1
|
Jalali P, Shahmoradi A, Samii A, Mazloomnejad R, Hatamnejad MR, Saeed A, Namdar A, Salehi Z. The role of autophagy in cancer: from molecular mechanism to therapeutic window. Front Immunol 2025; 16:1528230. [PMID: 40248706 PMCID: PMC12003146 DOI: 10.3389/fimmu.2025.1528230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Autophagy is a cellular degradation process that plays a crucial role in maintaining metabolic homeostasis under conditions of stress or nutrient deprivation. This process involves sequestering, breaking down, and recycling intracellular components such as proteins, organelles, and cytoplasmic materials. Autophagy also serves as a mechanism for eliminating pathogens and engulfing apoptotic cells. In the absence of stress, baseline autophagy activity is essential for degrading damaged cellular components and recycling nutrients to maintain cellular vitality. The relationship between autophagy and cancer is well-established; however, the biphasic nature of autophagy, acting as either a tumor growth inhibitor or promoter, has raised concerns regarding the regulation of tumorigenesis without inadvertently activating harmful aspects of autophagy. Consequently, elucidating the mechanisms by which autophagy contributes to cancer pathogenesis and the factors determining its pro- or anti-tumor effects is vital for devising effective therapeutic strategies. Furthermore, precision medicine approaches that tailor interventions to individual patients may enhance the efficacy of autophagy-related cancer treatments. To this end, interventions aimed at modulating the fate of tumor cells by controlling or inducing autophagy substrates necessitate meticulous monitoring of these mediators' functions within the tumor microenvironment to make informed decisions regarding their activation or inactivation. This review provides an updated perspective on the roles of autophagy in cancer, and discusses the potential challenges associated with autophagy-related cancer treatment. The article also highlights currently available strategies and identifies questions that require further investigation in the future.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arvin Shahmoradi
- Department of Laboratory Medicine, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Samii
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Radman Mazloomnejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hatamnejad
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Afshin Namdar
- Program in Cell Biology, The Hospital for Sick Children Peter Gilgan Centre for Research and Learning, Toronto, ON, United States
| | - Zahra Salehi
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Smith RJ, Zollo R, Kalvapudi S, Vedire Y, Pachimatla AG, Petrucci C, Shaller G, Washington D, Rr V, Sass SN, Srinivasan A, Kannisto E, Bawek S, Jain P, Rosario S, Barbi J, Yendamuri S. Obesity-specific improvement of lung cancer outcomes and immunotherapy efficacy with metformin. J Natl Cancer Inst 2025; 117:673-684. [PMID: 39560490 PMCID: PMC11972684 DOI: 10.1093/jnci/djae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Preclinical cancer studies ascribe promising anticancer properties to metformin. Yet, clinical findings vary, casting uncertainty on its therapeutic value for non-small cell lung cancer (NSCLC) patients. We hypothesized that metformin could benefit obese and overweight patients with NSCLC. METHODS We retrospectively analyzed 2 clinical cohorts and employed complementary mouse models to test our hypothesis. One cohort included NSCLC patients with overweight body mass index (≥25 kg/m2, n = 511) and nonoverweight body mass index (<25 kg/m2, n = 232) who underwent lobectomy, evaluating metformin's impact on clinical outcomes. Another cohort examined metformin's effect on progression-free survival after immune checkpoint inhibitors in overweight (n = 284) vs nonoverweight (n = 184) NSCLC patients. Metformin's effects on tumor progression, antitumor immunity, and immune checkpoint inhibitor response in obese and normal-weight mice were assessed with lung cancer models. RESULTS Metformin is associated with increased recurrence-free survival in overweight patients (hazard ratio [HR] = 0.47, 95% confidence interval [CI] = 0.24 to 0.94; P = .035) after lobectomy. It also corrected accelerated tumor growth in diet-induced obese mouse models in a lymphocyte-specific manner while reversing several mechanisms of immune suppression potentiated by obesity. Programmed cell death 1 blockade coupled with metformin was more effective at limiting tumor burden in obese mice and correlated with progression-free survival only in overweight patients on immunotherapy (HR = 0.60, 95% CI = 0.39 to 0.93; P = .024). CONCLUSIONS Metformin may improve lung cancer-specific clinical outcomes in obese and overweight lung cancer patients and enhance immunotherapy efficacy in this growing population. This work identifies obesity as a potential predictive biomarker of metformin's anticancer and immunotherapy-enhancing properties in lung cancer while shedding light on the underlying immunological phenomena.
Collapse
Affiliation(s)
- Randall J Smith
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Robert Zollo
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Sukumar Kalvapudi
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Yeshwanth Vedire
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Akhil Goud Pachimatla
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Cara Petrucci
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Garrison Shaller
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Deschana Washington
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Vethanayagam Rr
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Stephanie N Sass
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Aravind Srinivasan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Eric Kannisto
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Sawyer Bawek
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY 14263, United States
| | - Prantesh Jain
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Spencer Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Joseph Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| |
Collapse
|
3
|
Kenny TC, Birsoy K. Mitochondria and Cancer. Cold Spring Harb Perspect Med 2024; 14:a041534. [PMID: 38692736 PMCID: PMC11610758 DOI: 10.1101/cshperspect.a041534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mitochondria are semiautonomous organelles with diverse metabolic and cellular functions including anabolism and energy production through oxidative phosphorylation. Following the pioneering observations of Otto Warburg nearly a century ago, an immense body of work has examined the role of mitochondria in cancer pathogenesis and progression. Here, we summarize the current state of the field, which has coalesced around the position that functional mitochondria are required for cancer cell proliferation. In this review, we discuss how mitochondria influence tumorigenesis by impacting anabolism, intracellular signaling, and the tumor microenvironment. Consistent with their critical functions in tumor formation, mitochondria have become an attractive target for cancer therapy. We provide a comprehensive update on the numerous therapeutic modalities targeting the mitochondria of cancer cells making their way through clinical trials.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
4
|
Polpichai N, Saowapa S, Danpanichkul P, Chan SY, Sierra L, Blagoie J, Rattananukrom C, Sripongpun P, Kaewdech A. Beyond the Liver: A Comprehensive Review of Strategies to Prevent Hepatocellular Carcinoma. J Clin Med 2024; 13:6770. [PMID: 39597914 PMCID: PMC11594971 DOI: 10.3390/jcm13226770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, primarily developing in the context of chronic liver disease. Traditional prevention has focused on liver-specific interventions like antiviral therapies and surveillance. However, extrahepatic factors also significantly contribute to HCC risk. This review explores comprehensive strategies for HCC prevention, including both hepatic and extrahepatic factors. METHODS An extensive literature search of peer-reviewed articles up to October 2024 was conducted, focusing on studies addressing HCC prevention strategies. Studies that focused on both hepatic and extrahepatic factors were included. Data were extracted and synthesized to provide an overview of current prevention strategies and their effectiveness in reducing HCC incidence. RESULTS Hepatitis B vaccination and antiviral treatments for hepatitis B and C significantly reduce HCC incidence. Lifestyle modifications-such as reducing alcohol consumption, maintaining a healthy weight through diet and exercise, and smoking cessation-are crucial in lowering HCC risk. Environmental measures to limit exposure to aflatoxins and other hazards also contribute to prevention. Regular surveillance of high-risk groups enables early detection and improves survival rates. Emerging strategies like immunotherapy and gene therapy show potential for further reducing HCC risk. CONCLUSIONS A comprehensive approach combining medical interventions, lifestyle changes, and environmental controls is essential for effectively decreasing HCC incidence globally. Implementing these combined measures could significantly reduce the global burden of HCC.
Collapse
Affiliation(s)
- Natchaya Polpichai
- Department of Medicine, Weiss Memorial Hospital, Chicago, IL 60640, USA; (N.P.); (S.-Y.C.); (J.B.)
| | - Sakditad Saowapa
- Department of Medicine, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (S.S.); (P.D.)
| | - Pojsakorn Danpanichkul
- Department of Medicine, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (S.S.); (P.D.)
| | - Shu-Yen Chan
- Department of Medicine, Weiss Memorial Hospital, Chicago, IL 60640, USA; (N.P.); (S.-Y.C.); (J.B.)
| | - Leandro Sierra
- Department of Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Johanna Blagoie
- Department of Medicine, Weiss Memorial Hospital, Chicago, IL 60640, USA; (N.P.); (S.-Y.C.); (J.B.)
| | - Chitchai Rattananukrom
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine, Srinagarind Hospital, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Pimsiri Sripongpun
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Apichat Kaewdech
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| |
Collapse
|
5
|
Loos JA, Negro PS, Ortega HH, Salinas FJ, Arán M, Pellizza L, Salerno GL, Cumino AC. Anti-echinococcal effect of metformin in advanced experimental cystic echinococcosis: reprogrammed intermediary carbon metabolism in the parasite. Antimicrob Agents Chemother 2024; 68:e0094124. [PMID: 39264188 PMCID: PMC11459915 DOI: 10.1128/aac.00941-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Metformin, a safe biguanide derivative with antiproliferative properties, has shown antiparasitic efficacy against the Echinococcus larval stage. Hence, we assessed the efficacy of a dose of 250 mg kg-1 day-1 in experimental models of advanced CE, at 6 and 12 months post-infection with oral and intraperitoneal administration, respectively. At this high dose, metformin reached intracystic concentrations between 0.7 and 1.7 mM and triggered Eg-TOR inhibition through AMPK activation by AMP-independent and -dependent mechanisms, which are dependent on drug dose. Cystic metformin uptake was controlled by increased expression of organic cation transporters in the presence of the drug. In both experimental models, metformin reduced the weight of parasite cysts, altered the ultrastructural integrity of their germinal layers, and reduced the intracystic availability of glucose, limiting the cellular carbon and energy charge and the proliferative capacity of metacestodes. This glucose depletion in the parasite was associated with a slight increase in cystic uptake of 2-deoxiglucose and the transcriptional induction of GLUT genes in metacestodes. In this context, drastic glycogen consumption led to increased lactate production and altered intermediary metabolism in treated metacestodes. Specifically, the fraction of reducing soluble sugars decreased twofold, and the levels of non-reducing soluble sugars, such as sucrose and trehalose, were modified in both cystic fluid and germinal cells. Taken together, our findings highlight the relevance of metformin as a promising candidate for CE treatment and warrant further research to improve the therapeutic conditions of this chronic zoonosis in humans.
Collapse
Affiliation(s)
- Julia A. Loos
- IIPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - Perla S. Negro
- Parasitología y Enfermedades Parasitarias, Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario, Casilda, Santa Fe, Argentina
| | - Hugo H. Ortega
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET, Esperanza, Santa Fe, Argentina
| | - Facundo J. Salinas
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET, Esperanza, Santa Fe, Argentina
| | - Martín Arán
- Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)—CONICET, Buenos Aires, Argentina
| | - Leonardo Pellizza
- Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)—CONICET, Buenos Aires, Argentina
| | - Graciela L. Salerno
- Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
| | - Andrea C. Cumino
- IIPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| |
Collapse
|
6
|
Daniłowska K, Picheta N, Krupska BI, Rudzińska A, Burdan O, Szklener K. Metformin in the treatment of colorectal cancer and neuroendocrine tumours. Contemp Oncol (Pozn) 2024; 28:85-90. [PMID: 39421710 PMCID: PMC11480908 DOI: 10.5114/wo.2024.142553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Colorectal cancer is being detected in increasingly younger age groups, and its incidence has been on the rise in recent years. Neuroendocrine tumors have also shown an increase in occurrence despite their rarity. Neuroendocrine tumors most commonly occur in the gastrointestinal tract and lungs. Therefore, new, better, and more effective treatment methods are being sought. Metformin, a drug commonly used in the treatment of type 2 diabetes, has demonstrated its ability to reduce the incidence and increase the efficacy of chemotherapy in colorectal cancer and neuroendocrine tumors. The biguanide works by inhibiting the mammalian target of rapamycin pathway, activating 5'AMP activated protein kinase, and reducing insulin-like growth factor 1. In studies conducted on human cells and xenografts, the drug has shown its positive effects in combating these tumors by reducing proliferation, slowing the growth of cancer cells, and inhibiting metastasis. The main goal of this review is to comprehensively summarize the current state of knowledge regarding metformin in the treatment of colorectal cancer and neuroendocrine tumors.
Collapse
Affiliation(s)
- Karolina Daniłowska
- Student Academic Group at the Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Natalia Picheta
- Student Academic Group at the Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Barbara I. Krupska
- Student Academic Group at the Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Anna Rudzińska
- Student Academic Group at the Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Oliwia Burdan
- Student Academic Group at the Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Szklener
- Oncology and Chemotherapy Department, Independent Public Clinical Hospital no. 4, Lublin, Poland
| |
Collapse
|
7
|
Sun Q, Tian Q, Bravo Iniguez A, Sun X, Zhang H, Deavila J, Du M, Zhu MJ. AMPK Deficiency Increases DNA Methylation and Aggravates Colorectal Tumorigenesis in AOM/DSS Mice. Genes (Basel) 2024; 15:835. [PMID: 39062614 PMCID: PMC11276171 DOI: 10.3390/genes15070835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The incidence of colorectal cancer (CRC) is closely linked to metabolic diseases. Accumulating evidence suggests the regulatory role of AMP-activated protein kinase (AMPK) in cancer metabolic reprogramming. In this study, wild-type and AMPK knockout mice were subjected to azoxymethane-induced and dextran sulfate sodium (AOM/DSS)-promoted colitis-associated CRC induction. A stable AMPK-deficient Caco-2 cell line was also established for the mechanistic studies. The data showed that AMPK deficiency accelerated CRC development, characterized by increased tumor number, tumor size, and hyperplasia in AOM/DSS-treated mice. The aggravated colorectal tumorigenesis resulting from AMPK ablation was associated with reduced α-ketoglutarate production and ten-eleven translocation hydroxylase 2 (TET2) transcription, correlated with the reduced mismatch repair protein mutL homolog 1 (MLH1) protein. Furthermore, in AMPK-deficient Caco-2 cells, the mRNA expression of mismatch repair and tumor suppressor genes, intracellular α-ketoglutarate, and the protein level of TET2 were also downregulated. AMPK deficiency also increased hypermethylation in the CpG islands of Mlh1 in both colonic tissues and Caco-2 cells. In conclusion, AMPK deficiency leads to reduced α-ketoglutarate concentration and elevates the suppressive epigenetic modifications of tumor suppressor genes in gut epithelial cells, thereby increasing the risk of colorectal tumorigenesis. Given the modifiable nature of AMPK activity, it holds promise as a prospective molecular target for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Qi Sun
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (Q.S.); (Q.T.); (A.B.I.); (X.S.)
| | - Qiyu Tian
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (Q.S.); (Q.T.); (A.B.I.); (X.S.)
| | - Alejandro Bravo Iniguez
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (Q.S.); (Q.T.); (A.B.I.); (X.S.)
| | - Xiaofei Sun
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (Q.S.); (Q.T.); (A.B.I.); (X.S.)
| | - Hui Zhang
- Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA;
| | - Jeanene Deavila
- Department of Animal Science, Washington State University, Pullman, WA 99164, USA; (J.D.); (M.D.)
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA 99164, USA; (J.D.); (M.D.)
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (Q.S.); (Q.T.); (A.B.I.); (X.S.)
| |
Collapse
|
8
|
Zamanian MY, Golmohammadi M, Yumashev A, Hjazi A, Toama MA, AbdRabou MA, Gehlot A, Alwaily ER, Shirsalimi N, Yadav PK, Moriasi G. Effects of metformin on cancers in experimental and clinical studies: Focusing on autophagy and AMPK/mTOR signaling pathways. Cell Biochem Funct 2024; 42:e4071. [PMID: 38863255 DOI: 10.1002/cbf.4071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
Metformin (MET) is a preferred drug for the treatment of type 2 diabetes mellitus. Recent studies show that apart from its blood glucose-lowering effects, it also inhibits the development of various tumours, by inducing autophagy. Various studies have confirmed the inhibitory effects of MET on cancer cell lines' propagation, migration, and invasion. The objective of the study was to comprehensively review the potential of MET as an anticancer agent, particularly focusing on its ability to induce autophagy and inhibit the development and progression of various tumors. The study aimed to explore the inhibitory effects of MET on cancer cell proliferation, migration, and invasion, and its impact on key signaling pathways such as adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and PI3K. This review noted that MET exerts its anticancer effects by regulating key signalling pathways such as phosphoinositide 3-kinase (PI3K), LC3-I and LC3-II, Beclin-1, p53, and the autophagy-related gene (ATG), inhibiting the mTOR protein, downregulating the expression of p62/SQSTM1, and blockage of the cell cycle at the G0/G1. Moreover, MET can stimulate autophagy through pathways associated with the 5' AMPK, thereby inhibiting he development and progression of various human cancers, including hepatocellular carcinoma, prostate cancer, pancreatic cancer, osteosarcoma, myeloma, and non-small cell lung cancer. In summary, this detailed review provides a framework for further investigations that may appraise the autophagy-induced anticancer potential of MET and its repurposing for cancer treatment.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mariam Alaa Toama
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Anita Gehlot
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Niyousha Shirsalimi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pankaj Kumar Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Gervason Moriasi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Mount Kenya University, Thika, Kenya
| |
Collapse
|
9
|
Yew MJ, Heywood SE, Ng J, West OM, Pal M, Kueh A, Lancaster GI, Myers S, Yang C, Liu Y, Reibe S, Mellett NA, Meikle PJ, Febbraio MA, Greening DW, Drew BG, Henstridge DC. ACAD10 is not required for metformin's metabolic actions or for maintenance of whole-body metabolism in C57BL/6J mice. Diabetes Obes Metab 2024; 26:1731-1745. [PMID: 38351663 DOI: 10.1111/dom.15484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 04/09/2024]
Abstract
AIM Acyl-coenzyme A dehydrogenase family member 10 (ACAD10) is a mitochondrial protein purported to be involved in the fatty acid oxidation pathway. Metformin is the most prescribed therapy for type 2 diabetes; however, its precise mechanisms of action(s) are still being uncovered. Upregulation of ACAD10 is a requirement for metformin's ability to inhibit growth in cancer cells and extend lifespan in Caenorhabditis elegans. However, it is unknown whether ACAD10 plays a role in metformin's metabolic actions. MATERIALS AND METHODS We assessed the role for ACAD10 on whole-body metabolism and metformin action by generating ACAD10KO mice on a C57BL/6J background via CRISPR-Cas9 technology. In-depth metabolic phenotyping was conducted in both sexes on a normal chow and high fat-high sucrose diet. RESULTS Compared with wildtype mice, we detected no difference in body composition, energy expenditure or glucose tolerance in male or female ACAD10KO mice, on a chow diet or high-fat, high-sucrose diet (p ≥ .05). Hepatic mitochondrial function and insulin signalling was not different between genotypes under basal or insulin-stimulated conditions (p ≥ .05). Glucose excursions following acute administration of metformin before a glucose tolerance test were not different between genotypes nor was body composition or energy expenditure altered after 4 weeks of daily metformin treatment (p ≥ .05). Despite the lack of a metabolic phenotype, liver lipidomic analysis suggests ACAD10 depletion influences the abundance of specific ceramide species containing very long chain fatty acids, while metformin treatment altered clusters of cholesterol ester, plasmalogen, phosphatidylcholine and ceramide species. CONCLUSIONS Loss of ACAD10 does not alter whole-body metabolism or impact the acute or chronic metabolic actions of metformin in this model.
Collapse
Affiliation(s)
- Michael J Yew
- School of Health Sciences, The University of Tasmania, Launceston, Tasmania, Australia
| | - Sarah E Heywood
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Joe Ng
- School of Health Sciences, The University of Tasmania, Launceston, Tasmania, Australia
| | - Olivia M West
- School of Health Sciences, The University of Tasmania, Launceston, Tasmania, Australia
| | - Martin Pal
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Andrew Kueh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Stephen Myers
- School of Health Sciences, The University of Tasmania, Launceston, Tasmania, Australia
| | - Christine Yang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Yingying Liu
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Saskia Reibe
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- University of Oxford, Oxford, UK
| | | | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Darren C Henstridge
- School of Health Sciences, The University of Tasmania, Launceston, Tasmania, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Laeeq T, Ahmed M, Sattar H, Zeeshan MH, Ali MB. Role of SGLT2 Inhibitors, DPP-4 Inhibitors, and Metformin in Pancreatic Cancer Prevention. Cancers (Basel) 2024; 16:1325. [PMID: 38611003 PMCID: PMC11011099 DOI: 10.3390/cancers16071325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic carcinoma is a highly aggressive tumor that usually presents when it has already metastasized. Therapeutic options for cure remain scarce and rely on combination chemotherapy with limited sustainability. Diabetes is considered an important risk factor for the development of pancreatic cancer due to the production of proinflammatory cytokines, which result in increased cell proliferation. More than half of patients diagnosed with pancreatic cancer eventually develop diabetes due to the destruction of insulin-producing cells. The interlinkage of both diseases might identify a possible preventative strategy for reducing the incidence of pancreatic carcinoma. This study reviewed the recent literature on the association between pancreatic cancer risk and SGLT2 inhibitors, GLP-1 RA, DPP-4 inhibitors, and biguanides. There are mixed data regarding the relationship between GLP-1 RA and DPP-4 inhibitors and pancreatic cancer, with some trials suggesting that they might increase the risk. In contrast, studies have mostly revealed that SGLT2 inhibitors have an antiproliferative effect on various tumors, such as liver, pancreatic, prostate, bowel, lung, and breast carcinoma, which might be due to their mechanism of blockage of reabsorption of glucose by cells, lowering the amount of available glucose for the growth of tumor cells. Metformin, the first-line agent for diabetes, has also been shown to be associated with decreasing pancreatic cancer risk and improving prognosis in those who already have the disease. Dedicated trials are needed to further delineate the association of antidiabetic drugs with the risk of pancreatic cancer in the general population, as previous studies have mostly focused on diabetic patients.
Collapse
Affiliation(s)
- Tooba Laeeq
- Internal Medicine, University of Nevada, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA
| | - Maheen Ahmed
- Internal Medicine, Dow University of Health Sciences, Mission Rd., New Labour Colony, Karachi 74200, Pakistan; (M.A.); (M.H.Z.)
| | - Hina Sattar
- Internal Medicine, Dow University of Health Sciences, Mission Rd., New Labour Colony, Karachi 74200, Pakistan; (M.A.); (M.H.Z.)
| | - Muhammad Hamayl Zeeshan
- Internal Medicine, Dow University of Health Sciences, Mission Rd., New Labour Colony, Karachi 74200, Pakistan; (M.A.); (M.H.Z.)
| | - Meher Binte Ali
- Internal Medicine, University of Maryland Medical Center, 827 Linden Ave., Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Banisharif Dehkordi F, Ghatrehsamani M, Abdolvand M, Soltani A, Masoumi SH. Impact of Combination Therapy with Chemical Drugs and Megavoltage X-ray Exposure on Breast Cancer Stem Cells' Viability and Proliferation of MCF-7 and MDA-MB-231 Cell Lines. Curr Pharm Des 2024; 30:1341-1353. [PMID: 38676476 DOI: 10.2174/0113816128287325240329085055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Breast Cancer (BC) is a serious malignancy among women. However, chemotherapy is an important tool for cancer treatments, but the long-term use of chemotherapy drugs may lead to drug resistance and tumor recurrence. Since Breast Cancer Stem Cells (BCSCs) can be the main factor to induce BC treatment resistance and recurrence, investigation of BCSCs signaling pathways can be an effective modality to enhance cancer treatment efficiency. OBJECTIVE In this study, the effect of metformin, SB203580, and takinib alone or in combination with radiotherapy on MCF-7 and MDA-MB-231 breast cancer cell lines was evaluated. METHODS MCF-7 and MDA-MB-231 breast cancer cell lines were treated with metformin, SB203580, and takinib for 24 or 48 hours, followed by X-ray exposure. The MTT assay and flow cytometry analysis were performed to assess cell growth inhibition and cellular death, CXCr4 expression, and BCSCs, respectively. RESULTS The results showed the combination of takinib/SB203580 with radiotherapy to remarkably reduce the CXCR4 expression and BCSCs levels in the MCF-7 cell line. Also, the concurrent administration of takinib/metformin/radiotherapy significantly reduced BCSCs and CXCR4 metastatic markers in the MDA-MB- 231 cells. Since the MAPK signaling pathway has an important role in inducing drug resistance and cell proliferation, the use of SB203580 as an inhibitor of p38 MAPK can improve breast cancer treatment. Furthermore, metformin and ionizing radiation by suppression of the mTOR signaling pathway can control AMPK activation and cellular proliferation. CONCLUSION Anti-cancer and cytotoxic effects of metformin can be effective in this strategy. In conclusion, the combination of conventional chemotherapeutic drugs, including SB203580, metformin, and takinib with X-ray exposure can be a new approach to diminish the drug resistance of breast cancer.
Collapse
Affiliation(s)
- Fatemeh Banisharif Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahdi Ghatrehsamani
- Department of Microbiology and Immunology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Abdolvand
- Department of Microbiology and Immunology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Hossein Masoumi
- Medical Physics School of Allied Medical Sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
12
|
Shameem M, Jian Bagherpoor A, Nakhi A, Dosa P, Georg G, Kassie F. Mitochondria-targeted metformin (mitomet) inhibits lung cancer in cellular models and in mice by enhancing the generation of reactive oxygen species. Mol Carcinog 2023; 62:1619-1629. [PMID: 37401866 PMCID: PMC10961008 DOI: 10.1002/mc.23603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/04/2023] [Accepted: 06/08/2023] [Indexed: 07/05/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality in the United States. Although some epidemiological studies have shown an inverse relationship between the use of metformin, a widely used antidiabetic drug, and the incidence of lung cancer, the real benefits of the drug are unclear as the efficacy is low and the outcomes are quite heterogeneous. To develop a more potent form of metformin, we synthesized mitochondria-targeted metformin (mitomet) and tested its efficacy in in vitro and in vivo models of lung cancer. Mitomet was cytotoxic to transformed bronchial cells and several non-small cell lung cancer (NSCLC) cell lines but relatively safe to normal bronchial cells, and these effects were mediated mainly via induction of mitochondrial reactive oxygen species. Studies using isogenic A549 cells showed that mitomet was selectively toxic to those cells deficient in the tumor suppressor gene LKB1, which is widely mutated in NSCLC. Mitomet also significantly reduced the multiplicity and size of lung tumors induced by a tobacco smoke carcinogen in mice. Overall, our findings showed that mitomet, which was about 1000 and 100 times more potent than metformin, in killing NSCLC cells and reducing the multiplicity and size of lung tumors in mice, respectively, is a promising candidate for the chemoprevention and treatment of lung cancer, in particular against LKB1-deficient lung cancers which are known to be highly aggressive.
Collapse
Affiliation(s)
- Mohammad Shameem
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Ali Nakhi
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Peter Dosa
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Gunda Georg
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Fekadu Kassie
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
13
|
Manickavel S, Hartman Y, Burns A, Lora Gonzalez MA, Warram J, Walsh E, Hunter JB, Killeen DE. Metformin Reduces Tumor Growth in a Murine Flank Schwannoma Model. Otol Neurotol 2023; 44:941-948. [PMID: 37641199 DOI: 10.1097/mao.0000000000004001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
HYPOTHESIS Metformin and aspirin reduce vestibular schwannoma (VS) growth. BACKGROUND There have been reported associations between patients with VS prescribed metformin and decreased tumor volumetric growth. Aspirin has also been associated with decreased VS growth in animal studies. METHODS Rat schwannoma cell lines were grown and implanted into 50 athymic nude mice. Tumors were grown to 5 mm, and then mice were injected with either low- or high-dose metformin, aspirin, or saline daily. Tumors were measured until 14 days elapsed or mice demonstrated symptoms such as ulceration, inability to walk, or passed away. RESULTS There were no significant differences in day 0 tumor sizes between the control and the treatment groups ( p = 0.73). In the low-dose, but not high-dose groups, day 7 volumes were significantly different for both metformin ( p = 0.04) and aspirin ( p = 0.02) compared with placebo. Mean tumor growth rates were 126.6 ± 65.6 mm 3 /day for saline compared with 73.7 ± 29.5 mm 3 /day for low-dose metformin ( p = 0.03) and 68.7 ± 34.8 mm 3 /day for low-dose aspirin ( p = 0.016). There were no significant differences in tumor sizes ( p = 0.59) or growth rates ( p = 0.75) between low-dose metformin and aspirin groups. Low-dose groups had treatment stopped at 14 days, with continued monitoring demonstrating significant increases in tumor growth off treatment for both aspirin ( p = 0.006) and metformin ( p = 0.048). CONCLUSIONS Metformin treatment significantly reduced VS growth to a similar level as aspirin. Furthermore, when removing both metformin and aspirin treatment, tumor growth significantly increased.
Collapse
Affiliation(s)
- Sudhir Manickavel
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yolanda Hartman
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andrew Burns
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Manuel A Lora Gonzalez
- Department of Pathology-Anatomic Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jason Warram
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Erika Walsh
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jacob B Hunter
- Department of Pathology-Anatomic Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel E Killeen
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Shahid A, Chen M, Yeung S, Parsa C, Orlando R, Huang Y. The medicinal mushroom Ganoderma lucidum prevents lung tumorigenesis induced by tobacco smoke carcinogens. Front Pharmacol 2023; 14:1244150. [PMID: 37745066 PMCID: PMC10516555 DOI: 10.3389/fphar.2023.1244150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Ganoderma lucidum (GL), commonly known as "Lingzhi", is a well-known medicinal mushroom with antioxidant and anti-cancer activity. This study examined the effects of a commercial GL product (GLSF) containing the spore and fruiting body in a 30:8 ratio on tobacco smoke carcinogen-induced lung toxicity and carcinogenesis. The potential chemopreventive effect of GLSF was evaluated in vitro and in vivo. The non-tumorous human bronchial epithelial cells (BEAS-2B cells) were treated with GLSF extract (0.025 and 0.05 mg/mL), which significantly blocked malignant transformation induced by benzo[a]pyrene diol epoxide (BPDE) in a dose-dependent manner. To confirm its anti-carcinogenic activity in vivo, the mice were pre-treated with GLSF (2.0 g/kg of body weight) or curcumin (100 mg/kg of body weight) by oral gavage daily for 7 days and then exposed to a single dose of benzo[a]pyrene (B[a]P) (125 mg/kg of body weight). The GLSF-treated mice showed a significant reduction in B[a]P-induced lung toxicity, as indicated by decreased lactate dehydrogenase activity, malondialdehyde levels, inflammatory cell infiltration, and improved lung histopathology. We next determined the chemopreventive activity of GLSF in mice which were exposed to two weekly doses of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 100 mg/kg, on the 1st and 8th days) and fed with control or a modified diet containing GLSF (2.0 g/kg) or metformin (250 mg/kg) for 33 weeks. The GLSF and metformin treatments blocked NNK-induced lung tumor development by decreasing the lung weight, tumor area, and tumor burden compared to the mice exposed to NNK only. GLSF treatment also attenuated the expression of inflammatory, angiogenic, and apoptotic markers in lung tumors. Therefore, GLSF may be used for ameliorating tobacco smoke carcinogens-induced lung toxicity and carcinogenesis.
Collapse
Affiliation(s)
- Ayaz Shahid
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Mengbing Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Steven Yeung
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Cyrus Parsa
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
- Department of Pathology, Beverly Hospital, Montebello, CA, United States
| | - Robert Orlando
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
- Department of Pathology, Beverly Hospital, Montebello, CA, United States
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
15
|
Abdelmoneim M, Aboalela MA, Naoe Y, Matsumura S, Eissa IR, Bustos-Villalobos I, Sibal PA, Takido Y, Kodera Y, Kasuya H. The Impact of Metformin on Tumor-Infiltrated Immune Cells: Preclinical and Clinical Studies. Int J Mol Sci 2023; 24:13353. [PMID: 37686159 PMCID: PMC10487782 DOI: 10.3390/ijms241713353] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in the fate of cancer cells, and tumor-infiltrating immune cells have emerged as key players in shaping this complex milieu. Cancer is one of the leading causes of death in the world. The most common standard treatments for cancer are surgery, radiation therapy, and chemotherapeutic drugs. In the last decade, immunotherapy has had a potential effect on the treatment of cancer patients with poor prognoses. One of the immune therapeutic targeted approaches that shows anticancer efficacy is a type 2 diabetes medication, metformin. Beyond its glycemic control properties, studies have revealed intriguing immunomodulatory properties of metformin. Meanwhile, several studies focus on the impact of metformin on tumor-infiltrating immune cells in various tumor models. In several tumor models, metformin can modulate tumor-infiltrated effector immune cells, CD8+, CD4+ T cells, and natural killer (NK) cells, as well as suppressor immune cells, T regulatory cells, tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs). In this review, we discuss the role of metformin in modulating tumor-infiltrating immune cells in different preclinical models and clinical trials. Both preclinical and clinical studies suggest that metformin holds promise as adjunctive therapy in cancer treatment by modulating the immune response within the tumor microenvironment. Nonetheless, both the tumor type and the combined therapy have an impact on the specific targets of metformin in the TME. Further investigations are warranted to elucidate the precise mechanisms underlying the immunomodulatory effects of metformin and to optimize its clinical application in cancer patients.
Collapse
Affiliation(s)
- Mohamed Abdelmoneim
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Mona Alhussein Aboalela
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Shigeru Matsumura
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Ibrahim Ragab Eissa
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Itzel Bustos-Villalobos
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Patricia Angela Sibal
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Yuhei Takido
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| |
Collapse
|
16
|
Yu OHY, Suissa S. Metformin and Cancer: Solutions to a Real-World Evidence Failure. Diabetes Care 2023; 46:904-912. [PMID: 37185680 DOI: 10.2337/dci22-0047] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/09/2023] [Indexed: 05/17/2023]
Abstract
The quest to repurpose metformin, an antidiabetes drug, as an agent for cancer prevention and treatment, which began in 2005 with an observational study that reported a reduction in cancer incidence among metformin users, generated extensive experimental, observational, and clinical research. Experimental studies revealed that metformin has anticancer effects via various pathways, potentially inhibiting cancer cell proliferation. Concurrently, multiple nonrandomized observational studies reported remarkable reductions in cancer incidence and outcomes with metformin use. However, these studies were shown, in 2012, to be affected by time-related biases, such as immortal time bias, which tend to greatly exaggerate the benefit of a drug. The observational studies that avoided these biases did not find an association. Subsequently, the randomized trials of metformin for the treatment of type 2 diabetes and as adjuvant therapy for the treatment of various cancers, advanced or metastatic, did not find reductions in cancer incidence or outcomes. Most recently, the largest phase 3 randomized trial of metformin as adjuvant therapy for breast cancer, which enrolled 3,649 women with a 5-year follow-up, found no benefit for disease-free survival or overall survival with metformin. This major failure of observational real-world evidence studies in correctly assessing the effects of metformin on cancer incidence and outcomes was caused by preventable biases which, surprisingly, are still prominent in 2022. Rigorous approaches for observational studies that emulate randomized trials, such as the incident and prevalent new-user designs along with propensity scores, avoid these biases and can provide more accurate real-world evidence for the repurposing of drugs such as metformin.
Collapse
Affiliation(s)
- Oriana Hoi Yun Yu
- 1Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- 2Division of Endocrinology, Jewish General Hospital, Montreal, Canada
- 3Department of Medicine, McGill University, Montreal, Canada
| | - Samy Suissa
- 1Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- 3Department of Medicine, McGill University, Montreal, Canada
- 4Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
| |
Collapse
|
17
|
Marshall K, Twum Y, Gao W. Proteome derangement in malignant epithelial cells and its stroma following exposure to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Arch Toxicol 2023; 97:711-720. [PMID: 36434399 PMCID: PMC10071504 DOI: 10.1007/s00204-022-03426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Discovering novel changes in the proteome of malignant lung epithelial cells and/or the tumor-microenvironment is paramount for diagnostic, prognostic, and/or therapy development. A time-dependent 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced mouse lung tumor model was used to screen the proteome of lung tumors. NNK-transformed human lung epithelial BEAS-2B cells were then established to evaluate the epithelial cell-specific protein changes. A duration-dependent increase of tumor burden was observed in NNK-treated mice, 2/12 (17%), 8/12 (67%), 9/12 (75%), and 10/10 (100%) at weeks 8, 12, 16, and 20 after the NNK exposure, respectively. A total of 25 differentially expressed proteins (≥ twofold change), predominantly structural, signaling, and metabolic proteins, were detected by two-dimensional difference gel electrophoresis and identified by mass spectrometry. Calregulin, ezrin, histamine releasing factor (HRF), and inorganic pyrophosphatase 1 (PPA1) exhibited changes and were further confirmed via immunoblotting. In addition, immunohistochemistry (IHC) analysis indicated upregulated E-cadherin and decreased vimentin expression in epithelial cells of tumor tissues. Acquisition of a neoplastic phenotype in NNK-transformed BEAS-2B cells was demonstrated by enhanced wound closure and increased anchorage independent colony formation. In transformed BEAS-2B cells, protein expression of E-cadherin, ezrin, and PPA1 (but not calregulin and HRF) was upregulated, as was observed in tumor tissues IHC staining using mouse lung tumor tissues further revealed that HRF upregulation was not lung epithelial cell specific. Altogether, tumorigenesis after NNK exposure may be initiated by protein dysregulation in lung epithelial cells together with proteome derangement derived from other cell types existing in the tumor-microenvironment.
Collapse
Affiliation(s)
- Kent Marshall
- Department of Occupational and Environmental Health Sciences, West Virginia University, School of Public Health, 64 Medical Center Drive, Morgantown, WV, 26506, USA
- West Virginia University, School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26505, USA
- West Virginia Clinical and Translational Science Institute, Morgantown, WV, USA
| | - Yaw Twum
- Department of Occupational and Environmental Health Sciences, West Virginia University, School of Public Health, 64 Medical Center Drive, Morgantown, WV, 26506, USA
| | - Weimin Gao
- Department of Occupational and Environmental Health Sciences, West Virginia University, School of Public Health, 64 Medical Center Drive, Morgantown, WV, 26506, USA.
- West Virginia Clinical and Translational Science Institute, Morgantown, WV, USA.
| |
Collapse
|
18
|
Gholami M, Klashami ZN, Ebrahimi P, Mahboobipour AA, Farid AS, Vahidi A, Zoughi M, Asadi M, Amoli MM. Metformin and long non-coding RNAs in breast cancer. J Transl Med 2023; 21:155. [PMID: 36849958 PMCID: PMC9969691 DOI: 10.1186/s12967-023-03909-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and cause of death in women. In recent years many studies investigated the association of long non-coding RNAs (lncRNAs), as novel genetic factors, on BC risk, survival, clinical and pathological features. Recent studies also investigated the roles of metformin treatment as the firstline treatment for type 2 diabetes (T2D) played in lncRNAs expression/regulation or BC incidence, outcome, mortality and survival, separately. This comprehensive study aimed to review lncRNAs associated with BC features and identify metformin-regulated lncRNAs and their mechanisms of action on BC or other types of cancers. Finally, metformin affects BC by regulating five BC-associated lncRNAs including GAS5, HOTAIR, MALAT1, and H19, by several molecular mechanisms have been described in this review. In addition, metformin action on other types of cancers by regulating ten lncRNAs including AC006160.1, Loc100506691, lncRNA-AF085935, SNHG7, HULC, UCA1, H19, MALAT1, AFAP1-AS1, AC026904.1 is described.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeynab Nickhah Klashami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pirooz Ebrahimi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | | | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Vahidi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Zoughi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Metabolomics and Genomics Research Center Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Heterogeneity of Amino Acid Profiles of Proneural and Mesenchymal Brain-Tumor Initiating Cells. Int J Mol Sci 2023; 24:ijms24043199. [PMID: 36834608 PMCID: PMC9962848 DOI: 10.3390/ijms24043199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Glioblastomas are highly malignant brain tumors that derive from brain-tumor-initiating cells (BTICs) and can be subdivided into several molecular subtypes. Metformin is an antidiabetic drug currently under investigation as a potential antineoplastic agent. The effects of metformin on glucose metabolism have been extensively studied, but there are only few data on amino acid metabolism. We investigated the basic amino acid profiles of proneural and mesenchymal BTICs to explore a potential distinct utilization and biosynthesis in these subgroups. We further measured extracellular amino acid concentrations of different BTICs at baseline and after treatment with metformin. Effects of metformin on apoptosis and autophagy were determined using Western Blot, annexin V/7-AAD FACS-analyses and a vector containing the human LC3B gene fused to green fluorescent protein. The effects of metformin on BTICs were challenged in an orthotopic BTIC model. The investigated proneural BTICs showed increased activity of the serine and glycine pathway, whereas mesenchymal BTICs in our study preferably metabolized aspartate and glutamate. Metformin treatment led to increased autophagy and strong inhibition of carbon flux from glucose to amino acids in all subtypes. However, oral treatment with metformin at tolerable doses did not significantly inhibit tumor growth in vivo. In conclusion, we found distinct amino acid profiles of proneural and mesenchymal BTICs, and inhibitory effects of metformin on BTICs in vitro. However, further studies are warranted to better understand potential resistance mechanisms against metformin in vivo.
Collapse
|
20
|
Elton AC, Cedarstrom V, Quraishi A, Wuertz B, Murray K, Markowski TW, Seabloom D, Ondrey FG. Metabolic and Metabolomic Effects of Metformin in Murine Model of Pulmonary Adenoma Formation. Nutr Cancer 2023; 75:1014-1027. [PMID: 36688306 DOI: 10.1080/01635581.2023.2165692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epidemiologic studies of diabetic patients treated with metformin identified significantly lower incidences of cancer. From this, there is growing interest in the use of metformin to treat and prevent cancer. Studies have investigated chemopreventive mechanisms including alterations in calorie intake, cancer metabolism, and cell signaling. Repurposing the drug is challenging due to its metabolic effects and non-uniform effects on different types of cancer. In our previously published studies, we observed that benzo[a]pyrene treated mice receiving metformin significantly reduced lung adenomas; however, mice had reduced weight gain. In this study, we compared chemoprevention diets with and without metformin to evaluate the effects of diet vs. effects of metformin. We also performed tandem mass spectrometry on mouse serum to assess metabolomic alterations associated with metformin treatment. In metformin cohorts, the rate of weight gain was reduced, but weights did not vary between diets. There was no weight difference between diets without metformin. Interestingly, caloric intake was increased in metformin treated mice. Metabolomic analysis revealed metabolite alterations consistent with metformin treatment. Based on these results, we conclude that previous reductions in lung adenomas may have been occurred from anticancer effects of metformin rather than a potentially toxic effect such as calorie restriction.
Collapse
Affiliation(s)
- Andrew C Elton
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Vannesa Cedarstrom
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Arman Quraishi
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Beverly Wuertz
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,AeroCore, Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kevin Murray
- Center for Mass Spectrometry & Proteomics, Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Todd W Markowski
- Center for Mass Spectrometry & Proteomics, Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Donna Seabloom
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,AeroCore, Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Frank G Ondrey
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,AeroCore, Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
21
|
Sanati M, Aminyavari S, Mollazadeh H, Motamed-Sanaye A, Bibak B, Mohtashami E, Teng Y, Afshari AR, Sahebkar A. The Potential Therapeutic Impact of Metformin in Glioblastoma Multiforme. Curr Med Chem 2023; 30:857-877. [PMID: 35796457 DOI: 10.2174/0929867329666220707103525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/13/2022] [Accepted: 04/16/2022] [Indexed: 02/08/2023]
Abstract
In terms of frequency and aggressiveness, glioblastoma multiforme (GBM) is undoubtedly the most frequent and fatal primary brain tumor. Despite advances in clinical management, the response to current treatments is dismal, with a 2-year survival rate varying between 6 and 12 percent. Metformin, a derivative of biguanide widely used in treating type 2 diabetes, has been shown to extend the lifespan of patients with various malignancies. There is limited evidence available on the long-term survival of GBM patients who have taken metformin. This research examined the literature to assess the connection between metformin's anticancer properties and GBM development. Clinical findings, together with the preclinical data from animal models and cell lines, are included in the present review. This comprehensive review covers not only the association of hyperactivation of the AMPK pathway with the anticancer activity of metformin but also other mechanisms underpinning its role in apoptosis, cell proliferation, metastasis, as well as its chemo-radio-sensitizing behavior against GBM. Current challenges and future directions for developments and applications of metformin-based therapeutics are also discussed.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ali Motamed-Sanaye
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Bahram Bibak
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA30322, USA
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Mu W, Jiang Y, Liang G, Feng Y, Qu F. Metformin: A Promising Antidiabetic Medication for Cancer Treatment. Curr Drug Targets 2023; 24:41-54. [PMID: 36336804 DOI: 10.2174/1389450124666221104094918] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Metformin is a widely used drug in patients with type 2 diabetes mellitus. Metformin inhibits hepatic gluconeogenesis and increases glucose utilization in peripheral tissues. In recent years, several studies have shown that metformin is a potential therapeutic agent against cancer, alone or combined with other anticancer treatments. Metformin mainly activates the AMPK complex and regulates intracellular energy status, inhibiting the mitochondrial respiratory chain complex I and reducing the production of reactive oxygen species. Other anticancer targets of metformin are specific transcription factors inhibiting cell proliferation, promoting apoptosis and reducing drug resistance. In addition, metformin modulates tumor cells' response to anticancer treatments, favoring the activity of T cells. In diabetic patients, metformin reduces the occurrence of cancer and improves the prognosis and efficacy of anticancer treatments. In this review, we provided a comprehensive perspective of metformin as an anticancer drug.
Collapse
Affiliation(s)
- Wei Mu
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, 214044 Wuxi, Jiangsu, PR China
| | - Yunyun Jiang
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, 214044 Wuxi, Jiangsu, PR China
| | - Guoqiang Liang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 215000 Suzhou, Jiangsu, PR China
| | - Yue Feng
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, 214044 Wuxi, Jiangsu, PR China
| | - Falin Qu
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, 214044 Wuxi, Jiangsu, PR China
| |
Collapse
|
23
|
Bond NLS, Dréau D, Marriott I, Bennett JM, Turner MJ, Arthur ST, Marino JS. Low-Dose Metformin Treatment Reduces In Vitro Growth of the LL/2 Non-small Cell Lung Cancer Cell Line. Biomedicines 2022; 11:biomedicines11010065. [PMID: 36672573 PMCID: PMC9856116 DOI: 10.3390/biomedicines11010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Lung cancer maintains a relatively small survival rate (~19%) over a 5-year period and up to 80-85% of all lung cancer diagnoses are Non-Small Cell Lung Cancer (NSCLC). To determine whether metformin reduces non-small cell lung cancer (NSCLC) LL/2 cell growth, cells were grown in vitro and treated with metformin for 48 h. qPCR was used to assess genes related to cell cycle regulation and pro-apoptotic markers, namely Cyclin D, CDK4, p27, p21, and HES1. Treatment with 10 mM metformin significantly reduced HES1 expression (p = 0.011). Furthermore, 10 mM metformin treatment significantly decreased REDD1 (p = 0.0082) and increased p-mTOR Ser2448 (p = 0.003) protein expression. Control cells showed significant reductions in phosphorylated p53 protein expression (p = 0.0367), whereas metformin treated cells exhibited reduced total p53 protein expression (p = 0.0078). There were no significant reductions in AMPK, PKB/AKT, or STAT3. In addition, NSCLC cells were treated for 48 h. with 10 mM metformin, 4 µM gamma-secretase inhibitor (GSI), or the combination of metformin (10 mM) and GSI (4 µM) to determine the contribution of respective signaling pathways. Metformin treatment significantly reduced total nucleus expression of the proliferation maker Ki-67 with an above 65% reduction in Ki-67 expression between control and metformin-treated cells (p = 0.0021). GSI (4 µM) treatment significantly reduced Ki-67 expression by ~20% over 48 h (p = 0.0028). Combination treatment (10 mM metformin and 4 µM GSI) significantly reduced Ki-67 expression by more than 50% over 48 h (p = 0.0245). As such, direct administration of metformin (10 mM for 48 h) proved to be an effective pharmaceutical agent in reducing the proliferation of cultured non-small cell cancer cells. These intriguing in vitro results, therefore, support the further study of metformin in appropriate in vivo models as an anti-oncogenic agent and/or an adjunctive therapy.
Collapse
Affiliation(s)
- Nicole L. Stott Bond
- Distance Education, Technology and Integration, University of North Georgia, Dahlonega, GA 30597, USA
| | - Didier Dréau
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jeanette M. Bennett
- Department of Psychological Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Michael J. Turner
- Laboratory of Systems Physiology, Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Susan T. Arthur
- Laboratory of Systems Physiology, Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Joseph S. Marino
- Laboratory of Systems Physiology, Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Correspondence:
| |
Collapse
|
24
|
Abdelmoneim M, Eissa IR, Aboalela MA, Naoe Y, Matsumura S, Sibal PA, Bustos-Villalobos I, Tanaka M, Kodera Y, Kasuya H. Metformin enhances the antitumor activity of oncolytic herpes simplex virus HF10 (canerpaturev) in a pancreatic cell cancer subcutaneous model. Sci Rep 2022; 12:21570. [PMID: 36513720 PMCID: PMC9747797 DOI: 10.1038/s41598-022-25065-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Oncolytic virus (OV) therapy is a promising cancer immunotherapy, especially for cold tumors by inducing the direct lysis of cancer cells and initiation of potent antitumor response. Canerpaturev (C-REV) is an attenuated oncolytic herpes simplex virus-1, which demonstrated a potent antitumor effect in various preclinical models when used either alone or combined. Metformin is a commonly prescribed antidiabetic drug that demonstrated a potent immune modulator effect and antitumor response. We combined C-REV with metformin in a low immunogenic bilateral murine tumor model to enhance C-REV's antitumor efficacy. In vitro, metformin does not enhance the C-REV cell cytotoxic effect. However, in in vivo model, intratumoral administration of C-REV with the systemic administration of metformin led to synergistic antitumor effect on both sides of tumor and prolonged survival. Moreover, combination therapy increased the effector CD44+ CD8+ PD1- subset and decreased the proportion of terminally-differentiated CD103+ KLRG-1+ T-regulatory cells on both sides of tumor. Interestingly, combination therapy efficiently modulates conventional dendritic cells type-1 (cDC1) on tumors, and tumor-drained lymph nodes. Our findings suggest that combination of C-REV and metformin enhances systemic antitumor immunity. This study may provide insights into the mechanism of action of OV therapy plus metformin combination against various tumor models.
Collapse
Affiliation(s)
- Mohamed Abdelmoneim
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan ,grid.31451.320000 0001 2158 2757Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ibrahim Ragab Eissa
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan ,grid.412258.80000 0000 9477 7793Faculty of Science, Tanta University, Tanta, Egypt
| | - Mona Alhussein Aboalela
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan ,grid.31451.320000 0001 2158 2757Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Yoshinori Naoe
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan
| | - Shigeru Matsumura
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan
| | - Patricia Angela Sibal
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan
| | - Itzel Bustos-Villalobos
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan
| | - Maki Tanaka
- grid.410820.fTakara Bio Inc., Kusatsu, Shiga Japan
| | - Yasuhiro Kodera
- grid.27476.300000 0001 0943 978XDepartment of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hideki Kasuya
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
25
|
Elkin PL, Mullin S, Tetewsky S, Resendez SD, McCray W, Barbi J, Yendamuri S. Identification of patient characteristics associated with survival benefit from metformin treatment in patients with stage I non-small cell lung cancer. J Thorac Cardiovasc Surg 2022; 164:1318-1326.e3. [PMID: 35469597 PMCID: PMC9463413 DOI: 10.1016/j.jtcvs.2022.02.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/31/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) continues to be a major cause of cancer deaths. Previous investigation has suggested that metformin use can contribute to improved outcomes in NSCLC patients. However, this association is not uniform in all analyzed cohorts, implying that patient characteristics might lead to disparate results. Identification of patient characteristics that affect the association of metformin use with clinical benefit might clarify the drug's effect on lung cancer outcomes and lead to more rational design of clinical trials of metformin's utility as an intervention. In this study, we examined the association of metformin use with long-term mortality benefit in patients with NSCLC and the possible modulation of this benefit by body mass index (BMI) and smoking status, controlling for other clinical covariates. METHODS This was a retrospective cohort study in which we analyzed data from the Veterans Affairs (VA) Tumor Registry in the United States. Data from all patients with stage I NSCLC from 2000 to 2016 were extracted from a national database, the Corporate Data Warehouse that captures data from all patients, primarily male, who underwent treatment through the VA health system in the United States. Metformin use was measured according to metformin prescriptions dispensed to patients in the VA health system. The association of metformin use with overall survival (OS) after diagnosis of stage I NSCLC was examined. Patients were further stratified according to BMI and smoking status (previous vs current) to examine the association of metformin use with OS across these strata. RESULTS Metformin use was associated with improved survival in patients with stage I NSCLC (average hazard ratio, 0.82; P < .001). An interaction between the effect of metformin use and BMI on OS was observed (χ2 = 3268.42; P < .001) with a greater benefit of metformin use observed in patients as BMI increased. Similarly, an interaction between smoking status and metformin use on OS was also observed (χ2 = 2997.05; P < .001) with a greater benefit of metformin use observed in previous smokers compared with current smokers. CONCLUSIONS In this large retrospective study, we showed that a survival benefit is enjoyed by users of metformin in a robust stage I NSCLC patient population treated in the VA health system. Metformin use was associated with an 18% improved OS. This association was stronger in patients with a higher BMI and in previous smokers. These observations deserve further mechanistic study and can help rational design of clinical trials with metformin in patients with lung cancer.
Collapse
Affiliation(s)
- Peter L Elkin
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Veterans Affairs, Buffalo, NY; Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Faculty of Engineering, University of Southern Denmark, Odense, Denmark.
| | - Sarah Mullin
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Sheldon Tetewsky
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Veterans Affairs, Buffalo, NY
| | - Skyler D Resendez
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Wilmon McCray
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY; Department of Veterans Affairs, Buffalo, NY
| | - Joseph Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Sai Yendamuri
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY; Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY.
| |
Collapse
|
26
|
Kumar R, Mishra A, Gautam P, Feroz Z, Vijayaraghavalu S, Likos EM, Shukla GC, Kumar M. Metabolic Pathways, Enzymes, and Metabolites: Opportunities in Cancer Therapy. Cancers (Basel) 2022; 14:5268. [PMID: 36358687 PMCID: PMC9656396 DOI: 10.3390/cancers14215268] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Metabolic reprogramming enables cancer cells to proliferate and produce tumor biomass under a nutrient-deficient microenvironment and the stress of metabolic waste. A cancer cell adeptly undergoes a variety of adaptations in metabolic pathways and differential expression of metabolic enzyme genes. Metabolic adaptation is mainly determined by the physiological demands of the cancer cell of origin and the host tissue. Numerous metabolic regulators that assist cancer cell proliferation include uncontrolled anabolism/catabolism of glucose metabolism, fatty acids, amino acids metabolism, nucleotide metabolism, tumor suppressor genes, microRNAs, and many regulatory enzymes and genes. Using this paradigm, we review the current understanding of metabolic reprogramming in tumors and discuss the new strategies of cancer metabolomics that can be tapped into for cancer therapeutics.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Anurag Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Priyanka Gautam
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Zainab Feroz
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | | | - Eviania M. Likos
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Girish C. Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| |
Collapse
|
27
|
Wang Y, Hu J, Sun Y, Song B, Zhang Y, Lu Y, Ma H. Metformin Synergizes with PD-L1 Monoclonal Antibody Enhancing Tumor Immune Response in Treating Non-Small Cell Lung Cancer and Its Molecular Mechanism Investigation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5983959. [PMID: 36199547 PMCID: PMC9527407 DOI: 10.1155/2022/5983959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022]
Abstract
Despite non-small cell lung cancer (NSCLC) treatment is proved to be effective using PD-L1 monoclonal antibody (PD-L1 MAb), it is commonly seen in immune-related adverse events reported. We aimed to explore metformin synergized with PD-L1 MAb in treating NSCLC and its potential molecular mechanism. In mice, the transplantable lung cancer models were established and a co-culture system of CD8+T cells and LLC cells was constructed. The anti-tumor effect was assessed by xenograft tumor growth, proliferation signal Ki67 expression, and MTT assays. Immunohistochemistry and western blot assays were also conducted to determine tumor immune response as well as mechanism investigation. The results indicated that tumor volume and cell proliferation were markedly inhibited following metformin synergized with PD-L1 MAb which was more effective than either single metformin or PD-L1 MAb. The cytokines TNF-α, IL-2, and IFN-γ secretion in CD8+ T cells was significantly increased, and the immune response was enhanced by metformin synergized with PD-L1 MAb. Further, the WB results implied that metformin synergized with PD-L1 MAb could activate the AMPK pathway and inhibit mTOR. AMPK inhibitor (Compound C) was added, and the results showed that the anti-tumor effect was reduced in metformin + PD-L1 MAb + CC than in metformin + PD-L1 MAb which indicates the metformin synergized with PD-L1 MAb efficacy was AMPK pathway dependent. In conclusion, metformin synergized with PD-L1 MAb has better efficacy against NSCLC than metformin or PD-L1 MAb alone in an AMPK-dependent way and facilitates increasing CD8+ T cell infiltration and enhancing tumor immune response.
Collapse
Affiliation(s)
- Yifan Wang
- The First Affiliated Hospital of Soochow University, Department of Thoracic Surgery, Suzhou 215006, China
- Affiliated Hospital of Chengdu University, Department of Thoracic Surgery, Chengdu 610081, China
| | - Jingguo Hu
- Affiliated Hospital of Chengdu University, Department of Thoracic Surgery, Chengdu 610081, China
| | - Yu Sun
- Affiliated Hospital of Chengdu University, Department of Thoracic Surgery, Chengdu 610081, China
| | - Bo Song
- Affiliated Hospital of Chengdu University, Department of Thoracic Surgery, Chengdu 610081, China
| | - Yan Zhang
- Affiliated Hospital of Chengdu University, Department of Thoracic Surgery, Chengdu 610081, China
| | - Yusong Lu
- Affiliated Hospital of Chengdu University, Department of Thoracic Surgery, Chengdu 610081, China
| | - Haitao Ma
- The First Affiliated Hospital of Soochow University, Department of Thoracic Surgery, Suzhou 215006, China
| |
Collapse
|
28
|
Su H, Bak EJ, Kim A, Tissera K, Cha JH, Jang S. Helicobacter pylori-mediated gastric pathogenesis is attenuated by treatment of 2-deoxyglucose and metformin. J Microbiol 2022; 60:849-858. [DOI: 10.1007/s12275-022-2130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
|
29
|
Wu H, Huang D, Zhou H, Sima X, Wu Z, Sun Y, Wang L, Ruan Y, Wu Q, Wu F, She T, Chu Y, Huang Q, Ning Z, Zhang H. Metformin: A promising drug for human cancers. Oncol Lett 2022; 24:204. [PMID: 35720480 PMCID: PMC9178677 DOI: 10.3892/ol.2022.13325] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Small-molecule chemical drugs are of great significance for tumor-targeted and individualized therapies. However, the development of new small-molecule drugs, from basic experimental research and clinical trials to final application in clinical practice, is a long process that has a high cost. It takes at least 5 years for most drugs to be developed in the laboratory to prove their effectiveness and safety. Compared with the development of new drugs, repurposing traditional non-tumor drugs can be a shortcut. Metformin is a good model for a new use of an old drug. In recent years, the antitumor efficacy of metformin has attracted much attention. Epidemiological data and in vivo, and in vitro experiments have shown that metformin can reduce the incidence of cancer in patients with diabetes and has a strong antagonistic effect on metabolism-related tumors. Recent studies have shown that metformin can induce autophagy in esophageal cancer cells, mainly by inhibiting inflammatory signaling pathways. In recent years, studies have shown that the antitumor functions and mechanisms of metformin are multifaceted. The present study aims to review the application of metformin in tumor prevention and treatment.
Collapse
Affiliation(s)
- Hongnian Wu
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dan Huang
- Department of Burn and Plastic Surgery, Enshi State Central Hospital, Enshi, Hubei 445099, P.R. China
| | - Hong Zhou
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xueqin Sima
- Department of Histology and Embryology, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhe Wu
- Department of Histology and Embryology, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yanling Sun
- Department of Histology and Embryology, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Long Wang
- Department of Microbiology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ying Ruan
- Department of Dermatology, Clinical Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Qian Wu
- Nursing School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Feng Wu
- Stomatology and Optometry School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Tonghui She
- Department of Pathology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ying Chu
- Department of Burn and Plastic Surgery, Enshi State Central Hospital, Enshi, Hubei 445099, P.R. China
| | - Qizhi Huang
- Department of Clinical Lab, Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhifeng Ning
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Department of Pathology, Jinan University Medical College, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
30
|
Scordamaglia D, Cirillo F, Talia M, Santolla MF, Rigiracciolo DC, Muglia L, Zicarelli A, De Rosis S, Giordano F, Miglietta AM, De Francesco EM, Vella V, Belfiore A, Lappano R, Maggiolini M. Metformin counteracts stimulatory effects induced by insulin in primary breast cancer cells. J Transl Med 2022; 20:263. [PMID: 35672854 PMCID: PMC9172136 DOI: 10.1186/s12967-022-03463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Metabolic disorders are associated with increased incidence, aggressive phenotype and poor outcome of breast cancer (BC) patients. For instance, hyperinsulinemia is an independent risk factor for BC and the insulin/insulin receptor (IR) axis is involved in BC growth and metastasis. Of note, the anti-diabetic metformin may be considered in comprehensive therapeutic approaches in BC on the basis of its antiproliferative effects obtained in diverse pre-clinical and clinical studies. Methods Bioinformatics analysis were performed using the information provided by The Invasive Breast Cancer Cohort of The Cancer Genome Atlas (TCGA) project. The naturally immortalized BC cell line, named BCAHC-1, as well as cancer-associated fibroblasts (CAFs) derived from BC patients were used as model systems. In order to identify further mechanisms that characterize the anticancer action of metformin in BC, we performed gene expression and promoter studies as well as western blotting experiments. Moreover, cell cycle analysis, colony and spheroid formation, actin cytoskeleton reorganization, cell migration and matrigel drops evasion assays were carried out to provide novel insights on the anticancer properties of metformin. Results We first assessed that elevated expression and activation of IR correlate with a worse prognostic outcome in estrogen receptor (ER)-positive BC. Thereafter, we established that metformin inhibits the insulin/IR-mediated activation of transduction pathways, gene changes and proliferative responses in BCAHC-1 cells. Then, we found that metformin interferes with the insulin-induced expression of the metastatic gene CXC chemokine receptor 4 (CXCR4), which we found to be associated with poor disease-free survival in BC patients exhibiting high levels of IR. Next, we ascertained that metformin prevents a motile phenotype of BCAHC-1 cells triggered by the paracrine liaison between tumor cells and CAFs upon insulin activated CXCL12/CXCR4 axis. Conclusions Our findings provide novel mechanistic insights regarding the anti-proliferative and anti-migratory effects of metformin in both BC cells and important components of the tumor microenvironment like CAFs. Further investigations are warranted to corroborate the anticancer action of metformin on the tumor mass toward the assessment of more comprehensive strategies halting BC progression, in particular in patients exhibiting metabolic disorders and altered insulin/IR functions. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03463-y.
Collapse
|
31
|
Banella C, Catalano G, Travaglini S, Pelosi E, Ottone T, Zaza A, Guerrera G, Angelini DF, Niscola P, Divona M, Battistini L, Screnci M, Ammatuna E, Testa U, Nervi C, Voso MT, Noguera NI. Ascorbate Plus Buformin in AML: A Metabolic Targeted Treatment. Cancers (Basel) 2022; 14:cancers14102565. [PMID: 35626170 PMCID: PMC9139619 DOI: 10.3390/cancers14102565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Acute Myeloid Leukemias (AMLs) are rapidly progressive clonal neoplastic diseases. The overall 5-year survival rate is very poor: less than 5% in older patients aged over 65 years old. Elderly AML patients are often “unfit” for intensive chemotherapy, further highlighting the need of highly effective, well-tolerated new treatment options for AMLs. Growing evidence indicates that AML blasts feature a highly diverse and flexible metabolism consistent with the aggressiveness of the disease. Based on these evidences, we targeted the metabolic peculiarity and plasticity of AML cells with an association of ascorbate, which causes oxidative stress and interferes with hexokinase activity, and buformin, which completely shuts down mitochondrial contributions in ATP production. The ascorbate–buformin combination could be an innovative therapeutic option for elderly AML patients that are resistant to therapy. Abstract In the present study, we characterized the metabolic background of different Acute Myeloid Leukemias’ (AMLs) cells and described a heterogeneous and highly flexible energetic metabolism. Using the Seahorse XF Agilent, we compared the metabolism of normal hematopoietic progenitors with that of primary AML blasts and five different AML cell lines. We assessed the efficacy and mechanism of action of the association of high doses of ascorbate, a powerful oxidant, with the metabolic inhibitor buformin, which inhibits mitochondrial complex I and completely shuts down mitochondrial contributions in ATP production. Primary blasts from seventeen AML patients, assayed for annexin V and live/dead exclusion by flow cytometry, showed an increase in the apoptotic effect using the drug combination, as compared with ascorbate alone. We show that ascorbate inhibits glycolysis through interfering with HK1/2 and GLUT1 functions in hematopoietic cells. Ascorbate combined with buformin decreases mitochondrial respiration and ATP production and downregulates glycolysis, enhancing the apoptotic effect of ascorbate in primary blasts from AMLs and sparing normal CD34+ bone marrow progenitors. In conclusion, our data have therapeutic implications especially in fragile patients since both agents have an excellent safety profile, and the data also support the clinical evaluation of ascorbate–buformin in association with different mechanism drugs for the treatment of refractory/relapsing AML patients with no other therapeutic options.
Collapse
Affiliation(s)
- Cristina Banella
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Health Sciences, Meyer Children’s University Hospital, 50139 Florence, Italy
| | - Gianfranco Catalano
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Serena Travaglini
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (U.T.)
| | - Tiziana Ottone
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandra Zaza
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gisella Guerrera
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (G.G.); (D.F.A.); (L.B.)
| | - Daniela Francesca Angelini
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (G.G.); (D.F.A.); (L.B.)
| | - Pasquale Niscola
- Hematology Unit, Saint’ Eugenio Hospital, University of Rome Tor Vergata, 00144 Rome, Italy;
| | | | - Luca Battistini
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (G.G.); (D.F.A.); (L.B.)
| | - Maria Screnci
- Banca Regionale Sangue Cordone Ombelicale UOC Immunoematologia e Medicina Trasfusionale, Policlinico Umberto I, 00161 Roma, Italy;
| | - Emanuele Ammatuna
- Department of Hematology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (U.T.)
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma La Sapienza, 04100 Latina, Italy;
| | - Maria Teresa Voso
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (M.T.V.); (N.I.N.); Tel.: +39-06-501-703-225 (N.I.N.)
| | - Nelida Ines Noguera
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (M.T.V.); (N.I.N.); Tel.: +39-06-501-703-225 (N.I.N.)
| |
Collapse
|
32
|
Metformin and Cancer, an Ambiguanidous Relationship. Pharmaceuticals (Basel) 2022; 15:ph15050626. [PMID: 35631452 PMCID: PMC9144507 DOI: 10.3390/ph15050626] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
The deregulation of energetic and cellular metabolism is a signature of cancer cells. Thus, drugs targeting cancer cell metabolism may have promising therapeutic potential. Previous reports demonstrate that the widely used normoglycemic agent, metformin, can decrease the risk of cancer in type 2 diabetics and inhibit cell growth in various cancers, including pancreatic, colon, prostate, ovarian, and breast cancer. While metformin is a known adenosine monophosphate-activated protein kinase (AMPK) agonist and an inhibitor of the electron transport chain complex I, its mechanism of action in cancer cells as well as its effect on cancer metabolism is not clearly established. In this review, we will give an update on the role of metformin as an antitumoral agent and detail relevant evidence on the potential use and mechanisms of action of metformin in cancer. Analyzing antitumoral, signaling, and metabolic impacts of metformin on cancer cells may provide promising new therapeutic strategies in oncology.
Collapse
|
33
|
Ali MA, Khalil MM, Al-Mokaddem AK, Aljuaydi SH, Ahmed M, Khalil HM. Differential effects of cancer modifying agents during radiation therapy on Ehrlich solid tumor-bearing mice: A comparative investigation of metformin and ascorbic acid. Appl Radiat Isot 2022; 187:110305. [DOI: 10.1016/j.apradiso.2022.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
|
34
|
Allocco AL, Bertino F, Petrillo S, Chiabrando D, Riganti C, Bardelli A, Altruda F, Fiorito V, Tolosano E. Inhibition of Heme Export and/or Heme Synthesis Potentiates Metformin Anti-Proliferative Effect on Cancer Cell Lines. Cancers (Basel) 2022; 14:cancers14051230. [PMID: 35267538 PMCID: PMC8908972 DOI: 10.3390/cancers14051230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Tumor initiation and progression are sustained by the ability of the cancer cell to reshape its metabolism in a way that favors cell proliferation and survival. Recently, it was shown that heme metabolism contributes to metabolic adaptation of tumor cell and that interfering with heme homeostasis reduces tumor cell growth. Here, we show that the alteration of heme metabolism, either by RNA-interference or pharmacological approaches, increases the sensitivity of tumor cell lines to the antitumor agent metformin. These findings strengthen the concept of targeting heme metabolism to counteract tumor progression. Abstract Cancer is one of the leading causes of mortality worldwide. Beyond standard therapeutic options, whose effectiveness is often reduced by drug resistance, repurposing of the antidiabetic drug metformin appears promising. Heme metabolism plays a pivotal role in the control of metabolic adaptations that sustain cancer cell proliferation. Recently, we demonstrated the existence of a functional axis between the heme synthetic enzyme ALAS1 and the heme exporter FLVCR1a exploited by cancer cells to down-modulate oxidative metabolism. In colorectal cancer cell lines, the inhibition of heme synthesis-export system was associated with reduced proliferation and survival. Here, we aim to assess whether the inhibition of the heme synthesis-export system affects the sensitivity of colorectal cancer cells to metformin. Our data demonstrate that the inhibition of this system, either by blocking heme efflux with a FLVCR1a specific shRNA or by inhibiting heme synthesis with 5-aminolevulinic acid, improves metformin anti-proliferative effect on colorectal cancer cell lines. In addition, we demonstrated that the same effect can be obtained in other kinds of cancer cell lines. Our study provides an in vitro proof of concept of the possibility to target heme metabolism in association with metformin to counteract cancer cell growth.
Collapse
Affiliation(s)
- Anna Lucia Allocco
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy; (A.L.A.); (F.B.); (S.P.); (D.C.); (F.A.); (E.T.)
| | - Francesca Bertino
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy; (A.L.A.); (F.B.); (S.P.); (D.C.); (F.A.); (E.T.)
| | - Sara Petrillo
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy; (A.L.A.); (F.B.); (S.P.); (D.C.); (F.A.); (E.T.)
| | - Deborah Chiabrando
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy; (A.L.A.); (F.B.); (S.P.); (D.C.); (F.A.); (E.T.)
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, TO, Italy;
| | - Alberto Bardelli
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy; (A.L.A.); (F.B.); (S.P.); (D.C.); (F.A.); (E.T.)
| | - Veronica Fiorito
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy; (A.L.A.); (F.B.); (S.P.); (D.C.); (F.A.); (E.T.)
- Correspondence: ; Tel.: +39-011-6706-423
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy; (A.L.A.); (F.B.); (S.P.); (D.C.); (F.A.); (E.T.)
| |
Collapse
|
35
|
Greene J, Segaran A, Lord S. Targeting OXPHOS and the electronic transport chain in cancer; molecular and therapeutic implications. Semin Cancer Biol 2022; 86:851-859. [PMID: 35122973 DOI: 10.1016/j.semcancer.2022.02.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
Oxidative phosphorylation (OXPHOS) takes place in mitochondria and is the process whereby cells use carbon fuels and oxygen to generate ATP. Formerly OXPHOS was thought to be reduced in tumours and that glycolysis was the critical pathway for generation of ATP but it is now clear that OXPHOS, at least in many tumour types, plays a critical role in delivering the bioenergetic and macromolecular anabolic requirements of cancer cells. There is now great interest in targeting the OXPHOS and the electron transport chain for cancer therapy and in this review article we describe current therapeutic approaches and challenges.
Collapse
Affiliation(s)
- John Greene
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Ashvina Segaran
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Oxford, United Kingdom
| | - Simon Lord
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom.
| |
Collapse
|
36
|
Chen N, Zhou YS, Wang LC, Huang JB. Advances in metformin‑based metabolic therapy for non‑small cell lung cancer (Review). Oncol Rep 2022; 47:55. [PMID: 35039878 PMCID: PMC8808708 DOI: 10.3892/or.2022.8266] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
Therapeutic approaches that target the metabolism of tumor cells have been a popular research topic in recent years. Previous studies have demonstrated that glycolysis inhibitors reduce the proliferation of non‑small cell lung cancer (NSCLC) cells by interfering with the aerobic glycolytic pathway. However, the mitochondrial oxidative phosphorylation (OXPHOS) pathway in tumor cells has also been implicated in lung cancer metabolism. Metformin, a known inhibitor of mitochondrial OXPHOS, has been indicated to reduce NSCLC morbidity and mortality in clinical studies. The present article reviewed the therapeutic effects of metformin against NSCLC, both as a single agent and combined with other anticancer treatments, in order to provide a theoretical basis for its clinical use in adjuvant therapy for NSCLC.
Collapse
Affiliation(s)
- Na Chen
- Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China
| | - Yi-Shu Zhou
- Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China
| | - Li-Cui Wang
- Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China
| | - Jin-Bai Huang
- Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
37
|
Boudoulas KD, Triposkiadis F, Gumina R, Addison D, Iliescu C, Boudoulas H. Cardiovascular Disease, Cancer and Multimorbidity Interactions: Clinical Implications. Cardiology 2022; 147:196-206. [PMID: 34986484 DOI: 10.1159/000521680] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/18/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND With the aging population, the frequency of cardiovascular disease (CVD), cancer and other morbid conditions are increasing dramatically. In addition, one disease may affect the other leading to a vicious cycle. SUMMARY With aging, the function of organs and systems of the human body decline including the autoimmune system resulting in a diminished response to various pathogens and a chronic inflammatory process; these changes, in addition to other risk factors, contributes to the development of multiple morbid conditions including CVD and cancer. Multimorbidity in the elderly has become the rule rather than the exception today. Further, this association between CVD and cancer, at least partially, is explained by both diseases sharing common risk factors and from accelerated vascular aging due to cancer and its associated therapies. Multiple studies have shown that the incidence of cancer is much higher in patients with CVD compared to the general population. These associations among CVD, cancer and their connection to systems of the human body provide an opportunity for novel therapies. Development of new drugs should be addressed to focus on multiple systems and not just only to one disease. Further, collecting information from registries and processing large amounts of data using artificial intelligence may assist the clinician when treating an individual patient in the future. Key messages: As the aging population increases, CVD, cancer and multimorbidity will continue to constitute a major health problem in the years to come. The physician who is taking care of such a patient, in addition to knowledge, requires clinical wisdom, clinical experience and common sense in order to apply the continuous evolving knowledge to the individual patient.
Collapse
Affiliation(s)
| | | | - Richard Gumina
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Daniel Addison
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Cezar Iliescu
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Harisios Boudoulas
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
38
|
Selvarajoo N, Stanslas J, Islam MK, Sagineedu SR, Lian HK, Lim JCW. Pharmacological Modulation of Apoptosis and Autophagy in Pancreatic Cancer Treatment. Mini Rev Med Chem 2022; 22:2581-2595. [PMID: 35331093 DOI: 10.2174/1389557522666220324123605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/02/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pancreatic cancer is a fatal malignant neoplasm with infrequent signs and symptoms until a progressive stage. In 2020, GLOBOCAN reported that pancreatic cancer accounts for 4.7% of all cancer deaths. Despite the availability of standard chemotherapy regimens for treatment, the survival benefits are not guaranteed because tumor cells become chemoresistant even due to the development of chemoresistance in tumor cells even with a short treatment course, where apoptosis and autophagy play critical roles. OBJECTIVE This review compiled essential information on the regulatory mechanisms and roles of apoptosis and autophagy in pancreatic cancer, as well as drug-like molecules that target different pathways in pancreatic cancer eradication, with an aim to provide ideas to the scientific communities in discovering novel and specific drugs to treat pancreatic cancer, specifically PDAC. METHOD Electronic databases that were searched for research articles for this review were Scopus, Science Direct, PubMed, Springer Link, and Google Scholar. The published studies were identified and retrieved using selected keywords. DISCUSSION/CONCLUSION Many small-molecule anticancer agents have been developed to regulate autophagy and apoptosis associated with pancreatic cancer treatment, where most of them target apoptosis directly through EGFR/Ras/Raf/MAPK and PI3K/Akt/mTOR pathways. The cancer drugs that regulate autophagy in treating cancer can be categorized into three groups: i) direct autophagy inducers (e.g., rapamycin), ii) indirect autophagy inducers (e.g., resveratrol), and iii) autophagy inhibitors. Resveratrol persuades both apoptosis and autophagy with a cytoprotective effect, while autophagy inhibitors (e.g., 3-methyladenine, chloroquine) can turn off the protective autophagic effect for therapeutic benefits. Several studies showed that autophagy inhibition resulted in a synergistic effect with chemotherapy (e.g., a combination of metformin with gemcitabine/ 5FU). Such drugs possess a unique clinical value in treating pancreatic cancer as well as other autophagy-dependent carcinomas.
Collapse
Affiliation(s)
- Nityaa Selvarajoo
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohammad Kaisarul Islam
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sreenivasa Rao Sagineedu
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Ho Kok Lian
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
39
|
Chang MY, Tsai TI, Chou LF, Hsu SH, Yang HY, Hung CC, Tian YC, Ong ACM, Yang CW. Metformin induces lactate accumulation and accelerates renal cyst progression in Pkd1-deficient mice. Hum Mol Genet 2021; 31:1560-1573. [PMID: 34957500 DOI: 10.1093/hmg/ddab340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022] Open
Abstract
Metabolic reprogramming is a potential treatment strategy for autosomal dominant polycystic kidney disease (ADPKD). Metformin has been shown to inhibit the early stages of cyst formation in animal models. However, metformin can lead to lactic acidosis in diabetic patients with advanced chronic kidney disease, and its efficacy in ADPKD is still not fully understood. Here, we investigated the effect of metformin in an established hypomorphic mouse model of PKD that presents stable and heritable knockdown of Pkd1. The Pkd1 miRNA transgenic mice of both genders were randomized to receive metformin or saline injections. Metformin was administrated through daily intraperitoneal injection from postnatal day 35 for 4 weeks. Unexpectedly, metformin treatment at a concentration of 150 mg/kg increased disease severity, including kidney-to-body weight ratio, cystic index and plasma BUN levels, and was associated with increased renal tubular cell proliferation and plasma lactate levels. Functional enrichment analysis for cDNA microarrays from kidney samples revealed significant enrichment of several pro-proliferative pathways including β-catenin, hypoxia-inducible factor-1α, protein kinase Cα and Notch signaling pathways in the metformin-treated mutant mice. The plasma metformin concentrations were still within the recommended therapeutic range for type 2 diabetic patients. Short-term metformin treatment in a second Pkd1 hypomorphic model (Pkd1RC/RC) was however neutral. These results demonstrate that metformin may exacerbate late-stage cyst growth associated with the activation of lactate-related signaling pathways in Pkd1 deficiency. Our findings indicate that using metformin in the later stage of ADPKD might accelerate disease progression and call for the cautious use of metformin in these patients.
Collapse
Affiliation(s)
- Ming-Yang Chang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Tsung-Inn Tsai
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Li-Fang Chou
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Shen-Hsing Hsu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Albert C M Ong
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Chih-Wei Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| |
Collapse
|
40
|
Stott Bond NL, Dréau D, Marriott I, Bennett JM, Turner MJ, Arthur ST, Marino JS. Low-Dose Metformin as a Monotherapy Does Not Reduce Non-Small-Cell Lung Cancer Tumor Burden in Mice. Biomedicines 2021; 9:biomedicines9111685. [PMID: 34829914 PMCID: PMC8615566 DOI: 10.3390/biomedicines9111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) makes up 80-85% of lung cancer diagnoses. Lung cancer patients undergo surgical procedures, chemotherapy, and/or radiation. Chemotherapy and radiation can induce deleterious systemic side effects, particularly within skeletal muscle. To determine whether metformin reduces NSCLC tumor burden while maintaining skeletal muscle health, C57BL/6J mice were injected with Lewis lung cancer (LL/2), containing a bioluminescent reporter for in vivo tracking, into the left lung. Control and metformin (250 mg/kg) groups received treatments twice weekly. Skeletal muscle was analyzed for changes in genes and proteins related to inflammation, muscle mass, and metabolism. The LL/2 model effectively mimics lung cancer growth and tumor burden. The in vivo data indicate that metformin as administered was not associated with significant improvement in tumor burden in this immunocompetent NSCLC model. Additionally, metformin was not associated with significant changes in key tumor cell division and inflammation markers, or improved skeletal muscle health. Metformin treatment, while exhibiting anti-neoplastic characteristics in many cancers, appears not to be an appropriate monotherapy for NSCLC tumor growth in vivo. Future studies should pursue co-treatment modalities, with metformin as a potentially supportive drug rather than a monotherapy to mitigate cancer progression.
Collapse
Affiliation(s)
- Nicole L. Stott Bond
- Distance Education, Technology and Integration, University of North Georgia, Dahlonega, GA 30597, USA;
- Laboratory of Systems Physiology, Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (M.J.T.); (S.T.A.)
| | - Didier Dréau
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (D.D.); (I.M.)
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (D.D.); (I.M.)
| | - Jeanette M. Bennett
- Department of Psychological Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA;
| | - Michael J. Turner
- Laboratory of Systems Physiology, Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (M.J.T.); (S.T.A.)
| | - Susan T. Arthur
- Laboratory of Systems Physiology, Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (M.J.T.); (S.T.A.)
| | - Joseph S. Marino
- Laboratory of Systems Physiology, Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (M.J.T.); (S.T.A.)
- Correspondence:
| |
Collapse
|
41
|
Wang MD, Wang NY, Zhang HL, Sun LY, Xu QR, Liang L, Li C, Huang DS, Zhu H, Yang T. Fatty acid transport protein-5 (FATP5) deficiency enhances hepatocellular carcinoma progression and metastasis by reprogramming cellular energy metabolism and regulating the AMPK-mTOR signaling pathway. Oncogenesis 2021; 10:74. [PMID: 34772914 PMCID: PMC8589992 DOI: 10.1038/s41389-021-00364-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Aberrant lipid metabolism is an essential feature of hepatocellular carcinoma (HCC). Fatty acid transport protein-5 (FATP5) is highly expressed in the liver and is involved in the fatty acid transport pathway. However, the potential role of FATP5 in the pathogenesis of HCC remains largely unknown. Herein, we showed that FATP5 was downregulated in HCC tissues and even much lower in vascular tumor thrombi. Low expression of FATP5 was correlated with multiple aggressive and invasive clinicopathological characteristics and contributed to tumor metastasis and a poor prognosis in HCC patients. FATP5 inhibited the epithelial-mesenchymal transition (EMT) process and suppressed HCC cell migration and invasion, while silencing FATP5 had the opposite effects. Mechanistically, knockdown of FATP5 promoted cellular glycolytic flux and ATP production, thus suppressing AMP-activated protein kinase (AMPK) and activating its downstream signaling mammalian target of rapamycin (mTOR) to support HCC progression and metastasis. Activation of AMPK using metformin reversed the EMT program and impaired the metastatic capacity of FATP5-depleted HCC cells. Collectively, FATP5 served as a novel suppressor of HCC progression and metastasis partly by regulating the AMPK/mTOR pathway in HCC, and targeting the FATP5-AMPK axis may be a promising therapeutic strategy for personalized HCC treatment.
Collapse
Affiliation(s)
- Ming-Da Wang
- Department of Hepatobiliary Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China
| | - Nan-Ya Wang
- The Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui-Lu Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Li-Yang Sun
- Department of Hepatobiliary Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Qiu-Ran Xu
- Department of Hepatobiliary Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Lei Liang
- Department of Hepatobiliary Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China
| | - Dong-Sheng Huang
- Department of Hepatobiliary Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China.
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China.
| | - Hong Zhu
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Tian Yang
- Department of Hepatobiliary Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China.
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China.
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
42
|
Molecular regulation of polycystic ovary syndrome: altered gene expression levels in mouse models pretreatment and post-treatment. ZYGOTE 2021; 30:352-357. [PMID: 34727997 DOI: 10.1017/s0967199421000769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder and genetic factors are believed to play a role. The main aim was to investigate expression levels of genes involved in PI3K/AKT signalling pathway pretreatment and post-treatment. Mouse models of PCOS were generated. Group one included control mice with no polycystic ovaries (n = 4), Group 2 included a PCOS mouse model (n = 8), Group 3 included PCOS mice treated with clomiphene citrate (n = 7) and Group 4 included PCOS mice treated with clomiphene citrate, metformin and pioglitazone (n = 8). Histochemical analyses were performed. Total RNA was extracted and cDNA was synthesized. Irs, Akt1 and Akt2, mTor and Pdpk1 gene expression levels were evaluated by RT-PCR amplification. In Group 1, cortex and medulla were evaluated as normal; in Group 2, ovarian cortex was composed of immature oocytes and cystic follicles with atretic follicles. In Groups 3 and 4, follicles were in the process of normal follicle differentiation. The expression levels of Akt1 and Pi3k were significantly different (P < 0.0001) between Groups 1 and 2. The significant differences in expression levels of Pi3k and Akt1 were also observed between the Group 1 and both Groups 3 and 4 (P < 0.0001). Furthermore, significant variations of the expression levels of mTor between Groups 1 and 4 were observed. The extrapolation of results of this study may imply that follicular development may be regulated by molecular pathways involving Pi3k, Akt1 and mTor expression. Therefore, genes in the PI3K/AKT pathway may have a direct regulatory role in the development of PCOS.
Collapse
|
43
|
Therapeutic approaches targeting molecular signaling pathways common to diabetes, lung diseases and cancer. Adv Drug Deliv Rev 2021; 178:113918. [PMID: 34375681 DOI: 10.1016/j.addr.2021.113918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM), is the most common metabolic disease and is characterized by sustained hyperglycemia. Accumulating evidences supports a strong association between DM and numerous lung diseases including chronic obstructive pulmonary disease (COPD), fibrosis, and lung cancer (LC). The global incidence of DM-associated lung disorders is rising and several ongoing studies, including clinical trials, aim to elucidate the molecular mechanisms linking DM with lung disorders, in particular LC. Several potential mechanisms, including hyperglycemia, hyperinsulinemia, glycation, inflammation, and hypoxia, are cited as plausible links between DM and LC. In addition, studies also propose a connection between the use of anti-diabetic medications and reduction in the incidence of LC. However, the exact cause for DM associated lung diseases especially LC is not clear and is an area under intense investigation. Herein, we review the biological links reported between DM and lung disorders with an emphasis on LC. Furthermore, we report common signaling pathways (eg: TGF-β, IL-6, HIF-1, PDGF) and miRNAs that are dysregulated in DM and LC and serve as molecular targets for therapy. Finally, we propose a nanomedicine based approach for delivering therapeutics (eg: IL-24 plasmid DNA, HuR siRNA) to disrupt signaling pathways common to DM and LC and thus potentially treat DM-associated LC. Finally, we conclude that the effective modulation of commonly regulated signaling pathways would help design novel therapeutic protocols for treating DM patients diagnosed with LC.
Collapse
|
44
|
Abdi M, Pasbakhsh P, Shabani M, Nekoonam S, Sadeghi A, Fathi F, Abouzaripour M, Mohamed W, Zibara K, Kashani IR, Zendedel A. Metformin Therapy Attenuates Pro-inflammatory Microglia by Inhibiting NF-κB in Cuprizone Demyelinating Mouse Model of Multiple Sclerosis. Neurotox Res 2021; 39:1732-1746. [PMID: 34570348 DOI: 10.1007/s12640-021-00417-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a chronic disorder characterized by reactive gliosis, inflammation, and demyelination. Microglia plays a crucial role in the pathogenesis of MS and has the dynamic plasticity to polarize between pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Metformin, a glucose-lowering drug, attenuates inflammatory responses by activating adenosine monophosphate protein kinase (AMPK) which suppresses nuclear factor kappa B (NF-κB). In this study, we indirectly investigated whether metformin therapy would regulate microglia activity in the cuprizone (CPZ)-induced demyelination mouse model of MS via measuring the markers associated with pro- and anti-inflammatory microglia. Evaluation of myelin by luxol fast blue staining revealed that metformin treatment (CPZ + Met) diminished demyelination, in comparison to CPZ mice. In addition, metformin therapy significantly alleviated reactive microgliosis and astrogliosis in the corpus callosum, as measured by Iba-1 and GFAP staining. Moreover, metformin treatment significantly downregulated the expression of pro-inflammatory associated genes (iNOS, H2-Aa, and TNF-α) in the corpus callosum, whereas expression of anti-inflammatory markers (Arg1, Mrc1, and IL10) was not promoted, compared to CPZ mice. Furthermore, protein levels of iNOS (pro-inflammatory marker) were significantly decreased in the metformin group, while those of Trem2 (anti-inflammatory marker) were increased. In addition, metformin significantly increased AMPK activation in CPZ mice. Finally, metformin administration significantly reduced the activation level of NF-κB in CPZ mice. In summary, our data revealed that metformin attenuated pro-inflammatory microglia markers through suppressing NF-κB activity. The positive effects of metformin on microglia and remyelination suggest that it could be used as a promising candidate to lessen the incidence of inflammatory neurodegenerative diseases such as MS.
Collapse
Affiliation(s)
- Mahdad Abdi
- Department of Anatomy, school of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parichehr Pasbakhsh
- Department of Anatomy, school of medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Shabani
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Nekoonam
- Department of Anatomy, school of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asie Sadeghi
- Department of Clinical Biochemistry, Faculty of medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Wael Mohamed
- Basic Medical Science Department, International Islamic University Malaysia, Pahang, Malaysia.,Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El Kom, Egypt
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| | - Iraj Ragerdi Kashani
- Department of Anatomy, school of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
45
|
Yeh HC, Maruthur NM, Wang NY, Jerome GJ, Dalcin AT, Tseng E, White K, Miller ER, Juraschek SP, Mueller NT, Charleston J, Durkin N, Hassoon A, Lansey DG, Kanarek NF, Carducci MA, Appel LJ. Effects of Behavioral Weight Loss and Metformin on IGFs in Cancer Survivors: A Randomized Trial. J Clin Endocrinol Metab 2021; 106:e4179-e4191. [PMID: 33884414 PMCID: PMC8475239 DOI: 10.1210/clinem/dgab266] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 12/26/2022]
Abstract
CONTEXT Higher levels of insulin-like growth factor-1 (IGF-1) are associated with increased risk of cancers and higher mortality. Therapies that reduce IGF-1 have considerable appeal as means to prevent recurrence. DESIGN Randomized, 3-parallel-arm controlled clinical trial. INTERVENTIONS AND OUTCOMES Cancer survivors with overweight or obesity were randomized to (1) self-directed weight loss (comparison), (2) coach-directed weight loss, or (3) metformin treatment. Main outcomes were changes in IGF-1 and IGF-1:IGFBP3 molar ratio at 6 months. The trial duration was 12 months. RESULTS Of the 121 randomized participants, 79% were women, 46% were African Americans, and the mean age was 60 years. At baseline, the average body mass index was 35 kg/m2; mean IGF-1 was 72.9 (SD, 21.7) ng/mL; and mean IGF1:IGFBP3 molar ratio was 0.17 (SD, 0.05). At 6 months, weight changes were -1.0% (P = 0.07), -4.2% (P < 0.0001), and -2.8% (P < 0.0001) in self-directed, coach-directed, and metformin groups, respectively. Compared with the self-directed group, participants in metformin had significant decreases on IGF-1 (mean difference in change: -5.50 ng/mL, P = 0.02) and IGF1:IGFBP3 molar ratio (mean difference in change: -0.0119, P = 0.011) at 3 months. The significant decrease of IGF-1 remained in participants with obesity at 6 months (mean difference in change: -7.2 ng/mL; 95% CI: -13.3 to -1.1), but not in participants with overweight (P for interaction = 0.045). There were no significant differences in changes between the coach-directed and self-directed groups. There were no differences in outcomes at 12 months. CONCLUSIONS In cancer survivors with obesity, metformin may have a short-term effect on IGF-1 reduction that wanes over time.
Collapse
Affiliation(s)
- Hsin-Chieh Yeh
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Correspondence: Hsin-Chieh Yeh, PhD, Medicine, Epidemiology, and Oncology, Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, 2024 E. Monument St, Suite 2-500, Baltimore, MD 21205.
| | - Nisa M Maruthur
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD, USA
| | - Nae-Yuh Wang
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Gerald J Jerome
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Kinesiology, Towson University, Towson, MD, USA
| | - Arlene T Dalcin
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD, USA
| | - Eva Tseng
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD, USA
| | - Karen White
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Edgar R Miller
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD, USA
| | - Stephen P Juraschek
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD, USA
| | - Jeanne Charleston
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD, USA
| | - Nowella Durkin
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ahmed Hassoon
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Dina G Lansey
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Norma F Kanarek
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael A Carducci
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Lawrence J Appel
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD, USA
- Department of International Health (Human Nutrition), Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
46
|
Abstract
STK11 encodes for the protein liver kinase B1, a serine/threonine kinase which is involved in a number of physiological processes including regulation of cellular metabolism, cell polarity and the DNA damage response. It acts as a tumour suppressor via multiple mechanisms, most classically through AMP-activated protein kinase-mediated inhibition of the mammalian target of rapamycin signalling pathway. Germline loss-of-function mutations in STK11 give rise to Peutz-Jeghers syndrome, which is associated with hamartomatous polyps of the gastrointestinal tract, mucocutaneous pigmentation and a substantially increased lifetime risk of many cancers. In the sporadic setting, STK11 mutations are commonly seen in a subset of adenocarcinomas of the lung in addition to a number of other tumours occurring at various sites. Mutations in STK11 have been associated with worse prognoses across a range of malignancies and may be a predictor of poor response to immunotherapy in a subset of lung cancers, though further studies are needed before the presence of STK11 mutations can be implemented as a routine clinical biomarker.
Collapse
Affiliation(s)
- Roman E Zyla
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Elan Hahn
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Anatomic Pathology, University Health Network, Toronto, Ontario, Canada
| | - Anjelica Hodgson
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada .,Anatomic Pathology, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Rubinstein MM, Brown KA, Iyengar NM. Targeting obesity-related dysfunction in hormonally driven cancers. Br J Cancer 2021; 125:495-509. [PMID: 33911195 PMCID: PMC8368182 DOI: 10.1038/s41416-021-01393-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/05/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is a risk factor for at least 13 different types of cancer, many of which are hormonally driven, and is associated with increased cancer incidence and morbidity. Adult obesity rates are steadily increasing and a subsequent increase in cancer burden is anticipated. Obesity-related dysfunction can contribute to cancer pathogenesis and treatment resistance through various mechanisms, including those mediated by insulin, leptin, adipokine, and aromatase signalling pathways, particularly in women. Furthermore, adiposity-related changes can influence tumour vascularity and inflammation in the tumour microenvironment, which can support tumour development and growth. Trials investigating non-pharmacological approaches to target the mechanisms driving obesity-mediated cancer pathogenesis are emerging and are necessary to better appreciate the interplay between malignancy, adiposity, diet and exercise. Diet, exercise and bariatric surgery are potential strategies to reverse the cancer-promoting effects of obesity; trials of these interventions should be conducted in a scientifically rigorous manner with dose escalation and appropriate selection of tumour phenotypes and have cancer-related clinical and mechanistic endpoints. We are only beginning to understand the mechanisms by which obesity effects cell signalling and systemic factors that contribute to oncogenesis. As the rates of obesity and cancer increase, we must promote the development of non-pharmacological lifestyle trials for the treatment and prevention of malignancy.
Collapse
Affiliation(s)
- Maria M. Rubinstein
- grid.51462.340000 0001 2171 9952Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Kristy A. Brown
- grid.5386.8000000041936877XDepartment of Biochemistry in Medicine, Weill Cornell Medical College, New York, NY USA
| | - Neil M. Iyengar
- grid.51462.340000 0001 2171 9952Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| |
Collapse
|
48
|
Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem 2021; 224:113726. [PMID: 34364161 DOI: 10.1016/j.ejmech.2021.113726] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Biguanides have attracted much attention a century ago and showed resurgent interest in recent years after a long period of dormancy. They constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. Therapeutic indications of biguanides include antidiabetic, antimalarial, antiviral, antiplaque, and bactericidal applications. This review presents an extensive overview of the biological activity of biguanides and different mechanisms of action of currently marketed biguanide-containing drugs, as well as their pharmacological properties when applicable. We highlight the recent developments in research on biguanide compounds, with a primary focus on studies on metformin in the field of oncology. We aim to provide a critical overview of all main bioactive biguanide compounds and discuss future perspectives for the design of new drugs based on the biguanide fragment.
Collapse
|
49
|
Hansel C, Barr S, Schemann AV, Lauber K, Hess J, Unger K, Zitzelsberger H, Jendrossek V, Klein D. Metformin Protects against Radiation-Induced Acute Effects by Limiting Senescence of Bronchial-Epithelial Cells. Int J Mol Sci 2021; 22:7064. [PMID: 34209135 PMCID: PMC8268757 DOI: 10.3390/ijms22137064] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Abstract
Radiation-induced damage to normal lung parenchyma remains a dose-limiting factor in thorax-associated radiotherapy (RT). Severe early and late complications with lungs can increase the risk of morbidity in cancer patients after RT. Herein, senescence of lung epithelial cells following RT-induced cellular stress, or more precisely the respective altered secretory profile, the senescence-associated secretory phenotype (SASP), was suggested as a central process for the initiation and progression of pneumonitis and pulmonary fibrosis. We previously reported that abrogation of certain aspects of the secretome of senescent lung cells, in particular, signaling inhibition of the SASP-factor Ccl2/Mcp1 mediated radioprotection especially by limiting endothelial dysfunction. Here, we investigated the therapeutic potential of a combined metformin treatment to protect normal lung tissue from RT-induced senescence and associated lung injury using a preclinical mouse model of radiation-induced pneumopathy. Metformin treatment efficiently limited RT-induced senescence and SASP expression levels, thereby limiting vascular dysfunctions, namely increased vascular permeability associated with increased extravasation of circulating immune and tumor cells early after irradiation (acute effects). Complementary in vitro studies using normal lung epithelial cell lines confirmed the senescence-limiting effect of metformin following RT finally resulting in radioprotection, while fostering RT-induced cellular stress of cultured malignant epithelial cells accounting for radiosensitization. The radioprotective action of metformin for normal lung tissue without simultaneous protection or preferable radiosensitization of tumor tissue might increase tumor control probabilities and survival because higher radiation doses could be used.
Collapse
Affiliation(s)
- Christine Hansel
- Institute of Cell Biology (Cancer Research), University Hospital, Essen, University of Duisburg-Essen, 45122 Essen, Germany; (C.H.); (S.B.); (A.V.S.); (V.J.)
| | - Samantha Barr
- Institute of Cell Biology (Cancer Research), University Hospital, Essen, University of Duisburg-Essen, 45122 Essen, Germany; (C.H.); (S.B.); (A.V.S.); (V.J.)
| | - Alina V. Schemann
- Institute of Cell Biology (Cancer Research), University Hospital, Essen, University of Duisburg-Essen, 45122 Essen, Germany; (C.H.); (S.B.); (A.V.S.); (V.J.)
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, 80539 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, 80539 Munich, Germany
- Clinical Cooperation Group ‘Personalized Radiotherapy in Head and Neck Cancer’ Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (J.H.); (K.U.); (H.Z.)
| | - Julia Hess
- Clinical Cooperation Group ‘Personalized Radiotherapy in Head and Neck Cancer’ Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (J.H.); (K.U.); (H.Z.)
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Kristian Unger
- Clinical Cooperation Group ‘Personalized Radiotherapy in Head and Neck Cancer’ Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (J.H.); (K.U.); (H.Z.)
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Clinical Cooperation Group ‘Personalized Radiotherapy in Head and Neck Cancer’ Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (J.H.); (K.U.); (H.Z.)
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital, Essen, University of Duisburg-Essen, 45122 Essen, Germany; (C.H.); (S.B.); (A.V.S.); (V.J.)
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital, Essen, University of Duisburg-Essen, 45122 Essen, Germany; (C.H.); (S.B.); (A.V.S.); (V.J.)
| |
Collapse
|
50
|
Korsakova L, Krasko JA, Stankevicius E. Metabolic-targeted Combination Therapy With Dichloroacetate and Metformin Suppresses Glioblastoma Cell Line Growth In Vitro and In Vivo. In Vivo 2021; 35:341-348. [PMID: 33402483 DOI: 10.21873/invivo.12265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM We investigated the hypothesis that dichloroacetate (DCA), a pyruvate dehydrogenase kinase inhibitor, and metformin (MET), an antidiabetic agent and complex I inhibitor, have synergistic cytotoxic effects in glioblastoma cells in vitro and in vivo. MATERIALS AND METHODS We performed dose response experiments and combination index calculation. Apoptotic and necrotic cells were estimated by flow cytometry. Cell metabolism was evaluated by Seahorse analysis and lactate export. Overall survival and tumor volume growth experiments were performed in C57BL/6 mice GL-261 allograft model. RESULTS DCA and MET showed dose-dependent cytotoxicity and synergistic effects. DCA alleviated the increase in lactate production induced by MET. Seahorse analysis showed that DCA treatment results in increased oxygen consumption rate, which is decreased by MET. DCA and MET significantly inhibited tumor growth and increased overall survival in mice. CONCLUSION Compounds targeting tumor cell metabolism could become potential treatment options for glioblastoma multiforme.
Collapse
Affiliation(s)
- Laura Korsakova
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania;
| | | | - Edgaras Stankevicius
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania;
| |
Collapse
|