1
|
Kong Y, Riebe J, Feßner M, Schaller T, Wölper C, Stappert F, Meckelmann SW, Krajnc M, Weyrauch P, Schmitz OJ, Merten C, Niemeyer J, Hu X, Meckenstock RU. A CoA-Transferase and Acyl-CoA Dehydrogenase Convert 2-(Carboxymethyl)cyclohexane-1-Carboxyl-CoA During Anaerobic Naphthalene Degradation. Environ Microbiol 2024; 26:e70013. [PMID: 39702997 DOI: 10.1111/1462-2920.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/17/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
The CoA thioester of 2-(carboxymethyl)cyclohexane-1-carboxylic acid has been identified as a metabolite in anaerobic naphthalene degradation by the sulfate-reducing culture N47. This study identified and characterised two acyl-CoA dehydrogenases (ThnO/ThnT) and an intramolecular CoA-transferase (ThnP) encoded within the substrate-induced thn operon, which contains genes for anaerobic degradation of naphthalene. ThnP is a CoA transferase belonging to the family I (Cat 1 subgroup) that catalyses the intramolecular CoA transfer from the carboxyl group of 2-(carboxymethyl)cyclohexane-1-carboxyl-CoA to its carboxymethyl moiety, forming 2-carboxycyclohexylacetyl-CoA. Neither acetyl-CoA nor succinyl-CoA functions as an exogenous CoA donor for this reaction. The flavin-dependent homotetrameric dehydrogenase ThnO is specific for (1R,2R)-2-carboxycyclohexylacetyl-CoA with an apparent Km value of 61.5 μM, whereas ThnT is a promiscuous enzyme catalysing the same reaction at lower rates. Identifying these three enzymes confirmed the involvement of the thn gene cluster in the anaerobic naphthalene degradation pathway. This study establishes a modified metabolic pathway for anaerobic naphthalene degradation upstream of 2-(carboxymethyl)cyclohexane-1-carboxyl-CoA and provides further insight into the subsequent second-ring cleavage reaction.
Collapse
Affiliation(s)
- Yachao Kong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Institute for Environmental Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg-Essen, Essen, Germany
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jan Riebe
- Organic Chemistry, Faculty of Chemistry and Center for Nanointegration, Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Malte Feßner
- Organic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr Universität Bochum, Bochum, Germany
| | - Torsten Schaller
- Organic Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Christoph Wölper
- Inorganic Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Florian Stappert
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Matthias Krajnc
- Organic Chemistry, Faculty of Chemistry and Center for Nanointegration, Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Philip Weyrauch
- Institute for Environmental Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Christian Merten
- Organic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr Universität Bochum, Bochum, Germany
| | - Jochen Niemeyer
- Organic Chemistry, Faculty of Chemistry and Center for Nanointegration, Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Qingdao Marine Science and Technology Center, Laboratory for Marine Biology and Biotechnology, Qingdao, China
| | - Rainer U Meckenstock
- Institute for Environmental Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Bullows JE, Kanak A, Shedrick L, Kiessling C, Aklujkar M, Kostka J, Chin KJ. Anaerobic benzene oxidation in Geotalea daltonii involves activation by methylation and is regulated by the transition state regulator AbrB. Appl Environ Microbiol 2024; 90:e0085624. [PMID: 39287397 PMCID: PMC11497800 DOI: 10.1128/aem.00856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
Benzene is a widespread groundwater contaminant that persists under anoxic conditions. The aim of this study was to more accurately investigate anaerobic microbial degradation pathways to predict benzene fate and transport. Preliminary genomic analysis of Geotalea daltonii strain FRC-32, isolated from contaminated groundwater, revealed the presence of putative aromatic-degrading genes. G. daltonii was subsequently shown to conserve energy for growth on benzene as the sole electron donor and fumarate or nitrate as the electron acceptor. The hbs gene, encoding for 3-hydroxybenzylsuccinate synthase (Hbs), a homolog of the radical-forming, toluene-activating benzylsuccinate synthase (Bss), was upregulated during benzene oxidation in G. daltonii, while the bss gene was upregulated during toluene oxidation. Addition of benzene to the G. daltonii whole-cell lysate resulted in toluene formation, indicating that methylation of benzene was occurring. Complementation of σ54- (deficient) E. coli transformed with the bss operon restored its ability to grow in the presence of toluene, revealing bss to be regulated by σ54. Binding sites for σ70 and the transition state regulator AbrB were identified in the promoter region of the σ54-encoding gene rpoN, and binding was confirmed. Induced expression of abrB during benzene and toluene degradation caused G. daltonii cultures to transition to the death phase. Our results suggested that G. daltonii can anaerobically oxidize benzene by methylation, which is regulated by σ54 and AbrB. Our findings further indicated that the benzene, toluene, and benzoate degradation pathways converge into a single metabolic pathway, representing a uniquely efficient approach to anaerobic aromatic degradation in G. daltonii. IMPORTANCE The contamination of anaerobic subsurface environments including groundwater with toxic aromatic hydrocarbons, specifically benzene, toluene, ethylbenzene, and xylene, has become a global issue. Subsurface groundwater is largely anoxic, and further study is needed to understand the natural attenuation of these compounds. This study elucidated a metabolic pathway utilized by the bacterium Geotalea daltonii capable of anaerobically degrading the recalcitrant molecule benzene using a unique activation mechanism involving methylation. The identification of aromatic-degrading genes and AbrB as a regulator of the anaerobic benzene and toluene degradation pathways provides insights into the mechanisms employed by G. daltonii to modulate metabolic pathways as necessary to thrive in anoxic contaminated groundwater. Our findings contribute to the understanding of novel anaerobic benzene degradation pathways that could potentially be harnessed to develop improved strategies for bioremediation of groundwater contaminants.
Collapse
Affiliation(s)
- James E. Bullows
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Alison Kanak
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Lawrence Shedrick
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | | | - Muktak Aklujkar
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Joel Kostka
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kuk-Jeong Chin
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Kaplieva-Dudek I, Samak NA, Bormann J, Kaschani F, Kaiser M, Meckenstock RU. Characterization of 2-phenanthroate:CoA ligase from the sulfate-reducing, phenanthrene-degrading enrichment culture TRIP. Appl Environ Microbiol 2024; 90:e0129624. [PMID: 39248461 PMCID: PMC11497795 DOI: 10.1128/aem.01296-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are chemically stable pollutants that are poorly degraded by microorganisms in anoxic sediments. The anaerobic degradation pathway of PAHs such as phenanthrene starts with a carboxylation reaction forming phenanthroic acid. In this study, we identified and characterized the next enzyme in the pathway, the 2-phenanthroate:CoA ligase involved in the ATP-dependent formation of 2-phenanthroyl-CoA from cell-free extracts of the sulfate-reducing enrichment culture TRIP grown anaerobically with phenanthrene. The identified gene sequence indicated that 2-phenanthroate:CoA ligase belongs to the phenylacetate:CoA ligase-like enzyme family. Based on the sequence, we predict a two-domain structure of the 2-phenanthroate:CoA ligase with a typical large N-terminal and a smaller C-terminal domain. Partial purification of 2-phenanthroate:CoA ligase allowed us to identify the coding gene in the genome. 2-Phenanthroate:CoA ligase gene was heterologously expressed in Escherichia coli. Characterization of the 2-phenanthroate:CoA ligase was performed using the partially purified enzyme from cell-free extract and the purified recombinant enzyme. Testing all possible phenanthroic acid isomers as substrate for the ligase reaction showed that 2-phenanthroic acid is the preferred substrate and only 3-phenanthroic acid can be utilized to a minor extent. This also suggests that the product of the prior carboxylase reaction is 2-phenanthroic acid. 2-Phenanthroate:CoA ligase has an optimal activity at pH 7.5 and is oxygen-insensitive, analogous to other aryl-CoA ligases. In contrast to aryl-Coenzyme A ligases reported in the literature, which need Mg2+ as cofactor, 2-phenanthroate:CoA ligase showed greatest activity with a combination of 5 mM MgCl2 and 5 mM KCl. Furthermore, a substrate inhibition was observed at ATP concentrations above 1 mM and the enzyme was also active with ADP. IMPORTANCE Polycyclic aromatic hydrocarbons (PAHs) constitute a class of very toxic and persistent pollutants in the environment. However, the anaerobic degradation of three-ring PAHs such as phenanthrene is barely investigated. The initial degradation step starts with a carboxylation followed by a CoA‑thioesterification reaction performed by an aryl-CoA ligase. The formation of a CoA-thioester is an important step in the degradation pathway of aromatic compounds because the CoA-ester is needed for all downstream biochemical reactions in the pathway. Furthermore, we provide biochemical proof for the identification of the first genes for anaerobic phenanthrene degradation. Results presented here provide information about the biochemical and structural properties of the purified 2‑phenanthroate:CoA ligase and expand our knowledge of aryl-CoA ligases.
Collapse
Affiliation(s)
- I. Kaplieva-Dudek
- Environmental Microbiology and Biotechnology (EMB), Aquatic Microbiology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Nadia A. Samak
- Environmental Microbiology and Biotechnology (EMB), Aquatic Microbiology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jenny Bormann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Analytics Core Facility Essen, ZMB, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Analytics Core Facility Essen, ZMB, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Rainer U. Meckenstock
- Environmental Microbiology and Biotechnology (EMB), Aquatic Microbiology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Táncsics A, Bedics A, Banerjee S, Soares A, Baka E, Probst AJ, Kriszt B. Stable-isotope probing combined with amplicon sequencing and metagenomics identifies key bacterial benzene degraders under microaerobic conditions. Biol Futur 2024; 75:301-311. [PMID: 39044043 DOI: 10.1007/s42977-024-00232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
The primary aim of the present study was to reveal the major differences between benzene-degrading bacterial communities evolve under aerobic versus microaerobic conditions and to reveal the diversity of those bacteria, which can relatively quickly degrade benzene even under microaerobic conditions. For this, parallel aerobic and microaerobic microcosms were set up by using groundwater sediment of a BTEX-contaminated site and 13C labelled benzene. The evolved total bacterial communities were first investigated by 16S rRNA gene Illumina amplicon sequencing, followed by a density gradient fractionation of DNA and a separate investigation of "heavy" and "light" DNA fractions. Results shed light on the fact that the availability of oxygen strongly determined the structure of the degrading bacterial communities. While members of the genus Pseudomonas were overwhelmingly dominant under clear aerobic conditions, they were almost completely replaced by members of genera Malikia and Azovibrio in the microaerobic microcosms. Investigation of the density resolved DNA fractions further confirmed the key role of these two latter genera in the microaerobic degradation of benzene. Moreover, analysis of a previously acquired metagenome-assembled Azovibrio genome suggested that benzene was degraded through the meta-cleavage pathway by this bacterium, with the help of a subfamily I.2.I-type catechol 2,3-dioxygenase. Overall, results of the present study implicate that under limited oxygen availability, some potentially microaerophilic bacteria play crucial role in the aerobic degradation of aromatic hydrocarbons.
Collapse
Affiliation(s)
- András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary.
| | - Anna Bedics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary
| | - Sinchan Banerjee
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - André Soares
- Department of Chemistry, Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Erzsébet Baka
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary
| | - Alexander J Probst
- Department of Chemistry, Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary
| |
Collapse
|
5
|
Dhar K, Venkateswarlu K, Megharaj M. Enrichment of Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Strictly Anaerobic Sulfate-Reducing Cultures from Contaminated Soil and Sediment. Curr Protoc 2024; 4:e1102. [PMID: 39041106 DOI: 10.1002/cpz1.1102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Sulfate-reducing bacteria (SRB) are crucial players in global biogeochemical cycling and some have been implicated in the anaerobic biodegradation of organic pollutants, including recalcitrant and hazardous polycyclic aromatic hydrocarbons (PAHs). Obtaining PAH-degrading SRB cultures for laboratories is of paramount importance in the development of the young field of anaerobic biodegradation of PAHs. SRB grow exceptionally slowly on PAH substrates and are highly sensitive to oxygen. Consequently, enrichment and maintenance of PAH-degrading SRB cultures and characterization of the biodegradation process remain a tedious and formidable task, especially for new researchers. To address these technical constraints, we have developed robust and effective protocols for obtaining and characterizing PAH-degrading SRB cultures. In this set of protocols, we describe step-by-step procedures for preparing inocula from contaminated soil or sediment, preparing anoxic medium, establishing enrichment cultures with PAHs as substrates under completely anaerobic sulfate-reducing conditions, successive culture transfers to obtain highly enriched cultures, rapid verification of the viability of SRB in slow-growing cultures, assessment of PAH degradation by extracting residuals using organic solvent and subsequent analysis by gas chromatography-mass spectrometry, and spectrophotometric determination of sulfate and sulfide in miniaturized, medium-throughput format. These protocols are expected to serve as a comprehensive manual for obtaining and characterizing PAH-degrading sulfate-reducing cultures. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Obtaining PAH-degrading strictly anaerobic sulfate-reducing enrichment cultures from contaminated soil and sediment Support Protocol 1: Operation and maintenance of an anaerobic workstation Support Protocol 2: Setup of gas purging systems for preparing anoxic solutions Support Protocol 3: Verification of viability in slow-growing SRB enrichment cultures Support Protocol 4: Extraction of genomic DNA from low-biomass cultures Basic Protocol 2: Extraction of residual PAH from liquid culture and analysis by GC-MS Basic Protocol 3: Spectrophotometric determination of sulfate concentration in SRB cultures Basic Protocol 4: Spectrophotometric determination of sulfide concentrations in SRB cultures by the methylene blue method Alternate Protocol: Spectrophotometric determination of sulfide concentrations in SRB cultures by the colloidal copper sulfide method.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (crcCARE), University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
6
|
Liu DH, Ma J. Recent Advances in Dearomative Partial Reduction of Benzenoid Arenes. Angew Chem Int Ed Engl 2024; 63:e202402819. [PMID: 38480464 DOI: 10.1002/anie.202402819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/11/2024]
Abstract
Dearomative partial reduction is an extraordinary approach for transforming benzenoid arenes and has been well-known for many decades, as exemplified by the dehydrogenation of Birch reduction and the hydroarylation of Crich addition. Despite its remarkable importance in synthesis, this field has experienced slow progress over the last half-century. However, a revival has been observed with the recent introduction of electrochemical and photochemical methods. In this Minireview, we summarize the recent advancements in dearomative partial reduction of benzenoid arenes, including dihydrogenation, hydroalkylation, arylation, alkenylation, amination, borylation and others. Further, the intriguing utilization of dearomative partial reduction in the synthesis of natural products is also emphasized. It is anticipated that this Minireview will stimulate further progress in arene dearomative transformations.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
7
|
Zhong M, Yang C, Su L, Sun Z, Xu J, Zhang J, Li Q, Hao Y, Ma H, Chen H, Chen J, Chen S. Interactions between plants and bacterial communities for phytoremediation of petroleum-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37564-37573. [PMID: 38780843 DOI: 10.1007/s11356-024-33667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Plants can stimulate the microbes to degrade ubiquitous petroleum hydrocarbons (PHCs), which has prompted a novel view on rhizoremediation. In the present study, the degradation rate of PHCs was investigated and 16S rRNA gene analysis was performed to investigate the PHC-degrading bacteria in petroleum-contaminated soil with different plants. Mirabilis jalapa (M. jalapa) has a higher PHC degradation rate than Lolium perenne (L. perenne) under petroleum contamination. The bacterial diversity in rhizospheric soil was decreased but the relative abundance of Actinobacteriota, Proteobacteria, and Candidatus Saccharibacteria were significant increased on 45 days petroleum-contaminated rhizospheric soil. In addition, the relative expression of PHC degradation-related genes, the content of malic acid and citric acid of the root exudates in the two plants was significantly increased in response to petroleum stress. The content of citric acid increased 11.9 times in M. jalapa and 3.4 times in L. perenne, respectively, in response to petroleum stress. These results indicate that M. jalapa changes the hydrocarbon-degrading microbial community to enhance the degradation of PHCs by root exudates and phytostimulation.
Collapse
Affiliation(s)
- Ming Zhong
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Caiyu Yang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Liping Su
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Ziyu Sun
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Juanjuan Xu
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jin Zhang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Qilong Li
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yimin Hao
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hui Ma
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongman Chen
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jiamei Chen
- Department of foreign languages, Shenyang Agricultural University, Shenyang, China
| | - Shuisen Chen
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
8
|
Zhang M, Chen Q, Gong Z. Microbial remediation of petroleum-contaminated soil focused on the mechanism and microbial response: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33325-33346. [PMID: 38709405 DOI: 10.1007/s11356-024-33474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
The environmental pollution caused by petroleum hydrocarbons has received considerable attention in recent years. Microbial remediation has emerged as the preferred method for the degradation of petroleum hydrocarbons, which is experiencing rapid development driven by advancements in molecular biology. Herein, the capacity of different microorganisms used for crude oil bioremediation was reviewed. Moreover, factors influencing the effectiveness of microbial remediation were discussed. Microbial remediation methods, such as bioaugmentation, biostimulation, and bioventilation, are summarized in this review. Aerobic and anaerobic degradation mechanisms were reviewed to elucidate the metabolic pathways involved. The impacts of petroleum hydrocarbons on microorganisms and the environment were also revealed. A brief overview of synthetic biology and a unique perspective of technique combinations were presented to provide insight into research trends. The challenges and future outlook were also presented to stimulate contemplation of the mechanisms involved and the development of innovative techniques.
Collapse
Affiliation(s)
- Mingjian Zhang
- School of Life Sciences, Liaoning Normal University, Dalian, 116081, People's Republic of China
| | - Qing Chen
- School of Life Sciences, Liaoning Normal University, Dalian, 116081, People's Republic of China
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, People's Republic of China
| | - Zheng Gong
- School of Life Sciences, Liaoning Normal University, Dalian, 116081, People's Republic of China.
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, People's Republic of China.
| |
Collapse
|
9
|
Ni S, Lv W, Ji Z, Wang K, Mei Y, Li Y. Progress of Crude Oil Gasification Technology Assisted by Microorganisms in Reservoirs. Microorganisms 2024; 12:702. [PMID: 38674646 PMCID: PMC11051786 DOI: 10.3390/microorganisms12040702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Crude oil gasification bacteria, including fermenting bacteria, hydrocarbon-oxidizing bacteria, reducing bacteria, and methanogenic bacteria, participate in multi-step reactions involving initial activation, intermediate metabolism, and the methanogenesis of crude oil hydrocarbons. These bacteria degrade crude oil into smaller molecules such as hydrogen, carbon dioxide, acetic acid, and formic acid. Ultimately, they convert it into methane, which can be utilized or stored as a strategic resource. However, the current challenges in crude oil gasification include long production cycles and low efficiency. This paper provides a summary of the microbial flora involved in crude oil gasification, the gasification metabolism pathways within reservoirs, and other relevant information. It specifically focuses on analyzing the factors that affect the efficiency of crude oil gasification metabolism and proposes suggestions for improving this efficiency. These studies deepen our understanding of the potential of reservoir ecosystems and provide valuable insights for future reservoir development and management.
Collapse
Affiliation(s)
- Shumin Ni
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Weifeng Lv
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
| | - Zemin Ji
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Kai Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Yuhao Mei
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Yushu Li
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| |
Collapse
|
10
|
Yessentayeva K, Reinhard A, Berzhanova R, Mukasheva T, Urich T, Mikolasch A. Bacterial crude oil and polyaromatic hydrocarbon degraders from Kazakh oil fields as barley growth support. Appl Microbiol Biotechnol 2024; 108:189. [PMID: 38305872 PMCID: PMC10837267 DOI: 10.1007/s00253-024-13010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Bacterial strains of the genera Arthrobacter, Bacillus, Dietzia, Kocuria, and Micrococcus were isolated from oil-contaminated soils of the Balgimbaev, Dossor, and Zaburunye oil fields in Kazakhstan. They were selected from 1376 isolated strains based on their unique ability to use crude oil and polyaromatic hydrocarbons (PAHs) as sole source of carbon and energy in growth experiments. The isolated strains degraded a wide range of aliphatic and aromatic components from crude oil to generate a total of 170 acid metabolites. Eight metabolites were detected during the degradation of anthracene and of phenanthrene, two of which led to the description of a new degradation pathway. The selected bacterial strains Arthrobacter bussei/agilis SBUG 2290, Bacillus atrophaeus SBUG 2291, Bacillus subtilis SBUG 2285, Dietzia kunjamensis SBUG 2289, Kocuria rosea SBUG 2287, Kocuria polaris SBUG 2288, and Micrococcus luteus SBUG 2286 promoted the growth of barley shoots and roots in oil-contaminated soil, demonstrating the enormous potential of isolatable and cultivable soil bacteria in soil remediation. KEY POINTS: • Special powerful bacterial strains as potential crude oil and PAH degraders. • Growth on crude oil or PAHs as sole source of carbon and energy. • Bacterial support of barley growth as resource for soil remediation.
Collapse
Affiliation(s)
- Kuralay Yessentayeva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Anne Reinhard
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Ramza Berzhanova
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Togzhan Mukasheva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Tim Urich
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Annett Mikolasch
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.
| |
Collapse
|
11
|
Simeonova DD, Pollmann K, Bianco A, Lièvremont D. Graphene oxide and bacteria interactions: what is known and what should we expect? mSphere 2024; 9:e0071523. [PMID: 38197645 PMCID: PMC10826346 DOI: 10.1128/msphere.00715-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Graphene oxide (GO) and graphene-based materials (GBMs) have gained over the last two decades considerable attention due to their intrinsic physicochemical properties and their applications. Besides, a lot of concern regarding the potential toxicity of GBMs has emerged. One of the aspects of concern is the interactions between GBMs and different environmental compartments, especially indigenous microbial and, in particular, bacterial communities. Recent research showed that GO and GBMs impacted bacterial pure culture or bacterial communities; therefore, these interactions have to be further studied to better understand and assess the fate of these materials in the environment. Here, we present our opinion and hypotheses related to possible degradation mechanisms of GO that can be used by environmental bacteria. This work is the first attempt to deduce and summarize plausible degradation pathways of GO, from structurally similar recalcitrant and toxic compounds, such as polyaromatic hydrocarbons.
Collapse
Affiliation(s)
- Diliana D. Simeonova
- The Stephan Angeloff Institute of Microbiology, BAS, Atelier Pasteur, Sofia, Bulgaria
| | - Katrin Pollmann
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Dresden, Germany
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, ISIS, University of Strasbourg, Strasbourg, France
| | - Didier Lièvremont
- Chemistry and Biochemistry of Bioactive Molecules, University of Strasbourg/CNRS, UMR 7177, Strasbourg Institute of Chemistry, Strasbourg, France
| |
Collapse
|
12
|
Xu J, Wang L, Lv W, Song X, Nie Y, Wu XL. Metabolic profiling of petroleum-degrading microbial communities incubated under high-pressure conditions. Front Microbiol 2023; 14:1305731. [PMID: 38188585 PMCID: PMC10766756 DOI: 10.3389/fmicb.2023.1305731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
While pressure is a significant characteristic of petroleum reservoirs, it is often overlooked in laboratory studies. To clarify the composition and metabolic properties of microbial communities under high-pressure conditions, we established methanogenic and sulfate-reducing enrichment cultures under high-pressure conditions using production water from the Jilin Oilfield in China. We utilized a metagenomics approach to analyze the microbial community after a 90-day incubation period. Under methanogenic conditions, Firmicutes, Deferribacteres, Ignavibacteriae, Thermotogae, and Nitrospirae, in association with the hydrogenotrophic methanogen Archaeoglobaceae and acetoclastic Methanosaeta, were highly represented. Genomes for Ca. Odinarchaeota and the hydrogen-dependent methylotrophic Ca. Methanosuratus were also recovered from the methanogenic culture. The sulfate-reducing community was dominated by Firmicutes, Thermotogae, Nitrospirae, Archaeoglobus, and several candidate taxa including Ca. Bipolaricaulota, Ca. Aminicenantes, and Candidate division WOR-3. These candidate taxa were key pantothenate producers for other community members. The study expands present knowledge of the metabolic roles of petroleum-degrading microbial communities under high-pressure conditions. Our results also indicate that microbial community interactions were shaped by syntrophic metabolism and the exchange of amino acids and cofactors among members. Furthermore, incubation under in situ pressure conditions has the potential to reveal the roles of microbial dark matter.
Collapse
Affiliation(s)
- Jinbo Xu
- School of Earth and Space Sciences, Peking University, Beijing, China
- State Key Laboratory of Enhanced Oil and Gas Recovery, Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Lu Wang
- State Key Laboratory of Enhanced Oil and Gas Recovery, Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Weifeng Lv
- State Key Laboratory of Enhanced Oil and Gas Recovery, Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Xinmin Song
- State Key Laboratory of Enhanced Oil and Gas Recovery, Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, China
- Institute of Ecology, Peking University, Beijing, China
| |
Collapse
|
13
|
Sharma M, Agarwal S, Agarwal Malik R, Kumar G, Pal DB, Mandal M, Sarkar A, Bantun F, Haque S, Singh P, Srivastava N, Gupta VK. Recent advances in microbial engineering approaches for wastewater treatment: a review. Bioengineered 2023; 14:2184518. [PMID: 37498651 PMCID: PMC10376923 DOI: 10.1080/21655979.2023.2184518] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 07/28/2023] Open
Abstract
In the present era of global climate change, the scarcity of potable water is increasing both due to natural and anthropogenic causes. Water is the elixir of life, and its usage has risen significantly due to escalating economic activities, widespread urbanization, and industrialization. The increasing water scarcity and rising contamination have compelled, scientists and researchers, to adopt feasible and sustainable wastewater treatment methods in meeting the growing demand for freshwater. Presently, various waste treatment technologies are adopted across the globe, such as physical, chemical, and biological treatment processes. There is a need to replace these technologies with sustainable and green technology that encourages the use of microorganisms since they have proven to be more effective in water treatment processes. The present review article is focused on demonstrating how effectively various microbes can be used in wastewater treatment to achieve environmental sustainability and economic feasibility. The microbial consortium used for water treatment offers many advantages over pure culture. There is an urgent need to develop hybrid treatment technology for the effective remediation of various organic and inorganic pollutants from wastewater.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Zoology, University of Jammu, Jammu and Kashmir, India
| | - Sangita Agarwal
- Department of Applied Science, RCC Institute of Information Technology Kolkata, West Bengal, India
| | - Richa Agarwal Malik
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, India
| | - Gaurav Kumar
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, India
| | - Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, West Bengal, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, West Bengal, India
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Pardeep Singh
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | | |
Collapse
|
14
|
Zehnle H, Otersen C, Benito Merino D, Wegener G. Potential for the anaerobic oxidation of benzene and naphthalene in thermophilic microorganisms from the Guaymas Basin. Front Microbiol 2023; 14:1279865. [PMID: 37840718 PMCID: PMC10570749 DOI: 10.3389/fmicb.2023.1279865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Unsubstituted aromatic hydrocarbons (UAHs) are recalcitrant molecules abundant in crude oil, which is accumulated in subsurface reservoirs and occasionally enters the marine environment through natural seepage or human-caused spillage. The challenging anaerobic degradation of UAHs by microorganisms, in particular under thermophilic conditions, is poorly understood. Here, we established benzene- and naphthalene-degrading cultures under sulfate-reducing conditions at 50°C and 70°C from Guaymas Basin sediments. We investigated the microorganisms in the enrichment cultures and their potential for UAH oxidation through short-read metagenome sequencing and analysis. Dependent on the combination of UAH and temperature, different microorganisms became enriched. A Thermoplasmatota archaeon was abundant in the benzene-degrading culture at 50°C, but catabolic pathways remained elusive, because the archaeon lacked most known genes for benzene degradation. Two novel species of Desulfatiglandales bacteria were strongly enriched in the benzene-degrading culture at 70°C and in the naphthalene-degrading culture at 50°C. Both bacteria encode almost complete pathways for UAH degradation and for downstream degradation. They likely activate benzene via methylation, and naphthalene via direct carboxylation, respectively. The two species constitute the first thermophilic UAH degraders of the Desulfatiglandales. In the naphthalene-degrading culture incubated at 70°C, a Dehalococcoidia bacterium became enriched, which encoded a partial pathway for UAH degradation. Comparison of enriched bacteria with related genomes from environmental samples indicated that pathways for benzene degradation are widely distributed, while thermophily and capacity for naphthalene activation are rare. Our study highlights the capacities of uncultured thermophilic microbes for UAH degradation in petroleum reservoirs and in contaminated environments.
Collapse
Affiliation(s)
- Hanna Zehnle
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Carolin Otersen
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - David Benito Merino
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
15
|
Hassa J, Tubbesing TJ, Maus I, Heyer R, Benndorf D, Effenberger M, Henke C, Osterholz B, Beckstette M, Pühler A, Sczyrba A, Schlüter A. Uncovering Microbiome Adaptations in a Full-Scale Biogas Plant: Insights from MAG-Centric Metagenomics and Metaproteomics. Microorganisms 2023; 11:2412. [PMID: 37894070 PMCID: PMC10608942 DOI: 10.3390/microorganisms11102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The current focus on renewable energy in global policy highlights the importance of methane production from biomass through anaerobic digestion (AD). To improve biomass digestion while ensuring overall process stability, microbiome-based management strategies become more important. In this study, metagenomes and metaproteomes were used for metagenomically assembled genome (MAG)-centric analyses to investigate a full-scale biogas plant consisting of three differentially operated digesters. Microbial communities were analyzed regarding their taxonomic composition, functional potential, as well as functions expressed on the proteome level. Different abundances of genes and enzymes related to the biogas process could be mostly attributed to different process parameters. Individual MAGs exhibiting different abundances in the digesters were studied in detail, and their roles in the hydrolysis, acidogenesis and acetogenesis steps of anaerobic digestion could be assigned. Methanoculleus thermohydrogenotrophicum was an active hydrogenotrophic methanogen in all three digesters, whereas Methanothermobacter wolfeii was more prevalent at higher process temperatures. Further analysis focused on MAGs, which were abundant in all digesters, indicating their potential to ensure biogas process stability. The most prevalent MAG belonged to the class Limnochordia; this MAG was ubiquitous in all three digesters and exhibited activity in numerous pathways related to different steps of AD.
Collapse
Affiliation(s)
- Julia Hassa
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| | - Tom Jonas Tubbesing
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Irena Maus
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| | - Robert Heyer
- Multidimensional Omics Data Analyses Group, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, Dortmund 44139, Germany
- Multidimensional Omics Data Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Dirk Benndorf
- Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, Postfach 1458, 06366 Köthen, Germany
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Mathias Effenberger
- Bavarian State Research Center for Agriculture, Institute for Agricultural Engineering and Animal Husbandry, Vöttinger Straße 36, 85354 Freising, Germany
| | - Christian Henke
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Benedikt Osterholz
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Michael Beckstette
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Alfred Pühler
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| | - Alexander Sczyrba
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Andreas Schlüter
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| |
Collapse
|
16
|
Dai X, Lv J, Fu P, Guo S. Microbial remediation of oil-contaminated shorelines: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93491-93518. [PMID: 37572250 DOI: 10.1007/s11356-023-29151-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Frequent marine oil spills have led to increasingly serious oil pollution along shorelines. Microbial remediation has become a research hotspot of intertidal oil pollution remediation because of its high efficiency, low cost, environmental friendliness, and simple operation. Many microorganisms are able to convert oil pollutants into non-toxic substances through their growth and metabolism. Microorganisms use enzymes' catalytic activities to degrade oil pollutants. However, microbial remediation efficiency is affected by the properties of the oil pollutants, microbial community, and environmental conditions. Feasible field microbial remediation technologies for oil spill pollution in the shorelines mainly include the addition of high-efficiency oil degrading bacteria (immobilized bacteria), nutrients, biosurfactants, and enzymes. Limitations to the field application of microbial remediation technology mainly include slow start-up, rapid failure, long remediation time, and uncontrolled environmental impact. Improving the environmental adaptability of microbial remediation technology and developing sustainable microbial remediation technology will be the focus of future research. The feasibility of microbial remediation techniques should also be evaluated comprehensively.
Collapse
Affiliation(s)
- Xiaoli Dai
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 10089, China.
| | - Jing Lv
- China University of Petroleum-Beijing, Beijing, 102249, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Hainan, 570228, China
| | - Shaohui Guo
- China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
17
|
Srivastava A, Valsala R, Jagadevan S. Biogeochemical modelling to assess benzene removal by biostimulation in aquifers containing natural reductants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88022-88035. [PMID: 37436629 DOI: 10.1007/s11356-023-28506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Biostimulation of aquifers contaminated with gasoline spills is vigorously affected by the biogeochemical environment existing there. In this study, biostimulation of benzene is simulated using a 2D coupled multispecies biogeochemical reactive transport (MBRT) model. The model is implemented at an oil spill site near a hypothetical aquifer containing natural reductants. Multiple electron acceptors are introduced to promote faster biodegradation rate. However, after reaction with natural reductants, it reduces the number of available electron acceptors, acidifies the subsurface environment, and inhibits bacterial growth. These mechanisms are assessed using seven coupled MBRT models sequentially. The finding of the present analysis reveals that biostimulation has caused a substantial drop in concentration of benzene and is efficient in reducing its penetration depth. The results also shows that the intervention of natural reductants in the biostimulation process is slightly diminished by pH adjustment of aquifers. When the pH level in aquifer changes from acidic pH 4 to neutral pH 7, it is observed that the biostimulation rate of benzene as well as microbial activity increases. Electron acceptors consumption is more at neutral pH. Overall, it can be inferred from zeroth-order spatial moment and sensitivity analyses that retardation factor, inhibition constant, pH, and dispersivity in vertical direction significantly affect benzene biostimulation in aquifers.
Collapse
Affiliation(s)
- Akanksha Srivastava
- Department of Civil Engineering, IIT (ISM) Dhanbad, Dhanbad, Jharkhand, 826004, India.
| | - Renu Valsala
- Department of Civil Engineering, IIT (ISM) Dhanbad, Dhanbad, Jharkhand, 826004, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, IIT (ISM) Dhanbad, Dhanbad, Jharkhand, 826004, India
| |
Collapse
|
18
|
Kumari S, Das S. Bacterial enzymatic degradation of recalcitrant organic pollutants: catabolic pathways and genetic regulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79676-79705. [PMID: 37330441 DOI: 10.1007/s11356-023-28130-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Contamination of soil and natural water bodies driven by increased organic pollutants remains a universal concern. Naturally, organic pollutants contain carcinogenic and toxic properties threatening all known life forms. The conventional physical and chemical methods employed to remove these organic pollutants ironically produce toxic and non-ecofriendly end-products. Whereas microbial-based degradation of organic pollutants provides an edge, they are usually cost-effective and take an eco-friendly approach towards remediation. Bacterial species, including Pseudomonas, Comamonas, Burkholderia, and Xanthomonas, have the unique genetic makeup to metabolically degrade toxic pollutants, conferring their survival in toxic environments. Several catabolic genes, such as alkB, xylE, catA, and nahAc, that encode enzymes and allow bacteria to degrade organic pollutants have been identified, characterized, and even engineered for better efficacy. Aerobic and anaerobic processes are followed by bacteria to metabolize aliphatic saturated and unsaturated hydrocarbons such as alkanes, cycloalkanes, aldehydes, and ethers. Bacteria use a variety of degrading pathways, including catechol, protocatechuate, gentisate, benzoate, and biphenyl, to remove aromatic organic contaminants such as polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and pesticides from the environment. A better understanding of the principle, mechanisms, and genetics would be beneficial for improving the metabolic efficacy of bacteria to such ends. With a focus on comprehending the mechanisms involved in various catabolic pathways and the genetics of the biotransformation of these xenobiotic compounds, the present review offers insight into the various sources and types of known organic pollutants and their toxic effects on health and the environment.
Collapse
Affiliation(s)
- Swetambari Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
19
|
Chhiba V, Pillay P, Mtimka S, Moonsamy G, Kwezi L, Pooe OJ, Tsekoa TL. South Africa's indigenous microbial diversity for industrial applications: A review of the current status and opportunities. Heliyon 2023; 9:e16723. [PMID: 37484259 PMCID: PMC10360602 DOI: 10.1016/j.heliyon.2023.e16723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 07/25/2023] Open
Abstract
The unique metagenomic, metaviromic libraries and indigenous micro diversity within Southern Africa have the potential for global beneficiation in academia and industry. Microorganisms that flourish at high temperatures, adverse pH conditions, and high salinity are likely to have enzyme systems that function efficiently under those conditions. These attributes afford researchers and industries alternative approaches that could replace existing chemical processes. Thus, a better understanding of African microbial/genetic diversity is crucial for the development of "greener" industries. A concerted drive to exploit the potential locked in biological resources has been previously seen with companies such as Diversa Incorporated and Verenium (Badische Anilin-und SodaFabrik-BASF) both building business models that pioneered the production of high-performance specialty enzymes for a variety of different industrial applications. The market potential and accompanying industry offerings have not been fully exploited in South Africa, nor in Africa at large. Utilization of the continent's indigenous microbial repositories could create long-lasting, sustainable growth in various production sectors, providing economic growth in resource-poor regions. By bolstering local manufacture of high-value bio-based products, scientific and engineering discoveries have the potential to generate new industries which in turn would provide employment avenues for many skilled and unskilled laborers. The positive implications of this could play a role in altering the face of business markets on the continent from costly import-driven markets to income-generating export markets. This review focuses on identifying microbially diverse areas located in South Africa while providing a profile for all associated microbial/genetically derived libraries in this country. A comprehensive list of all the relevant researchers and potential key players is presented, mapping out existing research networks for the facilitation of collaboration. The overall aim of this review is to facilitate a coordinated journey of exploration, one which will hopefully realize the value that South Africa's microbial diversity has to offer.
Collapse
Affiliation(s)
- Varsha Chhiba
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Priyen Pillay
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Sibongile Mtimka
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- School of Life Sciences, Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Ghaneshree Moonsamy
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Lusisizwe Kwezi
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Ofentse J. Pooe
- School of Life Sciences, Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Tsepo L. Tsekoa
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| |
Collapse
|
20
|
Yu X, Mao C, Zong S, Khan A, Wang W, Yun H, Zhang P, Shigaki T, Fang Y, Han H, Li X. Transcriptome analysis reveals self-redox mineralization mechanism of azo dyes and novel decolorizing hydrolases in Aspergillus tabacinus LZ-M. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121459. [PMID: 36934962 DOI: 10.1016/j.envpol.2023.121459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Bio-degradation is the most affordable method of azo dye decontamination, while its drawbacks such as aromatic amines accumulation and low degradation efficiency must be overcome. In this study, a novel mechanism of azo dye degradation by a fungus was discovered. At a concentration of 400 mg/L, the decolorization efficiency of Acid Red 73 (AR73) by Aspergillus tabacinus LZ-M was 90.28%. Metabolite analysis and transcriptome sequencing analysis revealed a self-redox process of AR73 degradation, where the electrons generated in carbon oxidation were transferred to the reduction of -C-N = and -NN. The metabolites, 2-hydroxynaphthalene and N-phenylnitrous amide were mineralized into CO2 through catechol pathway and a glycolytic process. Furthermore, the mineralization ratio of dye was computed to be 31.8% by the carbon balance and electron balance. By using comparative transcriptome, a novel decoloring enzyme Ord95 was discovered in unknown genes through gene cloning. It hydrolyzed AR73 into 2-hydroxynaphthalene and N-phenylnitrous amide, containing a glutathione S-transferase domain with three arginines as key active sites. Here the new mechanism of azo dye degradation was discovered with identification of a novel enzyme in Aspergillus tabacinus LZ-M.
Collapse
Affiliation(s)
- Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Chunlan Mao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Simin Zong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Wenxue Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technoloy of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, 730020, Gansu, China
| | - Toshiro Shigaki
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
21
|
Bierbaumer S, Nattermann M, Schulz L, Zschoche R, Erb TJ, Winkler CK, Tinzl M, Glueck SM. Enzymatic Conversion of CO 2: From Natural to Artificial Utilization. Chem Rev 2023; 123:5702-5754. [PMID: 36692850 PMCID: PMC10176493 DOI: 10.1021/acs.chemrev.2c00581] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 01/25/2023]
Abstract
Enzymatic carbon dioxide fixation is one of the most important metabolic reactions as it allows the capture of inorganic carbon from the atmosphere and its conversion into organic biomass. However, due to the often unfavorable thermodynamics and the difficulties associated with the utilization of CO2, a gaseous substrate that is found in comparatively low concentrations in the atmosphere, such reactions remain challenging for biotechnological applications. Nature has tackled these problems by evolution of dedicated CO2-fixing enzymes, i.e., carboxylases, and embedding them in complex metabolic pathways. Biotechnology employs such carboxylating and decarboxylating enzymes for the carboxylation of aromatic and aliphatic substrates either by embedding them into more complex reaction cascades or by shifting the reaction equilibrium via reaction engineering. This review aims to provide an overview of natural CO2-fixing enzymes and their mechanistic similarities. We also discuss biocatalytic applications of carboxylases and decarboxylases for the synthesis of valuable products and provide a separate summary of strategies to improve the efficiency of such processes. We briefly summarize natural CO2 fixation pathways, provide a roadmap for the design and implementation of artificial carbon fixation pathways, and highlight examples of biocatalytic cascades involving carboxylases. Additionally, we suggest that biochemical utilization of reduced CO2 derivates, such as formate or methanol, represents a suitable alternative to direct use of CO2 and provide several examples. Our discussion closes with a techno-economic perspective on enzymatic CO2 fixation and its potential to reduce CO2 emissions.
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Maren Nattermann
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luca Schulz
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | | | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Christoph K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Matthias Tinzl
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Silvia M. Glueck
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| |
Collapse
|
22
|
Malakhova DV, Egorova MA, Leontieva MR, Elcheninov AG, Panova TV, Aleksandrov YD, Tsavkelova EA. Anaerobic Microbial Degradation of Polypropylene and Polyvinyl Chloride Samples. Microbiology (Reading) 2023. [DOI: 10.1134/s0026261722602706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
23
|
Kaneshiro AK, Datar PM, Marsh ENG. Negative Cooperativity in the Mechanism of Prenylated-Flavin-Dependent Ferulic Acid Decarboxylase: A Proposal for a "Two-Stroke" Decarboxylation Cycle. Biochemistry 2023; 62:53-61. [PMID: 36521056 DOI: 10.1021/acs.biochem.2c00460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ferulic acid decarboxylase (FDC) catalyzes the reversible carboxylation of various substituted phenylacrylic acids to produce the correspondingly substituted styrenes and CO2. FDC is a member of the UbiD family of enzymes that use prenylated-FMN (prFMN) to catalyze decarboxylation reactions on aromatic rings and C-C double bonds. Although a growing number of prFMN-dependent enzymes have been identified, the mechanism of the reaction remains poorly understood. Here, we present a detailed pre-steady-state kinetic analysis of the FDC-catalyzed reaction of prFMN with both styrene and phenylacrylic acid. Based on the pattern of reactivity observed, we propose a "two-stroke" kinetic model in which negative cooperativity between the two subunits of the FDC homodimer plays an important and previously unrecognized role in catalysis. In this model, catalysis is initiated at the high-affinity active site, which reacts with phenylacrylate to yield, after decarboxylation, the covalently bound styrene-prFMN cycloadduct. In the second stage of the catalytic cycle, binding of the second substrate molecule to the low-affinity active site drives a conformational switch that interconverts the high-affinity and low-affinity active sites. This switching of affinity couples the energetically unfavorable cycloelimination of styrene from the first site with the energetically favorable cycloaddition and decarboxylation of phenylacrylate at the second site. We note as a caveat that, at this point, the complexity of the FDC kinetics leaves open other mechanistic interpretations and that further experiments will be needed to more firmly establish or refute our proposal.
Collapse
|
24
|
Somee MR, Amoozegar MA, Dastgheib SMM, Shavandi M, Maman LG, Bertilsson S, Mehrshad M. Genome-resolved analyses show an extensive diversification in key aerobic hydrocarbon-degrading enzymes across bacteria and archaea. BMC Genomics 2022; 23:690. [PMID: 36203131 PMCID: PMC9535955 DOI: 10.1186/s12864-022-08906-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hydrocarbons (HCs) are organic compounds composed solely of carbon and hydrogen that are mainly accumulated in oil reservoirs. As the introduction of all classes of hydrocarbons including crude oil and oil products into the environment has increased significantly, oil pollution has become a global ecological problem. However, our perception of pathways for biotic degradation of major HCs and key enzymes in these bioconversion processes has mainly been based on cultured microbes and is biased by uneven taxonomic representation. Here we used Annotree to provide a gene-centric view of the aerobic degradation ability of aliphatic and aromatic HCs in 23,446 genomes from 123 bacterial and 14 archaeal phyla. Results Apart from the widespread genetic potential for HC degradation in Proteobacteria, Actinobacteriota, Bacteroidota, and Firmicutes, genomes from an additional 18 bacterial and 3 archaeal phyla also hosted key HC degrading enzymes. Among these, such degradation potential has not been previously reported for representatives in the phyla UBA8248, Tectomicrobia, SAR324, and Eremiobacterota. Genomes containing whole pathways for complete degradation of HCs were only detected in Proteobacteria and Actinobacteriota. Except for several members of Crenarchaeota, Halobacterota, and Nanoarchaeota that have tmoA, ladA, and alkB/M key genes, respectively, representatives of archaeal genomes made a small contribution to HC degradation. None of the screened archaeal genomes coded for complete HC degradation pathways studied here; however, they contribute significantly to peripheral routes of HC degradation with bacteria. Conclusion Phylogeny reconstruction showed that the reservoir of key aerobic hydrocarbon-degrading enzymes in Bacteria and Archaea undergoes extensive diversification via gene duplication and horizontal gene transfer. This diversification could potentially enable microbes to rapidly adapt to novel and manufactured HCs that reach the environment. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08906-w.
Collapse
Affiliation(s)
- Maryam Rezaei Somee
- Extremophile Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophile Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Mahmoud Shavandi
- Biotechnology Research Group, Research Institute of Petroleum Industry, Tehran, Iran
| | - Leila Ghanbari Maman
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden.
| |
Collapse
|
25
|
Biodegradation of Petroleum Hydrocarbons by Drechsleraspicifera Isolated from Contaminated Soil in Riyadh, Saudi Arabia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196450. [PMID: 36234987 PMCID: PMC9572601 DOI: 10.3390/molecules27196450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/14/2022]
Abstract
Currently, the bioremediation of petroleum hydrocarbons employs microbial biosurfactants because of their public acceptability, biological safety, and low cost. These organisms can degrade or detoxify organic-contaminated areas, such as marine ecosystems. The current study aimed to test the oil-biodegradation ability of the fungus Drechslera spicifera, which was isolated from contaminated soil samples in Riyadh, Saudi Arabia. We used hydrocarbon tolerance, scanning electron microscopy, DCPIP, drop-collapse, emulsification activity, recovery of biosurfactants, and germination assays to assess the biodegradation characteristics of the D. spicifera against kerosene, crude, diesel, used, and mixed oils. The results of DCPIP show that the highest oxidation (0.736 a.u.) was induced by crude oil on the 15th day. In contrast, kerosene and used oil had the highest measurements in emulsification activity and drop-collapse assays, respectively. Meanwhile, crude and used oils produced the highest amounts of biosurfactants through acid precipitation and solvent extraction assays. Furthermore, the biosurfactants stimulated the germination of tomato seeds by more than 50% compared to the control. These findings highlight the biodegradation ability of D. spicifera, which has been proven in the use of petroleum oils as the sole source of carbon. That might encourage further research to demonstrate its application in the cleaning of large, contaminated areas.
Collapse
|
26
|
Guo S, Toth CRA, Luo F, Chen X, Xiao J, Edwards EA. Transient Oxygen Exposure Causes Profound and Lasting Changes to a Benzene-Degrading Methanogenic Community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13036-13045. [PMID: 36083837 PMCID: PMC9496526 DOI: 10.1021/acs.est.2c02624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
We investigated the impact of oxygen on a strictly anaerobic, methanogenic benzene-degrading enrichment culture derived decades ago from oil-contaminated sediment. The culture includes a benzene fermenter from Deltaproteobacteria candidate clade Sva0485 (referred to as ORM2) and methanogenic archaea. A one-time injection of 0.1 mL air , simulating a small leak into 30 mL batch culture bottle, had no measurable impact on benzene degradation rates, although retrospectively, a tiny enrichment of aerobic taxa was detected. A subsequent 100 times larger injection of air stalled methanogenesis and caused drastic perturbation of the microbial community. A benzene-degrading Pseudomonas became highly enriched and consumed all available oxygen. Anaerobic benzene-degrading ORM2 cell numbers plummeted during this time; re-growth and associated recovery of methanogenic benzene degradation took almost 1 year. These results highlight the oxygen sensitivity of this methanogenic culture and confirm that the mechanism for anaerobic biotransformation of benzene is independent of oxygen, fundamentally different from established aerobic pathways, and is carried out by distinct microbial communities. The study also highlights the importance of including microbial decay in characterizing and modeling mixed microbial communities.
Collapse
Affiliation(s)
| | | | | | - Xu Chen
- Department of Chemical Engineering
and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Johnny Xiao
- Department of Chemical Engineering
and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Elizabeth A. Edwards
- Department of Chemical Engineering
and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
27
|
Al-Otibi F, Al-Zahrani RM, Marraiki N. The crude oil biodegradation activity of Candida strains isolated from oil-reservoirs soils in Saudi Arabia. Sci Rep 2022; 12:10708. [PMID: 35739163 PMCID: PMC9226172 DOI: 10.1038/s41598-022-14836-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Crude oil (petroleum) is a naturally occurring complex composed of hydrocarbon deposits and other organic materials. Bioremediation of crude oil-polluted sites is restricted by the biodiversity of indigenous microflora. They possess complementary substrates required for degrading the different hydrocarbons. In the current study, four yeast strains were isolated from different oil reservoirs in Riyadh, Saudi Arabia. The oil-biodegradation ability of these isolates showed variable oxidation effects on multiple hydrocarbons. The scanning electron microscopy (SEM) images showed morphological changes in Candida isolates compared to the original structures. The drop-collapse and oil emulsification assays showed that yeast strains affected the physical properties of tested hydrocarbons. The content of biosurfactants produced by isolated strains was quantified in the presence of different hydrocarbons to confirm the oil displacement activity. The recovery assays included acid precipitation, solvent extraction, ammonium sulfate, and zinc sulfate precipitation methods. All these methods revealed that the amount of biosurfactants correlates to the type of tested hydrocarbons, where the highest amount was produced in crude oil contaminated samples. In conclusion, the study highlights the importance of Candida isolated from contaminated soils for bioremediation of petroleum oil pollution. That raises the need for further analyses on the microbes/hydrocarbon degradation dynamics.
Collapse
Affiliation(s)
- Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Rasha M Al-Zahrani
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
28
|
Dhar K, Panneerselvan L, Subashchandrabose SR, Venkateswarlu K, Megharaj M. Anaerobic Degradation of Naphthalene and Pyrene by Sulfate-Reducing Cultures Enriched from Former Manufactured Gas Plant Soil. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02042-4. [PMID: 35610382 DOI: 10.1007/s00248-022-02042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Biodegradation of polycyclic aromatic hydrocarbons (PAHs) under completely anaerobic sulfate-reducing conditions is an energetically challenging process. To date, anaerobic degradations of only two-ringed naphthalene and three-ringed phenanthrene by sediment-free and enriched sulfate-reducing bacteria have been reported. In this study, sulfate-reducing enrichment cultures capable of degrading naphthalene and four-ringed PAH, pyrene, were enriched from a contaminated former gas plant site soil. Bacterial community composition analysis revealed that a naphthalene-degrading enrichment culture, MMNap, was dominated (84.90%) by a Gram-positive endospore-forming member of the genus Desulfotomaculum with minor contribution (8.60%) from a member of Clostridium. The pyrene-degrading enrichment, MMPyr, was dominated (97.40%) by a species of Desulfotomaculum. The sequences representing the Desulfotomaculum phylotypes shared 98.80% similarity to each other. After 150 days of incubation, MMNap degraded 195 µM naphthalene with simultaneous reduction of sulfate and accumulation of sulfide. Similarly, MMPyr degraded 114 µM pyrene during 180 days of incubation with nearly stochiometric sulfate consumption and sulfide accumulation. In both cases, the addition of sulfate reduction inhibitor, molybdate (20 mM), resulted in complete cessation of the substrate utilization and sulfate reduction that clearly indicated the major role of the sulfate-reducing Desulfotomaculum in biodegradation of the two PAHs. This study is the first report on anaerobic pyrene degradation by a matrix-free, strictly anaerobic, and sulfate-reducing enrichment culture.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Logeshwaran Panneerselvan
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
29
|
Nnabuife OO, Ogbonna JC, Anyanwu C, Ike AC, Eze CN, Enemuor SC. Mixed bacterial consortium can hamper the efficient degradation of crude oil hydrocarbons. Arch Microbiol 2022; 204:306. [PMID: 35532873 DOI: 10.1007/s00203-022-02915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/24/2022]
Abstract
Crude oil degradation efficiency can be improved because of co-metabolism that exists when bacterial consortium is applied. However, because of possible vulnerability to environmental conditions and/or antagonistic interactions among members of the consortium, the degradation efficiency can be hampered. In this laboratory-based study, the biodegradation potentials of pure bacterial isolates namely Pseudomonas aeruginosa strain W15 (MW320658), Providencia vermicola strain W8 (MW320661) and Serratia marcescens strain W13 (MW320662) earlier isolated from crude oil-contaminated site and their consortium were evaluated using 3% crude oil-supplemented Bushnell Haas media. The efficiency was evaluated based on the viable cell count, biosurfactant analyses, percentage hydrocarbon degradation using gravimetric analysis and gas chromatography-mass spectrophotometry (GC-MS) analysis. There was decline in the population of W13 and predominance of W15 in the consortium as the incubation period progressed. Accelerated biodegradation of the crude oil hydrocarbons through co-metabolism was not achieved with the consortium; neither was there any improved resilience nor resistance to environmental changes of strain W13. The GC-MS analyses showed that the highest degradation was produced by W15 (48.23%) compared to W8 (46.04%), W13 (45.24%) and the Consortium (28.51%). The biodegradation of the crude oil hydrocarbons by W15, W8, W13 axenic cultures and their consortium treatments demonstrated that the bacterial constituent in a consortium can influence the synergistic effect that improves bioremediation. Future research that focuses on evaluating possible improvement in bioremediation through maintenance of diversity by continuous bioaugmentation using vulnerable but efficient degraders in a consortium is necessary to further understand the application of consortia for bioremediation improvement.
Collapse
Affiliation(s)
- Obianuju Obiajulu Nnabuife
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - James Chukwuma Ogbonna
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chukwudi Anyanwu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Chibuogwu Ike
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chibuzor Nwadibe Eze
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Simeon Chukwuemeka Enemuor
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
30
|
Nagar S, Talwar C, Motelica-Heino M, Richnow HH, Shakarad M, Lal R, Negi RK. Microbial Ecology of Sulfur Biogeochemical Cycling at a Mesothermal Hot Spring Atop Northern Himalayas, India. Front Microbiol 2022; 13:848010. [PMID: 35495730 PMCID: PMC9044081 DOI: 10.3389/fmicb.2022.848010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Sulfur related prokaryotes residing in hot spring present good opportunity for exploring the limitless possibilities of integral ecosystem processes. Metagenomic analysis further expands the phylogenetic breadth of these extraordinary sulfur (S) metabolizing microorganisms as well as their complex metabolic networks and syntrophic interactions in environmental biosystems. Through this study, we explored and expanded the microbial genetic repertoire with focus on S cycling genes through metagenomic analysis of S contaminated hot spring, located at the Northern Himalayas. The analysis revealed rich diversity of microbial consortia with established roles in S cycling such as Pseudomonas, Thioalkalivibrio, Desulfovibrio, and Desulfobulbaceae (Proteobacteria). The major gene families inferred to be abundant across microbial mat, sediment, and water were assigned to Proteobacteria as reflected from the reads per kilobase (RPKs) categorized into translation and ribosomal structure and biogenesis. An analysis of sequence similarity showed conserved pattern of both dsrAB genes (n = 178) retrieved from all metagenomes while other S disproportionation proteins were diverged due to different structural and chemical substrates. The diversity of S oxidizing bacteria (SOB) and sulfate reducing bacteria (SRB) with conserved (r)dsrAB suggests for it to be an important adaptation for microbial fitness at this site. Here, (i) the oxidative and reductive dsr evolutionary time-scale phylogeny proved that the earliest (but not the first) dsrAB proteins belong to anaerobic Thiobacillus with other (rdsr) oxidizers, also we confirm that (ii) SRBs belongs to δ-Proteobacteria occurring independent lateral gene transfer (LGT) of dsr genes to different and few novel lineages. Further, the structural prediction of unassigned DsrAB proteins confirmed their relatedness with species of Desulfovibrio (TM score = 0.86, 0.98, 0.96) and Archaeoglobus fulgidus (TM score = 0.97, 0.98). We proposed that the genetic repertoire might provide the basis of studying time-scale evolution and horizontal gene transfer of these genes in biogeochemical S cycling.
Collapse
Affiliation(s)
- Shekhar Nagar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| | - Chandni Talwar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| | - Mikael Motelica-Heino
- UMR 7327, Centre National de la Recherche Scientifique, Institut des Sciences de la Terre D'Orleans (ISTO), Université d'Orleans-Brgm, Orleans, France
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Mallikarjun Shakarad
- Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| | - Rup Lal
- NASI Senior Scientist Platinum Jubilee Fellow, The Energy and Resources Institute, New Delhi, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| |
Collapse
|
31
|
Effects of Chlorella vulgaris Enhancement on Endogenous Microbial Degradation of Marine Oil Spills and Community Diversity. Microorganisms 2022; 10:microorganisms10050905. [PMID: 35630350 PMCID: PMC9146007 DOI: 10.3390/microorganisms10050905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 12/04/2022] Open
Abstract
Biofortification could improve the bioremediation efficiency of microbes in the reparation of marine environmental damage caused by oil spills. In this paper, Chlorella vulgaris LH-1 was used as a fortifier to enhance the degradation of a marine oil spill by endogenous microorganisms. The addition of C. vulgaris LH-1 increased the degradation efficiency of crude oil by 11.09–42.41% and considerably accelerated oil degradation efficiency. Adding C. vulgaris LH-1 to a crude oil environment can improve the activity of endogenous seawater microorganisms. The results of high-throughput sequencing showed that the main bacterial genera were Oceanicola, Roseibacillus, and Rhodovulum when exotrophic C. vulgaris LH-1 and seawater endogenous microorganisms degraded low-concentration crude oil together. However, the addition of high-concentration nutrient salts changed the main bacterial genera in seawater to unclassified Microbacterium, Erythrobacter, and Phaeodactylibacter. The addition of C. vulgaris LH-1 increased the abundance of marine bacteria, Rhodococcus, and Methylophaga and decreased the abundance of Pseudomonas, Cladosporium, and Aspergillus. The functional prediction results of phylogenetic investigation of communities by reconstruction of unobserved states indicated that C. vulgaris LH-1 could improve the metabolic ability of seawater endogenous microorganisms to degrade endogenous bacteria and fungi in crude oil.
Collapse
|
32
|
Microbial Involvement in the Bioremediation of Total Petroleum Hydrocarbon Polluted Soils: Challenges and Perspectives. ENVIRONMENTS 2022. [DOI: 10.3390/environments9040052] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nowadays, soil contamination by total petroleum hydrocarbons is still one of the most widespread forms of contamination. Intervention technologies are consolidated; however, full-scale interventions turn out to be not sustainable. Sustainability is essential not only in terms of costs, but also in terms of restoration of the soil resilience. Bioremediation has the possibility to fill the gap of sustainability with proper knowledge. Bioremediation should be optimized by the exploitation of the recent “omic” approaches to the study of hydrocarburoclastic microbiomes. To reach the goal, an extensive and deep knowledge in the study of bacterial and fungal degradative pathways, their interactions within microbiomes and of microbiomes with the soil matrix has to be gained. “Omic” approaches permits to study both the culturable and the unculturable soil microbial communities active in degradation processes, offering the instruments to identify the key organisms responsible for soil contaminant depletion and restoration of soil resilience. Tools for the investigation of both microbial communities, their degradation pathways and their interaction, will be discussed, describing the dedicated genomic and metagenomic approaches, as well as the interpretative tools of the deriving data, that are exploitable for both optimizing bio-based approaches for the treatment of total petroleum hydrocarbon contaminated soils and for the correct scaling up of the technologies at the industrial scale.
Collapse
|
33
|
Bacterial diversity and competitors for degradation of hazardous oil refining waste under selective pressures of temperature and oxygen. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128201. [PMID: 34999399 DOI: 10.1016/j.jhazmat.2021.128201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
Abstract
Oil refining waste (ORW) contains complex, hazardous, and refractory components, causing more severe long-term environmental pollution than petroleum. Here, ORW was used to simulate the accelerated domestication of bacteria from oily sludges and polymer-flooding wastewater, and the effects of key factors, oxygen and temperature, on the ORW degradation were evaluated. Bacterial communities acclimated respectively in 30/60 °C, aerobic/anaerobic conditions showed differentiated degradation rates of ORW, ranging from 5% to 34%. High-throughput amplicon sequencing and ORW component analysis revealed significant correlation between bacterial diversity/biomass and degradation efficiency/substrate preference. Under mesophilic and oxygen-rich condition, the high biomass and abundant biodiversity with diverse genes and pathways for petroleum hydrocarbons degradation, effectively promoted the rapid and multi-component degradation of ORW. While under harsh conditions, a few dominant genera still contributed to ORW degradation, although the biodiversity was severely restricted. The typical dominant facultative anaerobes Bacillus (up to 99.8% abundance anaerobically) and Geobacillus (up to 99.9% abundance aerobically and anaerobically) showed oxygen-independent sustainable degradation ability and broad-spectrum of temperature adaptability, making them promising and competitive bioremediation candidates for future application. Our findings provide important strategies for practical bioremediation of varied environments polluted by hazardous ORW.
Collapse
|
34
|
Prekrasna I, Pavlovska M, Oleinik I, Dykyi E, Slobodnik J, Alygizakis N, Solomenko L, Stoica E. Bacterial communities of the Black Sea exhibit activity against persistent organic pollutants in the water column and sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113367. [PMID: 35272192 DOI: 10.1016/j.ecoenv.2022.113367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The ability of bacteria to degrade organic pollutants influences their fate in the environment, impact on the other biota and accumulation in the food web. The aim of this study was to evaluate abundance and expression activity of the catabolic genes targeting widespread pollutants, such as polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and hexachloro-cyclohexane (HCH) in the Black Sea water column and sediments. Concentrations of PAHs, PCBs and HCH were determined by gas chromatography (GC) coupled to mass spectrometry (MS) and electron capture (ECD) detectors. bphA1, PAH-RHDα, nahAc, linA and linB that encode biphenyl 2,3 dioxygenase, α-subunits of ring hydroxylating dioxygenases, naphthalene dioxygenase, dehydrochlorinase and halidohydrolase correspondently were quantified by quantitative PCR. More recalcitrant PAHs, PCBs and HCH tended to accumulate in the Black Sea environments. In water samples, 3- and 4-ringed PAHs outnumbered naphthalene, while PAHs with > 4 rings prevailed in the sediments. Congeners with 4-8 chlorines with ortho-position of the substituents were the most abundant among the PCBs. β-HCH was determined at highest concentration in water samples, and total amount of HCH exceeded its legacy Environmental Quality Standard value. bphA1, was the most numerous gene in water layers (105 copies/mL) and sediments (105 copies/mg), followed by linB and PAH-RHDα genes (103 copies/mL; 105 copies/mg). The least abundant genes were linA (103 copies/mL; 104 copies/mg) and nahAc (102 copies/mL; 104 copies/mg). The most widely distributed gene bphА1 was one of the least expressed (10-3-10-2 copies/mL; 10-1 copies/mg). The most actively expressed genes were linB (101-102 copies/mL; 103 copies/mg), PAH-RHDα (101 copies/mL; 102 copies/mg) and linA (10-1-100 copies/mL; 100 copies/mg). Interaction of bacteria with PAHs, PCBs and HCH is evidenced by high copy numbers of the catabolic genes that initiate their degradation. More persistent compounds, such as high-molecular weight PAHs or β-HCH are accumulating in the Black Sea water and sediments, albeit microbial activity is directed against them.
Collapse
Affiliation(s)
- Ievgeniia Prekrasna
- State Institution National Antarctic Scientific Center, Taras Shevchenko Blvd., 16, 01601 Kyiv, Ukraine
| | - Mariia Pavlovska
- State Institution National Antarctic Scientific Center, Taras Shevchenko Blvd., 16, 01601 Kyiv, Ukraine; National University of Life and Environmental Sciences of Ukraine, 15, Heroiv Oborony Str., 03041 Kyiv, Ukraine
| | - Iurii Oleinik
- Ukrainian Scientific Center of Ecology of the Sea, 89 Frantsuzsky Blvd., 65009 Odessa, Ukraine
| | - Evgen Dykyi
- State Institution National Antarctic Scientific Center, Taras Shevchenko Blvd., 16, 01601 Kyiv, Ukraine
| | | | - Nikiforos Alygizakis
- Environmental Institute, Okruzna 784/42, 97241 Kos, Slovak Republic; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens Greece
| | - Liudmyla Solomenko
- National University of Life and Environmental Sciences of Ukraine, 15, Heroiv Oborony Str., 03041 Kyiv, Ukraine
| | - Elena Stoica
- National Institute for Marine Research and Development "Grigore Antipa", Blvd. Mamaia no. 300, RO-900581 Constanţa 3, Romania.
| |
Collapse
|
35
|
Current research on simultaneous oxidation of aliphatic and aromatic hydrocarbons by bacteria of genus Pseudomonas. Folia Microbiol (Praha) 2022; 67:591-604. [PMID: 35318574 DOI: 10.1007/s12223-022-00966-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
Abstract
One of the most frequently used methods for elimination of oil pollution is the use of biological preparations based on oil-degrading microorganisms. Such microorganisms often relate to bacteria of the genus Pseudomonas. Pseudomonads are ubiquitous microorganisms that often have the ability to oxidize various pollutants, including oil hydrocarbons. To date, individual biochemical pathways of hydrocarbon degradation and the organization of the corresponding genes have been studied in detail. Almost all studies of this kind have been performed on degraders of individual hydrocarbons belonging to a single particular class. Microorganisms capable of simultaneous degradation of aliphatic and aromatic hydrocarbons are very poorly studied. Most of the works on such objects have been devoted only to phenotype characteristic and some to genetic studies. To identify the patterns of interaction of several metabolic systems depending on the growth conditions, the most promising are such approaches as transcriptomics and proteomics, which make it possible to obtain a comprehensive assessment of changes in the expression of hundreds of genes and proteins at the same time. This review summarizes the existing data on bacteria of the genus Pseudomonas capable of the simultaneous oxidation of hydrocarbons of different classes (alkanes, monoaromatics, and polyaromatics) and presents the most important results obtained in the studies on the biodegradation of hydrocarbons by representatives of this genus using methods of transcriptomic and proteomic analyses.
Collapse
|
36
|
Gahloth D, Fisher K, Payne KAP, Cliff M, Levy C, Leys D. Structural and biochemical characterization of the prenylated flavin mononucleotide-dependent indole-3-carboxylic acid decarboxylase. J Biol Chem 2022; 298:101771. [PMID: 35218772 PMCID: PMC8988006 DOI: 10.1016/j.jbc.2022.101771] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/08/2023] Open
Abstract
The ubiquitous UbiD family of reversible decarboxylases is implicated in a wide range of microbial processes and depends on the prenylated flavin mononucleotide cofactor for catalysis. However, only a handful of UbiD family members have been characterized in detail, and comparison between these has suggested considerable variability in enzyme dynamics and mechanism linked to substrate specificity. In this study, we provide structural and biochemical insights into the indole-3-carboxylic acid decarboxylase, representing an UbiD enzyme activity distinct from those previously studied. Structural insights from crystal structure determination combined with small-angle X-ray scattering measurements reveal that the enzyme likely undergoes an open-closed transition as a consequence of domain motion, an event that is likely coupled to catalysis. We also demonstrate that the indole-3-carboxylic acid decarboxylase can be coupled with carboxylic acid reductase to produce indole-3-carboxyaldehyde from indole + CO2 under ambient conditions. These insights provide further evidence for a common mode of action in the widespread UbiD enzyme family.
Collapse
Affiliation(s)
- Deepankar Gahloth
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Karl Fisher
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Karl A P Payne
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Matthew Cliff
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Colin Levy
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - David Leys
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
37
|
Choi HW, Ahsan SM. Biocontrol Activity of Aspergillus terreus ANU-301 against Two Distinct Plant Diseases, Tomato Fusarium Wilt and Potato Soft Rot. THE PLANT PATHOLOGY JOURNAL 2022; 38:33-45. [PMID: 35144360 PMCID: PMC8831357 DOI: 10.5423/ppj.oa.12.2021.0187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/08/2023]
Abstract
To screen antagonistic fungi against plant pathogens, dual culture assay (DCA) and culture filtrate assay (CFA) were performed with unknown soil-born fungi. Among the different fungi isolated and screened from the soil, fungal isolate ANU-301 successfully inhibited growth of different plant pathogenic fungi, Colletotrichum acutatum, Alternaria alternata, and Fusarium oxysporum, in DCA and CFA. Morphological characteristics and rDNA internal transcribed spacer sequence analysis identified ANU-301 as Aspergillus terreus. Inoculation of tomato plants with Fusarium oxysporum f. sp. lycopersici (FOL) induced severe wilting symptom; however, co-inoculation with ANU-301 significantly enhanced resistance of tomato plants against FOL. In addition, culture filtrate (CF) of ANU-301 not only showed bacterial growth inhibition activity against Dickeya chrysanthemi (Dc), but also demonstrated protective effect in potato tuber against soft rot disease. Gas chromatography-tandem mass spectrometry analysis of CF of ANU-301 identified 2,4-bis(1-methyl-1-phenylethyl)-phenol (MPP) as the most abundant compound. MPP inhibited growth of Dc, but not of FOL, in a dose-dependent manner, and protected potato tuber from the soft rot disease induced by Dc. In conclusion, Aspergillus terreus ANU-301 could be used and further tested as a potential biological control agent.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729,
Korea
| | - S. M. Ahsan
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729,
Korea
| |
Collapse
|
38
|
Wojtowicz K, Steliga T, Kapusta P, Brzeszcz J, Skalski T. Evaluation of the Effectiveness of the Biopreparation in Combination with the Polymer γ-PGA for the Biodegradation of Petroleum Contaminants in Soil. MATERIALS (BASEL, SWITZERLAND) 2022; 15:400. [PMID: 35057118 PMCID: PMC8778143 DOI: 10.3390/ma15020400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Abstract
Biodegradation is a method of effectively removing petroleum hydrocarbons from the natural environment. This research focuses on the biodegradation of aliphatic hydrocarbons, monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) and polycyclic aromatic hydrocarbons (PAHs) as a result of soil inoculation with a biopreparation A1 based on autochthonous microorganisms and a biopreparation A1 with the addition of γ-PGA. The research used biopreparation A1 made of the following strains: Dietzia sp. IN133, Gordonia sp. IN138 Mycolicibacterium frederiksbergense IN53, Rhodococcus erythropolis IN119, Rhodococcus sp. IN136 and Pseudomonas sp. IN132. The experiments were carried out in laboratory conditions (microbiological tests, respirometric tests, and in semi-technical conditions (ex-situ prism method). The biodegradation efficiency was assessed on the basis of respirometric tests, chromatographic analyses and toxicological tests. As a result of inoculation of AB soil with the biopreparation A1 within 6 months, a reduction of total petroleum hydrocarbons (TPH) (66.03%), BTEX (80.08%) and PAHs (38.86%) was achieved and its toxicity was reduced. Inoculation of AB soil with the biopreparation A1 with the addition of γ-PGA reduced the concentration of TPH, BTEX and PAHs by 79.21%, 90.19%, and 51.18%, respectively, and reduced its toxicity. The conducted research has shown that the addition of γ-PGA affects the efficiency of the biodegradation process of petroleum pollutants, increasing the degree of TPH biodegradation by 13.18%, BTEX by 10.11% and PAHs by 12.32% compared to pure biopreparation A1.
Collapse
Affiliation(s)
- Katarzyna Wojtowicz
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Teresa Steliga
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Piotr Kapusta
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Joanna Brzeszcz
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Tomasz Skalski
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland;
| |
Collapse
|
39
|
Chen L, Xu K, Zhang Y, Hasi Q, Luo X, Xu J, Li A. Selective Adsorption and Efficient Degradation of Petroleum Hydrocarbons by a Hydrophobic/Lipophilic Biomass Porous Foam Loaded with Microbials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53586-53598. [PMID: 34739202 DOI: 10.1021/acsami.1c15380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Highly efficient elimination of petroleum pollution is of great importance for addressing environmental issues and social sustainability. In this study, we demonstrate a novel strategy for efficient elimination of petroleum pollution by selective adsorption of it by an ultralight hydrophobic/lipophilic microorganism-loaded biomass porous foam (BTS-MSFT4@MTMS) followed by a green degradation of adsorbates under mild conditions. The porous structure of biomass porous foam (MSFT) could provide plenty of room for immobilization of Bacillus thuringiensis (BTS), while a simple surface modification of the MSFT load with a BTS strain (BTS-MSFT4) by methyltrimethoxysilane (MTMS) could change its wettability from hydrophilic to lipophilic, which makes selective adsorption of hydophobic petroleum pollution from water for biodegradation possible. As expected, using a petroleum n-hexadecane solution with a concentration of 3% as a model oily wastewater, the as-prepared BTS-MSFT4@MTMS possesses both a superior selective adsorption of ca. 99% and high degradation activity with a high degradation rate of up to 86.65% within 8 days under the conditions of 37 °C, 120 r min-1, and pH = 7, while the degradation rates for the BTS-MSFT4 and the free BTS strain were measured to be only 81.62 and 65.65%, respectively, under the same conditions. In addition, the results obtained from the study on environment tolerance show that the BTS-MSFT4@MTMS exhibits a strong tolerance under different conditions with various pHs, temperatures, and initial concentrations. Compared with the existing methods for removal of petroleum pollution by direct adsorption of petroleum pollution via superoleophilic porous materials or applying free microorganisms for biodegradation only, which suffers the drawbacks of low selectivity or poor efficiency, our method has great advantages of cost-effectiveness, scalable fabrication, and high efficiency without secondary pollution. Moreover, such a two-in-one strategy by integration of both selective adsorption and biodegradation into biodegradable BTS-MSFT4@MTMS may particularly have great potential for practical application in environmental remediation.
Collapse
Affiliation(s)
- Lihua Chen
- Key Laboratory of State Ethnic Affairs Commission, College of Chemical Engineering, Northwest Minzu University, Northwest Xincun 1, Lanzhou 730030, P. R. China
| | - Kaihui Xu
- Key Laboratory of State Ethnic Affairs Commission, College of Chemical Engineering, Northwest Minzu University, Northwest Xincun 1, Lanzhou 730030, P. R. China
| | - Yuhan Zhang
- Key Laboratory of State Ethnic Affairs Commission, College of Chemical Engineering, Northwest Minzu University, Northwest Xincun 1, Lanzhou 730030, P. R. China
| | - Qimeige Hasi
- Key Laboratory of State Ethnic Affairs Commission, College of Chemical Engineering, Northwest Minzu University, Northwest Xincun 1, Lanzhou 730030, P. R. China
| | - Xiaofang Luo
- Center of Experiment, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Juanjuan Xu
- Key Laboratory of State Ethnic Affairs Commission, College of Chemical Engineering, Northwest Minzu University, Northwest Xincun 1, Lanzhou 730030, P. R. China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| |
Collapse
|
40
|
Abstract
Aryl coenzyme A (CoA) ligases belong to class I of the adenylate-forming enzyme superfamily (ANL superfamily). They catalyze the formation of thioester bonds between aromatic compounds and CoA and occur in nearly all forms of life. These ligases are involved in various metabolic pathways degrading benzene, toluene, ethylbenzene, and xylene (BTEX) or polycyclic aromatic hydrocarbons (PAHs). They are often necessary to produce the central intermediate benzoyl-CoA that occurs in various anaerobic pathways. The substrate specificity is very diverse between enzymes within the same class, while the dependency on Mg2+, ATP, and CoA as well as oxygen insensitivity are characteristics shared by the whole enzyme class. Some organisms employ the same aryl-CoA ligase when growing aerobically and anaerobically, while others induce different enzymes depending on the environmental conditions. Aryl-CoA ligases can be divided into two major groups, benzoate:CoA ligase-like enzymes and phenylacetate:CoA ligase-like enzymes. They are widely distributed between the phylogenetic clades of the ANL superfamily and show closer relationships within the subfamilies than to other aryl-CoA ligases. This, together with residual CoA ligase activity in various other enzymes of the ANL superfamily, leads to the conclusion that CoA ligases might be the ancestral proteins from which all other ANL superfamily enzymes developed.
Collapse
|
41
|
Marshall SA, Payne KAP, Fisher K, Titchiner GR, Levy C, Hay S, Leys D. UbiD domain dynamics underpins aromatic decarboxylation. Nat Commun 2021; 12:5065. [PMID: 34417452 PMCID: PMC8379154 DOI: 10.1038/s41467-021-25278-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread UbiD enzyme family utilises the prFMN cofactor to achieve reversible decarboxylation of acrylic and (hetero)aromatic compounds. The reaction with acrylic compounds based on reversible 1,3-dipolar cycloaddition between substrate and prFMN occurs within the confines of the active site. In contrast, during aromatic acid decarboxylation, substantial rearrangement of the substrate aromatic moiety associated with covalent catalysis presents a molecular dynamic challenge. Here we determine the crystal structures of the multi-subunit vanillic acid decarboxylase VdcCD. We demonstrate that the small VdcD subunit acts as an allosteric activator of the UbiD-like VdcC. Comparison of distinct VdcCD structures reveals domain motion of the prFMN-binding domain directly affects active site architecture. Docking of substrate and prFMN-adduct species reveals active site reorganisation coupled to domain motion supports rearrangement of the substrate aromatic moiety. Together with kinetic solvent viscosity effects, this establishes prFMN covalent catalysis of aromatic (de)carboxylation is afforded by UbiD dynamics.
Collapse
Affiliation(s)
- Stephen A. Marshall
- grid.5379.80000000121662407Manchester Institute of Biotechnology, University of Manchester, Manchester, UK ,grid.4991.50000 0004 1936 8948Present Address: Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Karl A. P. Payne
- grid.5379.80000000121662407Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Karl Fisher
- grid.5379.80000000121662407Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Gabriel R. Titchiner
- grid.5379.80000000121662407Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Colin Levy
- grid.5379.80000000121662407Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Sam Hay
- grid.5379.80000000121662407Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - David Leys
- grid.5379.80000000121662407Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| |
Collapse
|
42
|
Mamet SD, Jimmo A, Conway A, Teymurazyan A, Talebitaher A, Papandreou Z, Chang YF, Shannon W, Peak D, Siciliano SD. Soil Buffering Capacity Can Be Used To Optimize Biostimulation of Psychrotrophic Hydrocarbon Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9864-9875. [PMID: 34170682 DOI: 10.1021/acs.est.1c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Effective bioremediation of hydrocarbons requires innovative approaches to minimize phosphate precipitation in soils of different buffering capacities. Understanding the mechanisms underlying sustained stimulation of bacterial activity remains a key challenge for optimizing bioremediation-particularly in northern regions. Positron emission tomography (PET) can trace microbial activity within the naturally occurring soil structure of intact soils. Here, we use PET to test two hypotheses: (1) optimizing phosphate bioavailability in soil will outperform a generic biostimulatory solution in promoting hydrocarbon remediation and (2) oligotrophic biostimulation will be more effective than eutrophic approaches. In so doing, we highlight the key bacterial taxa that underlie aerobic and anaerobic hydrocarbon degradation in subarctic soils. In particular, we showed that (i) optimized phosphate bioavailability outperformed generic biostimulatory solutions in promoting hydrocarbon degradation, (ii) oligotrophic biostimulation is more effective than eutrophic approaches, and (iii) optimized biostimulatory solutions stimulated specific soil regions and bacterial consortia. The knowledge gleaned from this study will be crucial in developing field-scale biodegradation treatments for sustained stimulation of bacterial activity in northern regions.
Collapse
Affiliation(s)
- Steven D Mamet
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Amy Jimmo
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Alexandra Conway
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Aram Teymurazyan
- Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Alizera Talebitaher
- Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Zisis Papandreou
- Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Yu-Fen Chang
- Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Department of Mechanical and Marine Engineering, Western Norway University of Applied Sciences, Bergen 5063, Norway
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Whitney Shannon
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Derek Peak
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Steven D Siciliano
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| |
Collapse
|
43
|
Pannekens M, Voskuhl L, Mohammadian S, Köster D, Meier A, Köhne JM, Kulbatzki M, Akbari A, Haque S, Meckenstock RU. Microbial Degradation Rates of Natural Bitumen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8700-8708. [PMID: 34169718 PMCID: PMC8264945 DOI: 10.1021/acs.est.1c00596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms are present in nearly every oil or bitumen sample originating from temperate reservoirs. Nevertheless, it is very difficult to obtain reliable estimates about microbial processes taking place in deep reservoirs, since metabolic rates are rather low and differ strongly during artificially cultivation. Here, we demonstrate the importance and impact of microorganisms entrapped in microscale water droplets for the overall biodegradation process in bitumen. To this end, we measured degradation rates of heavily biodegraded bitumen from the Pitch Lake (Trinidad and Tobago) using the novel technique of reverse stable isotope labeling, allowing precise measurements of comparatively low mineralization rates in the ng range in microcosms under close to natural conditions. Freshly taken bitumen samples were overlain with artificial brackish water and incubated for 945 days. Additionally, three-dimensional distribution of water droplets in bitumen was studied with computed tomography, revealing a water bitumen interface of 1134 cm2 per liter bitumen, resulting in an average mineralization rate of 9.4-38.6 mmol CO2 per liter bitumen and year. Furthermore, a stable and biofilm-forming microbial community established on the bitumen itself, mainly composed of fermenting and sulfate-reducing bacteria. Our results suggest that small water inclusions inside the bitumen substantially increase the bitumen-water interface and might have a major impact on the overall oil degradation process.
Collapse
Affiliation(s)
- Mark Pannekens
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Lisa Voskuhl
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Sadjad Mohammadian
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Daniel Köster
- Instrumental
Analytical Chemistry, University of Duisburg—Essen, 45141 Essen, Germany
| | - Arne Meier
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - John M. Köhne
- Department
of Soil System Science, Helmholtz Centre
for Environmental Research, 06120 Halle, Germany
| | - Michelle Kulbatzki
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Ali Akbari
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Shirin Haque
- Department
of Physics, Faculty of Science and Technology, The University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Rainer U. Meckenstock
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| |
Collapse
|
44
|
Assessment of the Suitability of Melilotus officinalis for Phytoremediation of Soil Contaminated with Petroleum Hydrocarbons (TPH and PAH), Zn, Pb and Cd Based on Toxicological Tests. TOXICS 2021; 9:toxics9070148. [PMID: 34202316 PMCID: PMC8309879 DOI: 10.3390/toxics9070148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022]
Abstract
The article presents issues related to the possibility of using toxicological tests as a tool to monitor the progress of soil treatment contaminated with petroleum substances (TPH, PAH), Zn, Pb and Cd in bio-phytoremediation processes. In order to reduce the high content of petroleum pollutants (TPH = 56,371 mg kg−1 dry mass, PAH = 139.3 mg kg−1 dry mass), the technology of stepwise soil treatment was applied, including basic bioremediation and inoculation with biopreparations based of indigenous non-pathogenic species of bacteria, fungi and yeasts. As a result of basic bioremediation in laboratory conditions (ex-situ method), the reduction of petroleum pollutants TPH by 33.9% and PAH by 9.5% was achieved. The introduction of inoculation with biopraparation-1 prepared on the basis of non-pathogenic species of indigenous bacteria made it possible to reduce the TPH content by 86.3%, PAH by 40.3%. The use of a biopreparation-1 enriched with indigenous non-pathogenic species of fungi and yeasts in the third series of inoculation increased to an increase in the degree of biodegradation of aliphatic hydrocarbons with long carbon chains and PAH by a further 28.9%. In the next stage of soil treatment after biodegradation processes, which was characterized by an increased content of heavy metals (Zn, Pb, Cd) and naphthalene, chrysene, benzo(a)anthracene and benzo(ghi)perylene belonging to polycyclic aromatic hydrocarbons, phytoremediation with the use of Melilotus officinalis was applied. After the six-month phytoremediation process, the following was achieved: Zn content by 25.1%, Pb by 27.9%, Cd by 23.2% and TPH by 42.2% and PAH by 49.9%. The rate of removal of individual groups of hydrocarbons was in the decreasing order: C12–C18 > C6–C12 > C18–C25 > C25–C36. PAHs tended to be removed in the following order: chrysene > naphthalene > benzo(a)anthracene > benzo(ghi)perylene. The TF and BCF coefficients were calculated to assess the capacity of M. officinalis to accumulate metal in tissues, uptake from soil and transfer from roots to shoots. The values of TF translocation coefficients were, respectively, for Zn (0.44), Pb (0.12), Cd (0.40). The calculated BCF concentration factors (BCFroots > BCFshoots) show that heavy metals taken up by M. officinalis are mainly accumulated in the root tissues in the following order Zn > Pb > Cd, revealing a poor metal translocation from the root to the shoots. This process was carried out in laboratory conditions for a period of 6 months. The process of phytoremediation of contaminated soil using M. officinalis assisted with fertilization was monitored by means of toxicological tests: Microtox, Ostracodtoxkit FTM, MARA and PhytotoxkitTM. The performed phytotoxicity tests have indicated variable sensitivity of the tested plants on contaminants occurring in the studied soils, following the sequence: Lepidium sativum < Sorghum saccharatum < Sinapis alba. The sensitivity of toxicological tests was comparable and increased in the order: MARA < Ostracodtoxkit FTM < Microtox. The results of the toxicological monitoring as a function of the time of soil treatment, together with chemical analyses determining the content of toxicants in soil and biomass M. officinalis, clearly confirmed the effectiveness of the applied concept of bioremediation of soils contaminated with zinc, lead and cadmium in the presence of petroleum hydrocarbons.
Collapse
|
45
|
Melkonian C, Fillinger L, Atashgahi S, da Rocha UN, Kuiper E, Olivier B, Braster M, Gottstein W, Helmus R, Parsons JR, Smidt H, van der Waals M, Gerritse J, Brandt BW, Röling WFM, Molenaar D, van Spanning RJM. High biodiversity in a benzene-degrading nitrate-reducing culture is sustained by a few primary consumers. Commun Biol 2021; 4:530. [PMID: 33953314 PMCID: PMC8099898 DOI: 10.1038/s42003-021-01948-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/03/2021] [Indexed: 01/04/2023] Open
Abstract
A key question in microbial ecology is what the driving forces behind the persistence of large biodiversity in natural environments are. We studied a microbial community with more than 100 different types of species which evolved in a 15-years old bioreactor with benzene as the main carbon and energy source and nitrate as the electron acceptor. Using genome-centric metagenomics plus metatranscriptomics, we demonstrate that most of the community members likely feed on metabolic left-overs or on necromass while only a few of them, from families Rhodocyclaceae and Peptococcaceae, are candidates to degrade benzene. We verify with an additional succession experiment using metabolomics and metabarcoding that these few community members are the actual drivers of benzene degradation. As such, we hypothesize that high species richness is maintained and the complexity of a natural community is stabilized in a controlled environment by the interdependencies between the few benzene degraders and the rest of the community members, ultimately resulting in a food web with different trophic levels.
Collapse
Affiliation(s)
- Chrats Melkonian
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Lucas Fillinger
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Esther Kuiper
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Brett Olivier
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martin Braster
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Willi Gottstein
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rick Helmus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Jan Gerritse
- Unit Subsurface and Groundwater Systems, Deltares, Utrecht, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wilfred F M Röling
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Douwe Molenaar
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob J M van Spanning
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Qian Y, Xu M, Deng T, Hu W, He Z, Yang X, Wang B, Song D, Chen L, Huang Y, Sun G. Synergistic interactions of Desulfovibrio and Petrimonas for sulfate-reduction coupling polycyclic aromatic hydrocarbon degradation. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124385. [PMID: 33229269 DOI: 10.1016/j.jhazmat.2020.124385] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Microbial sulfate-reduction coupling polycyclic aromatic hydrocarbon (PAH) degradation is an important process for the remediation of contaminated sediments. However, little is known about core players and their mechanisms in this process due to the complexity of PAH degradation and the large number of microorganisms involved. Here we analyzed potential core players in a black-odorous sediment using gradient-dilution culturing, isolation and genomic/metagenomic approaches. Along the dilution gradient, microbial PAH degradation and sulfate consumption were not decreased, and even a significant (p = 0.003) increase was observed in the degradation of phenanthrene although the microbial diversity declined. Two species, affiliated with Desulfovibrio and Petrimonas, were commonly present in all of the gradients as keystone taxa and showed as the dominant microorganisms in the single colony (SB8) isolated from the highest dilution culture with 93.49% and 4.73% of the microbial community, respectively. Desulfovibrio sp. SB8 and Petrimonas sp. SB8 could serve together as core players for sulfate-reduction coupling PAH degradation, in which Desulfovibrio sp. SB8 could degrade PAHs to hexahydro-2-naphthoyl through the carboxylation pathway while Petrimonas sp. SB8 might degrade intermediate metabolites of PAHs. This study provides new insights into the microbial sulfate-reduction coupling PAH degradation in black-odorous sediments.
Collapse
Affiliation(s)
- Youfen Qian
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Tongchu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Wenzhe Hu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhili He
- Environmental Microbiomics Research Center and School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Xunan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Da Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Letian Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Youda Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Guoping Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
47
|
Lee K, Ulrich A. Indigenous microbial communities in Albertan sediments are capable of anaerobic benzene biodegradation under methanogenic, sulfate-reducing, nitrate-reducing, and iron-reducing redox conditions. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:524-534. [PMID: 32892398 DOI: 10.1002/wer.1454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Alberta is a major center for oil and gas production, and correspondingly harbors hundreds of unresolved contamination sites by environmental hazards such as benzene (C6 H6 ). Due to its cost-effectiveness, bioremediation has become a promising strategy for C6 H6 removal. Contamination sites typically take on an anaerobic context, which complicates the energetics of contamination sites and is a subject that is scarcely broached in studies of Albertan sediments. This study examines the innate potential for indigenous microbial communities in Albertan sediments to remove C6 H6 in a multitude of reduced conditions. Community profiles of these sediments were analyzed by 16S rRNA gene amplicon sequencing, and removal rates and reaction stoichiometries were observed by gas chromatography and ion chromatography. Organisms belonging to known primary degrader taxa were identified, including Geobacter (iron-reducing), and Peptococcaceae (nitrate-reducing). Furthermore, benzene removal patterns of the cultures were similar to those observed in previously reported microcosms, with lag times between 70 and 168 days and removal rates between 3.27 and 12.70 µM/day. Such information could support a more comprehensive survey of Albertan sediment consortia, which may eventually be utilized in informing future remediation efforts in the province. PRACTITIONER POINTS: ●Clay and sand sediments originating from Northern Alberta could remove benzene under methanogenic, sulfate-reducing, iron-reducing, and nitrate-reducing conditions. ●Degradation profiles were broadly comparable to those of reported cultures from other geographical locales. ●Key degrader taxa observed included Geobacter (Fe3+ -reducing) and Peptococcaceae ( NO 3 - -reducing). ●Knowledge gained can be the start of a more extensive survey of Albertan sediments. Eventually, this collection of information can be used to generate robust C6 H6 -degrading cultures that can be implemented for bioaugmentation and be implemented in informing remediation strategies in soil and water matrices for priority contamination cases such as leaking underground storage tanks and orphan wells.
Collapse
Affiliation(s)
- Korris Lee
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Ania Ulrich
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
48
|
Zhang D, Han X, Zhou S, Yuan S, Lu P, Peng S. Nitric oxide-dependent biodegradation of phenanthrene and fluoranthene: The co-occurrence of anaerobic and intra-aerobic pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144032. [PMID: 33348150 DOI: 10.1016/j.scitotenv.2020.144032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pollution as well as the emissions of nitric oxide (NO) and greenhouse gas nitrous oxide (N2O) in denitrification processes are currently two environmental issues of great concern. Although bioremediation of PAHs under denitrification is considered a promising approach, denitrification was an important contributor to N2O and NO emissions. This long-term study confirmed for the first time that microorganisms could utilize NO to efficiently degrade phenanthrene and fluoranthene. When the two systems of NO-dependent phenanthrene and fluoranthene degradation were stable, the first-order rate constants of phenanthrene and fluoranthene in the two systems (0.1940 and 0.0825 day-1, respectively) were close to those values (0.2290 and 0.1085 day-1, respectively) observed at nitrate-reducing conditions. Further analysis of functional genes revealed that phenanthrene and fluoranthene might be degraded under the combined action of the anaerobic pathway mediated by NO reduction and intra-aerobic pathway mediated by NO dismutation. The genomic analysis showed that Nod genes had high diversity and most of them were similar to aquifer cluster group in the two systems. Microbial community structure analysis indicated that Pseudomonas and Ochrobactrum might be key participants in NO-dependent phenanthrene degradation system, and Azoarcus, Alicycliphilus and Moheibacter might play vital roles in NO-dependent fluoranthene degradation system. This study provides new perspective for anaerobic remediation of PAH pollution and simultaneously reducing NO and N2O emissions during bioprocesses, which has important ecological significance for amending sediment and soil PAHs contamination and potential application for the removal of PAHs in flue gas.
Collapse
Affiliation(s)
- Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xinkuan Han
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Shangbo Zhou
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Shupei Yuan
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Shuchan Peng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China.
| |
Collapse
|
49
|
Yin X, Cai M, Liu Y, Zhou G, Richter-Heitmann T, Aromokeye DA, Kulkarni AC, Nimzyk R, Cullhed H, Zhou Z, Pan J, Yang Y, Gu JD, Elvert M, Li M, Friedrich MW. Subgroup level differences of physiological activities in marine Lokiarchaeota. THE ISME JOURNAL 2021; 15:848-861. [PMID: 33149207 PMCID: PMC8027215 DOI: 10.1038/s41396-020-00818-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/12/2022]
Abstract
Asgard is a recently discovered archaeal superphylum, closely linked to the emergence of eukaryotes. Among Asgard archaea, Lokiarchaeota are abundant in marine sediments, but their in situ activities are largely unknown except for Candidatus 'Prometheoarchaeum syntrophicum'. Here, we tracked the activity of Lokiarchaeota in incubations with Helgoland mud area sediments (North Sea) by stable isotope probing (SIP) with organic polymers, 13C-labelled inorganic carbon, fermentation intermediates and proteins. Within the active archaea, we detected members of the Lokiarchaeota class Loki-3, which appeared to mixotrophically participate in the degradation of lignin and humic acids while assimilating CO2, or heterotrophically used lactate. In contrast, members of the Lokiarchaeota class Loki-2 utilized protein and inorganic carbon, and degraded bacterial biomass formed in incubations. Metagenomic analysis revealed pathways for lactate degradation, and involvement in aromatic compound degradation in Loki-3, while the less globally distributed Loki-2 instead rely on protein degradation. We conclude that Lokiarchaeotal subgroups vary in their metabolic capabilities despite overlaps in their genomic equipment, and suggest that these subgroups occupy different ecologic niches in marine sediments.
Collapse
Affiliation(s)
- Xiuran Yin
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Mingwei Cai
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Guowei Zhou
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | | | - David A Aromokeye
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Ajinkya C Kulkarni
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Rolf Nimzyk
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Henrik Cullhed
- International Max-Planck Research School for Marine Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Zhichao Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yuchun Yang
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Marcus Elvert
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Michael W Friedrich
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| |
Collapse
|
50
|
Enhanced Hydrocarbons Biodegradation at Deep-Sea Hydrostatic Pressure with Microbial Electrochemical Snorkels. Catalysts 2021. [DOI: 10.3390/catal11020263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In anaerobic sediments, microbial degradation of petroleum hydrocarbons is limited by the rapid depletion of electron acceptors (e.g., ferric oxide, sulfate) and accumulation of toxic metabolites (e.g., sulfide, following sulfate reduction). Deep-sea sediments are increasingly impacted by oil contamination, and the elevated hydrostatic pressure (HP) they are subjected to represents an additional limitation for microbial metabolism. While the use of electrodes to support electrobioremediation in oil-contaminated sediments has been described, there is no evidence on their applicability for deep-sea sediments. Here, we tested a passive bioelectrochemical system named ”oil-spill snorkel” with two crude oils carrying different alkane contents (4 vs. 15%), at increased or ambient HP (10 vs. 0.1 MPa). Snorkels enhanced alkanes biodegradation at both 10 and 0.1 MPa within only seven weeks, as compared to nonconductive glass controls. Microprofiles in anaerobic, contaminated sediments indicated that snorkels kept sulfide concentration to low titers. Bulk-sediment analysis confirmed that sulfide oxidation by snorkels largely regenerated sulfate. Hence, the sole application of snorkels could eliminate a toxicity factor and replenish a spent electron acceptor at increased HP. Both aspects are crucial for petroleum decontamination of the deep sea, a remote environment featured by low metabolic activity.
Collapse
|