1
|
Pawar K, Gupta PP, Solanki PS, Niraj RRK, Kothari SL. Downregulation of solute carrier family 4 members 4 as a biomarker for colorectal cancer. Discov Oncol 2025; 16:229. [PMID: 39988623 PMCID: PMC11847767 DOI: 10.1007/s12672-025-01948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Colorectal cancer (CRC) is one of the major cancer types associated with increased mortality worldwide. Hence, identifying reliable biomarkers make it very essential for early diagnosis and prognosis of CRC. Numerous studies have been conducted to decipher molecular mechanisms underlying CRC, however more deep insightful knowledge is the need of the hour. The purpose of this study was to identify promising key candidate genes in colorectal cancer (CRC) and assess their expression and clinical significance. To clarify and verify promising key biomarkers with signal transduction pathways in colorectal cancer, we integrated 11 microarray datasets from NCBI-GEO. This study utilized multiple bioinformatics tools and databases, including OncoDB, GEO2R, UALCAN, GEIPA, TIMER, and DAVID. The gene expression profiles of eleven datasets (GSE10714, GSE113513, GSE13471, GSE15960, GSE24514, GSE32323, GSE41258, GSE4183, GSE44076, GSE44861, GSE9348) were screened. In 11 gene expression profiles, 3 downregulated genes were identified and validated by databases such as OncoDB, UALCAN, GEIPA and TIMER. Downregulation of SLC4A4 with significant predictive value was validated by multi-omic data analysis and validated by Gene Expression Omnibus (GEO). GEIPA survival analysis showed that low SLC4A4 expression correlated with poorer overall survival among CRC patients. Based on this study, we identified SLC4A4 as a potential candidate biomarker for colorectal cancer (CRC), enabling early diagnosis and prognosis with molecular targeted therapy.
Collapse
Affiliation(s)
- Krunal Pawar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Pramodkumar P Gupta
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to Be University, Navi-Mumbai, Maharashtra, 400614, India
| | - Pooran Singh Solanki
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Off Campus Jaipur, Jaipur, India, Rajasthan, 302001
| | - Ravi Ranjan Kumar Niraj
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Shanker Lal Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India.
| |
Collapse
|
2
|
Daly AC, Cambuli F, Äijö T, Lötstedt B, Marjanovic N, Kuksenko O, Smith-Erb M, Fernandez S, Domovic D, Van Wittenberghe N, Drokhlyansky E, Griffin GK, Phatnani H, Bonneau R, Regev A, Vickovic S. Tissue and cellular spatiotemporal dynamics in colon aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590125. [PMID: 38712088 PMCID: PMC11071407 DOI: 10.1101/2024.04.22.590125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tissue structure and molecular circuitry in the colon can be profoundly impacted by systemic age-related effects, but many of the underlying molecular cues remain unclear. Here, we built a cellular and spatial atlas of the colon across three anatomical regions and 11 age groups, encompassing ~1,500 mouse gut tissues profiled by spatial transcriptomics and ~400,000 single nucleus RNA-seq profiles. We developed a new computational framework, cSplotch, which learns a hierarchical Bayesian model of spatially resolved cellular expression associated with age, tissue region, and sex, by leveraging histological features to share information across tissue samples and data modalities. Using this model, we identified cellular and molecular gradients along the adult colonic tract and across the main crypt axis, and multicellular programs associated with aging in the large intestine. Our multi-modal framework for the investigation of cell and tissue organization can aid in the understanding of cellular roles in tissue-level pathology.
Collapse
Affiliation(s)
- Aidan C. Daly
- New York Genome Center, New York, NY, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | | | - Tarmo Äijö
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Britta Lötstedt
- New York Genome Center, New York, NY, USA
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Nemanja Marjanovic
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olena Kuksenko
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | | | - Eugene Drokhlyansky
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabriel K Griffin
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- Center for Data Science, New York University, New York, NY, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Engineering and Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Hashimoto Y, Tokumoto Y, Watanabe T, Ogi Y, Sugishita H, Akita S, Niida K, Hayashi M, Okada M, Shiraishi K, Tange K, Tomida H, Yamamoto Y, Takeshita E, Ikeda Y, Oshikiri T, Hiasa Y. C16, a PKR inhibitor, suppresses cell proliferation by regulating the cell cycle via p21 in colorectal cancer. Sci Rep 2024; 14:9029. [PMID: 38641657 PMCID: PMC11031597 DOI: 10.1038/s41598-024-59671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
Double-stranded RNA-activated protein kinase R (PKR) is highly expressed in colorectal cancer (CRC). However, the role of PKR in CRC remains unclear. The aim of this study was to clarify whether C16 (a PKR inhibitor) exhibits antitumor effects and to identify its target pathway in CRC. We evaluated the effects of C16 on CRC cell lines using the MTS assay. Enrichment analysis was performed to identify the target pathway of C16. The cell cycle was analyzed using flow cytometry. Finally, we used immunohistochemistry to examine human CRC specimens. C16 suppressed the proliferation of CRC cells. Gene Ontology (GO) analysis revealed that the cell cycle-related GO category was substantially enriched in CRC cells treated with C16. C16 treatment resulted in G1 arrest and increased p21 protein and mRNA expression. Moreover, p21 expression was associated with CRC development as observed using immunohistochemical analysis of human CRC tissues. C16 upregulates p21 expression in CRC cells to regulate cell cycle and suppress tumor growth. Thus, PKR inhibitors may serve as a new treatment option for patients with CRC.
Collapse
Affiliation(s)
- Yu Hashimoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yusuke Ogi
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Hiroki Sugishita
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Satoshi Akita
- Department of Minimally Invasive Gastroenterology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kazuki Niida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mirai Hayashi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Masaya Okada
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kana Shiraishi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kazuhiro Tange
- Department of Inflammatory Bowel Diseases and Therapeutics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hideomi Tomida
- Endoscopy Center, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yasunori Yamamoto
- Endoscopy Center, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Eiji Takeshita
- Department of Inflammatory Bowel Diseases and Therapeutics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshio Ikeda
- Endoscopy Center, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Taro Oshikiri
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
4
|
Ooi LC, Ho V, Zhu JZ, Lim S, Chung L, Abubakar A, Rutland T, Chua W, Ng W, Lee M, Morgan M, MacKenzie S, Lee CS. p21 as a Predictor and Prognostic Indicator of Clinical Outcome in Rectal Cancer Patients. Int J Mol Sci 2024; 25:725. [PMID: 38255799 PMCID: PMC10815780 DOI: 10.3390/ijms25020725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The cell cycle plays a key and complex role in the development of human cancers. p21 is a potent cyclin-dependent kinase inhibitor (CDKI) involved in the promotion of cell cycle arrest and the regulation of cellular senescence. Altered p21 expression in rectal cancer cells may affect tumor cells' behavior and resistance to neoadjuvant and adjuvant therapy. Our study aimed to ascertain the relationship between the differential expression of p21 in rectal cancer and patient survival outcomes. Using tissue microarrays, 266 rectal cancer specimens were immunohistochemically stained for p21. The expression patterns were scored separately in cancer cells retrieved from the center and the periphery of the tumor; compared with clinicopathological data, tumor regression grade (TRG), disease-free, and overall survival. Negative p21 expression in tumor periphery cells was significantly associated with longer overall survival upon the univariate (p = 0.001) and multivariable analysis (p = 0.003, HR = 2.068). Negative p21 expression in tumor periphery cells was also associated with longer disease-free survival in the multivariable analysis (p = 0.040, HR = 1.769). Longer overall survival times also correlated with lower tumor grades (p= 0.011), the absence of vascular and perineural invasion (p = 0.001; p < 0.005), the absence of metastases (p < 0.005), and adjuvant treatment (p = 0.009). p21 expression is a potential predictive and prognostic biomarker for clinical outcomes in rectal cancer patients. Negative p21 expression in tumor periphery cells demonstrated significant association with longer overall survival and disease-free survival. Larger prospective studies are warranted to investigate the ability of p21 to identify rectal cancer patients who will benefit from neoadjuvant and adjuvant therapy.
Collapse
Affiliation(s)
- Li Ching Ooi
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia; (L.C.O.); (J.Z.Z.); (T.R.); (C.S.L.)
| | - Vincent Ho
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia; (L.C.); (A.A.); (W.C.); (S.M.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
| | - Jing Zhou Zhu
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia; (L.C.O.); (J.Z.Z.); (T.R.); (C.S.L.)
| | - Stephanie Lim
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
- Macarthur Cancer Therapy Centre, Campbelltown Hospital, Campbelltown, NSW 2560, Australia
- Discipline of Medical Oncology, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Liping Chung
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia; (L.C.); (A.A.); (W.C.); (S.M.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
| | - Askar Abubakar
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia; (L.C.); (A.A.); (W.C.); (S.M.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
| | - Tristan Rutland
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia; (L.C.O.); (J.Z.Z.); (T.R.); (C.S.L.)
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia; (L.C.); (A.A.); (W.C.); (S.M.)
- Discipline of Pathology, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Wei Chua
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia; (L.C.); (A.A.); (W.C.); (S.M.)
- Discipline of Medical Oncology, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Weng Ng
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Mark Lee
- Department of Radiation Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Matthew Morgan
- Department of Colorectal Surgery, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Scott MacKenzie
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia; (L.C.); (A.A.); (W.C.); (S.M.)
- Department of Colorectal Surgery, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Cheok Soon Lee
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia; (L.C.O.); (J.Z.Z.); (T.R.); (C.S.L.)
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia; (L.C.); (A.A.); (W.C.); (S.M.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
- Discipline of Pathology, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
5
|
Marzhoseyni Z, Shaghaghi Z, Alvandi M, Shirvani M. Investigating the Influence of Gut Microbiota-related Metabolites in Gastrointestinal Cancer. Curr Cancer Drug Targets 2024; 24:612-628. [PMID: 38213140 DOI: 10.2174/0115680096274860231111210214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 01/13/2024]
Abstract
Gastrointestinal (GI) cancer is a major health concern due to its prevalence, impact on well-being, high mortality rate, economic burden, and potential for prevention and early detection. GI cancer research has made remarkable strides in understanding biology, risk factors, and treatment options. An emerging area of research is the gut microbiome's role in GI cancer development and treatment response. The gut microbiome, vital for digestion, metabolism, and immune function, is increasingly linked to GI cancers. Dysbiosis and alterations in gut microbe composition may contribute to cancer development. Scientists study how specific bacteria or microbial metabolites influence cancer progression and treatment response. Modulating the gut microbiota shows promise in enhancing treatment efficacy and preventing GI cancers. Gut microbiota dysbiosis can impact GI cancer through inflammation, metabolite production, genotoxicity, and immune modulation. Microbes produce metabolites like short-chain fatty acids, bile acids, and secondary metabolites. These affect host cells, influencing processes like cell proliferation, apoptosis, DNA damage, and immune regulation, all implicated in cancer development. This review explores the latest research on gut microbiota metabolites and their molecular mechanisms in GI cancers. The hope is that this attempt will help in conducting other relevant research to unravel the precise mechanism involved, identify microbial signatures associated with GI cancer, and develop targets.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Iran, Sari, Iran
| | - Zahra Shaghaghi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Alvandi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maria Shirvani
- Infectious Disease Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Wu N, Chen Y, Li G. Association of High Body Mass Index in Early Life With the Development of Colorectal Cancer. Cancer Control 2024; 31:10732748241270582. [PMID: 39109953 PMCID: PMC11307362 DOI: 10.1177/10732748241270582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
SIGNIFICANCE This study on the relationship between early life high BMI and the development of CRC reveals the role of high BMI during childhood and adolescence in the occurrence and progression of CRC. It suggests the importance of restoring normal weight or reducing weight in individuals with high BMI early in life for the prevention of colorectal cancer.
Collapse
Affiliation(s)
- Nian Wu
- School of Clinical Medicine, Guizhou Medical University, Guizhou, China
| | - Yangyang Chen
- School of Clinical Medicine, Guizhou Medical University, Guizhou, China
| | - Guosheng Li
- Department of anorectal surgery, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| |
Collapse
|
7
|
Park SS, Lee YK, Park SH, Lim SB, Choi YW, Shin JS, Kim YH, Kim JH, Park TJ. p15 INK4B is an alternative marker of senescent tumor cells in colorectal cancer. Heliyon 2023; 9:e13170. [PMID: 36785830 PMCID: PMC9918768 DOI: 10.1016/j.heliyon.2023.e13170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Senescent tumor cells are nonproliferating tumor cells which are closely related to cancer progression by secreting senescence-related molecules, called senescence-associated secreting phenotypes. Therefore, the presence of senescent tumor cells is considered a prognostic factor in various cancer types. Although senescence-associated β-galactosidase staining is considered the best marker for detection of senescent tumor cells, it can only be performed in fresh-frozen tissues. p16INK4A, a cyclin-dependent inhibitor, has been used as an alternative marker to detect senescent tumor cells in formalin-fixed paraffin-embedded tissues. However, other reliable markers to detect senescent tumor cells is still lacking. In the present study, using public single-cell RNA-sequencing data, we found that p15INK4B, a cyclin-dependent kinase inhibitor, is a novel marker for detection of senescent tumor cells. Moreover, p15INK4B expression was positively correlated with that of p16INK4A in colorectal cancer tissues. In in vitro studies, mRNA expression of p15INK4B was increased together with that of p16INK4A in H2O2- and therapy-induced cancer senescence models. However, the mRNA level of p15INK4B did not increase in the oncogene-induced senescence model in primary colonic epithelial cells. In conclusion, p15INK4B is a potential alternative marker for detection of senescent tumor cells together with conventional markers in advanced stages of colorectal cancer.
Collapse
Key Words
- CDK, cyclin dependent kinase
- CRC, colorectal cancer
- Cellular senescence
- Colorectal cancer
- FBS, fetal bovine serum
- FFPE, formalin-fixed paraffin-embedded
- GSEA, gene set enrichent analysis
- H3K9me3, histone H3 lysine 9 trimethylation
- IHC, immunohistochemistry
- SA-β-Gal, senescence-associated β-galactosidase
- STC, senescent tumor cell
- Senescence marker
- Senescent tumor cells
- p15INK4B
- p16INK4A
- scRNA-seq, single cell RNA sequencing
Collapse
Affiliation(s)
- Soon Sang Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - Young-Kyoung Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - So Hyun Park
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Department of Pathology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - Yong Won Choi
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Department of Hematology and Oncology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Jun Sang Shin
- Department of Surgery, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Young Hwa Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - Jang-Hee Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Department of Pathology, Ajou University School of Medicine, Suwon, 16499, South Korea,Corresponding author. Department of Pathology, Ajou University School of Medicine, Suwon, 16499 South Korea.
| | - Tae Jun Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Corresponding author. Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499 South Korea.
| |
Collapse
|
8
|
The role of DNA methylation in progression of neurological disorders and neurodegenerative diseases as well as the prospect of using DNA methylation inhibitors as therapeutic agents for such disorders. IBRO Neurosci Rep 2022; 14:28-37. [PMID: 36590248 PMCID: PMC9794904 DOI: 10.1016/j.ibneur.2022.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide studies related to neurological disorders and neurodegenerative diseases have pointed to the role of epigenetic changes such as DNA methylation, histone modification, and noncoding RNAs. DNA methylation machinery controls the dynamic regulation of methylation patterns in discrete brain regions. Objective This review aims to describe the role of DNA methylation in inhibiting and progressing neurological and neurodegenerative disorders and therapeutic approaches. Methods A Systematic search of PubMed, Web of Science, and Cochrane Library was conducted for all qualified studies from 2000 to 2022. Results For the current need of time, we have focused on the DNA methylation role in neurological and neurodegenerative diseases and the expression of genes involved in neurodegeneration such as Alzheimer's, Depression, and Rett Syndrome. Finally, it appears that the various epigenetic changes do not occur separately and that DNA methylation and histone modification changes occur side by side and affect each other. We focused on the role of modification of DNA methylation in several genes associated with depression (NR3C1, NR3C2, CRHR1, SLC6A4, BDNF, and FKBP5), Rett syndrome (MECP2), Alzheimer's, depression (APP, BACE1, BIN1 or ANK1) and Parkinson's disease (SNCA), as well as the co-occurring modifications to histones and expression of non-coding RNAs. Understanding these epigenetic changes and their interactions will lead to better treatment strategies. Conclusion This review captures the state of understanding of the epigenetics of neurological and neurodegenerative diseases. With new epigenetic mechanisms and targets undoubtedly on the horizon, pharmacological modulation and regulation of epigenetic processes in the brain holds great promise for therapy.
Collapse
|
9
|
Bottom-Up Approach to the Discovery of Clinically Relevant Biomarker Genes: The Case of Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14112654. [PMID: 35681633 PMCID: PMC9179423 DOI: 10.3390/cancers14112654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/07/2022] Open
Abstract
Traditional approaches to genome-wide marker discovery often follow a common top-down strategy, where a large scale ‘omics’ investigation is followed by the analysis of functional pathways involved, to narrow down the list of identified putative biomarkers, and to deconvolute gene expression networks, or to obtain an insight into genetic alterations observed in cancer. We set out to investigate whether a reverse approach would allow full or partial reconstruction of the transcriptional programs and biological pathways specific to a given cancer and whether the full or substantially expanded list of putative markers could thus be identified by starting with the partial knowledge of a few disease-specific markers. To this end, we used 10 well-documented differentially expressed markers of colorectal cancer (CRC), analyzed their transcription factor networks and biological pathways, and predicted the existence of 193 new putative markers. Incredibly, the use of a validation marker set of 10 other completely different known CRC markers and the same procedure resulted in a very similar set of 143 predicted markers. Of these, 138 were identical to those found using the training set, confirming our main hypothesis that a much-expanded set of disease markers can be predicted by starting with just a small subset of validated markers. Further to this, we validated the expression of 42 out of 138 top-ranked predicted markers experimentally using qPCR in surgically removed CRC tissues. We showed that 41 out of 42 mRNAs tested have significantly altered levels of mRNA expression in surgically excised CRC tissues. Of the markers tested, 36 have been reported to be associated with aspects of CRC in the past, whilst only limited published evidence exists for another three genes (BCL2, PDGFRB and TSC2), and no published evidence directly linking genes to CRC was found for CCNA1, SHC1 and TGFB3. Whilst we used CRC to test and validate our marker discovery strategy, the reported procedures apply more generally to cancer marker discovery.
Collapse
|
10
|
Nomiri S, Hoshyar R, Chamani E, Rezaei Z, Salmani F, Larki P, Tavakoli T, Gholipour F, Tabrizi NJ, Derakhshani A, Santarpia M, Franchina T, Brunetti O, Silvestris N, Safarpour H. Prediction and validation of GUCA2B as the hub-gene in colorectal cancer based on co-expression network analysis: In-silico and in-vivo study. Biomed Pharmacother 2022; 147:112691. [PMID: 35151227 DOI: 10.1016/j.biopha.2022.112691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several serious attempts to treat colorectal cancer have been made in recent decades. However, no effective treatment has yet been discovered due to the complexities of its etiology. METHODS we used Weighted Gene Co-expression Network Analysis (WGCNA) to identify key modules, hub-genes, and mRNA-miRNA regulatory networks associated with CRC. Next, enrichment analysis of modules has been performed using Cluepedia. Next, quantitative real-time PCR (RT-qPCR) was used to validate the expression of selected hub-genes in CRC tissues. RESULTS Based on the WGCNA results, the brown module had a significant positive correlation (r = 0.98, p-value=9e-07) with CRC. Using the survival and DEGs analyses, 22 genes were identified as hub-genes. Next, three candidate hub-genes were selected for RT-qPCR validation, and 22 pairs of cancerous and non-cancerous tissues were collected from CRC patients referred to the Gastroenterology and Liver Clinic. The RT-qPCR results revealed that the expression of GUCA2B was significantly reduced in CRC tissues, which is consistent with the results of differential expression analysis. Finally, top miRNAs correlated with GUCA2B were identified, and ROC analyses revealed that GUCA2B has a high diagnostic performance for CRC. CONCLUSIONS The current study discovered key modules and GUCA2B as a hub-gene associated with CRC, providing references to understand the pathogenesis and be considered a novel candidate to CRC target therapy.
Collapse
Affiliation(s)
- Samira Nomiri
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Reyhane Hoshyar
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Elham Chamani
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Department of Biology, Faculty of Sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Fatemeh Salmani
- Department of Epidemiology and Biostatistics, Social Determinants of Health Research Center, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Pegah Larki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahmine Tavakoli
- Cardiovascular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faranak Gholipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Tindara Franchina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, Bari, Italy.
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
11
|
Xie G, Peng Z, Liang J, Larabee SM, Drachenberg CB, Yfantis H, Raufman JP. Zinc finger protein 277 is an intestinal transit-amplifying cell marker and colon cancer oncogene. JCI Insight 2022; 7:150894. [PMID: 35015732 PMCID: PMC8876557 DOI: 10.1172/jci.insight.150894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/05/2022] [Indexed: 01/10/2023] Open
Abstract
Sustained proliferative signaling and resisting cell death are hallmarks of cancer. Zinc finger protein 277 (ZNF277; murine Zfp277), a transcription factor regulating cellular senescence, is overexpressed in colon cancer, but its actions in intestinal homeostasis and neoplasia are unclear. Using human and murine intestine, human colon cancer cells, and ApcMin/+ mice with dysregulated β-catenin signaling and exuberant intestinal neoplasia, we explored the actions of ZNF277/Zfp277 and defined the underlying mechanisms. In normal human and murine intestine, ZNF277/Zfp277 was expressed uniquely in early stem cell progenitors, undifferentiated transit-amplifying cells (TACs). Zfp277 was overexpressed in the ApcMin/+ mouse colon, implicating ZNF277/Zfp277 as a transcriptional target of β-catenin signaling. We confirmed this by showing β-catenin knockdown reduced ZNF277 expression and, using chromatin IP, identified 2 β-catenin binding sites in the ZNF277 promoter. Zfp277 deficiency attenuated intestinal epithelial cell proliferation and tumor formation, and it strikingly prolonged ApcMin/+ mouse survival. RNA-Seq and PCR analyses revealed that Zfp277 modulates expression of genes in key cancer pathways, including β-catenin signaling, the HOXD family that regulates development, and p21WAF1, a cell cycle inhibitor and tumor suppressor. In both human colon cancer cells and the murine colon, ZNF277/Zfp277 deficiency induced p21WAF1 expression and promoted senescence. Our findings identify ZNF277/Zfp277 as both a TAC marker and colon cancer oncogene that regulates cellular proliferation and senescence, in part by repressing p21WAF1 expression.
Collapse
Affiliation(s)
- Guofeng Xie
- University of Maryland School of Medicine, Baltimore, United States of America
| | - Zhongsheng Peng
- Department of Medicine, University of Maryland School of Medicine, Baltimore, United States of America
| | - Jinqing Liang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, United States of America
| | - Shannon M Larabee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, United States of America
| | - Cinthia B Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, United States of America
| | - Harris Yfantis
- Department of Pathology and Laboratory Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, United States of America
| | - Jean-Pierre Raufman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, United States of America
| |
Collapse
|
12
|
Bashir R, Ahmad Zargar O, Hamid Dar A, Yedukondalu N, Parvaiz Q, Hamid R. The modulation of PI3K/Akt pathway by 3β hydroxylup-12-en-28-oic acid isolated from Thymus linearis induces cell death in HCT-116 cells. Chem Biol Drug Des 2021; 99:162-178. [PMID: 34558199 DOI: 10.1111/cbdd.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 11/27/2022]
Abstract
The presence of intricate carbon skeletons in natural compounds enhances their bioactivity spectrum with unique modes of action at several targets in various dreadful diseases like cancer. The present study was designed to purify the molecules from Thymus linearis and elucidate their antiproliferative activity. The compounds were isolated from the active methanolic extract of Thymus linearis through column chromatography and characterized by various spectroscopic techniques. Antiproliferative activity of isolated compounds was evaluated using MTT assay on cancer and normal cell lines. Mechanism of cell death was elucidated using flow cytometric, microscopic, and Western blot analysis. Four compounds, Sitosterol, Chrysin, 3β-hydroxylup-12-en-28-oic acid (3BH), and β-Sitosterol glycoside, were isolated. Among these, 3BH was most potent antiproliferative agent across all cell lines under study, HCT-116 being the most affected one. 3BH was demonstrated to downregulate PI3Ksubunits (p110α and p85α), downstream pAktSer473 and prompted G1 phase cell cycle arrest. The cell cycle CDK inhibitor p27 and p21 were upregulated with simultaneous downregulation of cyclin D1 and cyclin E in HCT-116 cells. This was accompanied by apoptosis, as depicted by decrease in Bcl-2/Bax ratio, with increase in active caspases-3 and caspase-9, cleavage of PARP-1, the generation of reactive oxygen species (ROS), and the loss of mitochondrial membrane potential. The findings established that 3BH induced cell death in HCT-116 cells by modulating PI3K/Akt signaling axis, impeding cell cycle, and instigating apoptosis.
Collapse
Affiliation(s)
- Rohina Bashir
- Department of Biochemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Ovais Ahmad Zargar
- Department of Biochemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Abid Hamid Dar
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | | | - Qazi Parvaiz
- Microbial Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Sanat Nagar Srinagar, India
| | - Rabia Hamid
- Department of Nanotechnology, University of Kashmir, Hazratbal Srinagar, India
| |
Collapse
|
13
|
Cerrito MG, Grassilli E. Identifying Novel Actionable Targets in Colon Cancer. Biomedicines 2021; 9:biomedicines9050579. [PMID: 34065438 PMCID: PMC8160963 DOI: 10.3390/biomedicines9050579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the fourth cause of death from cancer worldwide, mainly due to the high incidence of drug-resistance toward classic chemotherapeutic and newly targeted drugs. In the last decade or so, the development of novel high-throughput approaches, both genome-wide and chemical, allowed the identification of novel actionable targets and the development of the relative specific inhibitors to be used either to re-sensitize drug-resistant tumors (in combination with chemotherapy) or to be synthetic lethal for tumors with specific oncogenic mutations. Finally, high-throughput screening using FDA-approved libraries of “known” drugs uncovered new therapeutic applications of drugs (used alone or in combination) that have been in the clinic for decades for treating non-cancerous diseases (re-positioning or re-purposing approach). Thus, several novel actionable targets have been identified and some of them are already being tested in clinical trials, indicating that high-throughput approaches, especially those involving drug re-positioning, may lead in a near future to significant improvement of the therapy for colon cancer patients, especially in the context of a personalized approach, i.e., in defined subgroups of patients whose tumors carry certain mutations.
Collapse
|
14
|
Tian S, Zhang M, Ma Z. An edge-based statistical analysis of long non-coding RNA expression profiles reveals a negative association between Parkinson's disease and colon cancer. BMC Med Genomics 2021; 14:36. [PMID: 33531021 PMCID: PMC7851899 DOI: 10.1186/s12920-021-00882-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/24/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Colon cancer (CC) is one of the most common malignant tumors, while Parkinson's disease (PD) is the second most common neurodegenerative disorder. Recent accumulating evidence indicates that these two diseases are associated with each other. Also, from the perspective of long non-coding RNAs, some well-known genes such as H19 and PVT1 can link these two diseases together. Several studies have shown that patients with PD had a decreased risk of developing CC compared with patients without PD. However, controversies surround the relationship between PD and CC, and to date, no concordant conclusion has been drawn. METHODS In this study, we aimed to assess the association between these two diseases based on lncRNA-to-lncRNA interactions. Motivated by the weighted gene co-expression network analysis method, a customized procedure was proposed and used to identify differentially correlated edges (DCEs) in the respective interaction networks for PD and CC and explore how these two diseases are linked. RESULTS Of the two sets of DCEs for PD and CC, 16 pairs overlapped. Among them, 15 edges had opposite signs, with positive signs for CC indicating a gain of connectivity, whereas negative signs for PD indicating a loss of connectivity. CONCLUSIONS By using the lncRNA expression profiles, and a customized procedure, an answer to the question about how PD and CC are associated is provided.
Collapse
Affiliation(s)
- Suyan Tian
- Division of Clinical Research, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
| | - Mingyue Zhang
- Department of Gastroenterology, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
15
|
DNA methylation in Alzheimer’s disease: In brain and peripheral blood. Mech Ageing Dev 2020; 191:111319. [DOI: 10.1016/j.mad.2020.111319] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022]
|
16
|
Yang H, Lu Y, Lan W, Huang B, Lin J. Down-regulated Solute Carrier Family 4 Member 4 Predicts Poor Progression in Colorectal Cancer. J Cancer 2020; 11:3675-3684. [PMID: 32284764 PMCID: PMC7150457 DOI: 10.7150/jca.36696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/18/2020] [Indexed: 12/18/2022] Open
Abstract
Aim: To identify potential key candidate genes, whose expression and clinical significance was further assessed in colorectal cancer (CRC). Methods: Three original microarray datasets (GSE41328, GSE22598, and GSE23878) from NCBI-GEO were used to analyze differentially expressed genes (DEGs) in CRC. Online database analyses through Oncomine and GEIPA were performed to evaluate SLC4A4 expression and explore the prognostic merit of SLC4A4 expression, which was further confirmed by analyses from QPCR based cDNA array and IHC based tissue microarray (TMA). STRING website was used to explore the interaction between SLC4A4 with other DEGs based on the protein-protein interaction (PPI) networks. Results: Analysis of three original microarray datasets from GEO identified 82 shared, differentially expressed genes (28 upregulated and 54 down-regulated) in CRC tissues. Online analyses from Oncomine and GEIPA revealed lower SLC4A4 mRNA expression in CRC tissues compared to adjacent normal tissues, which were further confirmed by QPCR based cDNA array and IHC based TMA analyses on both mRNA and protein levels. Survival analyses through GEIPA and from TMA demonstrated that low SLC4A4 expression is correlated with worse overall survival among patients with CRC. Survival analysis from Kaplan-meier plotter demonstrated that low SLC4A4 expression is significantly associated with poor progression (including relapse-free survival, overall survival, distant metastasis-free survival, post-progression survival) of patients with breast cancer, lung cancer, gastric cancer, and ovarian cancer. PPI analysis found that SLC4A4 is highly correlated with various genes, including SLC9A3, SLC26A6, ENSG00000214921, SLC26A4, SLC9A3R1, and SLC9A1. Conclusion: The mRNA and protein levels of SLC4A4 were decreased in CRC tissues, and low expression of SLC4A4 significantly correlated with shorter survival of CRC patients and poorer progression of patients with breast cancer, lung cancer, gastric cancer and ovarian cancer, suggesting potential role of SLC4A4 on tumor suppression and prognostic prediction in multiple malignancies including CRC.
Collapse
Affiliation(s)
- Hong Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yao Lu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Weilan Lan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Bin Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
17
|
Settanni CR, Quaranta G, Bibbò S, Gasbarrini A, Cammarota G, Ianiro G. Oral supplementation with lactobacilli to prevent colorectal cancer in preclinical models. MINERVA GASTROENTERO 2019; 66:48-69. [PMID: 31760735 DOI: 10.23736/s1121-421x.19.02631-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is still a major threat for public health, as it is the third most common cancer in men and the second in women and it ranks second among tumors in terms of mortality. Evidence from the last decades emphasizes the complex role of gut microbial composition in CRC development. Historically, it is believed that dairy products, a source of lactobacilli and other lactic acid bacteria, are beneficial for human health and help in preventing CRC. We searched online literature for trials evaluating the preventive role of lactobacilli in CRC animal models. Most of selected studied assessed a relevant role of lactobacilli in preventing CRC and precursor lesions. Mechanisms through which this effect was achieved are supposed to regard immunomodulation, regulation of apoptosis, gut microbial modulation, genes expression, reduction of oxidative stress and others. Lactobacilli oral supplementation is reported to be effective in preventing CRC in animal models, even if the underlying mechanisms of action are still not fully understood.
Collapse
Affiliation(s)
- Carlo R Settanni
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Gianluca Quaranta
- Institute of Microbiology, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Stefano Bibbò
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy -
| |
Collapse
|
18
|
Human Colorectal Cancer from the Perspective of Mouse Models. Genes (Basel) 2019; 10:genes10100788. [PMID: 31614493 PMCID: PMC6826908 DOI: 10.3390/genes10100788] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease that includes both hereditary and sporadic types of tumors. Tumor initiation and growth is driven by mutational or epigenetic changes that alter the function or expression of multiple genes. The genes predominantly encode components of various intracellular signaling cascades. In this review, we present mouse intestinal cancer models that include alterations in the Wnt, Hippo, p53, epidermal growth factor (EGF), and transforming growth factor β (TGFβ) pathways; models of impaired DNA mismatch repair and chemically induced tumorigenesis are included. Based on their molecular biology characteristics and mutational and epigenetic status, human colorectal carcinomas were divided into four so-called consensus molecular subtype (CMS) groups. It was shown subsequently that the CMS classification system could be applied to various cell lines derived from intestinal tumors and tumor-derived organoids. Although the CMS system facilitates characterization of human CRC, individual mouse models were not assigned to some of the CMS groups. Thus, we also indicate the possible assignment of described animal models to the CMS group. This might be helpful for selection of a suitable mouse strain to study a particular type of CRC.
Collapse
|
19
|
Chaimaa M, Kaoutar I, Farid C, Sellama N. Evaluation of the association between P53 codon 72 and P21 codon 31genetic polymorphisms within gastric and colorectal cancer risk in a Moroccan Cohort. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Oh SJ, Lee MG, Moon JR, Lee CK, Chi SG, Kim HJ. Ras association domain family 1 isoform A suppresses colonic tumor cell growth through p21 WAF1 activation in a p53-dependent manner. J Gastroenterol Hepatol 2019; 34:890-898. [PMID: 30226276 DOI: 10.1111/jgh.14469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIM Despite the frequent loss of Ras association domain family 1 isoform A (RASSF1A) expression in various cancers, the precise mechanism underlying its tumor-suppressive effect is not fully understood. To elucidate the growth-inhibitory role for RASSF1A in colorectal tumorigenesis, this study investigated the RASSF1A regulation of the p53-p21WAF1 pathway. METHODS Ras association domain family 1 isoform A effect on cellular growth was tested in three human colon cancer cell lines by flow cytometry, cell counting, and [3 H]-thymidine incorporation assay. HCT116 p53+/+ and p53-/- isogenic sublines were utilized to determine the p53 dependence of RASSF1A effect on p21WAF1 . Cycloheximide chase experiment and immunoprecipitation assay were carried out to define RASSF1A effect on p53 stability and mouse double minute 2 (MDM2) homolog ubiquitination. RESULTS Ras association domain family 1 isoform A expression inhibits colonic cell proliferation by preventing the G1 to S phase transition of the cell cycle. The RASSF1A-induced G1 cell cycle arrest is accompanied by the increase in the level of p21WAF1 mRNA expression. The p21WAF -inducing activity of RASSF1A was substantially higher in HCT116 p53+/+ cell compared with isogenic p53-/- cells. The cycloheximide chase assay revealed that RASSF1A expression leads to p53 stabilization and MDM2 homolog degradation. Using p53-/- and p21WAF1-/- subline cells, this study finally validated a crucial role of the p53-p21WAF1 axis in RASSF1A-mediated growth inhibition. CONCLUSIONS RASSF1A suppresses colonic tumor growth through the activation of the p53-p21WAF1 pathway. This finding supports that RASSF1A could be a valuable marker for the assessment of colorectal cancer development and progression.
Collapse
Affiliation(s)
- Shin Ju Oh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jung Rock Moon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Chang Kyun Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Hyo Jong Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
21
|
p53 expression status is associated with cancer-specific survival in stage III and high-risk stage II colorectal cancer patients treated with oxaliplatin-based adjuvant chemotherapy. Br J Cancer 2019; 120:797-805. [PMID: 30894685 PMCID: PMC6474280 DOI: 10.1038/s41416-019-0429-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND We attempted to elucidate whether p53 expression or TP53 mutation status was associated with cancer-specific survival in adjuvant FOLFOX-treated patients with stage III or high-risk stage II colorectal cancer (CRC). METHODS We analysed CRCs (N = 621) for the presence of TP53 alterations and for p53 expression, using targeted resequencing and immunohistochemistry. CRCs were grouped into four subsets according to the p53 expression status, which included p53-no, mild, moderate and strong expression. RESULTS The distributions of CRCs were 19.85, 11.05, 17.7% and 51.5% in the p53-no, mild, moderate and strong expression groups, respectively. Cases in the p53-mild to moderate expression group were associated with a more frequent proximal location, undifferentiated histology, lower N category, extraglandular mucin production, microsatellite instability, CIMP-P1, CK7 expression and decreased CDX2 expression compared with those of cases of the p53-no expression and p53-strong expression groups. According to survival analysis, the p53-mild expression group showed a poor 5-year relapse-free survival (hazard ratio (HR): 2.71, 95% confidence interval (CI) = 1.60-4.60, P < 0.001) and poor 5-year cancer-specific survival (HR: 2.90, 95% CI = 1.28-6.57, P = 0.011). CONCLUSIONS p53-mild expression status was found to be an independent prognostic marker in adjuvant FOLFOX-treated patients with stage III and high-risk stage II CRC.
Collapse
|
22
|
Lin K, Jiang H, Zhang LL, Jiang Y, Yang YX, Qiu GD, She YQ, Zheng JT, Chen C, Fang L, Zhang SY. Down-Regulated LncRNA-HOTAIR Suppressed Colorectal Cancer Cell Proliferation, Invasion, and Migration by Mediating p21. Dig Dis Sci 2018; 63:2320-2331. [PMID: 29808247 DOI: 10.1007/s10620-018-5127-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/17/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM HOX transcript antisense intergenic RNA (HOTAIR) is a relatively well-understood RNA, which plays a central role in the pathogenesis of various tumors. The aim of the present study was to investigate the effect by which HOTAIR acts to influence the biological processes of colorectal cancer (CRC) through p21. METHODS Reverse transcription quantitative polymerase chain reaction and Western blot methods were employed to provide verification regarding the changes in HOTAIR, PCNA, Ki67, p21, cyclin E, and CDK2 among the CRC tissues and cells. The correlation between the clinicopathological characteristics of patients and expression of HOTAIR and p21 was subsequently evaluated, followed by an analysis into the effects of HOTAIR on the biological processes of M5 cells. RESULTS HOTAIR was found to be expressed at high levels, while p21 was determined to be at a low level among both the CRC tissues and the CRC cell lines. The expressions of HOTAIR and p21 were determined to be related to lymph node metastasis, tumor node metastasis, Dukes staging, distant metastases, histological types, and the degree of differentiation. Cells transfected with HOTAIR siRNA displayed inhibited rates of proliferation, invasion, and migration, as well as decreased cyclin E and CDK2, while apoptosis and p21 were increased. CONCLUSION The principal findings demonstrated that down-regulation of HOTAIR elicits an inhibitory effect on proliferation, invasion, and migration, while promoting the apoptosis of CRC cells through the up-regulation of p21. We believe that HOTAIR could represent a novel target for the treatment of CRC.
Collapse
Affiliation(s)
- Kai Lin
- Family Medicine Centre, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Hong Jiang
- Department of Radiology, Cancer Hospital of Shantou University Medical College, Shantou, 515031, People's Republic of China
| | - Ling-Ling Zhang
- Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Yi Jiang
- Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515031, People's Republic of China
| | - Yu-Xian Yang
- Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515031, People's Republic of China
| | - Guo-Dong Qiu
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, No. 7, Raoping Road, Shantou, 515031, Guangdong Province, People's Republic of China
| | - Yu-Qi She
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, No. 7, Raoping Road, Shantou, 515031, Guangdong Province, People's Republic of China
- Clinical Pharmacy Research Center, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong Province, People's Republic of China
| | - Jie-Ting Zheng
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, No. 7, Raoping Road, Shantou, 515031, Guangdong Province, People's Republic of China
| | - Chen Chen
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, No. 7, Raoping Road, Shantou, 515031, Guangdong Province, People's Republic of China
| | - Ling Fang
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, No. 7, Raoping Road, Shantou, 515031, Guangdong Province, People's Republic of China
| | - Shu-Yao Zhang
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, No. 7, Raoping Road, Shantou, 515031, Guangdong Province, People's Republic of China.
- Clinical Pharmacy Research Center, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong Province, People's Republic of China.
| |
Collapse
|
23
|
Molnár B, Galamb O, Péterfia B, Wichmann B, Csabai I, Bodor A, Kalmár A, Szigeti KA, Barták BK, Nagy ZB, Valcz G, Patai ÁV, Igaz P, Tulassay Z. Gene promoter and exon DNA methylation changes in colon cancer development - mRNA expression and tumor mutation alterations. BMC Cancer 2018; 18:695. [PMID: 29945573 PMCID: PMC6020382 DOI: 10.1186/s12885-018-4609-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/18/2018] [Indexed: 12/28/2022] Open
Abstract
Background DNA mutations occur randomly and sporadically in growth-related genes, mostly on cytosines. Demethylation of cytosines may lead to genetic instability through spontaneous deamination. Aims were whole genome methylation and targeted mutation analysis of colorectal cancer (CRC)-related genes and mRNA expression analysis of TP53 pathway genes. Methods Long interspersed nuclear element-1 (LINE-1) BS-PCR followed by pyrosequencing was performed for the estimation of global DNA metlyation levels along the colorectal normal-adenoma-carcinoma sequence. Methyl capture sequencing was done on 6 normal adjacent (NAT), 15 adenomatous (AD) and 9 CRC tissues. Overall quantitative methylation analysis, selection of top hyper/hypomethylated genes, methylation analysis on mutation regions and TP53 pathway gene promoters were performed. Mutations of 12 CRC-related genes (APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53) were evaluated. mRNA expression of TP53 pathway genes was also analyzed. Results According to the LINE-1 methylation results, overall hypomethylation was observed along the normal-adenoma-carcinoma sequence. Within top50 differential methylated regions (DMRs), in AD-N comparison TP73, NGFR, PDGFRA genes were hypermethylated, FMN1, SLC16A7 genes were hypomethylated. In CRC-N comparison DKK2, SDC2, SOX1 genes showed hypermethylation, while ERBB4, CREB5, CNTN1 genes were hypomethylated. In certain mutation hot spot regions significant DNA methylation alterations were detected. The TP53 gene body was addressed by hypermethylation in adenomas. APC, TP53 and KRAS mutations were found in 30, 15, 21% of adenomas, and in 29, 53, 29% of CRCs, respectively. mRNA expression changes were observed in several TP53 pathway genes showing promoter methylation alterations. Conclusions DNA methylation with consecutive phenotypic effect can be observed in a high number of promoter and gene body regions through CRC development. Electronic supplementary material The online version of this article (10.1186/s12885-018-4609-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Béla Molnár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088, Hungary. .,2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088, Hungary.
| | - Orsolya Galamb
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088, Hungary
| | - Bálint Péterfia
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088, Hungary
| | - Barnabás Wichmann
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088, Hungary
| | - István Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - András Bodor
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary.,Institute of Mathematics and Informatics, Faculty of Sciences, University of Pécs, Ifjúság útja 6, Pécs, H-7624, Hungary
| | - Alexandra Kalmár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088, Hungary
| | - Krisztina Andrea Szigeti
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088, Hungary
| | - Barbara Kinga Barták
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088, Hungary
| | - Zsófia Brigitta Nagy
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088, Hungary
| | - Gábor Valcz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088, Hungary
| | - Árpád V Patai
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088, Hungary
| | - Péter Igaz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088, Hungary.,2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088, Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088, Hungary.,2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088, Hungary
| |
Collapse
|
24
|
Angiodrastic Chemokines in Colorectal Cancer: Clinicopathological Correlations. Anal Cell Pathol (Amst) 2018; 2018:1616973. [PMID: 29850390 PMCID: PMC5926520 DOI: 10.1155/2018/1616973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/19/2018] [Indexed: 12/26/2022] Open
Abstract
Aim To study the expression of angiodrastic chemokines in colorectal tumors and correlate findings with clinicopathological parameters and survival. Methods The proangiogenic factor VEGF, the angiogenic chemokines CXCL8 and CXCL6, and the angiostatic chemokine CXCL4 were measured by ELISA in tumor and normal tissue of 35 stage II and III patients and correlated with the histopathology markers Ki67, p53, p21, bcl2, EGFR, and MLH1 and 5-year survival. The Wilcoxon and chi-square tests were used for statistical comparisons. Results There was a significant increase of CXCL6 (p = 0.005) and VEGF (p = 0.003) in cancerous tissue compared to normal. Patients with lower levels of CXCL8 and CXCL4 lived significantly longer. Patients with loss of EGFR expression had higher levels of CXCL8 while p21 loss was associated with higher levels of CXCL6. Chemokine levels were not correlated with TNM or Dukes classification. Strong expression of p53 was accompanied by decreased survival. Conclusions (1) The angiogenic factors CXCL6 and VEGF are increased in colorectal cancer tissue with no association with the clinical stage of the disease or survival. (2) However, increased levels of tissue CXCL8 and CXCL4 are associated with poor survival. (3) Strong expression of p53 is found in patients with poor survival.
Collapse
|
25
|
The Complex Interplay between Chronic Inflammation, the Microbiome, and Cancer: Understanding Disease Progression and What We Can Do to Prevent It. Cancers (Basel) 2018; 10:cancers10030083. [PMID: 29558443 PMCID: PMC5876658 DOI: 10.3390/cancers10030083] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multifaceted condition, in which a senescent cell begins dividing in an irregular manner due to various factors such as DNA damage, growth factors and inflammation. Inflammation is not typically discussed as carcinogenic; however, a significant percentage of cancers arise from chronic microbial infections and damage brought on by chronic inflammation. A hallmark cancer-inducing microbe is Helicobacter pylori and its causation of peptic ulcers and potentially gastric cancer. This review discusses the recent developments in understanding microbes in health and disease and their potential role in the progression of cancer. To date, microbes can be linked to almost every cancer, including colon, pancreatic, gastric, and even prostate. We discuss the known mechanisms by which these microbes can induce cancer growth and development and how inflammatory cells may contribute to cancer progression. We also discuss new treatments that target the chronic inflammatory conditions and their associated cancers, and the impact microbes have on treatment success. Finally, we examine common dietary misconceptions in relation to microbes and cancer and how to avoid getting caught up in the misinterpretation and over inflation of the results.
Collapse
|
26
|
Upchurch E, Isabelle M, Lloyd GR, Kendall C, Barr H. An update on the use of Raman spectroscopy in molecular cancer diagnostics: current challenges and further prospects. Expert Rev Mol Diagn 2018; 18:245-258. [DOI: 10.1080/14737159.2018.1439739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Emma Upchurch
- Department of Upper GI Surgery, Gloucestershire Royal Hospital, Gloucester
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Gloucester
| | | | - Gavin Rhys Lloyd
- Phenome Centre Birmingham, School of Biosciences, University of Birmingham
| | - Catherine Kendall
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Gloucester
| | - Hugh Barr
- Department of Upper GI Surgery, Gloucestershire Royal Hospital, Gloucester
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Gloucester
| |
Collapse
|
27
|
Chen JF, Luo X, Xiang LS, Li HT, Zha L, Li N, He JM, Xie GF, Xie X, Liang HJ. EZH2 promotes colorectal cancer stem-like cell expansion by activating p21cip1-Wnt/β-catenin signaling. Oncotarget 2018; 7:41540-41558. [PMID: 27172794 PMCID: PMC5173077 DOI: 10.18632/oncotarget.9236] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/24/2016] [Indexed: 02/05/2023] Open
Abstract
Because colorectal cancer (CRC) stem-like cells (CCS-like cells) contribute to poor patient prognosis, these cells are a potential target for CRC therapy. However, the mechanism underlying the maintenance of CCS-like cell properties remains unclear. Here, we found that patients with advanced stage CRC expressed high levels of polycomb group protein enhancer of zeste homologue 2 (EZH2). High expression of EZH2 in tumor tissues correlated with poor patient prognosis. Conversely, silencing EZH2 reduced CRC cell proliferation. Surprisingly, EZH2 was more highly expressed in the CCS-like cell subpopulation than in the non-CCS-like cell subpopulation. EZH2 knockdown significantly reduced the CD133+/CD44+ subpopulation, suppressed mammosphere formation, and decreased the expression of self-renewal-related genes and strongly impaired tumor-initiating capacity in a re-implantation mouse model. Gene expression data from 433 human CRC specimens from TCGA database and in vitro results revealed that EZH2 helped maintain CCS-like cell properties by activating the Wnt/β-catenin pathway. We further revealed that p21cip1–mediated arrest of the cell cycle at G1/S phase is required for EZH2 activation of the Wnt/β-catenin pathway. Moreover, the specific EZH2 inhibitor EPZ-6438, a clinical trial drug, prevented CRC progression. Collectively, these findings revealed EZH2 maintaining CCS-like cell characteristics by arresting the cell cycle at the G1/S phase. These results indicate a new approach to CRC therapy.
Collapse
Affiliation(s)
- Jian-Fang Chen
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xi Luo
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li-Sha Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Hong-Tao Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lin Zha
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ni Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian-Ming He
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Gan-Feng Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiong Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hou-Jie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
28
|
Yang J, Nishihara R, Zhang X, Ogino S, Qian ZR. Energy sensing pathways: Bridging type 2 diabetes and colorectal cancer? J Diabetes Complications 2017; 31:1228-1236. [PMID: 28465145 PMCID: PMC5501176 DOI: 10.1016/j.jdiacomp.2017.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
The recently rapid increase of obesity and type 2 diabetes mellitus has caused great burden to our society. A positive association between type 2 diabetes and risk of colorectal cancer has been reported by increasing epidemiological studies. The molecular mechanism of this connection remains elusive. However, type 2 diabetes may result in abnormal carbohydrate and lipid metabolism, high levels of circulating insulin, insulin growth factor-1, and adipocytokines, as well as chronic inflammation. All these factors could lead to the alteration of energy sensing pathways such as the AMP activated kinase (PRKA), mechanistic (mammalian) target of rapamycin (mTOR), SIRT1, and autophagy signaling pathways. The resulted impaired SIRT1 and autophagy signaling pathway could increase the risk of gene mutation and cancer genesis by decreasing genetic stability and DNA mismatch repair. The dysregulated mTOR and PRKA pathway could remodel cell metabolism during the growth and metastasis of cancer in order for the cancer cell to survive the unfavorable microenvironment such as hypoxia and low blood supply. Moreover, these pathways may be coupling metabolic and epigenetic alterations that are central to oncogenic transformation. Further researches including molecular pathologic epidemiologic studies are warranted to better address the precise links between these two important diseases.
Collapse
Affiliation(s)
- Juhong Yang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, MA 02215; 211 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development (Ministry of Health), Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China.
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, MA 02215; Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115; Department of Epidemiology, Harvard School of Public Health, 677 Huntington Ave., Boston, MA 02115
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, MA 02215; Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115; Department of Epidemiology, Harvard School of Public Health, 677 Huntington Ave., Boston, MA 02115
| | - Zhi Rong Qian
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, MA 02215.
| |
Collapse
|
29
|
Nishihara R, Glass K, Mima K, Hamada T, Nowak JA, Qian ZR, Kraft P, Giovannucci EL, Fuchs CS, Chan AT, Quackenbush J, Ogino S, Onnela JP. Biomarker correlation network in colorectal carcinoma by tumor anatomic location. BMC Bioinformatics 2017. [PMID: 28623901 PMCID: PMC5474023 DOI: 10.1186/s12859-017-1718-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Colorectal carcinoma evolves through a multitude of molecular events including somatic mutations, epigenetic alterations, and aberrant protein expression, influenced by host immune reactions. One way to interrogate the complex carcinogenic process and interactions between aberrant events is to model a biomarker correlation network. Such a network analysis integrates multidimensional tumor biomarker data to identify key molecular events and pathways that are central to an underlying biological process. Due to embryological, physiological, and microbial differences, proximal and distal colorectal cancers have distinct sets of molecular pathological signatures. Given these differences, we hypothesized that a biomarker correlation network might vary by tumor location. Results We performed network analyses of 54 biomarkers, including major mutational events, microsatellite instability (MSI), epigenetic features, protein expression status, and immune reactions using data from 1380 colorectal cancer cases: 690 cases with proximal colon cancer and 690 cases with distal colorectal cancer matched by age and sex. Edges were defined by statistically significant correlations between biomarkers using Spearman correlation analyses. We found that the proximal colon cancer network formed a denser network (total number of edges, n = 173) than the distal colorectal cancer network (n = 95) (P < 0.0001 in permutation tests). The value of the average clustering coefficient was 0.50 in the proximal colon cancer network and 0.30 in the distal colorectal cancer network, indicating the greater clustering tendency of the proximal colon cancer network. In particular, MSI was a key hub, highly connected with other biomarkers in proximal colon cancer, but not in distal colorectal cancer. Among patients with non-MSI-high cancer, BRAF mutation status emerged as a distinct marker with higher connectivity in the network of proximal colon cancer, but not in distal colorectal cancer. Conclusion In proximal colon cancer, tumor biomarkers tended to be correlated with each other, and MSI and BRAF mutation functioned as key molecular characteristics during the carcinogenesis. Our findings highlight the importance of considering multiple correlated pathways for therapeutic targets especially in proximal colon cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1718-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reiko Nishihara
- Program of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Kimberly Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Tsuyoshi Hamada
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles S Fuchs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Yale Cancer Center, New Haven, CT, USA.,Department of Medicine, Yale School of Medicine, New Haven, CT, USA.,Smilow Cancer Hospital, New Haven, CT, USA
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Program of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA. .,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | - Jukka-Pekka Onnela
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
30
|
Kensara OA, El-Shemi AG, Mohamed AM, Refaat B, Idris S, Ahmad J. Thymoquinone subdues tumor growth and potentiates the chemopreventive effect of 5-fluorouracil on the early stages of colorectal carcinogenesis in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2239-53. [PMID: 27468227 PMCID: PMC4946859 DOI: 10.2147/dddt.s109721] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers and has a high mortality rate. Insensitivity and the limited therapeutic efficacy of its standard chemotherapeutic drug, 5-fluorouracil (5-FU), represents an important challenge in CRC treatment. The robust antitumor properties of thymoquinone (TQ), the main bioactive constituent of Nigella sativa, have recently been demonstrated on different cancers. We investigated whether TQ could potentiate the chemopreventive effect of 5-FU to eradicate the early stages of CRC and elucidated its underlying mechanisms. An intermediate-term (15 weeks) model of colorectal tumorigenesis was induced in male Wistar rats by azoxymethane (AOM), and the animals were randomly and equally divided into five groups: control, AOM, AOM/5-FU, AOM/TQ, and AOM/5-FU/TQ. TQ (35 mg/kg/d; 3 d/wk) was given during the seventh and 15th weeks post-AOM injection, while 5-FU was given during the ninth and tenth weeks (12 mg/kg/d for 4 days; then 6 mg/kg every other day for another four doses). At week 15, the resected colons were subjected to macroscopic, histopathological, molecular, and immunohistochemical examinations. Interestingly, 5-FU/TQ combination therapy resulted in a more significant reduction on AOM-induced colorectal tumors and large aberrant crypts foci than treatment with the individual drugs. Mechanistically, 5-FU and TQ remarkably cooperated to repress the expression of procancerous Wnt, β-catenin, NF-κB, COX-2, iNOS, VEGF, and TBRAS and upregulate the expression of anti-tumorigenesis DKK-1, CDNK-1A, TGF-β1, TGF-βRII, Smad4, and GPx. Overall, our findings present the first report describing the in vivo enhancement effect of combined TQ and 5-FU against early stages of CRC; however, further studies are required to determine the value of this combination therapy in an advanced long-term model of CRC and also to realize its clinical potential.
Collapse
Affiliation(s)
- Osama Adnan Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| | - Adel Galal El-Shemi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amr Mohamed Mohamed
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia; Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Bassem Refaat
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| | - Shakir Idris
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| | - Jawwad Ahmad
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| |
Collapse
|
31
|
El-Shemi AG, Refaat B, Kensara OA, Mohamed AM, Idris S, Ahmad J. Paricalcitol Enhances the Chemopreventive Efficacy of 5-Fluorouracil on an Intermediate-Term Model of Azoxymethane-Induced Colorectal Tumors in Rats. Cancer Prev Res (Phila) 2016; 9:491-501. [DOI: 10.1158/1940-6207.capr-15-0439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/17/2016] [Indexed: 11/16/2022]
|
32
|
Tang JT, Wang ZH, Fang JY. Assessing the potential value of long interspersed element-1 hypomethylation in colorectal cancer: evidence from retrospective studies. Onco Targets Ther 2015; 8:3265-76. [PMID: 26604793 PMCID: PMC4640227 DOI: 10.2147/ott.s91941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND AIMS Long interspersed element-1 (LINE-1) hypomethylation may play an important role in colorectal cancer (CRC). Studies were identified that investigated LINE-1 methylation levels in CRC compared with normal controls. METHODS The random-effects model was used to estimate standardized mean difference with 95% confidence intervals according to the heterogeneity between the studies. We explored the relationship between LINE-1 hypomethylation and microsatellite instability (MSI) status, clinical features, and molecular features in CRC patients using a fixed-effects model. RESULTS A total of 7396 CRC patients were included in the meta-analysis. LINE-1 methylation was significantly lower in CRC patients than in controls (P=0.000). Mean LINE-1 methylation was significantly lower in non-MSI-high than in MSI-high tumors (P=0.000). LINE-1 hypomethylation was found more frequently in patients with a family history compared with those without family history (P=0.002). Patients with left colon cancer had lower LINE-1 methylation than those with right colon cancer (P=0.001). LINE-1 methylation was not associated with body mass index or patient sex. LINE-1 hypomethylation was found in p21 lost tumors (P=0.000). LINE-1 methylation levels were not associated with KRAS or PIK3CA-mutation status. CONCLUSION LINE-1 hypomethylation is a potential biomarker for risk of CRC and associated with various clinical and molecular features of CRC.
Collapse
Affiliation(s)
- Jie-Ting Tang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; Shanghai Institute of Digestive Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhen-Hua Wang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; Shanghai Institute of Digestive Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; Shanghai Institute of Digestive Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Zhang Q, Shim K, Wright K, Jurkevich A, Khare S. Atypical role of sprouty in p21 dependent inhibition of cell proliferation in colorectal cancer. Mol Carcinog 2015; 55:1355-68. [PMID: 26293890 PMCID: PMC4873464 DOI: 10.1002/mc.22379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/17/2015] [Accepted: 07/23/2015] [Indexed: 12/19/2022]
Abstract
Sprouty (SPRY) appears to act as a tumor suppressor in cancer, whereas we reported that SPRY2 functions as a putative oncogene in colorectal cancer (CRC) [Oncogene, 2010, 29: 5241-5253]. In general, various studies established inhibition of cell proliferation by SPRY in cancer. The mechanisms by which SPRY regulates cell proliferation in CRC are investigated. We demonstrate, for the first time, suppression of SPRY2 augmented EGF-dependent oncogenic signaling, however, surprisingly decreased cell proliferation in colon cancer cells. Our data suggest that cell cycle inhibitor p21(WAF1/CIP1) transcriptional activity being regulated by SPRY2. Indeed, suppression of SPRY2 significantly increased p21(WAF1/CIP1) mRNA and protein expression as well as p21(WAF1/CIP1) promoter activity. Conversely, overexpressing SPRY2 triggered a decrease in p21(WAF1/CIP1) promoter activity. Concurrent down-regulation of both SPRY1 and SPRY2 also increased p21(WAF1/CIP1) expression in colon cancer cells. Increased nuclear localization of p21(WAF1/CIP1) in SPRY2 downregulated colon cancer cells may explain the inhibition of cell proliferation in colon cancer cells. Underscoring the biological relevance of these findings in SPRY1 and SPRY2 mutant mouse, recombination of floxed SPRY1 and SPRY2 alleles in mouse embryonic fibroblasts (MEFs) resulted in increased expression and nuclear localization of p21(WAF1/CIP1) and decreased cell proliferation. In CRC, the relationship of SPRY with p21 may provide unique strategies for cancer prevention and treatment. © 2015 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qiong Zhang
- Section of Gastroenterology and Hepatology, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - Katherine Shim
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kevin Wright
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Sharad Khare
- Section of Gastroenterology and Hepatology, Department of Internal Medicine, University of Missouri, Columbia, Missouri.,Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| |
Collapse
|
34
|
Campbell PT, Newton CC, Newcomb PA, Phipps AI, Ahnen DJ, Baron JA, Buchanan DD, Casey G, Cleary SP, Cotterchio M, Farris AB, Figueiredo JC, Gallinger S, Green RC, Haile RW, Hopper JL, Jenkins MA, Le Marchand L, Makar KW, McLaughlin JR, Potter JD, Renehan AG, Sinicrope FA, Thibodeau SN, Ulrich CM, Win AK, Lindor NM, Limburg PJ. Association between body mass index and mortality for colorectal cancer survivors: overall and by tumor molecular phenotype. Cancer Epidemiol Biomarkers Prev 2015; 24:1229-38. [PMID: 26038390 PMCID: PMC4526409 DOI: 10.1158/1055-9965.epi-15-0094] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/18/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Microsatellite instability (MSI) and BRAF mutation status are associated with colorectal cancer survival, whereas the role of body mass index (BMI) is less clear. We evaluated the association between BMI and colorectal cancer survival, overall and by strata of MSI, BRAF mutation, sex, and other factors. METHODS This study included 5,615 men and women diagnosed with invasive colorectal cancer who were followed for mortality (maximum: 14.7 years; mean: 5.9 years). Prediagnosis BMI was derived from self-reported weight approximately one year before diagnosis and height. Tumor MSI and BRAF mutation status were available for 4,131 and 4,414 persons, respectively. Multivariable hazard ratios (HR) and 95% confidence intervals (CI) were estimated from delayed-entry Cox proportional hazards models. RESULTS In multivariable models, high prediagnosis BMI was associated with higher risk of all-cause mortality in both sexes (per 5-kg/m(2); HR, 1.10; 95% CI, 1.06-1.15), with similar associations stratified by sex (Pinteraction: 0.41), colon versus rectum (Pinteraction: 0.86), MSI status (Pinteraction: 0.84), and BRAF mutation status (Pinteraction: 0.28). In joint models, with MS-stable/MSI-low and normal BMI as the reference group, risk of death was higher for MS-stable/MSI-low and obese BMI (HR, 1.32; P value: 0.0002), not statistically significantly lower for MSI-high and normal BMI (HR, 0.86; P value: 0.29), and approximately the same for MSI-high and obese BMI (HR, 1.00; P value: 0.98). CONCLUSIONS High prediagnosis BMI was associated with increased mortality; this association was consistent across participant subgroups, including strata of tumor molecular phenotype. IMPACT High BMI may attenuate the survival benefit otherwise observed with MSI-high tumors.
Collapse
Affiliation(s)
- Peter T Campbell
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia.
| | - Christina C Newton
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Dennis J Ahnen
- Department of Veterans Affairs, Eastern Colorado Health Care System, University of Colorado School of Medicine, Aurora, Colorado
| | - John A Baron
- University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Daniel D Buchanan
- Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, Australia
| | - Graham Casey
- Department of Preventive Medicine, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Sean P Cleary
- University Health Network, Department of Surgery, Toronto, Ontario, Canada
| | - Michelle Cotterchio
- Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, Canada
| | - Alton B Farris
- Department of Pathology, Emory University, Atlanta, Georgia
| | - Jane C Figueiredo
- Department of Preventive Medicine, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Roger C Green
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | | | - John L Hopper
- Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, Australia
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, Australia
| | | | - Karen W Makar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - John R McLaughlin
- Prosserman Centre for Health Research, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Andrew G Renehan
- Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Frank A Sinicrope
- Department of Medicine and Oncology, GI Research Unit, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Stephen N Thibodeau
- Department of Lab Medicine and Pathology, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Cornelia M Ulrich
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Population Sciences, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, Australia
| | - Noralane M Lindor
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, Arizona
| | - Paul J Limburg
- Division of Gastroenterology and Hepatology, Mayo Clinic Cancer Center, Rochester, Minnesota
| |
Collapse
|
35
|
Fedirko V, Romieu I, Aleksandrova K, Pischon T, Trichopoulos D, Peeters PH, Romaguera-Bosch D, Bueno-de-Mesquita HBA, Dahm CC, Overvad K, Chirlaque MD, Johansen C, Bidstrup PE, Dalton SO, Gunter MJ, Wark PA, Norat T, Halkjaer J, Tjønneland A, Dik VK, Siersema PD, Boutron-Ruault MC, Dossus L, Bastide N, Kühn T, Kaaks R, Boeing H, Trichopoulou A, Klinaki E, Katsoulis M, Pala V, Panico S, Tumino R, Palli D, Vineis P, Weiderpass E, Skeie G, González CA, Sánchez MJ, Barricarte A, Amiano P, Quiros JR, Manjer J, Jirström K, Ljuslinder I, Palmqvist R, Khaw KT, Wareham N, Bradbury KE, Stepien M, Duarte-Salles T, Riboli E, Jenab M. Pre-diagnostic anthropometry and survival after colorectal cancer diagnosis in Western European populations. Int J Cancer 2014; 135:1949-60. [PMID: 24623514 DOI: 10.1002/ijc.28841] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/25/2014] [Indexed: 01/09/2023]
Abstract
General and abdominal adiposity are associated with a high risk of developing colorectal cancer (CRC), but the role of these exposures on cancer survival has been less studied. The association between pre-diagnostic anthropometric characteristics and CRC-specific and all-cause death was examined among 3,924 men and women diagnosed with CRC between 1992 and 2009 in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Multivariable Cox proportional hazards models were used to calculate hazard ratios (HRs) and corresponding 95% confidence intervals (CIs). Over a mean follow-up period of 49 months, 1,309 deaths occurred of which 1,043 (79.7%) were due to CRC. In multivariable analysis, pre-diagnostic BMI ≥ 30 kg/m(2) was associated with a high risk for CRC-specific (HR = 1.26, 95% CI = 1.04-1.52) and all-cause (HR = 1.32, 95% CI = 1.12-1.56) death relative to BMI <25 kg/m(2). Every 5 kg/m(2) increase in BMI was associated with a high risk for CRC-specific (HR = 1.10, 95% CI = 1.02-1.19) and all-cause death (HR = 1.12, 95% CI = 1.05-1.20); and every 10 cm increase in waist circumference was associated with a high risk for CRC-specific (HR = 1.09, 95% CI = 1.02-1.16) and all-cause death (HR = 1.11, 95% CI = 1.05-1.18). Similar associations were observed for waist-to-hip and waist-to-height ratios. Height was not associated with CRC-specific or all-cause death. Associations tended to be stronger among men than in women. Possible interactions by age at diagnosis, cancer stage, tumour location, and hormone replacement therapy use among postmenopausal women were noted. Pre-diagnostic general and abdominal adiposity are associated with lower survival after CRC diagnosis.
Collapse
Affiliation(s)
- Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Association of obesity and overweight with overall survival in colorectal cancer patients: a meta-analysis of 29 studies. Cancer Causes Control 2014; 25:1489-502. [PMID: 25070668 DOI: 10.1007/s10552-014-0450-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/21/2014] [Indexed: 12/19/2022]
Abstract
PURPOSE Previous studies that assessed the relationship between obesity, overweight, and survival in colorectal cancer (CRC) have provided conflicting results. Therefore, we quantitatively summarized existing evidence to estimate the association between obesity/overweight and overall survival (OS) in CRC patients and explored potentially important sources of variability. METHODS Eligible studies were identified via PubMed and EMBASE searches. The summary hazard ratio (sHR) was estimated using a fixed-effects or random-effects model according to the heterogeneity between the studies. Meta-regression and subgroup analyses were performed to explore potential sources of heterogeneity. RESULTS A total of 29 eligible studies, with 51,303 CRC patients, were finally included. The overall analysis showed worse OS among obese patients [sHR 1.10, 95 % confidence intervals (CI) 1.06-1.15], but not among overweight patients (sHR 0.92, 95 % CI 0.86-1.00), than in normal-weight patients. Considerable heterogeneity was observed across studies, which was primarily attributed to the timing of body mass index (BMI) assessment (meta-regression p < 0.05). The association between obesity and worse OS was strengthened when BMI was assessed before diagnosis (sHR 1.30, 95 % CI, 1.17-1.44). Conversely, post-diagnostic, in particular post-treatment, overweight was associated with a better OS (sHR 0.79, 95 % CI 0.70-0.91). Other factors, including gender, geographic location, and stage, may also modify the prognostic value of obesity or overweight. CONCLUSIONS Obese but not overweight patients appear to have worse OS than normal-weight patients with CRC. The associations of obesity and overweight with OS in CRC patients majorly depend upon the timing of BMI assessment.
Collapse
|
37
|
Lee KH, Park JW, Sung HS, Choi YJ, Kim WH, Lee HS, Chung HJ, Shin HW, Cho CH, Kim TY, Li SH, Youn HD, Kim SJ, Chun YS. PHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancer. Oncogene 2014; 34:2897-909. [PMID: 25043306 DOI: 10.1038/onc.2014.219] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/05/2014] [Accepted: 06/15/2014] [Indexed: 12/14/2022]
Abstract
Plant homeodomain finger 2 (PHF2) has a role in epigenetic regulation of gene expression by demethylating H3K9-Me2. Several genome-wide studies have demonstrated that the chromosomal region including the PHF2 gene is often deleted in some cancers including colorectal cancer, and this finding encouraged us to investigate the tumor suppressive role of PHF2. As p53 is a critical tumor suppressor in colon cancer, we tested the possibility that PHF2 is an epigenetic regulator of p53. PHF2 was associated with p53, and thereby, promoted p53-driven gene expression in cancer cells under genotoxic stress. PHF2 converted the chromatin that is favorable for transcription by demethylating the repressive H3K9-Me2 mark. In an HCT116 xenograft model, PHF2 was found to be required for the anticancer effects of oxaliplatin and doxorubicin. In PHF2-deficient xenografts, p53 expression was profoundly induced by both drugs, but its downstream product p21 was not, suggesting that p53 cannot be activated in the absence of PHF2. To find clinical evidence about the role of PHF2, we analyzed the expressions of PHF2, p53 and p21 in human colon cancer tissues and adjacent normal tissues from patients. PHF2 was downregulated in cancer tissues and PHF2 correlated with p21 in cancers expressing functional p53. Colon and stomach cancer tissue arrays showed a positive correlation between PHF2 and p21 expressions. Informatics analyses using the Oncomine database also supported our notion that PHF2 is downregulated in colon and stomach cancers. On the basis of these findings, we propose that PHF2 acts as a tumor suppressor in association with p53 in cancer development and ensures p53-mediated cell death in response to chemotherapy.
Collapse
Affiliation(s)
- K-H Lee
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - J-W Park
- 1] Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H-S Sung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Y-J Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - W H Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H S Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H-J Chung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H-W Shin
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - C-H Cho
- 1] Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - T-Y Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - S-H Li
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H-D Youn
- 1] Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - S J Kim
- 1] Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea [3] Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Y-S Chun
- 1] Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea [3] Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
38
|
Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R. Epidemiological transition of colorectal cancer in developing countries: Environmental factors, molecular pathways, and opportunities for prevention. World J Gastroenterol 2014; 20:6055-6072. [PMID: 24876728 PMCID: PMC4033445 DOI: 10.3748/wjg.v20.i20.6055] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/14/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer and cancer-related mortality worldwide. The disease has been traditionally a major health problem in industrial countries, however the CRC rates are increasing in the developing countries that are undergoing economic growth. Several environmental risk factors, mainly changes in diet and life style, have been suggested to underlie the rise of CRC in these populations. Diet and lifestyle impinge on nuclear receptors, on the intestinal microbiota and on crucial molecular pathways that are implicated in intestinal carcinogenesis. In this respect, the epidemiological transition in several regions of the world offers a unique opportunity to better understand CRC carcinogenesis by studying the disease phenotypes and their environmental and molecular associations in different populations. The data from these studies may have important implications for the global prevention and treatment of CRC.
Collapse
|
39
|
Alemán JO, Eusebi LH, Ricciardiello L, Patidar K, Sanyal AJ, Holt PR. Mechanisms of obesity-induced gastrointestinal neoplasia. Gastroenterology 2014; 146:357-373. [PMID: 24315827 PMCID: PMC3978703 DOI: 10.1053/j.gastro.2013.11.051] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/30/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023]
Abstract
Obesity is among the fastest growing diseases worldwide; treatment is inadequate, and associated disorders, including gastrointestinal cancers, have high morbidity and mortality. An increased understanding of the mechanisms of obesity-induced carcinogenesis is required to develop methods to prevent or treat these cancers. In this report, we review the mechanisms of obesity-associated colorectal, esophageal, gastric, and pancreatic cancers and potential treatment strategies.
Collapse
Affiliation(s)
| | - Leonardo H. Eusebi
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, and Center for Applied Biomedical Research (CRBA), University of Bologna, Italy
| | - Kavish Patidar
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Arun J. Sanyal
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | |
Collapse
|
40
|
Lin JH, Giovannucci E. Environmental Exposure and Tumor Heterogeneity in Colorectal Cancer Risk and Outcomes. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0208-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Haupt S, Gamell C, Wolyniec K, Haupt Y. Interplay between p53 and VEGF: how to prevent the guardian from becoming a villain. Cell Death Differ 2013; 20:852-4. [PMID: 23749180 DOI: 10.1038/cdd.2013.51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
42
|
Colussi D, Brandi G, Bazzoli F, Ricciardiello L. Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int J Mol Sci 2013; 14:16365-85. [PMID: 23965959 PMCID: PMC3759916 DOI: 10.3390/ijms140816365] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 02/07/2023] Open
Abstract
Research conducted during the past 30 years has increased our understanding of the mechanisms involved in colorectal cancer initiation and development. The findings have demonstrated the existence of at least three pathways: chromosomal instability, microsatellite instability and CpG island methylator phenotype. Importantly, new studies have shown that inflammation and microRNAs contribute to colorectal carcinogenesis. Recent data have demonstrated that several genetic and epigenetic changes are important in determining patient prognosis and survival. Furthermore, some of these mechanisms are related to patients’ response to drugs, such as aspirin, which could be used for both chemoprevention and treatment in specific settings. Thus, in the near future, we could be able to predict disease behavior based on molecular markers found on tumors, and direct the best treatment options for patients.
Collapse
Affiliation(s)
- Dora Colussi
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, Pad 5, Bologna 40138, Italy; E-Mails: (D.C.); (F.B.)
| | - Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Massarenti 9, Pad 5, Bologna 40138, Italy; E-Mail:
| | - Franco Bazzoli
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, Pad 5, Bologna 40138, Italy; E-Mails: (D.C.); (F.B.)
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, Pad 5, Bologna 40138, Italy; E-Mails: (D.C.); (F.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-51-6363-381; Fax: +39-51-343-926
| |
Collapse
|
43
|
Zhang Z, Hao C, Wang L, Liu P, Zhao L, Zhu C, Tian X. Inhibition of leukemic cells by valproic acid, an HDAC inhibitor, in xenograft tumors. Onco Targets Ther 2013; 6:733-40. [PMID: 23836985 PMCID: PMC3699303 DOI: 10.2147/ott.s46135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The chimeric fusion protein, AML1-ETO, generated by translocation of t(8;21), abnormally recruits histone deacetylase (HDAC) to the promoters of AML1 target genes, resulting in transcriptional repression of the target genes and development of t(8;21) acute myeloid leukemia. Abnormal expression of cyclin-dependent kinase inhibitors, especially p21, is considered a possible mechanism of the arrested maturation and differentiation seen in leukemia cells. A new generation of HDAC inhibitors is becoming an increasing focus of attention for their ability to induce differentiation and apoptosis in tumor cells and to block the cell cycle. Our previous research had demonstrated that valproic acid induces G0/G1 arrest of Kasumi-1 cells in t(8;21) acute myeloid leukemia. In this study, we further confirmed that valproic acid inhibits the growth of Kasumi-1 cells in a murine xenograft tumor model, and that this occurs via upregulation of histone acetylation in the p21 promoter region, enhancement of p21 expression, suppression of phosphorylation of retinoblastoma protein, blocking of transcription activated by E2F, and induction of G0/G1 arrest.
Collapse
Affiliation(s)
- Zhihua Zhang
- Hematology Department, Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhang M, Li J, Wang L, Tian Z, Zhang P, Xu Q, Zhang C, Wei F, Chen W. Prognostic significance of p21, p27 and survivin protein expression in patients with oral squamous cell carcinoma. Oncol Lett 2013; 6:381-386. [PMID: 24137333 PMCID: PMC3789108 DOI: 10.3892/ol.2013.1381] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/23/2013] [Indexed: 12/21/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for >80% of head and neck malignancies. p21, p27 and survivin proteins are abnormally expressed in OSCC and have been previously reported to correlate with cell proliferation and apoptosis. However, the prognostic significance of p21, p27 and survivin remains controversial. The aim of the present study was to investigate the association of clinical parameters and prognosis with the levels of p21, p27 and survivin expression in patients with OSCC. The levels of the three biomarkers were evaluated by immunohistochemical staining in specimens from 110 patients with OSCC and each section was scored according to the percentage of positive tumor cells and staining intensity. Log-rank test and Cox proportional hazards regression were performed to assess the correlation between biomarkers and clinical events. The association between the immunoexpression of p21, p27 and survivin and clinical pathological variables were analyzed by the χ2 test and a non-parametric analysis. The expression of p21 in patients with OSCC was found to correlate with the expression of p27 and survivin. The results of the current study revealed that the five-year survival rate was significantly lower in patients with high p21 expression. In addition, the expression of p27 also showed a negative correlation with the five-year survival rate of OSCC, but to a lesser extent. By contrast, the expression of survivin was not a prognostic factor for OSCC. A Kaplan-Meier analysis and Cox proportional hazards model showed that lymph node metastasis and p21 expression were independent prognostic factors of OSCC.
Collapse
Affiliation(s)
- Mingbin Zhang
- School Of Stomatology, Shandong University, Jinan, Shandong 250012; ; Department of Stomatology, Tai'an City Central Hospital, Tai'an, Shandong 271000
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Patchouli alcohol, an essential oil of Pogostemon cablin, exhibits anti-tumorigenic activity in human colorectal cancer cells. Int Immunopharmacol 2013; 16:184-90. [DOI: 10.1016/j.intimp.2013.04.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/29/2013] [Accepted: 04/04/2013] [Indexed: 12/21/2022]
|
46
|
Citronberg J, Bostick R, Ahearn T, Turgeon DK, Ruffin MT, Djuric Z, Sen A, Brenner DE, Zick SM. Effects of ginger supplementation on cell-cycle biomarkers in the normal-appearing colonic mucosa of patients at increased risk for colorectal cancer: results from a pilot, randomized, and controlled trial. Cancer Prev Res (Phila) 2013; 6:271-81. [PMID: 23303903 PMCID: PMC3618532 DOI: 10.1158/1940-6207.capr-12-0327] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To estimate the effects of ginger on apoptosis, proliferation, and differentiation in the normal-appearing colonic mucosa, we randomized 20 people at increased risk for colorectal cancer to 2.0 g of ginger or placebo daily for 28 days in a pilot trial. Overall expression and distributions of Bax, Bcl-2, p21, hTERT, and MIB-1 (Ki-67) in colorectal crypts in rectal mucosa biopsies were measured using automated immunohistochemistry and quantitative image analysis. Relative to placebo, Bax expression in the ginger group decreased 15.6% (P = 0.78) in the whole crypts, 6.6% (P = 0.95) in the upper 40% (differentiation zone) of crypts, and 21.7% (P = 0.67) in the lower 60% (proliferative zone) of crypts; however, there was a 19% increase (P = 0.14) in Bax expression in the upper 40% relative to the whole crypt. While p21 and Bcl-2 expression remained relatively unchanged, hTERT expression in the whole crypts decreased by 41.2% (P = 0.05); the estimated treatment effect on hTERT expression was larger in the upper 40% of crypts (-47.9%; P = 0.04). In the ginger group, MIB-1 expression decreased in the whole crypts, upper 40% of crypts, and lower 60% of crypts by 16.9% (P = 0.39), 46.8% (P = 0.39), and 15.3% (P = 0.41), respectively. These pilot study results suggest that ginger may reduce proliferation in the normal-appearing colorectal epithelium and increase apoptosis and differentiation relative to proliferation--especially in the differentiation zone of the crypts and support a larger study to further investigate these results.
Collapse
Affiliation(s)
| | - Roberd Bostick
- Department of Epidemiology, Emory University, Atlanta, GA
- Winship Cancer Institute, Emory University, Atlanta, GA
| | - Thomas Ahearn
- Department of Epidemiology, Emory University, Atlanta, GA
| | - D. Kim Turgeon
- Department of Internal Medicine, University of Michigan Medical School
| | - Mack T. Ruffin
- Department of Family Medicine, University of Michigan Medical School
| | - Zora Djuric
- Department of Family Medicine, University of Michigan Medical School
| | - Ananda Sen
- Department of Family Medicine, University of Michigan Medical School
| | - Dean E. Brenner
- Department of Internal Medicine, University of Michigan Medical School
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
- VA Medical Center, Ann Arbor, MI
| | - Suzanna M. Zick
- Department of Family Medicine, University of Michigan Medical School
| |
Collapse
|
47
|
Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, Meyerhardt JA, Meissner A, Schernhammer ES, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod Pathol 2013; 26:465-84. [PMID: 23307060 PMCID: PMC3637979 DOI: 10.1038/modpathol.2012.214] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigenetics acts as an interface between environmental/exogenous factors, cellular responses, and pathological processes. Aberrant epigenetic signatures are a hallmark of complex multifactorial diseases (including neoplasms and malignancies such as leukemias, lymphomas, sarcomas, and breast, lung, prostate, liver, and colorectal cancers). Epigenetic signatures (DNA methylation, mRNA and microRNA expression, etc) may serve as biomarkers for risk stratification, early detection, and disease classification, as well as targets for therapy and chemoprevention. In particular, DNA methylation assays are widely applied to formalin-fixed, paraffin-embedded archival tissue specimens as clinical pathology tests. To better understand the interplay between etiological factors, cellular molecular characteristics, and disease evolution, the field of 'molecular pathological epidemiology (MPE)' has emerged as an interdisciplinary integration of 'molecular pathology' and 'epidemiology'. In contrast to traditional epidemiological research including genome-wide association studies (GWAS), MPE is founded on the unique disease principle, that is, each disease process results from unique profiles of exposomes, epigenomes, transcriptomes, proteomes, metabolomes, microbiomes, and interactomes in relation to the macroenvironment and tissue microenvironment. MPE may represent a logical evolution of GWAS, termed 'GWAS-MPE approach'. Although epigenome-wide association study attracts increasing attention, currently, it has a fundamental problem in that each cell within one individual has a unique, time-varying epigenome. Having a similar conceptual framework to systems biology, the holistic MPE approach enables us to link potential etiological factors to specific molecular pathology, and gain novel pathogenic insights on causality. The widespread application of epigenome (eg, methylome) analyses will enhance our understanding of disease heterogeneity, epigenotypes (CpG island methylator phenotype, LINE-1 (long interspersed nucleotide element-1; also called long interspersed nuclear element-1; long interspersed element-1; L1) hypomethylation, etc), and host-disease interactions. In this article, we illustrate increasing contribution of modern pathology to broader public health sciences, which attests pivotal roles of pathologists in the new integrated MPE science towards our ultimate goal of personalized medicine and prevention.
Collapse
Affiliation(s)
- Shuji Ogino
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Howell LA, Brockman TA, Sinicrope PS, Patten CA, Decker PA, Ehlers SL, Lindor NM, Nigon SK, Petersen GM. Receptivity and Preferences in Cancer Risk Reduction Lifestyle Programs: A Survey of Colorectal Cancer Family Members. JOURNAL OF BEHAVIORAL HEALTH 2013; 2:279-290. [PMID: 25606348 PMCID: PMC4297662 DOI: 10.5455/jbh.20130921013627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Cancer is a shared family experience, and thus the purpose of this study was to assess receptivity and preferences for cancer risk reduction programs among at-risk family members with two or more relatives affected with colorectal cancer (CRC). METHODS The sample comprised 401 at-risk family members with two or more relatives affected with CRC from the Colon Cancer Family Registry. In March 2009, respondents completed a mailed survey assessing receptivity and preferences for participating in cancer risk reduction programs and evaluated their relationship to demographic, medical, and psychosocial variables. Multivariable generalized estimating equation approaches were used to model preferences. RESULTS Overall, 81% of respondents were receptive to a lifestyle cancer risk reduction program; of these, about half (54%) preferred to participate with their family. Program preferences included: weight management (36%) and nutrition (31%); delivered through the internet (41%) or mail (39%). In a multivariate model, a greater level of concern about cancer (p<0.001), female gender (p=0.002), and higher education (p=0.016) were significantly correlated with willingness to participate in lifestyle programs. CONCLUSIONS Family members of those with CRC are receptive to cancer risk reduction programs that focus on weight management and nutrition delivered via the internet or mail. Future research is needed to determine how best to incorporate a family-based approach that addresses the cancer experience when designing lifestyle intervention programs.
Collapse
Affiliation(s)
- Lisa A Howell
- Department of Psychology and Psychiatry, 200 First St. SW, Mayo Clinic Rochester, MN 55905, USA
| | - Tabetha A Brockman
- Behavioral Health Research Program, Mayo Clinic Rochester, 200 First St. SW, Rochester, MN 55905, USA
| | - Pamela S Sinicrope
- Department of Psychology and Psychiatry, 200 First St. SW, Mayo Clinic Rochester, MN 55905, USA ; Behavioral Health Research Program, Mayo Clinic Rochester, 200 First St. SW, Rochester, MN 55905, USA
| | - Christi A Patten
- Department of Psychology and Psychiatry, 200 First St. SW, Mayo Clinic Rochester, MN 55905, USA ; Behavioral Health Research Program, Mayo Clinic Rochester, 200 First St. SW, Rochester, MN 55905, USA
| | - Paul A Decker
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic Rochester, 200 First St. SW, Rochester, MN 55905, USA
| | - Shawna L Ehlers
- Department of Psychology and Psychiatry, 200 First St. SW, Mayo Clinic Rochester, MN 55905, USA
| | - Noralane M Lindor
- Department of Medical Genetics, Mayo Clinic Rochester, 200 First St. SW, Rochester, MN 55905, USA
| | - Sandra K Nigon
- Department of Medical Genetics, Mayo Clinic Rochester, 200 First St. SW, Rochester, MN 55905, USA
| | - Gloria M Petersen
- Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic Rochester, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
49
|
Ogino S, King EE, Beck AH, Sherman ME, Milner DA, Giovannucci E. Interdisciplinary education to integrate pathology and epidemiology: towards molecular and population-level health science. Am J Epidemiol 2012; 176:659-67. [PMID: 22935517 DOI: 10.1093/aje/kws226] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent decades, epidemiology, public health, and medical sciences have been increasingly compartmentalized into narrower disciplines. The authors recognize the value of integration of divergent scientific fields in order to create new methods, concepts, paradigms, and knowledge. Herein they describe the recent emergence of molecular pathological epidemiology (MPE), which represents an integration of population and molecular biologic science to gain insights into the etiologies, pathogenesis, evolution, and outcomes of complex multifactorial diseases. Most human diseases, including common cancers (such as breast, lung, prostate, and colorectal cancers, leukemia, and lymphoma) and other chronic diseases (such as diabetes mellitus, cardiovascular diseases, hypertension, autoimmune diseases, psychiatric diseases, and some infectious diseases), are caused by alterations in the genome, epigenome, transcriptome, proteome, metabolome, microbiome, and interactome of all of the above components. In this era of personalized medicine and personalized prevention, we need integrated science (such as MPE) which can decipher diseases at the molecular, genetic, cellular, and population levels simultaneously. The authors believe that convergence and integration of multiple disciplines should be commonplace in research and education. We need to be open-minded and flexible in designing integrated education curricula and training programs for future students, clinicians, practitioners, and investigators.
Collapse
Affiliation(s)
- Shuji Ogino
- Cancer Epidemiology Program, Dana-Farber/Harvard Cancer Center, 450 Brookline Ave., Room JF-215C, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Kuiper JG, Phipps AI, Neuhouser ML, Chlebowski RT, Thomson CA, Irwin ML, Lane DS, Wactawski-Wende J, Hou L, Jackson RD, Kampman E, Newcomb PA. Recreational physical activity, body mass index, and survival in women with colorectal cancer. Cancer Causes Control 2012; 23:1939-48. [PMID: 23053793 DOI: 10.1007/s10552-012-0071-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/18/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Previous studies have shown that physical inactivity and obesity are risk factors for the development of colorectal cancer. However, controversy exists regarding the influence of these factors on survival in colorectal cancer patients. We evaluated the impact of recreational physical activity and body mass index (BMI) before and after colorectal cancer diagnosis on disease-specific mortality and all-cause mortality. PATIENTS AND METHODS This prospective cohort study included 1,339 women enrolled in the Women's Health Initiative study who were diagnosed with colorectal cancer subsequent to study enrollment. BMI and recreational physical activity were measured before cancer diagnosis at study entry (pre-diagnostic) and after diagnosis at study follow-up interviews (post-diagnostic). We used Cox regression to estimate the association between pre- and post-diagnostic exposures and survival after colorectal cancer diagnosis. RESULTS Among women diagnosed with colorectal cancer, 265 (13 %) deaths occurred during a median study follow-up of 11.9 years, of which 171 (65 %) were attributed to colorectal cancer. Compared with women reporting no pre-diagnostic recreational physical activity, those reporting activity levels of ≥18 MET-h/week had significantly lower colorectal cancer-specific mortality (hazard ratio (HR) = 0.68; 95 % confidence interval (CI): 0.41-1.13) and all-cause mortality (HR = 0.63; 95 % CI: 0.42-0.96). Similar inverse associations were seen for post-diagnostic recreational physical activity. Neither pre- nor post-diagnostic BMI were associated with mortality after colorectal cancer diagnosis. CONCLUSION Recreational physical activity before and after colorectal cancer diagnosis, but not BMI, is associated with more favorable survival.
Collapse
Affiliation(s)
- Josephina G Kuiper
- Division of Human Nutrition, Wageningen University, Bomenweg 4, 6703 HD, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|