene regulation. Data remain scarce on how epigenetic variance contributes to disease risk in paediatric SLE (pSLE). We aim to identify differences in epigenetically regulated chromatin architecture in treatment-naive patients with pSLE compared with healthy children. METHODS Using the assay for transposase-accessible chromatin with sequencing (ATACseq), we surveyed open chromatin in 10 treatment-naive patients with pSLE, with at least moderate disease severity, and 5 healthy children. We investigated whether regions of open chromatin unique to patients with pSLE demonstrate enrichment for specific transcriptional regulators, using standard computational approaches to identify unique peaks and a false discovery rate of <0.05. Further analyses for histone modification enrichment and variant calling were performed using bioinformatics packages in R and Linux. RESULTS We identified 30 139 differentially accessible regions (DAR) unique to pSLE B cells; 64.3% are more accessible in pSLE than healthy children. Many DAR are found in distal, intergenic regions and enriched for enhancer histone marks (p=0.027). B cells from adult patients with SLE contain more regions of inaccessible chromatin than those in pSLE. In pSLE B cells, 65.2% of the DAR are located within or near known SLE haplotypes. Further analysis revealed enrichment of transcription factor binding motifs within these DAR that may regulate genes involved in pro-inflammatory responses and cellular adhesion. CONCLUSIONS We demonstrate an epigenetically distinct profile in pSLE B cells when compared with healthy children and adults with lupus, indicating that pSLE B cells are predisposed for disease onset/development. Increased chromatin accessibility in non-coding genomic regions controlling activation of inflammation suggest that transcriptional dysregulation by regulatory elements controlling B cell activation plays an important role in pSLE pathogenesis.
Collapse
Affiliation(s)
- Joyce Hui-Yuen
- Pediatric Rheumatology, Northwell Health, Lake Success, New York, USA
- Pediatrics, Hofstra Northwell School of Medicine at Hofstra University, Hempstead, New York, USA
- Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases Research, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Kaiyu Jiang
- Pediatrics, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Susan Malkiel
- Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases Research, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Barbara Anne Eberhard
- Pediatric Rheumatology, Northwell Health, Lake Success, New York, USA
- Pediatrics, Hofstra Northwell School of Medicine at Hofstra University, Hempstead, New York, USA
| | - Heather Walters
- Pediatric Rheumatology, Northwell Health, Lake Success, New York, USA
- Pediatrics, Hofstra Northwell School of Medicine at Hofstra University, Hempstead, New York, USA
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases Research, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - James Jarvis
- Pediatrics, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| |
Collapse
|
50
|
Balogh DB, Wagner LJ, Fekete A. An Overview of the Cardioprotective Effects of Novel Antidiabetic Classes: Focus on Inflammation, Oxidative Stress, and Fibrosis. Int J Mol Sci 2023; 24:7789. [PMID: 37175496 PMCID: PMC10177821 DOI: 10.3390/ijms24097789] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Metabolic diseases, particularly diabetes mellitus (DM), are significant global public health concerns. Despite the widespread use of standard-of-care therapies, cardiovascular disease (CVD) remains the leading cause of death among diabetic patients. Early and evidence-based interventions to reduce CVD are urgently needed. Large clinical trials have recently shown that sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) ameliorate adverse cardiorenal outcomes in patients with type 2 DM. These quite unexpected positive results represent a paradigm shift in type 2 DM management, from the sole importance of glycemic control to the simultaneous improvement of cardiovascular outcomes. Moreover, SGLT2i is also found to be cardio- and nephroprotective in non-diabetic patients. Several mechanisms, which may be potentially independent or at least separate from the reduction in blood glucose levels, have already been identified behind the beneficial effect of these drugs. However, there is still much to be understood regarding the exact pathomechanisms. This review provides an overview of the current literature and sheds light on the modes of action of novel antidiabetic drugs, focusing on inflammation, oxidative stress, and fibrosis.
Collapse
Affiliation(s)
- Dora Bianka Balogh
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary
| | - Laszlo Jozsef Wagner
- Department of Surgery, Transplantation, and Gastroenterology, Semmelweis University, 1085 Budapest, Hungary
| | - Andrea Fekete
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary
| |
Collapse
|