1
|
Huang X, Hu L, Li J, Tao S, Xue T. The relationship between inflammatory factors and heart failure: evidence based on bidirectional Mendelian randomization analysis. Front Cardiovasc Med 2024; 11:1378327. [PMID: 39726944 PMCID: PMC11669679 DOI: 10.3389/fcvm.2024.1378327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
Objective Inflammatory factors play a crucial role in the onset and progression of heart failure. To further explore the causal relationship between inflammatory factors and heart failure, we employed bidirectional Mendelian randomization analysis to investigate the causal links between 91 inflammatory cytokines and heart failure. Methods We conducted our study using the bidirectional Mendelian randomization approach. Data on 91 inflammatory factors were sourced from large-scale public genome-wide association study databases, while heart failure data were obtained from the FINNGEN database. The relationships between inflammatory factors and heart failure were evaluated using five methods: MR-Egger regression model, Inverse Variance Weighted method, Simple mode model, Weighted mode model, and Weighted median. Results were subjected to FDR multiple testing correction, and significant findings were discussed in detail. To enhance the robustness of our findings, various sensitivity analyses were conducted, including MR Egger intercept, MR-PRESSO and Cochran Q test. Results Our forward Mendelian randomization study indicated that, of the 91 inflammatory factors examined, seven showed a causal relationship with heart failure. Four of these factors were significantly causally related to the incidence of heart failure: CXCL9 and IFN-γ as promotive factors, and LIFR and UPA as potential protective factors. Three inflammatory factors had a potential causal relationship with heart failure, with DNER as a potential protective factor, and MMP-1 and CD6 as potential promotive factors. Reverse Mendelian randomization suggested that the onset of heart failure might potentially influence the levels of four inflammatory factors, with ARTN and FGF5 decreasing after the onset of heart failure, and SLAM and MMP-10 increasing. Additionally, reliability tests of this Mendelian randomization, including MR-Egger intercept and MR-PRESSO tests, revealed no evidence of pleiotropy, and Cochran's Q test also confirmed the reliability of our results. Conclusion We identified CXCL9, IFN-γ, LIFR, and UPA as potential inflammatory factors associated with heart failure through forward Mendelian randomization. These findings suggest potential targets but require further validation.
Collapse
Affiliation(s)
- Xuanchun Huang
- Cardiology Department, Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Lanshuo Hu
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Jun Li
- Cardiology Department, Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Shiyi Tao
- Cardiology Department, Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Tiantian Xue
- Cardiology Department, Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Zhang Y, Feng L, Guan X, Zhu Z, He Y, Li X. Non-alcoholic fatty liver disease and heart failure: A comprehensive bioinformatics and Mendelian randomization analysis. ESC Heart Fail 2024; 11:4185-4200. [PMID: 39143741 PMCID: PMC11631243 DOI: 10.1002/ehf2.15019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
AIMS Heart failure (HF) and non-alcoholic fatty liver disease (NAFLD) are significant global health issues with a complex interrelationship. This study investigates their shared biomarkers and causal relationships using bioinformatics and Mendelian randomization (MR) approaches. METHODS We analysed NAFLD and HF datasets from the Gene Expression Omnibus (GEO). The GSE126848 dataset included 57 liver biopsy samples [14 healthy individuals, 12 obese subjects, 15 NAFL patients and 16 non-alcoholic steatohepatitis (NASH) patients]. The GSE24807 dataset comprised 12 NASH samples and 5 healthy controls. The GSE57338 dataset included 313 cardiac muscle samples [177 HF patients (95 ischaemic heart disease patients and 82 idiopathic dilated cardiomyopathy patients) and 136 healthy controls]. The GSE84796 dataset consisted of 10 end-stage HF patients and 7 healthy hearts procured from organ donors. We identified differentially expressed genes (DEGs) and constructed a protein-protein interaction (PPI) network. Functional pathways were elucidated through enrichment analyses using Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) and GeneMANIA annotation. Single nucleotide polymorphism (SNP) data for HF and NAFLD were sourced from genome-wide association studies (GWAS). The HF dataset included 486 160 samples (14 262 experimental and 471 898 control), and the NAFLD dataset comprised 377 988 samples (4761 experimental and 373 227 control). MR analysis investigates the causal interrelations. RESULTS Our analysis revealed 4032 DEGs from GSE126848 and 286 DEGs from GSE57338. The top 10 hub genes (CD163, VSIG4, CXCL10, FCER1G, FPR1, C1QB, CCR1, C1orf162, MRC1 and CD38) were significantly enriched in immune response, calcium ion concentration regulation and positive regulation of monocyte chemotaxis. CIBERSORT analysis indicated associations between these hub genes and natural killer (NK) cells and macrophages. Transcription factor (TF) target prediction for CD38, CXCL10 and CCR1 highlighted related TFs. A two-sample MR analysis confirmed a bidirectional causal relationship between NAFLD and HF. The main method [inverse variance weighted (IVW)] demonstrated a significant positive causal relationship between NAFLD and HF [P = 0.037; odds ratio (OR) = 1.024; 95% confidence interval (CI): 1.001 to 1.048]. Similarly, HF was associated with an increase in the risk of NAFLD (P < 0.001; OR = 1.117; 95% CI: 1.053 to 1.185). CONCLUSIONS Our findings reveal novel molecular signatures common to NAFLD and HF and confirm their bidirectional causality, highlighting the potential for targeted therapeutic interventions and prompting further investigation into their intricate relationship.
Collapse
Affiliation(s)
- Yayun Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Lu Feng
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Xin Guan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalTaiyuanChina
| | - Zixiong Zhu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalTaiyuanChina
| | - Yubin He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalTaiyuanChina
| | - Xuewen Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
3
|
Amezcua-Guerra B, Amezcua-Castillo LM, Guerra-López JA, Díaz-Domínguez K, González-Pacheco H, Amezcua-Guerra LM. Cytokine-Based Validation of the Inflammation-Based Risk Score in Patients with ST-Segment Elevation Myocardial Infarction. J Interferon Cytokine Res 2024. [PMID: 39356224 DOI: 10.1089/jir.2024.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
This study aimed to validate an inflammation-based risk score in patients with ST-segment elevation myocardial infarction (STEMI) by examining their cytokine profiles. Upon admission, patients were evaluated for systemic inflammation using a risk score that assigned points based on specific biomarkers: 1 point for leukocyte count ≥9.3 × 10³ cells/μL, 2 points for high-sensitivity C-reactive protein (hsCRP) ≥13.0 mg/L, and 3 points for serum albumin ≤3.6 g/dL. Patients were categorized into three groups: no inflammation (0 points, n = 13), mild inflammation (1-2 points, n = 35), and severe inflammation (3-6 points, n = 26). Serum levels of 16 key cytokines were measured. Patients with higher risk scores showed elevated interleukin (IL)-6 levels (19.6 vs. 8.5 vs. 6.8 pg/mL; P = 0.021) and decreased interferon-γ-induced protein-10 (IP-10) levels (73.4 vs. 68.8 vs. 112.2 pg/mL; P = 0.011). IL-6 was positively correlated with hsCRP (ρ 0.307) and negatively correlated with albumin (ρ -0.298), while IP-10 was negatively correlated with leukocyte count (ρ -0.301). No other cytokines showed significant association with the risk score. Higher inflammation scores were also associated with an increased incidence of major adverse cardiovascular events, particularly acute heart failure. This study underscores the association between the inflammation-based risk score and cytokine levels, specifically IL-6 and IP-10, in patients with STEMI.
Collapse
Affiliation(s)
| | | | - Jazmín A Guerra-López
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Kietseé Díaz-Domínguez
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | - Luis M Amezcua-Guerra
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Health Care Department, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| |
Collapse
|
4
|
Cavalcante L, Chandana S, Lakhani N, Enstrom A, LeBlanc H, Schmalz J, Lengyel K, Schneider F, Thomas H, Chisamore MJ, Peng SL, Naumovski A, Davar D. Case report of fatal immune-mediated myocarditis following treatment with davoceticept (ALPN-202), a PD-L1-dependent CD28 costimulator and dual PD-L1/CTLA-4 checkpoint inhibitor, in combination with pembrolizumab. J Immunother Cancer 2024; 12:e009475. [PMID: 39142718 PMCID: PMC11337706 DOI: 10.1136/jitc-2024-009475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Engagement of programmed death-1 (PD-1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) can interfere with the CD28 signaling requisite for T-cell activation. While immune checkpoint inhibitors (ICIs) can relieve this suppression, they are unable to drive CD28 costimulation that may mechanistically contribute to ICI resistance. Thus, CD28 costimulation in the context of checkpoint inhibition may activate immunosuppressed T-cells in the tumor microenvironment. Davoceticept (ALPN-202) is an Fc fusion of a CD80 variant immunoglobulin domain (vIgD) designed to mediate PD-L1-dependent CD28 costimulation while inhibiting the PD-L1 and CTLA-4 checkpoints. PD-L1-restriction of davoceticept's CD28 costimulatory activity may minimize systemic T-cell activation and avoid untoward systemic toxicities. At the same time, preclinical studies have suggested that treatment with davoceticept during PD-1 inhibition may enhance antitumor activity by upregulating PD-L1, potentially synergizing with davoceticept's PD-L1-dependent costimulatory mechanism. This report details two cases of fatal cardiac events following treatment with davoceticept in combination with pembrolizumab (anti-PD-1) in the phase 1 study, NEON-2. Both events occurred in females in their 60s; one with choroidal melanoma and prior immunotherapy, the other with ICI-naïve microsatellite stable colorectal cancer. The clinical courses were fulminant with symptom onset at 2 weeks, followed by rapid decline. Cardiac autopsy from one patient confirmed immune-related myocarditis, and immunosequencing revealed expansion of a single T-cell clone that was not present in the pretreatment tumor. These cases highlight the importance of understanding risk factors that may contribute to immune-related myocarditis and other severe immune-related adverse events when CD28 agonism is targeted in the context of checkpoint inhibition.NEON-2 (NCT04920383).
Collapse
Affiliation(s)
- Ludimila Cavalcante
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | - Heidi LeBlanc
- Alpine Immune Sciences Inc, Seattle, Washington, USA
| | | | - Krisztina Lengyel
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Frank Schneider
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | - Diwakar Davar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Veluswami K, Rao S, Aggarwal S, Mani S, Balasubramanian A. Unraveling the Missing Pieces: Exploring the Gaps in Understanding Chagas Cardiomyopathy. Cureus 2024; 16:e66955. [PMID: 39280489 PMCID: PMC11401617 DOI: 10.7759/cureus.66955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Chagas cardiomyopathy affects a considerable number of patients infected with the protozoan Trypanosoma cruzi (T. cruzi) and remains one of the most neglected tropical diseases despite being a significant contributor to morbidity and mortality in both endemic regions of Latin America and non-endemic countries like the United States. Since its discovery almost a century ago, knowledge gaps still exist in the mechanisms involved in the pathogenesis of Chagas cardiomyopathy, and numerous challenges exist in its diagnosis and treatment. This article reviews the main pathogenetic mechanisms involved in the progression of Chagas cardiomyopathy, which has been proposed as a result of years of research. It also emphasizes the challenges involved in the diagnosis of the asymptomatic indeterminate phase and has focused on several diagnostic techniques, including echocardiography, electrocardiogram (ECG), magnetic resonance imaging (MRI), and nuclear imaging in diagnosing symptomatic Chagas cardiomyopathy. In this article, we have also provided a brief overview of the current treatment of Chagas cardiomyopathy, which is not etiology-specific but instead derived from the knowledge acquired from the treatment of other cardiomyopathies.
Collapse
Affiliation(s)
| | - Sudipta Rao
- Internal Medicine, JSS Medical College, Mysore, IND
| | | | - Sweatha Mani
- Internal Medicine, K.A.P. Viswanatham Government Medical College, Tiruchirappalli, IND
| | | |
Collapse
|
6
|
Pekayvaz K, Losert C, Knottenberg V, Gold C, van Blokland IV, Oelen R, Groot HE, Benjamins JW, Brambs S, Kaiser R, Gottschlich A, Hoffmann GV, Eivers L, Martinez-Navarro A, Bruns N, Stiller S, Akgöl S, Yue K, Polewka V, Escaig R, Joppich M, Janjic A, Popp O, Kobold S, Petzold T, Zimmer R, Enard W, Saar K, Mertins P, Huebner N, van der Harst P, Franke LH, van der Wijst MGP, Massberg S, Heinig M, Nicolai L, Stark K. Multiomic analyses uncover immunological signatures in acute and chronic coronary syndromes. Nat Med 2024; 30:1696-1710. [PMID: 38773340 PMCID: PMC11186793 DOI: 10.1038/s41591-024-02953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 03/26/2024] [Indexed: 05/23/2024]
Abstract
Acute and chronic coronary syndromes (ACS and CCS) are leading causes of mortality. Inflammation is considered a key pathogenic driver of these diseases, but the underlying immune states and their clinical implications remain poorly understood. Multiomic factor analysis (MOFA) allows unsupervised data exploration across multiple data types, identifying major axes of variation and associating these with underlying molecular processes. We hypothesized that applying MOFA to multiomic data obtained from blood might uncover hidden sources of variance and provide pathophysiological insights linked to clinical needs. Here we compile a longitudinal multiomic dataset of the systemic immune landscape in both ACS and CCS (n = 62 patients in total, n = 15 women and n = 47 men) and validate this in an external cohort (n = 55 patients in total, n = 11 women and n = 44 men). MOFA reveals multicellular immune signatures characterized by distinct monocyte, natural killer and T cell substates and immune-communication pathways that explain a large proportion of inter-patient variance. We also identify specific factors that reflect disease state or associate with treatment outcome in ACS as measured using left ventricular ejection fraction. Hence, this study provides proof-of-concept evidence for the ability of MOFA to uncover multicellular immune programs in cardiovascular disease, opening new directions for mechanistic, biomarker and therapeutic studies.
Collapse
Grants
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- Deutsches Zentrum fr Herz-Kreislaufforschung (Deutsches Zentrum fr Herz-Kreislaufforschung e.V.)
- Deutsche Herzstiftung e.V., Frankfurt a.M. Institutional Strategy LMUexcellent of LMU Munich Else-Krner-Fresenius Stiftung DFG Clinician Scientist Programme PRIME DZHK Sule B Antrag DZHK B 21-014 SE
- Was supported by the Helmholtz Association under the joint research school ;Munich School for Data Science MUDS
- DFG GO 3823/1-1, grant number: 510821390 Frderprogramm fr Forschung und Lehre der Medizinischen Fakultt der LMU the Bavarian Cancer Research Center (BZKF) Else Kroner-Fresenius-Stiftung
- Was supported by a grant from the Frderprogramm fur Forschung und Lehre (FFoLe) of the Ludwig Maximilian University (LMU) of Munich.
- DFG SFB 1123, Z02
- DFG EN 1093/2-1
- DFG KO5055-2-1 and KO5055/3-1 the Bavarian Cancer Research Center (BZKF) the international doctoral program i-Target: immunotargeting of cancer the Melanoma Research Alliance (grant number 409510), Marie Sklodowska-Curie Training Network for Optimizing Adoptive T Cell Therapy of Cancer (funded by the Horizon 2020 programme of the European Union; grant 955575), Else Kroner-Fresenius-Stiftung (IOLIN), German Cancer Aid (AvantCAR.de), the Wilhelm-Sander-Stiftung, Ernst Jung Stiftung, Institutional Strategy LMUexcellent of LMU Munich (within the framework of the German Excellence Initiative), the Go-Bio-Initiative, the m4-Award of the Bavarian Ministry for Economical Affairs, Bundesministerium fur Bildung und Forschung, European Research Council (Starting Grant 756017 and PoC Grant 101100460, by the SFB-TRR 338/1 2021452881907, Fritz-Bender Foundation, Deutsche Jose#x0301; Carreras Leuk#x00E4;mie Stiftung, Hector Foundation, the Bavarian Research Foundation, the Bruno and Helene J#x00F6;ster Foundation (360#x00B0; CAR)
- T.P. from the DFG (PE 2704/3-1)
- DFG SFB1243, A14 DFG EN 1093/2-1,
- DZHK Säule B Antrag DZHK B 21-014 SE
- DZHK Säule B Antrag DZHK B 21-014 SE DFG SFB-1470-B03 the Chan Zuckerberg Foundation ERC Advanced Grant under the European Union Horizon 2020 Research and Innovation Program (AdG788970)
- Deutsche Forschungsgemeinschaft (DFG) SFB 914, B02 and Z01 DFG SFB 1123, B06 DFG SFB1321, P10 DFG FOR 2033 ERC-2018-ADG German Centre for Cardiovascular Research (DZHK) MHA 1.4VD
- DZHK project 81Z0600106 Supported by the Chan Zuckerberg Foundation
- DZHK S#x00E4;ule B Antrag DZHK B 21-014 SE Deutsche Herzstiftung e.V., Frankfurt a.M. DFG SFB 1123, B06 DFG NI 2219/2-1 Corona Foundation German Centre for Cardiovascular Research (DZHK) Clinician Scientist Programme the Ernst und Berta Grimmke Stiftung the GTH Junior research grant
- DZHK partner site project Deutsche Forschungsgemeinschaft (DFG) SFB 914, B02 DFG SFB 1123, A07 DFG SFB 359, A03 ERC grant 947611
Collapse
Affiliation(s)
- Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Corinna Losert
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | | | - Christoph Gold
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Irene V van Blokland
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Roy Oelen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hilde E Groot
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Walter Benjamins
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sophia Brambs
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
| | - Rainer Kaiser
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Adrian Gottschlich
- Department of Medicine III, LMU University Hospital, Munich, Germany
- Division of Clinical Pharmacology, LMU University Hospital, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gordon Victor Hoffmann
- Division of Clinical Pharmacology, LMU University Hospital, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Luke Eivers
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
| | | | - Nils Bruns
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
| | - Susanne Stiller
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
| | - Sezer Akgöl
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
| | - Keyang Yue
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
| | - Vivien Polewka
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
| | - Raphael Escaig
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
| | - Markus Joppich
- Department of Informatics, Ludwig-Maximilian University, Munich, Germany
| | - Aleksandar Janjic
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilian University, Munich, Germany
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, LMU University Hospital, Member of the German Center for Lung Research (DZL), Munich, Germany
- German Cancer Consortium (DKTK), a partnership between DKFZ and LMU University Hospital, Partner Site Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Tobias Petzold
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf Zimmer
- Department of Informatics, Ludwig-Maximilian University, Munich, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilian University, Munich, Germany
| | - Kathrin Saar
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Norbert Huebner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lude H Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Monique G P van der Wijst
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Matthias Heinig
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany.
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, LMU University Hospital, Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
7
|
Herrera-Martínez AD, Jiménez CM, Romo AN, Aguilera JL, Crespin MC, Baena BT, Casado-Díaz A, Moreno MÁG, Puerta MJM, Roger AJ. Nutritional Support Reduces Circulating Cytokines in Patients with Heart Failure. Nutrients 2024; 16:1637. [PMID: 38892570 PMCID: PMC11174422 DOI: 10.3390/nu16111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Increased inflammation is associated with the pathogenesis of heart failure (HF). Increased circulating levels of cytokines have been previously reported and generally associated with worse clinical outcomes. In this context, the modulation of inflammation-related parameters seems to be a reasonable therapeutic option for improving the clinical course of the disease. Based on this, we aimed to compare changes in circulating cytokines when Mediterranean diet alone or in combination with hypercaloric, hyperproteic oral nutritional supplements (ONS), enriched with omega-3 (n-3) polyunsaturated fatty acids were administered to patients with HF. Briefly, patients were randomly assigned to receive Mediterranean Diet (control group) vs. Mediterranean Diet plus ONS (intervention group). We observed increased circulating levels of IL-6, IL-8, MCP-1 and IP-10. MCP-1 and IL-6 were associated with overweight and obesity (p = 0.01-0.01-0.04, respectively); IL-6 and IL-8 were positively correlated with fat mass and CRP serum levels (p = 0.02-0.04, respectively). Circulating levels of IL-8 significantly decreased in all patients treated with the Mediterranean diet, while IL-6 and IP-10 only significantly decreased in patients that received plus ONS. In the univariate analysis, MCP-1 and its combination with IL-6 were associated with increased mortality (p = 0.02), while the multivariate analysis confirmed that MCP-1 was an independent factor for mortality (OR 1.01, 95%ci 1.01-1.02). In conclusion, nutritional support using hypercaloric, hyperproteic, n-3 enriched ONS in combination with Mediterranean Diet was associated with decreased circulating levels of some cytokines and could represent an interesting step for improving heart functionality of patients with HF.
Collapse
Affiliation(s)
- Aura D. Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Concepción Muñoz Jiménez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Ana Navas Romo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
- Immunology Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - José López Aguilera
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
- Cardiology Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | | | - Bárbara Torrecillas Baena
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
| | - Antonio Casado-Díaz
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
| | - María Ángeles Gálvez Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - María José Molina Puerta
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Aurora Jurado Roger
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
- Immunology Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| |
Collapse
|
8
|
Sun L, Wilke Saliba S, Apweiler M, Akmermer K, Herlan C, Grathwol C, de Oliveira ACP, Normann C, Jung N, Bräse S, Fiebich BL. Anti-Neuroinflammatory Effects of a Macrocyclic Peptide-Peptoid Hybrid in Lipopolysaccharide-Stimulated BV2 Microglial Cells. Int J Mol Sci 2024; 25:4462. [PMID: 38674048 PMCID: PMC11049839 DOI: 10.3390/ijms25084462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammation processes of the central nervous system (CNS) play a vital role in the pathogenesis of several neurological and psychiatric disorders like depression. These processes are characterized by the activation of glia cells, such as microglia. Clinical studies showed a decrease in symptoms associated with the mentioned diseases after the treatment with anti-inflammatory drugs. Therefore, the investigation of novel anti-inflammatory drugs could hold substantial potential in the treatment of disorders with a neuroinflammatory background. In this in vitro study, we report the anti-inflammatory effects of a novel hexacyclic peptide-peptoid hybrid in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The macrocyclic compound X15856 significantly suppressed Interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), c-c motif chemokine ligand 2 (CCL2), CCL3, C-X-C motif chemokine ligand 2 (CXCL2), and CXCL10 expression and release in LPS-treated BV2 microglial cells. The anti-inflammatory effects of the compound are partially explained by the modulation of the phosphorylation of p38 mitogen-activated protein kinases (MAPK), p42/44 MAPK (ERK 1/2), protein kinase C (PKC), and the nuclear factor (NF)-κB, respectively. Due to its remarkable anti-inflammatory properties, this compound emerges as an encouraging option for additional research and potential utilization in disorders influenced by inflammation, such as depression.
Collapse
Affiliation(s)
- Lu Sun
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Kamil Akmermer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
| | - Claudine Herlan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Christoph Grathwol
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | | | - Claus Normann
- Mechanisms of Depression Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
9
|
Jeong SY, Park BW, Kim J, Lee S, You H, Lee J, Lee S, Park JH, Kim J, Sim W, Ban K, Park J, Park HJ, Kim S. Hyaluronic acid stimulation of stem cells for cardiac repair: a cell-free strategy for myocardial infarct. J Nanobiotechnology 2024; 22:149. [PMID: 38570846 PMCID: PMC10993512 DOI: 10.1186/s12951-024-02410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI), a representative form of ischemic heart disease, remains a huge burden worldwide. This study aimed to explore whether extracellular vesicles (EVs) secreted from hyaluronic acid (HA)-primed induced mesenchymal stem cells (HA-iMSC-EVs) could enhance the cardiac repair after MI. RESULTS HA-iMSC-EVs showed typical characteristics for EVs such as morphology, size, and marker proteins expression. Compared with iMSC-EVs, HA-iMSC-EVs showed enhanced tube formation and survival against oxidative stress in endothelial cells, while reduced reactive oxygen species (ROS) generation in cardiomyocytes. In THP-1 macrophages, both types of EVs markedly reduced the expression of pro-inflammatory signaling players, whereas HA-iMSC-EVs were more potent in augmenting anti-inflammatory markers. A significant decrease of inflammasome proteins was observed in HA-iMSC-EV-treated THP-1. Further, phospho-SMAD2 as well as fibrosis markers in TGF-β1-stimulated cardiomyocytes were reduced in HA-iMSC-EVs treatment. Proteomic data showed that HA-iMSC-EVs were enriched with multiple pathways including immunity, extracellular matrix organization, angiogenesis, and cell cycle. The localization of HA-iMSC-EVs in myocardium was confirmed after delivery by either intravenous or intramyocardial route, with the latter increased intensity. Echocardiography revealed that intramyocardial HA-iMSC-EVs injections improved cardiac function and reduced adverse cardiac remodeling and necrotic size in MI heart. Histologically, MI hearts receiving HA-iMSC-EVs had increased capillary density and viable myocardium, while showed reduced fibrosis. CONCLUSIONS Our results suggest that HA-iMSC-EVs improve cardiac function by augmenting vessel growth, while reducing ROS generation, inflammation, and fibrosis in MI heart.
Collapse
Affiliation(s)
- Seon-Yeong Jeong
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea
| | - Bong-Woo Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
- Catholic High-Performance Cell Therapy Center and Department of Medical Life Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
| | - Jimin Kim
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea
| | - Seulki Lee
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea
| | - Haedeun You
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea
| | - Joohyun Lee
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea
| | - Susie Lee
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
| | - Jinju Kim
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
| | - Woosup Sim
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Joonghoon Park
- Graduate School of International Agricultural Technology, Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, 25354, South Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea.
- Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Soo Kim
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea.
| |
Collapse
|
10
|
Guo W, Zhao L, Huang W, Chen J, Zhong T, Yan S, Hu W, Zeng F, Peng C, Yan H. Sodium-glucose cotransporter 2 inhibitors, inflammation, and heart failure: a two-sample Mendelian randomization study. Cardiovasc Diabetol 2024; 23:118. [PMID: 38566143 PMCID: PMC10986088 DOI: 10.1186/s12933-024-02210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT-2) inhibitors are increasingly recognized for their role in reducing the risk and improving the prognosis of heart failure (HF). However, the precise mechanisms involved remain to be fully delineated. Evidence points to their potential anti-inflammatory pathway in mitigating the risk of HF. METHODS A two-sample, two-step Mendelian Randomization (MR) approach was employed to assess the correlation between SGLT-2 inhibition and HF, along with the mediating effects of inflammatory biomarkers in this relationship. MR is an analytical methodology that leverages single nucleotide polymorphisms as instrumental variables to infer potential causal inferences between exposures and outcomes within observational data frameworks. Genetic variants correlated with the expression of the SLC5A2 gene and glycated hemoglobin levels (HbA1c) were selected using datasets from the Genotype-Tissue Expression project and the eQTLGen consortium. The Genome-wide association study (GWAS) data for 92 inflammatory biomarkers were obtained from two datasets, which included 14,824 and 575,531 individuals of European ancestry, respectively. GWAS data for HF was derived from a meta-analysis that combined 26 cohorts, including 47,309 HF cases and 930,014 controls. Odds ratios (ORs) and 95% confidence interval (CI) for HF were calculated per 1 unit change of HbA1c. RESULTS Genetically predicted SGLT-2 inhibition was associated with a reduced risk of HF (OR 0.42 [95% CI 0.30-0.59], P < 0.0001). Of the 92 inflammatory biomarkers studied, two inflammatory biomarkers (C-X-C motif chemokine ligand 10 [CXCL10] and leukemia inhibitory factor) were associated with both SGLT-2 inhibition and HF. Multivariable MR analysis revealed that CXCL10 was the primary inflammatory cytokine related to HF (MIP = 0.861, MACE = 0.224, FDR-adjusted P = 0.0844). The effect of SGLT-2 inhibition on HF was mediated by CXCL10 by 17.85% of the total effect (95% CI [3.03%-32.68%], P = 0.0183). CONCLUSIONS This study provides genetic evidence supporting the anti-inflammatory effects of SGLT-2 inhibitors and their beneficial impact in reducing the risk of HF. CXCL10 emerged as a potential mediator, offering a novel intervention pathway for HF treatment.
Collapse
Affiliation(s)
- Wenqin Guo
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Lingyue Zhao
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Weichao Huang
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Jing Chen
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Tingting Zhong
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Shaodi Yan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Wei Hu
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Fanfang Zeng
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Changnong Peng
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Hongbing Yan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.
- National Center for Cardiovascular Diseases, Fuwai Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
11
|
Xiong T, Jia Y, Tan F, Long X, Yuan X, She Q, Du J. Integrated analysis reveals ceRNA network of cardiac remodeling by SGLT2 inhibitor in middle-aged hypertensive rats. Biochem Biophys Res Commun 2024; 696:149434. [PMID: 38198921 DOI: 10.1016/j.bbrc.2023.149434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) represent an innovative class of antidiabetic agents that have demonstrated promise in mitigating cardiac remodeling. However, the transcriptional regulatory mechanisms underpinning their impact on blood pressure and the reversal of hypertension-induced cardiac remodeling remain largely unexplored. Given this context, our study concentrated on comparing the cardiac expression profiles of lncRNAs and mRNAs between Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). To validate our results, we performed blood pressure measurements, tissue staining, and qRT-PCR. The treatment led to a significant reduction in systolic blood pressure and improved cardiac remodeling by reducing myocardial fibrosis and regulating the inflammatory response. Our examination disclosed that ventricular tissue mRNA, regulated by hypertension, was primarily concentrated in the complement and coagulation cascades and cytokine-cytokine receptor interactions. Compared with SHR, the SGLT2i treatment group was associated with myocardial contraction. Investigation into the lncRNA-mRNA regulatory network and competing endogenous RNA (ceRNA) network suggested that the potential roles of these differentially expressed (DE) lncRNAs and mRNAs were tied to processes such as collagen fibril organization, inflammatory response, and extracellular matrix (ECM) modifications. We found that the expression of Col3a1, C1qa, and lncRNA NONRATT007139.2 were altered in the SHR group and that SGLT2i treatment reversed these changes. Our results suggest that dapagliflozin effectively reverses hypertension-induced myocardial remodeling through a lncRNA-mRNA transcriptional regulatory network, with immune cell-mediated ECM deposition as a potential regulatory target. This underlines the potentiality of SGLT2i and genes related to immunity as promising targets for the treatment of hypertension.
Collapse
Affiliation(s)
- Tianhua Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuewang Jia
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangyan Tan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xianglin Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Yuan Y, Han X, Zhao X, Zhang H, Vinograd A, Bi X, Duan X, Cao Y, Gao Q, Song J, Sheng L, Li Y. Circulating exosome long non-coding RNAs are associated with atrial structural remodeling by increasing systemic inflammation in atrial fibrillation patients. J Transl Int Med 2024; 12:106-118. [PMID: 38525437 PMCID: PMC10956728 DOI: 10.2478/jtim-2023-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Background Atrial fibrillation (AF) is the most common cardiac arrhythmia with severe clinical sequelae, but its genetic characteristic implicated in pathogenesis has not been completely clarified. Accumulating evidence has indicated that circulating exosomes and their carried cargoes, such as long non-coding RNAs (lncRNAs), involve in the progress of multiple cardiovascular diseases. However, their potential role as clinical biomarkers in AF diagnosis and prognosis remains unknown. Methods Herein, we conducted the sequence and bioinformatic analysis of circulating exosomes harvested from AF and sinus rhythm patients. Results A total of 53 differentially expressed lncRNAs were identified, and a total of 6 significantly changed lncRNAs (fold change > 2.0), including NR0046235, NR003045, NONHSAT167247.1, NONHSAT202361.1, NONHSAT205820.1 and NONHSAT200958.1, were verified by qRT-PCR in 215 participants. Moreover, these circulating exosome lncRNA levels were different between paroxysmal and persistent AF patients, which were dramatically associated with abnormal hemodynamics and atrial diameter. Furthermore, we observed that the area under ROC curve (AUC) of six lncRNAs combination for diagnosis of persistent AF was 80.34%. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment pathway analysis indicated these exosome lncRNAs mainly concerning response to chemokine-chemokine receptor interaction, which induced activated inflammation and structural remodeling. In addition, increased plasma levels of CXCR3 ligands, including CXCL4, CXCL9, CXCL10 and CXCL11, were accumulated in AF patient tissues. Conclusion Our study provides the transcriptome profile revealing pattern of circulating exosome lncRNAs in atrial structural remodeling, which bring valuable insights into improving prognosis and therapeutic targets for AF.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Xuejie Han
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Xinbo Zhao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Haiyu Zhang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Asiia Vinograd
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
- Bashkir State Medical University, UFA, Republic Bashkortostan, Russia
| | - Xin Bi
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Xiaoxu Duan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Yukai Cao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Qiang Gao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Jia Song
- Department of Medicine, Division of Atherosclerosis and Vascular Medicine, Baylor College of Medicine, Houston77054, USA
| | - Li Sheng
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin150001, Heilongjiang Province, China
- Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education, Harbin150001, Heilongjiang Province, China
- Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Harbin150081, Heilongjiang Province, China
- Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| |
Collapse
|
13
|
Ma P, Liu J, Qin J, Lai L, Heo GS, Luehmann H, Sultan D, Bredemeyer A, Bajapa G, Feng G, Jimenez J, He R, Parks A, Amrute J, Villanueva A, Liu Y, Lin CY, Mack M, Amancherla K, Moslehi J, Lavine KJ. Expansion of Pathogenic Cardiac Macrophages in Immune Checkpoint Inhibitor Myocarditis. Circulation 2024; 149:48-66. [PMID: 37746718 PMCID: PMC11323830 DOI: 10.1161/circulationaha.122.062551] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs), antibodies targeting PD-1 (programmed cell death protein 1)/PD-L1 (programmed death-ligand 1) or CTLA4 (cytotoxic T-lymphocyte-associated protein 4), have revolutionized cancer management but are associated with devastating immune-related adverse events including myocarditis. The main risk factor for ICI myocarditis is the use of combination PD-1 and CTLA4 inhibition. ICI myocarditis is often fulminant and is pathologically characterized by myocardial infiltration of T lymphocytes and macrophages. Although much has been learned about the role of T-cells in ICI myocarditis, little is understood about the identity, transcriptional diversity, and functions of infiltrating macrophages. METHODS We used an established murine ICI myocarditis model (Ctla4+/-Pdcd1-/- mice) to explore the cardiac immune landscape using single-cell RNA-sequencing, immunostaining, flow cytometry, in situ RNA hybridization, molecular imaging, and antibody neutralization studies. RESULTS We observed marked increases in CCR2 (C-C chemokine receptor type 2)+ monocyte-derived macrophages and CD8+ T-cells in this model. The macrophage compartment was heterogeneous and displayed marked enrichment in an inflammatory CCR2+ subpopulation highly expressing Cxcl9 (chemokine [C-X-C motif] ligand 9), Cxcl10 (chemokine [C-X-C motif] ligand 10), Gbp2b (interferon-induced guanylate-binding protein 2b), and Fcgr4 (Fc receptor, IgG, low affinity IV) that originated from CCR2+ monocytes. It is important that a similar macrophage population expressing CXCL9, CXCL10, and CD16α (human homologue of mouse FcgR4) was expanded in patients with ICI myocarditis. In silico prediction of cell-cell communication suggested interactions between T-cells and Cxcl9+Cxcl10+ macrophages via IFN-γ (interferon gamma) and CXCR3 (CXC chemokine receptor 3) signaling pathways. Depleting CD8+ T-cells or macrophages and blockade of IFN-γ signaling blunted the expansion of Cxcl9+Cxcl10+ macrophages in the heart and attenuated myocarditis, suggesting that this interaction was necessary for disease pathogenesis. CONCLUSIONS These data demonstrate that ICI myocarditis is associated with the expansion of a specific population of IFN-γ-induced inflammatory macrophages and suggest the possibility that IFN-γ blockade may be considered as a treatment option for this devastating condition.
Collapse
Affiliation(s)
- Pan Ma
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Jing Liu
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Juan Qin
- Division of Cardiology, Department of Medicine, University of California San Francisco (J.Q., J.M.)
| | - Lulu Lai
- Department of Pathology and Immunology (L.L., A.V., C.-Y.L., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology (G.S.H., H.L., D.S., Y.L.), Washington University School of Medicine, St Louis, MO
| | - Hannah Luehmann
- Department of Pathology and Immunology (L.L., A.V., C.-Y.L., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology (G.S.H., H.L., D.S., Y.L.), Washington University School of Medicine, St Louis, MO
| | - Andrea Bredemeyer
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Geetika Bajapa
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Guoshuai Feng
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Jesus Jimenez
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Ruijun He
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Antanisha Parks
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Junedh Amrute
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Ana Villanueva
- Department of Pathology and Immunology (L.L., A.V., C.-Y.L., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology (G.S.H., H.L., D.S., Y.L.), Washington University School of Medicine, St Louis, MO
| | - Chieh-Yu Lin
- Department of Pathology and Immunology (L.L., A.V., C.-Y.L., K.J.L.), Washington University School of Medicine, St Louis, MO
| | - Matthias Mack
- Department of Internal Medicine II - Nephrology, Universitatsklinikum Regensburg Klinik und Poliklinik Innere Medizin II, Regensburg, Germany (M.M.)
| | - Kaushik Amancherla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (K.A.)
| | - Javid Moslehi
- Division of Cardiology, Department of Medicine, University of California San Francisco (J.Q., J.M.)
| | - Kory J Lavine
- Cardiovascular Division, Department of Medicine (P.M., J.L., A.B., G.B., G.F., J.J., R.H., A.P., J.A., K.J.L.), Washington University School of Medicine, St Louis, MO
- Department of Pathology and Immunology (L.L., A.V., C.-Y.L., K.J.L.), Washington University School of Medicine, St Louis, MO
| |
Collapse
|
14
|
Tian X, Zhou G, Li H, Zhang X, Zhao L, Zhang K, Wang L, Liu M, Liu C, Yang P. RBM25 binds to and regulates alternative splicing levels of Slc38a9, Csf1, and Coro6 to affect immune and inflammatory processes in H9c2 cells. PeerJ 2023; 11:e16312. [PMID: 37953772 PMCID: PMC10637245 DOI: 10.7717/peerj.16312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023] Open
Abstract
Background Alternative splicing (AS) is a biological process that allows genes to be translated into diverse proteins. However, aberrant AS can predispose cells to aberrations in biological mechanisms. RNA binding proteins (RBPs), closely affiliated with AS, have gained increased attention in recent years. Among these RBPs, RBM25 has been reported to participate in the cardiac pathological mechanism through regulating AS; however, the involvement of RBM25 as a splicing factor in heart failure remains unclarified. Methods RBM25 was overexpressed in H9c2 cells to explore the target genes bound and regulated by RBM25 during heart failure. RNA sequencing (RNA-seq) was used to scrutinize the comprehensive transcriptional level before identifying AS events influenced by RBM25. Further, improved RNA immunoprecipitation sequencing (iRIP-seq) was employed to pinpoint RBM25-binding sites, and RT-qPCR was used to validate specific genes modulated by RBM25. Results RBM25 was found to upregulate the expression of genes pertinent to the inflammatory response and viral processes, as well as to mediate the AS of genes associated with cellular apoptosis and inflammation. Overlap analysis between RNA-seq and iRIP-seq suggested that RBM25 bound to and manipulated the AS of genes associated with inflammation in H9c2 cells. Moreover, qRT-PCR confirmed Slc38a9, Csf1, and Coro6 as the binding and AS regulatory targets of RBM25. Conclusion Our research implies that RBM25 plays a contributory role in cardiac inflammatory responses via its ability to bind to and regulate the AS of related genes. This study offers preliminary evidence of the influence of RBM25 on inflammation in H9c2 cells.
Collapse
Affiliation(s)
- Xin Tian
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guangli Zhou
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xueting Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lingmin Zhao
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Keyi Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mingwei Liu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen Liu
- Department of Radiology, Affiliated Hospital of Yunnan University, Kunming, China
| | - Ping Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
15
|
Andraska EA, Bonaroti J, Zhang Y, Rivera-Lebron B, Chaer RA, Avgerinos ED. Predictors of chronic thromboembolic pulmonary hypertension in patients with submassive pulmonary embolism treated with catheter-directed thrombolysis versus anticoagulation alone: A secondary analysis of the SUNSET sPE trial. J Vasc Surg Venous Lymphat Disord 2023; 11:1157-1164. [PMID: 37353154 PMCID: PMC10630068 DOI: 10.1016/j.jvsv.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/19/2023] [Accepted: 06/04/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVE Chronic thromboembolic pulmonary hypertension (CTEPH) after pulmonary embolism (PE) is a morbid complication with suboptimal treatment. We aimed to evaluate the biomarker profile and functional outcomes in patients with submassive PE (sPE) treated with catheter-directed thrombolysis (CDT) compared with anticoagulation alone (ACA). We performed a secondary biomarker and survey analysis of the SUNSET sPE (standard vs ultrasound-assisted catheter thrombolysis for submassive pulmonary embolism) randomized trial comparing standard CDT to ultrasound-assisted thrombolysis in patients with sPE. METHODS As a part of the SUNSET sPE study, patients who did not receive an intervention were enrolled in the medical (ACA) arm. The biomarkers associated with CTEPH in the literature (ie, CCL2, CXCL10, PTX3, GDF-15, RAGE, BCA-1, TFPI) were collected and measured using a multiplex assay at diagnosis, discharge, and 3-month follow-up. Patients underwent a 6-minute walk test and answered quality-of-life questionnaires (pulmonary embolism quality of life; University of California, San Diego, shortness of breath questionnaire; 36-item short-form survey) at 3 months after diagnosis. Comparisons were made using the Student t test. Nonparametric tests were used when the distributions were not normal. Significance was set at P ≤ .05. RESULTS A total of 72 patients (age, 56 ± 15 years; 40.3% women) were included in the present analysis. Of these 72 patients, 53 underwent CDT and 19 were included in the ACA arm. The baseline right ventricle/left ventricle ratios were similar between the two groups (CST, 1.8; ACA, 1.7). The survival and complication rates were similar between the two groups. At discharge, CXCL10 (768.9 ± 148.6 pg/mL vs 3032.0 ± 1201.0 pg/mL; P = .018) and PTX3 (3203.5 ± 1298.0 pg/mL vs 12,716.2 ± 6961.5 pg/mL; P = .029) were lower in the CDT group and displayed a quicker return to baseline than in the ACA group. This trend, although not significant, was also seen with the other biomarkers. At 3 months, the 6-minute walking distance and quality-of-life scores were similar between both groups. CONCLUSIONS In patients with sPE, the biomarkers of CTEPH were lower with CDT compared with ACA. At 3 months, both groups demonstrated similar biomarker levels, 6-minute walking distances, and quality-of-life scores.
Collapse
Affiliation(s)
- Elizabeth A Andraska
- Division of Vascular Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA.
| | | | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Belinda Rivera-Lebron
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Rabih A Chaer
- Division of Vascular Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Efthymios D Avgerinos
- Division of Vascular Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
16
|
Amador-Martínez I, Aparicio-Trejo OE, Bernabe-Yepes B, Aranda-Rivera AK, Cruz-Gregorio A, Sánchez-Lozada LG, Pedraza-Chaverri J, Tapia E. Mitochondrial Impairment: A Link for Inflammatory Responses Activation in the Cardiorenal Syndrome Type 4. Int J Mol Sci 2023; 24:15875. [PMID: 37958859 PMCID: PMC10650149 DOI: 10.3390/ijms242115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD) leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria, vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This dysfunction can trigger inflammatory responses in distant organs by releasing Damage-associated molecular patterns (DAMPs). These DAMPs are recognized by immune receptors within cells, including Toll-like receptors (TLR) like TLR2, TLR4, and TLR9, the nucleotide-binding domain, leucine-rich-containing family pyrin domain-containing-3 (NLRP3) inflammasome, and the cyclic guanosine monophosphate (cGMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (cGAS-STING) pathway. Activation of these immune receptors leads to the increased expression of cytokines and chemokines. Excessive chemokine stimulation results in the recruitment of inflammatory cells into tissues, causing chronic damage. Experimental studies have demonstrated that chemokines are upregulated in the heart during CKD, contributing to CRS type 4. Conversely, chemokine inhibitors have been shown to reduce chronic inflammation and prevent cardiorenal impairment. However, the molecular connection between mitochondrial DAMPs and inflammatory pathways responsible for chemokine overactivation in CRS type 4 has not been explored. In this review, we delve into mechanistic insights and discuss how various mitochondrial DAMPs released by the kidney during CKD can activate TLRs, NLRP3, and cGAS-STING immune pathways in the heart. This activation leads to the upregulation of chemokines, ultimately culminating in the establishment of CRS type 4. Furthermore, we propose using chemokine inhibitors as potential strategies for preventing CRS type 4.
Collapse
Affiliation(s)
- Isabel Amador-Martínez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (I.A.-M.); (A.K.A.-R.)
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - Bismarck Bernabe-Yepes
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ana Karina Aranda-Rivera
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (I.A.-M.); (A.K.A.-R.)
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Edilia Tapia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| |
Collapse
|
17
|
Krasic S, Vukomanovic V, Ninic S, Pasic S, Samardzija G, Mitrovic N, Cehic M, Nesic D, Bajcetic M. Mechanisms of redox balance and inflammatory response after the use of methylprednisolone in children with multisystem inflammatory syndrome associated with COVID-19. Front Immunol 2023; 14:1249582. [PMID: 37646033 PMCID: PMC10461094 DOI: 10.3389/fimmu.2023.1249582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Background Multisystem inflammatory syndrome in children (MIS-C) associated with being infected with coronavirus-19 (COVID-19) is a life-threatening condition resulting from cytokine storm, increased synthesis of reactive oxygen species (ROSs), and hyperinflammation occurring in genetically predisposed children following an infection with SARS-CoV-2. Aim The primary aims of our study were to identify changes in the activity of antioxidant enzymes in erythrocytes and total oxidative status in plasma after being treated with methylprednisolone (MP). Methods A prospective cohort study of 67 children (56.7% male) under 18 with MIS-C being treated with MP was conducted at the Mother and Child Health Institute from January 2021 to April 2022. The impact of the therapy was assessed on the basis of the clinical condition, haematological and biochemical blood parameters, and echocardiographic findings. Results 59.7% of patients presented cardiovascular (CV) manifestations, while myocardial dysfunction was observed in half of all patients (50.7%). A severe clinical course was observed in 22/67 patients. Children with CV involvement had a significantly higher relative concentration of B lymphocytes and lower relative concentration of NK cells than patients without CV issues (p < 0.001 and p = 0.004, respectively). Patients with severe MIS-C had a lower relative count of NK cells than those with moderate MIS-C (p = 0.015). Patients with myocardial dysfunction had a higher total oxidative plasma status (TOPS) than children without (p = 0.05), which implicates pronounced oxidative stress in the former cohort. In patients with shock, lower erythrocytes superoxide dismutase (SOD) activity was observed on admission compared to patients without shock (p = 0.04). After MP was administered, TOPS was significantly reduced, while catalase (CAT) and SOD activity increased significantly. Treatment failure (TF) was observed in 6 patients, only females (p=0.005). These patients were younger (p=0.05) and had lower CAT activity on admission (p=0.04) than patients with favorable treatment responses. In the group of patients with TF, TOPS increased after treatment (before 176.2 ± 10.3 mV, after 199.0 ± 36.7 mV). Conclusion MP leads to rapid modulation of TOPS and increases the activity of antioxidant enzymes in erythrocytes resulting in clinical and echocardiographic improvement. Based on the observed changes in the activity of the antioxidant enzymes, we can conclude that s hydrogen peroxide is the dominant ROS in patients with MIS-C. Patients with TF showed reduced CAT activity, whereas the treatment with MP led to pronounced oxidation. This implies that low CAT activity may be a contraindication for using MP.
Collapse
Affiliation(s)
- Stasa Krasic
- Cardiology Department, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - Vladislav Vukomanovic
- Cardiology Department, Mother and Child Health Institute of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Ninic
- Cardiology Department, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - Srdjan Pasic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Immunology Department, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - Gordana Samardzija
- Pathology Department, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - Nemanja Mitrovic
- Pathology Department, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - Maja Cehic
- Cardiology Department, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - Dejan Nesic
- Faculty of Medicine, Institute of Medical Physiology, University of Belgrade, Belgrade, Serbia
| | - Milica Bajcetic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Jyotsna F, Ikram J, Nageeta F, Komal F, Anjlee F, Patel H, Nassri T, Kumari M, Kumar R, Shah SU, Kashif M, Varrassi G, Kumar S, Patel T. Unlocking the Potential of Immunotherapy in Cardiovascular Disease: A Comprehensive Review of Applications and Future Directions. Cureus 2023; 15:e42790. [PMID: 37664375 PMCID: PMC10469982 DOI: 10.7759/cureus.42790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Immunotherapy has emerged as a pioneering therapeutic approach that harnesses the immune system's abilities to combat diseases, particularly in the field of oncology where it has led to significant advancements. However, despite its significant impact in the field of oncology, the potential of immunotherapy in the context of cardiovascular disease (CVD) has not been thoroughly investigated. The purpose of this narrative review is to address the existing knowledge and potential uses of immunotherapy in the field of cardiovascular disease (CVD), with the intention of filling the existing gap in understanding. Furthermore, the review thoroughly examines the future prospects of this swiftly advancing field, providing insights into the aspects that necessitate further investigation and addressing the forthcoming challenges. The review is organized into four distinct sections to enhance comprehension. The first section introduces immunotherapy, presenting the fundamental concepts and principles. The second section explores the immunomodulatory mechanisms in cardiovascular disease (CVD), with a specific focus on the intricate interplay between the immune system and the development of cardiovascular pathogenesis. The utilization of immunotherapy in specific cardiovascular conditions will be examined, investigating the application of immunotherapy in the context of different cardiovascular diseases. The future prospects and challenges in immunotherapy for cardiovascular diseases will be discussed, highlighting the potential areas for future research and addressing the barriers that must be overcome to effectively implement immunotherapeutic interventions in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Fnu Jyotsna
- Medicine, Dr. B.R. Ambedkar Medical College & Hospital, Mohali, IND
| | - Jibran Ikram
- Orthopaedics and Trauma, Rehman Medical Institute, Peshawar, PAK
| | - Fnu Nageeta
- Medicine, Ghulam Muhammad Mahar Medical College, Sukkur, PAK
| | - Fnu Komal
- Medicine, Chandka Medical College, Larkana, PAK
| | - Fnu Anjlee
- Medicine, Ghulam Muhammad Mahar Medical College, Sukkur, PAK
| | - Harshkumar Patel
- Internal Medicine, PDU (Pandit Dindayal Upadhyay) Medical College, Rajkot, IND
| | - Taleb Nassri
- Medicine, Heart and Vascular Institute, Dearborn, USA
| | - Meena Kumari
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Rajesh Kumar
- Business Intelligence and Data Analytics, Westcliff University, Irvine, USA
| | | | - Maham Kashif
- Medicine, Khawaja Muhammad Safdar Medical College, Wazirabad, PAK
| | | | - Satesh Kumar
- Medicine and Surgery, Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, PAK
| | - Tirath Patel
- Medicine, American University of Antigua, St. John, ATG
| |
Collapse
|
19
|
Duggal NM, Lei I, Wu X, Aaronson KD, Pagani FD, Lam HYK, Tang PC. Mitral regurgitation severity at left ventricular assist device implantation is associated with distinct myocardial transcriptomic signatures. J Thorac Cardiovasc Surg 2023; 166:141-152.e1. [PMID: 34689984 PMCID: PMC11217920 DOI: 10.1016/j.jtcvs.2021.08.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/24/2021] [Accepted: 08/24/2021] [Indexed: 01/29/2023]
Abstract
OBJECTIVES We examined for differences in pre-left ventricular assist device (LVAD) implantation myocardial transcriptome signatures among patients with different degrees of mitral regurgitation (MR). METHODS Between January 2018 and October 2019, we collected left ventricular (LV) cores during durable LVAD implantation (n = 72). A retrospective chart review was performed. Total RNA was isolated from LV cores and used to construct cDNA sequence libraries. The libraries were sequenced with the NovaSeq system, and data were quantified using Kallisto. Gene Set Enrichment Analysis (GSEA) and Gene Ontology analyses were performed, with a false discovery rate <0.05 considered significant. RESULTS Comparing patients with preoperative mild or less MR (n = 30) and those with moderate-severe MR (n = 42), the moderate-severe MR group weighted less (P = .004) and had more tricuspid valve repairs (P = .043), without differences in demographics or comorbidities. We then compared both groups with a group of human donor hearts without heart failure (n = 8). Compared with the donor hearts, there were 3985 differentially expressed genes (DEGs) for mild or less MR and 4587 DEGs for moderate-severe MR. Specifically altered genes included 448 DEGs for specific for mild or less MR and 1050 DEGs for moderate-severe MR. On GSEA, common regulated genes showed increased immune gene expression and reduced expression of contraction and energetic genes. Of the 1050 genes specific for moderate-severe MR, there were additional up-regulated genes related to inflammation and reduced expression of genes related to cellular proliferation. CONCLUSIONS Patients undergoing durable LVAD implantation with moderate-severe MR had increased activation of genes related to inflammation and reduction of cellular proliferation genes. This may have important implications for myocardial recovery.
Collapse
Affiliation(s)
- Neal M Duggal
- Department of Anesthesiology, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Ienglam Lei
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Xiaoting Wu
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Keith D Aaronson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Francis D Pagani
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | | | - Paul C Tang
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich.
| |
Collapse
|
20
|
Sopova K, Tual-Chalot S, Mueller-Hennessen M, Vlachogiannis NI, Georgiopoulos G, Biener M, Sachse M, Turchinovich A, Polycarpou-Schwarz M, Spray L, Maneta E, Bennaceur K, Mohammad A, Richardson GD, Gatsiou A, Langer HF, Frey N, Stamatelopoulos K, Heineke J, Duerschmied D, Giannitsis E, Spyridopoulos I, Stellos K. Effector T cell chemokine IP-10 predicts cardiac recovery and clinical outcomes post-myocardial infarction. Front Immunol 2023; 14:1177467. [PMID: 37426649 PMCID: PMC10326041 DOI: 10.3389/fimmu.2023.1177467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023] Open
Abstract
Background and aims Preclinical data suggest that activation of the adaptive immune system is critical for myocardial repair processes in acute myocardial infarction. The aim of the present study was to determine the clinical value of baseline effector T cell chemokine IP-10 blood levels in the acute phase of ST-segment elevation myocardial infarction (STEMI) for the prediction of the left ventricular function changes and cardiovascular outcomes after STEMI. Methods Serum IP-10 levels were retrospectively quantified in two independent cohorts of STEMI patients undergoing primary percutaneous coronary intervention. Results We report a biphasic response of the effector T cell trafficking chemokine IP-10 characterized by an initial increase of its serum levels in the acute phase of STEMI followed by a rapid reduction at 90min post reperfusion. Patients at the highest IP-10 tertile presented also with more CD4 effector memory T cells (CD4 TEM cells), but not other T cell subtypes, in blood. In the Newcastle cohort (n=47), patients in the highest IP-10 tertile or CD4 TEM cells at admission exhibited an improved cardiac systolic function 12 weeks after STEMI compared to patients in the lowest IP-10 tertile. In the Heidelberg cohort (n=331), STEMI patients were followed for a median of 540 days for major adverse cardiovascular events (MACE). Patients presenting with higher serum IP-10 levels at admission had a lower risk for MACE after adjustment for traditional risk factors, CRP and high-sensitivity troponin-T levels (highest vs. rest quarters: HR [95% CI]=0.420 [0.218-0.808]). Conclusion Increased serum levels of IP-10 in the acute phase of STEMI predict a better recovery in cardiac systolic function and less adverse events in patients after STEMI.
Collapse
Affiliation(s)
- Kateryna Sopova
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Cardiology, Royal Victoria Infirmary (RVI) and Freeman Hospitals, Newcastle Upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle Upon Tyne, United Kingdom
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Heidelberg/Mannheim, Germany
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Matthias Mueller-Hennessen
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nikolaos I. Vlachogiannis
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Moritz Biener
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marco Sachse
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Heidelberg/Mannheim, Germany
| | - Andrey Turchinovich
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Heidelberg/Mannheim, Germany
| | - Maria Polycarpou-Schwarz
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Heidelberg/Mannheim, Germany
| | - Luke Spray
- Department of Cardiology, Royal Victoria Infirmary (RVI) and Freeman Hospitals, Newcastle Upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle Upon Tyne, United Kingdom
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Eleni Maneta
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Karim Bennaceur
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Ashfaq Mohammad
- Department of Cardiology, Royal Victoria Infirmary (RVI) and Freeman Hospitals, Newcastle Upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle Upon Tyne, United Kingdom
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Gavin David Richardson
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Aikaterini Gatsiou
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Harald F. Langer
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Norbert Frey
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kimon Stamatelopoulos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Joerg Heineke
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Evangelos Giannitsis
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ioakim Spyridopoulos
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Cardiology, Royal Victoria Infirmary (RVI) and Freeman Hospitals, Newcastle Upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Konstantinos Stellos
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Heidelberg/Mannheim, Germany
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
21
|
Barmada A, Klein J, Ramaswamy A, Brodsky NN, Jaycox JR, Sheikha H, Jones KM, Habet V, Campbell M, Sumida TS, Kontorovich A, Bogunovic D, Oliveira CR, Steele J, Hall EK, Pena-Hernandez M, Monteiro V, Lucas C, Ring AM, Omer SB, Iwasaki A, Yildirim I, Lucas CL. Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine-associated myocarditis. Sci Immunol 2023; 8:eadh3455. [PMID: 37146127 PMCID: PMC10468758 DOI: 10.1126/sciimmunol.adh3455] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
Rare immune-mediated cardiac tissue inflammation can occur after vaccination, including after SARS-CoV-2 mRNA vaccines. However, the underlying immune cellular and molecular mechanisms driving this pathology remain poorly understood. Here, we investigated a cohort of patients who developed myocarditis and/or pericarditis with elevated troponin, B-type natriuretic peptide, and C-reactive protein levels as well as cardiac imaging abnormalities shortly after SARS-CoV-2 mRNA vaccination. Contrary to early hypotheses, patients did not demonstrate features of hypersensitivity myocarditis, nor did they have exaggerated SARS-CoV-2-specific or neutralizing antibody responses consistent with a hyperimmune humoral mechanism. We additionally found no evidence of cardiac-targeted autoantibodies. Instead, unbiased systematic immune serum profiling revealed elevations in circulating interleukins (IL-1β, IL-1RA, and IL-15), chemokines (CCL4, CXCL1, and CXCL10), and matrix metalloproteases (MMP1, MMP8, MMP9, and TIMP1). Subsequent deep immune profiling using single-cell RNA and repertoire sequencing of peripheral blood mononuclear cells during acute disease revealed expansion of activated CXCR3+ cytotoxic T cells and NK cells, both phenotypically resembling cytokine-driven killer cells. In addition, patients displayed signatures of inflammatory and profibrotic CCR2+ CD163+ monocytes, coupled with elevated serum-soluble CD163, that may be linked to the late gadolinium enhancement on cardiac MRI, which can persist for months after vaccination. Together, our results demonstrate up-regulation in inflammatory cytokines and corresponding lymphocytes with tissue-damaging capabilities, suggesting a cytokine-dependent pathology, which may further be accompanied by myeloid cell-associated cardiac fibrosis. These findings likely rule out some previously proposed mechanisms of mRNA vaccine--associated myopericarditis and point to new ones with relevance to vaccine development and clinical care.
Collapse
Affiliation(s)
- Anis Barmada
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jon Klein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Anjali Ramaswamy
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nina N. Brodsky
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Jillian R. Jaycox
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Hassan Sheikha
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Kate M. Jones
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Victoria Habet
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Melissa Campbell
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Tomokazu S. Sumida
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Amy Kontorovich
- The Zena and Michael A. Wiener Cardiovascular Institute; Mindich Child Health and Development Institute; Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- The Zena and Michael A. Wiener Cardiovascular Institute; Mindich Child Health and Development Institute; Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Inborn Errors of Immunity; Precision Immunology Institute; Mindich Child Health and Development Institute; Department of Pediatrics; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos R. Oliveira
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Jeremy Steele
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - E. Kevin Hall
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Mario Pena-Hernandez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Valter Monteiro
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Infection and Immunity, Yale University, New Haven, CT, USA
| | - Aaron M. Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Saad B. Omer
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Yale Center for Infection and Immunity, Yale University, New Haven, CT, USA
| | - Inci Yildirim
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
- Yale Center for Infection and Immunity, Yale University, New Haven, CT, USA
| | - Carrie L. Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
22
|
Ma P, Liu J, Qin J, Lai L, Heo GS, Luehmann H, Sultan D, Bredemeyer A, Bajapa G, Feng G, Jimenez J, Parks A, Amrute J, Villanueva A, Liu Y, Lin CY, Mack M, Amancherla K, Moslehi J, Lavine KJ. Expansion of Disease Specific Cardiac Macrophages in Immune Checkpoint Inhibitor Myocarditis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538426. [PMID: 37162929 PMCID: PMC10168426 DOI: 10.1101/2023.04.28.538426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Immune checkpoint inhibitors (ICIs), antibodies targeting PD-1/PD-L1 or CTLA4 have revolutionized cancer management but are associated with devastating immune-related adverse events (irAEs) including myocarditis. The main risk factor for ICI myocarditis is the use of combination PD-1 and CTLA4 inhibition. ICI-myocarditis is often fulminant and is pathologically characterized by myocardial infiltration of T lymphocytes and macrophages. While much has been learned regarding the role of T-cells in ICI-myocarditis, little is understood regarding the identity, transcriptional diversity, and functions of infiltrating macrophages. Methods We employed an established murine ICI myocarditis model ( Ctla4 +/- Pdcd1 -/- mice) to explore the cardiac immune landscape using single-cell RNA-sequencing, immunostaining, flow cytometry, in situ RNA hybridization and molecular imaging and antibody neutralization studies. Results We observed marked increases in CCR2 + monocyte-derived macrophages and CD8 + T-cells in this model. The macrophage compartment was heterogeneous and displayed marked enrichment in an inflammatory CCR2 + subpopulation highly expressing Cxcl9 , Cxcl10 , Gbp2b , and Fcgr4 that originated from CCR2 + monocytes. Importantly, a similar macrophage population expressing CXCL9 , CXCL10 , and CD16α (human homologue of mouse FcgR4) was found selectively expanded in patients with ICI myocarditis compared to other forms of heart failure and myocarditis. In silico prediction of cell-cell communication suggested interactions between T-cells and Cxcl9 + Cxcl10 + macrophages via IFN-γ and CXCR3 signaling pathways. Depleting CD8 + T-cells, macrophages, and blockade of IFN-γ signaling blunted the expansion of Cxcl9 + Cxcl10 + macrophages in the heart and attenuated myocarditis suggesting that this interaction was necessary for disease pathogenesis. Conclusion These data demonstrate that ICI-myocarditis is associated with the expansion of a specific population of IFN-γ induced inflammatory macrophages and suggest the possibility that IFN-γ blockade may be considered as a treatment option for this devastating condition.
Collapse
Affiliation(s)
- Pan Ma
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jing Liu
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Juan Qin
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Lulu Lai
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrea Bredemeyer
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Geetika Bajapa
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Guoshuai Feng
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jesus Jimenez
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Antanisha Parks
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junedh Amrute
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ana Villanueva
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Matthias Mack
- Department of Internal Medicine II – Nephrology, Universitatsklinikum Regensburg Klinik und Poliklinik Innere Medizin II, Regensburg, Bayern, Germany
| | - Kaushik Amancherla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Javid Moslehi
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
23
|
Moustafa A, Hashemi S, Brar G, Grigull J, Ng SHS, Williams D, Schmitt-Ulms G, McDermott JC. The MEF2A transcription factor interactome in cardiomyocytes. Cell Death Dis 2023; 14:240. [PMID: 37019881 PMCID: PMC10076289 DOI: 10.1038/s41419-023-05665-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023]
Abstract
Transcriptional regulators encoded by the Myocyte Enhancer Factor 2 (MEF2) gene family play a fundamental role in cardiac development, homeostasis and pathology. Previous studies indicate that MEF2A protein-protein interactions serve as a network hub in several cardiomyocyte cellular processes. Based on the idea that interactions with regulatory protein partners underly the diverse roles of MEF2A in cardiomyocyte gene expression, we undertook a systematic unbiased screen of the MEF2A protein interactome in primary cardiomyocytes using an affinity purification-based quantitative mass spectrometry approach. Bioinformatic processing of the MEF2A interactome revealed protein networks involved in the regulation of programmed cell death, inflammatory responses, actin dynamics and stress signaling in primary cardiomyocytes. Further biochemical and functional confirmation of specific protein-protein interactions documented a dynamic interaction between MEF2A and STAT3 proteins. Integration of transcriptome level data from MEF2A and STAT3-depleted cardiomyocytes reveals that the balance between MEF2A and STAT3 activity exerts a level of executive control over the inflammatory response and cardiomyocyte cell survival and experimentally ameliorates Phenylephrine induced cardiomyocyte hypertrophy. Lastly, we identified several MEF2A/STAT3 co-regulated genes, including the MMP9 gene. Herein, we document the cardiomyocyte MEF2A interactome, which furthers our understanding of protein networks involved in the hierarchical control of normal and pathophysiological cardiomyocyte gene expression in the mammalian heart.
Collapse
Affiliation(s)
- Amira Moustafa
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Sara Hashemi
- Analytical Sciences, Sanofi, Toronto, ON, M2R 3T4, Canada
- Seneca College, School of Health Sciences, King City, ON, L7B 1B3, Canada
| | - Gurnoor Brar
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Jörg Grigull
- Department of Mathematics and Statistics, York University, Toronto, ON, M3J1P3, Canada
| | - Siemon H S Ng
- Analytical Sciences, Sanofi, Toronto, ON, M2R 3T4, Canada
- Analytical Development, Notch Therapeutics, Toronto, ON, M5G 1M1, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - John C McDermott
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada.
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
24
|
Zhao Y, Yang J, Chen J, Yang X, Zhang W, Lv N, Tan H, Tang YD. Impact of the Stress Hyperglycemia Ratio on In-Hospital and Long-Term Poor Prognosis in Patients with Acute Myocarditis. Rev Cardiovasc Med 2023; 24:103. [PMID: 39076259 PMCID: PMC11273025 DOI: 10.31083/j.rcm2404103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 07/31/2024] Open
Abstract
Background Few studies have focused on the impact of stress hyperglycemia on adverse outcomes in patients with acute myocarditis. We conducted the present study to assess the association between the stress hyperglycemia ratio (SHR) and poor prognosis in patients with acute myocarditis. Methods From 2006 to 2020, 185 patients with acute myocarditis were enrolled. The SHR was defined as glucose at admission divided by estimated average glucose ([(1.59 × HbA1c %) - 2.59], glycated hemoglobin [HbA1c]). Participants were divided into two groups according to their SHR values. The primary endpoint was defined as in-hospital major adverse cardiovascular events (MACE), including death, heart transplantation, the need for mechanical circulatory support (MCS), and transfer to the intensive care unit (ICU). The secondary endpoint was defined as long-term MACE. Results Subjects in the higher SHR group had more serious conditions, including lower systolic blood pressure, higher heart rate, higher white blood cell count, higher levels of alanine transaminase, troponin I, and C-reactive protein, and worse cardiac function. Multivariate logistic analysis showed that SHR > 1.12 (hazard ratio (HR): 3.946, 95% confidence interval (CI): 1.098-14.182; p = 0.035) was independently associated with in-hospital MACE in patients with acute myocarditis. Kaplan-Meier survival analysis and multivariate Cox analysis suggested that an SHR > 1.39 (HR: 1.931, 95% CI: 0.323-2.682; p = 0.895) was not significantly associated with long-term prognosis. Conclusions SHR was independently associated with in-hospital adverse outcomes in patients with acute myocarditis but not with long-term prognosis.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Cardiovascular Disease, Department of Special Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Jie Yang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Jing Chen
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Xu Yang
- State Key Laboratory of Cardiovascular Disease, Department of Special Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Wei Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Special Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Naqiang Lv
- State Key Laboratory of Cardiovascular Disease, Department of Special Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Huiqiong Tan
- Emergency and Critical Care Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Yi-Da Tang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 100191 Beijing, China
| |
Collapse
|
25
|
Joddar B, Loyola CD, Ramirez SP, Singh I. Inhibition of ERK 1/2 pathway downregulates YAP1/TAZ signaling in human cardiomyocytes exposed to hyperglycemic conditions. Biochem Biophys Res Commun 2023; 648:72-80. [PMID: 36736094 PMCID: PMC9928844 DOI: 10.1016/j.bbrc.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Hyperglycemia-mediated cardiac dysfunction is an acute initiator in the development of vascular complications, leading to cardiac fibrosis. To investigate the effects of hyperglycemia-mediated changes in cardiomyocytes, cells were cultured in-vitro under normoglycemic (5 mM or 25 mM D-glucose) and hyperglycemic (5 → 50 mM or 25 → 50 mM D-glucose) conditions, respectively. After 24-h of hyperglycemic exposure, cells were collected for RNA-sequencing (RNA-seq) studies to further investigate the differentially expressed genes (DEG) related to inflammation and fibrosis in samples cultured under hyperglycemic-in comparison with normoglycemic-conditions. Western Blotting was done to evaluate the protein expression of YAP1/TAZ under hyperglycemia induced stress conditions, as it is known to be involved in fibrotic and vascular inflammatory-mediated conditions. RNA-seq revealed the DEG of multiple targets including matrix metalloproteinases and inflammatory mediators, whose expression was significantly altered in the 5 → 50 mM in comparison with the 25 → 50 mM condition. Western Blotting showed a significant upregulation of the protein expression of the YAP1/TAZ pathway under these conditions as well (5 → 50 mM). To further probe the relationship between the inflammatory extracellular-signal-regulated kinase (ERK 1/2) and its downstream effects on YAP1/TAZ expression we studied the effect of inhibition of the ERK 1/2 signaling cascade in the 5 → 50 mM condition. The application of an ERK 1/2 inhibitor inhibited the expression of the YAP1/TAZ protein in the 5 → 50 mM condition, and this strategy may be useful in preventing and improving hyperglycemia associated cardiovascular damage and inflammation.
Collapse
Affiliation(s)
- Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA; Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA; Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA.
| | - Carla D Loyola
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA; Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Salma P Ramirez
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA; Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Irtisha Singh
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, 8447 Riverside Pkwy Medical Research and Education Building II, Suite 4344, Bryan, TX, 77807-3260, USA
| |
Collapse
|
26
|
Gergely TG, Kucsera D, Tóth VE, Kovács T, Sayour NV, Drobni ZD, Ruppert M, Petrovich B, Ágg B, Onódi Z, Fekete N, Pállinger É, Buzás EI, Yousif LI, Meijers WC, Radovits T, Merkely B, Ferdinandy P, Varga ZV. Characterization of immune checkpoint inhibitor-induced cardiotoxicity reveals interleukin-17A as a driver of cardiac dysfunction after anti-PD-1 treatment. Br J Pharmacol 2023; 180:740-761. [PMID: 36356191 DOI: 10.1111/bph.15984] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/06/2022] [Accepted: 10/29/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Immune checkpoint inhibitors (ICI), such as anti-PD-1 monoclonal antibodies, have revolutionized cancer therapy by enhancing the cytotoxic effects of T-cells against tumours. However, enhanced T-cell activity also may cause myocarditis and cardiotoxicity. Our understanding of the mechanisms of ICI-induced cardiotoxicity is limited. Here, we aimed to investigate the effect of PD-1 inhibition on cardiac function and explore the molecular mechanisms of ICI-induced cardiotoxicity. EXPERIMENTAL APPROACH C57BL6/J and BALB/c mice were treated with isotype control or anti-PD-1 antibody. Echocardiography was used to assess cardiac function. Cardiac transcriptomic changes were investigated by bulk RNA sequencing. Inflammatory changes were assessed by qRT-PCR and immunohistochemistry in heart, thymus, and spleen of the animals. In follow-up experiments, anti-CD4 and anti-IL-17A antibodies were used along with PD-1 blockade in C57BL/6J mice. KEY RESULTS Anti-PD-1 treatment led to cardiac dysfunction and left ventricular dilation in C57BL/6J mice, with increased nitrosative stress. Only mild inflammation was observed in the heart. However, PD-1 inhibition resulted in enhanced thymic inflammatory signalling, where Il17a increased most prominently. In BALB/c mice, cardiac dysfunction was not evident, and thymic inflammatory activation was more balanced. Inhibition of IL-17A prevented anti-PD-1-induced cardiac dysfunction in C57BL6/J mice. Comparing myocardial transcriptomic changes in C57BL/6J and BALB/c mice, differentially regulated genes (Dmd, Ass1, Chrm2, Nfkbia, Stat3, Gsk3b, Cxcl9, Fxyd2, and Ldb3) were revealed, related to cardiac structure, signalling, and inflammation. CONCLUSIONS PD-1 blockade induces cardiac dysfunction in mice with increased IL-17 signalling in the thymus. Pharmacological inhibition of IL-17A treatment prevents ICI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Tamás G Gergely
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary.,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Dániel Kucsera
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary.,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Viktória E Tóth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary.,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Tamás Kovács
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary.,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Nabil V Sayour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary.,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Zsófia D Drobni
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Balázs Petrovich
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary.,MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary.,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Nóra Fekete
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Laura I Yousif
- Department of Cardiology, Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Division of Experimental Cardiology, Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wouter C Meijers
- Department of Cardiology, Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Division of Experimental Cardiology, Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary.,MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary.,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
27
|
Carai P, González LF, Van Bruggen S, Spalart V, De Giorgio D, Geuens N, Martinod K, Jones EAV, Heymans S. Neutrophil inhibition improves acute inflammation in a murine model of viral myocarditis. Cardiovasc Res 2023; 118:3331-3345. [PMID: 35426438 PMCID: PMC9847559 DOI: 10.1093/cvr/cvac052] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Viral myocarditis (VM) is an inflammatory pathology of the myocardium triggered by a viral infection that may cause sudden death or heart failure (HF), especially in the younger population. Current treatments only stabilize and improve cardiac function without resolving the underlying inflammatory cause. The factors that induce VM to progress to HF are still uncertain, but neutrophils have been increasingly associated with the negative evolution of cardiac pathologies. The present study investigates the contribution of neutrophils to VM disease progression in different ways. METHODS AND RESULTS In a coxsackievirus B3- (CVB3) induced mouse model of VM, neutrophils and neutrophil extracellular traps (NETs) were prominent in the acute phase of VM as revealed by enzyme-linked immunosorbent assay analysis and immunostaining. Anti-Ly6G-mediated neutrophil blockade starting at model induction decreased cardiac necrosis and leucocyte infiltration, preventing monocyte and Ly6CHigh pro-inflammatory macrophage recruitment. Furthermore, genetic peptidylarginine deiminase 4-dependent NET blockade reduced cardiac damage and leucocyte recruitment, significantly decreasing cardiac monocyte and macrophage presence. Depleting neutrophils with anti-Ly6G antibodies at 7 days post-infection, after the acute phase, did not decrease cardiac inflammation. CONCLUSION Collectively, these results indicate that the repression of neutrophils and the related NET response in the acute phase of VM improves the pathological phenotype by reducing cardiac inflammation.
Collapse
Affiliation(s)
- Paolo Carai
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Laura Florit González
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Cardiology, Experimental Cardiology Laboratory, Utrecht University, Utrecht, The Netherlands
| | - Stijn Van Bruggen
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Valerie Spalart
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Daria De Giorgio
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milan, Italy
| | - Nadéche Geuens
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Elizabeth Anne Vincent Jones
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Stephane Heymans
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
28
|
Chalise U, Becirovic‐Agic M, Lindsey ML. The cardiac wound healing response to myocardial infarction. WIREs Mech Dis 2023; 15:e1584. [PMID: 36634913 PMCID: PMC10077990 DOI: 10.1002/wsbm.1584] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 01/14/2023]
Abstract
Myocardial infarction (MI) is defined as evidence of myocardial necrosis consistent with prolonged ischemia. In response to MI, the myocardium undergoes a series of wound healing events that initiate inflammation and shift to anti-inflammation before transitioning to tissue repair that culminates in scar formation to replace the region of the necrotic myocardium. The overall response to MI is determined by two major steps, the first of which is the secretion of proteases by infiltrating leukocytes to breakdown extracellular matrix (ECM) components, a necessary step to remove necrotic cardiomyocytes. The second step is the generation of new ECM that comprises the scar; and this step is governed by the cardiac fibroblasts as the major source of new ECM synthesis. The leukocyte component resides in the middle of the two-step process, contributing to both sides as the leukocytes transition from pro-inflammatory to anti-inflammatory and reparative cell phenotypes. The balance between the two steps determines the final quantity and quality of scar formed, which in turn contributes to chronic outcomes following MI, including the progression to heart failure. This review will summarize our current knowledge regarding the cardiac wound healing response to MI, primarily focused on experimental models of MI in mice. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular ResearchUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Research ServiceNebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| | - Mediha Becirovic‐Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular ResearchUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Research ServiceNebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| | - Merry L. Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular ResearchUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Research ServiceNebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| |
Collapse
|
29
|
Sun Y, Mo Y, Jiang S, Shang C, Feng Y, Zeng X. CXC chemokine ligand-10 promotes the accumulation of monocyte-like myeloid-derived suppressor cells by activating p38 MAPK signaling under tumor conditions. Cancer Sci 2022; 114:142-151. [PMID: 36168841 PMCID: PMC9807505 DOI: 10.1111/cas.15598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023] Open
Abstract
CXC chemokine ligand-10 (CXCL10) is a small (10 kDa) secretory protein in the CXC subfamily of cytokines. CXCL10 has been reported to play an important role in antitumor immunity as a chemotactic factor. Tumor development is always accompanied by the formation of an immunosuppressive tumor microenvironment, and the role of CXCL10 in tumor immunosuppression remains unclear. Here, we reported that CXCL10 expression was significantly upregulated in mice with melanoma, and tumor cells secreted large amounts of CXCL10. Myeloid-derived suppressor cells (MDSCs) are an important part of the immunosuppressive tumor microenvironment. Our results showed that CXCL10 promoted the proliferation of monocyte-like (mo)-MDSCs by activating the p38 MAPK signaling pathway through CXCR3, which led to the abnormal accumulation of mo-MDSCs under tumor conditions. This finding provides a new understanding of the mechanism by which a tumor-induced immunosuppressive microenvironment forms and suggests that CXCL10 could be a potential intervention target for slowing tumor progression.
Collapse
Affiliation(s)
- Yingying Sun
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| | - Yan Mo
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| | - Shu Jiang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| | - Chao Shang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| | - Yunpeng Feng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life ScienceNortheast Normal UniversityChangchunChina
| |
Collapse
|
30
|
Soni S, Martens MD, Takahara S, Silver HL, Maayah ZH, Ussher JR, Ferdaoussi M, Dyck JRB. Exogenous ketone ester administration attenuates systemic inflammation and reduces organ damage in a lipopolysaccharide model of sepsis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166507. [PMID: 35902007 DOI: 10.1016/j.bbadis.2022.166507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/20/2022]
Abstract
AIMS Sepsis is a life-threatening condition of organ dysfunction caused by dysregulated inflammation which predisposes patients to developing cardiovascular disease. The ketone β-hydroxybutyrate is reported to be cardioprotective in cardiovascular disease and this may be due to their signaling properties that contribute to reducing inflammation. While exogenous ketone esters (KE) increase blood ketone levels, it remains unknown whether KEs can reduce the enhanced inflammatory response and multi-organ dysfunction that is observed in sepsis. Thus, this study assesses whether a recently developed and clinically safe KE can effectively improve the inflammatory response and organ dysfunction in sepsis. METHODS AND RESULTS To assess the anti-inflammatory effects of a KE, we utilized a model of lipopolysaccharide (LPS)-induced sepsis in which an enhanced inflammatory response results in multi-organ dysfunction. Oral administration of KE for three days prior to LPS-injection significantly protected mice against the profound systemic inflammation compared to their vehicle-treated counterparts. In assessing organ dysfunction, KE protected mice from sepsis-induced cardiac dysfunction as well as renal dysfunction and fibrosis. Furthermore, KE administration attenuated the sepsis-induced inflammation in the heart, kidney, and liver. Moreover, these protective effects occurred independent of changes to enzymes involved in ketone metabolism. CONCLUSION These data show that the use of an exogenous KE attenuates the dysregulated systemic and organ inflammation as well as organ dysfunction in a model of severe inflammation. We postulate that this exogenous KE is an appealing and promising approach to capitalize on the protective anti-inflammatory effects of ketones in sepsis and/or other inflammatory responses.
Collapse
Affiliation(s)
- Shubham Soni
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew D Martens
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shingo Takahara
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Heidi L Silver
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zaid H Maayah
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - John R Ussher
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mourad Ferdaoussi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
31
|
Satarkar D, Patra C. Evolution, Expression and Functional Analysis of CXCR3 in Neuronal and Cardiovascular Diseases: A Narrative Review. Front Cell Dev Biol 2022; 10:882017. [PMID: 35794867 PMCID: PMC9252580 DOI: 10.3389/fcell.2022.882017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Chemokines form a sophisticated communication network wherein they maneuver the spatiotemporal migration of immune cells across a system. These chemical messengers are recognized by chemokine receptors, which can trigger a cascade of reactions upon binding to its respective ligand. CXC chemokine receptor 3 (CXCR3) is a transmembrane G protein-coupled receptor, which can selectively bind to CXCL9, CXCL10, and CXCL11. CXCR3 is predominantly expressed on immune cells, including activated T lymphocytes and natural killer cells. It thus plays a crucial role in immunological processes like homing of effector cells to infection sites and for pathogen clearance. Additionally, it is expressed on several cell types of the central nervous system and cardiovascular system, due to which it has been implicated in several central nervous system disorders, including Alzheimer's disease, multiple sclerosis, dengue viral disease, and glioblastoma, as well as cardiovascular diseases like atherosclerosis, Chronic Chagas cardiomyopathy, and hypertension. This review provides a narrative description of the evolution, structure, function, and expression of CXCR3 and its corresponding ligands in mammals and zebrafish and the association of CXCR3 receptors with cardiovascular and neuronal disorders. Unraveling the mechanisms underlying the connection of CXCR3 and disease could help researchers investigate the potential of CXCR3 as a biomarker for early diagnosis and as a therapeutic target for pharmacological intervention, along with developing robust zebrafish disease models.
Collapse
Affiliation(s)
- Devi Satarkar
- Department of Developmental Biology, Agharkar Research Institute, Pune, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, India
- SP Phule University, Pune, India
| |
Collapse
|
32
|
Establishment of a novel myocarditis mouse model based on cyclosporine A. Genes Genomics 2022; 44:1593-1605. [PMID: 35666459 DOI: 10.1007/s13258-022-01267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Myocarditis is a myocardial injury that can easily cause adolescent death. Traditional research models of animal invasion with viral components, lipopolysaccharide (LPS) or porcine myocardial myosin, among others, have the shortcomings of potential biological safety hazards and high animal mortality. OBJECTIVE To explore the construction of a novel myocarditis model with cyclosporine A and the potential genes and pathways associated with it. METHODS BALB/c mice were used in this study, and cyclosporin A and LPS were injected into the peritoneal cavity of mice. The successful establishment of the model was assessed by detecting serum myocardial injury markers and inflammatory factors levels, HE, IHC staining, and RT-qPCR methods. Key genes were obtained using the GSE35182 dataset from the GEO database and validated with the RT-qPCR method. RESULTS We found that a large number of inflammatory cells infiltrated the myocardium of mice in each group of Cyclosporin A constructed model, while the expression of inflammatory factor indicators was increased, and this model has the characteristics of high degree of local inflammation in myocardial tissue, low mortality, and safe and non-toxic treatment. Using GSE35182 data, we selected 18 Hub genes and validated Hub genes in myocardial tissue with RT-qPCR and found that multiple signaling pathways such as Toll-likereceptor signaling pathway(TLRs), Rap1 signal pathway(Rap1), and Chemokine signaling pathway may be involved in the development of myocarditis. CONCLUSION Cyclosporin A can construct a new myocarditis model, and TLRs, Chemokines and Rap1 signaling pathways may be the core pathways of myocarditis.
Collapse
|
33
|
Giannattasio S, Citarella A, Trocchianesi S, Filardi T, Morano S, Lenzi A, Ferretti E, Crescioli C. Cell-Target-Specific Anti-Inflammatory Effect of Empagliflozin: In Vitro Evidence in Human Cardiomyocytes. Front Mol Biosci 2022; 9:879522. [PMID: 35712355 PMCID: PMC9194473 DOI: 10.3389/fmolb.2022.879522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
The antidiabetic sodium–glucose cotransporter type 2 inhibitor (SGLT2i) empagliflozin efficiently reduces heart failure (HF) hospitalization and cardiovascular death in type 2 diabetes (T2D). Empagliflozin-cardioprotection likely includes anti-inflammatory effects, regardless glucose lowering, but the underlying mechanisms remain unclear. Inflammation is a primary event in diabetic cardiomyopathy (DCM) and HF development. The interferon (IFN)γ-induced 10-kDa protein (IP-10/CXCL10), a T helper 1 (Th1)-type chemokine, promotes cardiac inflammation, fibrosis, and diseases, including DCM, ideally representing a therapeutic target. This preliminary study aims to explore whether empagliflozin directly affects Th1-challenged human cardiomyocytes, in terms of CXCL10 targeting. To this purpose, empagliflozin dose–response curves were performed in cultured human cardiomyocytes maintained within a Th1-dominant inflammatory microenvironment (IFNγ/TNFα), and CXCL10 release with the intracellular IFNγ-dependent signaling pathway (Stat-1) was investigated. To verify possible drug–cell-target specificity, the same assays were run in human skeletal muscle cells. Empagliflozin dose dependently inhibited CXCL10 secretion (IC50 = 76,14 × 10-9 M) in association with Stat-1 pathway impairment only in Th1-induced human cardiomyocytes, suggesting drug-selective cell-type-targeting. As CXCL10 plays multifaceted functions in cardiac remodeling toward HF and currently there is no effective method to prevent it, these preliminary data might be hypothesis generating to open new scenarios in the translational approach to SGLT2i-dependent cardioprotection.
Collapse
Affiliation(s)
- Silvia Giannattasio
- Laboratory of Endocrine Research, Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- Laboratory of Nutrigenetic and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Anna Citarella
- Laboratory of Oncogemics, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Sofia Trocchianesi
- Laboratory of Molecular Medicine “Alberto Gulino” Group, Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Tiziana Filardi
- Laboratory of Oncogemics, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Susanna Morano
- Laboratory of Oncogemics, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Andrea Lenzi
- Laboratory of Oncogemics, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Elisabetta Ferretti
- Laboratory of Oncogemics, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
- *Correspondence: Elisabetta Ferretti, ; Clara Crescioli,
| | - Clara Crescioli
- Laboratory of Endocrine Research, Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- *Correspondence: Elisabetta Ferretti, ; Clara Crescioli,
| |
Collapse
|
34
|
Intrapericardial Administration of Secretomes from Menstrual Blood-Derived Mesenchymal Stromal Cells: Effects on Immune-Related Genes in a Porcine Model of Myocardial Infarction. Biomedicines 2022; 10:biomedicines10051117. [PMID: 35625854 PMCID: PMC9138214 DOI: 10.3390/biomedicines10051117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Acute myocardial infarction (AMI) is a manifestation of ischemic heart disease where the immune system plays an important role in the re-establishment of homeostasis. We hypothesize that the anti-inflammatory activity of secretomes from menstrual blood-derived mesenchymal stromal cells (S-MenSCs) and IFNγ/TNFα-primed MenSCs (S-MenSCs*) may be considered a therapeutic option for the treatment of AMI. To assess this hypothesis, we have evaluated the effect of S-MenSCs and S-MenSCs* on cardiac function parameters and the involvement of immune-related genes using a porcine model of AMI. Twelve pigs were randomly divided into three biogroups: AMI/Placebo, AMI/S-MenSCs, and AMI/S-MenSCs*. AMI models were generated using a closed chest coronary occlusion-reperfusion procedure and, after 72 h, the different treatments were intrapericardially administered. Cardiac function parameters were monitored by magnetic resonance imaging before and 7 days post-therapy. Transcriptomic analyses in the infarcted tissue identified 571 transcripts associated with the Gene Ontology term Immune response, of which 57 were differentially expressed when different biogroups were compared. Moreover, a prediction of the interactions between differentially expressed genes (DEGs) and miRNAs from secretomes revealed that some DEGs in the infarction area, such as STAT3, IGFR1, or BCL6 could be targeted by previously identified miRNAs in secretomes from MenSCs. In conclusion, the intrapericardial administration of secretome early after infarction has a significant impact on the expression of immune-related genes in the infarcted myocardium. This confirms the immunomodulatory potential of intrapericardially delivered secretomes and opens new therapeutic perspectives in myocardial infarction treatment.
Collapse
|
35
|
Wang N, Chen Z, Zhang F, Zhang Q, Sun L, Lv H, Wang B, Shen J, Zhou X, Chen F, Zhang B, Meng L, Zhou H, Bai Z, Huang J. Intravenous Immunoglobulin Therapy Restores the Quantity and Phenotype of Circulating Dendritic Cells and CD4 + T Cells in Children With Acute Kawasaki Disease. Front Immunol 2022; 13:802690. [PMID: 35222381 PMCID: PMC8866170 DOI: 10.3389/fimmu.2022.802690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
Background Intravenous immunoglobulin (IVIG) showed its therapeutic efficacy on Kawasaki disease (KD). However, the mechanisms by which it reduces systemic inflammation are not completely understood. Dendritic cells (DCs) and T cells play critical roles in the pathogenic processes of immune disorders. Assessing the quantity of DC subsets and T cells and identifying functional molecules present on these cells, which provide information about KD, in the peripheral blood may provide new insights into the mechanisms of immunoglobulin therapy. Methods In total, 54 patients with KD and 27 age-matched healthy controls (HCs) were included in this study. The number, percentage, and phenotype of DC subsets and CD4+ T cells in peripheral blood were analyzed through flow cytometry. Results Patients with KD exhibited fewer peripheral DC subsets and CD4+ T cells than HCs. Human leucocyte antigen-DR (HLA-DR) expression was reduced on CD1c+ myeloid DCs (CD1c+ mDCs), whereas that on plasmacytoid DCs (pDCs) did not change significantly. Both pDCs and CD1c+ mDCs displayed significantly reduced expression of co-stimulatory molecules, including CD40, CD86. pDCs and CD1c+ mDCs presented an immature or tolerant phenotype in acute stages of KD. Number of circulating pDC and CD1c+ mDC significantly inversely correlated with plasma interleukin-6 (IL-6) levels in KD patients pre-IVIG treatment. No significant differences were found concerning the DC subsets and CD4+ T cells in patients with KD with and without coronary artery lesions. Importantly, these altered quantity and phenotypes on DC subsets and CD4+ T cells were restored to a great extent post-IVIG treatment. T helper (Th) subsets including Th1 and Th2 among CD4+ T cells did not show alteration pre- and post-IVIG treatment, although the Th1-related cytokine IFN-γ level in plasma increased dramatically in patients with KD pre-IVIG treatment. Conclusions pDCs and CD1c+ mDCs presented an immature or tolerant phenotype in acute stages of KD, IVIG treatment restored the quantity and functional molecules of DCs and CD4+ T cells to distinct levels in vivo, indicating the involvement of DCs and CD4+ T cells in the inflammation in KD. The findings provide insights into the immunomodulatory actions of IVIG in KD.
Collapse
Affiliation(s)
- Nana Wang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Zhongyue Chen
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Fan Zhang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Qianwen Zhang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Ling Sun
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Bo Wang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Jie Shen
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Xufang Zhou
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Feiyan Chen
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Binwei Zhang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Lijun Meng
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Huiting Zhou
- Pediatric Research Institute of Soochow University, Suzhou, China
| | - ZhenJiang Bai
- Department of Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, China
| | - Jie Huang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
36
|
Phang RJ, Ritchie RH, Hausenloy DJ, Lees JG, Lim SY. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc Res 2022; 119:668-690. [PMID: 35388880 PMCID: PMC10153440 DOI: 10.1093/cvr/cvac049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with Type 2 diabetes mellitus (T2DM) frequently exhibit a distinctive cardiac phenotype known as diabetic cardiomyopathy. Cardiac complications associated with T2DM include cardiac inflammation, hypertrophy, fibrosis and diastolic dysfunction in the early stages of the disease, which can progress to systolic dysfunction and heart failure. Effective therapeutic options for diabetic cardiomyopathy are limited and often have conflicting results. The lack of effective treatments for diabetic cardiomyopathy is due in part, to our poor understanding of the disease development and progression, as well as a lack of robust and valid preclinical human models that can accurately recapitulate the pathophysiology of the human heart. In addition to cardiomyocytes, the heart contains a heterogeneous population of non-myocytes including fibroblasts, vascular cells, autonomic neurons and immune cells. These cardiac non-myocytes play important roles in cardiac homeostasis and disease, yet the effect of hyperglycaemia and hyperlipidaemia on these cell types are often overlooked in preclinical models of diabetic cardiomyopathy. The advent of human induced pluripotent stem cells provides a new paradigm in which to model diabetic cardiomyopathy as they can be differentiated into all cell types in the human heart. This review will discuss the roles of cardiac non-myocytes and their dynamic intercellular interactions in the pathogenesis of diabetic cardiomyopathy. We will also discuss the use of sodium-glucose cotransporter 2 inhibitors as a therapy for diabetic cardiomyopathy and their known impacts on non-myocytes. These developments will no doubt facilitate the discovery of novel treatment targets for preventing the onset and progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ren Jie Phang
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca H Ritchie
- School of Biosciences, Parkville, Victoria 3010, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| |
Collapse
|
37
|
Neves EGA, Koh CC, Souza-Silva TG, Passos LSA, Silva ACC, Velikkakam T, Villani F, Coelho JS, Brodskyn CI, Teixeira A, Gollob KJ, Nunes MDCP, Dutra WO. T-Cell Subpopulations Exhibit Distinct Recruitment Potential, Immunoregulatory Profile and Functional Characteristics in Chagas versus Idiopathic Dilated Cardiomyopathies. Front Cardiovasc Med 2022; 9:787423. [PMID: 35187122 PMCID: PMC8847602 DOI: 10.3389/fcvm.2022.787423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic Chagas cardiomyopathy (CCC) is one of the deadliest cardiomyopathies known and the most severe manifestation of Chagas disease, which is caused by infection with the parasite Trypanosoma cruzi. Idiopathic dilated cardiomyopathies (IDC) are a diverse group of inflammatory heart diseases that affect the myocardium and are clinically similar to CCC, often causing heart failure and death. While T-cells are critical for mediating cardiac pathology in CCC and IDC, the mechanisms underlying T-cell function in these cardiomyopathies are not well-defined. In this study, we sought to investigate the phenotypic and functional characteristics of T-cell subpopulations in CCC and IDC, aiming to clarify whether the inflammatory response is similar or distinct in these cardiomyopathies. We evaluated the expression of systemic cytokines, determined the sources of the different cytokines, the expression of their receptors, of cytotoxic molecules, and of molecules associated with recruitment to the heart by circulating CD4+, CD8+, and CD4-CD8- T-cells from CCC and IDC patients, using multiparameter flow cytometry combined with conventional and unsupervised machine-learning strategies. We also used an in silico approach to identify the expression of genes that code for key molecules related to T-cell function in hearts of patient with CCC and IDC. Our data demonstrated that CCC patients displayed a more robust systemic inflammatory cytokine production as compared to IDC. While CD8+ T-cells were highly activated in CCC as compared to IDC, CD4+ T-cells were more activated in IDC. In addition to differential expression of functional molecules, these cells also displayed distinct expression of molecules associated with recruitment to the heart. In silico analysis of gene transcripts in the cardiac tissue demonstrated a significant correlation between CD8 and inflammatory, cytotoxic and cardiotropic molecules in CCC transcripts, while no correlation with CD4 was observed. A positive correlation was observed between CD4 and perforin transcripts in hearts from IDC but not CCC, as compared to normal tissue. These data show a clearly distinct systemic and local cellular response in CCC and IDC, despite their similar cardiac impairment, which may contribute to identifying specific immunotherapeutic targets in these diseases.
Collapse
Affiliation(s)
- Eula G. A. Neves
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carolina C. Koh
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thaiany G. Souza-Silva
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lívia Silva Araújo Passos
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Brigham and Womens Hospital, Harvard University, Boston, MA, United States
| | - Ana Carolina C. Silva
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Teresiama Velikkakam
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Villani
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Minas Gerais State University, Divinópolis, Brazil
| | - Janete Soares Coelho
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | - Claudia Ida Brodskyn
- Gonçalo Moniz Research Center, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Andrea Teixeira
- Rene Rachou Institute, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Kenneth J. Gollob
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, Brazil
| | - Maria do Carmo P. Nunes
- Graduate Program in Infectology and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Walderez O. Dutra
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, Brazil
- Graduate Program in Infectology and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
38
|
Sottili M, Filardi T, Cantini G, Cosmi L, Morano S, Luconi M, Lenzi A, Crescioli C. Human cell-based anti-inflammatory effects of rosiglitazone. J Endocrinol Invest 2022; 45:105-114. [PMID: 34170488 DOI: 10.1007/s40618-021-01621-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE The C-X-C motif chemokine ligand 10 (CXCL10) participates in diabetes and diabetic cardiomyopathy development from the early stages. Rosiglitazone (RGZ) exhibits anti-inflammatory properties and can target cardiomyocytes secreting CXCL10, under interferon (IFN)γ and tumor necrosis factor (TNF)α challenge. Cardiomyocyte remodeling, CD4 + T cells and dendritic cells (DCs) significantly contribute to the inflammatory milieu underlying and promoting disease development. We aimed to study the effect of RGZ onto inflammation-induced secretion of CXCL10, IFNγ, TNFα, interleukin (IL)-6 and IL-8 by human CD4 + T and DCs, and onto IFNγ/TNFα-dependent signaling in human cardiomyocytes associated with chemokine release. METHODS Cells maintained within an inflammatory-like microenvironment were exposed to RGZ at near therapy dose (5 µM). ELISA quantified cytokine secretion; qPCR measured mRNA expression; Western blot analyzed protein expression and activation; immunofluorescent analysis detected intracellular IFNγ/TNFα-dependent trafficking. RESULTS In human CD4 + T cells and DCs, RGZ inhibited CXCL10 release likely with a transcriptional mechanism, and reduced TNFα only in CD4 + T cells. In human cardiomyocytes, RGZ impaired IFNγ/TNFα signal transduction, blocking the phosphorylation/nuclear translocation of signal transducer and activator of transcription 1 (Stat1) and nuclear factor-kB (NF-kB), in association with a significant decrease in CXCL10 expression, IL-6 and IL-8 release. CONCLUSION As the combination of Th1 biomarkers like CXCL10, IL-8, IL-6 with classical cardiovascular risk factors seems to improve the accuracy in predicting T2D and coronary events, future studies might be desirable to further investigate the anti-Th1 effect of RGZ.
Collapse
Affiliation(s)
- M Sottili
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - T Filardi
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - G Cantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
- DENOTHE Center of Excellence for Research, Transfer and High Education, University of Florence, 50139, Florence, Italy
| | - L Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - S Morano
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - M Luconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
- DENOTHE Center of Excellence for Research, Transfer and High Education, University of Florence, 50139, Florence, Italy
- Istituto Nazionale Biostrutture E Biosistemi (INBB), viale delle Medaglie d'Oro 305, 00136, Rome, Italy
| | - A Lenzi
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - C Crescioli
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", Piazza L. de Bosis 6, 00135, Rome, Italy.
| |
Collapse
|
39
|
The Involvement of CXC Motif Chemokine Ligand 10 (CXCL10) and Its Related Chemokines in the Pathogenesis of Coronary Artery Disease and in the COVID-19 Vaccination: A Narrative Review. Vaccines (Basel) 2021; 9:vaccines9111224. [PMID: 34835155 PMCID: PMC8623875 DOI: 10.3390/vaccines9111224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Coronary artery disease (CAD) and coronary heart disease (CHD) constitute two of the leading causes of death in Europe, USA and the rest of the world. According to the latest reports of the Iranian National Health Ministry, CAD is the main cause of death in Iranian patients with an age over 35 years despite a significant reduction in mortality due to early interventional treatments in the context of an acute coronary syndrome (ACS). Inflammation plays a fundamental role in coronary atherogenesis, atherosclerotic plaque formation, acute coronary thrombosis and CAD establishment. Chemokines are well-recognized mediators of inflammation involved in several bio-functions such as leucocyte migration in response to inflammatory signals and oxidative vascular injury. Different chemokines serve as chemo-attractants for a wide variety of cell types including immune cells. CXC motif chemokine ligand 10 (CXCL10), also known as interferon gamma-induced protein 10 (IP-10/CXLC10), is a chemokine with inflammatory features whereas CXC chemokine receptor 3 (CXCR3) serves as a shared receptor for CXCL9, 10 and 11. These chemokines mediate immune responses through the activation and recruitment of leukocytes, eosinophils, monocytes and natural killer (NK) cells. CXCL10, interleukin (IL-15) and interferon (IFN-g) are increased after a COVID-19 vaccination with a BNT162b2 mRNA (Pfizer/BioNTech) vaccine and are enriched by tumor necrosis factor alpha (TNF-α) and IL-6 after the second vaccination. The aim of the present study is the presentation of the elucidation of the crucial role of CXCL10 in the patho-physiology and pathogenesis of CAD and in identifying markers associated with the vaccination resulting in antibody development.
Collapse
|
40
|
Rikhi R, Karnuta J, Hussain M, Collier P, Funchain P, Tang WHW, Chan TA, Moudgil R. Immune Checkpoint Inhibitors Mediated Lymphocytic and Giant Cell Myocarditis: Uncovering Etiological Mechanisms. Front Cardiovasc Med 2021; 8:721333. [PMID: 34434981 PMCID: PMC8381278 DOI: 10.3389/fcvm.2021.721333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) has revolutionized the field of oncology, but these are associated with immune related adverse events. One such adverse event, is myocarditis, which has limited the continued immunosuppressive treatment options in patients afflicted by the disease. Pre-clinical and clinical data have found that specific ICI targets and precipitate distinct myocardial infiltrates, consistent with lymphocytic or giant cell myocarditis. Specifically, it has been reported that CTLA-4 inhibition preferentially results in giant cell myocarditis with a predominately CD4+ T cell infiltrate and PD-1 inhibition leads to lymphocytic myocarditis, with a predominately CD8+ T cell infiltrate. Our manuscript discusses the latest literature surrounding ICI pathways and targets, while detailing proposed mechanisms behind ICI mediated myocarditis.
Collapse
Affiliation(s)
- Rishi Rikhi
- Department of Medicine, Cleveland Clinic Foundation, Cleveland, OH, United States.,Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jaret Karnuta
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Muzna Hussain
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Patrick Collier
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Pauline Funchain
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Hematology and Medical Oncology, Taussig Cancer Center Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Wai Hong Wilson Tang
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH, United States
| | - Rohit Moudgil
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
41
|
Sayed N, Huang Y, Nguyen K, Krejciova-Rajaniemi Z, Grawe AP, Gao T, Tibshirani R, Hastie T, Alpert A, Cui L, Kuznetsova T, Rosenberg-Hasson Y, Ostan R, Monti D, Lehallier B, Shen-Orr SS, Maecker HT, Dekker CL, Wyss-Coray T, Franceschi C, Jojic V, Haddad F, Montoya JG, Wu JC, Davis MM, Furman D. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. ACTA ACUST UNITED AC 2021; 1:598-615. [PMID: 34888528 PMCID: PMC8654267 DOI: 10.1038/s43587-021-00082-y] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While many diseases of aging have been linked to the immunological system, immune metrics capable of identifying the most at-risk individuals are lacking. From the blood immunome of 1,001 individuals aged 8-96 years, we developed a deep-learning method based on patterns of systemic age-related inflammation. The resulting inflammatory clock of aging (iAge) tracked with multimorbidity, immunosenescence, frailty and cardiovascular aging, and is also associated with exceptional longevity in centenarians. The strongest contributor to iAge was the chemokine CXCL9, which was involved in cardiac aging, adverse cardiac remodeling and poor vascular function. Furthermore, aging endothelial cells in human and mice show loss of function, cellular senescence and hallmark phenotypes of arterial stiffness, all of which are reversed by silencing CXCL9. In conclusion, we identify a key role of CXCL9 in age-related chronic inflammation and derive a metric for multimorbidity that can be utilized for the early detection of age-related clinical phenotypes.
Collapse
|
42
|
Rudzinskas S, Hoffman JF, Martinez P, Rubinow DR, Schmidt PJ, Goldman D. In vitro model of perimenopausal depression implicates steroid metabolic and proinflammatory genes. Mol Psychiatry 2021; 26:3266-3276. [PMID: 32788687 PMCID: PMC7878574 DOI: 10.1038/s41380-020-00860-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/09/2022]
Abstract
The estimated 20-30% of women who develop perimenopausal depression (PMD) are at an increased risk of cardiovascular and all-cause mortality. The therapeutic benefits of estradiol (E2) and symptom-provoking effects of E2-withdrawal (E2-WD) suggest that a greater sensitivity to changes in E2 at the cellular level contribute to PMD. We developed an in vitro model of PMD with lymphoblastoid cell lines (LCLs) derived from participants of a prior E2-WD clinical study. LCLs from women with past PMD (n = 8) or control women (n = 9) were cultured in three experimental conditions: at vehicle baseline, during E2 treatment, and following E2-WD. Transcriptome analysis revealed significant differences in transcript expression in PMD in all experimental conditions, and significant overlap in genes that were changed in PMD regardless of experimental condition. Of these, chemokine CXCL10, previously linked to cardiovascular disease, was upregulated in women with PMD, but most so after E2-WD (p < 1.55 × 10-5). CYP7B1, an enzyme intrinsic to DHEA metabolism, was upregulated in PMD across experimental conditions (F(1,45) = 19.93, p < 0.0001). These transcripts were further validated via qRT-PCR. Gene networks dysregulated in PMD included inflammatory response, early/late E2-response, and cholesterol homeostasis. Our results provide evidence that differential behavioral responsivity to E2-WD in PMD reflects intrinsic differences in cellular gene expression. Genes such as CXCL10, CYP7B1, and corresponding proinflammatory and steroid biosynthetic gene networks, may represent biomarkers and molecular targets for intervention in PMD. Finally, this in vitro model allows for future investigations into the mechanisms of genes and gene networks involved in the vulnerability to, and consequences of, PMD.
Collapse
Affiliation(s)
- Sarah Rudzinskas
- Behavioral Endocrinology Branch, NIMH, Bethesda, MD, USA
- Laboratory of Neurogenetics, NIAAA, Rockville, MD, USA
| | - Jessica F Hoffman
- Behavioral Endocrinology Branch, NIMH, Bethesda, MD, USA
- Laboratory of Neurogenetics, NIAAA, Rockville, MD, USA
| | - Pedro Martinez
- Behavioral Endocrinology Branch, NIMH, Bethesda, MD, USA
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | | | - David Goldman
- Laboratory of Neurogenetics, NIAAA, Rockville, MD, USA
| |
Collapse
|
43
|
Xian W, Wu J, Li Q, Du X, Wang N, Chen D, Gao W, Cao J. CXCR3 alleviates renal ischemia‑reperfusion injury via increase of Tregs. Mol Med Rep 2021; 24:541. [PMID: 34080653 PMCID: PMC8170869 DOI: 10.3892/mmr.2021.12180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence has demonstrated that regulatory T cells (Tregs) suppress innate immunity, as well as protect the kidneys from ischemia‑reperfusion injury (IRI) and offer a potentially effective strategy to prevent or alleviate renal IRI. The present study explored whether C‑X‑C motif chemokine receptor 3 (CXCR3) alleviated renal IRI by increasing Tregs. Male C57BL/6J mice were divided into sham‑surgery, IRI, CXCR3 overexpression (OE‑CXCR3)+IRI, PC61+IRI and OE‑CXCR3+PC61+IRI groups. Histopathological examination of the kidney was carried out using hematoxylin‑eosin and Masson staining. The levels of serum creatinine (Scr) and blood urea nitrogen (BUN) were measured. Blood and kidney levels of IL‑6, TNF‑α, C‑C motif chemokine ligand (CCL)‑2 and IL‑10 were detected by ELISA and western blotting. The levels of superoxide dismutase (SOD), glutathione peroxidase (GSH‑Px) and malondialdehyde (MDA) in kidney tissues were also measured to assess oxidative stress. The population of Tregs in the kidney was assessed using flow cytometry. The results demonstrated that administration of OE‑CXCR3 to IRI mice significantly decreased the levels of Scr, BUN, IL‑6, TNF‑α, CCL‑2 and MDA, increased the levels of IL‑10, SOD and GSH‑Px, and mitigated the morphologic injury and fibrosis induced by IR compared with the IRI group. In addition, administration of OE‑CXCR3 induced significant reductions in the expression levels of fibrosis‑related markers, including fibronectin and type IV collagen, and increased the number of Tregs. These roles of OE‑CXCR3 were significantly neutralized following deletion of Tregs with PC61 (anti‑CD25 antibody). Together, the present study demonstrated that injection of OE‑CXCR3 lentiviral vectors into animal models can alleviate renal IRI by increasing the number of Tregs. The results may be a promising approach for the treatment of renal IRI.
Collapse
Affiliation(s)
- Wenjing Xian
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jiali Wu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qingshu Li
- Department of Pathology, Molecular and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xunsong Du
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Na Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Daiyu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wuxi Gao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jun Cao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
44
|
Feng K, Liu Y, Sun J, Zhao C, Duan Y, Wang W, Yan K, Yan X, Sun H, Hu Y, Han J. Compound Danshen Dripping Pill inhibits doxorubicin or isoproterenol-induced cardiotoxicity. Biomed Pharmacother 2021; 138:111531. [PMID: 34311530 DOI: 10.1016/j.biopha.2021.111531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is the advanced heart disease with high morbidity and mortality. Compound DanShen Dripping Pill (CDDP) is a widely used Traditional Chinese Medicine for cardiovascular disease treatment. Herein, we investigated if CDDP can protect mice against doxorubicin (DOX) or isoprenaline (ISO)-induced HF. After 3 days feeding of normal chow containing CDDP, mice were started DOX or ISO treatment for 4 weeks or 18 days. At the end of treatment, mice were conducted electrocardiogram and echocardiographic test. Blood and heart samples were determined biochemical parameters, myocardial structure and expression of the related molecules. CDDP normalized DOX/ISO-induced heart weight changes, HF parameters and fibrogenesis. The DOX/ISO-impaired left ventricular ejection fraction and fractional shortening were restored by CDDP. Mechanistically, CDDP blocked DOX/ISO-inhibited expression of antioxidant enzymes and DOX/ISO-induced expression of pro-fibrotic molecules, inflammation and cell apoptosis. Additional DOX/ISO-impaired targets in cardiac function but protected by CDDP were identified by RNAseq, qRT-PCR and Western blot. In addition, CDDP protected cardiomyocytes against oxygen-glucose deprivation-induced injuries. Taken together, our study shows that CDDP can protect against myocardial injuries in different models, suggesting its potential application for HF treatment.
Collapse
Affiliation(s)
- Ke Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Yuxin Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Jia Sun
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
| | - Chunlai Zhao
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Wenjia Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
| | - Kaijing Yan
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China; The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd, Tianjin, China; Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| | - Xijun Yan
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China; The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd, Tianjin, China; Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| | - He Sun
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China; The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd, Tianjin, China; Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| | - Yunhui Hu
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China.
| | - Jihong Han
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China.
| |
Collapse
|
45
|
Tian CJ, Zhang JH, Liu J, Ma Z, Zhen Z. Ryanodine receptor and immune-related molecules in diabetic cardiomyopathy. ESC Heart Fail 2021; 8:2637-2646. [PMID: 34013670 PMCID: PMC8318495 DOI: 10.1002/ehf2.13431] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/04/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperglycaemia is a major aetiological factor in the development of diabetic cardiomyopathy. Excessive hyperglycaemia increases the levels of reactive carbonyl species (RCS), reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the heart and causes derangements in calcium homeostasis, inflammation and immune‐system disorders. Ryanodine receptor 2 (RyR2) plays a key role in excitation–contraction coupling during heart contractions, including rhythmic contraction and relaxation of the heart. Cardiac inflammation has been indicated in part though interleukin 1 (IL‐1) signals, supporting a role for B and T lymphocytes in diabetic cardiomyopathy. Some of the post‐translational modifications of the ryanodine receptor (RyR) by RCS, ROS and RNS stress are known to affect its gating and Ca2+ sensitivity, which contributes to RyR dysregulation in diabetic cardiomyopathy. RyRs and immune‐related molecules are important signalling species in many physiological and pathophysiological processes in various heart and cardiovascular diseases. However, little is known regarding the mechanistic relationship between RyRs and immune‐related molecules in diabetes, as well as the mechanisms mediating complex communication among cardiomyocytes, fibroblasts and immune cells. This review highlights new findings on the complex cellular communications in the pathogenesis and progression of diabetic cardiomyopathy. We discuss potential therapeutic applications targeting RyRs and immune‐related molecules in diabetic complications.
Collapse
Affiliation(s)
- Cheng-Ju Tian
- College of Rehabilitation and Sports Medicine, Jinzhou Medical University, Jinzhou, China
| | - Jing-Hua Zhang
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuang Ma
- College of Rehabilitation and Sports Medicine, Jinzhou Medical University, Jinzhou, China
| | - Zhong Zhen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
46
|
Corinaldesi C, Ross RL, Abignano G, Antinozzi C, Marampon F, di Luigi L, Buch MH, Riccieri V, Lenzi A, Crescioli C, Del Galdo F. Muscle Damage in Systemic Sclerosis and CXCL10: The Potential Therapeutic Role of PDE5 Inhibition. Int J Mol Sci 2021; 22:2894. [PMID: 33809279 PMCID: PMC8001273 DOI: 10.3390/ijms22062894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle damage is a common clinical manifestation of systemic sclerosis (SSc). C-X-C chemokine ligand 10 (CXCL10) is involved in myopathy and cardiomyopathy development and is associated with a more severe SSc prognosis. Interestingly, the phosphodiesterase type 5 inhibitor (PDE5i) sildenafil reduces CXCL10 sera levels of patients with diabetic cardiomyopathy and in cardiomyocytes. Here, we analyzed the levels of CXCL10 in the sera of 116 SSc vs. 35 healthy subjects and explored differences in 17 SSc patients on stable treatment with sildenafil. CXCL10 sera levels were three-fold higher in SSc vs. healthy controls, independent of subset and antibody positivity. Sildenafil treatment was associated with lower CXCL10 sera levels. Serum CXCL10 strongly correlated with the clinical severity of muscle involvement and with creatine kinase (CK) serum concentration, suggesting a potential involvement in muscle damage in SSc. In vitro, sildenafil dose-dependently reduced CXCL10 release by activated myocytes and impaired cytokine-induced Signal transducer and activator of transcription 1 (STAT1), Nuclear factor-κB (NFκB) and c-Jun N-terminal kinase (JNK) phosphorylation. This was also seen in cardiomyocytes. Sildenafil-induced CXCL10 inhibition at the systemic and human muscle cell level supports the hypothesis that PDE5i could be a potential therapeutic therapy to prevent and treat muscle damage in SSc.
Collapse
Affiliation(s)
- Clarissa Corinaldesi
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (C.C.); (R.L.R.); (G.A.); (M.H.B.)
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy; (C.A.); (F.M.); (L.d.L.)
| | - Rebecca L. Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (C.C.); (R.L.R.); (G.A.); (M.H.B.)
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, UK
| | - Giuseppina Abignano
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (C.C.); (R.L.R.); (G.A.); (M.H.B.)
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, UK
- Rheumatology Institute of Lucania (IReL), Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, 85100 Potenza, Italy
| | - Cristina Antinozzi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy; (C.A.); (F.M.); (L.d.L.)
| | - Francesco Marampon
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy; (C.A.); (F.M.); (L.d.L.)
- Department of Radiotherapy, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi di Luigi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy; (C.A.); (F.M.); (L.d.L.)
| | - Maya H. Buch
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (C.C.); (R.L.R.); (G.A.); (M.H.B.)
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, UK
| | - Valeria Riccieri
- Department of Internal Medicine and Medical Specialties, University Sapienza, 00185 Rome, Italy;
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Clara Crescioli
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy; (C.A.); (F.M.); (L.d.L.)
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (C.C.); (R.L.R.); (G.A.); (M.H.B.)
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, UK
| |
Collapse
|
47
|
AbuSamra DB, Panjwani N, Argüeso P. Induction of CXCL10-Mediated Cell Migration by Different Types of Galectins. Cells 2021; 10:cells10020274. [PMID: 33573183 PMCID: PMC7910898 DOI: 10.3390/cells10020274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Chemokines are an extended group of chemoattractant cytokines responsible for the recruitment of leukocytes into tissues. Among them, interferon-γ-inducible protein 10 (CXCL10) is abundantly expressed following inflammatory stimuli and participates in the trafficking of monocytes and activated T cells into sites of injury. Here, we report that different members of the galectin family of carbohydrate-binding proteins promote the expression and synthesis of CXCL10 independently of interferon-γ. Interestingly, CXCL10 induction was observed when galectins came in contact with stromal fibroblasts isolated from human cornea but not other cell types such as epithelial, monocytic or endothelial cells. Induction of CXCL10 by the tandem repeat galectin-8 was primarily associated with the chemotactic migration of THP-1 monocytic cells, whereas the prototype galectin-1 promoted the CXCL10-dependent migration of Jurkat T cells. These results highlight the potential importance of the galectin signature in dictating the recruitment of specific leukocyte populations into precise tissue locations.
Collapse
Affiliation(s)
- Dina B. AbuSamra
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA;
- Correspondence:
| | - Noorjahan Panjwani
- New England Eye Center/Department of Ophthalmology, Tufts University Medical School, Boston, MA 02111, USA;
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
48
|
Lan Y, Ng CT, Ong CN, Yu LE, Bay BH. Transcriptomic analysis identifies dysregulated genes and functional networks in human small airway epithelial cells exposed to ambient PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111702. [PMID: 33396033 DOI: 10.1016/j.ecoenv.2020.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Cellular models exhibiting human physiological features of pseudostratified columnar epithelia, provide a more realistic approach for elucidating detailed mechanisms underlying PM2.5-induced pulmonary toxicity. In this study, we characterized the barrier and mucociliary functions of differentiated human small airway epithelial cells (SAECs), cultured at the air-liquid interface (ALI). Due to the presence of mucociliary protection, particle internalization was reduced, with a concomitant decrease in cytotoxicity in differentiated S-ALI cells, as compared to conventional submerged SAEC cultures. After 24-hour exposure to PM2.5 surrogates, 117 up-regulated genes and 156 down-regulated genes were detected in S-ALI cells, through transcriptomic analysis using the Affymetrix Clariom™ S Human Array. Transcription-level changes in >60 signaling pathways, were revealed by functional annotation of the 273 differentially expressed genes, using the PANTHER Gene List Analysis. These pathways are involved in multiple cellular processes, that include inflammation and apoptosis. Exposure to urban PM2.5 led to complex responses in airway epithelia, including a net induction of downstream pro-inflammatory and pro-apoptotic responses. Collectively, this study highlights the importance of using the more advanced ALI model rather than the undifferentiated submerged model, to avoid over-assessment of inhaled particle toxicity in human. The results of our study also suggest that reduction of ambient PM2.5 concentrations would have a protective effect on respiratory health in humans.
Collapse
Affiliation(s)
- Yang Lan
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Cheng Teng Ng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Liya E Yu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
49
|
Nie H, Wang S, Wu Q, Xue D, Zhou W. Five immune-gene-signatures participate in the development and pathogenesis of Kawasaki disease. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:157-166. [PMID: 33188570 PMCID: PMC7860604 DOI: 10.1002/iid3.373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022]
Abstract
Objective To screen for immune genes that play a major role in Kawasaki disease and to investigate the pathogenesis of Kawasaki disease through bioinformatics analysis. Methods Kawasaki disease‐related datasets GSE18606, GSE68004, and GSE73461 were downloaded from the Gene Expression Omnibus database. Three microarrays were integrated and standardized to include 173 Kawasaki disease samples and 101 normal samples. The samples were analyzed using CIBERSORT to obtain the infiltration of 22 immune cells and analyze the differential immune cells in the samples and correlations. The distribution of the samples was analyzed using principal component analysis (PCA). Immune‐related genes were downloaded, extracted from the screened samples and analyzed for differential analysis (different expression genes [DEG]) and weighted gene co‐expression network analysis (WGCNA). We constructed coexpression networks, and used the cytohobbe tool in Cytoscape to analyze the coexpression networks and select the immune genes that played a key role in them. Results Immune cell infiltration analysis showed that B cells naive, T cells CD8, natural killer (NK) cells activated, and so forth were highly expressed in normal samples. T cells CD4 memory activated, monocytes, neutrophils, and so forth were highly expressed in Kawasaki disease samples. PCA results showed a significant difference in the distribution of normal and Kawasaki disease samples. From the screened samples, 97 upregulated and 103 downregulated immune‐related genes were extracted. WGCNA analysis of DEG yielded 10 gene modules, of which the three most relevant to Kawasaki disease were red, yellow, and gray modules. They were associated with cytokine regulation, T‐cell activation, presentation of T‐cell receptor signaling pathways, and NK cell‐mediated cytotoxicity. CXCL8, CCL5, CCR7, CXCR3, and CCR1 were identified as key genes by constructing a coexpression network. Conclusion Our study shows that we can distinguish normal samples from Kawasaki disease samples based on the infiltration of immune cells, and that CXCL8, CCL5, CCR7, CXCR3, and CCR1 may play important roles in the development of Kawasaki disease.
Collapse
Affiliation(s)
- Han Nie
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shizhi Wang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Quanli Wu
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Danni Xue
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
50
|
Mancilla TR, Davis LR, Aune GJ. Doxorubicin-induced p53 interferes with mitophagy in cardiac fibroblasts. PLoS One 2020; 15:e0238856. [PMID: 32960902 PMCID: PMC7508395 DOI: 10.1371/journal.pone.0238856] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Anthracyclines are the critical component in a majority of pediatric chemotherapy regimens due to their broad anticancer efficacy. Unfortunately, the vast majority of long-term childhood cancer survivors will develop a chronic health condition caused by their successful treatments and severe cardiac disease is a common life-threatening outcome that is unequivocally linked to previous anthracycline exposure. The intricacies of how anthracyclines such as doxorubicin, damage the heart and initiate a disease process that progresses over multiple decades is not fully understood. One area left largely unstudied is the role of the cardiac fibroblast, a key cell type in cardiac maturation and injury response. In this study, we demonstrate the effect of doxorubicin on cardiac fibroblast function in the presence and absence of the critical DNA damage response protein p53. In wildtype cardiac fibroblasts, doxorubicin-induced damage correlated with decreased proliferation and migration, cell cycle arrest, and a dilated cardiomyopathy gene expression profile. Interestingly, these doxorubicin-induced changes were completely or partially restored in p53-/- cardiac fibroblasts. Moreover, in wildtype cardiac fibroblasts, doxorubicin produced DNA damage and mitochondrial dysfunction, both of which are well-characterized cell stress responses induced by cytotoxic chemotherapy and varied forms of heart injury. A 3-fold increase in p53 (p = 0.004) prevented the completion of mitophagy (p = 0.032) through sequestration of Parkin. Interactions between p53 and Parkin increased in doxorubicin-treated cardiac fibroblasts (p = 0.0003). Finally, Parkin was unable to localize to the mitochondria in wildtype cardiac fibroblasts, but mitochondrial localization was restored in p53-/- cardiac fibroblasts. These findings strongly suggest that cardiac fibroblasts are an important myocardial cell type that merits further study in the context of doxorubicin treatment. A more robust knowledge of the role cardiac fibroblasts play in the development of doxorubicin-induced cardiotoxicity will lead to novel clinical strategies that will improve the quality of life of cancer survivors.
Collapse
Affiliation(s)
- T. R. Mancilla
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
| | - L. R. Davis
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
| | - G. J. Aune
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
- Department of Pediatrics, Division of Hematology-Oncology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States of America
| |
Collapse
|