1
|
Rataan AO, Xu Y, Geary SM, Zakharia Y, Kamel ES, Rustum YM, Salem AK. Targeting transforming growth factor-β1 by methylseleninic acid/seleno-L-methionine in clear cell renal cell carcinoma: Mechanisms and therapeutic potential. Cancer Treat Res Commun 2025; 42:100864. [PMID: 39813754 PMCID: PMC11846624 DOI: 10.1016/j.ctarc.2025.100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) poses a significant global health challenge as its incidence continues to rise, resulting in a substantial annual mortality rate. Major clinical challenges to current ccRCC treatments include high drug-resistance rates as well as dose-limiting adverse events; underlining the need to identify additional 'druggable' targets. TGF-β1, VEGF, and PD-L1 are potential therapeutic targets in ccRCC. This study analyzed their expression in human ccRCC cell lines and patient tumor biopsies. Data obtained from western blotting demonstrated higher levels of TGF-β1 and PD-L1 and lower levels of VEGF in sarcomatoid ccRCC cell lines compared to non-sarcomatoid ccRCC cell lines. In patient samples, TGF-β1 was significantly upregulated in both non-sarcomatoid and sarcomatoid ccRCC tumors. It was demonstrated through two assays (cellular thermal shift assay and a size exclusion assay) that methylseleninic acid (MSA) binds specifically and directly to TGF-β1. MSA treatment significantly downregulated TGF-β1, PD-L1, and VEGF in a dose- and time-dependent manner in both non-sarcomatoid and sarcomatoid ccRCC cell lines. Seleno-L-methionine (SLM) treatment in a nude mouse xenograft model showed a significant tumor growth inhibition and TGF-β1 downregulation at non-toxic doses. These findings suggest that selenium-mediated downregulation of TGF-β1, PD-L1, and VEGF could be a viable therapeutic strategy for ccRCC.
Collapse
Affiliation(s)
- Aseel O Rataan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yan Xu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Yousef Zakharia
- Department of Internal Medicine, Division of Hematology and Oncology, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Eman S Kamel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Youcef M Rustum
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Roswell Park Comprehensive Cancer Center, Department of Pharmacology & Therapeutics, Buffalo, NY 14203, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Famurewa AC, George MY, Ukwubile CA, Kumar S, Kamal MV, Belle VS, Othman EM, Pai SRK. Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity-a review of literature evidence. Biometals 2024; 37:1325-1378. [PMID: 39347848 DOI: 10.1007/s10534-024-00637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Anticancer chemotherapy (ACT) remains a cornerstone in cancer treatment, despite significant advances in pharmacology over recent decades. However, its associated side effect toxicity continues to pose a major concern for both oncology clinicians and patients, significantly impacting treatment protocols and patient quality of life. Current clinical strategies to mitigate ACT-induced toxicity have proven largely unsatisfactory, leaving a critical unmet need to block toxicity mechanisms without diminishing ACT's therapeutic efficacy. This review aims to document the molecular mechanisms underlying ACT toxicity and highlight research efforts exploring the protective effects of trace elements (TEs) and their nanoparticles (NPs) against these mechanisms. Our literature review reveals that the primary driver of ACT toxicity is redox imbalance, which triggers oxidative inflammation, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, autophagy, and dysregulation of signaling pathways such as PI3K/mTOR/Akt. Studies suggest that TEs, including zinc, selenium, boron, manganese, and molybdenum, and their NPs, can potentially counteract ACT-induced toxicity by inhibiting oxidative stress-mediated pathways, including NF-κB/TLR4/MAPK/NLRP3, STAT-3/NLRP3, Bcl-2/Bid/p53/caspases, and LC3/Beclin-1/CHOP/ATG6, while also upregulating protective signaling pathways like Sirt1/PPAR-γ/PGC-1α/FOXO-3 and Nrf2/HO-1/ARE. However, evidence regarding the roles of lncRNA and the Wnt/β-catenin pathway in ACT toxicity remains inconsistent, and the impact of TEs and NPs on ACT efficacy is not fully understood. Further research is needed to confirm the protective effects of TEs and their NPs against ACT toxicity in cancer patients. In summary, TEs and their NPs present a promising avenue as adjuvant agents for preventing non-target organ toxicity induced by ACT.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike Ikwo, Abakaliki, Ebonyi, Nigeria.
- Centre for Natural Products Discovery, School of P harmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cletus A Ukwubile
- Department of Pharmacognosy, Faculty of Pharmacy, University of Maiduguri, Bama Road, Maiduguri, Borno, Nigeria
| | - Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mehta V Kamal
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vijetha S Belle
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Cancer Therapy Research Center, Department of Biochemistry-I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Department of Bioinformatics, University of Würzburg, Am Hubland, 97074, BiocenterWürzburg, Germany
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
3
|
Jiang G, Sun S, Huang L, Xie G, Xiong J. Influence of smoking status on the relationship between serum selenium and cause-specific mortality in US adults. Sci Rep 2024; 14:21204. [PMID: 39261622 PMCID: PMC11391055 DOI: 10.1038/s41598-024-71926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Selenium, a crucial antioxidant in the body, has been linked to all-cause and cause-specific mortality. However, the relationship between selenium and mortality in the general population remains unclear. A total of 5449 participants in the National Health and Nutrition Examination Survey (NHANES) (2003-2004, 2011-2016) were analyzed to track participant mortality until December 31, 2019. The COX proportional hazard model, Kaplan‒Meier survival analysis and restricted cubic spline regression analysis were used to investigate the associations. Subgroup analysis was conducted on the basis of age (≤ 60, > 60), sex (male, female), and smoking status (nonsmoker, former smoker, and current smoker). The second quartile was associated with lower all-cause mortality and noncardiovascular mortality (HR and 95% CI 0.61,0.45-0.83;0.59,0.42-0.83, respectively). The third quartile was associated with lower cardiovascular-related mortality (HR and 95% CI 0.49, 0.32-0.76). Elevated serum selenium concentrations were associated with lower all-cause mortality, noncardiovascular mortality (range ≤ 129.82 μg/L), and cardiovascular mortality (range ≤ 129.08 μg/L). Subgroup analysis revealed a positive correlation between the serum selenium concentration (range ≥ 129.82 μg/L) and all-cause mortality among the subgroup of current smokers (p < 0.001). This study indicates that the protective effect of the serum selenium concentration on cause-specific mortality decreases beyond a certain range in the general population, potentially increasing the risk of death among current smokers.
Collapse
Affiliation(s)
- Gege Jiang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shangqi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liqin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guanfeng Xie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Batista JEDS, Rodrigues MB, Bristot IJ, Silva V, Bernardy S, Rodrigues OED, Dornelles L, Carvalho FB, de Sousa FJF, Fernandes MDC, Zanatta G, Soares FAA, Klamt F. Systematic screening of synthetic organochalcogen compounds with anticancer activity using human lung adenocarcinoma spheroids. Chem Biol Interact 2024; 396:111047. [PMID: 38735454 DOI: 10.1016/j.cbi.2024.111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Lung adenocarcinoma stands as a leading global cause of cancer-related fatalities, with current therapeutic approaches remaining unsatisfactory. Given the association between elevated oxidative markers and the aggressive nature of cancer cells (including multidrug resistance and metastatic potential) that can predict poor outcome of lung adenocarcinoma patients, any compounds that interfere with their aberrant redox biology should be rationally explored as innovative intervention strategies. This study was designed to screen potential anticancer activities within nine newly synthesized organochalcogen - compounds characterized by the presence of oxygen, sulfur, or selenium elements in their structure and exhibiting antioxidant activity - and systematically evaluated their performance against cisplatin, the cornerstone therapeutic agent for lung adenocarcinoma. Our methodology involved the establishment of optimal conditions for generating single tumor spheroids using A549 human lung adenocarcinoma cell line. The initiation interval for spheroid formation was determined to be four days in vitro (DIV), and these single spheroids demonstrated sustained growth over a period of 20 DIV. Toxic dose-response curves were subsequently performed for each compound after 24 and 48 h of incubation at the 12th DIV. Our findings reveal that at least two of the synthetic organochalcogen compounds exhibited noteworthy anticancer activity, surpassing cisplatin in key parameters such as lower LD (Lethal Dose) 50, larger drug activity area, and maximum amplitude of effect, and are promising drugs for futures studies in the treatment of lung adenocarcinomas. Physicochemical descriptors and prediction ADME (absorption, distribution, metabolism, and excretion) parameters of selected compounds were obtained using SwissADME computational tool; Molinspiration server was used to calculate a biological activity score, and possible molecule targets were evaluated by prediction with the SwissTargetPrediction server. This research not only sheds light on novel avenues for therapeutic exploration but also underscores the potential of synthetic organochalcogen compounds as agents with superior efficacy compared to established treatments.
Collapse
Affiliation(s)
- Jéssica Eduarda Dos Santos Batista
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil; Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil; National Institutes of Science and Technology-Translational Medicine (INCT-TM), Brazil
| | | | - Ivi Juliana Bristot
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil; National Institutes of Science and Technology-Translational Medicine (INCT-TM), Brazil
| | - Valquíria Silva
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil; National Institutes of Science and Technology-Translational Medicine (INCT-TM), Brazil
| | - Silvia Bernardy
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | | | - Luciano Dornelles
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Fabiano Barbosa Carvalho
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil
| | | | - Marilda da Cruz Fernandes
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil
| | - Geancarlo Zanatta
- Department of Biophysics, UFRGS, Porto Alegre, RS, 91501-970, Brazil
| | - Félix Alexandre Antunes Soares
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil; National Institutes of Science and Technology-Translational Medicine (INCT-TM), Brazil.
| |
Collapse
|
5
|
Jiang X, Zhu L, Wei Q, Lu W, Yu J, Zhu S. Enhancing SN38 prodrug delivery using a self-immolative linker and endogenous albumin transport. J Control Release 2024; 369:622-629. [PMID: 38604383 DOI: 10.1016/j.jconrel.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Enhancing the delivery and release efficiency of hydroxyl agents, constrained by high pKa values and issues of release rate or unstable linkage, is a critical challenge. To address this, a self-immolative linker, composed of a modifiable p-hydroxybenzyl ether and a fast cyclization adapter (N-(ortho-hydroxyphenyl)-N-methylcarbamate) was strategically designed, for the synthesis of prodrugs. The innovative linker not only provides a side chain modification but also facilitates the rapid release of the active payloads, thereby enabling precise drug delivery. Particularly, five prodrug model compounds (J1, J2, J3, J5 and J6) were synthesized to evaluate the release rates by using β-glucuronic acid as trigger and five hydroxyl compounds as model payloads. Significantly, all prodrug model compounds could efficiently release the hydroxyl payloads under the action of β-glucuronidase, validating the robustness of the linker. And then, to assess the drug delivery and release efficiency using endogenous albumin as a transport vehicle, J1148, a SN38 prodrug modified with maleimide side chain was synthesized. Results demonstrated that J1148 covalently bound to plasma albumin through in situ Michael addition, effectively targeting the tumor microenvironment. Activated by β-glucuronidase, J1148 underwent a classical 1, 6-elimination, followed by rapid cyclization of the adapter, thereby releasing SN38. Impressively, J1148 showed excellent therapeutic efficacy against human colonic cancer xenograft model, leading to a significant reduction or even disappearance of tumors (3/6 of mice cured). These findings underscore the potential of the designed linker in the delivery system of hydroxyl agents, positioning it at the forefront of advancements in drug delivery technology.
Collapse
Affiliation(s)
- Xing Jiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Lingyi Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Qingyu Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| | - Shulei Zhu
- Innovation Center for AI and Drug Discovery, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
6
|
Chen Y, Hu Z, Jiang J, Liu C, Gao S, Song M, Hang T. Evaluation of pharmacological and pharmacokinetic herb-drug interaction between irinotecan hydrochloride injection and Kangai injection in colorectal tumor-bearing mice and healthy rats. Front Pharmacol 2023; 14:1282062. [PMID: 38094890 PMCID: PMC10716275 DOI: 10.3389/fphar.2023.1282062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/15/2023] [Indexed: 07/17/2024] Open
Abstract
Introduction: Kangai (KA) injection, a Chinese herbal injection, is often used in combination with irinotecan (CPT-11) to enhance the effectiveness of anti-colorectal cancer treatment and alleviate side effects. However, the combined administration of this herb-drug pair remains controversial due to limited pre-clinical evidence and safety concerns. This study aimed to determine the pre-clinical herb-drug interactions between CPT-11 and KA injection to provide a reference for their clinical co-administration. Methods: In the pharmacological study, BALB/c mice with CT26 colorectal tumors were divided into four groups and treated with vehicle alone (0.9% saline), CPT-11 injection (100 mg/kg), KA injection (10 mL/kg), or a combination of CPT-11 and KA injection, respectively. The tumor volume of mice was monitored daily to evaluate the therapeutic effect. Daily body weight, survival rate, hematopoietic toxicity, immune organ indices, and gut toxicity were analyzed to study the adverse effects. Healthy Sprague-Dawley rats in the pharmacokinetic study were administered KA injection only (4 mL/kg), or a combination of CPT-11 injection (20 mg/kg) and KA injection, respectively. Six key components of KA injection (oxymatrine, matrine, ginsenoside Rb1, Rg1, Re, and astragaloside IV) in rat plasma samples collected within 24 h after administration were determined by LC-MS/MS. Results: The pharmacological study indicated that KA injection has the potential to enhance the anti-colorectal cancer efficacy of CPT-11 injection and alleviate the severe weight loss induced by CPT-11 injection in tumor-bearing mice. The pharmacokinetic study revealed that co-administration resulted in inhibition of oxymatrine metabolism in rats, evidenced by the significantly reduced Cmax and AUC0-t of its metabolite, matrine (p < 0.05), from 2.23 ± 0.24 to 1.38 ± 0.12 μg/mL and 8.29 ± 1.34 to 5.30 ± 0.79 μg h/mL, respectively. However, due to the similar efficacy of oxymatrine and matrine, this may not compromise the anti-cancer effect of this herb-drug pair. Discussion: This study clarified the pre-clinical pharmacology and pharmacokinetic benefits and risks of the CPT-11-KA combination and provided a reference for their clinical co-administration.
Collapse
Affiliation(s)
- Yanfei Chen
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
| | - Zhaoliang Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
| | - Jing Jiang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
| | - Chenxi Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
| | - Shuxiao Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
| | - Min Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
| | - Taijun Hang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
| |
Collapse
|
7
|
Keshta AT, Fathallah AM, Attia YA, Salem EA, Watad SH. Ameliorative effect of selenium nanoparticles on testicular toxicity induced by cisplatin in adult male rats. Food Chem Toxicol 2023; 179:113979. [PMID: 37544473 DOI: 10.1016/j.fct.2023.113979] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Cisplatin (Cis) is a treatment for testicular germ-cell tumors (TGCTs). Unfortunately, it causes testicular toxicity due to releasing reactive oxygen species (ROS) causing damage to testicular cells and chromosomes. The current study aimed to investigate the ameliorative effect of selenium nanoparticles (SeNPs) against cisplatin testicular toxicity in male rats by assessment of body weight, testis weight, oxidative stress markers in testis homogenates as (malondialdehyde (MDA), Superoxide dismutase (SOD), Glutathione reduced (GSH), Glutathione peroxidase (GSH ∼ PX) and Catalase (CAT)), gene expression, testosterone concentration (T), sperm characteristics (count, motility and abnormality) and testicular histopathology. Methods: Thirty adult male rats divided equally into four groups; a single dose intraperitoneally injection of cisplatin (10 mg/kg) and selenium nanoparticles (2 mg/kg/day) were administrated alone or in combination. Cis group showed a decrease in body weight, testis weight, antioxidant activities (SOD, GSH, GSH ∼ PX and CAT), T concentration and steroidogenetic expression, the data recorded an increase in MDA levels and sperm abnormality, meanwhile histopathology of testis sections showed degenerative changes in the seminiferous tubules. The co-administration of selenium nanoparticles ameliorated the harmful effects of cisplatin. In conclusion; SeNPs through its antioxidant potential may be useful to prevent the testicular toxicity induced by cisplatin to the rat testis by reducing oxidative stress.
Collapse
Affiliation(s)
- Akaber T Keshta
- Biochemistry Department, Faculty of science, Zagazig University, Zagazig, Egypt.
| | - Ahmed M Fathallah
- Biochemistry Department, Faculty of science, Zagazig University, Zagazig, Egypt.
| | - Yasser A Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt.
| | - Emad A Salem
- Urology and Andrology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Shimaa H Watad
- Biochemistry Department, Faculty of science, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
8
|
Fan TWM, Winnike J, Al-Attar A, Belshoff AC, Lorkiewicz PK, Tan JL, Wu M, Higashi RM, Lane AN. Differential Inhibition of Anaplerotic Pyruvate Carboxylation and Glutaminolysis-Fueled Anabolism Underlies Distinct Toxicity of Selenium Agents in Human Lung Cancer. Metabolites 2023; 13:774. [PMID: 37512481 PMCID: PMC10383978 DOI: 10.3390/metabo13070774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Past chemopreventive human trials on dietary selenium supplements produced controversial outcomes. They largely employed selenomethionine (SeM)-based diets. SeM was less toxic than selenite or methylseleninic acid (MSeA) to lung cancer cells. We thus investigated the toxic action of these Se agents in two non-small cell lung cancer (NSCLC) cell lines and ex vivo organotypic cultures (OTC) of NSCLC patient lung tissues. Stable isotope-resolved metabolomics (SIRM) using 13C6-glucose and 13C5,15N2-glutamine tracers with gene knockdowns were employed to examine metabolic dysregulations associated with cell type- and treatment-dependent phenotypic changes. Inhibition of key anaplerotic processes, pyruvate carboxylation (PyC) and glutaminolysis were elicited by exposure to MSeA and selenite but not by SeM. They were accompanied by distinct anabolic dysregulation and reflected cell type-dependent changes in proliferation/death/cell cycle arrest. NSCLC OTC showed similar responses of PyC and/or glutaminolysis to the three agents, which correlated with tissue damages. Altogether, we found differential perturbations in anaplerosis-fueled anabolic pathways to underlie the distinct anti-cancer actions of the three Se agents, which could also explain the failure of SeM-based chemoprevention trials.
Collapse
Affiliation(s)
- Teresa W.-M. Fan
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| | - Jason Winnike
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA; (J.W.); (A.C.B.); (P.K.L.)
| | - Ahmad Al-Attar
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| | - Alexander C. Belshoff
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA; (J.W.); (A.C.B.); (P.K.L.)
| | - Pawel K. Lorkiewicz
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA; (J.W.); (A.C.B.); (P.K.L.)
| | - Jin Lian Tan
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Min Wu
- Seahorse Bioscience, Billerica, MA 01862, USA
| | - Richard M. Higashi
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| |
Collapse
|
9
|
He Y, Yang M, Yang L, Hao M, Wang F, Li X, Taylor EW, Zhang X, Zhang J. Preparation and anticancer actions of CuET-nanoparticles dispersed by bovine serum albumin. Colloids Surf B Biointerfaces 2023; 226:113329. [PMID: 37156027 DOI: 10.1016/j.colsurfb.2023.113329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Diethyldithiocarbamate-copper complex (CuET) shows promising anticancer effect; nonetheless, preclinical evaluations of CuET are hindered due to poor solubility. We prepared bovine serum albumin (BSA)-dispersed CuET nanoparticles (CuET-NPs) to overcome the shortcoming. Results from a cell-free redox system demonstrated that CuET-NPs reacted with glutathione, leading to form hydroxyl radical. Glutathione-mediated production of hydroxyl radicals may help explain why CuET selectively kills drug-resistant cancer cells with higher levels of glutathione. CuET-NPs dispersed by autoxidation products of green tea epigallocatechin gallate (EGCG) also reacted with glutathione; however, the autoxidation products eradicated hydroxyl radicals; consequently, such CuET-NPs exhibited largely compromised cytotoxicity, suggesting that hydroxyl radical is a crucial mediator of CuET anticancer activity. In cancer cells, BSA-dispersed CuET-NPs exhibited cytotoxic activities equivalent to CuET and induced protein poly-ubiquitination. Moreover, the reported powerful inhibition of CuET on colony formation and migration of cancer cells could be replicated by CuET-NPs. These similarities demonstrate BSA-dispersed CuET-NPs is identical to CuET. Thus, we advanced to pilot toxicological and pharmacological evaluations. CuET-NPs caused hematologic toxicities in mice and induced protein poly-ubiquitination and apoptosis of cancer cells inoculated in mice at a defined pharmacological dose. Given high interest in CuET and its poor solubility, BSA-dispersed CuET-NPs pave the way for preclinical evaluations.
Collapse
Affiliation(s)
- Yufeng He
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingchuan Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Lumin Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Meng Hao
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Fuming Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiuli Li
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jinsong Zhang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
Rogachev VV, Goltyaev MV, Varlamova EG, Turovsky EA. Molecular Mechanisms of the Cytotoxic Effect of Recombinant Selenoprotein SELENOM on Human Glioblastoma Cells. Int J Mol Sci 2023; 24:ijms24076469. [PMID: 37047442 PMCID: PMC10094712 DOI: 10.3390/ijms24076469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Currently, selenobiology is an actively developing area, primarily due to the study of the role of the trace element selenium and its organic and inorganic compounds in the regulation of vital processes occurring in the cell. In particular, the study of the functions of selenium nanoparticles has gained great popularity in recent years. However, a weak point in this area of biology is the study of the functions of selenoproteins, of which 25 have been identified in mammals to date. First of all, this is due to the difficulties in obtaining native forms of selenoproteins in preparative quantities, due to the fact that the amino acid selenocysteine is encoded by one of the three stop codons of the TGA universal genetic code. A complex system for recognizing a given codon as a selenocysteine codon has a number of features in pro- and eukaryotes. The selenoprotein SELENOM is one of the least studied mammalian selenoproteins. In this work, for the first time, studies of the molecular mechanisms of regulation of the cytotoxic effect of this protein on human glioblastoma cells were carried out. The cytotoxicity of cancer cells in our experiments was already observed when cells were exposed to 50 μg of SELENOM and increased in proportion to the increase in protein concentration. Apoptosis of human glioblastoma cells was accompanied by an increase in mRNA expression of a number of pro-apoptotic genes, an increase in endoplasmic reticulum stress, and activation of the UPR IRE1α signaling pathway. The results obtained also demonstrate a dose-dependent depletion of the Ca2+ pool under the action of SELENOM, which proves the important role of this protein in the regulation of calcium homeostasis in the cell.
Collapse
|
11
|
Liu S, Wei W, Wang J, Chen T. Theranostic applications of selenium nanomedicines against lung cancer. J Nanobiotechnology 2023; 21:96. [PMID: 36935493 PMCID: PMC10026460 DOI: 10.1186/s12951-023-01825-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/18/2023] [Indexed: 03/21/2023] Open
Abstract
The incidence and mortality rates of lung cancer are among the highest in the world. Traditional treatment methods include surgery, chemotherapy, and radiotherapy. Although rapid progress has been achieved in the past decade, treatment limitations remain. It is therefore imperative to identify safer and more effective therapeutic methods, and research is currently being conducted to identify more efficient and less harmful drugs. In recent years, the discovery of antitumor drugs based on the essential trace element selenium (Se) has provided good prospects for lung cancer treatments. In particular, compared to inorganic Se (Inorg-Se) and organic Se (Org-Se), Se nanomedicine (Se nanoparticles; SeNPs) shows much higher bioavailability and antioxidant activity and lower toxicity. SeNPs can also be used as a drug delivery carrier to better regulate protein and DNA biosynthesis and protein kinase C activity, thus playing a role in inhibiting cancer cell proliferation. SeNPs can also effectively activate antigen-presenting cells to stimulate cell immunity, exert regulatory effects on innate and regulatory immunity, and enhance lung cancer immunotherapy. This review summarizes the application of Se-based species and materials in lung cancer diagnosis, including fluorescence, MR, CT, photoacoustic imaging and other diagnostic methods, as well as treatments, including direct killing, radiosensitization, chemotherapeutic sensitization, photothermodynamics, and enhanced immunotherapy. In addition, the application prospects and challenges of Se-based drugs in lung cancer are examined, as well as their forecasted future clinical applications and sustainable development.
Collapse
Affiliation(s)
- Shaowei Liu
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weifeng Wei
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jinlin Wang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
12
|
Druggable Biomarkers Altered in Clear Cell Renal Cell Carcinoma: Strategy for the Development of Mechanism-Based Combination Therapy. Int J Mol Sci 2023; 24:ijms24020902. [PMID: 36674417 PMCID: PMC9864911 DOI: 10.3390/ijms24020902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Targeted therapeutics made significant advances in the treatment of patients with advanced clear cell renal cell carcinoma (ccRCC). Resistance and serious adverse events associated with standard therapy of patients with advanced ccRCC highlight the need to identify alternative 'druggable' targets to those currently under clinical development. Although the Von Hippel-Lindau (VHL) and Polybromo1 (PBRM1) tumor-suppressor genes are the two most frequently mutated genes and represent the hallmark of the ccRCC phenotype, stable expression of hypoxia-inducible factor-1α/2α (HIFs), microRNAs-210 and -155 (miRS), transforming growth factor-beta (TGF-ß), nuclear factor erythroid 2-related factor 2 (Nrf2), and thymidine phosphorylase (TP) are targets overexpressed in the majority of ccRCC tumors. Collectively, these altered biomarkers are highly interactive and are considered master regulators of processes implicated in increased tumor angiogenesis, metastasis, drug resistance, and immune evasion. In recognition of the therapeutic potential of the indicated biomarkers, considerable efforts are underway to develop therapeutically effective and selective inhibitors of individual targets. It was demonstrated that HIFS, miRS, Nrf2, and TGF-ß are targeted by a defined dose and schedule of a specific type of selenium-containing molecules, seleno-L-methionine (SLM) and methylselenocystein (MSC). Collectively, the demonstrated pleiotropic effects of selenium were associated with the normalization of tumor vasculature, and enhanced drug delivery and distribution to tumor tissue, resulting in enhanced efficacy of multiple chemotherapeutic drugs and biologically targeted molecules. Higher selenium doses than those used in clinical prevention trials inhibit multiple targets altered in ccRCC tumors, which could offer the potential for the development of a new and novel therapeutic modality for cancer patients with similar selenium target expression. Better understanding of the underlying mechanisms of selenium modulation of specific targets altered in ccRCC could potentially have a significant impact on the development of a more efficacious and selective mechanism-based combination for the treatment of patients with cancer.
Collapse
|
13
|
Cruz DM, Mostafavi E, Vernet-Crua A, O’Connell CP, Barabadi H, Mobini S, Cholula-Díaz JL, Guisbiers G, García-Martín JM, Webster TJ. Green nanotechnology and nanoselenium for biomedical applications. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
14
|
Ehudin MA, Golla U, Trivedi D, Potlakayala SD, Rudrabhatla SV, Desai D, Dovat S, Claxton D, Sharma A. Therapeutic Benefits of Selenium in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23147972. [PMID: 35887320 PMCID: PMC9323677 DOI: 10.3390/ijms23147972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Supplementing chemotherapy and radiotherapy with selenium has been shown to have benefits against various cancers. This approach has also been shown to alleviate the side effects associated with standard cancer therapies and improve the quality of life in patients. In addition, selenium levels in patients have been correlated with various cancers and have served as a diagnostic marker to track the efficiency of treatments or to determine whether these selenium levels cause or are a result of the disease. This concise review presents a survey of the selenium-based literature, with a focus on hematological malignancies, to demonstrate the significant impact of selenium in different cancers. The anti-cancer mechanisms and signaling pathways regulated by selenium, which impart its efficacious properties, are discussed. An outlook into the relationship between selenium and cancer is highlighted to guide future cancer therapy development.
Collapse
Affiliation(s)
- Melanie A. Ehudin
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (S.D.)
| | - Upendarrao Golla
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Devnah Trivedi
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Shobha D. Potlakayala
- Department of Biological Sciences, School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA; (S.D.P.); (S.V.R.)
| | - Sairam V. Rudrabhatla
- Department of Biological Sciences, School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA; (S.D.P.); (S.V.R.)
| | - Dhimant Desai
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (S.D.)
| | - David Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Arati Sharma
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence:
| |
Collapse
|
15
|
Redox-sensitive doxorubicin liposome: a formulation approach for targeted tumor therapy. Sci Rep 2022; 12:11310. [PMID: 35788647 PMCID: PMC9253031 DOI: 10.1038/s41598-022-15239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
In this study redox-sensitive (RS) liposomes manufactured using 10,10′-diselanediylbis decanoic acid (DDA), an organoselenium RS compound, to enhance the therapeutic performance of doxorubicin (Dox). The DDA structure was confirmed by 1H NMR and LC–MS/MS. Various liposomal formulations (33 formulations) were prepared using DOPE, Egg PC, and DOPC with Tm ˂ 0 and DDA. Some formulations had mPEG2000-DSPE and cholesterol. After extrusion, the external phase was exchanged with sodium bicarbonate to create a pH gradient. Then, Dox was remotely loaded into liposomes. The optimum formulations indicated a burst release of 30% in the presence of 0.1% hydrogen peroxide at pH 6.5, thanks to the redox-sensitive role of DDA moieties; conversely, Caelyx (PEGylated liposomal Dox) showed negligible release at this condition. RS liposomes consisting of DOPE/Egg PC/DDA at 37.5 /60/2.5% molar ratio, efficiently inhibited C26 tumors among other formulations. The release of Dox from RS liposomes in the TME through the DDA link fracture triggered by ROS or glutathione is seemingly the prerequisite for the formulations to exert their therapeutic action. These findings suggest the potential application of such intelligent formulations in the treatment of various malignancies where the TME redox feature could be exploited to achieve an improved therapeutic response.
Collapse
|
16
|
Selenium and tellurium in the development of novel small molecules and nanoparticles as cancer multidrug resistance reversal agents. Drug Resist Updat 2022; 63:100844. [DOI: 10.1016/j.drup.2022.100844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Engle K, Kumar G. Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update. Eur J Med Chem 2022; 239:114542. [PMID: 35751979 DOI: 10.1016/j.ejmech.2022.114542] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022]
Abstract
Chemotherapy is one of the most common treatments for cancer that uses one or more anti-cancer drugs as a part of the standardized chemotherapy regimen. Cytotoxic chemicals delay and prevent cancer cells from multiplying, invading, and metastasizing. However, the significant drawbacks of cancer chemotherapy are the lack of selectivity of the cytotoxic drugs to tumour cells and normal cells and the development of resistance by cells for the particular drug or the combination of drugs. Multidrug resistance (MDR) is the low sensitivity of specific cells against drugs associated with cancer chemotherapy. The most common mechanisms of anticancer drug resistance are: (a) drug-dependent MDR (b) target-dependent MDR, and (c) drug target-independent MDR. In all the factors, the overexpression of multidrug efflux systems contributes significantly to the increased resistance in the cancer cells. Multidrug resistance due to efflux of anticancer drugs by membrane ABC transporters includes ABCB1, ABCC1, and ABCG2. ABCB1 inhibition can restore the sensitivity of the cancerous cells toward chemotherapeutic drugs. In this review, we discussed ABCB1 inhibitors under clinical studies with their mode of action, potency and selectivity. Also, we have highlighted the contribution of repurposing drugs, biologics and nano formulation strategies to combat multidrug resistance by modulating the ABCB1 activity.
Collapse
Affiliation(s)
- Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
18
|
Implication of methylselenocysteine in combination chemotherapy with gemcitabine for improved anticancer efficacy. Eur J Pharm Sci 2022; 176:106238. [PMID: 35714943 DOI: 10.1016/j.ejps.2022.106238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/14/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
Abstract
The limitations associated with cancer monotherapy including dose dependent toxicity and drug resistance can be addressed by combination chemotherapy. The combination of antineoplastic agents improves the cytotoxic activity in comparison to the single-agent based therapy in a synergistic or additive mode by reducing tumor growth as well as metastatic ability. In the present investigation, we explored the potential of methylselenocysteine (MSC) in combination chemotherapy with gemcitabine (GEM). The cytotoxic activity of GEM and MSC was determined in various cell lines and based on the activity, A549 cells were explored for the mechanistic studies including DAPI staining, measurement of oxidative stress, mitochondrial membrane potential loss, nitric oxide level, western blotting, cell migration and colony formation assays. A549 cells in combination treatment with MSC and GEM demonstrated enhanced cytotoxicity with more irregular cellular morphology as well as chromatin condensation and nuclear blebbing. The selected combination also significantly triggered ROS generation and mitochondrial destabilization, and alleviated cell migration potential and clonogenic propensity of A549 cells. Also, caspase-3 and PARP mediated apoptosis was observed in the combination treated cells. MSC based drug combination could offer the attributes of improved drug delivery and there was a 6-folds dose reduction of GEM in combination. Further, antitumor study in Ehrlich solid tumor model showed the efficacy of MSC combination with GEM for the enhanced antitumor activity. The proposed combination demonstrated the potential for further translational studies.
Collapse
|
19
|
MicroRNA Expression in Clear Cell Renal Cell Carcinoma Cell Lines and Tumor Biopsies: Potential Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23105604. [PMID: 35628416 PMCID: PMC9147802 DOI: 10.3390/ijms23105604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
This study was carried out to quantitate the expression levels of microRNA-17, -19a, -34a, -155, and -210 (miRs) expressed in nine clear cell renal cell carcinoma (ccRCC) and one chromophobe renal cell carcinoma cell line with and without sarcomatoid differentiation, and in six primary kidney tumors with matching normal kidney tissues. The data in the five non-sarcomatoid ccRCC cell lines-RC2, CAKI-1, 786-0, RCC4, and RCC4/VHL-and in the four ccRCC with sarcomatoid differentiation-RCJ41T1, RCJ41T2, RCJ41M, and UOK-127-indicated that miR-17 and -19a were expressed at lower levels relative to miR-34a, -155, and -210. Compared with RPTEC normal epithelial cells, miR-34a, miR-155, and miR-210 were expressed at higher levels, independent of the sarcomatoid differentiation status and hypoxia-inducible factors 1α and 2α (HIFs) isoform expression. In the one chromophobe renal cell carcinoma cell line, namely, UOK-276 with sarcomatoid differentiation, and expressing tumor suppressor gene TP53, miR-34a, which is a tumor suppressor gene, was expressed at higher levels than miR-210, -155, -17, and -19a. The pilot results generated in six tumor biopsies with matching normal kidney tissues indicated that while the expression of miR-17 and -19a were similar to the normal tissue expression profile, miR-210, -155, -and 34a were expressed at a higher level. To confirm that differences in the expression levels of the five miRs in the six tumor biopsies were statistically significant, the acquisition of a larger sample size is required. Data previously generated in ccRCC cell lines demonstrating that miR-210, miR-155, and HIFs are druggable targets using a defined dose and schedule of selenium-containing molecules support the concept that simultaneous and concurrent downregulation of miR-210, miR-155, and HIFs, which regulate target genes associated with increased tumor angiogenesis and drug resistance, may offer the potential for the development of a novel mechanism-based strategy for the treatment of patients with advanced ccRCC.
Collapse
|
20
|
Ahsan A, Liu Z, Su R, Liu C, Liao X, Su M. Potential Chemotherapeutic Effect of Selenium for Improved Canceration of Esophageal Cancer. Int J Mol Sci 2022; 23:5509. [PMID: 35628320 PMCID: PMC9145868 DOI: 10.3390/ijms23105509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma is the most common type of esophageal cancer and accounts for 5% of malignant tumor deaths. Recent research suggests that chronic inflammation and DNA damage may drive the onset of esophageal squamous cell carcinoma, implying that lowering chronic inflammation and DNA damage compounds may provide chemo-prevention. According to epidemiological and experimental evidence, selenium is linked to a lower risk of several malignancies, including esophageal squamous cell carcinoma. However, its exact mechanism is still unclear. In the present study, we used cell lines and a 4-NQO mice model to explore the anti-cancer mechanism of four types of selenium. Our findings indicated that selenium inhibited the proliferation, colony formation, and ROS level of ESCC cell lines in a time-dependent manner. Intriguingly, selenium treatment impeded 4-NQO-induced high-grade intraepithelial neoplasia and reduced the number of positive inflammatory cells by preserving DNA from oxidative damage. In addition, selenium significantly decreased the expression of Ki-67 and induced apoptosis. This study demonstrates that selenium has a significant chemo-preventive effect on ESCC by reducing high-grade dysplasia to low-grade dysplasia. For the first time, selenium was shown to slow down the progression of esophageal cancer by lowering inflammation and oxidative DNA damage.
Collapse
Affiliation(s)
- Anil Ahsan
- Institute of Clinical Pathology, Guangodng Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Zhiwei Liu
- Institute of Clinical Pathology, Guangodng Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Ruibing Su
- Institute of Clinical Pathology, Guangodng Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Chencai Liu
- Institute of Clinical Pathology, Guangodng Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Xiaoqi Liao
- Institute of Clinical Pathology, Guangodng Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Min Su
- Institute of Clinical Pathology, Guangodng Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| |
Collapse
|
21
|
Pinheiro WO, Costa do Santos MS, Farias GR, Fascineli ML, Ramos KLV, Duarte ECB, Damasceno EAM, da Silva JR, Joanitti GA, de Azevedo RB, Sousa MH, Lacava ZGM, Mosiniewicz-Szablewska E, Suchocki P, Morais PC, de Andrade LR. Combination of selol nanocapsules and magnetic hyperthermia hinders breast tumor growth in aged mice after a short-time treatment. NANOTECHNOLOGY 2022; 33:205101. [PMID: 35100566 DOI: 10.1088/1361-6528/ac504c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Short time treatment with reduced dosages of selol-loaded PLGA nanocapsules (NcSel) combined with magnetic hyperthermia (MHT) is evaluated in aged Erhlich tumor-bearing mice. Clinical, hematological, biochemical, genotoxic and histopathological parameters are assessed during 7 d treatment with NcSel and MHT, separately or combined. The time evolution of the tumor volume is successfully modeled using the logistic mathematical model. The combined therapy comprising NcSel and MHT is able to hinder primary tumor growth and a case of complete tumor remission is recorded. Moreover, no metastasis was diagnosed and the adverse effects are negligible. NcSel plus MHT may represent an effective and safe alternative to cancer control in aged patients. Future clinical trials are encouraged.
Collapse
Affiliation(s)
- Willie Oliveira Pinheiro
- University of Brasilia, Post-Graduation Program in Sciences and Technologies in Health, Faculty of Ceilandia, 72220-275, Brasilia, DF, Brazil
- University of Brasilia, Faculty of Ceilandia, Green Nanotechnology Group, 72220-900 Brasilia, DF, Brazil
| | | | - Gabriel Ribeiro Farias
- University of Brasilia, Laboratory of Immunology and Inflammation, Department of Cell Biology, 70910-900 Brasilia, DF, Brazil
| | - Maria Luiza Fascineli
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
- Department of Morphology (DMORF), Health Science Center, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - Khellida Loiane Vieira Ramos
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
| | | | | | - Jaqueline Rodrigues da Silva
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
| | - Graziella Anselmo Joanitti
- University of Brasilia, Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, 72220-275 Brasilia-DF, Brazil
| | - Ricardo Bentes de Azevedo
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
| | - Marcelo Henrique Sousa
- University of Brasilia, Faculty of Ceilandia, Green Nanotechnology Group, 72220-900 Brasilia, DF, Brazil
| | - Zulmira Guerrero Marques Lacava
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
| | | | - Piotr Suchocki
- Department of Bioanalysis and Drug Analysis, Medical University of Warsaw, Warsaw, Poland
| | - Paulo Cesar Morais
- University of Brasília, Institute of Physics, Brasília DF 70910-900, Brazil
- Catholic University of Brasília, Genomic Sciences and Biotechnology, Brasília DF 70790-160, Brazil
| | - Laise Rodrigues de Andrade
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
| |
Collapse
|
22
|
Potential Role of Selenium in the Treatment of Cancer and Viral Infections. Int J Mol Sci 2022; 23:ijms23042215. [PMID: 35216330 PMCID: PMC8879146 DOI: 10.3390/ijms23042215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Selenium has been extensively evaluated clinically as a chemopreventive agent with variable results depending on the type and dose of selenium used. Selenium species are now being therapeutically evaluated as modulators of drug responses rather than as directly cytotoxic agents. In addition, recent data suggest an association between selenium base-line levels in blood and survival of patients with COVID-19. The major focus of this mini review was to summarize: the pathways of selenium metabolism; the results of selenium-based chemopreventive clinical trials; the potential for using selenium metabolites as therapeutic modulators of drug responses in cancer (clear-cell renal-cell carcinoma (ccRCC) in particular); and selenium usage alone or in combination with vaccines in the treatment of patients with COVID-19. Critical therapeutic targets and the potential role of different selenium species, doses, and schedules were discussed.
Collapse
|
23
|
Hou Y, Wang W, Bartolo P. A concise review on the role of selenium for bone cancer applications. Bone 2021; 149:115974. [PMID: 33901723 DOI: 10.1016/j.bone.2021.115974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/20/2023]
Abstract
Cancer is one of the most challenging health problems in the world. Several clinical treatments have been developed, but all presenting several limitations. Among different types of cancer, bone cancer is less common, and limited new clinical treatment strategies have been proposed. Recently, a range of advanced materials has been investigated and applied for bone cancer treatment applications. However, due to the unique physiological properties of the bone tissue (a load-bearing tissue), the selection of the right type of material or the combination of suitable functional materials and base materials are critical. Selenium has been reported to present specific targeting inhibition effects on bone cancer without affecting the surrounding healthy tissue, revealing a huge potential for the development of new bone cancer treatment strategies. This paper presents a concise review on the use of selenium for bone cancer applications, discussing main synthesis methods, biocompatibility, and cytotoxicity aspects and the combination of selenium with a wide range of ceramics, metals, and polymers. Future perspectives and the novel concept of a dual-functional scaffold for both cancer treatment and new bone regeneration are also discussed.
Collapse
Affiliation(s)
- Yanhao Hou
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Weiguang Wang
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
24
|
Alam W, Ullah H, Santarcangelo C, Di Minno A, Khan H, Daglia M, Arciola CR. Micronutrient Food Supplements in Patients with Gastro-Intestinal and Hepatic Cancers. Int J Mol Sci 2021; 22:8014. [PMID: 34360782 PMCID: PMC8347237 DOI: 10.3390/ijms22158014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/05/2023] Open
Abstract
Colorectal carcinogenesis is the second most common cause of mortality across all types of malignancies, followed by hepatic and stomach cancers. Chemotherapy and radiotherapy are key approaches to treating cancer patients, but these carry major concerns, such as a high risk of side effects, poor accessibility, and the non-selective nature of chemotherapeutics. A number of natural products have been identified as countering various forms of cancer with fewer side effects. The potential impact of vitamins and minerals on long-term health, cognition, healthy development, bone formation, and aging has been supported by experimental and epidemiological studies. Successful treatment may thus be highly influenced by the nutritional status of patients. An insufficient diet could lead to detrimental effects on immune status and tolerance to treatment, affecting the ability of chemotherapy to destroy cancerous cells. In recent decades, most cancer patients have been taking vitamins and minerals to improve standard therapy and/or to decrease the undesirable side effects of the treatment together with the underlying disease. On the other hand, taking dietary supplements during cancer therapy may affect the effectiveness of chemotherapy. Thus, micronutrients in complementary oncology must be selected appropriately and should be taken at the right time. Here, the potential impact of micronutrients on gastro-intestinal and hepatic cancers is explored and their molecular targets are laid down.
Collapse
Affiliation(s)
- Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; (W.A.); (H.K.)
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.D.M.)
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.D.M.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.D.M.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; (W.A.); (H.K.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.D.M.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Carla Renata Arciola
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40136 Bologna, Italy
| |
Collapse
|
25
|
Varlamova EG, Turovsky EA. THE MAIN CYTOTOXIC EFFECTS OF METHYLSELENINIC ACID ON VARIOUS CANCER CELLS. Int J Mol Sci 2021; 22:6614. [PMID: 34205571 PMCID: PMC8234898 DOI: 10.3390/ijms22126614] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Studies of recent decades have repeatedly demonstrated the cytotoxic effect of selenium-containing compounds on cancer cells of various origins. Particular attention in these studies is paid to methylseleninic acid, a widespread selenium-containing compound of organic nature, for several reasons: it has a selective cytotoxic effect on cancer cells, it is cytotoxic in small doses, it is able to generate methylselenol, excluding the action of the enzyme β-lyase. All these qualities make methylseleninic acid an attractive substrate for the production of anticancer drugs on its basis with a well-pronounced selective effect. However, the studies available to date indicate that there is no strictly specific molecular mechanism of its cytotoxic effect in relation to different cancer cell lines and cancer models. This review contains generalized information on the dose- and time-dependent regulation of the toxic effect of methylseleninic acid on the proliferative properties of a number of cancer cell lines. In addition, special attention in this review is paid to the influence of this selenium-containing compound on the regulation of endoplasmic reticulum stress and on the expression of seven selenoproteins, which are localized in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya St. 3, Pushchino 142290, Moscow Region, Russia;
| | | |
Collapse
|
26
|
Petronek MS, Stolwijk JM, Murray SD, Steinbach EJ, Zakharia Y, Buettner GR, Spitz DR, Allen BG. Utilization of redox modulating small molecules that selectively act as pro-oxidants in cancer cells to open a therapeutic window for improving cancer therapy. Redox Biol 2021; 42:101864. [PMID: 33485837 PMCID: PMC8113052 DOI: 10.1016/j.redox.2021.101864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
There is a rapidly growing body of literature supporting the notion that differential oxidative metabolism in cancer versus normal cells represents a metabolic frailty that can be exploited to open a therapeutic window into cancer therapy. These cancer cell-specific metabolic frailties may be amenable to manipulation with non-toxic small molecule redox active compounds traditionally thought to be antioxidants. In this review we describe the potential mechanisms and clinical applicability in cancer therapy of four small molecule redox active agents: melatonin, vitamin E, selenium, and vitamin C. Each has shown the potential to have pro-oxidant effects in cancer cells while retaining antioxidant activity in normal cells. This dichotomy can be exploited to improve responses to radiation and chemotherapy by opening a therapeutic window based on a testable biochemical rationale amenable to confirmation with biomarker studies during clinical trials. Thus, the unique pro-oxidant/antioxidant properties of melatonin, vitamin E, selenium, and vitamin C have the potential to act as effective adjuvants to traditional cancer therapies, thereby improving cancer patient outcomes.
Collapse
Affiliation(s)
- M S Petronek
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - J M Stolwijk
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - S D Murray
- Department of Cancer Biology, University of Iowa, Iowa City, IA, USA
| | - E J Steinbach
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Y Zakharia
- Division of Hematology and Oncology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - G R Buettner
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - D R Spitz
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - B G Allen
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
27
|
Hu W, Zhao C, Hu H, Yin S. Food Sources of Selenium and Its Relationship with Chronic Diseases. Nutrients 2021; 13:nu13051739. [PMID: 34065478 PMCID: PMC8160805 DOI: 10.3390/nu13051739] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
Selenium (Se) is an essential micronutrient for mammals, and its deficiency seriously threatens human health. A series of biofortification strategies have been developed to produce Se-enriched foods for combating Se deficiency. Although there have been some inconsistent results, extensive evidence has suggested that Se supplementation is beneficial for preventing and treating several chronic diseases. Understanding the association between Se and chronic diseases is essential for guiding clinical practice, developing effective public health policies, and ultimately counteracting health issues associated with Se deficiency. The current review will discuss the food sources of Se, biofortification strategies, metabolism and biological activities, clinical disorders and dietary reference intakes, as well as the relationship between Se and health outcomes, especially cardiovascular disease, diabetes, chronic inflammation, cancer, and fertility. Additionally, some concepts were proposed, there is a non-linear U-shaped dose-responsive relationship between Se status and health effects: subjects with a low baseline Se status can benefit from Se supplementation, while Se supplementation in populations with an adequate or high status may potentially increase the risk of some diseases. In addition, at supra-nutritional levels, methylated Se compounds exerted more promising cancer chemo-preventive efficacy in preclinical trials.
Collapse
|
28
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
29
|
Oyovwi MO, Nwangwa EK, Ben-Azu B, Edesiri TP, Emojevwe V, Igweh JC. Taurine and coenzyme Q10 synergistically prevent and reverse chlorpromazine-induced psycho-neuroendocrine changes and cataleptic behavior in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:717-734. [PMID: 33146779 DOI: 10.1007/s00210-020-02003-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022]
Abstract
Over the years, mounting evidences have suggested a strong association between chronic chlorpromazine therapy, a popular first-generation antipsychotic drug, and psycho-neuroendocrine changes. In this study, we aim to examine whether treatment with taurine and coenzyme Q10 (COQ-10), compounds with steroidogenic-gonadotropin hormone-enhancing properties, can attenuate the negative impacts of chlorpromazine on steroidogenic, gonadotropin, thyroid and HPA-axis hormones, dopamine levels, catalepsy behavior and neuronal cells of the hypothalamus and pituitary gland in the preventive and reversal treatments in male Wister rats. In the drug treatment alone or preventive protocol, rats received oral administration of saline (10 mL/kg), taurine (150 mg/kg/day), COQ-10 (10 mg/kg/day), or both (taurine + COQ-10/day) alone for 56 consecutive days, or in combination with oral chlorpromazine (30 mg/kg/day) treatment from days 29 to 56. In the reversal protocol, the animals received chlorpromazine or saline for 56 days prior to taurine, COQ-10, or the combination from days 29 to 56. Thereafter, serum prolactin, steroidogenic (testosterone, estrogen, progesterone), gonadotropin (luteinizing hormone, LH, follicle-stimulating hormone, FSH), thyroid (thyrotropin-stimulating hormone, tetraiodothyronine, triiodothyronine) hormones, corticosterone, brain dopamine levels and cataleptic behavior were investigated. The histopathological features of the hypothalamus and pituitary gland were also evaluated. Taurine, COQ-10, or their combination prevented and reversed chlorpromazine-induced hyperprolactinemia, decrease in FSH, LH, testosterone, progesterone and dopamine concentrations, as well as the increase in estrogen levels. Taurine and COQ-10 reduced the changes in thyroid hormones, corticosterone release, histological distortions of the hypothalamus and the pituitary gland of chlorpromazine-treated rats. Taurine and COQ-10 attenuated chlorpromazine-induced catalepsy. The study showed that taurine and COQ-10 prevented and reversed chlorpromazine-induced changes in reproductive, thyroid hormones, dopamine level, corticosterone release, neurodegenerations, and cataleptic behavior in rats.
Collapse
Affiliation(s)
- Mega O Oyovwi
- Department of Human Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State, Nigeria
- Department of Basic Medical Science, Achievers University, Owo, Ondo State, Nigeria
| | - Eze K Nwangwa
- Department of Human Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Science, PAMO University of Medical Sciences, Port Harcourt, Rivers State, Nigeria.
| | - Tesi P Edesiri
- Department of Science Laboratory Technology, Delta State Polytechnic, Ogwashi-Uku, Delta State, Nigeria
| | - Victor Emojevwe
- Department of Physiology, Faculty of Baic Medical Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria
| | - John C Igweh
- Department of Human Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
30
|
Dispirooxindoles Based on 2-Selenoxo-Imidazolidin-4-Ones: Synthesis, Cytotoxicity and ROS Generation Ability. Int J Mol Sci 2021; 22:ijms22052613. [PMID: 33807662 PMCID: PMC7961907 DOI: 10.3390/ijms22052613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022] Open
Abstract
A regio- and diastereoselective synthesis of two types of dispiro derivatives of 2-selenoxoimidazolidin-4-ones, differing in the position of the nitrogen atom in the central pyrrolidine ring of the spiro-fused system-namely, 2-selenoxodispiro[imidazolidine-4,3'-pyrrolidine-2',3″-indoline]-2″,5-diones (5a-h) and 2-senenoxodispiro[imidazolidine-4,3'-pyrrolidine-4',3″-indoline]-2″,5-diones (6a-m)-were developed based on a 1,3-dipolar cycloaddition of azomethine ylides generated from isatin and sarcosine or formaldehyde and sarcosine to 5-arylidene or 5-indolidene-2-selenoxo-tetrahydro-4H-imidazole-4-ones. Selenium-containing dispiro indolinones generally exhibit cytotoxic activity near to the activity of the corresponding oxygen and sulfur-containing derivatives. Compounds 5b, 5c, and 5e demonstrated considerable in vitro cytotoxicity in the 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide (MTT) test (concentration of compounds that caused 50% death of cells (CC50) 7.6-8.7 μM) against the A549 cancer cell line with the VA13/A549 selectivity index 5.2-6.9; some compounds (5 and 6) increased the level of intracellular reactive oxygen species (ROS) in the experiment on A549 and PC3 cells using platinized carbon nanoelectrode. The tests for p53 activation for compounds 5 and 6 on the transcriptional reporter suggest that the investigated compounds can only have an indirect p53-dependent mechanism of action. For the compounds 5b, 6b, and 6l, the ROS generation may be one of the significant mechanisms of their cytotoxic action.
Collapse
|
31
|
Jose DE, Kanchana US, Mathew TV, Anilkumar G. Recent Developments and Perspectives in the C-Se Cross Coupling Reactions. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200528130131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
:
The C-Se bond forming reactions are attractive synthetic strategies for biochemists
and synthetic chemists alike for the synthesis of various molecules that are of
biological, pharmaceutical and material interest. Therefore, the design and synthesis of
organoselenium compounds currently constitute engaging fundamental problems in applied
chemistry both in pharmaceutical and academic laboratories. This review discusses
the recent works reported in carbon–selenium cross-coupling reactions with the emphasis
on the mechanistic aspects of the reactions. The reacting species, the addition of ligands,
selection of catalysts, use of suitable solvents, proper setting of reaction time, are
well discussed to understand the detailed mechanism. Various simple, economical and
environmentally friendly protocols are demonstrated, which ensured product stability,
low toxicity, environmentally benign and excellent reactivity for the synthesis of organoselenium compounds.
This review covers the scientific literature from 2010 to 2019.
Collapse
Affiliation(s)
- Diana Elizabeth Jose
- Department of Chemistry, St. Thomas College Pala, Arunapuram P.O., Kottayam, Kerala, 686574, India
| | - U. S. Kanchana
- Department of Chemistry, St. Thomas College Pala, Arunapuram P.O., Kottayam, Kerala, 686574, India
| | - Thomas V. Mathew
- Department of Chemistry, St. Thomas College Pala, Arunapuram P.O., Kottayam, Kerala, 686574, India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, P.D. Hills PO, Kottayam, Kerala, 686560, India
| |
Collapse
|
32
|
Stolwijk JM, Garje R, Sieren JC, Buettner GR, Zakharia Y. Understanding the Redox Biology of Selenium in the Search of Targeted Cancer Therapies. Antioxidants (Basel) 2020; 9:E420. [PMID: 32414091 PMCID: PMC7278812 DOI: 10.3390/antiox9050420] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
Selenium (Se) is an essential trace nutrient required for optimal human health. It has long been suggested that selenium has anti-cancer properties. However, clinical trials have shown inconclusive results on the potential of Se to prevent cancer. The suggested role of Se in the prevention of cancer is centered around its role as an antioxidant. Recently, the potential of selenium as a drug rather than a supplement has been uncovered. Selenium compounds can generate reactive oxygen species that could enhance the treatment of cancer. Transformed cells have high oxidative distress. As normal cells have a greater capacity to meet oxidative challenges than tumor cells, increasing the flux of oxidants with high dose selenium treatment could result in cancer-specific cell killing. If the availability of Se is limited, supplementation of Se can increase the expression and activities of Se-dependent proteins and enzymes. In cell culture, selenium deficiency is often overlooked. We review the importance of achieving normal selenium biology and how Se deficiency can lead to adverse effects. We examine the vital role of selenium in the prevention and treatment of cancer. Finally, we examine the properties of Se-compounds to better understand how each can be used to address different research questions.
Collapse
Affiliation(s)
- Jeffrey M. Stolwijk
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA;
| | - Rohan Garje
- Department of Internal Medicine, Division of Medical Oncology and Hematology, The University of Iowa Hospital and Clinics—Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA;
| | - Jessica C. Sieren
- Departments of Radiology and Biomedical Engineering, The University of Iowa, Iowa City, IA 52242, USA;
| | - Garry R. Buettner
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA;
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Yousef Zakharia
- Department of Internal Medicine, Division of Medical Oncology and Hematology, The University of Iowa Hospital and Clinics—Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA;
| |
Collapse
|
33
|
Hariharan S, Dharmaraj S. Selenium and selenoproteins: it's role in regulation of inflammation. Inflammopharmacology 2020; 28:667-695. [PMID: 32144521 PMCID: PMC7222958 DOI: 10.1007/s10787-020-00690-x] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Abstract
Abstract Selenium is an essential immunonutrient which holds the human’s metabolic activity with its chemical bonds. The organic forms of selenium naturally present in human body are selenocysteine and selenoproteins. These forms have a unique way of synthesis and translational coding. Selenoproteins act as antioxidant warriors for thyroid regulation, male-fertility enhancement, and anti-inflammatory actions. They also participate indirectly in the mechanism of wound healing as oxidative stress reducers. Glutathione peroxidase (GPX) is the major selenoprotein present in the human body, which assists in the control of excessive production of free radical at the site of inflammation. Other than GPX, other selenoproteins include selenoprotein-S that regulates the inflammatory cytokines and selenoprotein-P that serves as an inducer of homeostasis. Previously, reports were mainly focused on the cellular and molecular mechanism of wound healing with reference to various animal models and cell lines. In this review, the role of selenium and its possible routes in translational decoding of selenocysteine, synthesis of selenoproteins, systemic action of selenoproteins and their indirect assimilation in the process of wound healing are explained in detail. Some of the selenium containing compounds which can acts as cancer preventive and therapeutics are also discussed. These compounds directly or indirectly exhibit antioxidant properties which can sustain the intracellular redox status and these activities protect the healthy cells from reactive oxygen species induced oxidative damage. Although the review covers the importance of selenium/selenoproteins in wound healing process, still some unresolved mystery persists which may be resolved in near future. Graphic abstract ![]()
Collapse
Affiliation(s)
- Sneha Hariharan
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India
| | - Selvakumar Dharmaraj
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
34
|
Evans SO, Jacobson GM, Goodman HJB, Bird S, Jameson MB. Comparison of three oral selenium compounds in cancer patients: Evaluation of differential pharmacodynamic effects in normal and malignant cells. J Trace Elem Med Biol 2020; 58:126446. [PMID: 31838377 DOI: 10.1016/j.jtemb.2019.126446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/23/2019] [Accepted: 12/06/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Selenium (Se) compounds have demonstrated therapeutic synergism in combination with anticancer treatments whilst reducing normal tissue toxicities in a range of experimental models. While reduction in some toxicities of chemotherapy and radiation has been confirmed in randomised clinical trials, they have not been powered to evaluate improved anticancer efficacy. A lack of data on the clinical potencies of the main nutritionally-relevant forms of Se and the relationship between their pharmacokinetic (PK) profiles and pharmacodynamic (PD) effects in cancer patients has hampered progress to date. The primary objective of this study was to determine the dose and form of Se that can be most safely and effectively used in clinical trials in combination with anti-cancer therapies. STUDY METHODS In a phase I randomised double-blinded study, the PD profile of sodium selenite (SS), Se-methylselenocysteine (MSC) and seleno-l-methionine (SLM) were compared in two cohorts of 12 patients, one cohort with chronic lymphocytic leukaemia (CLL) and the other with solid malignancies. All 24 patients were randomised to receive 400 μg of elemental Se as either SS, MSC or SLM, taken orally daily for 8 weeks. PD parameters were assessed before, during and 4 weeks after Se compound exposure in plasma and peripheral blood mononuclear cells (PBMCs). RESULTS No significant sustained changes were observed in plasma concentrations of vascular endothelial growth factor-α (VEGF-α), expression of proteins associated with endoplasmic reticulum stress (the unfolded protein response) or in intracellular total glutathione in PBMCs, in either disease cohort or when grouped by Se compound. CONCLUSIONS At the 400 μg dose level no substantial changes in PD parameters were noted. Extrapolating from pre-clinical data, the dose examined in this cohort was too low to achieve the Se plasma concentration (≥ 5 μM) expected to elicit significant PD effects. Recruitment of a subsequent cohort at higher doses to exceed this PK threshold is planned.
Collapse
Affiliation(s)
- Stephen O Evans
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand; Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand.
| | - Gregory M Jacobson
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand.
| | | | - Steve Bird
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand.
| | - Michael B Jameson
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand; Oncology Department, Waikato Hospital, Hamilton, New Zealand.
| |
Collapse
|
35
|
Abd-Rabou AA, Ahmed HH, Shalby AB. Selenium Overcomes Doxorubicin Resistance in Their Nano-platforms Against Breast and Colon Cancers. Biol Trace Elem Res 2020; 193:377-389. [PMID: 31066020 DOI: 10.1007/s12011-019-01730-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/11/2019] [Indexed: 11/28/2022]
Abstract
Colon cancer in men and breast cancer in women are regarded as major health burdens, accounting for majority of cancer diagnoses globally. Doxorubicin (DOX) resistance in breast and colon cancers represents the main reason of unsuccessful therapy. The rationale of this study is to explore whether selenium nanoparticles (nano-Se) can overcome this resistance obstacle of DOX nanoparticles (nano-DOX) in these cancerous cells. Nano-Se and nano-DOX were manufactured and characterized using electron microscopy and Malvern ZetaSizer, applied separately or in the form of combinatorial regimen against human breast cancer cells (MCF7 and MDA-MB-231) and human colorectal cancer cells (HCT 116 and Caco-2). Cytotoxicity, early/late apoptosis, necrosis, cellular zinc, glucose uptake, and redox status were assessed after applying different nano-treatments versus their free counterparts. Nano-DOX induces cytotoxicity in MCF7 and Caco-2 more than MDA-MB-231 and HCT 116 cancerous cells. In addition, nano-DOX plus nano-Se diminish MCF7 and Caco-2 chemoresistance higher than MDA-MB-231 and HCT 116 cancerous cells. Moreover, Se and DOX nano-platforms inhibit glucose uptake. Furthermore, nano-DOX increases nitric oxide (NO) and malondialdehyde (MDA) in cancer cells' media, while nano-DOX combination with nano-Se rebalances the redox status with zinc augmentation. We reported that Caco-2 cancer cells are more sensitive than HCT 116 cancer cells to nano-DOX and nano-Se. Nano-DOX plus nano-Se induces cytotoxicity-mediated late apoptosis in Caco-2 more than HCT 116 cell lines. This de novo strategy could have great power to overcome the problem of DOX resistance during colon cancer therapy.
Collapse
Affiliation(s)
- Ahmed A Abd-Rabou
- Hormones Department, Medical Research Division, National Research Centre, P.O. 12622, Dokki, Giza, Egypt.
| | - Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| | - Aziza B Shalby
- Hormones Department, Medical Research Division, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
36
|
Sun F, Wang J, Wu X, Yang CS, Zhang J. Selenium nanoparticles act as an intestinal p53 inhibitor mitigating chemotherapy-induced diarrhea in mice. Pharmacol Res 2019; 149:104475. [PMID: 31593755 DOI: 10.1016/j.phrs.2019.104475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022]
Abstract
Selenium, at high-dose levels approaching its toxicity, protects tissues from dose-limiting toxicities of many cancer chemotherapeutics without compromising their therapeutic effects on tumors, there by allowing the delivery of higher chemotherapeutic doses to achieve increased cure rate. In this regard, selenium nanoparticles (SeNPs), which show the lowest toxicity among extensively investigated selenium compounds including methylselenocysteine and selenomethionine, are more promising for application. The key issue remains to be resolved is whether low-toxicity SeNPs possess a selective protective mechanism. p53 or p53-regulated thrombospondin-1 has each been confirmed to be an appropriate target for therapeutic suppression to reduce side effects of anticancer therapy. The present study demonstrated that SeNPs transiently suppressed the expression of many intestinal p53-associated genes in healthy mice. SeNPs did not interfere with tumor-suppressive effect of nedaplatin, a cisplatin analogue; however, effectively reduced nedaplatin-evoked diarrhea. Nedaplatin-induced diarrhea was associated with activation of intestinal p53 and high expression of intestinal thrombospondin-1. The preventive effect of SeNPs on nedaplatin-induced diarrhea was correlated with a powerful concomitant suppression of p53 and thrombospondin-1. Moreover, the high-dose SeNPs used in the present study did not suppress growth nor caused liver and kidney injuries as well as alterations of hematological parameters in healthy mice. Overall, the present study reveals that chemotherapeutic selectivity conferred by SeNPs involves a dual suppression of two well-documented targets, the p53 and thrombospondin-1, providing mechanistic and pharmacologic insights on low-toxicity SeNPs as a potential chemoprotectant for mitigating chemotherapy-induced diarrhea.
Collapse
Affiliation(s)
- Feng Sun
- Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Jiajia Wang
- Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Ximing Wu
- Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jinsong Zhang
- Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
37
|
Rehman H, Jahan S, Ullah I, Winberg S. Toxicological effects of furan on the reproductive system of male rats: An "in vitro" and "in vivo"-based endocrinological and spermatogonial study. CHEMOSPHERE 2019; 230:327-336. [PMID: 31108444 DOI: 10.1016/j.chemosphere.2019.05.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Furan is a colorless toxic chemical produced in various food items during heat processing and in chemical industries. Both in vitro and in vivo studies have reported that it induces oxidative stress and endocrine disruption; however, limited data are available regarding the effects of furan on the reproduction of mammals. In the present study, an in vitro experiment was designed to investigate the direct effects of furan exposure on oxidative stress and testosterone concentration in rat testicular tissue. Furan not only generated high oxidative stress but also decreased antioxidant enzyme activity in the testicular tissue. On the basis of in vitro study results, an in vivo sub-chronic exposure study was performed. Male rats were orally exposed to different concentrations of furan (0, 5, 10, 20, and 40 mg kg-1). An increase (P < 0.05) of reactive oxygen species (ROS) and of the lipid profile (cholesterol, triglycerides, and LDL) in higher dose treatment groups of furan was observed, while total protein content and antioxidant enzyme activity were considerably decreased after furan exposure. Also, plasma and intratesticular testosterone concentrations were reduced in high-dose treatment groups. Sperm parameters such as sperm viability, sperm count, and sperm motility showed a decrease (P < 0.05) in a dose-dependent manner. Histopathological findings revealed significant alterations in testis and epididymis tissues. These results confirm that furan can induce toxic effects on the reproductive system of male rats.
Collapse
Affiliation(s)
- Humaira Rehman
- Reproductive Physiology Laboratory, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Sarwat Jahan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Imdad Ullah
- Department of Zoology, Abbottabad University of Science and Technology, Havalian, Abbottabad, Pakistan; Department of Neuroscience, Physiology, Uppsala Biomedical Centre (BMC), Uppsala University, PO Box NO 593, 751 24 Uppsala, Sweden.
| | - Svante Winberg
- Department of Neuroscience, Physiology, Uppsala Biomedical Centre (BMC), Uppsala University, PO Box NO 593, 751 24 Uppsala, Sweden.
| |
Collapse
|
38
|
Evans SO, Jacobson GM, Goodman HJB, Bird S, Jameson MB. Comparative Safety and Pharmacokinetic Evaluation of Three Oral Selenium Compounds in Cancer Patients. Biol Trace Elem Res 2019; 189:395-404. [PMID: 30187284 DOI: 10.1007/s12011-018-1501-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023]
Abstract
Selenium (Se) compounds have demonstrated anticancer properties in both preclinical and clinical studies, with particular promise in combination therapy where the optimal form and dose of selenium has yet to be established. In a phase I randomised double-blinded study, the safety, tolerability and pharmacokinetic (PK) profiles of sodium selenite (SS), Se-methylselenocysteine (MSC) and seleno-l-methionine (SLM) were compared in patients with chronic lymphocytic leukaemia and a cohort of patients with solid malignancies. Twenty-four patients received 400 μg of elemental Se as either SS, MSC or SLM for 8 weeks. None of the Se compounds were associated with any significant toxicities, and the total plasma Se AUC of SLM was markedly raised in comparison to MSC and SS. DNA damage assessment revealed negligible genotoxicity, and some minor reductions in lymphocyte counts were observed. At the dose level used, all three Se compounds are well-tolerated and non-genotoxic. Further analyses of the pharmacodynamic effects of Se on healthy and malignant peripheral blood mononuclear cells will inform the future evaluation of higher doses of these Se compounds. The study is registered under the Australian and New Zealand Clinical Trials Registry No: ACTRN12613000118707.
Collapse
Affiliation(s)
- Stephen O Evans
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
| | - Gregory M Jacobson
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Hugh J B Goodman
- Regional Cancer Centre, Waikato Hospital, Private Bag 3200, Hamilton, 3240, New Zealand
| | - Steve Bird
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Michael B Jameson
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand.
- Regional Cancer Centre, Waikato Hospital, Private Bag 3200, Hamilton, 3240, New Zealand.
| |
Collapse
|
39
|
Tan HW, Mo HY, Lau ATY, Xu YM. Selenium Species: Current Status and Potentials in Cancer Prevention and Therapy. Int J Mol Sci 2018; 20:ijms20010075. [PMID: 30585189 PMCID: PMC6337524 DOI: 10.3390/ijms20010075] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023] Open
Abstract
Selenium (Se) acts as an essential trace element in the human body due to its unique biological functions, particularly in the oxidation-reduction system. Although several clinical trials indicated no significant benefit of Se in preventing cancer, researchers reported that some Se species exhibit superior anticancer properties. Therefore, a reassessment of the status of Se and Se compounds is necessary in order to provide clearer insights into the potentiality of Se in cancer prevention and therapy. In this review, we organize relevant forms of Se species based on the three main categories of Se-inorganic, organic, and Se-containing nanoparticles (SeNPs)-and overview their potential functions and applications in oncology. Here, we specifically focus on the SeNPs as they have tremendous potential in oncology and other fields. In general, to make better use of Se compounds in cancer prevention and therapy, extensive further study is still required to understand the underlying mechanisms of the Se compounds.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| | - Hai-Ying Mo
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
40
|
Chaudhary S, Chauhan P, Kumar R, Bhasin KK. Toxicological responses of surfactant functionalized selenium nanoparticles: A quantitative multi-assay approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1265-1277. [PMID: 30189543 DOI: 10.1016/j.scitotenv.2018.06.296] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/14/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
The utilization of selenium nanomaterials (Se Nps) in material and biological science is quickly growing, crafting an imperative need for toxicological evaluation of the exposure prospective and environmental consequences of Se Nps. The combination of quantitative multi-assay approach into environmental toxicological analysis has provided novel opportunities to build up effective markers and scrutinize the means of venomous nature of Se Nps in the current study. In the present work, we analyzed the toxicological effect of bare and surface functionalized Se Nps by using multi assay viz. seed germination studies as a function of concentration of SeNps and by using antifungal assays. The influence of SeNps on bacterial activities were also investigated by using the S. aureus, E. coli, P. aeruginosa and S. typhi bacterial strains as widespread marker species for antibacterial studies. The ocular assessment of chlorophyll content was maximum for Brij coated Se NPs (98%) as compared to bare (20%), SDS (45%) and CTAB (38%) coated SeNps. The existence of chromosomal aberrations in root meristems of A. cepa(A. cepa) with computed MI values of 16, 25, 33 and 52% for bare, CTAB, SDS and Brij coated particles has indicated the genotoxic effects of SeNps. The biocompatible nature of Brij coated Se Nps was observed from the faster mobility of DNA in gel electrophoresis studies. The investigational studies in the current work appraise the toxicity and measure the competence of obtained data to characterize possibilities of probable threats, prominence of data requirement and breaches that must be filled to diminish the ambiguities about the safe use of Se Nps.
Collapse
Affiliation(s)
- Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| | - Pooja Chauhan
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - K K Bhasin
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
41
|
Collery P. Strategies for the development of selenium-based anticancer drugs. J Trace Elem Med Biol 2018; 50:498-507. [PMID: 29548612 DOI: 10.1016/j.jtemb.2018.02.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Many experimental models demonstrated that inorganic and organic selenium (Se) compounds may have an anticancer activity. However, large clinical studies failed to demonstrate that Se supplementations may prevent the outcome of cancers. Moreover, there are few randomized trials in cancer patients and there is not yet any Se compound recognized as anticancer drug. There is still a need to develop new Se compounds with new strategies. For that, it may be necessary to consider that Se compounds may have a dual role, either as anti-oxidant or as pro-oxidant. Experimental studies demonstrated that it is as pro-oxidant that Se compounds have anticancer effects, even though cancer cells have a pro-oxidant status. The oxidative status differs according to the type of cancer, the stage of the disease and to other parameters. We propose to adapt the doses of the Se compounds to markers of the oxidative stress, but also to markers of angiogenesis, which is strongly related with the oxidative status. A dual role of Se on angiogenesis has also been noted, either as pro-angiogenesis or as anti-angiogenesis. The objective for the development of new Se compounds, having a great selectivity on cancer cells, could be to try to normalize these oxidative and angiogenic markers in cancer patients, with an individual adaptation of doses.
Collapse
Affiliation(s)
- Philippe Collery
- Society for the Coordination of Therapeutic Researches, 20220 Algajola, France.
| |
Collapse
|
42
|
Arakawa T, Sugiyama T, Matsuura H, Okuno T, Ogino H, Sakazaki F, Ueno H. Effects of Supplementary Seleno-L-methionine on Atopic Dermatitis-Like Skin Lesions in Mice. Biol Pharm Bull 2018; 41:1456-1462. [PMID: 30175780 DOI: 10.1248/bpb.b18-00349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of selenium supplementation on atopic dermatitis (AD) were investigated by administering seleno-L-methionine (SeMet) using a mouse model of AD caused by repeated application of 2,4,6-trinitrochlorobenzene (TNCB). BALB/c mice were sensitized with TNCB to the abdomen on day -7; then, TNCB was applied repeatedly to each ear three times a week from days 0 to 23. SeMet was orally administered to the mice from days 0 to 23. The efficacy of SeMet on AD was assessed by measuring ear thickness, histologic evaluation, serum total immunoglobulin (Ig) E levels, and expression of interleukin (IL)-4 in the ear and superficial parotid lymph node. Ear thickness was remarkably increased by repeated application of TNCB, and SeMet significantly suppressed ear thickness in BALB/c mice. SeMet inhibited epidermal hyperplasia and dense infiltration of inflammatory cells. The number of TNCB-induced mast cells was significantly decreased by SeMet. Serum total IgE levels that increased by the repeated application of TNCB were significantly suppressed by SeMet. Repeated application of TNCB induced expression of IL-4, a T-helper (Th) 2 cytokine, in the ear and superficial parotid lymph node of BALB/c mice and its expression was significantly inhibited by SeMet. These results demonstrated that SeMet supplementation suppresses AD-like skin lesions in BALB/c mice and inhibits the expression of total IgE and IL-4.
Collapse
Affiliation(s)
- Tomohiro Arakawa
- Department of Public Health & Preventive Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Takahiro Sugiyama
- Department of Public Health & Preventive Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Haruka Matsuura
- Department of Public Health & Preventive Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Tomofumi Okuno
- Department of Public Health & Preventive Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Hirofumi Ogino
- Department of Public Health & Preventive Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | | | - Hitoshi Ueno
- Department of Public Health & Preventive Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
43
|
Gandin V, Khalkar P, Braude J, Fernandes AP. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med 2018; 127:80-97. [PMID: 29746900 DOI: 10.1016/j.freeradbiomed.2018.05.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/12/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
Selenium(Se)-containing compounds have attracted a growing interest as anticancer agents over recent decades, with mounting reports demonstrating their high efficacy and selectivity against cancer cells. Typically, Se compounds exert their cytotoxic effects by acting as pro-oxidants that alter cellular redox homeostasis. However, the precise intracellular targets, signalling pathways affected and mechanisms of cell death engaged following treatment vary with the chemical properties of the selenocompound and its metabolites, as well as the cancer model that is used. Naturally occurring organic Se compounds, besides encompassing a significant antitumor activity with an apparent ability to prevent metastasis, also seem to have fewer side effects and less systemic effects as reported for many inorganic Se compounds. On this basis, many novel organoselenium compounds have also been synthesized and examined as potential chemotherapeutic agents. This review aims to summarize the most well studied natural and synthetic organoselenium compounds and provide the most recent developments in our understanding of the molecular mechanisms that underlie their potential anticancer effects.
Collapse
Affiliation(s)
- Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Prajakta Khalkar
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jeremy Braude
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
44
|
Non-Coding Micro RNAs and Hypoxia-Inducible Factors Are Selenium Targets for Development of a Mechanism-Based Combination Strategy in Clear-Cell Renal Cell Carcinoma-Bench-to-Bedside Therapy. Int J Mol Sci 2018; 19:ijms19113378. [PMID: 30380599 PMCID: PMC6275006 DOI: 10.3390/ijms19113378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022] Open
Abstract
Durable response, inherent or acquired resistance, and dose-limiting toxicities continue to represent major barriers in the treatment of patients with advanced clear-cell renal cell carcinoma (ccRCC). The majority of ccRCC tumors are characterized by the loss of Von Hippel⁻Lindau tumor suppressor gene function, a stable expression of hypoxia-inducible factors 1α and 2α (HIFs), an altered expression of tumor-specific oncogenic microRNAs (miRNAs), a clear cytoplasm with dense lipid content, and overexpression of thymidine phosphorylase. The aim of this manuscript was to confirm that the downregulation of specific drug-resistant biomarkers deregulated in tumor cells by a defined dose and schedule of methylselenocysteine (MSC) or seleno-l-methionine (SLM) sensitizes tumor cells to mechanism-based drug combination. The inhibition of HIFs by selenium was necessary for optimal therapeutic benefit. Durable responses were achieved only when MSC was combined with sunitinib (a vascular endothelial growth factor receptor (VEGFR)-targeted biologic), topotecan (a topoisomerase 1 poison and HIF synthesis inhibitor), and S-1 (a 5-fluorouracil prodrug). The documented synergy was selenium dose- and schedule-dependent and associated with enhanced prolyl hydroxylase-dependent HIF degradation, stabilization of tumor vasculature, downregulation of 28 oncogenic miRNAs, as well as the upregulation of 12 tumor suppressor miRNAs. The preclinical results generated provided the rationale for the development of phase 1/2 clinical trials of SLM in sequential combination with axitinib in ccRCC patients refractory to standard therapies.
Collapse
|
45
|
Lobb RJ, Jacobson GM, Cursons RT, Jameson MB. The Interaction of Selenium with Chemotherapy and Radiation on Normal and Malignant Human Mononuclear Blood Cells. Int J Mol Sci 2018; 19:ijms19103167. [PMID: 30326581 PMCID: PMC6214079 DOI: 10.3390/ijms19103167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 01/17/2023] Open
Abstract
Selenium, a trace element with anticancer properties, can reduce harmful toxicities of chemotherapy and radiotherapy without compromising efficacy. However, the dose-response relationship in normal versus malignant human cells is unclear. We evaluated how methylseleninic acid (MSA) modulates the toxicity and efficacy of chemotherapy and radiation on malignant and non-malignant human mononuclear blood cells in vitro. We specifically investigated its effects on endoplasmic reticulum stress induction, intracellular glutathione concentration, DNA damage and viability of peripheral blood mononuclear cells and THP1 monocytic leukaemia cells in response to radiation, cytosine arabinoside or doxorubicin chemotherapy. MSA, at lower concentrations, induced protective responses in normal cells but cytotoxic effects in malignant cells, alone and in conjunction with chemotherapy or radiation. However, in normal cells higher concentrations of MSA were directly toxic and increased the cytotoxicity of radiation but not chemotherapy. In malignant cells higher MSA concentrations were generally more effective in combination with cancer treatments. Thus, optimal MSA concentrations differed between normal and malignant cells and treatments. This work supports clinical reports that selenium can significantly reduce dose-limiting toxicities of anticancer therapies and potentially improve efficacy of anticancer treatments. The optimal selenium compound and dose is not yet determined.
Collapse
Affiliation(s)
- Richard J Lobb
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia.
| | - Gregory M Jacobson
- Department of Biological Sciences, University of Waikato, Hamilton 3216, New Zealand.
| | - Ray T Cursons
- Department of Biological Sciences, University of Waikato, Hamilton 3216, New Zealand.
| | - Michael B Jameson
- Oncology Department, Waikato Hospital, Hamilton 3204, New Zealand.
- Waikato Clinical Campus, Faculty of Medical and Health Sciences, University of Auckland, Hamilton 3204, New Zealand.
| |
Collapse
|
46
|
Gunes S, Sahinturk V, Uslu S, Ayhanci A, Kacar S, Uyar R. Protective Effects of Selenium on Cyclophosphamide-Induced Oxidative Stress and Kidney Injury. Biol Trace Elem Res 2018; 185:116-123. [PMID: 29290051 DOI: 10.1007/s12011-017-1231-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/20/2017] [Indexed: 11/26/2022]
Abstract
Cyclophosphamide (CP) is a common anticancer drug, but its use in cancer treatment is limited due to its severe toxicities induced mainly by oxidative stress in normal cells. Reactive oxygen species (ROS) lead to multiple organ injuries, including the kidneys. Selenium (Se) is a nutritionally essential trace element with antioxidant properties. In the present study, the possible protective effect of Se on CP-induced acute nephrotoxicity was investigated. Forty-two Sprague-Dawley rats were equally divided into six groups of seven rats in each. The control group received saline, and other groups were injected with CP (150 mg/kg), Se (0.5 or 1 mg/kg), or CP + Se intraperitoneally. Total antioxidant capacity (TAC), total oxidant state (TOS), oxidative stress index (OSI), creatinine, and cystatin C (Cys C) levels were measured in the sera. In addition, kidney tissues were examined histologically. In the CP alone treated rats, creatinine, Cys C, TOS, and OSI levels increased, while TAC level decreased. CP-induced histological damages were decreased by co-treatment of Se and biochemical results supported the microscopic observations. In conclusion, our study points to the therapeutic potential of Se and indicates a significant role of ROS in CP-induced kidney toxicity.
Collapse
Affiliation(s)
- Sibel Gunes
- Faculty of Arts and Science Department of Biology, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Varol Sahinturk
- Faculty of Medicine Department of Histology and Embryology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Sema Uslu
- Faculty of Medicine Department of Biochemistry, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Adnan Ayhanci
- Faculty of Arts and Science Department of Biology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Sedat Kacar
- Faculty of Medicine Department of Histology and Embryology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ruhi Uyar
- Faculty of Medicine Department of Physiology, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
47
|
Rezaei N, Mardanshahi T, Shafaroudi MM, Abedian S, Mohammadi H, Zare Z. Effects of l-Carnitine on the Follicle-Stimulating Hormone, Luteinizing Hormone, Testosterone, and Testicular Tissue Oxidative Stress Levels in Streptozotocin-Induced Diabetic Rats. J Evid Based Integr Med 2018; 23:2515690X18796053. [PMID: 30168346 PMCID: PMC6120171 DOI: 10.1177/2515690x18796053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The present study was designed to investigate the antioxidant property of l-carnitine (LC) on serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (TH) and testis oxidative stress in streptozotocin (STZ)-induced diabetic rats. The rats were divided into the following groups: group I, control; group II, LC 100 mg/kg/d; group III, diabetic; and groups IV to VI, diabetic rats treated with 50, 100, and 200 mg/kg/d of LC, respectively. Daily injections were given intraperitoneally for 7 weeks. At the end of experimental period, after sacrificing the rats, FSH, LH, TH, total antioxidant capacity (TAC), malondialdehyde (MDA), glutathione (GSH), catalase (CAT), mitochondrial function (MTT), protein carbonyl (PC), and reactive oxygen species (ROS) levels were measured. STZ caused an elevation of MDA, ROS, and PC (P < .001) with reduction of GSH, CAT, TAC, and MTT (P < .001) in the serum levels. Group VI had significantly increased FSH, LH, and TH levels versus the untreated diabetic group (P < .001). Although groups V and VI significantly decreased MDA (P < .001), PC (P < .01), and ROS (P < .01) compared with the untreated diabetic group; only in group VI, the activity of GSH (P < .001), CAT (P < .01), TAC (P < .001), and MTT (P < .001) significantly increased. The results of the present study suggest that LC decreased diabetes-induced oxidative stress complications and also improved serum level of FSH, LH, and TH by reducing levels of lipid peroxidation and increasing antioxidant enzymes.
Collapse
Affiliation(s)
| | | | | | - Saeed Abedian
- 1 Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Zohre Zare
- 1 Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
48
|
Shao D, Li M, Wang Z, Zheng X, Lao YH, Chang Z, Zhang F, Lu M, Yue J, Hu H, Yan H, Chen L, Dong WF, Leong KW. Bioinspired Diselenide-Bridged Mesoporous Silica Nanoparticles for Dual-Responsive Protein Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801198. [PMID: 29808576 DOI: 10.1002/adma.201801198] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/06/2018] [Indexed: 05/20/2023]
Abstract
Controlled delivery of protein therapeutics remains a challenge. Here, the inclusion of diselenide-bond-containing organosilica moieties into the framework of silica to fabricate biodegradable mesoporous silica nanoparticles (MSNs) with oxidative and redox dual-responsiveness is reported. These diselenide-bridged MSNs can encapsulate cytotoxic RNase A into the 8-10 nm internal pores via electrostatic interaction and release the payload via a matrix-degradation controlled mechanism upon exposure to oxidative or redox conditions. After surface cloaking with cancer-cell-derived membrane fragments, these bioinspired RNase A-loaded MSNs exhibit homologous targeting and immune-invasion characteristics inherited from the source cancer cells. The efficient in vitro and in vivo anti-cancer performance, which includes increased blood circulation time and enhanced tumor accumulation along with low toxicity, suggests that these cell-membrane-coated, dual-responsive degradable MSNs represent a promising platform for the delivery of bio-macromolecules such as protein and nucleic acid therapeutics.
Collapse
Affiliation(s)
- Dan Shao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical, Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Zheng Wang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical, Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xiao Zheng
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Zhimin Chang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical, Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Fan Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mengmeng Lu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Juan Yue
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical, Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Huize Yan
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Li Chen
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Wen-Fei Dong
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical, Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Kam W Leong
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
49
|
Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q, Baron M, Melcova M, Opatrilova R, Zidkova J, Bjørklund G, Sochor J, Kizek R. Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine 2018; 13:2107-2128. [PMID: 29692609 PMCID: PMC5901133 DOI: 10.2147/ijn.s157541] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traditional supplements of selenium generally have a low degree of absorption and increased toxicity. Therefore, it is imperative to develop innovative systems as transporters of selenium compounds, which would raise the bioavailability of this element and allow its controlled release in the organism. Nanoscale selenium has attracted a great interest as a food additive especially in individuals with selenium deficiency, but also as a therapeutic agent without significant side effects in medicine. This review is focused on the incorporation of nanotechnological applications, in particular exploring the possibilities of a more effective way of administration, especially in selenium-deficient organisms. In addition, this review summarizes the survey of knowledge on selenium nanoparticles, their biological effects in the organism, advantages, absorption mechanisms, and nanotechnological applications for peroral administration.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Sylvie Skalickova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Branislav Ruttkay-Nedecky
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, People's Republic of China
| | - Mojmir Baron
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Magdalena Melcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Radka Opatrilova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jarmila Zidkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Rana, Norway
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Rene Kizek
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.,Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
50
|
Zakharia Y, Bhattacharya A, Rustum YM. Selenium targets resistance biomarkers enhancing efficacy while reducing toxicity of anti-cancer drugs: preclinical and clinical development. Oncotarget 2018; 9:10765-10783. [PMID: 29535842 PMCID: PMC5828194 DOI: 10.18632/oncotarget.24297] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/13/2018] [Indexed: 12/31/2022] Open
Abstract
Selenium (Se)-containing molecules exert antioxidant properties and modulate targets associated with tumor growth, metastasis, angiogenesis, and drug resistance. Prevention clinical trials with low-dose supplementation of different types of Se molecules have yielded conflicting results. Utilizing several xenograft models, we earlier reported that the enhanced antitumor activity of various chemotherapeutic agents by selenomethione and Se-methylselenocysteine in several human tumor xenografts is highly dose- and schedule-dependent. Further, Se pretreament offered selective protection of normal tissues from drug-induced toxicity, thereby allowing higher dosing than maximum tolerated doses. These enhanced therapeutic effects were associated with inhibition of hypoxia-inducible factor 1- and 2-alpha (HIF1α, HIF2α) protein, nuclear factor (erythyroid-derived 2)-like 2 (Nrf2) and pair-related homeobox-1 (Prx1) transcription factors, downregulation of oncogenic- and upregulation of tumor suppressor miRNAs. This review provides: 1) a brief update of clinical prevention trials with Se; 2) advances in the use of specific types, doses, and schedules of Se that selectively modulate antitumor activity and toxicity of anti-cancer drugs; 3) identification of targets selectively modulated by Se; 4) plasma and tumor tissue Se levels achieved after oral administration of Se in xenograft models and cancer patients; 5) development of a phase 1 clinical trial with escalating doses of orally administered selenomethionine in sequential combination with axitinib to patients with advanced clear cell renal cell carcinoma; and 6) clinical prospects for future therapeutic use of Se in combination with anticancer drugs.
Collapse
Affiliation(s)
- Yousef Zakharia
- University of Iowa Division of Medical Oncology and Hematology, Holden Comprehensive Cancer Center, Iowa City, IA, USA
| | - Arup Bhattacharya
- Roswell Park Cancer Institute, Department of Pharmacology and Therapeutics, Buffalo, NY, USA
| | - Youcef M. Rustum
- University of Iowa Division of Medical Oncology and Hematology, Holden Comprehensive Cancer Center, Iowa City, IA, USA
- Roswell Park Cancer Institute, Department of Pharmacology and Therapeutics, Buffalo, NY, USA
| |
Collapse
|