1
|
Tang C, Lan R, Ma DR, Zhao M, Zhang Y, Li HY, Liu S, Li BY, Yang JL, Yang HJ, Zhang ZQ. Annexin A1: The dawn of ischemic stroke (Review). Mol Med Rep 2025; 31:62. [PMID: 39749707 PMCID: PMC11726294 DOI: 10.3892/mmr.2024.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Ischemic stroke is a prevalent clinical condition that poses a significant global challenge. Developing innovative strategies to address this issue is crucial. Annexin A1 (ANXA1), a key member of the annexin superfamily, performs various functions, such as inhibiting inflammatory factor release, promoting phagocytosis, and blocking leukocyte migration. Evidence indicates that ANXA1 plays a pivotal role in the pathogenesis of ischemic stroke. The present article reviews involvement of ANXA1 in anti‑atherosclerosis, inflammatory processes, blood‑brain barrier protection, platelet aggregation and anti‑apoptotic mechanisms. The potential applications of ANXA1 in treating ischemic stroke are also explored.
Collapse
Affiliation(s)
- Chen Tang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Rui Lan
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Dong-Rui Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Min Zhao
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Yong Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Hong-Yu Li
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Shuang Liu
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Bo-Yang Li
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Jie-Li Yang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Hui-Jie Yang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Zhen-Qiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
2
|
Solomon A, Bossel Ben-Moshe N, Hoffman D, Trzebanski S, Yehezkel D, Vainman L, Netea MG, Avraham R. Early and delayed STAT1-dependent responses drive local trained immunity of macrophages in the spleen. eLife 2025; 13:RP100922. [PMID: 39819562 PMCID: PMC11737870 DOI: 10.7554/elife.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Trained immunity (TI) is the process wherein innate immune cells gain functional memory upon exposure to specific ligands or pathogens, leading to augmented inflammatory responses and pathogen clearance upon secondary exposure. While the differentiation of hematopoietic stem cells (HSCs) and reprogramming of bone marrow (BM) progenitors are well-established mechanisms underpinning durable TI protection, remodeling of the cellular architecture within the tissue during TI remains underexplored. Here, we study the effects of peritoneal Bacillus Calmette-Guérin (BCG) administration to find TI-mediated protection in the spleen against a subsequent heterologous infection by the Gram-negative pathogen Salmonella Typhimurium (S.Tm). Utilizing single cell RNA-sequencing and flow cytometry, we discerned STAT1-regulated genes in TI-associated resident and recruited splenic myeloid populations. The temporal dynamics of TI were further elucidated, revealing both early and delayed myeloid subsets with time-dependent, cell-type-specific STAT1 signatures. Using lineage tracing, we find that tissue-resident red pulp macrophages (RPM), initially depleted by BCG exposure, are restored from both tissue-trained, self-renewing macrophages and from bone marrow-derived progenitors, fostering long lasting local defense. Early inhibition of STAT1 activation, using specific JAK-STAT inhibitors, reduces both RPM loss and recruitment of trained monocytes. Our study suggests a temporal window soon after BCG vaccination, in which STAT1-dependent activation of long-lived resident cells in the tissue mediates localized protection.
Collapse
Affiliation(s)
- Aryeh Solomon
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Noa Bossel Ben-Moshe
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Dotan Hoffman
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Sébastien Trzebanski
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Dror Yehezkel
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Leia Vainman
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical CenterNijmegenNetherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of BonnBonnGermany
| | - Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
3
|
Vandendriessche S, Mattos MS, Bialek EL, Schuermans S, Proost P, Marques PE. Complement activation drives the phagocytosis of necrotic cell debris and resolution of liver injury. Front Immunol 2024; 15:1512470. [PMID: 39759517 PMCID: PMC11696981 DOI: 10.3389/fimmu.2024.1512470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Cells die by necrosis due to excessive chemical or thermal stress, leading to plasma membrane rupture, release of intracellular components and severe inflammation. The clearance of necrotic cell debris is crucial for tissue recovery and injury resolution, however, the underlying mechanisms are still poorly understood, especially in vivo. This study examined the role of complement proteins in promoting clearance of necrotic cell debris by leukocytes and their influence on liver regeneration. We found that independently of the type of necrotic liver injury, either acetaminophen (APAP) overdose or thermal injury, complement proteins C1q and (i)C3b were deposited specifically on necrotic lesions via the activation of the classical pathway. Importantly, C3 deficiency led to a significant accumulation of necrotic debris and impairment of liver recovery in mice, which was attributed to decreased phagocytosis of debris by recruited neutrophils in vivo. Monocytes and macrophages also took part in debris clearance, although the necessity of C3 and CD11b was dependent on the specific type of necrotic liver injury. Using human neutrophils, we showed that absence of C3 or C1q caused a reduction in the volume of necrotic debris that is phagocytosed, indicating that complement promotes effective debris uptake in mice and humans. Moreover, internalization of opsonized debris induced the expression of pro-resolving genes in a C3-dependent manner, supporting the notion that debris clearance favors the resolution of inflammation. In summary, complement activation at injury sites is a pivotal event for necrotic debris clearance by phagocytes and determinant for efficient recovery from tissue injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Shao G, Wang X, Zheng Y, Ma J, Wang L, Yan Z, Sun Z, Zhang S, Wu H, Lv Y, Huang H, Li J, Zhu T, Yang B, Wang N, Chen T, Guo X, Jin Y, Kang J, Wang H, Cao Y, Fu C. Identification of ANXA1 as a Novel Upstream Negative Regulator of Notch1 Function in AML. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409726. [PMID: 39447086 DOI: 10.1002/advs.202409726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Abnormal Notch1 expression has an important role in tumorigenesis. However, upstream control mechanisms for Notch1 are still insufficiently understood. Acute myeloid leukemia (AML) is one of the most common and lethal blood malignancies with limited possibilities for treatment. Thus, new therapeutic targets are urgently needed to improve current ineffective therapies. Herein, high Annexin A1 (ANXA1) expression is found correlated with hyperproliferation of AML cells, and then ANXA1 is identified as a novel negative regulator of Notch1 function in AML. Mechanistically, ANXA1 directly bound to the intracellular domain of Notch1 (NICD) to target this tumor suppressor for degradation. Furthermore, NICD executed its tumor suppressive function through activation of the p15 promoter. Thus, ablation of the Notch1-p15-mediated tumor suppression by ANXA1 provided a novel mechanism of AML proliferation. In human AML patients, a mutual exclusive relation is discovered between ANXA1 and Notch1/p15, corroborating mechanistic discovery. On the basis of these results, it is reasonably speculated that targeting ANXA1 would provide an effective approach for treatment of AML. In support of this new therapeutic paradigm, provided proof-of-concept data by antagonizing ANXA1 using NICD inhibitory peptides.
Collapse
Affiliation(s)
- Gang Shao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Department of Oncology, No.903 Hospital of PLA Joint Logistic Support Force, Hangzhou, 310013, China
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Xi Wang
- Department of Oncology, No.903 Hospital of PLA Joint Logistic Support Force, Hangzhou, 310013, China
| | - Yiting Zheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Junjie Ma
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lei Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhibin Yan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuyuan Zhang
- Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Hongzhang Wu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yudie Lv
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Hemiao Huang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jianhu Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tianyi Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Nanxi Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Tao Chen
- Sartorius (Shanghai) Trading Co., Ltd., Shanghai, 200120, China
| | - Xuancheng Guo
- Hangzhou Acnovia Biotech Co., Ltd., Hangzhou, 310018, China
| | - Yuanting Jin
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Jian Kang
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan street, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, 171 77, Sweden
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Lin K, Hou Y, Li R, Fan F, Hao Y, Wang Y, Huang Y, Li P, Zhu L, Huang X, Zhao YQ. Annexin-A1 tripeptide enhances functional recovery and mitigates brain damage in traumatic brain injury by inhibiting neuroinflammation and preventing ANXA1 nuclear translocation in mice. Metab Brain Dis 2024; 39:1559-1571. [PMID: 39120851 DOI: 10.1007/s11011-024-01404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
This study explores the role and mechanism of Annexin-A1 Tripeptide (ANXA1sp) in mitigating neuronal damage and promoting functional recovery in a mouse model of traumatic brain injury (TBI). Our goal is to identify ANXA1sp as a potential therapeutic drug candidate for TBI treatment. Adult male C57BL/6J mice were subjected to controlled cortical impact (CCI) to simulate TBI, supplemented by an in vitro model of glutamate-induced TBI in HT22 cells. We assessed neurological deficits using the Modified Neurological Severity Score (mNSS), tested sensorimotor functions with beam balance and rotarod tests, and evaluated cognitive performance via the Morris water maze. Neuronal damage was quantified using Nissl and TUNEL staining, while microglial activation and inflammatory responses were measured through immunostaining, quantitative PCR (qPCR), Western blotting, and ELISA. Additionally, we evaluated cell viability in response to glutamate toxicity using the Cell Counting Kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) release. Intraperitoneal administration of ANXA1sp significantly enhanced neurological outcomes, markedly reducing sensorimotor and cognitive impairments caused by TBI. This treatment resulted in a significant reduction in lesion volume and decreased neuronal cell death in the ipsilateral cortex. Moreover, ANXA1sp effectively diminished microglial activation around the brain lesion and decreased the levels of pro-inflammatory markers such as IL-6, IL-1β, TNF-α, and TGF-β in the cortex, indicating a significant reduction in neuroinflammation post-TBI. ANXA1sp also offered protection against neuronal cell death induced by glutamate toxicity, primarily by inhibiting the nuclear translocation of ANXA1, highlighting its potential as a neuroprotective strategy in TBI management. Administration of ANXA1sp significantly reduced neuroinflammation and neuronal cell death, primarily by blocking the nuclear translocation of ANXA1. This treatment substantially reduced brain damage and improved neurological functional recovery after TBI. Consequently, ANXA1sp stands out as a promising neuroprotective agent for TBI therapy.
Collapse
Affiliation(s)
- Kai Lin
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Yuejiao Hou
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ruxin Li
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Fengyan Fan
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Yinan Hao
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yuan Wang
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Yue Huang
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Peng Li
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Lingling Zhu
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xin Huang
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Yong-Qi Zhao
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
6
|
Mommaerts K, Okawa S, Schmitt M, Kofanova O, Turner TR, Ben RN, Del Sol A, Mathieson W, Schwamborn JC, Acker JP, Betsou F. Ice recrystallization inhibitors enable efficient cryopreservation of induced pluripotent stem cells: A functional and transcriptomic analysis. Stem Cell Res 2024; 81:103583. [PMID: 39467374 DOI: 10.1016/j.scr.2024.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/28/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The successful use of human induced pluripotent stem cells (iPSCs) for research or clinical applications requires the development of robust, efficient, and reproducible cryopreservation protocols. After cryopreservation, the survival rate of iPSCs is suboptimal and cell line-dependent. We assessed the use of ice recrystallization inhibitors (IRIs) for cryopreservation of human iPSCs. A toxicity screening study was performed to assess specific small-molecule carbohydrate-based IRIs and concentrations for further evaluation. Then, a cryopreservation study compared the cryoprotective efficiency of 15 mM IRIs in 5 % or 10 % DMSO-containing solutions and with CryoStor® CS10. Three iPSC lines were cryopreserved as single-cell suspensions in the cryopreservation solutions and post-thaw characteristics, including pluripotency and differential gene expression were assessed. We demonstrate the fitness-for-purpose of 15 mM IRI in 5 % DMSO as an efficient cryoprotective solution for iPSCs in terms of post-thaw recovery, viability, pluripotency, and transcriptomic changes. This mRNA sequencing dataset has the potential to be used for molecular mechanism analysis relating to cryopreservation. Use of IRIs can reduce DMSO concentrations and its associated toxicities, thereby improving the utility, effectiveness, and efficiency of cryopreservation.
Collapse
Affiliation(s)
- Kathleen Mommaerts
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg.
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Margaux Schmitt
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | - Olga Kofanova
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | | | - Robert N Ben
- PanTHERA CryoSolutions Inc., Edmonton, Alberta, Canada; Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - William Mathieson
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Jason P Acker
- PanTHERA CryoSolutions Inc., Edmonton, Alberta, Canada; Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Fay Betsou
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| |
Collapse
|
7
|
Matsuda T, Kono T, Taki Y, Sakuma I, Fujimoto M, Hashimoto N, Kawakami E, Fukuhara N, Nishioka H, Inoshita N, Yamada S, Nakamura Y, Horiguchi K, Miki T, Higuchi Y, Tanaka T. Deciphering craniopharyngioma subtypes: Single-cell analysis of tumor microenvironment and immune networks. iScience 2024; 27:111068. [PMID: 39483146 PMCID: PMC11525618 DOI: 10.1016/j.isci.2024.111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/24/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024] Open
Abstract
Craniopharyngiomas, including adamantinomatous (ACP) and squamous papillary (PCP) types, are challenging to treat because of their proximity to crucial pituitary structures. This study aimed to characterize the cellular composition, tumor tissue diversity, and cell-cell interactions in ACPs and PCPs using single-cell RNA sequencing. Single-cell clustering revealed diverse cell types, further classified into developing epithelial, calcification, and immune response for ACP and developing epithelial, cell cycle, and immune response for PCP, based on gene expression patterns. Subclustering revealed the enrichment of classical M1 and M2 macrophages in ACP and PCP, respectively, with high expression of pro-inflammatory markers in classical M1 macrophages. The classical M1 and M2 macrophage ratio significantly correlated with the occurrence of diabetes insipidus and panhypopituitarism. Cell-cell interactions, particularly involving CD44-SPP, were identified between tumor cells. Thus, we developed a comprehensive cell atlas that elucidated the molecular characteristics and immune cell inter-networking in ACP and PCP tumor microenvironments.
Collapse
Affiliation(s)
- Tatsuma Matsuda
- Department of Neurological Surgery Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Kono
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Yuki Taki
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ikki Sakuma
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masanori Fujimoto
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoko Hashimoto
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Eiryo Kawakami
- Department of Aritificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noriaki Fukuhara
- Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, Tokyo, Japan
| | - Hiroshi Nishioka
- Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, Tokyo, Japan
| | - Naoko Inoshita
- Hypothalamic and Pituitary Center, Moriyama Memorial Hospital, Tokyo, Japan
| | - Shozo Yamada
- Hypothalamic and Pituitary Center, Moriyama Memorial Hospital, Tokyo, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Kentaro Horiguchi
- Department of Neurological Surgery Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takashi Miki
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshinori Higuchi
- Department of Neurological Surgery Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
8
|
Li J, Li S, Zhang Q, Liang M, Chen X, Feng Y, Pan Z, Hu T, Wu Q, Chen G, Zouboulis CC, Mo X, Ju Q. Apocrine Gland Damage and the Release of Specific Keratins in Early Stage Indicate the Crucial Involvement of Apocrine Glands in Hidradenitis Suppurativa. J Invest Dermatol 2024:S0022-202X(24)02893-8. [PMID: 39547394 DOI: 10.1016/j.jid.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
The apocrine glands (AGs) are not considered to be primarily involved in hidradenitis suppurativa (HS). This study investigated the potential role of AGs in HS pathogenesis using immunohistochemistry and single-cell sequencing of nonlesional skin and early lesional skin (LS) from patients with HS (n = 12) and healthy controls (n = 8). AG cell destruction was more frequent, and AG size was significantly reduced in the nonlesional skin and LS. Barrier-related genes (eg, CLDN1 and CDH1) were downregulated in the AGs of the nonlesional skin and LS. Damaged AGs in the LS primarily recruited and activated neutrophils through the CXCL-CXCR and SAA1-FPR2 pathways. Elevated levels of specific keratins (keratin 18 and keratin 19) released from damaged AGs were observed on the skin surface of patients and were associated with disease severity. Keratin 19 was also detected in the dermis of the nonlesional skin and LS and was surrounded by neutrophils and macrophages. Moreover, serum keratin 19 levels in patients (N = 20) were significantly negatively correlated with the age at HS onset. Collectively, our findings provide previously unreported evidence that the AGs are damaged and release specific keratins in early HS lesions, indicating a crucial role of the AGs in HS pathogenesis.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Sitong Li
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Qiujing Zhang
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Mengchen Liang
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xiang Chen
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yibo Feng
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Zhanyan Pan
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Tingting Hu
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Qiong Wu
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Christos C Zouboulis
- Department of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Xiaohui Mo
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Zhou F, Chen M, Liu Y, Xia X, Zhao P. Serum mitochondrial-encoded NADH dehydrogenase 6 and Annexin A1 as novel biomarkers for mortality prediction in critically ill patients with sepsis. Front Immunol 2024; 15:1486322. [PMID: 39611143 PMCID: PMC11602424 DOI: 10.3389/fimmu.2024.1486322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Objectives Formyl peptide receptor 1 (FPR1) is a member of G protein-coupled receptor (GPCR) family that detects potentially danger signals characterized by the appearance of N-formylated peptides which originate from either bacteria or host mitochondria during organ injury, including sepsis. Mitochondrial-encoded NADH dehydrogenase 6 (MT-ND6) and Annexin A1 (ANXA1), as mitochondrial damage-associated molecular patterns (mtDAMPs) agonist and endogenous agonist of FPR1 respectively, interact with FPR1 regulating polymorphonuclear leukocytes (PMNs) function and inflammatory response during sepsis. However, there is no direct evidence of MT-ND6 or ANXA1 in the circulation of patients with sepsis and their potential role in clinical significance, including diagnosis and mortality prediction during sepsis. Methods A prospective cohort study was conducted in ICU within a large academic hospital. We measured serum MT-ND6 or ANXA1 in a cohort of patients with sepsis in ICU (n=180) and patients with non-sepsis in ICU (n=60) by Enzyme-linked immunosorbent assays (ELISA). The ROC curve and Kaplan Meier analysis was used to evaluate the diagnostic and prognostic ability of two biomarkers for patients with sepsis. Results The concentration of MT-ND6 and ANXA1 were significantly elevated in the patients with sepsis, and the diagnostic values of MT-ND6 (0.789) for sepsis patients was second only to SOFA scores (AUC = 0.870). Higher serum concentrations of MT-ND6 (>1.41 ng/ml) and lower concentrations of ANXA1 (< 8.09 ng/mL) were closely related to the higher mortality in patients with sepsis, with the predictive values were 0.705 and 0.694, respectively. When patients with sepsis classified based on four pro-inflammation and two anti-inflammation cytokines, it was shown that combination of MT-ND6 and ANXA1 obviously improved the predictive values in the septic patients with mixed hyperinflammation or immunosuppression phenotypes. Conclusion Our findings provide valuable models testing patient risk prediction and strengthen the evidence for agonists of FPR1, MT-ND6 and ANXA1, as novel biomarker for patient selection for novel therapeutic agents to target mtDAMPs and regulator of GPCRs in sepsis.
Collapse
Affiliation(s)
- Fan Zhou
- Department of Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Research Center for Interdisciplinary & High-Quality Innovative Development in Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, China
| | - Meiling Chen
- Department of Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Research Center for Interdisciplinary & High-Quality Innovative Development in Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, China
| | - Yilin Liu
- Intensive Care Medicine Department, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
| | - Xianzhu Xia
- Department of Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Research Center for Interdisciplinary & High-Quality Innovative Development in Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
| | - Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Research Center for Interdisciplinary & High-Quality Innovative Development in Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, China
| |
Collapse
|
10
|
Leifer VP, Fang F, Song L, Kim J, Papanikolaou JF, Smeeton J, Thomopoulos S. Single-cell RNA-sequencing analysis of immune and mesenchymal cell crosstalk in the developing enthesis. Sci Rep 2024; 14:26839. [PMID: 39500962 PMCID: PMC11538517 DOI: 10.1038/s41598-024-77958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Autoimmunity underlies many painful disorders, such as enthesopathies, which localize to the enthesis. From infiltration of the synovium and axial skeleton by B cells, to disturbances in the ratio of M1/M2 enthesis macrophages, to CD8 + T cell mediated inflammation, autoimmune dysregulation is becoming increasingly well characterized in enthesopathies. Tissue resident B cells, macrophages, neutrophils, and T cells have also been localized in healthy human entheses. However, the potential developmental origins, presence, and role of immune cells (ICs) in enthesis development is not known. Here, we use single-cell RNA-sequencing analysis to describe IC subtypes present in the enthesis before, during, and after mineralization, and to infer regulatory interactions between ICs and mesenchymal cells (MCs). We report the presence of nine phenotypically distinct IC subtypes, including B cells, macrophages, neutrophils, and T cells. We find that specific IC subtypes may promote MC-proliferation and differentiation, and that MCs may regulate IC phenotype and autoimmunity. Our findings suggest that bidirectional regulatory interactions between ICs and MCs may be important to enthesis mineralization, and suggest that progenitor MCs have a unique ability to limit autoimmunity during development.
Collapse
Affiliation(s)
- Valia P Leifer
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Fei Fang
- Department Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lee Song
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Jieon Kim
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - John F Papanikolaou
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Joanna Smeeton
- Department of Rehabilitation and Regenerative Medicine, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Department of Genetics and Development, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
11
|
Jou V, Peña SM, Lehoczky JA. Regeneration-specific promoter switching facilitates Mest expression in the mouse digit tip to modulate neutrophil response. NPJ Regen Med 2024; 9:32. [PMID: 39468052 PMCID: PMC11519450 DOI: 10.1038/s41536-024-00376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
The mouse digit tip regenerates following amputation, a process mediated by a cellularly heterogeneous blastema. We previously found the gene Mest to be highly expressed in mesenchymal cells of the blastema and a strong candidate pro-regenerative gene. We now show Mest digit expression is regeneration-specific and not upregulated in post-amputation fibrosing proximal digits. Mest homozygous knockout mice exhibit delayed bone regeneration though no phenotype is found in paternal knockout mice, inconsistent with the defined maternal genomic imprinting of Mest. We demonstrate that promoter switching, not loss of imprinting, regulates biallelic Mest expression in the blastema and does not occur during embryogenesis, indicating a regeneration-specific mechanism. Requirement for Mest expression is tied to modulating neutrophil response, as revealed by scRNAseq and FACS comparing wildtype and knockout blastemas. Collectively, the imprinted gene Mest is required for proper digit tip regeneration and its blastema expression is facilitated by promoter switching for biallelic expression.
Collapse
Affiliation(s)
- Vivian Jou
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Sophia M Peña
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Jessica A Lehoczky
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
Yang M, Zhu Y, Wei X, Feng J, He Y, Jiang J, Zhou Q, Zhang M, Zhang G, Ma W. Oral bomb effect nanotherapeutics alleviate ulcerative colitis through coordinated anti-inflammatory and pro-resolving strategies. Biomater Sci 2024; 12:5386-5403. [PMID: 39264298 DOI: 10.1039/d4bm00843j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Background: Ulcerative colitis (UC) is a debilitating chronic inflammatory bowel disease, and current treatments primarily focus on suppressing inflammation with limited efficacy. However, the resolution of inflammation also plays a crucial role in UC prognosis. Combining anti-inflammatory and pro-inflammatory resolution interventions may be a promising approach for treating UC. Materials and methods: The nano-bomb nanoparticles were validated for their ability to load CD98 siRNA (siCD98) and Annexin A1-mimetic peptides (Ac2-26 peptides), as well as release CO2 upon lysosomal escape. Surface modification with hyaluronic acid (HA) was assessed for its capability to target inflammatory tissues and cells. Biocompatibility and biosafety were evaluated through in vitro and in vivo studies. The anti-inflammatory and pro-resolving effects of siCD98@NPs and Ac2-26@NPs, both individually and in combination, were evaluated by measuring ROS production, pro-inflammatory cytokine expression, CD98 gene expression, and macrophage polarization. Results: These nanoparticles could efficiently load siCD98 and Ac2-26 peptides and release CO2 under acidic pH in the endo/lysosome to deliver drugs to the cytoplasm. HA could effectively target the inflammatory tissue and cells, showing good biocompatibility and biosafety both in vitro and in vivo. siCD98@NPs and Ac2-26@NPs showed anti-inflammatory effects by eliminating the over-production of ROS and down-regulating the expression of pro-inflammatory cytokines (TNF-α and IL-1β) and the CD98 gene; meanwhile, it showed pro-resolving function by inhibiting M0 to pro-inflammatory M1 macrophage conversion, with a more pronounced effect when combined with siCD98 and Ac2-26. The oral administration of chitosan-alginate hydrogel-encapsulated nanoparticles in UC model mice effectively alleviated inflammatory symptoms, reduced the expression of pro-inflammatory cytokines (TNF-α and IL-1β) and the CD98 gene, restored intestinal barrier function, and promoted M1 to M2 polarization, with a more pronounced effect when combined. Conclusion: By combining anti-inflammatory and pro-resolution interventions, these nanoparticles offer a novel therapeutic approach. This study offered a new approach for combination therapy of UC.
Collapse
Affiliation(s)
- Mei Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuanyuan Zhu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaodan Wei
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jinteng Feng
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingli He
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jue Jiang
- Department of Medical Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Qi Zhou
- Department of Medical Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Key Laboratory of Enhanced Recovery After Surgery of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenqi Ma
- Department of Medical Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
13
|
Villa C, Secchi V, Macchi M, Tripodi L, Trombetta E, Zambroni D, Padelli F, Mauri M, Molinaro M, Oddone R, Farini A, De Palma A, Varela Pinzon L, Santarelli F, Simonutti R, Mauri P, Porretti L, Campione M, Aquino D, Monguzzi A, Torrente Y. Magnetic-field-driven targeting of exosomes modulates immune and metabolic changes in dystrophic muscle. NATURE NANOTECHNOLOGY 2024; 19:1532-1543. [PMID: 39039121 PMCID: PMC11486659 DOI: 10.1038/s41565-024-01725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Exosomes are promising therapeutics for tissue repair and regeneration to induce and guide appropriate immune responses in dystrophic pathologies. However, manipulating exosomes to control their biodistribution and targeting them in vivo to achieve adequate therapeutic benefits still poses a major challenge. Here we overcome this limitation by developing an externally controlled delivery system for primed annexin A1 myo-exosomes (Exomyo). Effective nanocarriers are realized by immobilizing the Exomyo onto ferromagnetic nanotubes to achieve controlled delivery and localization of Exomyo to skeletal muscles by systemic injection using an external magnetic field. Quantitative muscle-level analyses revealed that macrophages dominate the uptake of Exomyo from these ferromagnetic nanotubes in vivo to synergistically promote beneficial muscle responses in a murine animal model of Duchenne muscular dystrophy. Our findings provide insights into the development of exosome-based therapies for muscle diseases and, in general, highlight the formulation of effective functional nanocarriers aimed at optimizing exosome biodistribution.
Collapse
Grants
- Regione Lombardia (Region of Lombardy)
- Fondazione Telethon (Telethon Foundation)
- RF-2016-02362263 "Multimodal nanotracking for exosome-based therapy in DMD" (theory enhancing) “At the origin of congenital muscular dystrophy: shedding light on the Tdark proteins DPM2 and DPM3”, Bando “Cariplo Telethon Alliance GJC2021” 2022
- Multiomics pRofiling of patient spEcific Models to predict druggable targets in severe neuromuscular rare diseases (REMODEL)”, Unmet Medical Needs, Fondazione Regionale per la Ricerca Biomedica (FRRB), 2022 Nanoparticles in Freidreich Ataxia” National Center for Gene Therapy and Drugs based on RNA Technology, Spoke #1: Genetic diseases, PNRR CN3 RNA, 2022
- “Isolamento di nanoparticelle naturali da utilizzare come agenti anti-infiammatori/anti-fibrotici”, 5X1000, Fondazione Patrimonio e dalla Direzione Scientifica Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico (2022)
- PNRR CN3 RNA, 2022, PNRR project ANTHEM: AdvaNced Technologies for Human-centrEd Medicine - PNC0000003 Spoke #2 – NextGenerationEU RF-2016-02362263 "Multimodal nanotracking for exosome-based therapy in DMD" (theory enhancing)
Collapse
Affiliation(s)
- Chiara Villa
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Valeria Secchi
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
- NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy
| | - Mirco Macchi
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Luxembourg Centre for Systems Biomedicine, Department of Biomedical Data Science, Luxembourg City, Luxembourg
| | - Luana Tripodi
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Clinical Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Desiree Zambroni
- Advanced Light and Electron Microscopy Bioimaging Center ALEMBIC, San Raffaele Scientific Institute - OSR, Milan, Italy
| | - Francesco Padelli
- Department of Neuroradiology, IRCCS Foundation Neurological Institute 'Carlo Besta', Milan, Italy
| | - Michele Mauri
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
- NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy
| | - Monica Molinaro
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Rebecca Oddone
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonella De Palma
- National Research Council of Italy, Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, ITB-CNR, Segrate, Milan, Italy
- Clinical Proteomics Laboratory, ITB-CNR, CNR.Biomics Infrastructure, Elixir, Milan, Italy
| | - Laura Varela Pinzon
- Veterinary Medicine, Department Clinical Sciences, Equine Sciences, Equine Musculoskeletal Biology. Utrecht University, Utrecht, Netherlands
| | - Federica Santarelli
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Roberto Simonutti
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
- NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy
| | - PierLuigi Mauri
- National Research Council of Italy, Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, ITB-CNR, Segrate, Milan, Italy
- Clinical Proteomics Laboratory, ITB-CNR, CNR.Biomics Infrastructure, Elixir, Milan, Italy
| | - Laura Porretti
- Flow Cytometry Service, Clinical Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcello Campione
- NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Milano, Italy
| | - Domenico Aquino
- Department of Neuroradiology, IRCCS Foundation Neurological Institute 'Carlo Besta', Milan, Italy
| | - Angelo Monguzzi
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
- NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
14
|
Zhao Y, Yao Z, Xu S, Yao L, Yu Z. Glucocorticoid therapy for acute respiratory distress syndrome: Current concepts. JOURNAL OF INTENSIVE MEDICINE 2024; 4:417-432. [PMID: 39310055 PMCID: PMC11411438 DOI: 10.1016/j.jointm.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Acute respiratory distress syndrome (ARDS), a fatal critical disease, is induced by various insults. ARDS represents a major global public health burden, and the management of ARDS continues to challenge healthcare systems globally, especially during the pandemic of the coronavirus disease 2019 (COVID-19). There remains no confirmed specific pharmacotherapy for ARDS, despite advances in understanding its pathophysiology. Debate continues about the potential role of glucocorticoids (GCs) as a promising ARDS clinical therapy. Questions regarding GC agent, dose, and duration in patients with ARDS need to be answered, because of substantial variations in GC administration regimens across studies. ARDS heterogeneity likely affects the therapeutic actions of exogenous GCs. This review includes progress in determining the GC mechanisms of action and clinical applications in ARDS, especially during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Song Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lan Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Pajonczyk D, Sternschulte MF, Soehnlein O, Bermudez M, Raabe CA, Rescher U. Comparative analysis of formyl peptide receptor 1 and formyl peptide receptor 2 reveals shared and preserved signalling profiles. Br J Pharmacol 2024. [PMID: 39294930 DOI: 10.1111/bph.17334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND AND PURPOSE The pattern recognition receptors, formyl peptide receptors, FPR1 and FPR2, are G protein-coupled receptors that recognize many different pathogen- and host-derived ligands. While FPR1 conveys pro-inflammatory signals, FPR2 is linked with pro-resolving outcomes. To analyse how the two very similar FPRs exert opposite effects in modulating inflammatory responses despite their high homology, a shared expression profile on immune cells and an overlapping ligand repertoire, we questioned whether the signalling profile differs between these two receptors. EXPERIMENTAL APPROACH We deduced EC50 and Emax values for synthetic, pathogen-derived and host-derived peptide agonists for both FPR1 and FPR2 and analysed them within the framework of biased signalling. We furthermore investigated whether FPR isoform-specific agonists affect the ex vivo lifespan of human neutrophils. KEY RESULTS The FPRs share a core signature across signalling pathways. Whereas the synthetic WKYMVm and formylated peptides acted as potent agonists at FPR1, and at FPR2, only WKYMVm was a full agonist. Natural FPR2 agonists, irrespective of N-terminal formylation, displayed lower activity ratios, suggesting an underutilized signalling potential of this receptor. FPR2 agonism did not counteract LPS-induced neutrophil survival, indicating that FPR2 activation per se is not linked with a pro-resolving function. CONCLUSION AND IMPLICATIONS Activation of FPR1 and FPR2 by a representative agonist panel revealed a lack of a receptor-specific signalling texture, challenging assumptions about distinct inflammatory profiles linked to specific receptor isoforms, signalling patterns or agonist classes. These conclusions are restricted to the specific agonists and signalling pathways examined.
Collapse
Affiliation(s)
- Denise Pajonczyk
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center of Molecular Biology of Inflammation and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Merle F Sternschulte
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center of Molecular Biology of Inflammation and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
- Institute of Experimental Pathology, Center of Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology, Center of Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| | - Marcel Bermudez
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, Muenster, Germany
| | - Carsten A Raabe
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center of Molecular Biology of Inflammation and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Ursula Rescher
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center of Molecular Biology of Inflammation and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| |
Collapse
|
16
|
Ganesan T, Sinniah A, Ramasamy TS, Alshawsh MA. Cracking the code of Annexin A1-mediated chemoresistance. Biochem Biophys Res Commun 2024; 725:150202. [PMID: 38885563 DOI: 10.1016/j.bbrc.2024.150202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
The annexin superfamily protein, Annexin A1, initially recognized for its glucocorticoid-induced phospholipase A2-inhibitory activities, has emerged as a crucial player in diverse cellular processes, including cancer. This review explores the multifaceted roles of Anx-A1 in cancer chemoresistance, an area largely unexplored. Anx-A1's involvement in anti-inflammatory processes, its complex phosphorylation patterns, and its context-dependent switch from anti-to pro-inflammatory in cancer highlights its intricate regulatory mechanisms. Recent studies highlight Anx-A1's paradoxical roles in different cancers, exhibiting both up- and down-regulation in a tissue-specific manner, impacting different hallmark features of cancer. Mechanistically, Anx-A1 modulates drug efflux transporters, influences cancer stem cell populations, DNA damages and participates in epithelial-mesenchymal transition. This review aims to explore Anx-A1's role in chemoresistance-associated pathways across various cancers, elucidating its impact on survival signaling cascades including PI3K/AKT, MAPK/ERK, PKC/JNK/P-gp pathways and NFκ-B signalling. This review also reveals the clinical implications of Anx-A1 dysregulation in treatment response, its potential as a prognostic biomarker, and therapeutic targeting strategies, including the promising Anx-A1 N-terminal mimetic peptide Ac2-26. Understanding Anx-A1's intricate involvement in chemoresistance offers exciting prospects for refining cancer therapies and improving treatment outcomes.
Collapse
Affiliation(s)
- Thanusha Ganesan
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603, Kuala, Lumpur, Malaysia.
| | - Ajantha Sinniah
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603, Kuala, Lumpur, Malaysia.
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603, Kuala, Lumpur, Malaysia; School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.
| |
Collapse
|
17
|
Hou Z, Lu F, Lin J, Wu Y, Chen L, Fang H, Chen L, Zhang S, Huang H, Pan Y. Loss of Annexin A1 in macrophages restrains efferocytosis and remodels immune microenvironment in pancreatic cancer by activating the cGAS/STING pathway. J Immunother Cancer 2024; 12:e009318. [PMID: 39237260 PMCID: PMC11381726 DOI: 10.1136/jitc-2024-009318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE Pancreatic cancer is an incurable malignant disease with extremely poor prognosis and a complex tumor microenvironment. We sought to characterize the role of Annexin A1 (ANXA1) in pancreatic cancer, including its ability to promote efferocytosis and antitumor immune responses. METHODS The tumor expression of ANXA1 and cleaved Caspase-3 (c-Casp3) and numbers of tumor-infiltrating CD68+ macrophages in 151 cases of pancreatic cancer were examined by immunohistochemistry and immunofluorescence. The role of ANXA1 in pancreatic cancer was investigated using myeloid-specific ANXA1-knockout mice. The changes in tumor-infiltrating immune cell populations induced by ANXA1 deficiency in macrophages were assessed by single-cell RNA sequencing and flow cytometry. RESULTS ANXA1 expression in pancreatic cancer patient samples correlated with the number of CD68+ macrophages. The percentage of ANXA1+ tumor-infiltrating macrophages negatively correlated with c-Casp3 expression and was significantly associated with worse survival. In mice, myeloid-specific ANXA1 deficiency inhibited tumor growth and was accompanied by the accumulation of apoptotic cells in pancreatic tumor tissue caused by inhibition of macrophage efferocytosis, which was dependent on cGAS-STING pathway-induced type I interferon signaling. ANXA1 deficiency significantly remodeled the intratumoral lymphocyte and macrophage compartments in tumor-bearing mice by increasing the number of effector T cells and pro-inflammatory macrophages. Furthermore, combination therapy of ANXA1 knockdown with gemcitabine and anti-programmed cell death protein-1 antibody resulted in synergistic inhibition of pancreatic tumor growth. CONCLUSION This research uncovers a novel role of macrophage ANXA1 in pancreatic cancer. ANXA1-mediated regulation of efferocytosis by tumor-associated macrophages promotes antitumor immune response via STING signaling, suggesting potential treatment strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Zelin Hou
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Fengchun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jiajing Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yuwei Wu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Linjin Chen
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Haizong Fang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Linlin Chen
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shihan Zhang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
18
|
Mo H, Yu Y, Sun X, Ge H, Yu L, Guan X, Zhai J, Zhu A, Wei Y, Wang J, Yan X, Qian H, Xu B, Ma F. Metronomic chemotherapy plus anti-PD-1 in metastatic breast cancer: a Bayesian adaptive randomized phase 2 trial. Nat Med 2024; 30:2528-2539. [PMID: 38969879 DOI: 10.1038/s41591-024-03088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/24/2024] [Indexed: 07/07/2024]
Abstract
It remains unclear whether metronomic chemotherapy is superior to conventional chemotherapy when combined with immune checkpoint blockade. Here we performed a phase 2 clinical trial of metronomic chemotherapy combined with PD-1 blockade to compare the efficacy of combined conventional chemotherapy and PD-1 blockade using Bayesian adaptive randomization and efficacy monitoring. Eligible patients had metastatic HER2-negative breast cancer and had not received more than one prior line of standard chemotherapy. Patients (total n = 97) were randomized to receive (1) metronomic vinorelbine (NVB) monotherapy (n = 11), (2) NVB plus anti-PD-1 toripalimab (n = 7), (3) anti-angiogenic bevacizumab, NVB and toripalimab (n = 27), (4) conventional cisplatin, NVB and toripalimab (n = 26), or (5) metronomic cyclophosphamide, capecitabine, NVB and toripalimab (the VEX cohort) (n = 26). The primary endpoint was disease control rate (DCR). Secondary objectives included progression-free survival (PFS) and safety. The study met the primary endpoint. The VEX (69.7%) and cisplatin (73.7%) cohorts had the highest DCR. The median PFS of patients in the VEX cohort was the longest, reaching 6.6 months, followed by the bevacizumab (4.0 months) and cisplatin (3.5 months) cohorts. In general, the five regimens were well tolerated, with nausea and neutropenia being the most common adverse events. An exploratory mass cytometry analysis indicated that metronomic VEX chemotherapy reprograms the systemic immune response. Together, the clinical and translational data of this study indicate that metronomic VEX chemotherapy combined with PD-1 blockade can be a treatment option in patients with breast cancer. ClinicalTrials.gov Identifier: NCT04389073 .
Collapse
Affiliation(s)
- Hongnan Mo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongpei Yu
- Department of Biostatistics, Peking University Clinical Research Institute, Beijing, China
| | - Xiaoying Sun
- Department of Medical Oncology, Cancer Hospital of HuanXing ChaoYang District, Beijing, China
| | - Hewei Ge
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lanlan Yu
- Department of Biostatistics, Peking University Clinical Research Institute, Beijing, China
| | - Xiuwen Guan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingtong Zhai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aihua Zhu
- Department of Medical Oncology, Cancer Hospital of HuanXing ChaoYang District, Beijing, China
| | - Yuhan Wei
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinjing Wang
- Department of Medical Oncology, Cancer Hospital of HuanXing ChaoYang District, Beijing, China
| | - Xiaoyan Yan
- Department of Biostatistics, Peking University Clinical Research Institute, Beijing, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
19
|
Li Z, Han B, Qi M, Li Y, Duan Y, Yao Y. Modulating macrophage-mediated programmed cell removal: An attractive strategy for cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189172. [PMID: 39151808 DOI: 10.1016/j.bbcan.2024.189172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Macrophage-mediated programmed cell removal (PrCR) is crucial for the identification and elimination of needless cells that maintain tissue homeostasis. The efficacy of PrCR depends on the balance between pro-phagocytic "eat me" signals and anti-phagocytic "don't eat me" signals. Recently, a growing number of studies have shown that tumourigenesis and progression are closely associated with PrCR. In the tumour microenvironment, PrCR activated by the "eat me" signal is counterbalanced by the "don't eat me" signal of CD47/SIRPα, resulting in tumour immune escape. Therefore, targeting exciting "eat me" signalling while simultaneously suppressing "don't eat me" signalling and eventually inducing macrophages to produce effective PrCR will be a very attractive antitumour strategy. Here, we comprehensively review the functions of PrCR-activating signal molecules (CRT, PS, Annexin1, SLAMF7) and PrCR-inhibiting signal molecules (CD47/SIRPα, MHC-I/LILRB1, CD24/Siglec-10, SLAMF3, SLAMF4, PD-1/PD-L1, CD31, GD2, VCAM1), the interactions between these molecules, and Warburg effect. In addition, we highlight the molecular regulatory mechanisms that affect immune system function by exciting or suppressing PrCR. Finally, we review the research advances in tumour therapy by activating PrCR and discuss the challenges and potential solutions to smooth the way for tumour treatment strategies that target PrCR.
Collapse
Affiliation(s)
- Zhenzhen Li
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingqian Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Menghui Qi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongtao Duan
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Yongfang Yao
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
20
|
Scharf P, Sandri S, Rizzetto F, Xavier LF, Grosso D, Correia-Silva RD, Farsky PS, Gil CD, Farsky SHP. GPCRs overexpression and impaired fMLP-induced functions in neutrophils from chronic kidney disease patients. Front Immunol 2024; 15:1387566. [PMID: 39253088 PMCID: PMC11381270 DOI: 10.3389/fimmu.2024.1387566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction G-protein coupled receptors (GPCRs) expressed on neutrophils regulate their mobilization from the bone marrow into the blood, their half-live in the circulation, and their pro- and anti-inflammatory activities during inflammation. Chronic kidney disease (CKD) is associated with systemic inflammatory responses, and neutrophilia is a hallmark of CKD onset and progression. Nonetheless, the role of neutrophils in CKD is currently unclear. Methods Blood and renal tissue were collected from non-dialysis CKD (grade 3 - 5) patients to evaluate GPCR neutrophil expressions and functions in CKD development. Results CKD patients presented a higher blood neutrophil-to-lymphocyte ratio (NLR), which was inversely correlated with the glomerular filtration rate (eGFR). A higher frequency of neutrophils expressing the senescent GPCR receptor (CXCR4) and activation markers (CD18+CD11b+CD62L+) was detected in CKD patients. Moreover, CKD neutrophils expressed higher amounts of GPCR formyl peptide receptors (FPR) 1 and 2, known as neutrophil pro- and anti-inflammatory receptors, respectively. Cytoskeletal organization, migration, and production of reactive oxygen species (ROS) by CKD neutrophils were impaired in response to the FPR1 agonist (fMLP), despite the higher expression of FPR1. In addition, CKD neutrophils presented enhanced intracellular, but reduced membrane expression of the protein Annexin A1 (AnxA1), and an impaired ability to secrete it into the extracellular compartment. Secreted and phosphorylated AnxA1 is a recognized ligand of FPR2, pivotal in anti-inflammatory and efferocytosis effects. CKD renal tissue presented a low number of neutrophils, which were AnxA1+. Conclusion Together, these data highlight that CKD neutrophils overexpress GPCRs, which may contribute to an unbalanced aging process in the circulation, migration into inflamed tissues, and efferocytosis.
Collapse
Affiliation(s)
- Pablo Scharf
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Felipe Rizzetto
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Lagoa Federal Hospital, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luana Filippi Xavier
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Rebeca D Correia-Silva
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Pedro S Farsky
- Dante Pazzanese Institute of Cardiology of Sao Paulo, São Paulo, São Paulo, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Poland CA, Duffin R, Weber K, Dekant W, Borm PJA. Is pulmonary inflammation a valid predictor of particle induced lung pathology? The case of amorphous and crystalline silicas. Toxicol Lett 2024; 399 Suppl 1:18-30. [PMID: 37454774 DOI: 10.1016/j.toxlet.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Although inflammation is a normal and beneficial response, it is also a key event in the pathology of many chronic diseases, including pulmonary and systemic particle-induced disease. In addition, inflammation is now considered as the key response in standard settings for inhaled particles and a critical endpoint in OECD-based sub-acute/ chronic animal inhalation testing protocols. In this paper, we discuss that whilst the role of inflammation in lung disease is undeniable, it is when inflammation deviates from normal parameters that adversity occurs. We introduce the importance of the time course and in particular, the reversibility of inflammation in the progression towards tissue remodelling and neoplastic changes as commonly seen in rat inhalation studies. For this purpose, we used sub-chronic/ chronic studies studies with synthetic amorphous silicas (SAS) and reactive crystalline silica (RCS) as a source of data to describe the time-course of inflammation towards and beyond adversity. Whilst amorphous silicas induce an acute but reversible inflammatory response, only RCS induces a persistent, progressive response after cessation of exposure, resulting in fibrosis and carcinogenicity in rodents and humans. This suggests that the use of inflammation as a fixed endpoint at the cessation of exposure may not be a reliable predictor of particle-induced lung pathology. We therefore suggest extending the current OECD testing guidelines with a recovery period, that allows inflammation to resolve or progress into altered structure and function, such as fibrosis.
Collapse
Affiliation(s)
- Craig A Poland
- Regulatory Compliance Limited, 6 Dryden Road, Loanhead, Midlothian EH20 9TY, UK; Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Rodger Duffin
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Klaus Weber
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland
| | - Wolfgang Dekant
- Department of Toxicology, University of Würzburg, Rhönstrasse 9, 97080 Würzburg, Germany
| | - Paul J A Borm
- Nanoconsult, Grindakker 10, Spaubeek, The Netherlands
| |
Collapse
|
22
|
Sasso GRDS, Cerri PS, Sasso-Cerri E, Simões MJ, Gil CD, Florencio-Silva R. Possible role of annexin A1/FPR2 pathway in COX2/NLRP3 inflammasome regulation in alveolar bone cells of estrogen-deficient female rats with diabetes mellitus. J Periodontol 2024; 95:749-763. [PMID: 37987258 DOI: 10.1002/jper.23-0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Annexin A1 (ANXA1) and the NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome play important roles in bone remodeling. However, expression profiles of these factors in bone cells under diabetes mellitus (DM) and estrogen-deficient conditions are poorly understood. This study investigated the immunoexpression of ANXA1 and its formyl peptide receptor 2 (FPR2), as well as NLRP3 inflammasome mediators, during remodeling of the alveolar process in diabetic and estrogen-deficient rats. METHODS Twenty adult female Wistar rats were divided into four groups (n = 5): Sham-operated (SHAM) and ovariectomized (OVX) rats received a vehicle solution, and SHAM and OVX rats were intraperitoneally administered 60 mg/kg/body weight (BW) of streptozotocin (STZ) to induce DM (SHAM-Di and OVX-Di groups). After 7 weeks, the rats were euthanized and their maxillae were fixed in phosphate-buffered 4% formaldehyde and embedded in paraffin. Sections were stained with hematoxylin/eosin (H&E) and picrosirius red or subjected to immunohistochemical detection of ANXA1, FPR2, NLRP3, interleukin-1β (IL-1β), and cyclooxygenase-2 (COX2). RESULTS Estrogen deficiency and DM were associated with deleterious effects in bone tissue, as evidenced by a lower number of osteocytes and higher number of empty lacunae in the SHAM-Di and OVX-Di groups compared to the nondiabetic groups. Both diabetic groups showed a smaller vascular area and weaker collagen fiber birefringence intensity in alveolar bone tissue. A significantly higher number of ANXA1/FPR2-positive osteoblasts, osteocytes, and osteoclasts was accompanied by a significantly higher number of these cells immunolabeled for COX2, NLRP3, and IL-1β in the diabetic and OVX groups, especially in both estrogen-deficient and diabetic rats. CONCLUSION These results indicate a possible role for the ANXA1/FPR2 pathway as a fine-tuning/anti-inflammatory regulator to counterbalance exacerbated COX2/NLRP3/IL-1β activation in bone cells during bone remodeling under estrogen deficiency and DM.
Collapse
Affiliation(s)
- Gisela Rodrigues Da Silva Sasso
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo - Paulista School of Medicine (UNIFESP - EPM), São Paulo, SP, Brazil
| | - Paulo Sérgio Cerri
- School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Estela Sasso-Cerri
- School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Manuel Jesus Simões
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo - Paulista School of Medicine (UNIFESP - EPM), São Paulo, SP, Brazil
| | - Cristiane Damas Gil
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo - Paulista School of Medicine (UNIFESP - EPM), São Paulo, SP, Brazil
| | - Rinaldo Florencio-Silva
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo - Paulista School of Medicine (UNIFESP - EPM), São Paulo, SP, Brazil
| |
Collapse
|
23
|
Silva JMD, Silva HALD, Sarmento ALC, Hueb M, Damazo AS. Analysis of clinical cure outcome, macrophages number, cytokines levels and expression of annexin-A1 in the cutaneous infection in patients with Leishmania braziliensis. Rev Soc Bras Med Trop 2024; 57:e00412. [PMID: 39082522 PMCID: PMC11290842 DOI: 10.1590/0037-8682-0036-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/09/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Leishmania braziliensis, a protozoan prevalent in Brazil, is the known causative agent of cutaneous leishmaniasis (CL). The activation of M1 macrophages is a pivotal factor in the host's ability to eliminate the parasite, whereas M2 macrophages may facilitate parasite proliferation. This study analyzed the clinical outcomes of CL and the patients' immunological profiles, focusing on the prevalence of M1 and M2 macrophages, cytokine production, and annexin-A1 (ANXA1) expression in the lesion. METHODS Data were obtained by polymerase chain reaction (PCR) and histopathological, immunofluorescence, and cytokine analyses. RESULTS Patients with exudative and cellular reaction-type (ECR)-type lesions that healed within 90 days showed a significant increase in M1. Conversely, patients with ECR and exudative and granulomatous reaction (EGR)types, who healed within 180 days, showed an elevated number of M2. Cytokines interferon (IFN)-γ and tumor necrosis factor (TNF)-α were higher in ECR lesions that resolved within 90 days (P<0.05). In contrast, IL-9 and IL-10 levels significantly increased in both ECR and EGR lesions that healed after 180 days (P<0.001). The production of IL-21, IL-23 and TGF-β was increased in patients with ECR or EGR lesions that healed after 180 days (P<0.05). The expression of ANXA1 was higher in M2 within ECR-type lesions in patients who healed after 180 days (P<0.05). CONCLUSIONS These findings suggest that the infectious microenvironment induced by L. braziliensis affects the differentiation of M1 and M2 macrophages, cytokine release, and ANXA1 expression, thereby influencing the healing capacity of patients. Therefore, histopathological and immunological investigations may improve the selection of CL therapy.
Collapse
Affiliation(s)
- Joselina Maria da Silva
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-graduação em Ciências da Saúde, Cuiabá, MT, Brasil
| | - Helen Aguiar Lemes da Silva
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-graduação em Ciências da Saúde, Cuiabá, MT, Brasil
| | | | - Marcia Hueb
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Departamento de Clínica Médica, Cuiabá, MT, Brasil
| | - Amílcar Sabino Damazo
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-graduação em Ciências da Saúde, Cuiabá, MT, Brasil
- Universidade de Brasília, Faculdade de Medicina, Brasília, DF, Brasil
| |
Collapse
|
24
|
Al-Sharqi AJB, Abdulkareem A. Microbiological and Salivary Biomarkers Successfully Predict Site-Specific and Whole-Mouth Outcomes of Nonsurgical Periodontal Treatment. J Clin Med 2024; 13:4256. [PMID: 39064296 PMCID: PMC11277870 DOI: 10.3390/jcm13144256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Nonsurgical periodontal treatment (NSPT) is the gold-standard technique for treating periodontitis. However, an individual's susceptibility or the inadequate removal of subgingival biofilms could lead to unfavorable responses to NSPT. This study aimed to assess the potential of salivary and microbiological biomarkers in predicting the site-specific and whole-mouth outcomes of NSPT. Methods: A total of 68 periodontitis patients exhibiting 1111 periodontal pockets 4 to 6 mm in depth completed the active phase of periodontal treatment. Clinical periodontal parameters, saliva, and subgingival biofilm samples were collected from each patient at baseline and three months after NSPT. A quantitative PCR assay was used to detect the presence of Fusobaterium nucleatum and Porphyromonas gingivalis in the biofilm samples. Salivary biomarkers including matrix metalloproteinase (MMP)-9, glutathione S-transferase (GST), and Annexin-1 were assayed both qualitatively (Western blot analysis) and quantitively (ELISA). Results: NSPT yielded significant improvements in all clinical parameters, including a reduction in bacterial load and decreased levels of MMP-9 together with increased concentrations of GST and Annexin-1. The binary logistic regression suggested that the overall accuracy of P. gingivalis identification, probing pocket depth, and interproximal sites was 71.1% in predicting successful site-specific outcomes. The salivary biomarker model yielded an overall accuracy of 79.4% in predicting whole-mouth outcomes following NSPT. Conclusions: At baseline, the presence of shallow periodontal pockets at interdental locations with a lower abundance of P. gingivalis is predictive of a favorable response to NSPT at the site level. Decreased salivary MMP-9 associated with increased GST and Annexin-1 levels can predict successful whole-mouth outcomes following NSPT.
Collapse
Affiliation(s)
| | - Ali Abdulkareem
- Department of Periodontics, College of Dentistry, University of Baghdad, Bab Al Mudam, Baghdad P.O. Box 1417, Iraq;
| |
Collapse
|
25
|
Dietrich-Zagonel F, Alim MA, Beckman LB, Eliasson P. Dexamethasone treatment influences tendon healing through altered resolution and a direct effect on tendon cells. Sci Rep 2024; 14:15304. [PMID: 38961188 PMCID: PMC11222440 DOI: 10.1038/s41598-024-66038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Inflammation, corticosteroids, and loading all affect tendon healing, with an interaction between them. However, underlying mechanisms behind the effect of corticosteroids and the interaction with loading remain unclear. The aim of this study was to investigate the role of dexamethasone during tendon healing, including specific effects on tendon cells. Rats (n = 36) were randomized to heavy loading or mild loading, the Achilles tendon was transected, and animals were treated with dexamethasone or saline. Gene and protein analyses of the healing tendon were performed for extracellular matrix-, inflammation-, and tendon cell markers. We further tested specific effects of dexamethasone on tendon cells in vitro. Dexamethasone increased mRNA levels of S100A4 and decreased levels of ACTA2/α-SMA, irrespective of load level. Heavy loading + dexamethasone reduced mRNA levels of FN1 and TenC (p < 0.05), while resolution-related genes were unaltered (p > 0.05). In contrast, mild loading + dexamethasone increased mRNA levels of resolution-related genes ANXA1, MRC1, PDPN, and PTGES (p < 0.03). Altered protein levels were confirmed in tendons with mild loading. Dexamethasone treatment in vitro prevented tendon construct formation, increased mRNA levels of S100A4 and decreased levels of SCX and collagens. Dexamethasone during tendon healing appears to act through immunomodulation by promoting resolution, but also through an effect on tendon cells.
Collapse
Affiliation(s)
- Franciele Dietrich-Zagonel
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Science, Linköping University, 581 83, Linköping, Sweden
| | - Md Abdul Alim
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Science, Linköping University, 581 83, Linköping, Sweden
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Leo Bon Beckman
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Science, Linköping University, 581 83, Linköping, Sweden
| | - Pernilla Eliasson
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Science, Linköping University, 581 83, Linköping, Sweden.
- Department of Orthopaedics, Sahlgrenska University Hospital, Länsmansgatan 28, 431 80, Mölndal, Sweden.
| |
Collapse
|
26
|
Broering MF, Tocci S, Sout NT, Reutelingsperger C, Farsky SHP, Das S, Sayed IM. Development of an Inflamed High Throughput Stem-cell-based Gut Epithelium Model to Assess the Impact of Annexin A1. Stem Cell Rev Rep 2024; 20:1299-1310. [PMID: 38498294 DOI: 10.1007/s12015-024-10708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE AND DESIGN Annexin A1 (ANXA1) plays a role in maintaining intestinal hemostasis, especially following mucosal inflammation. The published data about ANXA1 was derived from experimental animal models where there is an overlapping between epithelial and immune cells. There is no in vitro gut epithelial model that can assess the direct effect of ANXA1 on the gut epithelium. METHODS We developed high-throughput stem-cell-based murine epithelial cells and bacterial lipopolysaccharides (LPS) were used to induce inflammation. The impact of ANXA1 and its functional part (Ac2-26) was evaluated in the inflamed model. Intestinal integrity was assessed by the transepithelial electrical resistance (TEER), and FITC-Dextran permeability. Epithelial junction proteins were assessed using confocal microscopy and RT-qPCR. Inflammatory cytokines were evaluated by RT-qPCR and ELISA. RESULTS LPS challenge mediated a damage in the epithelial cells as shown by a drop in the TEER and an increase in FITC-dextran permeability; reduced the expression of epithelial junctional proteins (Occludin, ZO-1, and Cadherin) and increased the expression of the gut leaky protein, Claudin - 2. ANXA1 and Ac2-26 treatment reduced the previous damaging effects. In addition, ANXA1 and Ac2-26 inhibited the inflammatory responses mediated by the LPS and increased the transcription of the anti-inflammatory cytokine, IL-10. CONCLUSION ANXA1 and Ac2-26 directly protect the epithelial integrity by affecting the expression of epithelial junction and inflammatory markers. The inflamed gut model is a reliable tool to study intestinal inflammatory diseases, and to evaluate the efficacy of potential anti-inflammatory drugs and the screening of new drugs that could be candidates for inflammatory bowel disease.
Collapse
Affiliation(s)
- Milena Fronza Broering
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, São Paulo, 05508-000, Brazil
| | - Stefania Tocci
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| | - Noah T Sout
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| | - Chris Reutelingsperger
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht University, Maastricht, 6211 LK, The Netherlands
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, São Paulo, 05508-000, Brazil
| | - Soumita Das
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA.
| | - Ibrahim M Sayed
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
27
|
Neyton LPA, Patel RK, Sarma A, Willmore A, Haller SC, Kangelaris KN, Eckalbar WL, Erle DJ, Krummel MF, Hendrickson CM, Woodruff PG, Langelier CR, Calfee CS, Fragiadakis GK. Distinct pulmonary and systemic effects of dexamethasone in severe COVID-19. Nat Commun 2024; 15:5483. [PMID: 38942804 PMCID: PMC11213873 DOI: 10.1038/s41467-024-49756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
Dexamethasone is the standard of care for critically ill patients with COVID-19, but the mechanisms by which it decreases mortality and its immunological effects in this setting are not understood. Here we perform bulk and single-cell RNA sequencing of samples from the lower respiratory tract and blood, and assess plasma cytokine profiling to study the effects of dexamethasone on both systemic and pulmonary immune cell compartments. In blood samples, dexamethasone is associated with decreased expression of genes associated with T cell activation, including TNFSFR4 and IL21R. We also identify decreased expression of several immune pathways, including major histocompatibility complex-II signaling, selectin P ligand signaling, and T cell recruitment by intercellular adhesion molecule and integrin activation, suggesting these are potential mechanisms of the therapeutic benefit of steroids in COVID-19. We identify additional compartment- and cell- specific differences in the effect of dexamethasone that are reproducible in publicly available datasets, including steroid-resistant interferon pathway expression in the respiratory tract, which may be additional therapeutic targets. In summary, we demonstrate compartment-specific effects of dexamethasone in critically ill COVID-19 patients, providing mechanistic insights with potential therapeutic relevance. Our results highlight the importance of studying compartmentalized inflammation in critically ill patients.
Collapse
Affiliation(s)
- Lucile P A Neyton
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Ravi K Patel
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Aartik Sarma
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Andrew Willmore
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Sidney C Haller
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | | | - Walter L Eckalbar
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - David J Erle
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Lung Biology Center, University of California, San Francisco, CA, USA
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Carolyn M Hendrickson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Charles R Langelier
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Division of Infectious Diseases, University of California, San Francisco, CA, USA
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Anesthesia, University of California, San Francisco, CA, USA
| | - Gabriela K Fragiadakis
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA.
- Division of Rheumatology, University of California, San Francisco, CA, USA.
| |
Collapse
|
28
|
Zhang Z, Huang L, Brayboy L, Birrer M. Single-cell analysis of ovarian myeloid cells identifies aging associated changes in macrophages and signaling dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598667. [PMID: 38915572 PMCID: PMC11195259 DOI: 10.1101/2024.06.13.598667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The aging of mammalian ovary is accompanied by an increase in tissue fibrosis and heightened inflammation. Myeloid cells, including macrophages, monocytes, dendritic cells, and neutrophils, play pivotal roles in shaping the ovarian tissue microenvironment and regulating inflammatory responses. However, a comprehensive understanding of the roles of these cells in the ovarian aging process is lacking. To bridge this knowledge gap, we utilized single-cell RNA sequencing (scRNAseq) and flow cytometry analysis to functionally characterize CD45+ CD11b+ myeloid cell populations in young (3 months old) and aged (14-17 months old) murine ovaries. Our dataset unveiled the presence of five ovarian macrophage subsets, including a Cx3cr1 low Cd81 hi subset unique to the aged murine ovary. Most notably, our data revealed significant alterations in ANNEXIN and TGFβ signaling within aged ovarian myeloid cells, which suggest a novel mechanism contributing to the onset and progression of aging-associated inflammation and fibrosis in the ovarian tissue.
Collapse
Affiliation(s)
- Zijing Zhang
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
- Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Lynae Brayboy
- Department of Neuropediatrics Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Birrer
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
- Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
29
|
Xing J, Wang K, Xu YC, Pei ZJ, Yu QX, Liu XY, Dong YL, Li SF, Chen Y, Zhao YJ, Yao F, Ding J, Hu W, Zhou RP. Efferocytosis: Unveiling its potential in autoimmune disease and treatment strategies. Autoimmun Rev 2024; 23:103578. [PMID: 39004157 DOI: 10.1016/j.autrev.2024.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance. However, any disruptions occurring at any of the efferocytosis steps during apoptosis can lead to a diminished efficacy in removing apoptotic cells. Factors contributing to this inefficiency encompass dysregulation in the release and recognition of "find me" or "eat me" signals, defects in phagocyte surface receptors, bridging molecules, and other signaling pathways. The inadequate clearance of ACs can result in their rupture and subsequent release of self-antigens, thereby promoting immune responses and precipitating the onset of autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. A comprehensive understanding of the efferocytosis process and its implications can provide valuable insights for developing novel therapeutic strategies that target this process to prevent or treat autoimmune diseases.
Collapse
Affiliation(s)
- Jing Xing
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ke Wang
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu-Cai Xu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Jun Pei
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qiu-Xia Yu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xing-Yu Liu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Lu Dong
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Feng Yao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Ding
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
30
|
Vieira RR, da Silva RA, Sasso GRS, Franco PC, Borges FT, Lima PDA, Sanches JM, Gil CD, Carbonel AAF. Lack of Annexin A1 Exacerbates Inflammatory Response in Acute Endometritis Model. Inflammation 2024; 47:1041-1052. [PMID: 38198110 DOI: 10.1007/s10753-023-01959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/11/2024]
Abstract
Annexin A1 (AnxA1) is a glucocorticoid-inducible protein and an important endogenous modulator of inflammation. However, its effect in the endometrial microenvironment is poorly explained. This study aimed to evaluate the role of endogenous AnxA1 in an endometritis mouse model induced by lipopolysaccharide (LPS). Female C57BL/6 wild-type (WT) and AnxA1-/- mice were divided into two groups: SHAM and LPS. To induce endometritis, mice received a vaginal infusion of 50 μL of LPS (1 mg/mL) dissolved in phosphate-buffered saline. After 24 h, the mice were euthanized, and blood and uteri samples were collected. The endometrium inflammatory scores were significantly increased in the LPS-treated group. AnxA1-/- mice from the LPS group demonstrated a significant increase in the number of degranulated mast cell levels compared to AnxA1-/- SHAM mice. The Western blotting analysis revealed that a lack of AnxA1 promoted the upregulation of NLRP3 and pro-IL-1β in the acute endometritis animal model compared to WT LPS animals. LPS-induced endometritis increased the number of blood peripheral leukocytes in both WT and AnxA1-/- mice compared with SHAM group mice (p < 0.001). AnxA1-/- mice also showed increased plasma levels of IL-1β (p < 0.01), IL-6, IL-10, IL-17, and TNF-α (p < 0.05) following LPS-induced endometritis. In conclusion, a lack of endogenous AnxA1 exacerbated the inflammatory response in an endometritis model via NLRP3 dysregulation, increased uterine mast cell activation, and plasma pro-inflammatory cytokine release.
Collapse
Affiliation(s)
- Renata R Vieira
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, Edifício Lemos Torres - 3° andar, São Paulo, SP, 04023-900, Brazil
| | - Rafael André da Silva
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Gisela R S Sasso
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, Edifício Lemos Torres - 3° andar, São Paulo, SP, 04023-900, Brazil
| | - Paulo C Franco
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, Edifício Lemos Torres - 3° andar, São Paulo, SP, 04023-900, Brazil
| | - Fernanda T Borges
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, SP, 04038-901, Brazil
| | - Patrícia D A Lima
- Queen's Cardiopulmonary Unit (QCPU), Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Jose Marcos Sanches
- School of Medicine, Universidade do Oeste Paulista (UNOESTE), Guaruja, SP, 11441-225, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, Edifício Lemos Torres - 3° andar, São Paulo, SP, 04023-900, Brazil.
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil.
| | - Adriana A F Carbonel
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, Edifício Lemos Torres - 3° andar, São Paulo, SP, 04023-900, Brazil
| |
Collapse
|
31
|
Geropoulos G, Psarras K, Koimtzis G, Fornasiero M, Anestiadou E, Geropoulos V, Michopoulou A, Papaioannou M, Kouzi-Koliakou K, Galanis I. Knockout Genes in Bowel Anastomoses: A Systematic Review of Literature Outcomes. J Pers Med 2024; 14:553. [PMID: 38929776 PMCID: PMC11205243 DOI: 10.3390/jpm14060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The intestinal wound healing process is a complex event of three overlapping phases: exudative, proliferative, and remodeling. Although some mechanisms have been extensively described, the intestinal healing process is still not fully understood. There are some similarities but also some differences compared to other tissues. The aim of this systematic review was to summarize all studies with knockout (KO) experimental models in bowel anastomoses, underline any recent knowledge, and clarify further the cellular and molecular mechanisms of the intestinal healing process. A systematic review protocol was performed. MATERIALS AND METHODS Medline, EMBASE, and Scopus were comprehensively searched. RESULTS a total of eight studies were included. The silenced genes included interleukin-10, the four-and-one-half LIM domain-containing protein 2 (FHL2), cyclooxygenase-2 (COX-2), annexin A1 (ANXA-1), thrombin-activatable fibrinolysis inhibitor (TAFI), and heparin-binding epidermal growth factor (HB-EGF) gene. Surgically, an end-to-end bowel anastomosis was performed in the majority of the studies. Increased inflammatory cell infiltration in the anastomotic site was found in IL-10-, annexin-A1-, and TAFI-deficient mice compared to controls. COX-1 deficiency showed decreased angiogenesis at the anastomotic site. Administration of prostaglandin E2 in COX-2-deficient mice partially improved anastomotic leak rates, while treatment of ANXA1 KO mice with Ac2-26 nanoparticles reduced colitis activity and increased weight recovery following surgery. CONCLUSIONS our findings provide new insights into improving intestinal wound healing by amplifying the aforementioned genes using appropriate gene therapies. Further research is required to clarify further the cellular and micromolecular mechanisms of intestinal healing.
Collapse
Affiliation(s)
- Georgios Geropoulos
- 2nd Department of Propaedeutic Surgery, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.G.); (G.K.); (V.G.); (A.M.); (I.G.)
| | - Kyriakos Psarras
- 2nd Department of Propaedeutic Surgery, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.G.); (G.K.); (V.G.); (A.M.); (I.G.)
| | - Georgios Koimtzis
- 2nd Department of Propaedeutic Surgery, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.G.); (G.K.); (V.G.); (A.M.); (I.G.)
| | | | - Elissavet Anestiadou
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece;
| | - Vasileios Geropoulos
- 2nd Department of Propaedeutic Surgery, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.G.); (G.K.); (V.G.); (A.M.); (I.G.)
| | - Anna Michopoulou
- 2nd Department of Propaedeutic Surgery, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.G.); (G.K.); (V.G.); (A.M.); (I.G.)
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria Papaioannou
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Kokkona Kouzi-Koliakou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis Galanis
- 2nd Department of Propaedeutic Surgery, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.G.); (G.K.); (V.G.); (A.M.); (I.G.)
| |
Collapse
|
32
|
Bruschi M, Angeletti A, Prunotto M, Meroni PL, Ghiggeri GM, Moroni G, Sinico RA, Franceschini F, Fredi M, Vaglio A, Cavalli A, Scapozza L, Patel JJ, Tan JC, Lo KC, Cavagna L, Petretto A, Pratesi F, Migliorini P, Locatelli F, Pazzola G, Pesce G, Giannese D, Manfredi A, Ramirez GA, Esposito P, Murdaca G, Negrini S, Bui F, Trezzi B, Emmi G, Cavazzana I, Binda V, Fenaroli P, Pisan I, Montecucco C, Santoro D, Scolari F, Mescia F, Volpi S, Mosca M, Tincani A, Ravelli A, Murtas C, Candiano G, Caridi G, La Porta E, Verrina E. A critical view on autoantibodies in lupus nephritis: Concrete knowledge based on evidence. Autoimmun Rev 2024; 23:103535. [PMID: 38552995 DOI: 10.1016/j.autrev.2024.103535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Deposition of autoantibodies in glomeruli is a key factor in the development of lupus nephritis (LN). For a long time, anti-dsDNA and anti-C1q antibodies were thought to be the main cause of the kidney damage. However, recent studies have shown that the list of autoantibidies that have renal tropism and deposit in the kidney in LN is increasing and the link between anti-dsDNA and renal pathology is weak due to potential confounders. Aspecific bindings of dsDNA with cationic antibodies and of anti-dsDNA with several renal antigens such as actinin, laminin, entactin, and annexinA2 raised doubts about the specific target of these antibodies in the kidney. Moreover, the isotype of anti-dsDNA in SLE and LN has never received adequate interest until the recent observation that IgG2 are preponderant over IgG1, IgG3 and IgG4. Based on the above background, recent studies investigated the involvement of anti-dsDNA IgG2 and of other antibodies in LN. It was concluded that circulating anti-dsDNA IgG2 levels do not distinguish between LN versus non-renal SLE, and, in patients with LN, their levels do not change over time. Circulating levels of other antibodies such as anti-ENO1 and anti-H2 IgG2 were, instead, higher in LN vs non-renal SLE at the time of diagnosis and decreased following therapies. Finally, new classes of renal antibodies that potentially modify the anti-inflammatory response in the kidney are emerging as new co-actors in the pathogenetic scenario. They have been defined as 'second wave antibodies' for the link with detoxifying mechanisms limiting the oxidative stress in glomeruli that are classically stimulated in a second phase of inflammation. These findings have important clinical implications that may modify the laboratory approach to LN. Serum levels of anti-ENO1 and anti-H2 IgG2 should be measured in the follow up of patients for designing the length of therapies and identify those patients who respond to treatments. Anti-SOD2 could help to monitor and potentiate the anti-inflammatory response in the kidney.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Angeletti
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano-Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy.
| | - Gian Marco Ghiggeri
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Gabriella Moroni
- Department of Biomedical Sciences, Humanitas University and IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Franco Franceschini
- Rheumatology and Clinical Immunology, ASST SpedaliCivili and Università of Brescia, Italy
| | - Micaela Fredi
- Rheumatology and Clinical Immunology, ASST SpedaliCivili and Università of Brescia, Italy
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, and Nephrology and Dialysis Unit, Meyer Children's Hospital, Firenze, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Leonardo Scapozza
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | | | | | - Ken C Lo
- Nimble Therapeutics, Madison, WI, USA
| | - Lorenzo Cavagna
- Division of Rheumatology, University and IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy
| | - Francesco Locatelli
- Division of Rheumatology, University and IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Giulia Pazzola
- Nephrology and Dialysis, Arciospedale Santa Maria nuova, Reggio Emilia, Italy
| | - Giampaola Pesce
- Nephrology and Dialysis, Arciospedale Santa Maria nuova, Reggio Emilia, Italy
| | | | - Angelo Manfredi
- Unit of Internal Medicine and Immunology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Giuseppe A Ramirez
- Unit of Internal Medicine and Immunology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Pasquale Esposito
- Division of Nephrology, University of Genoa and Policlinico San Martino, Genova, Italy
| | | | - Simone Negrini
- Department of Internal Medicine, University of Genoa, Italy
| | - Federica Bui
- Division of Nephrology, University of Genoa and Policlinico San Martino, Genova, Italy
| | - Barbara Trezzi
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Giacomo Emmi
- Lupus Clinic Department of biomedicine, University of Florence, University Hospital Careggi, Florence, Italy
| | - Ilaria Cavazzana
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Valentina Binda
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, and Nephrology and Dialysis Unit, Meyer Children's Hospital, Firenze, Italy
| | - Paride Fenaroli
- Nephrology Unit, University Hospital, University of Parma, Parma, Italy
| | - Isabella Pisan
- Nephrology Unit, University Hospital, University of Parma, Parma, Italy
| | | | - Domenico Santoro
- Nephrology and Dialysis Unit, University of Messina and G Martino Hospital, Messina, Italy
| | - Francesco Scolari
- Division of Nephrology and Dialysis, ASST SpedaliCivili and Università of Brescia, Brescia, Italy
| | - Federica Mescia
- Division of Nephrology and Dialysis, ASST SpedaliCivili and Università of Brescia, Brescia, Italy
| | - Stefano Volpi
- Division of Paediatric Rheumatology and Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Mosca
- Rheumatologu Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Angela Tincani
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Angelo Ravelli
- Division of Paediatric Rheumatology and Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Corrado Murtas
- Nephrology and Dialysis Unit, Ospedale Belcolle, 01100 Viterbo, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Caridi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Edoardo La Porta
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Enrico Verrina
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
33
|
Ma R, Zhou X, Zhai X, Wang C, Hu R, Chen Y, Shi L, Fang X, Liao Y, Ma L, Jiang M, Wu J, Wang R, Chen J, Cao T, Du G, Zhao Y, Wu W, Chen H, Li S, Lian Q, Guo G, Xiao J, Hutchins AP, Yuan P. Single-cell RNA sequencing reveals immune cell dysfunction in the peripheral blood of patients with highly aggressive gastric cancer. Cell Prolif 2024; 57:e13591. [PMID: 38319150 PMCID: PMC11056698 DOI: 10.1111/cpr.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/12/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024] Open
Abstract
Highly aggressive gastric cancer (HAGC) is a gastric cancer characterized by bone marrow metastasis and disseminated intravascular coagulation (DIC). Information about the disease is limited. Here we employed single-cell RNA sequencing to investigate peripheral blood mononuclear cells (PBMCs), aiming to unravel the immune response of patients toward HAGC. PBMCs from seven HAGC patients, six normal advanced gastric cancer (NAGC) patients, and five healthy individuals were analysed by single-cell RNA sequencing. The expression of genes of interest was validated by bulk RNA-sequencing and ELISA. We found a massive expansion of neutrophils in PBMCs of HAGC. These neutrophils are activated, but immature. Besides, mononuclear phagocytes exhibited an M2-like signature and T cells were suppressed and reduced in number. Analysis of cell-cell crosstalk revealed that several signalling pathways involved in neutrophil to T-cell suppression including APP-CD74, MIF-(CD74+CXCR2), and MIF-(CD74+CD44) pathways were increased in HAGC. NETosis-associated genes S100A8 and S100A9 as well as VEGF, PDGF, FGF, and NOTCH signalling that contribute to DIC development were upregulated in HAGC too. This study reveals significant changes in the distribution and interactions of the PBMC subsets and provides valuable insight into the immune response in patients with HAGC. S100A8 and S100A9 are highly expressed in HAGC neutrophils, suggesting their potential to be used as novel diagnostic and therapeutic targets for HAGC.
Collapse
Affiliation(s)
- Rui Ma
- Guangdong Institute of GastroenterologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xuemeng Zhou
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of BiologySchool of Life Sciences, Southern University of Science and TechnologyShenzhenChina
| | - Xiaohui Zhai
- Department of Medical OncologyThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Chuyue Wang
- Guangdong Institute of GastroenterologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Rong Hu
- Guangdong Institute of GastroenterologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - You Chen
- Guangdong Institute of GastroenterologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Liyang Shi
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of BiologySchool of Life Sciences, Southern University of Science and TechnologyShenzhenChina
| | - Xing Fang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative MedicineDr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineHangzhouChina
| | - Yuan Liao
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lifeng Ma
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Mengmeng Jiang
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
| | - Junqing Wu
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
| | - Renying Wang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiao Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of BiologySchool of Life Sciences, Southern University of Science and TechnologyShenzhenChina
| | - Taiyuan Cao
- Department of Medical OncologyThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Ge Du
- Department of Medical OncologyThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yingying Zhao
- Guangdong Institute of GastroenterologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Weili Wu
- Guangdong Institute of GastroenterologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Haide Chen
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
| | - Shanshan Li
- Department of Medical OncologyThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Qizhou Lian
- Faculty of Synthetic BiologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative MedicineDr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
| | - Jian Xiao
- Department of Medical OncologyGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Andrew P. Hutchins
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of BiologySchool of Life Sciences, Southern University of Science and TechnologyShenzhenChina
| | - Ping Yuan
- Guangdong Institute of GastroenterologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Department of General SurgeryThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
34
|
Huang JJ, Zhuo JY, Wang Q, Sun Y, Qi JX, Wu JJ, Zhang Y, Chen G, Jiang PF, Fan YY. The time-dependent expression of FPR2 and ANXA1 in murine deep vein thrombosis model and its relation to thrombus age. Forensic Sci Med Pathol 2024:10.1007/s12024-024-00818-3. [PMID: 38652217 DOI: 10.1007/s12024-024-00818-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Thrombus age determination in fatal venous thromboembolism cases is an important task for forensic pathologists. In this study, we investigated the time-dependent expressions of formyl peptide receptor 2 (FPR2) and Annexin A1 (ANXA1) in a stasis-induced deep vein thrombosis (DVT) murine model, with the aim of obtaining useful information for thrombus age timing. A total of 75 ICR mice were randomly classified into thrombosis group and control group. In thrombosis group, a DVT model was established by ligating the inferior vena cava (IVC) of mice, and thrombosed IVCs were harvested at 1, 3, 5, 7, 10, 14, and 21 days after modeling. In control group, IVCs without thrombosis were taken as control samples. The expressions of FPR2 and ANXA1 during thrombosis were detected using immunohistochemistry and double immunofluorescence staining. Their protein and mRNA levels in the samples were determined by Western blotting and quantitative real-time PCR. The results reveal that FPR2 was predominantly expressed by intrathrombotic neutrophils and macrophages. ANXA1 expression in the thrombi was mainly distributed in neutrophils, endothelial cells of neovessels, and fibroblastic cells. After thrombosis, the expressions of FPR2 and ANXA1 were time-dependently up-regulated. The percentage of FPR2-positive cells and the level of FPR2 protein significantly elevated at 1, 3, 5 and 7 days after IVC ligation as compared to those at 10, 14 and 21 days after ligation (p < 0.05). Moreover, the mRNA level of FPR2 were significantly higher at 5 days than that at the other post-ligation intervals (p < 0.05). Besides, the levels of ANXA1 mRNA and protein peaked at 10 and 14 days after ligation, respectively. A significant increase in the mRNA level of ANXA1 was found at 10 and 14 days as compared with that at the other post-ligation intervals (p < 0.01). Our findings suggest that FPR2 and ANXA1 are promising as useful markers for age estimation of venous thrombi.
Collapse
Affiliation(s)
- Jun-Jie Huang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Jia-Ying Zhuo
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Qian Wang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Yue Sun
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Jia-Xin Qi
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Juan-Juan Wu
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Yu Zhang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Gang Chen
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- Forensic Center, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, People's Republic of China
| | - Peng-Fei Jiang
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
| | - Yan-Yan Fan
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
- Forensic Center, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, People's Republic of China.
| |
Collapse
|
35
|
Broering MF, Oseliero Filho PL, Borges PP, da Silva LCC, Knirsch MC, Xavier LF, Scharf P, Sandri S, Stephano MA, de Oliveira FA, Sayed IM, Gamarra LF, Das S, Fantini MCA, Farsky SHP. Development of Ac2-26 Mesoporous Microparticle System as a Potential Therapeutic Agent for Inflammatory Bowel Diseases. Int J Nanomedicine 2024; 19:3537-3554. [PMID: 38638365 PMCID: PMC11024051 DOI: 10.2147/ijn.s451589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Inflammatory bowel diseases (IBDs) disrupt the intestinal epithelium, leading to severe chronic inflammation. Current therapies cause adverse effects and are expensive, invasive, and ineffective for most patients. Annexin A1 (AnxA1) is a pivotal endogenous anti-inflammatory and tissue repair protein in IBD. Nanostructured compounds loading AnxA1 or its active N-terminal mimetic peptides improve IBD symptomatology. Methods To further explore their potential as a therapeutic candidate, the AnxA1 N-terminal mimetic peptide Ac2-26 was incorporated into SBA-15 ordered mesoporous silica and covered with EL30D-55 to deliver it by oral treatment into the inflamed gut. Results The systems SBA-Ac2-26 developed measurements revealed self-assembled rod-shaped particles, likely on the external surface of SBA-15, and 88% of peptide incorporation. SBA-15 carried the peptide Ac2-26 into cultured Raw 264.7 macrophages and Caco-2 epithelial cells. Moreover, oral administration of Eudragit-SBA-15-Ac2-26 (200 μg; once a day; for 4 days) reduced colitis clinical symptoms, inflammation, and improved epithelium recovery in mice under dextran-sodium sulfate-induced colitis. Discussion The absorption of SBA-15 in gut epithelial cells is typically low; however, the permeable inflamed barrier can enable microparticles to cross, being phagocyted by macrophages. These findings suggest that Ac2-26 is successfully delivered and binds to its receptors in both epithelial and immune cells, aligning with the clinical results. Conclusion Our findings demonstrate a simple and cost-effective approach to delivering Ac2-26 orally into the inflamed gut, highlighting its potential as non-invasive IBD therapy.
Collapse
Affiliation(s)
- Milena Fronza Broering
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Pedro Leonidas Oseliero Filho
- Department of Applied Physics, Physics Institute, University of Sao Paulo, São Paulo, Brazil
- Materials Innovation Factory, University of Liverpool, Liverpool, MSY, UK
| | - Pâmela Pacassa Borges
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Marcos Camargo Knirsch
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luana Filippi Xavier
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marco Antonio Stephano
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fernando Anselmo de Oliveira
- Instituto do Cérebro, Instituto Israelita de Ensino e Pesquisa, Sociedade Beneficente Israelita Brasileira Hospital Albert Einstein, São Paulo, SP, Brazil
| | - Ibrahim M Sayed
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Lionel Fernel Gamarra
- Instituto do Cérebro, Instituto Israelita de Ensino e Pesquisa, Sociedade Beneficente Israelita Brasileira Hospital Albert Einstein, São Paulo, SP, Brazil
| | - Soumita Das
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Márcia C A Fantini
- Department of Applied Physics, Physics Institute, University of Sao Paulo, São Paulo, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
36
|
Luo R, Liu J, Wen J, Zhou X. Single-cell Landscape of Malignant Transition: Unraveling Cancer Cell-of-Origin and Heterogeneous Tissue Microenvironment. RESEARCH SQUARE 2024:rs.3.rs-4085185. [PMID: 38645221 PMCID: PMC11030487 DOI: 10.21203/rs.3.rs-4085185/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Understanding disease progression and sophisticated tumor ecosystems is imperative for investigating tumorigenesis mechanisms and developing novel prevention strategies. Here, we dissected heterogeneous microenvironments during malignant transitions by leveraging data from 1396 samples spanning 13 major tissues. Within transitional stem-like subpopulations highly enriched in precancers and cancers, we identified 30 recurring cellular states strongly linked to malignancy, including hypoxia and epithelial senescence, revealing a high degree of plasticity in epithelial stem cells. By characterizing dynamics in stem-cell crosstalk with the microenvironment along the pseudotime axis, we found differential roles of ANXA1 at different stages of tumor development. In precancerous stages, reduced ANXA1 levels promoted monocyte differentiation toward M1 macrophages and inflammatory responses, whereas during malignant progression, upregulated ANXA1 fostered M2 macrophage polarization and cancer-associated fibroblast transformation by increasing TGF-β production. Our spatiotemporal analysis further provided insights into mechanisms responsible for immunosuppression and a potential target to control evolution of precancer and mitigate the risk for cancer development.
Collapse
Affiliation(s)
| | - Jiajia Liu
- The University of Texas Health Science Center at Houston
| | - Jianguo Wen
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| |
Collapse
|
37
|
You Q, Ke Y, Chen X, Yan W, Li D, Chen L, Wang R, Yu J, Hong H. Loss of Endothelial Annexin A1 Aggravates Inflammation-Induched Vascular Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307040. [PMID: 38358087 PMCID: PMC11022713 DOI: 10.1002/advs.202307040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/03/2024] [Indexed: 02/16/2024]
Abstract
Chronic inflammation is increasingly considered as the most important component of vascular aging, contributing to the progression of age-related cardiovascular diseases. To delay the process of vascular aging, anti-inflammation may be an effective measure. The anti-inflammatory factor annexin A1 (ANXA1) is shown to participate in several age-related diseases; however, its function during vascular aging remains unclear. Here, an ANXA1 knockout (ANXA1-/-) and an endothelial cell-specific ANXA1 deletion mouse (ANXA1△EC) model are used to investigate the role of ANXA1 in vascular aging. ANXA1 depletion exacerbates vascular remodeling and dysfunction while upregulates age- and inflammation-related protein expression. Conversely, Ac2-26 (a mimetic peptide of ANXA1) supplementation reverses this phenomenon. Furthermore, long-term tumor necrosis factor-alpha (TNF-α) induction of human umbilical vein endothelial cells (HUVECs) increases cell senescence. Finally, the senescence-associated secretory phenotype and senescence-related protein expression, rates of senescence-β-galactosidase positivity, cell cycle arrest, cell migration, and tube formation ability are observed in both ANXA1-knockdown HUVECs and overexpressed ANXA1-TNF-α induced senescent HUVECs. They also explore the impact of formyl peptide receptor 2 (a receptor of ANXA1) in an ANXA1 overexpression inflammatory model. These data provide compelling evidence that age-related inflammation in arteries contributes to senescent endothelial cells that promote vascular aging.
Collapse
Affiliation(s)
- Qinyi You
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Yilang Ke
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Xiaofeng Chen
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Wanhong Yan
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Dang Li
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Lu Chen
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Run Wang
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Jie Yu
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Huashan Hong
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| |
Collapse
|
38
|
Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev 2024; 207:115204. [PMID: 38342241 DOI: 10.1016/j.addr.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.
Collapse
Affiliation(s)
- Ahmad Zaid
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel.
| |
Collapse
|
39
|
Hegemann N, Barth L, Döring Y, Voigt N, Grune J. Implications for neutrophils in cardiac arrhythmias. Am J Physiol Heart Circ Physiol 2024; 326:H441-H458. [PMID: 38099844 PMCID: PMC11219058 DOI: 10.1152/ajpheart.00590.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Cardiac arrhythmias commonly occur as a result of aberrant electrical impulse formation or conduction in the myocardium. Frequently discussed triggers include underlying heart diseases such as myocardial ischemia, electrolyte imbalances, or genetic anomalies of ion channels involved in the tightly regulated cardiac action potential. Recently, the role of innate immune cells in the onset of arrhythmic events has been highlighted in numerous studies, correlating leukocyte expansion in the myocardium to increased arrhythmic burden. Here, we aim to call attention to the role of neutrophils in the pathogenesis of cardiac arrhythmias and their expansion during myocardial ischemia and infectious disease manifestation. In addition, we will elucidate molecular mechanisms associated with neutrophil activation and discuss their involvement as direct mediators of arrhythmogenicity.
Collapse
Affiliation(s)
- Niklas Hegemann
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Lukas Barth
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Yannic Döring
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Jana Grune
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
40
|
Ricotta TQN, Dos Santos LM, Oliveira LG, Souza-Testasicca MC, Nascimento FC, Vago JP, Carvalho AFS, Queiroz-Junior CM, Sousa LP, Fernandes AP. Annexin A1 improves immune responses and control of tissue parasitism during Leishmania amazonensis infection in BALB/c mice. Biomed Pharmacother 2024; 172:116254. [PMID: 38340398 DOI: 10.1016/j.biopha.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Leishmaniases, a group of diseases caused by the species of the protozoan parasite Leishmania, remains a significant public health concern worldwide. Host immune responses play a crucial role in the outcome of Leishmania infections, and several mediators that regulate inflammatory responses are potential targets for therapeutic approaches. Annexin A1 (AnxA1), an endogenous protein endowed with anti-inflammatory and pro-resolving properties, has emerged as a potential player. We have shown that during L. braziliensis infection, deficiency of AnxA1 exacerbates inflammatory responses but does not affect parasite burden. Here, we have investigated the role of AnxA1 in L. amazonensis infection, given the non-healing and progressive lesions characteristic of this infectious model. Infection of AnxA1 KO BALB/c mice resulted in increased lesion size and tissue damage associated with higher parasite burdens and enhanced inflammatory response. Notably, therapeutic application of the AnxA1 peptidomimetic Ac2-26 improves control of parasite replication and increases IL-10 production in vivo and in vitro, in both WT and AnxA1 KO mice. Conversely, administration of WRW4, an inhibitor of FPR2/3, resulted in larger lesions and decreased production of IL-10, suggesting that the effects of AnxA1 during L. amazonensis infection are associated with the engagement of these receptors. Our study illuminates the role of AnxA1 in L. amazonensis infection, demonstrating its impact on the susceptibility phenotype of BALB/c mice. Furthermore, our results indicate that targeting the AnxA1 pathway by using the Ac2-26 peptide could represent a promising alternative for new treatments for leishmaniasis.
Collapse
Affiliation(s)
- Tiago Queiroga Nery Ricotta
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Liliane Martins Dos Santos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Leandro Gonzaga Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | | | - Frederico Crepaldi Nascimento
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Juliana P Vago
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Antônio Felipe S Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | | | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
41
|
Rhodes RH, Love GL, Da Silva Lameira F, Sadough Shahmirzadi M, Fox SE, Vander Heide RS. Acute neutrophilic vasculitis (leukocytoclasia) in 36 COVID-19 autopsy brains. Diagn Pathol 2024; 19:33. [PMID: 38360666 PMCID: PMC10870569 DOI: 10.1186/s13000-024-01445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Hypercytokinemia, the renin-angiotensin system, hypoxia, immune dysregulation, and vasculopathy with evidence of immune-related damage are implicated in brain morbidity in COVID-19 along with a wide variety of genomic and environmental influences. There is relatively little evidence of direct SARS-CoV-2 brain infection in COVID-19 patients. METHODS Brain histopathology of 36 consecutive autopsies of patients who were RT-PCR positive for SARS-CoV-2 was studied along with findings from contemporary and pre-pandemic historical control groups. Immunostaining for serum and blood cell proteins and for complement components was employed. Microcirculatory wall complement deposition in the COVID-19 cohort was compared to historical control cases. Comparisons also included other relevant clinicopathological and microcirculatory findings in the COVID-19 cohort and control groups. RESULTS The COVID-19 cohort and both the contemporary and historical control groups had the same rate of hypertension, diabetes mellitus, and obesity. The COVID-19 cohort had varying amounts of acute neutrophilic vasculitis with leukocytoclasia in the microcirculation of the brain in all cases. Prominent vascular neutrophilic transmural migration was found in several cases and 25 cases had acute perivasculitis. Paravascular microhemorrhages and petechial hemorrhages (small brain parenchymal hemorrhages) had a slight tendency to be more numerous in cohort cases that displayed less acute neutrophilic vasculitis. Tissue burden of acute neutrophilic vasculitis with leukocytoclasia was the same in control cases as a group, while it was significantly higher in COVID-19 cases. Both the tissue burden of acute neutrophilic vasculitis and the activation of complement components, including membrane attack complex, were significantly higher in microcirculatory channels in COVID-19 cohort brains than in historical controls. CONCLUSIONS Acute neutrophilic vasculitis with leukocytoclasia, acute perivasculitis, and associated paravascular blood extravasation into brain parenchyma constitute the first phase of an immune-related, acute small-vessel inflammatory condition often termed type 3 hypersensitivity vasculitis or leukocytoclastic vasculitis. There is a higher tissue burden of acute neutrophilic vasculitis and an increased level of activated complement components in microcirculatory walls in COVID-19 cases than in pre-pandemic control cases. These findings are consistent with a more extensive small-vessel immune-related vasculitis in COVID-19 cases than in control cases. The pathway(s) and mechanism for these findings are speculative.
Collapse
Affiliation(s)
- Roy H Rhodes
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA.
| | - Gordon L Love
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
| | - Fernanda Da Silva Lameira
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
- Department of Pathology, Virginia Commonwealth University, Norfolk, Virginia, 23510, USA
| | - Maryam Sadough Shahmirzadi
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
| | - Sharon E Fox
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
- Pathology and Laboratory Medicine Services, Southeast Louisiana Veterans Healthcare System, New Orleans, Louisiana, 70112, USA
| | - Richard S Vander Heide
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
- Marshfield Clinic Health System, Marshfield, Wisconsin, 54449, USA
| |
Collapse
|
42
|
Al-Ali HN, Crichton SJ, Fabian C, Pepper C, Butcher DR, Dempsey FC, Parris CN. A therapeutic antibody targeting annexin-A1 inhibits cancer cell growth in vitro and in vivo. Oncogene 2024; 43:608-614. [PMID: 38200229 PMCID: PMC10873194 DOI: 10.1038/s41388-023-02919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
In this study we conducted the first investigation to assess the efficacy of a novel therapeutic antibody developed to target annexin-A1 (ANXA1). ANXA1 is an immunomodulatory protein which has been shown to be overexpressed in, and promote the development and progression of, several cancer types. In particular, high ANXA1 expression levels correlate with poorer overall survival in pancreatic and triple-negative breast cancers, two cancers with considerable unmet clinical need. MDX-124 is a humanised IgG1 monoclonal antibody which specifically binds to ANXA1 disrupting its interaction with formyl peptide receptors 1 and 2 (FPR1/2). Here we show that MDX-124 significantly reduced proliferation (p < 0.013) in a dose-dependent manner across a panel of human cancer cell lines expressing ANXA1. The anti-proliferative effect of MDX-124 is instigated by arresting cell cycle progression with cancer cells accumulating in the G1 phase of the cell cycle. Furthermore, MDX-124 significantly inhibited tumour growth in both the 4T1-luc triple-negative breast and Pan02 pancreatic cancer syngeneic mouse models (p < 0.0001). These findings suggest ANXA1-targeted therapy is a viable and innovative approach to treat tumours which overexpress ANXA1.
Collapse
Affiliation(s)
- Hussein N Al-Ali
- Anglia Ruskin University, School of Life Science, Faculty of Science and Engineering, East Road, Cambridge, CB1 1PT, UK
| | - Scott J Crichton
- Medannex Ltd, 1 Lochrin Square, 92-98 Fountainbridge, Edinburgh, Scotland, EH3 9QA, UK
| | - Charlene Fabian
- Medannex Ltd, 1 Lochrin Square, 92-98 Fountainbridge, Edinburgh, Scotland, EH3 9QA, UK
| | - Chris Pepper
- Brighton and Sussex Medical School, Medical Research Building, Falmer, Brighton, BN1 9PX, UK
| | - David R Butcher
- Anglia Ruskin University, School of Life Science, Faculty of Science and Engineering, East Road, Cambridge, CB1 1PT, UK
| | - Fiona C Dempsey
- Medannex Ltd, 1 Lochrin Square, 92-98 Fountainbridge, Edinburgh, Scotland, EH3 9QA, UK
| | - Christopher N Parris
- Anglia Ruskin University, School of Life Science, Faculty of Science and Engineering, East Road, Cambridge, CB1 1PT, UK.
| |
Collapse
|
43
|
Li TT, Yao WQ, Dong HB, Wang ZR, Zhang ZY, Yuan MQ, Shi L, Wang FS. Plasma proteomics-based biomarkers for predicting response to mesenchymal stem cell therapy in severe COVID-19. Stem Cell Res Ther 2023; 14:350. [PMID: 38072927 PMCID: PMC10712100 DOI: 10.1186/s13287-023-03573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The objective of this study was to identify potential biomarkers for predicting response to MSC therapy by pre-MSC treatment plasma proteomic profile in severe COVID-19 in order to optimize treatment choice. METHODS A total of 58 patients selected from our previous RCT cohort were enrolled in this study. MSC responders (n = 35) were defined as whose resolution of lung consolidation ≥ 51.99% (the median value for resolution of lung consolidation) from pre-MSC to 28 days post-MSC treatment, while non-responders (n = 23) were defined as whose resolution of lung consolidation < 51.99%. Plasma before MSC treatment was detected using data-independent acquisition (DIA) proteomics. Multivariate logistic regression analysis was used to identify pre-MSC treatment plasma proteomic biomarkers that might distinguish between responders and non-responders to MSC therapy. RESULTS In total, 1101 proteins were identified in plasma. Compared with the non-responders, the responders had three upregulated proteins (CSPG2, CTRB1, and OSCAR) and 10 downregulated proteins (ANXA1, AGRG6, CAPG, DDX55, KV133, LEG10, OXSR1, PICAL, PTGDS, and S100A8) in plasma before MSC treatment. Using logistic regression model, lower levels of DDX55, AGRG6, PICAL, and ANXA1 and higher levels of CTRB1 pre-MSC treatment were predictors of responders to MSC therapy, with AUC of the ROC at 0.910 (95% CI 0.818-1.000) in the training set. In the validation set, AUC of the ROC was 0.767 (95% CI 0.459-1.000). CONCLUSIONS The responsiveness to MSC therapy appears to depend on baseline level of DDX55, AGRG6, PICAL, CTRB1, and ANXA1. Clinicians should take these factors into consideration when making decision to initiate MSC therapy in patients with severe COVID-19.
Collapse
Affiliation(s)
- Tian-Tian Li
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China
| | - Wei-Qi Yao
- Department of Biology and Medicine, Hubei University of Technology, Wuhan, 430030, Hubei, People's Republic of China
- Wuhan Optics Valley Zhongyuan Pharmaceutical Co., Ltd., Wuhan, 430030, Hubei, People's Republic of China
| | - Hai-Bo Dong
- Wuhan Optics Valley Vcanbio Cell & Gene Technology Co., Ltd., Wuhan, 430030, Hubei, People's Republic of China
| | - Ze-Rui Wang
- Department of Gastroenterology, First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, People's Republic of China
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China
| | - Zi-Ying Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China
| | - Meng-Qi Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China
| | - Lei Shi
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China.
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China.
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China.
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China.
| |
Collapse
|
44
|
Li Y, Xu B, Zhang J, Liu X, Ganesan K, Shi G. Exploring the role of LIAS-related cuproptosis in systemic lupus erythematosus. Lupus 2023; 32:1598-1609. [PMID: 37903189 DOI: 10.1177/09612033231211429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
BACKGROUND Cuproptosis is a novel mode of cell death, which is strongly related to energy metabolism in mitochondria and regulated by protein lipoylation. Currently, the molecular mechanisms of cuproptosis-related genes (CRGs) involved in systemic lupus erythematosus (SLE) largely remained unclear, our study is aimed to explore the mechanisms of cuproptosis and CRGs involved in SLE. METHODS Bulk RNA-seq datasets were collected to display the expressions of CRGs in peripheral blood mononuclear cells (PBMCs) of SLE and healthy individuals, and then ROC analysis was used to establish the diagnostic models of CRGs. Next, the immune infiltration analyses were applied to reveal the difference of immune cells infiltration in LIAS-low and LIAS-high group. Additionally, WGCNA analysis was performed to find the gene modules significantly correlated with the LIAS expression level. We also performed the functional enrichment analyses for LIAS-related gene modules to determine the potential pathways involved in the development of SLE. Finally, scRNA-seq dataset was used to cluster immune cell subsets, reveal the activated pathways, and study cell-cell interactions in LIAS-low and LIAS-high cells. RESULT We found CDKN2A was significantly increased and LIAS was significantly decreased in SLE patients compared with healthy individuals. The AUC score showed that LIAS had a great diagnostic value than other CRGs. Additionally, the results of immune infiltration analyses showed that immune cells proportion were diverse in LIAS-low and LIAS-high samples. The gene sets related to LIAS expression level were involved in dephosphorylation of JAK1 by SHP1, phosphorylation of STAT2, cytokine signaling in immune system, expression of interferon-alpha and beta, inhibition of JAK kinase activity by SOCS1/3, and so on. Finally, the results of cell-cell communication showed that CCL- (CCL5 + CCR1) and ANNEXIN- (ANXA1 + FPR1) might play an essential role in the communication network between LIAS-low and LIAS-high cells. CONCLUSION Above findings inferred that LIAS-mediated cuproptosis might involve in a comprehensive cellular and molecular mechanism to cause the occurrence and development of SLE.
Collapse
Affiliation(s)
- Yan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| | - Bojun Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jimin Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| | - Xiaoyan Liu
- Department of Dermatology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| |
Collapse
|
45
|
Qiu H, Shao Z, Wen X, Liu Z, Chen Z, Qu D, Ding X, Zhang L. Efferocytosis: An accomplice of cancer immune escape. Biomed Pharmacother 2023; 167:115540. [PMID: 37741255 DOI: 10.1016/j.biopha.2023.115540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023] Open
Abstract
The clearance of apoptotic cells by efferocytes such as macrophages and dendritic cells is termed as "efferocytosis", it plays critical roles in maintaining tissue homeostasis in multicellular organisms. Currently, available studies indicate that efferocytosis-related molecules and pathways are tightly associated with cancer development, metastasis and treatment resistance, efferocytosis also induces an immunosuppressive tumor microenvironment and assists cancer cells escape from immune surveillance. In this study, we reviewed the underlying mechanisms of efferocytosis in mediating the occurrence of cancer immune escape, and then emphatically summarized the strategies of using efferocytosis as therapeutic target to enhance the anti-tumor efficacies of immune checkpoint inhibitors, hoping to provide powerful evidences for more effective therapeutic regimens of malignant tumors.
Collapse
Affiliation(s)
- Hui Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhengyang Liu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziqin Chen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Debao Qu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
46
|
Vanharen M, Mahbeer T, Léveillé A, Méthot A, Samountry P, Girard D. Impact of gold nanoparticles (AuNPs) in human neutrophils in vitro and in leukocytes attraction in vivo: A sex-based analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104319. [PMID: 37984677 DOI: 10.1016/j.etap.2023.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Some differences exist between the male and female immune systems. Despite this, a sex-based analysis is not frequently performed in most studies. Knowing that inflammation is a common undesired effect observed resulting from nanoparticle (NP) exposure, we investigate here how gold NPs with a primary size of 20 (AuNP20) and 70 nm (AuNP70) will alter the biology of polymorphonuclear neutrophil cells (PMNs) isolated from men and women as well as their potential pro-inflammatory effect in vivo in male and female mice. We found that AuNP20 significantly delay apoptosis only in PMN isolated from men. The production of interleukin (IL)- 8 by PMNs was increased by both AuNPs regardless of sex although significance was only observed in AuNP20-induced PMNs. Using the murine air pouch model of inflammation, AuNPs did not induce a neutrophilic infiltration regardless of sex. In conclusion, AuNPs could differently alter the biology of PMNs according to sex.
Collapse
Affiliation(s)
- Marion Vanharen
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Thomas Mahbeer
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Alexanne Léveillé
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Audrey Méthot
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Phonsiri Samountry
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada.
| |
Collapse
|
47
|
Cho S, Ying F, Sweeney G. Sterile inflammation and the NLRP3 inflammasome in cardiometabolic disease. Biomed J 2023; 46:100624. [PMID: 37336361 PMCID: PMC10539878 DOI: 10.1016/j.bj.2023.100624] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
Inflammation plays an important role in the pathophysiology of cardiometabolic diseases. Sterile inflammation, a non-infectious and damage-associated molecular pattern (DAMP)-induced innate response, is now well-established to be closely associated with development and progression of cardiometabolic diseases. The NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is well-established as a major player in sterile inflammatory responses. It is a multimeric cytosolic protein complex which regulates the activation of caspase-1 and subsequently promotes cleavage and release of interleukin (IL)-1 family cytokines, which have a deleterious impact on the development of cardiometabolic diseases. Therefore, targeting NLRP3 itself or the downstream consequences of NLRP3 activation represent excellent potential therapeutic targets in inflammatory cardiometabolic diseases. Here, we review our current understanding of the role which NLRP3 inflammasome regulation plays in cardiometabolic diseases such as obesity, diabetes, non-alcoholic steatohepatitis (NASH), atherosclerosis, ischemic heart disease and cardiomyopathy. Finally, we highlight the potential of targeting NLPR3 or related signaling molecules as a therapeutic approach.
Collapse
Affiliation(s)
- Sungji Cho
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Fan Ying
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario, Canada.
| |
Collapse
|
48
|
Tanaka F, Mazzardo G, Salm DC, de Oliveira BH, Joaquim L, Machado RS, Cidreira T, Petronilho FC, Bittencourt EB, Bianco G, Bobinski F, Piovezan AP, Srbely JZ, Shah JP, Moré AOO, Mazzardo-Martins L, Martins DF. Peripheral Activation of Formyl Peptide Receptor 2/ALX by Electroacupuncture Alleviates Inflammatory Pain by Increasing Interleukin-10 Levels and Catalase Activity in Mice. Neuroscience 2023; 529:1-15. [PMID: 37572879 DOI: 10.1016/j.neuroscience.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
In the context of the electroacupuncture (EA) neurobiological mechanisms, we have previously demonstrated the involvement of formyl peptide receptor 2 (FPR2/ALX) in the antihyperalgesic effect of EA. The present study investigated the involvement of peripheral FPR2/ALX in the antihyperalgesic effect of EA on inflammatory cytokines levels, oxidative stress markers and antioxidant enzymes in an animal model of persistent inflammatory pain. Male Swiss mice underwent intraplantar (i.pl.) injection with complete Freund's adjuvant (CFA). Mechanical hyperalgesia was assessed with von Frey monofilaments. Animals were treated with EA (2/10 Hz, ST36-SP6, 20 minutes) for 4 consecutive days. From the first to the fourth day after CFA injection, animals received i.pl. WRW4 (FPR2/ALX antagonist) or saline before EA. Levels of inflammatory cytokines (TNF, IL-6, IL-4 and IL-10), antioxidant enzymes (catalase and superoxide dismutase), oxidative stress markers (TBARS, protein carbonyl, nitrite/nitrate ratio), and myeloperoxidase activity were measured in paw tissue samples. As previously demonstrated, i.pl. injection of the FPR2/ALX antagonist prevented the antihyperalgesic effect induced by EA. Furthermore, animals treated with EA showed higher levels of IL-10 and catalase activity in the inflamed paw, and these effects were prevented by the antagonist WRW4. EA did not change levels of TNF and IL-6, SOD and MPO activity, and oxidative stress markers. Our work demonstrates that the antihyperalgesic effect of EA on CFA-induced inflammatory pain could be partially associated with higher IL-10 levels and catalase activity, and that these effects may be dependent, at least in part, on the activation of peripheral FPR2/ALX.
Collapse
Affiliation(s)
- Fernanda Tanaka
- Postgraduate Program in Neuroscience, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Gustavo Mazzardo
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Faculty of Medicine, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daiana C Salm
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna H de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Postgraduate Program in Health Science, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Richard S Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Postgraduate Program in Health Science, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Thaina Cidreira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Postgraduate Program in Health Science, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Fabrícia C Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Postgraduate Program in Health Science, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | | | - Gianluca Bianco
- Research Laboratory of Posturology and Neuromodulation RELPON, Department of Human Neuroscience, Sapienza University, Italy; Istituto di Formazione in Agopuntura e Neuromodulazione IFAN, Roma, Italy
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Anna Paula Piovezan
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - John Z Srbely
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Jay P Shah
- Rehabilitation Medicine Department, National Institutes of Health, Rockville Pike, Bethesda, MD, USA
| | - Ari O O Moré
- Integrative Medicine and Acupuncture Service, University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Leidiane Mazzardo-Martins
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
49
|
Zhou X, Lyu C, Chen X, Ye Y, Lei Y, Liu Y, Zhang T, Yang Y. Fufang Shengdi mixture alleviates psoriasis-like skin inflammation via promoting Annexin-A proteins expression. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116329. [PMID: 36940737 DOI: 10.1016/j.jep.2023.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine believes that "blood fever" is an important cause of psoriasis. Fufang Shengdi mixture (FFSD), based on the Hongban Decoction, is composed of Rehmannia glutinosa (Gaertn.) DC., Raw gypsum (Chinese: Sheng Shi Gao), and Lonicera japonica Thunb (Caprifoliaceae). FFSD has effects on nourishing Yin, clearing heat, connecting collaterals, and cooling blood. In modern medical explanation, FFSD has the effects of anti-inflammatory and immunosuppression. Our study proved that FFSD can suppress immunity and ameliorate the symptoms of imiquimod-induced psoriasis in mice. AIM OF THE STUDY This study evaluated the efficacy and possible mechanism of FFSD in psoriasis mice. METHODS AND MATERIALS First, the main components of FFSD were analyzed using high-performance liquid chromatography-tandem high-resolution mass spectrometry (HPLC-HRMS). An imiquimod (IMQ)-induced psoriasis mouse model was used to evaluate the efficacy of FFSD orally. Psoriasis area and severity index (PASI) scores were recorded throughout the course of the mice to reflect the severity of psoriasis. Hematoxylin-eosin staining was used to observe the pathological changes in skin lesions. Enzyme-linked immunosorbent assay (ELISA) was performed to test the level of IFN-γ and TNF-α in plasma. To further investigate the immunopharmacological effect of FFSD, we used chicken ovalbumin (OVA) to induce immunoreaction in mice. ELISA was used to detect the levels of anti-OVA antibody, IFN-γ and TNF-α in mice. Flow cytometry was performed to quantify the ratio of cell types in peripheral blood mononuclear cells (PBMCs) to evaluate the effect of FFSD on immunosuppression. Proteomics and bioinformatics analyzes were performed to find the regulation pathway of the immunosuppressive effect of FFSD. Finally, quantitative PCR (qPCR) and immunohistochemistry were used to measure the upregulation of Annexin-A proteins (ANXAs) in the skin lesion tissue of IMQ-induced mouse. RESULTS On the basis of knowing the composition of FFSD, we first proved the efficacy of FFSD in alleviating IMQ-induced psoriasis in mice. Second, we further clarified the pharmacological effect of FFSD on immunosuppression via OVA-induced mice. Subsequently, it was found that the significant up-regulation of ANXAs was caused by FFSD through proteomics analysis, and the finding was proved in the IMQ-induced psoriasis mouse model. CONCLUSIONS This study elucidates the immunosuppressive pharmacological effect of FFSD on improving psoriasis through up-regulating ANXAs.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| | - Chunming Lyu
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| | - Xingmi Chen
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| | - Yuhan Ye
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| | - Yuanyuan Lei
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| | - Ying Liu
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| | - Tong Zhang
- Shanghai University of Traditional Chinese Medicine School of Pharmacy, Shanghai, 201203, China.
| | - Yang Yang
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| |
Collapse
|
50
|
Neyton LPA, Patel RK, Sarma A, Willmore A, Haller SC, Kangelaris KN, Eckalbar WL, Erle DJ, Krummel MF, Hendrickson CM, Woodruff PG, Langelier CR, Calfee CS, Fragiadakis GK. Distinct pulmonary and systemic effects of dexamethasone in severe COVID-19. RESEARCH SQUARE 2023:rs.3.rs-3168149. [PMID: 37577607 PMCID: PMC10418533 DOI: 10.21203/rs.3.rs-3168149/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Dexamethasone is the standard of care for critically ill patients with COVID-19, but the mechanisms by which it decreases mortality and its immunological effects in this setting are not understood. We performed bulk and single-cell RNA sequencing of the lower respiratory tract and blood, and plasma cytokine profiling to study the effect of dexamethasone on systemic and pulmonary immune cells. We find decreased signatures of antigen presentation, T cell recruitment, and viral injury in patients treated with dexamethasone. We identify compartment- and cell- specific differences in the effect of dexamethasone in patients with severe COVID-19 that are reproducible in publicly available datasets. Our results highlight the importance of studying compartmentalized inflammation in critically ill patients.
Collapse
Affiliation(s)
- Lucile P A Neyton
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Ravi K Patel
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Aartik Sarma
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Andrew Willmore
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Sidney C Haller
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | | | - Walter L Eckalbar
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - David J Erle
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Lung Biology Center, University of California, San Francisco, CA, USA
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Carolyn M Hendrickson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Charles R Langelier
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Division of Infectious Diseases, University of California, San Francisco, CA, USA
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Anesthesia, University of California, San Francisco, CA, USA
| | - Gabriela K Fragiadakis
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
- Division of Rheumatology, University of California, San Francisco, CA, USA
| |
Collapse
|