1
|
Selman A, Dai J, Driskill J, Reddy AP, Reddy PH. Depression and obesity: Focus on factors and mechanistic links. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167561. [PMID: 39505048 DOI: 10.1016/j.bbadis.2024.167561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Major depressive disorder (MDD) is defined as mood disorder causing a persistent loss of interest and despair for two weeks or greater, with related symptoms. Depression can interfere with daily life and can cause those affected to not work, study, eat, sleep, and enjoy previously enjoyed hobbies and life events as they did previously. If untreated, it can become a serious health condition. Depression is multifactorial with a variety of factors influencing the condition. These factors include: (1) poor diet and exercise, (2) socioeconomic status, (3) gender, (4) biological clocks, (5) genetics and epigenetics, and (6) personal stressors. Treatment of depressive disorders is thus also multifactorial and utilizes the following therapies: (1) diet and exercise, (2) bright light therapy, (3) cognitive behavioral therapy, and (4) pharmaceutical therapy. Obesity is defined as body mass index over 30 and above, is believed to be causally linked to MDD through both psychological and molecular means. Atypical depression, a common form of MDD, is most strongly correlated with a high proclivity for obesity. Obesity and depression have a bidirectional relationship, a patient experiencing either condition singularly is more likely to develop the other due to the neural links between the two, including emotional lability, physical health of the brain, hormones, cytokine secretion, appetite, diet and feeding habits, inflammatory state. In individuals consuming a high fat diet (HFD) commonly ingested by those with obesity, the gut-microbiome is altered leading to systemic inflammation and the dysregulation of mood and the HPA axis impacting their neural health. The purpose of this paper is to examine the interplay of potential molecular, psychological, societal, and environmental causal factors of depressive disorders and how obesity perpetuates depression. A secondary aim of this paper is to examine current interventions that may help improve those affected by both conditions.
Collapse
Affiliation(s)
- Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jean Dai
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jackson Driskill
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Rezaie N, Aghamohammad S, Gholizadeh Khiavi EHA, Pourshafie MR, Talebi M, Rohani M. Comparison of novel native probiotics and paraprobiotics in modulating oxidative stress and inflammation in DSS-induced colitis: implications for enhanced therapeutic strategies in high fat diet. BMC Immunol 2024; 25:85. [PMID: 39707206 DOI: 10.1186/s12865-024-00678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
AIM IBD is a condition that may result from the presence of oxidative stress. The objective of this research is to evaluate and compare the potency of probiotics and paraprobiotics to modulate oxidative stress and inflammation. METHODS AND RESULTS In the initial phase, the antioxidant capabilities of 88 strains from Lactobacillus and Bifidobacterium were evaluated. In the subsequent phase, during the in-vivo stage, four experimental groups were established, consisting of a high-fat diet (HFD) + PBS, HFD + DSS, HFD + DSS + 10^9 cfu/ml of 6 selected native probiotic, and HFD + DSS + 10^9 cfu/ml of paraprobiotic (from 6 selected strains), with male wild-type C57BL/6 mice being assigned to these groups. The phenotypical indices and pathological scores along with the evaluation of the expression of genes associated with the NF-kB and Nrf2 signaling pathways, as well as enzymes linked to oxidant/anti-oxidant activities, and proinflammatory/inflammatory cytokines were performed. A significant difference was noted among the groups exposed to DSS and groups that given our native agents. The mice receiving a blend of probiotics and paraprobiotics alongside DSS demonstrated a mitigation of the harmful impacts caused by DSS, both regarding phenotypic traits, including pathological scores and also the level of cytokines and antioxidant markers and also molecular indicators like the Nrf2 and NF-kB associated genes. Also, there was no notable difference between our native probiotic and paraprobiotic. CONCLUSION The study's findings provide evidence that the expression of inflammation can be successfully alleviated by utilizing our native probiotics and paraprobiotics, with a greater emphasis on the latter due to its inherent safety. IMPACT STATEMENTS This study highlighted the anti-inflammatory and antioxidant properties of probiotic and paraprobiotic that could be useful for patients with inflammatory status.
Collapse
Affiliation(s)
- Niloofar Rezaie
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Maggiore A, Latina V, D'Erme M, Amadoro G, Coccurello R. Non-canonical pathways associated to Amyloid beta and tau protein dyshomeostasis in Alzheimer's disease: A narrative review. Ageing Res Rev 2024; 102:102578. [PMID: 39542177 DOI: 10.1016/j.arr.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia among elderly people. This disease imposes a significant burden on the healthcare system, society, and economy due to the increasing global aging population. Current trials with drugs or bioactive compounds aimed at reducing cerebral Amyloid beta (Aβ) plaques and tau protein neurofibrillary tangles, which are the two main hallmarks of this devastating neurodegenerative disease, have not provided significant results in terms of their neuropathological outcomes nor met the expected clinical end-points. Ageing, genetic and environmental risk factors, along with different clinical symptoms suggest that AD is a complex and heterogeneous disorder with multiple interconnected pathological pathways rather than a single disease entity. In the present review, we highlight and discuss various non-canonical, Aβ-independent mechanisms, like gliosis, unhealthy dietary intake, lipid and sugar signaling, and cerebrovascular damage that contribute to the onset and development of AD. We emphasize that challenging the traditional "amyloid cascade hypothesis" may improve our understanding of this age-related complex syndrome and help fight the progressive cognitive decline in AD.
Collapse
Affiliation(s)
- Anna Maggiore
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy; Department of Brain Sciences, Imperial College, London, UK
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy
| | - Maria D'Erme
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy.
| | - Roberto Coccurello
- Institute for Complex System (ISC) CNR, Via dei Taurini 19, Rome 00185, Italy; IRCSS Santa Lucia Foundation, European Center for Brain Research, Via Fosso del Fiorano 64-65, Rome 00143, Italy.
| |
Collapse
|
4
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Recent insight into the advances and prospects of microbial lipases and their potential applications in industry. Int Microbiol 2024; 27:1597-1631. [PMID: 38489100 DOI: 10.1007/s10123-024-00498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Enzymes play a crucial role in various industrial sectors. These biocatalysts not only ensure sustainability and safety but also enhance process efficiency through their unique specificity. Lipases possess versatility as biocatalysts and find utilization in diverse bioconversion reactions. Presently, microbial lipases are gaining significant focus owing to the rapid progress in enzyme technology and their widespread implementation in multiple industrial procedures. This updated review presents new knowledge about various origins of microbial lipases, such as fungi, bacteria, and yeast. It highlights both the traditional and modern purification methods, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, the aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF), moreover, delves into the diverse applications of microbial lipases across several industries, such as food, vitamin esters, textile, detergent, biodiesel, and bioremediation. Furthermore, the present research unveils the obstacles encountered in employing lipase, the patterns observed in lipase engineering, and the application of CRISPR/Cas genome editing technology for altering the genes responsible for lipase production. Additionally, the immobilization of microorganisms' lipases onto various carriers also contributes to enhancing the effectiveness and efficiencies of lipases in terms of their catalytic activities. This is achieved by boosting their resilience to heat and ionic conditions (such as inorganic solvents, high-level pH, and temperature). The process also facilitates the ease of recycling them and enables a more concentrated deposition of the enzyme onto the supporting material. Consequently, these characteristics have demonstrated their suitability for application as biocatalysts in diverse industries.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
Katsa ME, Gil APR, Makri EM, Papadogiannis S, Ioannidis A, Kalliostra M, Ketselidi K, Diamantakos P, Melliou E, Magiatis P, Nomikos T. Effect of oleocanthal-rich olive oil on postprandial oxidative stress markers of patients with type 2 diabetes mellitus. Food Nutr Res 2024; 68:10882. [PMID: 39691690 PMCID: PMC11650448 DOI: 10.29219/fnr.v68.10882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 12/19/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is characterized by postprandial dysmetabolism, which has been linked to post-meal redox disturbances. Oleocanthal (OO), one of the most potent bioactive phenols of extra virgin olive oil, has shown redox modulating properties in vitro. However, its acute, in vivo antioxidant properties have never been studied before. Objective The aim of this study was to investigate the kinetics of five redox markers (Thiobarbituric acid-reactive substances [TBARS] and glutathione peroxidase activity in serum-GPx3 and erythrocytes (GPx1), protein carbonyls in serum) after the consumption different meals. Design Five different isocaloric meals comprised of white bread and butter (BU) or butter plus ibuprofen (BU-IBU) or olive oil poor in OO or olive oils containing 250 and 500 mg/Kg of oleocanthal (OO250 and OO500, respectively). We hypothesized that OO-rich olive oil will reduce postprandial oxidative stress in T2DM patients compared to other lipid sources. This study involved 10 patients with T2DM and had a cross-over design. Results The comparison of incremental Area Under Curves (iAUCs) has shown that OO-rich olive oils were able to alleviate the increments of thiobarbituric acid-reactive substances (TBARS) and GPx3 and induce a higher red blood cells (RBCs) GPx1 activity compared to OO (P < 0.05). The effect was dose and redox marker depended. Correlation analysis in the pooled sample demonstrated a positive association between postprandial ex vivo platelet sensitivity to ADP and iAUC TBARS. In conclusion, our study has shown that OO-rich olive oils can favorably modulate lipid peroxidation and RBC GPx activity in T2DM patients when consumed as part of a carbohydrate meal. Discussion This study demonstrates for the first time that, apart from its anti-inflammatory and antiplatelet properties, OO can also exert acute antioxidant effects. Conclusion This finding emphasizes the health benefits of extra virgin olive oil, particularly those with a high OO content, for T2DM patients.
Collapse
Affiliation(s)
- Maria Efthymia Katsa
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| | - Andrea Paola Rojas Gil
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Evangelia-Mantelena Makri
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| | - Spyridon Papadogiannis
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Anastasios Ioannidis
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Marianna Kalliostra
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| | - Kleopatra Ketselidi
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| | - Panagiotis Diamantakos
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Ka-podistrian University of Athens, Athens, Greece
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Ka-podistrian University of Athens, Athens, Greece
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Ka-podistrian University of Athens, Athens, Greece
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| |
Collapse
|
6
|
Xie S, Li Z, Yao Q, Zhang Y, Ou Y. Adherence to Mediterranean diet and female urinary incontinence: Evidence from the NHANES database. PLoS One 2024; 19:e0311771. [PMID: 39436928 PMCID: PMC11495614 DOI: 10.1371/journal.pone.0311771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Urinary incontinence (UI) is a common condition in female. Oxidative stress and inflammation levels play important roles in UI progression. Mediterranean diet (MD) as a healthy anti-inflammatory dietary pattern has been reported to be associated with several inflammatory diseases. This study aimed to assess the association between the adherence to Mediterranean diet (aMED) and female UI. METHODS Data of study women aged ≥18 years old and diagnosed as stress UI and urgency UI were extracted from the National Health and Nutrition Examination Survey (NHANES) 2005-2018. Dietary intake information was obtained by 24-h dietary recall interview. Covariates included sociodemographic information, physical examination, and history of diseases and medication were extracted from the database. The weighted univariable and multivariate logistic regression models were used to assess the association between aMED and different types of UI, with odds ratios (ORs) and 95% confidence intervals (CIs). Subgroup analysis were further evaluated this association based on different age, body mass index (BMI), neutrophil to lymphocyte ratio (NLR), depression and smoking. RESULTS Totally, 13,291 women were included, of whom 5,921 (44.55%) had stress UI, 4276 (32.17%) had urgency UI and 2570 (19.34%) had mixed UI. After adjusted all covariates, high aMED score was associated with the lower odds of urgency (OR = 0.86, 95%CI: 0.75-0.98) and mixed UI (OR = 0.84, 95%CI: 0.70-0.99), especially in female, aged 45-60 years old, NLR ≥1.68 and had smoking history. No relationship was found between the aMED and stress UI (P >0.05). CONCLUSION Greater aMED was connected with the low odds of urgency UI and mixed UI among female. Adherence to an anti-inflammatory diet in daily life are a promising intervention to be further explored in female UI.
Collapse
Affiliation(s)
- Shiwang Xie
- Luyuan Community Health Service Center Department, School of Medicine, Shenzhen & Longgang District People’s Hospital of Shenzhen, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Zuyi Li
- Postpartum Healthcare Department, Shenzhen Longgang District Maternity & Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Qinyuan Yao
- Community Health Service Center Department, The Second Affiliated Hospital, School of Medicine, Shenzhen & Longgang District People’s Hospital of Shenzhen, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Yupei Zhang
- Gynecology of Integrated Traditional Chinese and Western Medicine Department, The Second Affiliated Hospital, School of Medicine, Shenzhen & Longgang District People’s Hospital of Shenzhen, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Yuan Ou
- Gynecology Department, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
7
|
Azarova I, Klyosova E, Azarova V, Polonikov A. NADPH oxidase 5 is a novel susceptibility gene for type 2 diabetes mellitus. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230527. [PMID: 39529984 PMCID: PMC11554360 DOI: 10.20945/2359-4292-2023-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/10/2024] [Indexed: 11/16/2024]
Abstract
Objective This pilot study investigated whether single nucleotide polymorphisms (SNP) in the NOX5 gene (NADPH oxidase 5) are associated with the type 2 diabetes (T2D) risk. Subjects and methods A total of 1579 patients with T2D and 1627 age- and sex-matched healthy subjects were recruited for this study. Genotyping of common SNPs, namely rs35672233, rs3743093, rs2036343, rs311886, and rs438866, was performed using the MassArray-4 system. Results SNP rs35672233 was associated with an increased risk of T2D (OR = 1.67, 95% CI 1.29-2.17, FDR = 0.003). The H3 haplotype (rs35672233T-rs3743093G-rs2036343A-rs311886C-rs438866C) increased T2D risk (OR = 1.65, 95% CI 1.27-2.13, FDR = 0.001). The rs35672233 polymorphism and H3 haplotype were found to have an association with T2D risk only in subjects with a body mass index greater than 25 kg/m2 (FDR < 0.01). Environmental risk factors, such as chronic psycho-emotional stress, sedentary lifestyle, high-calorie diet and SNP rs35672233 were jointly associated with T2D susceptibility. A haplotype comprising the allele rs35672233-C and conferring protection against T2D, was associated with elevated levels of antioxidants such as total glutathione and uric acid, as well as reduced levels of two-hour postprandial glucose in the plasma of patients. The NOX5 polymorphisms showed no associations with diabetic complications. Conclusion The present study is the first to establish associations between polymorphisms in NOX5 and the risk of type 2 diabetes mellitus, and provides a new line of evidence for the crucial role of oxidative stress-related genes in disease susceptibility.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological ChemistryKursk State Medical UniversityKurskRussian Federation Department of Biological Chemistry, Kursk State Medical University, Kursk, Russian Federation
- Laboratory of Biochemical Genetics and MetabolomicsResearch Institute for Genetic and Molecular EpidemiologyKursk State Medical UniversityKurskRussian Federation Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and MetabolomicsResearch Institute for Genetic and Molecular EpidemiologyKursk State Medical UniversityKurskRussian Federation Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
- Department of BiologyMedical Genetics and EcologyKursk State Medical UniversityKurskRussian Federation Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russian Federation
| | - Valentina Azarova
- Kursk Emergency HospitalKurskRussian Federation Kursk Emergency Hospital, Kursk, Russian Federation
| | - Alexey Polonikov
- Department of BiologyMedical Genetics and EcologyKursk State Medical UniversityKurskRussian Federation Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russian Federation
- Laboratory of Statistical Genetics and BioinformaticsResearch Institute for Genetic and Molecular EpidemiologyKursk State Medical UniversityKurskRussian Federation Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| |
Collapse
|
8
|
Craige SM, Kaur G, Bond JM, Caliz AD, Kant S, Keaney JF. Endothelial Reactive Oxygen Species: Key Players in Cardiovascular Health and Disease. Antioxid Redox Signal 2024. [PMID: 39213161 DOI: 10.1089/ars.2024.0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Significance: Endothelial cells (ECs) line the entire vasculature system and serve as both barriers and facilitators of intra- and interorgan communication. Positioned to rapidly sense internal and external stressors, ECs dynamically adjust their functionality. Endothelial dysfunction occurs when the ability of ECs to react to stressors is impaired, which precedes many cardiovascular diseases (CVDs). While EC reactive oxygen species (ROS) have historically been implicated as mediators of endothelial dysfunction, more recent studies highlight the central role of ROS in physiological endothelial signaling. Recent Advances: New evidence has uncovered that EC ROS are fundamental in determining how ECs interact with their environment and respond to stress. EC ROS levels are mediated by external factors such as diet and pathogens, as well as inherent characteristics, including sex and location. Changes in EC ROS impact EC function, leading to changes in metabolism, cell communication, and potentially disrupted signaling in CVDs. Critical Issues: Current endothelial biology concepts integrate the dual nature of ROS, emphasizing the importance of EC ROS in physiological stress adaptation and their contribution to CVDs. Understanding the discrete, localized signaling of EC ROS will be critical in preventing adverse cardiovascular outcomes. Future Directions: Exploring how the EC ROS environment alters EC function and cross-cellular communication is critical. Considering the inherent heterogeneity among EC populations and understanding how EC ROS contribute to this diversity and the role of sexual dimorphism in the EC ROS environment will be fundamental for developing new effective cardiovascular treatment strategies.
Collapse
Affiliation(s)
- Siobhan M Craige
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA
| | - Gaganpreet Kaur
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob M Bond
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA
- Translational Biology, Medicine, and Health Program, Virginia Tech, Roanoke, Virginia, USA
| | - Amada D Caliz
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John F Keaney
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Ding K, Jiang W, Wuke S, Lei M. Causal benefits of 25 dietary intakes on epigenetic ageing: a Mendelian randomisation study. Int J Food Sci Nutr 2024; 75:582-596. [PMID: 39021046 DOI: 10.1080/09637486.2024.2379817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
DNA methylation GrimAge acceleration (DMGA) and intrinsic epigenetic age acceleration (IEAA) are important physiological markers for assessing the ageing process. Evidence from cross-sectional studies suggests that some dietary intake is associated with DMGA and IEAA. However, the causal relationship between them has yet to be elucidated. This Mendelian randomisation study uses genetic variants associated with different dietary intakes as instrumental variables to explore the causal benefits of multiple dietary intakes on DMGA and IEAA. Cheese intake, dark chocolate intake, average weekly red wine intake, dried fruit intake, fresh fruit intake, porridge intake, cereal intake, and liver intake had a negative causal association with DMGA, and poultry intake and doughnut intake had a positive causal association with DMGA (p < 0.05). Muesli and bran cereal intake had a negative causal association with IEAA, and pineapple intake had a positive causal association with IEAA (p < 0.05). Dietary intake positively causally associated with IEAA or DMGA may have accelerated biological ageing; conversely, dietary intake negatively causally associated with IEAA or DMGA may have contributed to delaying biological ageing. Based on genetic evidence, this study demonstrated some significant causal benefits of dietary intake on DMGA and IEAA, suggesting the possibility of intervening in DNA methylation acceleration and epigenetic age acceleration by adjusting these food intakes, thereby promoting health and delaying ageing. However, the findings of this study are exploratory and preliminary and need to be supported and validated by evidence from further clinical studies and mechanistic studies.
Collapse
Affiliation(s)
- Kaixi Ding
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shangjing Wuke
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Lei
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Bayram SŞ, Kızıltan G. The Role of Omega- 3 Polyunsaturated Fatty Acids in Diabetes Mellitus Management: A Narrative Review. Curr Nutr Rep 2024; 13:527-551. [PMID: 39031306 PMCID: PMC11327211 DOI: 10.1007/s13668-024-00561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE OF REVIEW Diabetes mellitus (DM) is a group of metabolic illnesses characterized by elevated levels of glucose in the bloodstream as a result of abnormalities in the generation or function of insulin. Medical Nutrition Therapy (MNT) is an essential component of diabetes management. Dietary fats are essential in both the prevention and progression of chronic diseases. Omega-3 polyunsaturated fatty acids are recognized for their advantageous impact on health. They assist in controlling blood sugar levels and lipid profile in patients with all types of diabetes. Furthermore, they reduce the occurrence of cardiovascular events and death linked to DM. RECENT FINDINGS After evaluating the antioxidant, anti-inflammatory, antilipidemic, and antidiabetic mechanisms of omega-3 fatty acid supplements, as well as the results from randomized controlled studies, it is clear that these supplements have positive effects in both preventing and treating diabetes, as well as preventing and treating complications related to diabetes, specifically cardiovascular diseases. However, current evidence does not support the use of omega-3 supplementation in people with diabetes for the purpose of preventing or treating cardiovascular events. People with all types of diabetes are suggested to include fatty fish and foods high in omega-3 fatty acids in their diet twice a week, as is prescribed for the general population.
Collapse
Affiliation(s)
- Sümeyra Şahin Bayram
- Faculty of Health Sciences, Nutrition and Dietetics Department, Selcuk University, Konya, Turkey.
| | - Gül Kızıltan
- Faculty of Health Sciences, Nutrition and Dietetics Department, Baskent University, Ankara, Turkey
| |
Collapse
|
11
|
Behzadi M, Bideshki MV, Ahmadi-Khorram M, Zarezadeh M, Hatami A. Effect of dark chocolate/ cocoa consumption on oxidative stress and inflammation in adults: A GRADE-assessed systematic review and dose-response meta-analysis of controlled trials. Complement Ther Med 2024; 84:103061. [PMID: 38925412 DOI: 10.1016/j.ctim.2024.103061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Oxidative stress and inflammation play critical roles in the pathogenesis of many chronic diseases. Dark chocolate (DC)/cocoa, as a rich source of polyphenols like flavonoids, has anti-inflammatory and antioxidant properties that may confer health benefits, but findings in this context are inconsistent. OBJECTIVE This systematic review and dose-response meta-analysis aimed to provide a comprehensive overview of the controlled trials (CTs) that have examined the effects of DC/cocoa on oxidative stress and inflammation biomarkers in adults. SEARCH METHODS Databases including PubMed, Web of Science, and Scopus, were searched for relevant studies through April 2024. SELECTION CRITERIA Studies assessed C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), nitric oxide (NO), P-selectin, E-selectin and thiobarbituric acid reactive substances (TBARS) in adults were included. DATA ANALYSIS Based on the random-effects model, we calculated WMDs, SMDs and 95 % confidence intervals (CIs). Sensitivity, sub-group, meta-regression and dose-response analyses were also conducted. RESULTS Thirty-three eligible CTs with 1379 participants were included. All studies reported the intervention types (cocoa powder, beverages and chocolate bars) and dosage. However, sixteen studies didn't do/report testing for purity and potency by independent groups. Also, none of the studies mentioned the risk of contamination with heavy metals. Another limitation was the lack of blinding assessment in studies. DC/cocoa significantly reduced MDA (SMD: -0.69, 95 %CI: -1.17, -0.2, p = 0.005) and increased NO levels (SMD: 2.43, 95 %CI: 1.11,3.75, p < 0.001); However, it has no significant effects on the other outcomes. Greater anti-inflammatory effects occurred at higher flavonoid doses (>450 mg/day) and for shorter durations (≤4 weeks) in the non-healthy participants. Non-linear dose-response relationships between cocoa dosage and CRP level and also between flavonoid dosage and IL-6 level were observed. Based on the GRADE evaluation, just CRP and MDA results were considered as high certainty evidence and the other outcomes results were categorized as very low to moderate certainty. CONCLUSIONS DC/cocoa may improve systemic oxidative status and inflammation in adults. However, further studies should be performed to determine its benefits.
Collapse
Affiliation(s)
- Mehrdad Behzadi
- Student Research Committee, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Vesal Bideshki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Diet Therapy, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ahmadi-Khorram
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Hatami
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Macho-González A, Apaza Ticona L, Redondo-Castillejo R, Hernández-Martín M, Sánchez-Muniz FJ, Hernáiz MJ, Bastida S, Benedí J, Bocanegra A, López-Oliva ME, Mateos-Vega C, Garcimartín A. The preventive and therapeutic consumption of meat enriched with carob fruit extract, rich in phenolic compounds, improves colonic antioxidant status in late-stage T2DM rats. Food Chem 2024; 450:139339. [PMID: 38657343 DOI: 10.1016/j.foodchem.2024.139339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Oxidative stress is prevalent in Type 2 Diabetes Mellitus (T2DM) and has been associated with high meat consumption. Carob Fruit Extract (CFE) contains phenolic compounds, making it a suitable functional ingredient. Current study aims to evaluate the effect of CFE-enriched meat (CFE-meat) consumption on the antioxidant status of proximal and distal colon, and its relationship with fecal phenolic compounds in late-stage T2DM rats. Three groups of eight rats were studied: 1) D, fed control-meat; 2) ED, fed CFE-meat since the beginning of the study; 3) DE, fed CFE-meat after confirming T2DM. CFE-meat consumption reduces colonic oxidative stress mainly in the proximal section and helps to ameliorate glutathione metabolism and antioxidant score. Difference between ED and DE groups were associated with colon homeostasis and T2DM progression suggesting greater fermentation but lower absorption in the DE group. CFE appears as a promising tool to improve the antioxidant status observed in late-stage T2DM.
Collapse
Affiliation(s)
- Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| | - Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Spain.
| | - Rocío Redondo-Castillejo
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| | - Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| | - Francisco José Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| | - María José Hernáiz
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Spain.
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| | - Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| | - Carmen Mateos-Vega
- Biomedicine Sciences Department, Pharmacy School, Alcala University, Madrid, Spain.
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| |
Collapse
|
13
|
Gupta I, Badrzadeh F, Tsentalovich Y, Gaykalova DA. Connecting the dots: investigating the link between environmental, genetic, and epigenetic influences in metabolomic alterations in oral squamous cell carcinoma. J Exp Clin Cancer Res 2024; 43:239. [PMID: 39169426 PMCID: PMC11337877 DOI: 10.1186/s13046-024-03141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for around 90% of all oral cancers and is the eighth most common cancer worldwide. Despite progress in managing OSCC, the overall prognosis remains poor, with a survival rate of around 50-60%, largely due to tumor size and recurrence. The challenges of late-stage diagnosis and limitations in current methods emphasize the urgent need for less invasive techniques to enable early detection and treatment, crucial for improving outcomes in this aggressive form of oral cancer. Research is currently aimed at unraveling tumor-specific metabolite profiles to identify candidate biomarkers as well as discover underlying pathways involved in the onset and progression of cancer that could be used as new targets for diagnostic and therapeutic purposes. Metabolomics is an advanced technological approach to identify metabolites in different sample types (biological fluids and tissues). Since OSCC promotes metabolic reprogramming influenced by a combination of genetic predisposition and environmental factors, including tobacco and alcohol consumption, and viral infections, the identification of distinct metabolites through screening may aid in the diagnosis of this condition. Moreover, studies have shown the use of metabolites during the catalysis of epigenetic modification, indicating a link between epigenetics and metabolism. In this review, we will focus on the link between environmental, genetic, and epigenetic influences in metabolomic alterations in OSCC. In addition, we will discuss therapeutic targets of tumor metabolism, which may prevent oral tumor growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Fariba Badrzadeh
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Yuri Tsentalovich
- International tomography center CB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Genome Sciences, 670 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
14
|
Jin H, Liu J, Wang D. Antioxidant Potential of Exosomes in Animal Nutrition. Antioxidants (Basel) 2024; 13:964. [PMID: 39199210 PMCID: PMC11351667 DOI: 10.3390/antiox13080964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
This review delves into the advantages of exosomes as novel antioxidants in animal nutrition and their potential for regulating oxidative stress. Although traditional nutritional approaches promote oxidative stress defense systems in mammalian animals, several issues remain to be solved, such as low bioavailability, targeted tissue efficiency, and high-dose by-effect. As an important candidate offering regulation opportunities concerned with cellular communication, disease prevention, and physiology regulation in multiple biological systems, the potential of exosomes in mediating redox status in biological systems has not been well described. A previously reported relationship between redox system regulation and circulating exosomes suggested exosomes as a fundamental candidate for both a regulator and biomarker for a redox system. Herein, we review the effects of oxidative stress on exosomes in animals and the potential application of exosomes as antioxidants in animal nutrition. Then, we highlight the advantages of exosomes as redox regulators due to their higher bioavailability and physiological heterogeneity-targeted properties, providing a theoretical foundation and feed industry application. Therefore, exosomes have shown great potential as novel antioxidants in the field of animal nutrition. They can overcome the limitations of traditional antioxidants in terms of dosage and side effects, which will provide unprecedented opportunities in nutritional management and disease prevention, and may become a major breakthrough in the field of animal nutrition.
Collapse
Affiliation(s)
| | | | - Diming Wang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (H.J.); (J.L.)
| |
Collapse
|
15
|
Marín D, Narváez DM, Sierra A, Molina JS, Ortiz I, Builes JJ, Morales O, Cuellar M, Corredor A, Villamil-Osorio M, Bejarano MA, Vidal D, Basagaña X, Anguita-Ruiz A, Maitre L, Domínguez A, Valencia A, Henao J, Abad JM, Lopera V, Amaya F, Aristizábal LM, Rodríguez-Villamizar LA, Ramos-Contreras C, López L, Hernández-Flórez LJ, Bangdiwala SI, Groot H, Rueda ZV. DNA damage and its association with early-life exposome: Gene-environment analysis in Colombian children under five years old. ENVIRONMENT INTERNATIONAL 2024; 190:108907. [PMID: 39121825 DOI: 10.1016/j.envint.2024.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Environmental exposures and gene-exposure interactions are the major causes of some diseases. Early-life exposome studies are needed to elucidate the role of environmental exposures and their complex interactions with biological mechanisms involved in childhood health. This study aimed to determine the contribution of early-life exposome to DNA damage and the modifying effect of genetic polymorphisms involved in air pollutants metabolism, antioxidant defense, and DNA repair. We conducted a cohort study in 416 Colombian children under five years. Blood samples at baseline were collected to measure DNA damage by the Comet assay and to determine GSTT1, GSTM1, CYP1A1, H2AX, OGG1, and SOD2 genetic polymorphisms. The exposome was estimated using geographic information systems, remote sensing, LUR models, and questionnaires. The association exposome-DNA damage was estimated using the Elastic Net linear regression with log link. Our results suggest that exposure to PM2.5 one year before the blood draw (BBD) (0.83, 95 %CI: 0.76; 0.91), soft drinks consumption (0.94, 0.89; 0.98), and GSTM1 null genotype (0.05, 0.01; 0.36) diminished the DNA damage, whereas exposure to PM2.5 one-week BBD (1.18, 1.06; 1.32), NO2 lag-5 days BBD (1.27, 1.18; 1.36), in-house cockroaches (1.10, 1.00; 1.21) at the recruitment, crowding at home (1.34, 1.08; 1.67) at the recruitment, cereal consumption (1.11, 1.04; 1.19) and H2AX (AG/GG vs. AA) (1.44, 1.11; 1.88) increased the DNA damage. The interactions between H2AX (AG/GG vs. AA) genotypes with crowding and PM2.5 one week BBD, GSTM1 (null vs. present) with humidity at the first year of life, and OGG1 (SC/CC vs. SS) with walkability at the first year of life were significant. The early-life exposome contributes to elucidating the effect of environmental exposures on DNA damage in Colombian children under five years old. The exposome-DNA damage effect appears to be modulated by genetic variants in DNA repair and antioxidant defense enzymes.
Collapse
Affiliation(s)
- Diana Marín
- Public Health Group, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia.
| | - Diana M Narváez
- Human Genetics Laboratory, School of Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Anamaría Sierra
- Human Genetics Laboratory, School of Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Juan Sebastián Molina
- Human Genetics Laboratory, School of Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Isabel Ortiz
- Systems Biology Group, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | - Olga Morales
- Pediaciencias Group, School of Medicine, Universidad de Antioquia, Department of Pediatrics, Hospital San Vicente Fundación, Medellín, Colombia
| | - Martha Cuellar
- Pediaciencias Group, School of Medicine, Universidad de Antioquia, Department of Pediatrics, SOMER Clinic, Medellín, Colombia
| | - Andrea Corredor
- Department of Pediatrics, ONIROS Centro Especializado en Medicina integral del Sueño, Bogotá, Colombia
| | - Milena Villamil-Osorio
- Department of Pediatrics, Fundación Hospital Pediátrico la Misericordia, Bogotá, Colombia
| | | | - Dolly Vidal
- Hospital Universitario San José, Popayán, Colombia
| | - Xavier Basagaña
- ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Augusto Anguita-Ruiz
- ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Leá Maitre
- ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Alan Domínguez
- ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Ana Valencia
- Systems Biology Group, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Julián Henao
- Medical and Experimental Mycology, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | - Verónica Lopera
- Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia
| | - Ferney Amaya
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Luis M Aristizábal
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | | | - Lucelly López
- Public Health Group, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | - Shrikant I Bangdiwala
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada; Statistics Department, Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Helena Groot
- Human Genetics Laboratory, School of Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Zulma Vanessa Rueda
- Public Health Group, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
16
|
Zhen LL, Feng L, Jiang WD, Wu P, Liu Y, Tang L, Li SW, Zhong CB, Zhou XQ. Exploring the novel benefits of leucine: Protecting nitrite-induced liver damage in sub-adult grass carp (Ctenopharyngodon idella) through regulating mitochondria quality control. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109690. [PMID: 38866347 DOI: 10.1016/j.fsi.2024.109690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Leucine is an essential amino acid for fish. The ability of leucine to resist stress in fish has not been reported. Nitrite is a common pollutant in the aquatic environment. Therefore, we investigated the effects of dietary leucine on growth performance and nitrite-induced liver damage, mitochondrial dysfunction, autophagy, and apoptosis for sub-adult grass carp. A total of 450 grass carp (615.91 ± 1.15 g) were selected and randomly placed into 18 net cages. The leucine contents of the six diets were 2.91, 5.90, 8.92, 11.91, 14.93, and 17.92 g/kg, respectively. After a 9-week feeding trial, the nitrite exposure experiment was set up for 96 h. These results indicated that dietary leucine significantly promoted FW, WG, PWG, and SGR of sub-adult grass carp (P < 0.05). Appropriate levels of dietary leucine (11.91-17.92 g/kg) decreased the activities of serum parameters (glucose, cortisol, and methemoglobin contents, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and lactate dehydrogenase), the contents of reactive oxygen species (ROS), nitric oxide (NO) and peroxynitrite (ONOO-). In addition, appropriate levels of dietary leucine (11.91-17.92 g/kg) increased the mRNA levels of mitochondrial biogenesis genes (PGC-1α, Nrf1/2, TFAM), fusion-related genes (Opa1, Mfn1/2) (P < 0.05), and decreased the mRNA levels of caspase 3, caspase 8, caspase 9, fission-related gene (Drp1), mitophagy-related genes (Pink1, Parkin) and autophagy-related genes (Beclin1, Ulk1, Atg5, Atg7, Atg12) (P < 0.05). Appropriate levels of dietary leucine (8.92-17.92 g/kg) also increased the protein levels of AMP-activated protein kinase (AMPK), prostacyclin (p62) and decreased the protein levels of protein light chain 3 (LC3), E3 ubiquitin ligase (Parkin), and Cytochrome c (Cytc). Appropriate levels of leucine (8.92-17.92 g/kg) could promote growth performance and alleviate nitrite-induced mitochondrial dysfunction, autophagy, apoptosis for sub-adult grass carp. Based on quadratic regression analysis of PWG and serum GPT activity, dietary leucine requirements of sub-adult grass carp were recommended to be 12.47 g/kg diet and 12.55 g/kg diet, respectively.
Collapse
Affiliation(s)
- Lu-Lu Zhen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Cheng-Bo Zhong
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| |
Collapse
|
17
|
Del Bo’ C, Chehade L, Tucci M, Canclini F, Riso P, Martini D. Impact of Substituting Meats with Plant-Based Analogues on Health-Related Markers: A Systematic Review of Human Intervention Studies. Nutrients 2024; 16:2498. [PMID: 39125378 PMCID: PMC11314210 DOI: 10.3390/nu16152498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The growing drive towards more sustainable dietary patterns has led to an increased demand for and availability of plant-based meat analogues (PBMAs). This systematic review aims to summarize the currently available evidence from human intervention studies investigating the impact of substituting animal meat (AM) with PBMAs in adults. A total of 19 studies were included. Overall, an increase in satiety following PBMA intake was reported, albeit to different extents and not always accompanied by changes in leptin and ghrelin. PBMAs generally resulted in lower protein bioavailability and a smaller increase in plasma essential amino acids in comparison to AM. However, muscle protein synthesis and physical performance were not affected. Finally, conflicting results have been reported for other outcomes, such as pancreatic and gastrointestinal hormones, oxidative stress and inflammation, vascular function, and microbiota composition. In conclusion, we documented that the impact of substituting AM with PBMA products has been scarcely investigated. In addition, the heterogeneity found in terms of study design, population, outcomes, and findings suggests the need for additional high-quality intervention trials, particularly long-term ones, to better clarify the advantages and potential critical issues of such substitutions within sustainable healthy diets.
Collapse
Affiliation(s)
| | | | | | | | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy (L.C.); (F.C.); (D.M.)
| | | |
Collapse
|
18
|
Jawhara S. How Do Polyphenol-Rich Foods Prevent Oxidative Stress and Maintain Gut Health? Microorganisms 2024; 12:1570. [PMID: 39203412 PMCID: PMC11356206 DOI: 10.3390/microorganisms12081570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, involves chronic inflammatory disorders of the digestive tract. Oxidative stress, associated with increased reactive oxygen species generation, is a major risk factor for IBD pathogenesis. Industrialized lifestyles expose us to a variety of factors that contribute to deteriorating gut health, especially for IBD patients. Many alternative therapeutic strategies have been developed against oxidative stress along with conventional therapy to alleviate IBD pathogenesis. Polyphenol-rich foods have attracted growing interest from scientists due to their antioxidant properties. Polyphenols are natural compounds found in plants, fruits, vegetables, and nuts that exhibit antioxidant properties and protect the body from oxidative damage. This review presents an overview of polyphenol benefits and describes the different types of polyphenols. It also discusses polyphenols' role in inhibiting oxidative stress and fungal growth prevention. Overall, this review highlights how a healthy and balanced diet and avoiding the industrialized lifestyles of our modern society can minimize oxidative stress damage and protect against pathogen infections. It also highlights how polyphenol-rich foods play an important role in protecting against oxidative stress and fungal growth.
Collapse
Affiliation(s)
- Samir Jawhara
- Centre National de la Recherche Scientifique, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; ; Tel.: +33-(0)3-20-62-35-46
- Institut National de la Santé et de la Recherche Médicale U1285, University of Lille, F-59000 Lille, France
- Medicine Faculty, University of Lille, F-59000 Lille, France
| |
Collapse
|
19
|
El-Sayed NS, Khalil NA, Saleh SR, Aly RG, Basta M. The Possible Neuroprotective Effect of Caffeic Acid on Cognitive Changes and Anxiety-Like Behavior Occurring in Young Rats Fed on High-Fat Diet and Exposed to Chronic Stress: Role of β-Catenin/GSK-3B Pathway. J Mol Neurosci 2024; 74:61. [PMID: 38954245 DOI: 10.1007/s12031-024-02232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Lifestyle influences physical and cognitive development during the period of adolescence greatly. The most important of these lifestyle factors are diet and stress. Therefore, the aim of this study was to investigate the impact of high fat diet (HFD) and chronic mild stress on cognitive function and anxiety-like behaviors in young rats and to study the role of caffeic acid as a potential treatment for anxiety and cognitive dysfunction. Forty rats were assigned into 4 groups: control, HFD, HFD + stress, and caffeic acid-treated group. Rats were sacrificed after neurobehavioral testing. We detected memory impairment and anxiety-like behavior in rats which were more exaggerated in stressed rats. Alongside the behavioral changes, there were biochemical and histological changes. HFD and/or stress decreased hippocampal brain-derived neurotrophic factor (BDNF) levels and induced oxidative and inflammatory changes in the hippocampus. In addition, they suppressed Wnt/β-catenin pathway which was associated with activation of glycogen synthase kinase 3β (GSK3β). HFD and stress increased arginase 1 and inducible nitric oxide synthase (iNOS) levels as well. These disturbances were found to be aggravated in stressed rats than HFD group. However, caffeic acid was able to reverse these deteriorations leading to memory improvement and ameliorating anxiety-like behavior. So, the current study highlights an important neuroprotective role for caffeic acid that may guard against induction of cognitive dysfunction and anxiety disorders in adolescents who are exposed to HFD and/or stress.
Collapse
Affiliation(s)
- Norhan S El-Sayed
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Nehal Adel Khalil
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Samar R Saleh
- Department of Biochemistry, Faculty of Science, Alexandria University, Baghdad St., Moharam Bek, Alexandria, 21511, Egypt
- Bioscreening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Baghdad St., Moharam Bek, Alexandria, 21511, Egypt
| | - Rania G Aly
- Department of pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Marianne Basta
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
20
|
Kopp W. Aging and "Age-Related" Diseases - What Is the Relation? Aging Dis 2024:AD.2024.0570. [PMID: 39012663 DOI: 10.14336/ad.2024.0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
The study explores the intricate relationship between aging and the development of noncommunicable diseases [NCDs], focusing on whether these diseases are inevitable consequences of aging or primarily driven by lifestyle factors. By examining epidemiological data, particularly from hunter-gatherer societies, the study highlights that many NCDs prevalent in modern populations are rare in these societies, suggesting a significant influence of lifestyle choices. It delves into the mechanisms through which poor diet, smoking, and other lifestyle factors contribute to systemic physiological imbalances, characterized by oxidative stress, insulin resistance and hyperinsulinemia, and dysregulation of the sympathetic nervous system, the renin-angiotensin-aldosterone system, and the immune system. The interplay between this pattern and individual factors such as genetic susceptibility, biological variability, epigenetic changes and the microbiome is proposed to play a crucial role in the development of a range of age-related NCDs. Modified biomolecules such as oxysterols and advanced glycation end products also contribute to their development. Specific diseases such as benign prostatic hyperplasia, Parkinson's disease, glaucoma and osteoarthritis are analyzed to illustrate these mechanisms. The study concludes that while aging contributes to the risk of NCDs, lifestyle factors play a crucial role, offering potential avenues for prevention and intervention through healthier living practices. One possible approach could be to try to restore the physiological balance, e.g. through dietary measures [e.g. Mediterranean diet, Okinawan diet or Paleolithic diet] in conjunction with [a combination of] pharmacological interventions and other lifestyle changes.
Collapse
|
21
|
He F, Liu J, Huang Y, Chen L, Rizi EP, Zhang K, Ke L, Loh TP, Niu M, Peng WK. Nutritional load in post-prandial oxidative stress and the pathogeneses of diabetes mellitus. NPJ Sci Food 2024; 8:41. [PMID: 38937488 PMCID: PMC11211471 DOI: 10.1038/s41538-024-00282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Diabetes mellitus affected more than 500 million of people globally, with an annual mortality of 1.5 million directly attributable to diabetic complications. Oxidative stress, in particularly in post-prandial state, plays a vital role in the pathogenesis of the diabetic complications. However, oxidative status marker is generally poorly characterized and their mechanisms of action are not well understood. In this work, we proposed a new framework for deep characterization of oxidative stress in erythrocytes (and in urine) using home-built micro-scale NMR system. The dynamic of post-prandial oxidative status (against a wide variety of nutritional load) in individual was assessed based on the proposed oxidative status of the red blood cells, with respect to the traditional risk-factors such as urinary isoprostane, reveals new insights into our understanding of diabetes. This new method can be potentially important in drafting guidelines for sub-stratification of diabetes mellitus for clinical care and management.
Collapse
Affiliation(s)
- Fangzhou He
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Junshi Liu
- Dongguan Institute of Technology, Dongguan, China
| | | | - Lan Chen
- BioSyM, SMART Centre, Singapore, Singapore
| | | | - Ke Zhang
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Lijing Ke
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Tze Ping Loh
- National University of Health System, Singapore, Singapore
| | - Meng Niu
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, Dongguan, China.
- BioSyM, SMART Centre, Singapore, Singapore.
| |
Collapse
|
22
|
Christodoulou A, Christophi CA, Sotos-Prieto M, Moffatt S, Zhao L, Kales SN, Hébert JR. The dietary inflammatory index and cardiometabolic parameters in US firefighters. Front Nutr 2024; 11:1382306. [PMID: 38938668 PMCID: PMC11208711 DOI: 10.3389/fnut.2024.1382306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Dietary choices play a crucial role in influencing systemic inflammation and the eventual development of cardiovascular diseases (CVD). The Dietary Inflammatory Index (DII®) is a novel tool designed to assess the inflammatory potential of one's diet. Firefighting, which is characterized by high-stress environments and elevated CVD risk, represents an interesting context for exploring the dietary inflammatory-CVD connection. Aim This study aims to investigate the associations between Energy-adjusted Dietary Inflammatory Index (E-DII™) scores and cardiometabolic risk parameters among US firefighters. Methods The study analyzed 413 participants from the Indianapolis Fire Department who took part in a Federal Emergency Management Agency (FEMA)-sponsored Mediterranean diet intervention trial. Thorough medical evaluations, encompassing physical examinations, standard laboratory tests, resting electrocardiograms, and submaximal treadmill exercise testing, were carried out. Participants also completed a detailed food frequency questionnaire to evaluate dietary patterns, and E-DII scores were subsequently computed based on the gathered information. Results Participants had a mean body mass index (BMI) of 30.0 ± 4.5 kg/m2 and an average body fat percentage of 28.1 ± 6.6%. Regression analyses, adjusted for sex, BMI, maximal oxygen consumption (VO2 max), max metabolic equivalents (METS), age, and body fat percentage, revealed significant associations between high vs. low E-DII scores and total cholesterol (β = 10.37, p = 0.04). When comparing low Vs median E-DII scores there is an increase in glucose (β = 0.91, p = 0.72) and total cholesterol (β = 5.51, p = 0.26). Conclusion Our findings support an association between higher E-DII scores and increasing adiposity, as well as worse lipid profiles.
Collapse
Affiliation(s)
- Andria Christodoulou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Costas A. Christophi
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Mercedes Sotos-Prieto
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Biomedical Research Network Centre of Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, Madrid, Spain
- IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Steven Moffatt
- National Institute for Public Safety Health, Indianapolis, IN, United States
| | - Longgang Zhao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- Connecting Health Innovations LLC, Columbia, SC, United States
| | - Stefanos N. Kales
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Occupational Medicine, Cambridge Health Alliance and Harvard Medical School, Cambridge, MA, United States
| | - James R. Hébert
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- Connecting Health Innovations LLC, Columbia, SC, United States
| |
Collapse
|
23
|
Mamdouh M, Shehata SF, El-Keredy A, Awad DA, El-Rayes TK, Elsokary MMM, Baloza SH. The effects of Artemisia annua nutritional supplementation at varying concentrations on broiler growth, economic yield, and gene expression levels of certain antioxidant, inflammatory, and immune genes. Vet World 2024; 17:1318-1327. [PMID: 39077447 PMCID: PMC11283622 DOI: 10.14202/vetworld.2024.1318-1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/21/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim Artemisia annua (AA), used as a growth promoter in poultry, lowers feed costs and enhances economic efficiency. This study aimed to assess the impact of varying AA concentrations on broiler chicken growth, gene expression, and profitability. Materials and Methods Two hundred 1-day-old male Cobb chicks were randomly allocated into four treatment groups, each containing five replicates and 10 birds. The experimental groups consisted of G1 (basal diet), G2 (basal diet with 0.3% AA), G3 (basal diet with 0.6% AA), and G4 (basal diet with 0.9% AA). The birds had continuous access to feed and water throughout the study. The experiment lasted for 42 days. We measured the growth performance (Feed intake, Life weight), carcass traits (weight after slaughter, dressed carcass, heart, gizzard, spleen, giblet and thymus weight), liver and spleen antioxidants (CAT, GSH, SOD), and gene expression of anti-inflammatory and immune- related genes. Results The primary findings revealed that the addition of 0.6% AA had a positive impact (p < 0.05) on all investigated variables compared with the control and other groups. Dietary supplementation with 0.6% AA led to increased breast, giblet, skeleton, and total yield, and net return compared with the control group. Supplementation with AA exhibited antioxidant, anti-inflammatory, and immunological effects through improved levels of antioxidant superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in tissue homogenates of the liver and spleen. It also upregulated the relative messenger RNA levels of anti-inflammatory interleukin (IL)-10, SOD, CAT, and GSH-Px, whereas IL-1β and tumor necrosis factor-alpha were downregulated. Conclusion The study found that AA is a promising replacement for antibiotics in poultry farming as a growth promoter for chickens. 0.6% AA in the broiler diet yielded the best results, striking a balance between superior performance and robust economic benefits.
Collapse
Affiliation(s)
- Maha Mamdouh
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, PO 137386, Benha, Egypt
| | - Seham F Shehata
- Veterinary Economics and Farm Management, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, PO 137386, Benha, Egypt
| | - Amira El-Keredy
- Department of Genetics, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Dina A Awad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, PO 13736, Benha, Egypt
| | - Talaat Khedr El-Rayes
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Mohamed M M Elsokary
- Veterinary Medicine and Food Security Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Abu Dhabi 17155, United Arab Emirates
- Department of Theriogenology, Faculty of Veterinary Medicine, Benha University, PO 13786, Benha, Egypt
| | - Samar H Baloza
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, PO 137386, Benha, Egypt
| |
Collapse
|
24
|
Safaei M, Kheirouri S, Alizadeh M, Pirovi A. Association between Mediterranean-dietary approaches to stop hypertension intervention for neurodegenerative delay diet and biomarkers of oxidative stress, metabolic factors, disease severity, and odds of disease in rheumatoid arthritis patients. Food Sci Nutr 2024; 12:3973-3981. [PMID: 38873478 PMCID: PMC11167176 DOI: 10.1002/fsn3.4055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 06/15/2024] Open
Abstract
This research aimed to examine the association between the following Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) dietary pattern and oxidative stress indicators, metabolic factors, disease activity, and the odds of disease in patients with rheumatoid arthritis (RA). In this cross-sectional study, we included 101 patients with RA and 101 healthy individuals. The MIND diet score was measured using a semi-quantitative Food Frequency Questionnaire (FFQ) with 147 food items. Total capacity antioxidant (TCA), superoxide dismutase (SOD), glutathione peroxidase (GPX), and malondialdehyde (MDA) serum concentrations were evaluated by ELISA, and the disease severity was measured regarding the disease activity score 28 (DAS-28) criteria. The average score of the MIND diet was substantially lower in the RA subjects than in the healthy people (p < .001). Individuals with a higher MIND diet score had lower odds of RA than those with a low score (p < .001). There was no remarkable link between the MIND diet and oxidative stress factors (p > .05). A reverse association was found between the MIND diet score and disease activity (p < .05). The MIND diet was significantly and negatively correlated with triglycerides, low-density lipoprotein cholesterol, total cholesterol, fasting blood glucose, and hemoglobin A1C. There was a positive association between the diet and high-density lipoprotein cholesterol. The findings indicate that following the MIND diet may decrease disease activity and the odds of RA. Also, high adherence to the MIND diet may improve the lipid profile and blood glucose status in RA patients.
Collapse
Affiliation(s)
- Mahdieh Safaei
- Department of NutritionTabriz University of Medical SciencesTabrizIran
| | - Sorayya Kheirouri
- Department of NutritionTabriz University of Medical SciencesTabrizIran
| | - Mohammad Alizadeh
- Department of NutritionTabriz University of Medical SciencesTabrizIran
- Nutrition Research CenterTabriz University of Medical SciencesTabrizIran
| | - Amir‐Hossein Pirovi
- Department of Rheumatology, School of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
25
|
Neacșu SM, Mititelu M, Ozon EA, Musuc AM, Iuga IDM, Manolescu BN, Petrescu S, Pandele Cusu J, Rusu A, Surdu VA, Oprea E, Lupuliasa D, Popescu IA. Comprehensive Analysis of Novel Synergistic Antioxidant Formulations: Insights into Pharmacotechnical, Physical, Chemical, and Antioxidant Properties. Pharmaceuticals (Basel) 2024; 17:690. [PMID: 38931357 PMCID: PMC11206646 DOI: 10.3390/ph17060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Oxidative stress plays a pivotal role in the pathogenesis of various diseases, including neurodegenerative disorders, cardiovascular diseases, cancer, and diabetes, highlighting the pressing need for effective antioxidant interventions. (2) Methods: In this study, we aimed to develop and characterise two novel antioxidant formulations, F3 and F4, as therapeutic interventions for oxidative stress-related conditions. (3) Results: The physicochemical characterisation, preformulation analysis, formulation, preparation of filling powders for capsules, capsule content evaluation, and antioxidant activity assessment of the two novel antioxidant formulations were assessed. These formulations comprise a combination of well-established antioxidants like quercetin, biotin, coenzyme Q10, and resveratrol. Through comprehensive testing, the formulations' antioxidant efficacy, stability, and potential synergistic interactions were evaluated. (4) Conclusions: The findings underscore the promising potential of these formulations as therapeutic interventions for oxidative stress-related disorders and highlight the significance of antioxidant interventions in mitigating their progression.
Collapse
Affiliation(s)
- Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.M.); (I.D.M.I.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Izabela Dana Maria Iuga
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (M.M.); (I.D.M.I.)
| | - Bogdan Nicolae Manolescu
- “C. Nenitescu” Department of Organic Chemistry, Faculty of Applied Chemistry and Science of Materials, National University for Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Simona Petrescu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Jeanina Pandele Cusu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Adriana Rusu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (S.P.); (J.P.C.); (A.R.)
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Eliza Oprea
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1–3 Portocalilor Way, 060101 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| | - Ioana Andreea Popescu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.M.N.); (D.L.); (I.A.P.)
| |
Collapse
|
26
|
Zheng Q, Wang F, Nie C, Zhang K, Sun Y, Al-Ansi W, Wu Q, Wang L, Du J, Li Y. Elevating the significance of legume intake: A novel strategy to counter aging-related mitochondrial dysfunction and physical decline. Compr Rev Food Sci Food Saf 2024; 23:e13342. [PMID: 38634173 DOI: 10.1111/1541-4337.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Mitochondrial dysfunction increasingly becomes a target for promoting healthy aging and longevity. The dysfunction of mitochondria with age ultimately leads to a decline in physical functions. Among them, biogenesis dysfunction and the imbalances in the metabolism of reactive oxygen species and mitochondria as signaling organelles in the aging process have aroused our attention. Dietary intervention in mitochondrial dysfunction and physical decline during aging processes is essential, and greater attention should be directed toward healthful legume intake. Legumes are constantly under investigation for their nutritional and bioactive properties, and their consumption may yield antiaging and mitochondria-protecting benefits. This review summarizes mitochondrial dysfunction with age, discusses the benefits of legumes on mitochondrial function, and introduces the potential role of legumes in managing aging-related physical decline. Additionally, it reveals the benefits of legume intake for the elderly and offers a viable approach to developing legume-based functional food.
Collapse
Affiliation(s)
- Qingwei Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Feijie Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Gong H, Zhao N, Zhu C, Luo L, Liu S. Treatment of gastric ulcer, traditional Chinese medicine may be a better choice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117793. [PMID: 38278376 DOI: 10.1016/j.jep.2024.117793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastric ulcer (GU) is the injury of the gastric mucosa caused by the stimulation of various pathogenic factors penetrating the deep mucosal muscle layer. An increasing number of studies have shown that traditional Chinese medicine (TCM) is highly effective in treating GU due to its multitarget, multilevel, and multi-pathway effects. AIM OF THE STUDY To review the latest research progress in the treatment of GU by TCM, including clinical and experimental studies, focusing on the target and mechanism of action of drugs and providing a theoretical basis for the treatment of GU by natural herbs. MATERIALS AND METHODS Electronic databases (PubMed, Elsevier, Springer, Web of Science, and CNKI) were searched using the keywords "gastric ulcer", "gastric mucosal lesion", "TCM" and or paired with "peptic ulcer" and "natural drugs" for studies published in the last fifteen years until 2023. RESULTS TCM, including single components of natural products, Chinese patent medicines (CPM), and TCM decoction, is expected to treat GU by regulating various mechanisms, such as redox balance, inflammatory factors, angiogenesis, gastric mucosal protective factors, intestinal flora, apoptosis, and autophagy. CONCLUSIONS We discussed and summarized the mechanism of TCM in the treatment of GU, which provided a sufficient basis for TCM treatment of GU.
Collapse
Affiliation(s)
- Haiying Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Department of Gastroenterology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Conglei Zhu
- Department of Pharmacy, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Lin Luo
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Fan C, Wang W, Wang S, Zhou W, Ling L. Multiple dietary patterns and the association between long-term air pollution exposure with type 2 diabetes risk: Findings from UK Biobank cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116274. [PMID: 38564865 DOI: 10.1016/j.ecoenv.2024.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Evidence of modifying effect of various dietary patterns (DPs) on risk of type 2 diabetes (T2D) induced by long-term exposure to air pollution (AP) is still rather lacking, which therefore we aimed to explore in this study. METHODS We included 78,230 UK Biobank participants aged 40-70 years with at least 2 typical 24-hour dietary assessments and without baseline diabetes. The annual average concentration of particulate matter with diameter micrometers ≤2.5 (PM2.5) and ≤10 (PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOX) estimated by land use regression model was the alternative proxy of long-term AP exposure. Three well-known prior DPs such as Mediterranean diet (MED), dietary approaches to stop hypertension diet (DASH), and empirical dietary inflammatory pattern (EDIP), as well as three posterior DPs derived by the rank reduced regression model were used to capture participants' dietary habits. Cox regression models were used to estimate AP-T2D and DP-T2D associations. Modifying effect of DPs on AP-T2D association was assessed using stratified analysis and heterogeneity test. RESULTS During a median follow-up 12.19 years, 1,693 participants developed T2D. PM2.5, PM10, NO2, and NOX significantly increased the T2D risk (P <0.05), with hazard ratio (HR) and 95% confidence interval (95% CI) for per interquartile range increase being 1.09 (1.02,1.15), 1.04 (1.00, 1.09), 1.11 (1.04, 1.18), and 1.08 (1.03, 1.14), respectively. Comparing high with low adherence, healthy DPs were associated with a 14-41% lower T2D risk. Participants with high adherence to MED, DASH, and anti-EDIP, alongside the posterior anti-oxidative dietary pattern (AODP) had attenuated and statistically non-significant NO2-T2D and NOX-T2D associations (Pmodify <0.05). CONCLUSIONS Multiple forms of healthy DPs help reduce the T2D risk associated with long-term exposure to NO2 and NOX. Our findings indicate that adherence to healthy DPs is a feasible T2D prevention strategy for people long-term suffering from NO2 and NOX pollution.
Collapse
Affiliation(s)
- Chaonan Fan
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Wenjuan Wang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Shanze Wang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Wensu Zhou
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Li Ling
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Division of Clinical Research Design, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
Ran Y, Shen X, Li Y. Glycyrrhiza Extract and Curcumin Alleviates the Toxicity of Cadmium via Improving the Antioxidant and Immune Functions of Black Goats. TOXICS 2024; 12:284. [PMID: 38668507 PMCID: PMC11053436 DOI: 10.3390/toxics12040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
To investigate the mitigative effects of glycyrrhiza extract (GE) and curcumin (CUR) on the antioxidant and immune functions of the Guizhou black goat exposed to cadmium (Cd), 50 healthy Guizhou black goats (11.08 ± 0.22 kg, male, six months old) were used in a 60-day trial and were randomly assigned to five groups with 10 replicates per group, one goat per replicate. All goats were fed a basal diet, with drinking water and additives varying slightly between groups. Control group: tap water (0.56 μg·L-1 Cd); Cd group: drinking water containing Cd (20 mg Cd·kg-1·body weight, CdCl2·2.5H2O); GE group: drinking water containing Cd, at days 31 to 60, the basic diet had added 500 mg·kg-1 GE; CUR group: drinking water containing Cd, at days 31 to 60, the basic diet had added 500 mg·kg-1 CUR; combined group: drinking water containing Cd, at days 31 to 60, the basic diet had added 500 mg·kg-1 GE and CUR. Compared with the Cd group, GE and CUR significantly increased the levels of hemoglobin and red blood cell count in the blood, and the activities of serum antioxidant enzyme activity and immune function in the Guizhou black goat (p < 0.05). The treatment effect in the combined group was better than that in the GE and CUR groups. The results showed that GE and CUR improved the antioxidant and immune functions of the serum and livers of the Guizhou black goat and alleviated the toxicity damage of Cd contamination. This research has positive implications for both livestock management and human health.
Collapse
Affiliation(s)
- Yang Ran
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Y.R.); (X.S.)
| | - Xiaoyun Shen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Y.R.); (X.S.)
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Y.R.); (X.S.)
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
30
|
Kucianski T, Mayr HL, Tierney A, Vally H, Thomas CJ, Karimi L, Wood LG, Itsiopoulos C. The assessment of dietary carotenoid intake of the Cardio-Med FFQ using food records and biomarkers in an Australian cardiology cohort: a pilot validation. J Nutr Sci 2024; 13:e20. [PMID: 38618284 PMCID: PMC11016364 DOI: 10.1017/jns.2024.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 04/16/2024] Open
Abstract
Dietary carotenoids are associated with lower risk of CHD. Assessment of dietary carotenoid intake using questionnaires can be susceptible to measurement error. Consequently, there is a need to validate data collected from FFQs which measure carotenoid intake. This study aimed to assess the performance of the Cardio-Med Survey Tool (CMST)-FFQ-version 2 (v2) as a measure of dietary carotenoid intake over 12-months against plasma carotenoids biomarkers and 7-Day Food Records (7DFR) in an Australian cardiology cohort. Dietary carotenoid intakes (β- and α-carotene, lycopene, β-cryptoxanthin and lutein/zeaxanthin) were assessed using the 105-item CMST-FFQ-v2 and compared to intakes measured by 7DFR and plasma carotenoid concentrations. Correlation coefficients were calculated between each dietary method, and validity coefficients (VCs) were calculated between each dietary method and theoretical true intake using the 'methods of triads'. Thirty-nine participants aged 37-77 years with CHD participated in the cross-sectional study. The correlation between FFQ and plasma carotenoids were largest and significant for β-carotene (0.39, p=0.01), total carotenoids (0.37, p=0.02) and β-cryptoxanthin (0.33, p=0.04), with weakest correlations observed for α-carotene (0.21, p=0.21) and lycopene (0.21, p=0.21). The FFQ VCs were moderate (0.3-0.6) or larger for all measured carotenoids. The strongest were observed for total carotenoids (0.61) and β-carotene (0.59), while the weakest were observed for α-carotene (0.33) and lycopene (0.37). In conclusion, the CMST-FFQ-v2 measured dietary carotenoids intakes with moderate confidence for most carotenoids, however, there was less confidence in ability to measure α-carotene and lycopene intake, thus further research is warranted using a larger sample.
Collapse
Affiliation(s)
- Teagan Kucianski
- School of Allied Health, Human Services and Sport, Faculty of Science and Engineering, La Trobe University, Bundoora, Victoria, Australia
| | - Hannah L. Mayr
- School of Allied Health, Human Services and Sport, Faculty of Science and Engineering, La Trobe University, Bundoora, Victoria, Australia
- Centre for Functioning and Health Research, Metro South Hospital and Health Service, Brisbane, Queensland, Australia
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Greater Brisbane Clinical School, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Audrey Tierney
- School of Allied Health, Human Services and Sport, Faculty of Science and Engineering, La Trobe University, Bundoora, Victoria, Australia
- School of Allied Health, Health Implementation Science and Technology Centre, Health Research Institute, University of Limerick, Limerick, Ireland
| | - Hassan Vally
- Institute for Health Transformation, Deakin University, Melbourne, Victoria, Australia
| | - Colleen J. Thomas
- Department of Physiology, Anatomy and Microbiology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Pre-Clinical Critical Care Unit, University of Melbourne, Melbourne, Victoria, Australia
| | - Leila Karimi
- School of Health and Biomedical Sciences, Department of Psychology, RMIT University, Melbourne, Victoria, Australia
| | - Lisa G. Wood
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | | |
Collapse
|
31
|
Lee YG, Lee SR, Baek HJ, Kwon JE, Baek NI, Kang TH, Kim H, Kang SC. The Effects of Body Fat Reduction through the Metabolic Control of Steam-Processed Ginger Extract in High-Fat-Diet-Fed Mice. Int J Mol Sci 2024; 25:2982. [PMID: 38474229 DOI: 10.3390/ijms25052982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
The prevalence of metabolic syndrome is increasing globally due to behavioral and environmental changes. There are many therapeutic agents available for the treatment of chronic metabolic diseases, such as obesity and diabetes, but the data on their efficacy and safety are lacking. Through a pilot study by our group, Zingiber officinale rhizomes used as a spice and functional food were selected as an anti-obesity candidate. In this study, steam-processed ginger extract (GGE) was used and we compared its efficacy at alleviating metabolic syndrome-related symptoms with that of conventional ginger extract (GE). Compared with GE, GGE (25-100 μg/mL) had an increased antioxidant capacity and α-glucosidase inhibitory activity in vitro. GGE was better at suppressing the differentiation of 3T3-L1 adipocytes and lipid accumulation in HepG2 cells and promoting glucose utilization in C2C12 cells than GE. In 16-week high-fat-diet (HFD)-fed mice, GGE (100 and 200 mg/kg) improved biochemical profiles, including lipid status and liver function, to a greater extent than GE (200 mg/kg). The supplementation of HFD-fed mice with GGE (200 mg/kg) resulted in the downregulation of SREBP-1c and FAS gene expression in the liver. Collectively, our results indicate that GGE is a promising therapeutic for the treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Yeong-Geun Lee
- Department of Oriental Medicine and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- BioMedical Research Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sung Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Hyun Jin Baek
- Department of Oriental Medicine and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jeong Eun Kwon
- Department of Oriental Medicine and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- BioMedical Research Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Nam-In Baek
- Department of Oriental Medicine and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Tong Ho Kang
- Department of Oriental Medicine and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyunggun Kim
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Se Chan Kang
- Department of Oriental Medicine and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- BioMedical Research Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
32
|
Vasconcelos ÉPCOD, Ferreira FCG, Souza SOD, Dos Santos ACO. Different factors are associated with changing body composition in people living with HIV. AIDS Care 2024; 36:314-319. [PMID: 36200391 DOI: 10.1080/09540121.2022.2129035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/21/2022] [Indexed: 10/10/2022]
Abstract
INTRODUCTION Antiretroviral Therapy (ART) gives people living with HIV/AIDS (PLWHA) a new perspective of life, although some develop changes in impaired body composition. This study aimed to assess the factors associated with changes in body composition in PLWHA using ART, depending food consumption. MATERIAL AND METHODS It was a cross-sectional study and took place through interviews with patients treated at an University Hospital. Secondary data: CD4+ T cells, ART time and age. The level of physical activity and smoking were self-reported. For the assessment of body composition, electrical bioimpedance and measurements of weight, height and waist circumference were used. RESULTS The highest percentages of fat mass and fat-free mass, in treatment for more than 5 years, were in the female group (p <0.01), aged> 50 years (p = 0.02) and in the male group (p <0.01), young adult (p <0.01), respectively. The final linear regression model for both free fat mass and fat mass had sex, age, smoking and nutritional diagnosis as relevant factors. The frequency of food consumption was inadequate for calories, carbohydrates, proteins and lipids was high, however it did not significantly influence body composition. CONCLUSIONS Gender, age, smoking and nutritional diagnosis by BMI significantly influence body composition.
Collapse
|
33
|
Boualam K, Ibork H, Lahboub Z, Sobeh M, Taghzouti K. Mentha rotundifolia (L.) Huds. and Salvia officinalis L. hydrosols mitigate aging related comorbidities in rats. Front Aging Neurosci 2024; 16:1365086. [PMID: 38464467 PMCID: PMC10920217 DOI: 10.3389/fnagi.2024.1365086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction Aging is often linked to oxidative stress, where the body experiences increased damage from free radicals. Plants are rich sources of antioxidants, playing a role in slowing down aging and supporting the proper functioning and longevity of cells. Our study focuses on exploring the impact of Mentha rotundifolia (MR) and Salvia officinalis (SO) hydrosols on aging-related comorbidities. Methods The chemical composition of MR and SO hydrosols was analyzed by gas chromatography coupled to mass spectrometry. 2,2-Diphenyl 1-picrylhydrazyl and 2,20-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid radicals scavenging assays were used to assess their in vitro antioxidant activity, and heat induced albumin denaturation test was used to evaluate their anti-inflammatory activity. Subsequently, we administered 5% of each plant hydrosol in the drinking water of 18-month-old rats for six months. We then conducted behavioral tests, including open field, dark/light box, rotarod, and Y-maze assessments, and measured biochemical parameters in plasma, liver and brain tissues. Results and discussion At two years old, animals treated with MR and SO hydrosols displayed fewer physical and behavioral impairments, along with well-preserved redox homeostasis in comparison with animals in the control group. These results highlighted the significance of MR and SO hydrosols in addressing various aspects of age-related comorbidities. The study suggests that these plant-derived hydrosols may have potential applications in promoting healthy aging and mitigating associated health challenges.
Collapse
Affiliation(s)
- Khadija Boualam
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic, Ben-Guerir, Morocco
- Physiology and Physiopathology Team, Genomics of Human Pathologies Research Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Hind Ibork
- Physiology and Physiopathology Team, Genomics of Human Pathologies Research Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Zakaria Lahboub
- Plant Chemistry and Organic and Bioorganic Synthesis Team, Chemistry Department, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Mansour Sobeh
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic, Ben-Guerir, Morocco
| | - Khalid Taghzouti
- Physiology and Physiopathology Team, Genomics of Human Pathologies Research Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
34
|
Merlo G, Bachtel G, Sugden SG. Gut microbiota, nutrition, and mental health. Front Nutr 2024; 11:1337889. [PMID: 38406183 PMCID: PMC10884323 DOI: 10.3389/fnut.2024.1337889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
The human brain remains one of the greatest challenges for modern medicine, yet it is one of the most integral and sometimes overlooked aspects of medicine. The human brain consists of roughly 100 billion neurons, 100 trillion neuronal connections and consumes about 20-25% of the body's energy. Emerging evidence highlights that insufficient or inadequate nutrition is linked to an increased risk of brain health, mental health, and psychological functioning compromise. A core component of this relationship includes the intricate dynamics of the brain-gut-microbiota (BGM) system, which is a progressively recognized factor in the sphere of mental/brain health. The bidirectional relationship between the brain, gut, and gut microbiota along the BGM system not only affects nutrient absorption and utilization, but also it exerts substantial influence on cognitive processes, mood regulation, neuroplasticity, and other indices of mental/brain health. Neuroplasticity is the brain's capacity for adaptation and neural regeneration in response to stimuli. Understanding neuroplasticity and considering interventions that enhance the remarkable ability of the brain to change through experience constitutes a burgeoning area of research that has substantial potential for improving well-being, resilience, and overall brain health through optimal nutrition and lifestyle interventions. The nexus of lifestyle interventions and both academic and clinical perspectives of nutritional neuroscience emerges as a potent tool to enhance patient outcomes, proactively mitigate mental/brain health challenges, and improve the management and treatment of existing mental/brain health conditions by championing health-promoting dietary patterns, rectifying nutritional deficiencies, and seamlessly integrating nutrition-centered strategies into clinical care.
Collapse
Affiliation(s)
- Gia Merlo
- Department of Psychiatry, New York University Grossman School of Medicine and Rory Meyers College of Nursing, New York, NY, United States
| | | | - Steven G. Sugden
- Department of Psychiatry, The University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
35
|
Fernández Miyakawa ME, Casanova NA, Kogut MH. How did antibiotic growth promoters increase growth and feed efficiency in poultry? Poult Sci 2024; 103:103278. [PMID: 38052127 PMCID: PMC10746532 DOI: 10.1016/j.psj.2023.103278] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
It has been hypothesized that reducing the bioenergetic costs of gut inflammation as an explanation for the effect of antibiotic growth promoters (AGPs) on animal efficiency, framing some observations but not explaining the increase in growth rate or the prevention of infectious diseases. The host's ability to adapt to alterations in environmental conditions and to maintain health involves managing all physiological interactions that regulate homeostasis. Thus, metabolic pathways are vital in regulating physiological health as the energetic demands of the host guides most biological functions. Mitochondria are not only the metabolic heart of the cell because of their role in energy metabolism and oxidative phosphorylation, but also a central hub of signal transduction pathways that receive messages about the health and nutritional states of cells and tissues. In response, mitochondria direct cellular and tissue physiological alterations throughout the host. The endosymbiotic theory suggests that mitochondria evolved from prokaryotes, emphasizing the idea that these organelles can be affected by some antibiotics. Indeed, therapeutic levels of several antibiotics can be toxic to mitochondria, but subtherapeutic levels may improve mitochondrial function and defense mechanisms by inducing an adaptive response of the cell, resulting in mitokine production which coordinates an array of adaptive responses of the host to the stressor(s). This adaptive stress response is also observed in several bacteria species, suggesting that this protective mechanism has been preserved during evolution. Concordantly, gut microbiome modulation by subinhibitory concentration of AGPs could be the result of direct stimulation rather than inhibition of determined microbial species. In eukaryotes, these adaptive responses of the mitochondria to internal and external environmental conditions, can promote growth rate of the organism as an evolutionary strategy to overcome potential negative conditions. We hypothesize that direct and indirect subtherapeutic AGP regulation of mitochondria functional output can regulate homeostatic control mechanisms in a manner similar to those involved with disease tolerance.
Collapse
Affiliation(s)
- Mariano Enrique Fernández Miyakawa
- Institute of Pathobiology, National Institute of Agricultural Technology (INTA), Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina..
| | - Natalia Andrea Casanova
- Institute of Pathobiology, National Institute of Agricultural Technology (INTA), Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, USA
| |
Collapse
|
36
|
Benitez Mora MP, Kosior MA, Damiano S, Longobardi V, Presicce GA, Di Vuolo G, Pacelli G, Campanile G, Gasparrini B. Dietary supplementation with green tea extract improves the antioxidant status and oocyte developmental competence in Italian Mediterranean buffaloes. Theriogenology 2024; 215:50-57. [PMID: 38006855 DOI: 10.1016/j.theriogenology.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
The aim of this work was to assess the antioxidant status and the developmental competence of oocytes recovered by ovum pick-up (OPU) in Italian Mediterranean buffaloes supplemented with green tea extracts (GTE) for 90 days. Buffalo cows (n = 16) were randomly assigned to a control group receiving no supplement and a treatment group, receiving GTE starting 90 days before OPU, carried out for five consecutive sessions. Blood samples were collected before the start of supplementation with GTE (T0) and at day 45 (T1) and day 90 (T2) of supplementation, to measure ferric reducing activity (FRAP), total antioxidant capacity (TAC), superoxide dismutase (SOD) and catalase (CAT). The antioxidant status of follicles was measured as TAC on the follicular fluid collected from the dominant follicle just prior OPU, coinciding with T2, and at the end of five repeated OPU sessions (T3). Another objective was to assess in vitro the protective effects of green tea extracts on hepatic cells exposed to methanol insult. Different concentrations of GTE (0.5 μM and 1 μM) were tested on cultured hepatic cells and viability, morphology and SOD activity were assessed at 24, 48 and 72 h. Supplementation with GTE increased (P < 0.05) the number of total follicles (8.7 ± 0.5 vs 6.9 ± 0.5), the number and the percentage of Grade A + B cumulus-oocyte complexes (COCs) compared with the control (3.7 ± 0.4 vs 2.3 ± 0.3 and 57.5 ± 4.2 vs 40.4 ± 4.9 %, respectively). Oocyte developmental competence was improved in the GTE group as indicated by the higher (P < 0.05) percentages of Grade 1,2 blastocysts (44.8 vs 29.1 %). In the GTE group, plasma TAC was higher both at T1 and T2, while FRAP increased only at T2, with no differences in SOD and CAT. The TAC of follicular fluid was higher (P < 0.05) in the GTE compared to the control both at T2 and at T3 The in vitro experiment showed that co-treatment with methanol and 1 μM GTE increased (p < 0.01) cell viability at 24 h (P < 0.01), 48 h (P < 0.05) and 72 h (P < 0.01) compared with the methanol treatment co-treatment with 1 μM GTE prevented the decrease in SOD activity observed with methanol at 24 and 48 h of culture. In conclusion, the results of in vivo and in vitro experiments suggest that supplementation with GTE increases buffalo oocyte developmental competence, by improving oxidative status and liver function.
Collapse
Affiliation(s)
- M P Benitez Mora
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| | - M A Kosior
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| | - S Damiano
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| | - V Longobardi
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy.
| | - G A Presicce
- Agenzia Regionale per lo Sviluppo e l'Innovazione dell'Agricoltura del Lazio (ARSIAL), Via R. Lanciani 38, Rome, Italy
| | - G Di Vuolo
- National Reference Center of Water Buffalo Farming and Productions Hygiene and Technologies, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici, Italy
| | - G Pacelli
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy; Mangimi Liverini S.p.A, Via Nazionale Sannitica 60, 82037, Telese Terme, Italy
| | - G Campanile
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| | - B Gasparrini
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| |
Collapse
|
37
|
Beyaztas H, Ersoz C, Ozkan BN, Olgun I, Polat HS, Dastan AI, Cetinkaya E, Guler EM. The role of oxidative stress and inflammation biomarkers in pre- and postoperative monitoring of prostate cancer patients. Free Radic Res 2024; 58:98-106. [PMID: 38373238 DOI: 10.1080/10715762.2024.2320381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/29/2023] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Prostate Cancer (PC) is a global health concern affecting men worldwide. Oxidative stress is believed to contribute to the initiation of early-stage PC lesions. Additionally, inflammation has long been acknowledged as a factor in the development of PC. We aimed to examine the biomarkers of oxidative stress and inflammation in PC patients before and after surgery. PATIENTS AND METHODS A cross-sectional study was conducted at the Urology Outpatient Clinic of Bezmialem Vakif University Hospital. A total of 150 individuals were included in the study, divided into five groups: 50 Healthy controls, 25 patients with Benign Prostatic Hyperplasia (BPH), 25 patients with Low-Risk Prostate Cancer (LRPC), 25 patients with Medium-Risk Prostate Cancer (MRPC), and 25 patients with High-Risk Prostate Cancer (HRPC). Measurements of Total Oxidant Status (TOS), Total Antioxidant Status (TAS), Total Thiol (TT), and Native Thiol (NT) were performed using photometric methods. Oxidative Stress Index (OSI) and Disulfide (DIS) levels were calculated mathematically. Levels of Interleukin-10 (IL-10), Interleukin-1beta (IL-1β), Tumor Necrosis Factor-alpha (TNF-α), Interleukin-6 (IL-6), and Presepsin were determined using commercially available enzyme-linked immunosorbent assay (ELISA) kits. RESULTS Compared to the healthy control group, the results indicated a statistically significant increase in both oxidative stress and inflammation levels. In the groups receiving both pharmaceutical therapy and surgical treatment (PC), a significant decrease in oxidative stress and inflammation levels was observed. CONCLUSION Consequently, it is suggested that the assessment of oxidative stress and inflammatory biomarkers should be incorporated in the pre- and postoperative monitoring of patients with PC.
Collapse
Affiliation(s)
- Hakan Beyaztas
- Department of Medical Biochemistry, Hamidiye Faculty of Medicine, University of Health Sciences Turkey, Istanbul, Turkey
- Department of Medical Biochemistry, Hamidiye Institute of Health Sciences, University of Health Sciences Turkey, Istanbul, Türkiye
| | - Cevper Ersoz
- Department of Urology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Beyza Nur Ozkan
- Department of Medical Biochemistry, Hamidiye Faculty of Medicine, University of Health Sciences Turkey, Istanbul, Turkey
- Department of Medical Biochemistry, Hamidiye Institute of Health Sciences, University of Health Sciences Turkey, Istanbul, Türkiye
| | - Ibrahim Olgun
- Department of Urology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | | | - Ali Imran Dastan
- Department of Medical Biochemistry, Hamidiye Faculty of Medicine, University of Health Sciences Turkey, Istanbul, Turkey
- Department of Medical Biochemistry, Hamidiye Institute of Health Sciences, University of Health Sciences Turkey, Istanbul, Türkiye
| | - Emre Cetinkaya
- Clinical Biochemistry Routine Laboratory, Bezmialem Vakif University, Istanbul, Turkey
| | - Eray Metin Guler
- Department of Medical Biochemistry, Hamidiye Faculty of Medicine, University of Health Sciences Turkey, Istanbul, Turkey
- Department of Medical Biochemistry, Haydarpaşa Numune Health Application and Research Center, University of Health Sciences Turkey, Istanbul, Turkey
| |
Collapse
|
38
|
Li J, Yang C, Xiang K. Association between oxidative balance score and prostate specific antigen among older US adults. Front Public Health 2024; 11:1336657. [PMID: 38317687 PMCID: PMC10838971 DOI: 10.3389/fpubh.2023.1336657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/26/2023] [Indexed: 02/07/2024] Open
Abstract
Objective Oxidative Balance Score (OBS) is an index affecting the oxidative stress of dietary and lifestyle factors. We aimed to explore the association of OBS with prostate specific antigen (PSA) among older males. Methods A total of 5,136 samples were collected in this study to investigate the relationship between OBS and PSA from the National Health and Nutrition Examination Survey. Logistic regression models and restricted cubic spline were used to assess the associations between OBS and PSA. Results Compared with the Q1 group, the odds ratios for the association between OBS and PSA were 1.005 (1.003, 1.009), 1.003 (1.001, 1.006), and 1.001 (0.978, 1.022) for Q2, Q3, and Q4, respectively. In the age-specific analyses, the association was significant among individuals aged 65 years old and over: the odds ratios for the association between OBS and PSA were 1.019 (1.005, 1.028), 1.028 (1.018, 1.039), and 1.038 (1.022, 1.049) for Q2, Q3, and Q4, respectively. But it was not significant among individuals aged less than 65 years old: the odds ratios for the association between OBS and PSA were 1.016 (0.995, 1.026), 1.015 (0.985, 1.022), and 0.988 (0.978, 1.016) for Q2, Q3, and Q4, respectively. The restricted cubic splines also indicated a nonlinear relationship between OBS and PSA among individuals aged 65 years old and over (Poverall = 0.006, Pnonlinear = 0.021). Conclusion Our findings provide evidence that OBS is positively associated with higher levels of PSA among older adults. Further large-scale prospective cohort studies are needed to verify our findings.
Collapse
Affiliation(s)
| | | | - Kui Xiang
- The National Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| |
Collapse
|
39
|
Gavito-Covarrubias D, Ramírez-Díaz I, Guzmán-Linares J, Limón ID, Manuel-Sánchez DM, Molina-Herrera A, Coral-García MÁ, Anastasio E, Anaya-Hernández A, López-Salazar P, Juárez-Díaz G, Martínez-Juárez J, Torres-Jácome J, Albarado-Ibáñez A, Martínez-Laguna Y, Morán C, Rubio K. Epigenetic mechanisms of particulate matter exposure: air pollution and hazards on human health. Front Genet 2024; 14:1306600. [PMID: 38299096 PMCID: PMC10829887 DOI: 10.3389/fgene.2023.1306600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024] Open
Abstract
Environmental pollution nowadays has not only a direct correlation with human health changes but a direct social impact. Epidemiological studies have evidenced the increased damage to human health on a daily basis because of damage to the ecological niche. Rapid urban growth and industrialized societies importantly compromise air quality, which can be assessed by a notable accumulation of air pollutants in both the gas and the particle phases. Of them, particulate matter (PM) represents a highly complex mixture of organic and inorganic compounds of the most variable size, composition, and origin. PM being one of the most complex environmental pollutants, its accumulation also varies in a temporal and spatial manner, which challenges current analytical techniques used to investigate PM interactions. Nevertheless, the characterization of the chemical composition of PM is a reliable indicator of the composition of the atmosphere, the quality of breathed air in urbanized societies, industrial zones and consequently gives support for pertinent measures to avoid serious health damage. Epigenomic damage is one of the most promising biological mechanisms of air pollution-derived carcinogenesis. Therefore, this review aims to highlight the implication of PM exposure in diverse molecular mechanisms driving human diseases by altered epigenetic regulation. The presented findings in the context of pan-organic cancer, fibrosis, neurodegeneration and metabolic diseases may provide valuable insights into the toxicity effects of PM components at the epigenomic level and may serve as biomarkers of early detection for novel targeted therapies.
Collapse
Affiliation(s)
- Dulcemaría Gavito-Covarrubias
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
- Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Josué Guzmán-Linares
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Dulce María Manuel-Sánchez
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Estela Anastasio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Arely Anaya-Hernández
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Primavera López-Salazar
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gabriel Juárez-Díaz
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Javier Martínez-Juárez
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julián Torres-Jácome
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alondra Albarado-Ibáñez
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Carolina Morán
- Centro de Investigación en Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| |
Collapse
|
40
|
Xu Z, Lei X, Chu W, Weng L, Chen C, Ye R. Oxidative balance score was negatively associated with the risk of metabolic syndrome, metabolic syndrome severity, and all-cause mortality of patients with metabolic syndrome. Front Endocrinol (Lausanne) 2024; 14:1233145. [PMID: 38283746 PMCID: PMC10811064 DOI: 10.3389/fendo.2023.1233145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Background The oxidative balance score (OBS), an encompassing scoring mechanism for assessing oxidative stress, is formulated based on nutritional and lifestyle components. The emergence of metabolic syndrome (MetS) is intricately linked to oxidative stress. Nonetheless, the correlation between OBS and MetS displays variability within distinct cohorts. Objective We worked on the relationships between OBS and the risk of MetS, MetS severity, and all-cause mortality of MetS patients. Methods A total of 11,171 adult participants were collected from the U.S. National Health Examination Survey (NHANES) 2007-2018. Employing survey-weighted logistic models, we evaluated the relationship between OBS and MetS risk. Furthermore, survey-weighted linear models were utilized to investigate the connection between OBS and MetS severity. Among the participants, 3,621 individuals had their survival status recorded, allowing us to employ Cox proportional hazards regression models in order to ascertain the association between OBS and the all-cause mortality within the subset of individuals with MetS. The OBS (where a higher OBS signified an increased prevalence of anti- or pro-oxidant exposures) weighed the 20 factors, while the MetS severity score weighed the five factors. Results After multivariable adjustment, individuals with elevated OBS were found to exhibit a decreased susceptibility to MetS [odds ratio (OR) 0.95; 95% CI 0.94-0.96]. The adjusted OR was 0.42 (95% CI 0.33-0.53) for MetS risk in the fourth OBS quartile compared with those in the first OBS quartile (P for trend < 0.001). A one-unit increase in OBS was linked to a 3% reduction in MetS severity score by 3% (mean difference, -0.03; 95% CI, -0.04 to -0.03). Moreover, increased OBS correlated with decreased hazard of all-cause mortality risk among MetS subjects (adjusted hazard ratio, 0.95; 95% CI, 0.93-0.98). These associations retained their strength even subsequent to the introduction of sensitivity analyses. There existed a statistically significant negative correlation between diet/lifestyle OBS and both MetS risk as well as MetS severity. Conclusions An inverse correlation was observed between OBS and the susceptibility to MetS, MetS severity, and all-cause mortality of MetS patients. Health outcomes for MetS patients were positively related to antioxidant diets and lifestyles.
Collapse
Affiliation(s)
- Zhixiao Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiong Lei
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiwei Chu
- Department of Pulmonary and Critical Care Medicine, The Lu ‘an People’s Hospital of Anhui Province, The Lu ‘an Hospital Affiliated to Anhui Medical University, Lu ‘an, China
| | - Luoqi Weng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Ran Ye
- Department of Ultrasonography, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Butcko AJ, Putman AK, Mottillo EP. The Intersection of Genetic Factors, Aberrant Nutrient Metabolism and Oxidative Stress in the Progression of Cardiometabolic Disease. Antioxidants (Basel) 2024; 13:87. [PMID: 38247511 PMCID: PMC10812494 DOI: 10.3390/antiox13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiometabolic disease (CMD), which encompasses metabolic-associated fatty liver disease (MAFLD), chronic kidney disease (CKD) and cardiovascular disease (CVD), has been increasing considerably in the past 50 years. CMD is a complex disease that can be influenced by genetics and environmental factors such as diet. With the increased reliance on processed foods containing saturated fats, fructose and cholesterol, a mechanistic understanding of how these molecules cause metabolic disease is required. A major pathway by which excessive nutrients contribute to CMD is through oxidative stress. In this review, we discuss how oxidative stress can drive CMD and the role of aberrant nutrient metabolism and genetic risk factors and how they potentially interact to promote progression of MAFLD, CVD and CKD. This review will focus on genetic mutations that are known to alter nutrient metabolism. We discuss the major genetic risk factors for MAFLD, which include Patatin-like phospholipase domain-containing protein 3 (PNPLA3), Membrane Bound O-Acyltransferase Domain Containing 7 (MBOAT7) and Transmembrane 6 Superfamily Member 2 (TM6SF2). In addition, mutations that prevent nutrient uptake cause hypercholesterolemia that contributes to CVD. We also discuss the mechanisms by which MAFLD, CKD and CVD are mutually associated with one another. In addition, some of the genetic risk factors which are associated with MAFLD and CVD are also associated with CKD, while some genetic risk factors seem to dissociate one disease from the other. Through a better understanding of the causative effect of genetic mutations in CMD and how aberrant nutrient metabolism intersects with our genetics, novel therapies and precision approaches can be developed for treating CMD.
Collapse
Affiliation(s)
- Andrew J. Butcko
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Physiology, Wayne State University, 540 E. Canfield Street, Detroit, MI 48202, USA
| | - Ashley K. Putman
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI 48823, USA
| | - Emilio P. Mottillo
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Physiology, Wayne State University, 540 E. Canfield Street, Detroit, MI 48202, USA
| |
Collapse
|
42
|
Bahari H, Zeraattalab-Motlagh S, Hezaveh ZS, Namkhah Z, Golafrouz H, Taheri S, Sahebkar A. The Effects of Sumac Consumption on Inflammatory and Oxidative Stress Factors: A Systematic Review of Randomized Clinical Trials. Curr Pharm Des 2024; 30:2142-2151. [PMID: 38920072 DOI: 10.2174/0113816128305609240529114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Rhus coriaria L., commonly known as Sumac, is a plant from the Anacardiaceae family that is known for its high phytochemical content. These phytochemicals have the potential to effectively manage inflammation and oxidative stress. To explore the existing evidence on the impact of Sumac consumption on inflammation and oxidative stress, we conducted a systematic review of randomized controlled trials. METHODS We conducted a comprehensive search of Medline/PubMed, Scopus, and Web of Science from inception to August 2023 to identify relevant studies examining the effects of Sumac on biomarkers of inflammation and oxidative stress. The selected studies were assessed for risk of bias using the Cochrane tool. RESULTS A total of seven trials were included in this review. Among these trials, three focused on diabetes patients, while the remaining four involved individuals with fatty liver, overweight individuals with depression, and those with polycystic ovary or metabolic syndrome. Five studies reported the effects of Sumac on oxidative stress, with four of them demonstrating a significant reduction in malondialdehyde (MDA) levels and an increase in total antioxidant capacity (TAC) and paraoxonase 1 (PON1). Regarding inflammation, one study reported no significant difference in tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels between the intervention and control groups. The results for high-sensitivity C-reactive protein levels, reported in five trials, were inconsistent. CONCLUSION Sumac consumption over time may positively affect oxidative stress, although short-term use shows minimal impact. While one study found no significant effect on IL-6 and TNF-α, hs-CRP levels could decrease or remain unchanged. Further meta-analyses are needed to fully understand Sumac's potential benefits in managing metabolic diseases.
Collapse
Affiliation(s)
- Hossein Bahari
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sheida Zeraattalab-Motlagh
- Department of Health & Human Performance, University of Houston, Houston, TX 77004, USA
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Sajadi Hezaveh
- Department of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Zahra Namkhah
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haniyeh Golafrouz
- Department of Medical Sciences and Technologies, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Taheri
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Metyas C, Aung TT, Cheung J, Joseph M, Ballester AM, Metyas S. Diet and Lifestyle Modifications for Fibromyalgia. Curr Rheumatol Rev 2024; 20:405-413. [PMID: 38279728 PMCID: PMC11107431 DOI: 10.2174/0115733971274700231226075717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 01/28/2024]
Abstract
Fibromyalgia (FM) is a complex, widespread pain disorder characterized by symptoms such as fatigue, sleep deprivation, mental fog, mood swings, and headaches. Currently, there are only three FDA-approved medications for FM patients: duloxetine, milnacipran, and pregabalin, with outcomes frequently being inadequate. This research team aims to investigate the effects of diet and lifestyle modifications on FM, with emphasis on anti-inflammatory diet, antioxidants, and gluten-free diets, as well as supplementation with Magnesium, CQ10, and Vitamin D, microbiome, sleep, exercise, and cognitive behavioral therapy. We reviewed the pathophysiology of certain foods that can be proinflammatory with the release of cytokines leading to activation of pain, fatigue and aggravation of the majority of Fibromyalgia symptoms. A literature review was performed by identifying FM articles published between 1994 and 2022 via PubMed and EMBASE databases, with particular emphasis on randomized controlled trials, meta-analysis, and evidence-based treatment guidelines. This review article was completed by a comprehensive narrative review process, in which our team systematically examined relevant scientific literature to provide a comprehensive overview of the significant role that diet and other lifestyle modifications play in mediating symptoms of Fibromyalgia. We propose that diet modifications and lifestyle changes, such as sleep, exercise, and weight loss, can be important steps in managing FM.
Collapse
Affiliation(s)
- Caroline Metyas
- Department of Rheumatology, Covina Arthritis Clinic, 500 West San Bernadino Rd, Suite A, United States
| | - Tun Tun Aung
- Department of Rheumatology, Covina Arthritis Clinic, 500 West San Bernadino Rd, Suite A, United States
| | - Jennifer Cheung
- Department of Rheumatology, Covina Arthritis Clinic, 500 West San Bernadino Rd, Suite A, United States
| | - Marina Joseph
- Department of Rheumatology, Covina Arthritis Clinic, 500 West San Bernadino Rd, Suite A, United States
| | - Andrew M Ballester
- Department of Rheumatology, Covina Arthritis Clinic, 500 West San Bernadino Rd, Suite A, United States
| | - Samy Metyas
- Department of Rheumatology, Covina Arthritis Clinic, 500 West San Bernadino Rd, Suite A, United States
| |
Collapse
|
44
|
van den Boom R, Vergauwen L, Koedijk N, da Silva KM, Covaci A, Knapen D. Combined western diet and bisphenol A exposure induces an oxidative stress-based paraoxonase 1 response in larval zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109758. [PMID: 37757927 DOI: 10.1016/j.cbpc.2023.109758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Paraoxonase 1 (PON1) is an antioxidant enzyme linked to metabolic disorders by genome-wide association studies in humans. Exposure to metabolic disrupting chemicals (MDCs) such as bisphenol A (BPA), together with genetic and dietary factors, can increase the risk of metabolic disorders. The objective of this study was to investigate how PON1 responds to the metabolic changes and oxidative stress caused by a western diet, and whether exposure to BPA alters the metabolic and PON1 responses. Zebrafish larvae at 14 days post fertilization were fed a custom-made western diet with and without aquatic exposure to two concentrations of BPA for 5 days. A combination of western diet and 150 μg/L BPA exposure resulted in a stepwise increase in weight, length and oxidative stress, suggesting that BPA amplifies the western diet-induced metabolic shift. PON1 arylesterase activity was increased in all western diet and BPA exposure groups and PON1 lactonase activity was increased when western diet was combined with exposure to 1800 μg/L BPA. Both PON1 activities were positively correlated to oxidative stress. Based on our observations we hypothesize that a western diet caused a shift towards fatty acid-based metabolism, which was increased by BPA exposure. This shift resulted in increased oxidative stress, which in turn was associated with a PON1 activity increase as an antioxidant response. This is the first exploration of PON1 responses to metabolic challenges in zebrafish, and the first study of PON1 in the context of MDC exposure in vertebrates.
Collapse
Affiliation(s)
- Rik van den Boom
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Noortje Koedijk
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Katyeny Manuela da Silva
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium.
| |
Collapse
|
45
|
Roosta HR, Samadi A, Bikdeloo M. Different cultivation systems and foliar application of calcium nanoparticles affect the growth and physiological characteristics of pennyroyal (Mentha pulegium L.). Sci Rep 2023; 13:20334. [PMID: 37989836 PMCID: PMC10663606 DOI: 10.1038/s41598-023-47855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023] Open
Abstract
The aim of this study was to investigate the impact of different cultivation systems (soil cultivation, hydroponic cultivation in greenhouse conditions, and hydroponic vertical cultivation in plant factory under different LED lights) and foliar spraying of nano calcium carbonate on pennyroyal plants. Nano calcium carbonate was applied to the plants at a 7-day interval, three times, one month after planting. Results showed that the greenhouse cultivation system with calcium carbonate foliar spraying produced the highest amount of shoot and root fresh mass in plants. Additionally, foliar spraying of calcium carbonate increased internode length and leaf area in various cultivation systems. Comparing the effects of different light spectrums revealed that red light increased internode length while decreasing leaf length, leaf area, and plant carotenoids. Blue light, on the other hand, increased the leaf area and root length of the plants. The hydroponic greenhouse cultivation system produced plants with the highest levels of chlorophyll, carotenoids, and phenolic compounds. White light-treated plants had less iron and calcium than those exposed to other light spectrums. In conclusion, pennyroyal plants grown in greenhouses or fields had better growth than those grown in plant factories under different light spectrums. Furthermore, the calcium foliar application improved the physiological and biochemical properties of the plants in all the studied systems.
Collapse
Affiliation(s)
- Hamid Reza Roosta
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Arman Samadi
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Mahdi Bikdeloo
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| |
Collapse
|
46
|
Mirzaei R, Khosrokhavar R, Arbabi Bidgoli S. The Role of High-Fructose Diet in Liver Function of Rodent Models: A Systematic Review of Molecular Analysis. IRANIAN BIOMEDICAL JOURNAL 2023; 27:326-39. [PMID: 38193285 PMCID: PMC10826909 DOI: 10.52547/ibj.3965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/26/2023] [Indexed: 01/10/2024]
Abstract
The present systematic review of animal studies on long-term fructose intake in rodents revealed a significant decrease in the activities of antioxidant enzymes due to a fructose-rich diet. The reduced activity of these enzymes led to an increase in oxidative stress, which can cause liver damage in rodents. Of eight studies analyzed, 5 (62.5%) and 1 (12.5%) used male and female rats, respectively, while 2 studies (25%) used female mice. Moreover, half of the studies used HFCS, but the other half employed fructose in the diet. Hence, it is essential to monitor dietary habits to ensure public health and nutrition research outcomes.
Collapse
Affiliation(s)
- Roya Mirzaei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Roya Khosrokhavar
- Food and Drug Laboratory Research Center, Food and Drug Administration, MOH&ME, Tehran, Iran
| | - Sepideh Arbabi Bidgoli
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
47
|
Ciarmela P, Greco S. Impact of Nutrition on Female Reproductive Disorders. Nutrients 2023; 15:4576. [PMID: 37960228 PMCID: PMC10650105 DOI: 10.3390/nu15214576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023] Open
Abstract
The female reproductive system is a delicate and complex system in the body that can be affected by many disorders [...].
Collapse
Affiliation(s)
- Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | |
Collapse
|
48
|
García-Montero C, Fraile-Martinez O, De Leon-Oliva D, Boaru DL, Garcia-Puente LM, De León-Luis JA, Bravo C, Diaz-Pedrero R, Lopez-Gonzalez L, Álvarez-Mon M, García-Honduvilla N, Saez MA, Ortega MA. Exploring the Role of Mediterranean and Westernized Diets and Their Main Nutrients in the Modulation of Oxidative Stress in the Placenta: A Narrative Review. Antioxidants (Basel) 2023; 12:1918. [PMID: 38001771 PMCID: PMC10669105 DOI: 10.3390/antiox12111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is a major cellular event that occurs in the placenta, fulfilling critical physiological roles in non-pathological pregnancies. However, exacerbated oxidative stress is a pivotal feature of different obstetric complications, like pre-eclampsia, fetal growth restriction, and other diseases. Compelling evidence supports the relevant role of diet during pregnancy, with pleiotropic consequences for maternal well-being. The present review aims to examine the complex background between oxidative stress and placental development and function in physiological conditions, also intending to understand the relationship between different dietary patterns and the human placenta, particularly how this could influence oxidative stress processes. The effects of Westernized diets (WDs) and high-fat diets (HFDs) rich in ultra-processed foods and different additives are compared with healthy patterns such as a Mediterranean diet (MedDiet) abundant in omega 3 polyunsaturated fatty acids, monounsaturated fatty acids, polyphenols, dietary fiber, and vitamins. Although multiple studies have focused on the role of specific nutrients, mostly in animal models and in vitro, further observational and intervention studies focusing on the placental structure and function in women with different dietary patterns should be conducted to understand the precise influence of diet on this organ.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Luis M. Garcia-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcalá de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| |
Collapse
|
49
|
Gorini F, Tonacci A. Tumor Microbial Communities and Thyroid Cancer Development-The Protective Role of Antioxidant Nutrients: Application Strategies and Future Directions. Antioxidants (Basel) 2023; 12:1898. [PMID: 37891977 PMCID: PMC10604861 DOI: 10.3390/antiox12101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Thyroid cancer (TC), the most frequent malignancy of the endocrine system, has recorded an increasing incidence in the last decades. The etiology of TC remains at least partly unknown and, among modifiable risk factors, the gut microbiota and dietary nutrients (vitamins, essential microelements, polyphenols, probiotics) have been recognized to not only influence thyroid function, but exert critical effects on TC development and progression. Recent discoveries on the existence of tumor microbiota also in the TC microenvironment provide further evidence for the essential role of tumor microorganisms in TC etiology and severity, as well as acting as prognostic markers and as a potential target of adjuvant care in the treatment of TC patients. Therefore, in this review, we summarize current knowledge on the relationship of the tumor microbiome with the clinical tumor characteristics and TC progression, also illustrating the molecular mechanisms underlying this association, and how antioxidant nutrients may be used as a novel strategy to both control gut health and reduce the risk for TC. Furthermore, we discuss how new technologies might be exploited for the development of new foods with high nutritional values, antioxidant capability, and even attractiveness to the individual in terms of sensory and emotional features.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
50
|
Chaudhary MR, Chaudhary S, Sharma Y, Singh TA, Mishra AK, Sharma S, Mehdi MM. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023; 24:609-662. [PMID: 37516673 DOI: 10.1007/s10522-023-10050-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Aging accompanied by several age-related complications, is a multifaceted inevitable biological progression involving various genetic, environmental, and lifestyle factors. The major factor in this process is oxidative stress, caused by an abundance of reactive oxygen species (ROS) generated in the mitochondria and endoplasmic reticulum (ER). ROS and RNS pose a threat by disrupting signaling mechanisms and causing oxidative damage to cellular components. This oxidative stress affects both the ER and mitochondria, causing proteopathies (abnormal protein aggregation), initiation of unfolded protein response, mitochondrial dysfunction, abnormal cellular senescence, ultimately leading to inflammaging (chronic inflammation associated with aging) and, in rare cases, metastasis. RONS during oxidative stress dysregulate multiple metabolic pathways like NF-κB, MAPK, Nrf-2/Keap-1/ARE and PI3K/Akt which may lead to inappropriate cell death through apoptosis and necrosis. Inflammaging contributes to the development of inflammatory and degenerative diseases such as neurodegenerative diseases, diabetes, cardiovascular disease, chronic kidney disease, and retinopathy. The body's antioxidant systems, sirtuins, autophagy, apoptosis, and biogenesis play a role in maintaining homeostasis, but they have limitations and cannot achieve an ideal state of balance. Certain interventions, such as calorie restriction, intermittent fasting, dietary habits, and regular exercise, have shown beneficial effects in counteracting the aging process. In addition, interventions like senotherapy (targeting senescent cells) and sirtuin-activating compounds (STACs) enhance autophagy and apoptosis for efficient removal of damaged oxidative products and organelles. Further, STACs enhance biogenesis for the regeneration of required organelles to maintain homeostasis. This review article explores the various aspects of oxidative damage, the associated complications, and potential strategies to mitigate these effects.
Collapse
Affiliation(s)
- Mani Raj Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yogita Sharma
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Thokchom Arjun Singh
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shweta Sharma
- Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|