1
|
Rajamoorthi A, Zheng H, Skowronski AA, Zork N, Reddy UM, Tung PW, Kupsco A, Gallagher D, Salem RM, Leibel RL, LeDuc CA, Thaker VV. Association of gestational and childhood circulating C-peptide concentrations in the hyperglycemia and adverse pregnancy outcomes follow-up study. Diabetes Res Clin Pract 2025; 220:111967. [PMID: 39716665 DOI: 10.1016/j.diabres.2024.111967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
AIMS This study examined the association of gravida C-peptide with progeny islet function and insulin sensitivity in the Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study (HAPO FUS). METHODS Pregnancy 3rd trimester oral glucose tolerance test (OGTT), cord blood, and offspring OGTT glucose, C-peptide and insulin at age 10-14 years were analyzed for 4,121 mother-child dyads. Gravida fasting and 1-hour C-peptide concentration correlations with cord blood and childhood C-peptide, insulin, insulinogenic index and insulin sensitivity, and insulin resistance [HOMA-IR]), were assessed by multiple linear regression. Maternal covariates included age, gestational age, BMI and glucose at OGTT; child covariates included age, sex, pubertal stage, BMI z score and glucose. RESULTS Gravida fasting and 1-hour OGTT C-peptide was positively correlated with cord blood C-peptide, offspring OGTT C-peptide and insulin concentrations at fasting, 30 min, 1-hour and 2-hour at 10-14 years of age. Maternal fasting and 1-hour C-peptide concentrations were positively correlated with the insulinogenic index and HOMA-IR but inversely correlated with insulin sensitivity. Maternal C-peptide explained more variance than maternal glucose concentrations (3.0-17.9 % vs 0.2-3.5 %). CONCLUSIONS/INTERPRETATION The correlation between gravida and offspring C-peptide suggests that without crossing the placenta, insulin may influence the offspring pancreatic beta-cell development and insulin sensitivity.
Collapse
Affiliation(s)
- Ananthi Rajamoorthi
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hao Zheng
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Alicja A Skowronski
- Department of Pediatrics, Division of Molecular Genetics, Columbia University Irving Medical Center, New York, NY, United States
| | - Noelia Zork
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, United States
| | - Uma M Reddy
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, United States
| | - Pei Wen Tung
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Dympna Gallagher
- Department of Medicine, Columbia University, Irving Medical Center, New York, NY, United States
| | - Rany M Salem
- Department of Family Medicine and Public Health, Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California at San Diego, San Diego, CA, United States
| | - Rudolph L Leibel
- Department of Pediatrics, Division of Molecular Genetics, Columbia University Irving Medical Center, New York, NY, United States
| | - Charles A LeDuc
- Department of Pediatrics, Division of Molecular Genetics, Columbia University Irving Medical Center, New York, NY, United States
| | - Vidhu V Thaker
- Department of Pediatrics, Division of Molecular Genetics, Columbia University Irving Medical Center, New York, NY, United States; Department of Pediatrics, Division of Pediatric Endocrinology, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
2
|
Torres-Torres J, Monroy-Muñoz IE, Perez-Duran J, Solis-Paredes JM, Camacho-Martinez ZA, Baca D, Espino-Y-Sosa S, Martinez-Portilla R, Rojas-Zepeda L, Borboa-Olivares H, Reyes-Muñoz E. Cellular and Molecular Pathophysiology of Gestational Diabetes. Int J Mol Sci 2024; 25:11641. [PMID: 39519193 PMCID: PMC11546748 DOI: 10.3390/ijms252111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Gestational diabetes (GD) is a metabolic disorder characterized by glucose intolerance during pregnancy, significantly impacting maternal and fetal health. Its global prevalence is approximately 14%, with risk factors including obesity, family history of diabetes, advanced maternal age, and ethnicity, which are linked to cellular and molecular disruptions in glucose regulation and insulin resistance. GD is associated with short- and long-term complications for both the mother and the newborn. For mothers, GD increases the risk of developing type 2 diabetes, cardiovascular diseases, and metabolic syndrome. In the offspring, exposure to GD in utero predisposes them to obesity, glucose intolerance, and metabolic disorders later in life. This review aims to elucidate the complex cellular and molecular mechanisms underlying GD to inform the development of effective therapeutic strategies. A systematic review was conducted using medical subject headings (MeSH) terms related to GD's cellular and molecular pathophysiology. Inclusion criteria encompassed original studies, systematic reviews, and meta-analyses focusing on GD's impact on maternal and fetal health, adhering to PRISMA guidelines. Data extraction captured study characteristics, maternal and fetal outcomes, key findings, and conclusions. GD disrupts insulin signaling pathways, leading to impaired glucose uptake and insulin resistance. Mitochondrial dysfunction reduces ATP production and increases reactive oxygen species, exacerbating oxidative stress. Hormonal influences, chronic inflammation, and dysregulation of the mammalian target of rapamycin (mTOR) pathway further impair insulin signaling. Gut microbiota alterations, gene expression, and epigenetic modifications play significant roles in GD. Ferroptosis and placental dysfunction primarily contribute to intrauterine growth restriction. Conversely, fetal macrosomia arises from maternal hyperglycemia and subsequent fetal hyperinsulinemia, resulting in excessive fetal growth. The chronic inflammatory state and oxidative stress associated with GD exacerbate these complications, creating a hostile intrauterine environment. GD's complex pathophysiology involves multiple disruptions in insulin signaling, mitochondrial function, inflammation, and oxidative stress. Effective management requires early detection, preventive strategies, and international collaboration to standardize care and improve outcomes for mothers and babies.
Collapse
Affiliation(s)
- Johnatan Torres-Torres
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
- Obstetric and Gynecology Department, Hospital General de México Dr. Eduardo Liceaga, Mexico City 06720, Mexico
| | - Irma Eloisa Monroy-Muñoz
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Javier Perez-Duran
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Juan Mario Solis-Paredes
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | | | - Deyanira Baca
- Obstetric and Gynecology Department, Hospital General de México Dr. Eduardo Liceaga, Mexico City 06720, Mexico
| | - Salvador Espino-Y-Sosa
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
- Centro de Investigacion en Ciencias de la Salud, Universidad Anahuac Mexico, Campus Norte, Huixquilucan 52786, Mexico
| | - Raigam Martinez-Portilla
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Lourdes Rojas-Zepeda
- Maternal-Fetal Department, Instituto Materno Infantil del Estado de Mexico, Toluca 50170, Mexico
| | - Hector Borboa-Olivares
- Community Interventions Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Enrique Reyes-Muñoz
- Research Division, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| |
Collapse
|
3
|
Yu Y, Ma Q, Groth SW. Prepregnancy dieting and obstetrical and neonatal outcomes: Findings from a national surveillance project in the United States. Midwifery 2024; 132:103972. [PMID: 38493519 DOI: 10.1016/j.midw.2024.103972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
PROBLEM AND BACKGROUND Women with overweight or obesity are recommended to lose weight before pregnancy. Dieting is one of the most used weight control strategies. However, the health implications of dieting before pregnancy remain unclear. AIM To evaluate the associations of dieting during the year before pregnancy with obstetrical and neonatal outcomes, including gestational weight gain (GWG), gestational diabetes, low birthweight, macrosomia, small-for-gestational-age infants (SGA), large-for-gestational-age infants (LGA), and preterm birth. METHODS This study analyzed data from the Pregnancy Risk Assessment Monitoring System (PRAMS), which is a surveillance project in the United States that collects data on maternal health before, during, and after pregnancy. Women who participated in PRAMS phase 7 with a prepregnancy body mass index ≥25 kg/m2 and a singleton birth were eligible. Statistical analyses included logistic regressions and post-hoc mediation analysis (Sobel Test). FINDINGS A total number of 51,399 women were included in the analysis. Women who self-reported prepregnancy dieting (42.8 %) had lower odds of SGA (adjusted odds ratio [aOR]: 0.87; 95 % CI: 0.79-0.97), and higher odds of excessive GWG vs adequate GWG (aOR: 1.42; 95 % CI: 1.32-1.52), gestational diabetes (aOR: 1.12; 95 % CI: 1.02-1.22), and LGA (aOR: 1.18; 95 % CI: 1.08-1.28). Furthermore, the association between prepregnancy dieting and LGA was mediated by excessive GWG (Sobel Test z-value = 5.72, p < 0.01). DISCUSSION AND CONCLUSION This analysis revealed that prepregnancy dieting was associated with several adverse consequences, including excessive GWG, gestational diabetes, and LGA infants. Findings contribute to an improved understanding of the perinatal implications of prepregnancy dieting.
Collapse
Affiliation(s)
- Yang Yu
- School of Nursing, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Qianheng Ma
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Rd, Stanford, CA, 94305, USA
| | - Susan W Groth
- School of Nursing, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| |
Collapse
|
4
|
Calvo MJ, Parra H, Santeliz R, Bautista J, Luzardo E, Villasmil N, Martínez MS, Chacín M, Cano C, Checa-Ros A, D'Marco L, Bermúdez V, De Sanctis JB. The Placental Role in Gestational Diabetes Mellitus: A Molecular Perspective. TOUCHREVIEWS IN ENDOCRINOLOGY 2024; 20:10-18. [PMID: 38812661 PMCID: PMC11132656 DOI: 10.17925/ee.2024.20.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 05/31/2024]
Abstract
During pregnancy, women undergo several metabolic changes to guarantee an adequate supply of glucose to the foetus. These metabolic modifications develop what is known as physiological insulin resistance. When this process is altered, however, gestational diabetes mellitus (GDM) occurs. GDM is a multifactorial disease, and genetic and environmental factors play a crucial role in its aetiopathogenesis. GDM has been linked to both macroscopic and molecular alterations in placental tissues that affect placental physiology. This review summarizes the role of the placenta in the development of GDM from a molecular perspective, including hormonal and pro-inflammatory changes. Inflammation and hormonal imbalance, the characteristics dominating the GDM microenvironment, are responsible for placental changes in size and vascularity, leading to dysregulation in maternal and foetal circulations and to complications in the newborn. In conclusion, since the hormonal mechanisms operating in GDM have not been fully elucidated, more research should be done to improve the quality of life of patients with GDM and their future children.
Collapse
Affiliation(s)
- María José Calvo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Jordan Bautista
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Eliana Luzardo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Nelson Villasmil
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María Sofía Martínez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricamen Chacín
- Facultad de Ciencias de la Salud, Barranquilla, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Checa-Ros
- Research Group on Cardiorenal and Metabolic Diseases, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Luis D'Marco
- Research Group on Cardiorenal and Metabolic Diseases, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Barranquilla, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
5
|
Kouthouridis S, Sotra A, Khan Z, Alvarado J, Raha S, Zhang B. Modeling the Progression of Placental Transport from Early- to Late-Stage Pregnancy by Tuning Trophoblast Differentiation and Vascularization. Adv Healthc Mater 2023; 12:e2301428. [PMID: 37830445 PMCID: PMC11468690 DOI: 10.1002/adhm.202301428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/18/2023] [Indexed: 10/14/2023]
Abstract
The early-stage placental barrier is characterized by a lack of fetal circulation and by a thick trophoblastic barrier, whereas the later-stage placenta consists of vascularized chorionic villi encased in a thin, differentiated trophoblast layer, ideal for nutrient transport. In this work, predictive models of early- and late-stage placental transport are created using blastocyst-derived placental stem cells (PSCs) by modulating PSC differentiation and model vascularization. PSC differentiation results in a thinner, fused trophoblast layer, as well as an increase in human chorionic gonadotropin secretion, barrier permeability, and secretion of certain inflammatory cytokines, which are consistent with in vivo findings. Further, gene expression confirms this shift toward a differentiated trophoblast subtype. Vascularization results in a molecule type- and size-dependent change in dextran and insulin permeability. These results demonstrate that trophoblast differentiation and vascularization have critical effects on placental barrier permeability and that this model can be used as a predictive measure to assess fetal toxicity of xenobiotic substances at different stages of pregnancy.
Collapse
Affiliation(s)
- Sonya Kouthouridis
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Alexander Sotra
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Zaim Khan
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Justin Alvarado
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Sandeep Raha
- Department of Pediatrics and the Graduate Programme in Medical SciencesMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Boyang Zhang
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| |
Collapse
|
6
|
Husso A, Pessa-Morikawa T, Koistinen VM, Kärkkäinen O, Kwon HN, Lahti L, Iivanainen A, Hanhineva K, Niku M. Impacts of maternal microbiota and microbial metabolites on fetal intestine, brain, and placenta. BMC Biol 2023; 21:207. [PMID: 37794486 PMCID: PMC10552303 DOI: 10.1186/s12915-023-01709-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The maternal microbiota modulates fetal development, but the mechanisms of these earliest host-microbe interactions are unclear. To investigate the developmental impacts of maternal microbial metabolites, we compared full-term fetuses from germ-free and specific pathogen-free mouse dams by gene expression profiling and non-targeted metabolomics. RESULTS In the fetal intestine, critical genes mediating host-microbe interactions, innate immunity, and epithelial barrier were differentially expressed. Interferon and inflammatory signaling genes were downregulated in the intestines and brains of the fetuses from germ-free dams. The expression of genes related to neural system development and function, translation and RNA metabolism, and regulation of energy metabolism were significantly affected. The gene coding for the insulin-degrading enzyme (Ide) was most significantly downregulated in all tissues. In the placenta, genes coding for prolactin and other essential regulators of pregnancy were downregulated in germ-free dams. These impacts on gene expression were strongly associated with microbially modulated metabolite concentrations in the fetal tissues. Aryl sulfates and other aryl hydrocarbon receptor ligands, the trimethylated compounds TMAO and 5-AVAB, Glu-Trp and other dipeptides, fatty acid derivatives, and the tRNA nucleobase queuine were among the compounds strongly associated with gene expression differences. A sex difference was observed in the fetal responses to maternal microbial status: more genes were differentially regulated in male fetuses than in females. CONCLUSIONS The maternal microbiota has a major impact on the developing fetus, with male fetuses potentially more susceptible to microbial modulation. The expression of genes important for the immune system, neurophysiology, translation, and energy metabolism are strongly affected by the maternal microbial status already before birth. These impacts are associated with microbially modulated metabolites. We identified several microbial metabolites which have not been previously observed in this context. Many of the potentially important metabolites remain to be identified.
Collapse
Affiliation(s)
- Aleksi Husso
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Pessa-Morikawa
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ville Mikael Koistinen
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Afekta Technologies Ltd., Kuopio, Finland
| | - Olli Kärkkäinen
- Afekta Technologies Ltd., Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Hyuk Nam Kwon
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- School of Biological Sciences and Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, 44610, South Korea
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Antti Iivanainen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Afekta Technologies Ltd., Kuopio, Finland
| | - Mikael Niku
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Realinho AM, Boia R, Paiva B, Correia RG, Gaspar R, Ambrósio AF, Baptista FI. Maternal diabetes affects rat offspring retinal structure and function: Sex-specific vulnerabilities at infancy. Life Sci 2023; 327:121852. [PMID: 37321535 DOI: 10.1016/j.lfs.2023.121852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
AIMS Maternal diabetes negatively impacts the offspring's brain, but little is known about its effects on the retina, which is also part of the central nervous system. We hypothesized that maternal diabetes adversely influences offspring retina development leading to structural and functional deficits. MAIN METHODS Retinal structure and function were evaluated at infancy, by optical coherence tomography and electroretinography, in male and female offspring of control, diabetic and diabetic-treated with insulin Wistar rats. KEY FINDINGS Maternal diabetes induced a delay in male and female offspring eye-opening, while insulin treatment expedited it. Structural analysis showed that maternal diabetes decreased the thickness of the inner and outer segment layer of photoreceptors in male offspring. Electroretinography also revealed that maternal diabetes decreased the amplitude of scotopic b-wave and flicker response in males, suggesting bipolar cells and cone photoreceptor dysfunction, an effect not observed in females. Conversely, maternal diabetes decreased cone arrestin protein levels in female retinas, while not affecting cone photoreceptor number. Dam insulin therapy was efficient in preventing the offspring photoreceptor changes. SIGNIFICANCE Our results suggest that photoreceptors are affected by maternal diabetes, which may account for visual impairments at infancy. Notably, both male and female offspring presented specific vulnerabilities to hyperglycemia in this sensitive period of development.
Collapse
Affiliation(s)
- Ana M Realinho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Raquel Boia
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Beatriz Paiva
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Raquel G Correia
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Rita Gaspar
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - António F Ambrósio
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Filipa I Baptista
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
8
|
Hojeij B, Rousian M, Sinclair KD, Dinnyes A, Steegers-Theunissen RPM, Schoenmakers S. Periconceptional biomarkers for maternal obesity: a systematic review. Rev Endocr Metab Disord 2023; 24:139-175. [PMID: 36520252 PMCID: PMC10023635 DOI: 10.1007/s11154-022-09762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2022] [Indexed: 12/23/2022]
Abstract
Periconceptional maternal obesity is linked to adverse maternal and neonatal outcomes. Identifying periconceptional biomarkers of pathways affected by maternal obesity can unravel pathophysiologic mechanisms and identify individuals at risk of adverse clinical outcomes. The literature was systematically reviewed to identify periconceptional biomarkers of the endocrine, inflammatory and one-carbon metabolic pathways influenced by maternal obesity. A search was conducted in Embase, Ovid Medline All, Web of Science Core Collection and Cochrane Central Register of Controlled Trials databases, complemented by manual search in PubMed until December 31st, 2020. Eligible studies were those that measured biomarker(s) in relation to maternal obesity, overweight/obesity or body mass index (BMI) during the periconceptional period (14 weeks preconception until 14 weeks post conception). The ErasmusAGE score was used to assess the quality of included studies. Fifty-one articles were included that evaluated over 40 biomarkers. Endocrine biomarkers associated with maternal obesity included leptin, insulin, thyroid stimulating hormone, adiponectin, progesterone, free T4 and human chorionic gonadotropin. C-reactive protein was associated with obesity as part of the inflammatory pathway, while the associated one-carbon metabolism biomarkers were folate and vitamin B12. BMI was positively associated with leptin, C-reactive protein and insulin resistance, and negatively associated with Free T4, progesterone and human chorionic gonadotropin. Concerning the remaining studied biomarkers, strong conclusions could not be established due to limited or contradictory data. Future research should focus on determining the predictive value of the optimal set of biomarkers for their use in clinical settings. The most promising biomarkers include leptin, adiponectin, human chorionic gonadotropin, insulin, progesterone and CRP.
Collapse
Affiliation(s)
- Batoul Hojeij
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Melek Rousian
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Kevin D Sinclair
- School of Biosciences, Sutton Bonnington Campus, University of Nottingham, Leicestershire, LE12 6HD, UK
| | - Andras Dinnyes
- BioTalentum Ltd., Godollo, 2100, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, 6720, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Godollo, 2100, Hungary
| | | | - Sam Schoenmakers
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands.
| |
Collapse
|
9
|
Wang J, Kuang Y, Shen S, Price MJ, Lu J, Sattar N, He J, Pittavino M, Xia H, Thomas GN, Qiu X, Cheng KK, Nirantharakumar K. Association of maternal lipid levels with birth weight and cord blood insulin: a Bayesian network analysis. BMJ Open 2022; 12:e064122. [PMID: 36581404 PMCID: PMC9806023 DOI: 10.1136/bmjopen-2022-064122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To assess the independent association of maternal lipid levels with birth weight and cord blood insulin (CBI) level. SETTING The Born in Guangzhou Cohort Study, Guangzhou, China. PARTICIPANTS Women who delivered between January 2015 and June 2016 and with umbilical cord blood retained were eligible for this study. Those with prepregnancy health conditions, without an available fasting blood sample in the second trimester, or without demographic and glycaemic information were excluded. After random selection, data from 1522 mother-child pairs were used in this study. EXPOSURES AND OUTCOME MEASURES Additive Bayesian network analysis was used to investigate the interdependency of lipid profiles with other metabolic risk factors (prepregnancy body mass index (BMI), fasting glucose and early gestational weight gain) in association with birth weight and CBI, along with multivariable linear regression models. RESULTS In multivariable linear regressions, maternal triglyceride was associated with increased birth weight (adjusted β=67.46, 95% CI 41.85 to 93.06 g per mmol/L) and CBI (adjusted β=0.89, 95% CI 0.06 to 1.72 μU/mL per mmol/L increase), while high-density lipoprotein cholesterol was associated with decreased birth weight (adjusted β=-45.29, 95% CI -85.49 to -5.09 g per mmol/L). After considering the interdependency of maternal metabolic risk factors in the Network analysis, none of the maternal lipid profiles was independently associated with birth weight and CBI. Instead, prepregnancy BMI was the global strongest factor for birth weight and CBI directly and indirectly. CONCLUSIONS Gestational dyslipidaemia appears to be secondary to metabolic dysfunction with no clear association with metabolic adverse outcomes in neonates. Maternal prepregnancy overweight/obesity appears the most influential upstream metabolic risk factor for both maternal and neonatal metabolic health; these data imply weight management may need to be addressed from the preconception period and during early pregnancy.
Collapse
Affiliation(s)
- Jingya Wang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Yashu Kuang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Songying Shen
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Malcolm James Price
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jinhua Lu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jianrong He
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | | | - Huimin Xia
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - G Neil Thomas
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Women's Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kar Keung Cheng
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
10
|
Durbagula S, Korlimarla A, Ravikumar G, Valiya Parambath S, Kaku SM, Visweswariah AM. Prenatal epigenetic factors are predisposing for neurodevelopmental disorders—Considering placenta as a model. Birth Defects Res 2022; 114:1324-1342. [DOI: 10.1002/bdr2.2119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Srividhya Durbagula
- St. John's Medical College Bangalore India
- St. John's Research Institute Bangalore India
| | - Aruna Korlimarla
- St. John's Research Institute Bangalore India
- Department of Research Sri Shankara Cancer Hospital and Research Center Bangalore India
| | | | - Snijesh Valiya Parambath
- St. John's Medical College Bangalore India
- Department of Molecular Medicine St. John's Research Institute Bangalore India
| | - Sowmyashree Mayur Kaku
- St. John's Medical College Bangalore India
- Centre for Advanced Research and Excellence in Autism and Developmental Disorders (CARE ADD) St. John's Research Institute Bangalore India
| | - Ashok Mysore Visweswariah
- St. John's Medical College Bangalore India
- Centre for Advanced Research and Excellence in Autism and Developmental Disorders (CARE ADD) St. John's Research Institute Bangalore India
| |
Collapse
|
11
|
Pérez-López FR, Wu JN, Yao L, López-Baena MT, Pérez-Roncero GR, Varikasuvu SR. Apelin levels in pregnant women with and without gestational diabetes mellitus: a collaborative systematic review and meta-analysis. Gynecol Endocrinol 2022; 38:803-812. [PMID: 36002980 DOI: 10.1080/09513590.2022.2114450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aims: This systematic review and meta-analysis investigated maternal apelin levels in pregnant women with and without GDM. Secondary outcomes were glucose- and lipid-related results.Methods: Databases including PubMed, Embase, Cochrane Library, LILACS, CNKI, and Wang Fang were searched. The methodological quality of included studies was evaluated with the Newcastle-Ottawa Scale. Mean differences (MDs) or standardized MDs (SMDs) with their 95% confidence intervals (CIs) were evaluated. Random effect model analyses were carried out and heterogeneity with the I2 and Tau2 statistics.Results: Fourteen observational studies (sample size: 1033 women with GDM and 1053 for control women) with a low or moderate risk of bias were included in the analysis. During the second half of pregnancy, maternal apelin estimate was significantly higher in women with GDM (SMD = 0.64; 95% CI: 0.03 to 1.25), as well as insulin (SMD = 1.41% CI: 0.84 to 1.99), glucose (SMD = 1.56; 95% CI 1.20 to 1.91), glycated hemoglobin (SMD = 1.11, 95% CI: 0.69 to 1.54), HOMA-IR (MD = 2.25; 95%CI: 1.51 to 2.98), BMI (MD = 0.80 kg/m2, 95%CI: 0.52 to 1.08), total cholesterol (SMD = 0.42, 0.12 to 0.73), LDL-cholesterol (SMD = 0.63, 95%CI: 0.23 to 1.02), and triglycerides (SMD = 0.40, 95%CI: 0.19 to 0.61) as compared to control women. There was heterogeneity between studies as evidence by high I2 values. Meta-regression analysis indicated statistically significant regression coefficients for age of women, glucose and total cholesterol.Conclusions: GDM was associated with increased circulating apelin, insulin, glucose, glycated hemoglobin, total cholesterol, LDL-cholesterol levels, and HOMA-IR index.
Collapse
Affiliation(s)
- Faustino R Pérez-López
- Health Outcomes and Systematic Analyses, Aragón Health Research Institute, Zaragoza, Spain
- Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Jiang-Nan Wu
- Research Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Li Yao
- Research Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - María T López-Baena
- Health Outcomes and Systematic Analyses, Aragón Health Research Institute, Zaragoza, Spain
| | | | | |
Collapse
|
12
|
Gestational age, birth weight, and perinatal complications in mothers with diabetes and impaired glucose tolerance: Japan Environment and Children's Study cohort. PLoS One 2022; 17:e0269610. [PMID: 35666987 PMCID: PMC9170270 DOI: 10.1371/journal.pone.0269610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022] Open
Abstract
We aimed to determine the risk of perinatal complications during delivery in mothers with non-normal glucose tolerance in a large Japanese birth cohort. We analysed data of 24,295 neonate–mother pairs in the Japan Environment and Children’s Study cohort between 2011 and 2014. We included 67 mothers with type 1 diabetes, 102 with type 2 diabetes (determined by questionnaire), 2,045 with gestational diabetes (determined by diagnosis), and 2,949 with plasma glucose levels ≥140 mg/dL (shown by a screening test for gestational diabetes). Gestational age, birth weight, placental weight, and proportions of preterm birth, and labour and neonatal complications at delivery in mothers with diabetes were compared with those in mothers with normal glucose tolerance. Mean gestational age was shorter in mothers with any type of diabetes than in mothers without diabetes. Birth weight tended to be heavier in mothers with type 1 diabetes, and placental weight was significantly heavier in mothers with type 1 and gestational diabetes and elevated plasma glucose levels (all p<0.05). The relative risks of any labour complication and any neonatal complication were 1.49 and 2.28 in type 2 diabetes, 1.59 and 1.95 in gestational diabetes, and 1.22 and 1.30 in a positive screening test result (all p<0.05). The relative risks of preterm birth, gestational hypertension, and neonatal jaundice were significantly higher in mothers with types 1 (2.77; 4.07; 2.04) and 2 diabetes (2.65; 5.84; 1.99) and a positive screening test result (1.29; 1.63; 1.12) than in those without diabetes (all p<0.05). In conclusion, placental weight is heavier in mothers with non-normal glucose tolerance. Preterm birth, gestational hypertension, and jaundice are more frequent in mothers with types 1 and 2 diabetes. A positive result in a screening test for gestational diabetes suggests not only a non-normal glucose tolerance, but also a medium (middle-level) risk of perinatal complications.
Collapse
|
13
|
Algaba-Chueca F, Maymó-Masip E, Ballesteros M, Guarque A, Majali-Martínez A, Freixes O, Amigó N, Fernández-Veledo S, Vendrell J, Megía A. Cord Blood Advanced Lipoprotein Testing Reveals an Interaction between Gestational Diabetes and Birth-Weight and Suggests a New Early Biomarker of Infant Obesity. Biomedicines 2022; 10:biomedicines10051033. [PMID: 35625770 PMCID: PMC9138640 DOI: 10.3390/biomedicines10051033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Abnormal lipid metabolism is associated with gestational diabetes mellitus (GDM) and is observed in neonates with abnormal fetal growth. However, the underlying specific changes in the lipoprotein profile remain poorly understood. Thus, in the present study we used a novel nuclear magnetic resonance (NMR)-based approach to profile the umbilical cord serum lipoproteins. Two-dimensional diffusion-ordered 1H-NMR spectroscopy showed that size, lipid content, number and concentration of particles within their subclasses were similar between offspring born to control (n = 74) and GDM (n = 62) mothers. Subsequent data stratification according to newborn birth-weight categories, i.e., small (n = 39), appropriate (n = 50) or large (n = 49) for gestational age (SGA, AGA and LGA, respectively), showed an interaction between GDM and birth-weight categories for intermediate-density lipoproteins (IDL)-cholesterol content and IDL- and low-density lipoproteins (LDL)-triglyceride content, and the number of medium very low-density lipoproteins (VLDL) and LDL particles specifically in AGA neonates. Moreover, in a 2-year follow-up study, we observed that small LDL particles were independently associated with offspring obesity at 2 years (n = 103). Collectively, our data demonstrate that GDM disturbs triglyceride and cholesterol lipoprotein content across birth-weight categories, with AGA neonates born to GDM mothers displaying a profile more similar to that of adults with dyslipidemia. Furthermore, an altered fetal lipoprotein pattern was associated with the development of obesity at 2 years.
Collapse
Affiliation(s)
- Francisco Algaba-Chueca
- Department of Endocrinology and Nutrition and Research Unit, Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili (IISPV), Dr. Mallafre Guasch, 4, 43005 Tarragona, Spain; (F.A.-C.); (E.M.-M.); (O.F.); (S.F.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)—Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Departament of Basic Medical Sciences and Department of Medicine and Surgery, Rovira i Virgili University, 43005 Tarragona, Spain; (M.B.); (A.G.)
| | - Elsa Maymó-Masip
- Department of Endocrinology and Nutrition and Research Unit, Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili (IISPV), Dr. Mallafre Guasch, 4, 43005 Tarragona, Spain; (F.A.-C.); (E.M.-M.); (O.F.); (S.F.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)—Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Mónica Ballesteros
- Departament of Basic Medical Sciences and Department of Medicine and Surgery, Rovira i Virgili University, 43005 Tarragona, Spain; (M.B.); (A.G.)
- Department of Obstetrics and Gynecology, Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili (IISPV), Dr. Mallafre Guasch, 4, 43005 Tarragona, Spain
| | - Albert Guarque
- Departament of Basic Medical Sciences and Department of Medicine and Surgery, Rovira i Virgili University, 43005 Tarragona, Spain; (M.B.); (A.G.)
- Department of Obstetrics and Gynecology, Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili (IISPV), Dr. Mallafre Guasch, 4, 43005 Tarragona, Spain
| | | | - Olga Freixes
- Department of Endocrinology and Nutrition and Research Unit, Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili (IISPV), Dr. Mallafre Guasch, 4, 43005 Tarragona, Spain; (F.A.-C.); (E.M.-M.); (O.F.); (S.F.-V.)
| | - Núria Amigó
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)—Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Departament of Basic Medical Sciences and Department of Medicine and Surgery, Rovira i Virgili University, 43005 Tarragona, Spain; (M.B.); (A.G.)
- Biosfer Teslab SL Plaça del Prim, 10 2on 5a, 43201 Reus, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili (IISPV), Dr. Mallafre Guasch, 4, 43005 Tarragona, Spain; (F.A.-C.); (E.M.-M.); (O.F.); (S.F.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)—Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Departament of Basic Medical Sciences and Department of Medicine and Surgery, Rovira i Virgili University, 43005 Tarragona, Spain; (M.B.); (A.G.)
| | - Joan Vendrell
- Department of Endocrinology and Nutrition and Research Unit, Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili (IISPV), Dr. Mallafre Guasch, 4, 43005 Tarragona, Spain; (F.A.-C.); (E.M.-M.); (O.F.); (S.F.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)—Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Departament of Basic Medical Sciences and Department of Medicine and Surgery, Rovira i Virgili University, 43005 Tarragona, Spain; (M.B.); (A.G.)
- Correspondence: (J.V.); (A.M.); Tel.: +34-977-29-58-00 (A.M.)
| | - Ana Megía
- Department of Endocrinology and Nutrition and Research Unit, Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili (IISPV), Dr. Mallafre Guasch, 4, 43005 Tarragona, Spain; (F.A.-C.); (E.M.-M.); (O.F.); (S.F.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)—Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Departament of Basic Medical Sciences and Department of Medicine and Surgery, Rovira i Virgili University, 43005 Tarragona, Spain; (M.B.); (A.G.)
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria;
- Correspondence: (J.V.); (A.M.); Tel.: +34-977-29-58-00 (A.M.)
| |
Collapse
|
14
|
Hufnagel A, Dearden L, Fernandez-Twinn DS, Ozanne SE. Programming of cardiometabolic health: the role of maternal and fetal hyperinsulinaemia. J Endocrinol 2022; 253:R47-R63. [PMID: 35258482 PMCID: PMC9066586 DOI: 10.1530/joe-21-0332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022]
Abstract
Obesity and gestational diabetes during pregnancy have multiple short- and long-term consequences for both mother and child. One common feature of pregnancies complicated by maternal obesity and gestational diabetes is maternal hyperinsulinaemia, which has effects on the mother and her adaptation to pregnancy. Even though insulin does not cross the placenta insulin can act on the placenta as well affecting placental growth, angiogenesis and lipid metabolism. Obese and gestational diabetic pregnancies are often characterised by maternal hyperglycaemia resulting in exposure of the fetus to high levels of glucose, which freely crosses the placenta. This leads to stimulation of fetal ß-cells and insulin secretion in the fetus. Fetal hyperglycaemia/hyperinsulinaemia has been shown to cause multiple complications in fetal development, such as altered growth trajectories, impaired neuronal and cardiac development and early exhaustion of the pancreas. These changes could increase the susceptibility of the offspring to develop cardiometabolic diseases later in life. In this review, we aim to summarize and review the mechanisms by which maternal and fetal hyperinsulinaemia impact on (i) maternal health during pregnancy; (ii) placental and fetal development; (iii) offspring energy homeostasis and long-term cardiometabolic health; (iv) how interventions can alleviate these effects.
Collapse
Affiliation(s)
- Antonia Hufnagel
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Laura Dearden
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| |
Collapse
|
15
|
Placental Insulin Receptor Transiently Regulates Glucose Homeostasis in the Adult Mouse Offspring of Multiparous Dams. Biomedicines 2022; 10:biomedicines10030575. [PMID: 35327377 PMCID: PMC8945682 DOI: 10.3390/biomedicines10030575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/04/2023] Open
Abstract
In pregnancies complicated by maternal obesity and gestational diabetes mellitus, there is strong evidence to suggest that the insulin signaling pathway in the placenta may be impaired. This may have potential effects on the programming of the metabolic health in the offspring; however, a direct link between the placental insulin signaling pathway and the offspring health remains unknown. Here, we aimed to understand whether specific placental loss of the insulin receptor (InsR) has a lasting effect on the offspring health in mice. Obesity and glucose homeostasis were assessed in the adult mouse offspring on a normal chow diet (NCD) followed by a high-fat diet (HFD) challenge. Compared to their littermate controls, InsR KOplacenta offspring were born with normal body weight and pancreatic β-cell mass. Adult InsR KOplacenta mice exhibited normal glucose homeostasis on an NCD. Interestingly, under a HFD challenge, adult male InsR KOplacenta offspring demonstrated lower body weight and a mildly improved glucose homeostasis associated with parity. Together, our data show that placenta-specific insulin receptor deletion does not adversely affect offspring glucose homeostasis during adulthood. Rather, there may potentially be a mild and transient protective effect in the mouse offspring of multiparous dams under the condition of a diet-induced obesogenic challenge.
Collapse
|
16
|
Dimas A, Politi A, Papaioannou G, Barber TM, Weickert MO, Grammatopoulos DK, Kumar S, Kalantaridou S, Valsamakis G. The Gestational Effects of Maternal Appetite Axis Molecules on Fetal Growth, Metabolism and Long-Term Metabolic Health: A Systematic Review. Int J Mol Sci 2022; 23:ijms23020695. [PMID: 35054881 PMCID: PMC8776066 DOI: 10.3390/ijms23020695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Increased maternal food intake is considered a normal pregnancy adjustment. However, the overavailability of nutrients may lead to dysregulated fetal development and increased adiposity, with long-lasting effects on offspring in later life. Several gut-hormone molecules regulate maternal appetite, with both their orexigenic and anorectic effects being in a state of sensitive equilibrium. The aim of this manuscript is to systematically review literature on the effects of maternal gut-hormone molecules on fetal growth and metabolism, birth weight and the later metabolic health of offspring. Maternal serum ghrelin, leptin, IGF-1 and GLP-1 appear to influence fetal growth; however, a lack of consistent and strong correlations of maternal appetite axis hormones with birth weight and the concomitant correlation with fetal and birth waist circumference may suggest that these molecules primarily mediate fetal energy deposition mechanisms, preparing the fetus for survival after birth. Dysregulated intrauterine environments seem to have detrimental, sex-dependent effects on fetal energy stores, affecting not only fetal growth, fat mass deposition and birth weight, but also future metabolic and endocrine wellbeing of offspring.
Collapse
Affiliation(s)
- Angelos Dimas
- 3rd University Department of Obstetrics & Gynecology, Attikon University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece; (G.P.); (S.K.)
- Correspondence:
| | - Anastasia Politi
- Nephrology Department, University Hospital of Ioannina, Stavros Niarchos Ave., 45500 Ioannina, Greece;
| | - George Papaioannou
- 3rd University Department of Obstetrics & Gynecology, Attikon University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece; (G.P.); (S.K.)
| | - Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (M.O.W.); (S.K.)
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (M.O.W.); (S.K.)
| | - Dimitris K. Grammatopoulos
- Institute of Precision Diagnostics and Translational Medicine, Pathology, University Hospitals Coventry and Warwickshire (UHCW) NHS Trust, Coventry CV2 2DX, UK; (D.K.G.); (G.V.)
| | - Sudhesh Kumar
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (M.O.W.); (S.K.)
| | - Sophia Kalantaridou
- 3rd University Department of Obstetrics & Gynecology, Attikon University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece; (G.P.); (S.K.)
- Reproductive Endocrinology Unit, 3rd University Department of Obstetrics & Gynecology, Attikon University Hospital, Medical School of Athens, 12462 Athens, Greece
| | - Georgios Valsamakis
- Institute of Precision Diagnostics and Translational Medicine, Pathology, University Hospitals Coventry and Warwickshire (UHCW) NHS Trust, Coventry CV2 2DX, UK; (D.K.G.); (G.V.)
- 2nd University Department of Obstetrics & Gynecology, Aretaieion University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece
| |
Collapse
|
17
|
Doi M, Nakama N, Sumi T, Usui N, Shimada S. Prenatal methamphetamine exposure causes dysfunction in glucose metabolism and low birthweight. Front Endocrinol (Lausanne) 2022; 13:1023984. [PMID: 36353228 PMCID: PMC9637823 DOI: 10.3389/fendo.2022.1023984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (METH) is a psychostimulant drug that induces addiction. Previous epidemiological studies have demonstrated that maternal METH abuse during pregnancy causes low birthweight (LBW) in the offspring. As a source of essential nutrients, in particular glucose, the placenta plays a key role in fetal development. LBW leads to health problems such as obesity, diabetes, and neurodevelopmental disorders (NDDs). However, the detailed mechanism underlying offspring's LBW and health hazards caused by METH are not fully understood. Therefore, we investigated the effects of prenatal METH exposure on LBW and fetal-placental relationship by focusing on metabolism. We found dysfunction of insulin production in the pancreas of fetuses exposed to METH. We also found a reduction of the glycogen cells (GCs) storing glycogens in the junctional zone of placenta, all of which suggest abnormal glucose metabolism affects the fetal development. These results suggest that dysfunction in fetal glucose metabolism may cause LBW and future health hazards. Our findings provide novel insights into the cause of LBW via the fetal-placental crosstalk.
Collapse
Affiliation(s)
- Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Nanako Nakama
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takuya Sumi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- *Correspondence: Noriyoshi Usui,
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| |
Collapse
|
18
|
Metabolic-endocrine disruption due to preterm birth impacts growth, body composition, and neonatal outcome. Pediatr Res 2022; 91:1350-1360. [PMID: 34040160 PMCID: PMC9197767 DOI: 10.1038/s41390-021-01566-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Despite optimized nutrition, preterm-born infants grow slowly and tend to over-accrete body fat. We hypothesize that the premature dissociation of the maternal-placental-fetal unit disrupts the maintenance of physiological endocrine function in the fetus, which has severe consequences for postnatal development. This review highlights the endocrine interactions of the maternal-placental-fetal unit and the early perinatal period in both preterm and term infants. We report on hormonal levels (including tissue, thyroid, adrenal, pancreatic, pituitary, and placental hormones) and nutritional supply and their impact on infant body composition. The data suggest that the premature dissociation of the maternal-placental-fetal unit leads to a clinical picture similar to panhypopituitarism. Further, we describe how the premature withdrawal of the maternal-placental unit, neonatal morbidities, and perinatal stress can cause differences in the levels of growth-promoting hormones, particularly insulin-like growth factors (IGF). In combination with the endocrine disruption that occurs following dissociation of the maternal-placental-fetal unit, the premature adaptation to the extrauterine environment leads to early and fast accretion of fat mass in an immature body. In addition, we report on interventional studies that have aimed to compensate for hormonal deficiencies in infants born preterm through IGF therapy, resulting in improved neonatal morbidity and growth. IMPACT: Preterm birth prematurely dissociates the maternal-placental-fetal unit and disrupts the metabolic-endocrine maintenance of the immature fetus with serious consequences for growth, body composition, and neonatal outcomes. The preterm metabolic-endocrine disruption induces symptoms resembling anterior pituitary failure (panhypopituitarism) with low levels of IGF-1, excessive postnatal fat mass accretion, poor longitudinal growth, and failure to thrive. Appropriate gestational age-adapted nutrition alone seems insufficient for the achievement of optimal growth of preterm infants. Preliminary results from interventional studies show promising effects of early IGF-1 supplementation on postnatal development and neonatal outcomes.
Collapse
|
19
|
Shashikadze B, Flenkenthaler F, Stöckl JB, Valla L, Renner S, Kemter E, Wolf E, Fröhlich T. Developmental Effects of (Pre-)Gestational Diabetes on Offspring: Systematic Screening Using Omics Approaches. Genes (Basel) 2021; 12:1991. [PMID: 34946940 PMCID: PMC8701487 DOI: 10.3390/genes12121991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/27/2022] Open
Abstract
Worldwide, gestational diabetes affects 2-25% of pregnancies. Due to related disturbances of the maternal metabolism during the periconceptional period and pregnancy, children bear an increased risk for future diseases. It is well known that an aberrant intrauterine environment caused by elevated maternal glucose levels is related to elevated risks for increased birth weights and metabolic disorders in later life, such as obesity or type 2 diabetes. The complexity of disturbances induced by maternal diabetes, with multiple underlying mechanisms, makes early diagnosis or prevention a challenging task. Omics technologies allowing holistic quantification of several classes of molecules from biological fluids, cells, or tissues are powerful tools to systematically investigate the effects of maternal diabetes on the offspring in an unbiased manner. Differentially abundant molecules or distinct molecular profiles may serve as diagnostic biomarkers, which may also support the development of preventive and therapeutic strategies. In this review, we summarize key findings from state-of-the-art Omics studies addressing the impact of maternal diabetes on offspring health.
Collapse
Affiliation(s)
- Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
| | - Jan B. Stöckl
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
| | - Libera Valla
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; (L.V.); (S.R.); (E.K.)
| | - Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; (L.V.); (S.R.); (E.K.)
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; (L.V.); (S.R.); (E.K.)
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; (L.V.); (S.R.); (E.K.)
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
| |
Collapse
|
20
|
Cozma MA, Găman MA, Dobrică EC, Boroghină SC, Iancu MA, Crețoiu SM, Simionescu AA. A Glimpse at the Size of the Fetal Liver-Is It Connected with the Evolution of Gestational Diabetes? Int J Mol Sci 2021; 22:7866. [PMID: 34360631 PMCID: PMC8346004 DOI: 10.3390/ijms22157866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as an impairment of glucose tolerance, manifested by hyperglycemia, which occurs at any stage of pregnancy. GDM is more common in the third trimester of pregnancy and usually disappears after birth. It was hypothesized that the glycemic status of the mother can modulate liver development and growth early during the pregnancy. The simplest modality to monitor the evolution of GDM employs noninvasive techniques. In this category, routinely obstetrical ultrasound (OUS) examinations (simple or 2D/3D) can be employed for specific fetal measurements, such as fetal liver length (FLL) or volume (FLV). FLL and FLV may emerge as possible predictors of GDM as they positively relate to the maternal glycated hemoglobin (HbA1c) levels and to the results of the oral glucose tolerance test. The aim of this review is to offer insight into the relationship between GDM and fetal nutritional status. Risk factors for GDM and the short- and long-term outcomes of GDM pregnancies are also discussed, as well as the significance of different dietary patterns. Moreover, the review aims to fill one gap in the literature, investigating whether fetal liver growth can be used as a predictor of GDM evolution. To conclude, although studies pointed out a connection between fetal indices and GDM as useful tools in the early detection of GDM (before 23 weeks of gestation), additional research is needed to properly manage GDM and offspring health.
Collapse
Affiliation(s)
- Matei-Alexandru Cozma
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Gastroenterology, Colentina Clinical Hospital, 20125 Bucharest, Romania
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Elena-Codruța Dobrică
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Dermatology, “Elias” University Emergency Hospital, 011461 Bucharest, Romania
| | - Steluța Constanța Boroghină
- Department of Complementary Sciences, History of Medicine and Medical Culture, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihaela Adela Iancu
- Department of Family Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Sanda Maria Crețoiu
- Department of Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Anca Angela Simionescu
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
21
|
Insulin-mediated immune dysfunction in the development of preeclampsia. J Mol Med (Berl) 2021; 99:889-897. [PMID: 33768298 DOI: 10.1007/s00109-021-02068-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023]
Abstract
Epidemiological observations implicate insulin resistance as a predisposing factor in the development of preeclampsia (PE). It is also well established that PE manifests in the context of a dysregulated immune response at the maternal-foetal interface, though all the underlying drivers of such immune dysregulation remains to be accounted for. Although it has long been known that various immune cells express insulin receptors following immune activation, it is only recently that insulin signalling has been shown to play a key role in immune cell differentiation, survival and effector function through its canonical activation of the PI3K/Akt/mTOR pathway. Here we argue that hyperinsulinemia, manifesting either from insulin resistance or from intensive insulin therapy, likely plays a direct role in driving immune cell dysfunction which plays a central role in the development of PE. This line of reasoning also explains the superior results of insulin-sparing interventions compared to intensive insulin therapy as monotherapy.
Collapse
|
22
|
Abstract
Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and Center for Childhood Nutrition Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Theresa L Powell
- Department of Pediatrics and Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Daniel B Hardy
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
23
|
Lužná V, Liška K, Sládek M, Sumová A. Hormonal fine-tuning of clock in decidual region of mouse placenta by dopamine, melatonin, insulin, leptin and ghrelin. Placenta 2021; 108:55-63. [PMID: 33819862 DOI: 10.1016/j.placenta.2021.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The maternal part of the rodent placenta harbors a circadian clock which robustly responds to glucocorticoids, however, its sensitivity to other hormones has not been elucidated. In this study, we tested five selected hormones (dopamine, melatonin, insulin, leptin and ghrelin) for their effectiveness to affect the clock in decidual region of mouse placenta in vitro. METHODS We administered the hormones or corresponding vehicles at various time points over 24 h to organotypic placental explants of mPer2Luc mice containing the decidua basalis (DB) region and monitored their effects on amplitude, period, median expression level (mesor) and phase of PER2-driven bioluminescence rhythms. RESULTS Dopamine significantly increased the amplitude, robustly dampened the mesor, and during a narrow time interval (corresponding to daytime) induced phase delays of the rhythms. In contrast, melatonin had no effect on amplitude, but induced phase advances of the rhythms at the opposite time window than dopamine (corresponding to nighttime). Leptin and ghrelin, but not insulin, slightly increased amplitudes and moderately modulated phase delays of the clock, suggesting that the DB clock, in contrast to other peripheral clocks, is rather resilient to abrupt changes in levels of feeding- and metabolism-related hormones. DISCUSSION The results demonstrate for the first time that dopamine and melatonin exhibit delicate yet specific effects on parameters of the DB clock and may thus potentially contribute to fine-tuning of its phase under in vivo conditions. It also implies that dysregulation of their levels, which accompany various pathologies, may account for malfunction of the clock in DB.
Collapse
Affiliation(s)
- Vendula Lužná
- Laboratory of Biological Rhythms, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Karolína Liška
- Laboratory of Biological Rhythms, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Sládek
- Laboratory of Biological Rhythms, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Sumová
- Laboratory of Biological Rhythms, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
24
|
Diniz WJS, Reynolds LP, Borowicz PP, Ward AK, Sedivec KK, McCarthy KL, Kassetas CJ, Baumgaertner F, Kirsch JD, Dorsam ST, Neville TL, Forcherio JC, Scott RR, Caton JS, Dahlen CR. Maternal Vitamin and Mineral Supplementation and Rate of Maternal Weight Gain Affects Placental Expression of Energy Metabolism and Transport-Related Genes. Genes (Basel) 2021; 12:genes12030385. [PMID: 33803164 PMCID: PMC8001966 DOI: 10.3390/genes12030385] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal nutrients are essential for proper fetal and placental development and function. However, the effects of vitamin and mineral supplementation under two rates of maternal weight gain on placental genome-wide gene expression have not been investigated so far. Furthermore, biological processes and pathways in the placenta that act in response to early maternal nutrition are yet to be elucidated. Herein, we examined the impact of maternal vitamin and mineral supplementation (from pre-breeding to day 83 post-breeding) and two rates of gain during the first 83 days of pregnancy on the gene expression of placental caruncles (CAR; maternal placenta) and cotyledons (COT; fetal placenta) of crossbred Angus beef heifers. We identified 267 unique differentially expressed genes (DEG). Among the DEGs from CAR, we identified ACAT2, SREBF2, and HMGCCS1 that underlie the cholesterol biosynthesis pathway. Furthermore, the transcription factors PAX2 and PAX8 were over-represented in biological processes related to kidney organogenesis. The DEGs from COT included SLC2A1, SLC2A3, SLC27A4, and INSIG1. Our over-representation analysis retrieved biological processes related to nutrient transport and ion homeostasis, whereas the pathways included insulin secretion, PPAR signaling, and biosynthesis of amino acids. Vitamin and mineral supplementation and rate of gain were associated with changes in gene expression, biological processes, and KEGG pathways in beef cattle placental tissues.
Collapse
Affiliation(s)
- Wellison J. S. Diniz
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
- Correspondence: ; Tel.: +1-701-5411997
| | - Lawrence P. Reynolds
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Pawel P. Borowicz
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Alison K. Ward
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Kevin K. Sedivec
- Central Grasslands Research and Extension Center, North Dakota State University, Streeter, ND 58483, USA;
| | - Kacie L. McCarthy
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Cierrah J. Kassetas
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Friederike Baumgaertner
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - James D. Kirsch
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Sheri T. Dorsam
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Tammi L. Neville
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - J. Chris Forcherio
- Purina Animal Nutrition LLC, Gray Summit, MO 63039, USA; (J.C.F.); (R.R.S.)
| | - Ronald R. Scott
- Purina Animal Nutrition LLC, Gray Summit, MO 63039, USA; (J.C.F.); (R.R.S.)
| | - Joel S. Caton
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Carl R. Dahlen
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| |
Collapse
|
25
|
Gázquez A, Giménez-Bañón MJ, Prieto-Sánchez MT, Martínez-Graciá C, Suárez C, Santaella-Pascual M, Galdo-Castiñeira L, Ballesteros-Meseguer C, Vioque J, Martínez-Villanueva M, Avilés-Plaza F, Noguera-Velasco JA, Morales E, García-Marcos L, Larqué E. Self-Reported DHA Supplementation during Pregnancy and Its Association with Obesity or Gestational Diabetes in Relation to DHA Concentration in Cord and Maternal Plasma: Results from NELA, a Prospective Mother-Offspring Cohort. Nutrients 2021; 13:843. [PMID: 33806689 PMCID: PMC8000695 DOI: 10.3390/nu13030843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal supplementation of docosahexaenoic acid (DHA) during pregnancy has been recommended due to its role in infant development, but its effect on materno-fetal DHA status is not well established. We evaluated the associations between DHA supplementation in pregnant women with obesity or gestational diabetes mellitus (GDM) and maternal and neonatal DHA status. Serum fatty acids (FA) were analyzed in 641 pregnant women (24 weeks of gestation) and in 345 venous and 166 arterial cord blood samples of participants of the NELA cohort. Obese women (n = 47) presented lower DHA in serum than those lean (n = 397) or overweight (n = 116) before pregnancy. Linoleic acid in arterial cord was elevated in obese women, which indicates lower fetal retention. Maternal DHA supplementation (200 mg/d) during pregnancy was associated with enhanced maternal and fetal DHA levels regardless of pre-pregnancy body mass index (BMI), although higher arterial DHA in overweight women indicated an attenuated response. Maternal DHA supplementation was not associated with cord venous DHA in neonates of mothers with GDM. The cord arteriovenous difference was similar for DHA between GDM and controls. In conclusion, maternal DHA supplementation during pregnancy enhanced fetal DHA status regardless of the pre-pregnancy BMI while GDM may reduce the effect of DHA supplementation in newborns.
Collapse
Affiliation(s)
- Antonio Gázquez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Department of Physiology, University of Murcia, 30100 Murcia, Spain
| | - María J. Giménez-Bañón
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Department of Physiology, University of Murcia, 30100 Murcia, Spain
| | - María T. Prieto-Sánchez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Obstetrics & Gynaecology Service, “Virgen de la Arrixaca” University Clinical Hospital, University of Murcia, 30120 Murcia, Spain; (L.G.-C.); (C.B.-M.)
| | - Carmen Martínez-Graciá
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Food Science and Technology Department, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Clara Suárez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Food Science and Technology Department, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Marina Santaella-Pascual
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Food Science and Technology Department, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Lina Galdo-Castiñeira
- Obstetrics & Gynaecology Service, “Virgen de la Arrixaca” University Clinical Hospital, University of Murcia, 30120 Murcia, Spain; (L.G.-C.); (C.B.-M.)
| | - Carmen Ballesteros-Meseguer
- Obstetrics & Gynaecology Service, “Virgen de la Arrixaca” University Clinical Hospital, University of Murcia, 30120 Murcia, Spain; (L.G.-C.); (C.B.-M.)
| | - Jesús Vioque
- Health and Biomedical Research Institute of Alicante (ISABIAL-UMH), 46020 Alicante, Spain;
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Miriam Martínez-Villanueva
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, 30120 Murcia, Spain
| | - Francisco Avilés-Plaza
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, 30120 Murcia, Spain
| | - José A. Noguera-Velasco
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, 30120 Murcia, Spain
| | - Eva Morales
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Department of Public Health Sciences, University of Murcia, 30100 Murcia, Spain
| | - Luís García-Marcos
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Network of Asthma and Adverse and Allergic Reactions (ARADyAL), 28029 Madrid, Spain
| | - Elvira Larqué
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Department of Physiology, University of Murcia, 30100 Murcia, Spain
| | | |
Collapse
|
26
|
Ran G, Zhu X, Qin Y. LncRNA SOX2OT is Upregulated in Gestational Diabetes Mellitus (GDM) and Correlated with Multiple Adverse Events. Diabetes Metab Syndr Obes 2021; 14:3989-3995. [PMID: 34531671 PMCID: PMC8439441 DOI: 10.2147/dmso.s319739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/29/2021] [Indexed: 12/27/2022] Open
Abstract
PURPOSE LncRNA SOX2OT plays protective roles in high glucose-induced injuries, suggesting its potential involvement in diabetes. Therefore, we analyzed the role of SOX2OT in gestational diabetes mellitus (GDM). METHODS A total of 216 pregnant women with a gestational age of about 2 months were enrolled in this study. The 216 pregnant women were monitored until delivery to record the occurrence of GDM. Adverse events, including miscarriage, premature delivery, intrauterine distress, intrauterine death, intrauterine infection, fetal malformation, macrosomia, and hypertension, were recorded. RESULTS Two hundred sixteen pregnant women were divided into high and low SOX2OT level groups (n=108), with the median plasma SOX2OT level on the day of admission as the cutoff value. It was observed that the incidence of GDM was higher in the high SOX2OT level group (40/108) than in the low SOX2OT level group (12/108). Moreover, the SOX2OT expression level was higher in GDM patients than in non-GDM participants, and ROC curve analysis showed that plasma SOX2OT levels on the day of admission could separate potential GDM patients from the rest participants. Importantly, higher incidences of miscarriage, premature delivery, intrauterine distress, intrauterine death, intrauterine infection, fetal malformation, macrosomia, and hypertension were observed in the high SOX2OT group compared to the low SOX2OT group. CONCLUSION SOX2OT is highly expressed in GDM and is closely correlated with multiple adverse events.
Collapse
Affiliation(s)
- Guangqin Ran
- Department of Obstetrics and Gynecology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, People’s Republic of China
| | - Xiaofan Zhu
- Department of Obstetrics and Gynecology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, People’s Republic of China
| | - Yan Qin
- Department of Obstetrics and Gynecology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, People’s Republic of China
- Correspondence: Yan Qin Department of Obstetrics and Gynecology, Chongqing General Hospital, University of Chinese Academy of Sciences, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, People’s Republic of ChinaTel +86 23-63390545 Email
| |
Collapse
|
27
|
Bai Y, Du Q, Zhang L, Li L, Wang N, Wu B, Li P, Li L. Silencing of ANGPTL8 Alleviates Insulin Resistance in Trophoblast Cells. Front Endocrinol (Lausanne) 2021; 12:635321. [PMID: 34163433 PMCID: PMC8215783 DOI: 10.3389/fendo.2021.635321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
This study aims to investigate the effect of angiopoietin like 8 (ANGPTL8) on gestational diabetes mellitus (GDM) and insulin resistance (IR). The GDM model was induced by high fat diet in mice, and IR was observed. The expression and secretion of ANGPTL8 were promoted in placenta of GDM mice. IR was induced in trophoblast cell HTR-8/SVneo by treatment of high concentration of insulin, and the expression levels of ANGPTL8 were increased. Silencing of ANGPTL8 alleviated IR and decreased glucose uptake in HTR-8/SVneo cells. However, the inflammation and oxidative stress in IR cells were not restrained by ANGPTL8 knockdown. In addition, c-Jun N-terminal kinase (JNK) signaling was activated by IR, which was inhibited by silencing of ANGPTL8. The effect of ANGPTL8 knockdown on IR was attenuated by JNK antagonist, and aggravated by JNK agonist, suggesting that ANGPTL8 affected IR by regulating JNK signaling. In conclusion, we demonstrated that the silencing of ANGPTL8 ameliorated IR by inhibiting JNK signaling in trophoblast cells. These findings may provide novel insights for diagnosis and treatment of GDM in clinic.
Collapse
|
28
|
Bianchi C, Taricco E, Cardellicchio M, Mandò C, Massari M, Savasi V, Cetin I. The role of obesity and gestational diabetes on placental size and fetal oxygenation. Placenta 2020; 103:59-63. [PMID: 33080447 DOI: 10.1016/j.placenta.2020.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Maternal pregestational obesity is a significant risk factor for adverse pregnancy outcomes, such as gestational diabetes. Both these conditions can have an impact on placental development and affect maternal-fetal exchanges, compromising fetal metabolic status. The aim of the study is to investigate the influence of pre-pregnancy BMI on placental size and to evaluate the role of obesity and gestational diabetes mellitus (GDM) on fetal oxygenation in overweight and obese pregnant women. METHODS 208 normal weight (NW), 57 overweight (OW) and 69 obese (OB) women were studied at elective cesarean section (CS) at term. 10 OW and 24 OB women were affected by GDM. Maternal, fetal and placental data were collected. Respiratory gases and acid-base balance were measured in umbilical venous and arterial blood. RESULTS Placental weight and thickness were higher in OB pregnancies. Lower fetal-placental ratios (F/P) were found in GDM pregnancies, both OW and OB. Fetuses from OB mothers were more hypoxic and acidemic compared to NW, particularly when complicated by GDM. DISCUSSION In agreement with previous studies, our data show that placentas from OB and GDM pregnancies are heavier and thicker, suggesting that an unbalanced pregestational nutritional status can decrease the placental efficiency in maternal-fetal exchanges. Fetuses from obese women are also hypoxic and acidemic, while fetuses from gestational diabetic mothers are hypoxic, reflecting that an altered pre-pregnancy BMI can affect fetal oxygenation, and GDM can play an additional detrimental role, thus worsening placental function and fetal oxygenation.
Collapse
Affiliation(s)
- Chiara Bianchi
- Department of Obstetrics and Gynecology, Vittore Buzzi Hospital, University of Milan, Via L. Castelvetro 32, Milan, Italy.
| | - Emanuela Taricco
- Department of Obstetrics and Gynecology, Vittore Buzzi Hospital, University of Milan, Via L. Castelvetro 32, Milan, Italy.
| | - Manuela Cardellicchio
- Department of Obstetrics and Gynecology, Luigi Sacco Hospital, University of Milan, Via GB Grassi 74, Milan, Italy.
| | - Chiara Mandò
- Department of Biomedical and Clinical Sciences Luigi Sacco, Università degli Studi di Milano, Milan, Italy.
| | - Maddalena Massari
- Department of Obstetrics and Gynecology, Vittore Buzzi Hospital, University of Milan, Via L. Castelvetro 32, Milan, Italy.
| | - Valeria Savasi
- Department of Obstetrics and Gynecology, Luigi Sacco Hospital, University of Milan, Via GB Grassi 74, Milan, Italy.
| | - Irene Cetin
- Department of Obstetrics and Gynecology, Vittore Buzzi Hospital, University of Milan, Via L. Castelvetro 32, Milan, Italy; Department of Obstetrics and Gynecology, Luigi Sacco Hospital, University of Milan, Via GB Grassi 74, Milan, Italy; Department of Biomedical and Clinical Sciences Luigi Sacco, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
29
|
Sirdah MM, Reading NS. Genetic predisposition in type 2 diabetes: A promising approach toward a personalized management of diabetes. Clin Genet 2020; 98:525-547. [PMID: 32385895 DOI: 10.1111/cge.13772] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus, also known simply as diabetes, has been described as a chronic and complex endocrine metabolic disorder that is a leading cause of death across the globe. It is considered a key public health problem worldwide and one of four important non-communicable diseases prioritized for intervention through world health campaigns by various international foundations. Among its four categories, Type 2 diabetes (T2D) is the commonest form of diabetes accounting for over 90% of worldwide cases. Unlike monogenic inherited disorders that are passed on in a simple pattern, T2D is a multifactorial disease with a complex etiology, where a mixture of genetic and environmental factors are strong candidates for the development of the clinical condition and pathology. The genetic factors are believed to be key predisposing determinants in individual susceptibility to T2D. Therefore, identifying the predisposing genetic variants could be a crucial step in T2D management as it may ameliorate the clinical condition and preclude complications. Through an understanding the unique genetic and environmental factors that influence the development of this chronic disease individuals can benefit from personalized approaches to treatment. We searched the literature published in three electronic databases: PubMed, Scopus and ISI Web of Science for the current status of T2D and its associated genetic risk variants and discus promising approaches toward a personalized management of this chronic, non-communicable disorder.
Collapse
Affiliation(s)
- Mahmoud M Sirdah
- Division of Hematology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Biology Department, Al Azhar University-Gaza, Gaza, Palestine
| | - N Scott Reading
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
30
|
Kim HJ, Park JS, Yi SW, Go M, Kim HR, Lee SJ, Park JM, Cha DH, Shim SH, Park KH. A transport system based on a quantum dot-modified nanotracer is genetically and developmentally stable in pregnant mice. Biomater Sci 2020; 8:3392-3403. [PMID: 32377654 DOI: 10.1039/d0bm00311e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of nanoscale materials (NMs) could cause problems such as cytotoxicity, genomic aberration, and effects on human health, but the impacts of NM exposure during pregnancy remain uncharacterized in the context of clinical applications. It was sought to determine whether nanomaterials pass through the maternal-fetal junction at any stage of pregnancy. Quantum dots (QDs) coated with heparinized Pluronic 127 nanogels and polyethyleneimine (PEI) were administered to pregnant mice. The biodistribution of QDs, as well as their biological impacts on maternal and fetal health, was evaluated. Encapsulation of QDs with a nanogel coating produces a petal-like nanotracer (PNt), which could serve as a nano-carrier of genes or drugs. PNts were injected through the tail vein and accumulated in the liver, kidneys, and lungs. QD accumulation in reproductive organs (uterus, placenta, and fetus) differed among phases of pregnancy. In phase I (7 days of pregnancy), the QDs did not accumulate in the placenta or fetus, but by phase III (19 days) they had accumulated at high levels in both tissues. Karyotype analysis revealed that the PNt-treated pups did not have genetic abnormalities when dams were treated at any phase of pregnancy. PNts have the potential to serve as carriers of therapeutic agents for the treatment of the mother or fetus and these results have a significant impact on the development and application of QD-based NPs in pregnancy.
Collapse
Affiliation(s)
- Hye Jin Kim
- Laboratory of Nano-regenerative Medical Engineering, Department of Biomedical Science, College of Life Science, CHA University, 618, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mishra JS, Zhao H, Hattis S, Kumar S. Elevated Glucose and Insulin Levels Decrease DHA Transfer across Human Trophoblasts via SIRT1-Dependent Mechanism. Nutrients 2020; 12:nu12051271. [PMID: 32365792 PMCID: PMC7284516 DOI: 10.3390/nu12051271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/30/2022] Open
Abstract
Gestational diabetes mellitus (GDM) results in reduced docosahexaenoic acid (DHA) transfer to the fetus, likely due to placental dysfunction. Sirtuin-1 (SIRT1) is a nutrient sensor and regulator of lipid metabolism. This study investigated whether the high glucose and insulin condition of GDM regulates DHA transfer and expression of fatty acid transporters and if this effect is related to SIRT1 expression and function. Syncytialized primary human trophoblasts were treated with and without glucose (25 mmol/L) and insulin (10-7 mol/L) for 72 h to mimic the insulin-resistance conditions of GDM pregnancies. In control conditions, DHA transfer across trophoblasts increased in a time- and dose-dependent manner. Exposure to GDM conditions significantly decreased DHA transfer, but increased triglyceride accumulation and fatty acid transporter expression (CD36, FABP3, and FABP4). GDM conditions significantly suppressed SIRT1 mRNA and protein expression. The SIRT1 inhibitor decreased DHA transfer across control trophoblasts, and recombinant SIRT1 and SIRT1 activators restored the decreased DHA transport induced by GDM conditions. The results demonstrate a novel role of SIRT1 in the regulation of DHA transfer across trophoblasts. The suppressed SIRT1 expression and the resultant decrease in placental DHA transfer caused by high glucose and insulin levels suggest new insights of molecular mechanisms linking GDM to fetal DHA deficiency.
Collapse
Affiliation(s)
- Jay S. Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.S.M.); (H.Z.); (S.H.)
| | - Hanjie Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.S.M.); (H.Z.); (S.H.)
| | - Sari Hattis
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.S.M.); (H.Z.); (S.H.)
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.S.M.); (H.Z.); (S.H.)
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
- Correspondence: ; Tel.: +1-608-265-1046
| |
Collapse
|
32
|
Sousa FJ, Correia RG, Cruz AF, Martins JM, Rodrigues MS, Gomes CA, Ambrósio AF, Baptista FI. Sex differences in offspring neurodevelopment, cognitive performance and microglia morphology associated with maternal diabetes: Putative targets for insulin therapy. Brain Behav Immun Health 2020; 5:100075. [PMID: 34589855 PMCID: PMC8474564 DOI: 10.1016/j.bbih.2020.100075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022] Open
Abstract
Diabetes during pregnancy has been shown to affect the central nervous system (CNS) of the offspring, resulting in short- and long-term adverse effects. Children of diabetic mothers are more likely to develop cognitive impairment, also having increased susceptibility to psychiatric disorders. Microglia, the immune cells of the CNS, work as sensors of environmental changes, namely metabolic challenges, as early as the intrauterine period. During this period, microglia is actively involved in processes of neurogenesis, synaptic pruning and detection of any environmental alteration that may impact brain development. The remarkable sex dimorphism in neurodevelopment, as well as sex differences in the morphology and immune function of microglia during development, led us to clarify if maternal diabetes affects specific behavioral traits and microglia morphology during infancy in a sex-specific manner. Another important goal of this study was to clarify if insulin, the gold standard treatment of diabetes during gestation, could prevent maternal diabetes-induced behavioral changes, as well as microglia morphology, also considering sex specificities. Other molecular and cellular players potentially involved in the link between changes in metabolism and behavior were also analyzed in the hippocampus, a brain region implicated in cognition and other behavioral outcomes. Diabetes during pregnancy globally delayed female and male offspring development and was associated with impairments in recognition memory, but only in female offspring. In line with these results, at early and late infancy, some molecular and cellular markers were altered in offspring hippocampus in a sex-specific manner. The strict control of glycemia by insulin during pregnancy prevented most of the negative effects induced by uncontrolled hyperglycemia. Notably, insulin administration to diabetic dams may also modulate offspring development in a way that differs from what is observed in physiological conditions, since it promoted the expedited acquisition of developmental milestones and of discrimination ability at memory test, also inducing a hyper-ramification of male and female hippocampal microglia. Importantly, this study highlights the importance of analyzing the impact of maternal diabetes and insulin therapy, taking into account sex differences, since male and female present different vulnerabilities to hyperglycemia in this critical period of life.
Collapse
Key Words
- CA, cornu ammonis
- CTRL, offspring of control dams
- EPM, elevated plus maze
- GD, gestational day
- Insulin therapy
- Maternal diabetes
- Microglia
- NOR, novel object recognition
- Neurodevelopment
- OPF, open field
- P, postnatal day
- Recognition memory
- SEM, standard error of the mean
- STZ, offspring of streptozotocin-induced diabetic dams
- STZ + INS, offspring of insulin treated-diabetic dams
- Sex differences
Collapse
Affiliation(s)
- Fábio J Sousa
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Raquel G Correia
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Alexandra F Cruz
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Joana M Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Matilde S Rodrigues
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Catarina A Gomes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| |
Collapse
|
33
|
Muggleton E, Muggleton T. Re: Maternal lipids are associated with newborn adiposity independent of GDM status, obesity and insulin resistance: a prospective observational cohort study: High carbohydrate intake influences fetal development. BJOG 2020; 127:911-912. [PMID: 32237030 DOI: 10.1111/1471-0528.16209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Ellis Muggleton
- Department of Anesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tülin Muggleton
- Department of Anesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
34
|
Samsuddin S, Vethakkan SR. Authors' reply re: Maternal lipids are associated with newborn adiposity independent of GDM status, obesity and insulin resistance: a prospective observational cohort study. BJOG 2020; 127:912-913. [PMID: 32237027 DOI: 10.1111/1471-0528.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Syahrizan Samsuddin
- Endocrine Unit, Department Of Medicine, Hospital Serdang, Selangor, Malaysia.,Endocrine Unit, Department Of Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Shireene R Vethakkan
- Endocrine Unit, Department Of Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Zheng Q, Gan H, Yang F, Yao Y, Hao F, Hong L, Jin L. Cytoplasmic m 1A reader YTHDF3 inhibits trophoblast invasion by downregulation of m 1A-methylated IGF1R. Cell Discov 2020; 6:12. [PMID: 32194978 PMCID: PMC7062805 DOI: 10.1038/s41421-020-0144-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/19/2020] [Indexed: 12/12/2022] Open
Abstract
N1-methyladenosine (m1A) is one of the important post-transcriptional modifications in RNA and plays an important role in promoting translation or decay of m1A-methylated messenger RNA (mRNA), but the "reader" protein and the exact biological role of m1A remain to be determined. Here, we identified that nine potential m1A "reader" proteins including YTH domain family and heterogeneous nuclear ribonucleoprotein by mass spectrometry, and among them, YTH domain-containing protein 3 (YTHDF3), could bind directly to m1A-carrying RNA. YTHDF3 was then identified to negatively regulate invasion and migration of trophoblast. Mechanistically, we found that the m1A "reader" YTHDF3 bound to certain m1A-methylated transcripts, such as insulin-like growth factor 1 receptor (IGF1R), with the combination of iCLIP-seq (individual-nucleotide resolution ultraviolet crosslinking and immunoprecipitation high-throughput sequencing) and m1A-seq. Furthermore, YTHDF3 could promote IGF1R mRNA degradation and thus inhibit IGF1R protein expression along with its downstream matrix metallopeptidase 9 signaling pathway, consequently decreasing migration and invasion of trophoblast. Thus, we demonstrated that YTHDF3 as an m1A reader decreased invasion and migration of trophoblast by inhibiting IGF1R expression. Our study outlines a new m1A epigenetic way to regulate the trophoblast activity, which suggests a novel therapeutic target for trophoblast-associated pregnancy disorders.
Collapse
Affiliation(s)
- Qingliang Zheng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| | - Haili Gan
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| | - Fenglian Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| | - Yongli Yao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| | - Fan Hao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| | - Ling Hong
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| | - Liping Jin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| |
Collapse
|
36
|
Balachandiran M, Bobby Z, Dorairajan G, Jacob SE, Gladwin V, Vinayagam V, Packirisamy RM. Placental Accumulation of Triacylglycerols in Gestational Diabetes Mellitus and Its Association with Altered Fetal Growth are Related to the Differential Expressions of Proteins of Lipid Metabolism. Exp Clin Endocrinol Diabetes 2020; 129:803-812. [PMID: 31968385 DOI: 10.1055/a-1017-3182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) exhibit altered placental lipid metabolism. The molecular basis of this altered metabolism is not clear. Altered placental expression of proteins of lipogenesis and fatty acid oxidation may be involved in the placental accumulation of triacylglycerols (TG). The present study was aimed at investigating the differential expressions of placental proteins related to lipid metabolism among GDM women in comparison with control pregnant women (CPW) and to correlate them with maternal and fetal lipid parameters as well as altered fetal growth. MATERIALS AND METHODS Maternal blood, cord blood, and placental samples were collected from GDM and CPW. The biochemical parameters, glucose, lipid profile and free fatty acids (FFA) were measured. The placental TG content was measured. Differential placental expressions of proteins; phosphatidylinositol-3-kinase (PI3K) p85α, PI3K p110α,liver X receptor alpha (LXRα), sterol regulatory element binding protein1(SREBP1), fatty acid synthase (FAS), stearyl CoA desaturase1 (SCD1), lipoprotein lipase (LPL),Peroxisome proliferator-activated receptor (PPAR)α and PPARγ were analysed by western blotting and immunohistochemistry. RESULTS Placental protein expressions of PI3K p110α, LXRα, FAS, SCD1, and LPL were found to be significantly higher, whereas PPARα and PPARγ were lower in GDM women compared with CPW. The placental TG content and cord plasma FFA were increased in GDM women compared with CPW. The placental TG content positively correlated with Ponderal index of GDM new-borns. CONCLUSION Differential expressions of placental proteins related to lipid metabolism in GDM might have led to placental TG accumulation. This might have contributed to the fetal overgrowth in GDM.
Collapse
Affiliation(s)
- Manoharan Balachandiran
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Zachariah Bobby
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Gowri Dorairajan
- Department of Obstetrics & Gynaecology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sajini Elizabeth Jacob
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Victorraj Gladwin
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Vickneshwaran Vinayagam
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Rajaa Muthu Packirisamy
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
37
|
Decreased Blood Level of MFSD2a as a Potential Biomarker of Alzheimer's Disease. Int J Mol Sci 2019; 21:ijms21010070. [PMID: 31861865 PMCID: PMC6981746 DOI: 10.3390/ijms21010070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022] Open
Abstract
The protein Major Facilitator Superfamily Domain containing 2A (MFSD2a) was recently described as the primary carrier for docosahexaenoic acid (DHA) into the brain. Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by lower DHA levels in blood lipids. The aim of this study was to investigate the expression of MFSD2a in the whole blood and brain as a potential biomarker of AD. Three groups were established: 38 healthy controls, 48 subjects with moderate AD (GDS4), and 47 with severe AD (GDS6). We analyzed postmortem brain samples from the hippocampus of 11 healthy controls and 11 severe AD patients. Fatty acid (FA) was determined in serum and brain by gas chromatography. Blood and brain MFSD2a protein expression was analyzed by Western blotting. We found a significant and progressive decline of MFSD2a levels in blood of AD patients (Control 0.83 ± 0.13, GDS4 0.72 ± 0.09, GDS6 0.48 ± 0.05*, p ˂ 0.01). We also corroborated a significant reduction of DHA and other n-3 long-chain polyunsaturated FA in serum of AD. No differences were found in MFSD2a expression or FA levels in brain of controls and AD subjects. MFSD2A carrier was analyzed in AD patients for the first time and the level of MFSD2a in the whole blood could be a potential biomarker of this disease.
Collapse
|
38
|
Late Cognitive Consequences of Gestational Diabetes to the Offspring, in a New Mouse Model. Mol Neurobiol 2019; 56:7754-7764. [PMID: 31115777 DOI: 10.1007/s12035-019-1624-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
Gestational diabetes mellitus (GD) is a form of insulin resistance triggered during gestation, which affects approximately 10% of pregnant women. Although previously considered a transient condition with few long-term consequences, growing evidence suggest that GD may be linked to permanent metabolic and neurologic changes in the offspring. Currently available GD models fail to recapitulate the full spectrum of this disease, thus providing limited information about the true burden of this condition. Here, we describe a new mouse model of GD, based on the administration of an insulin receptor antagonist (S961, 30 nmol/kg s.c. daily) during pregnancy. Pregnant mice developed increased fasting glycemia and glucose intolerance in the absence of maternal obesity, with a return to normoglycemia shortly after parturition. Moreover, we showed that the adult offspring of GD dams presented pronounced metabolic and cognitive dysfunction when exposed to short-term high-fat diet (HFD). Our data demonstrate that S961 administration to pregnant mice comprises a valuable approach to study the complex pathophysiology of GD, as well as strategies focused on prevention and treatment of both the mother and the offspring. Our findings suggest that the offspring of GD mothers are more susceptible to metabolic and cognitive impairments when exposed to high-fat diet later in life, thus indicating that approaches to prevent and treat these late effects should be pursued.
Collapse
|
39
|
Gázquez A, Prieto-Sánchez MT, Blanco-Carnero JE, Ruíz-Palacios M, Nieto A, van Harskamp D, Oosterink JE, Schierbeek H, van Goudoever JB, Demmelmair H, Koletzko B, Larqué E. Altered materno-fetal transfer of 13C-polyunsaturated fatty acids in obese pregnant women. Clin Nutr 2019; 39:1101-1107. [PMID: 31029479 DOI: 10.1016/j.clnu.2019.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND & AIMS Maternal obesity at conception is considered a major predictor of offspring obesity. This could by driven at least in part by an altered placental fat transfer. However, the pathophysiological mechanisms involved are not fully understood. We investigated the in vivo materno-fetal transfer of fatty acids (FAs) in obese pregnant women using stable isotopes. METHODS Ten obese and ten normo-weight pregnant women (control) received orally a bolus of 13C-labeled FAs 12 h before elective caesarean section: oleic acid (13C-OA), linoleic acid (13C-LA) and docosahexaenoic acid (13C-DHA). Maternal blood samples were collected at -12 (basal), -8, -4, -2, 0 h relative to the time of cesarean section. At the time of birth, arterial and venous cord bloods as well as placental tissue were collected. FAs composition was determined by gas-liquid chromatography and isotopic enrichment by gas chromatography-combustion-isotope ratio mass spectrometry. RESULTS Maternal plasma insulin and placental weight tended to higher values in obese pregnant women although they did not present serum hyperlipidemia. Higher concentrations of 13C-LA and 13C-DHA were found in non-esterified FAs fraction in maternal plasma of obese mothers. The ratio of placental uptake for 13C-LA and 13C-DHA was lower in obese women compared to normal weight pointing toward a limited capacity of FA placental transfer, especially of essential FAs. Maternal insulin was associated to this lower placenta/maternal plasma ratio for both 13C-LA (R = -0.563, P = 0.012) and 13C-DHA (R = -0.478, P = 0.033). In addition, the ratio cord/maternal plasma of 13C-LA was significantly lower in obese women compared to controls. CONCLUSIONS In conclusion, obese mothers without hyperlipidemia showed a reduced materno-fetal transfer of polyunsaturated FAs which could affect fetal development. This affect dietary recommendation for obese pregnant women. TRIAL REGISTRY NUMBER ISRCTN69794527.
Collapse
Affiliation(s)
- A Gázquez
- LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany; Department of Physiology, School of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - M T Prieto-Sánchez
- Obstetrics and Gynecology Service, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - J E Blanco-Carnero
- Obstetrics and Gynecology Service, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - M Ruíz-Palacios
- Department of Physiology, School of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - A Nieto
- Obstetrics and Gynecology Service, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - D van Harskamp
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | - J E Oosterink
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | - H Schierbeek
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | - J B van Goudoever
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands; Department of Paediatrics, Free University of Amsterdam, Amsterdam, the Netherlands
| | - H Demmelmair
- LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany
| | - B Koletzko
- LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany
| | - E Larqué
- Department of Physiology, School of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain.
| |
Collapse
|
40
|
Lin YJ, Huang LT, Tsai CC, Sheen JM, Tiao MM, Yu HR, Lin IC, Tain YL. Maternal high-fat diet sex-specifically alters placental morphology and transcriptome in rats: Assessment by next-generation sequencing. Placenta 2019; 78:44-53. [PMID: 30955710 DOI: 10.1016/j.placenta.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Maternal nutrition is an extremely important health issue. We evaluated the impact of maternal high fat diet (HFD) on pregnancy outcomes, elucidated how the rat placenta and fetus respond to diet manipulation based on fetal sex, and identified candidate genes and pathways. METHODS Rats were fed a normal or HFD diet for 10 weeks before conception and during gestation. The placenta was collected on gestational day 21 and sexed. Placental histology was analyzed and placental candidate genes and pathways were identified using whole-genome RNA next-generation sequencing. RESULTS Pup weights in both sexes from HFD dams were reduced. The weight of the placenta from the HFD group was also decreased in both sexes, but changes in placental layer distributions were only significant for female fetuses. Maternal HFD altered the placental transcriptome in a sex-specific manner. Activation of the placental renin-angiotensin system (RAS) by maternal HFD was associated with fetal growth restriction in both fetal sexes. CONCLUSIONS The placenta reacts to maternal HFD by altering the placental layer distribution and gene expression in a sex-specific manner. The male placenta in late gestation is thought to exhibit greater plasticity relative to the female placenta; however, fetuses of both sexes exhibited similar growth restriction. Our data reveal an association between the placental RAS and HFD-induced fetal growth restriction.
Collapse
Affiliation(s)
- Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
41
|
Barda G, Bar J, Mashavi M, Schreiber L, Shargorodsky M. Insulin Treatment Is Associated With Improved Fetal Placental Vascular Circulation in Obese and Non-obese Women With Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2019; 10:84. [PMID: 30873116 PMCID: PMC6400829 DOI: 10.3389/fendo.2019.00084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
Objective: The present study was designed to investigate the impact of carbohydrate restriction and insulin treatment on placental maternal and fetal vascular circulation in obese and non-obese women with gestational diabetes mellitus (GDM). Design and methods: One Hundred Ninety-One women with GDM who gave birth and underwent a placental histopathological examination at Wolfson Medical Center, Israel, were included in the study: 122 women who were treated with carbohydrate/calorie restriction diet (Group 1) and 69 women who were treated with diet plus insulin (Group 2). Additionally, each group was divided into two subgroups according to pre-pregnancy BMI: non-obese and obese. Results: Maternal vascular malperfusion lesions did not differ significantly between groups. Vascular lesions related to fetal malperfusion were significantly lower in GDM women treated by insulin and diet compared to women with diet alone (p = 0.027). Among fetal malperfusion lesions, villous changes consistent with fetal thrombo-occlusive disease (FTOD) were significantly lower in women treated with diet plus insulin and lowest in GDM women with pre-pregnancy BMI < 30 kg/m2 (p = 0.009). In the logistic regression analysis, insulin treatment was significantly associated with a decreased rate of villous changes consistent with FTOD (OR 0.97, 95% CI 0.12-0.80, p = 0.03). Prevalence of gestational hypertension was higher in obese women of both treatment groups (p = 0.024). Conclusion: Combination of obesity and GDM increased rate of FTOD and prevalence of gestational hypertension. Carbohydrate restriction diet plus insulin treatment was associated with improved fetal placental vascular circulation, especially in GDM women with pre-pregnancy BMI < 30 kg/m2.
Collapse
Affiliation(s)
- Giulia Barda
- Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Holon, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Bar
- Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Holon, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Margarita Mashavi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Medicine, Edith Wolfson Medical Center, Holon, Israel
| | - Letizia Schreiber
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Edith Wolfson Medical Center, Holon, Israel
| | - Marina Shargorodsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Endocrinology, Edith Wolfson Medical Center, Holon, Israel
- *Correspondence: Marina Shargorodsky
| |
Collapse
|
42
|
Human placental exosomes in gestational diabetes mellitus carry a specific set of miRNAs associated with skeletal muscle insulin sensitivity. Clin Sci (Lond) 2018; 132:2451-2467. [PMID: 30254065 DOI: 10.1042/cs20180487] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/10/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
There is increasing evidence that miRNAs, which are enriched in nanovesicles called exosomes, are important regulators of gene expression. When compared with normal pregnancies, pregnancies with gestational diabetes mellitus (GDM) are associated with skeletal muscle insulin resistance as well as increased levels of circulating placental exosomes. Here we investigated whether placental exosomes in GDM carry a specific set of miRNAs associated with skeletal muscle insulin sensitivity. Exosomes were isolated from chorionic villous (CV) explants from both women with Normal Glucose Tolerant (NGT) and GDM pregnancies. Using miRNA sequencing, we identified a specific set of miRNAs selectively enriched with exosomes and compared with their cells of origin indicating a specific packaging of miRNAs into exosomes. Gene target and ontology analysis of miRNA differentially expressed in exosomes secreted in GDM compared with NGT are associated with pathways regulating cell migration and carbohydrate metabolism. We determined the expression of a selected set of miRNAs in placenta, plasma, and skeletal muscle biopsies from NGT and GDM. Interestingly, the expression of these miRNAs varied in a consistent pattern in the placenta, in circulating exosomes, and in skeletal muscle in GDM. Placental exosomes from GDM pregnancies decreased insulin-stimulated migration and glucose uptake in primary skeletal muscle cells obtained from patients with normal insulin sensitivity. Interestingly, placental exosomes from NGT increase migration and glucose uptake in response to insulin in skeletal muscle from diabetic subjects. These findings suggest that placental exosomes might have a role in the changes on insulin sensitivity in normal and GDM pregnancies.
Collapse
|
43
|
Petry CJ, Ong KK, Hughes IA, Acerini CL, Dunger DB. The influence of maternal pregnancy glucose concentrations on associations between a fetal imprinted gene allele score and offspring size at birth. BMC Res Notes 2018; 11:821. [PMID: 30454065 PMCID: PMC6245772 DOI: 10.1186/s13104-018-3933-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
Objective Previously we found that certain fetal imprinted genes represented as an allele score are associated with maternal pregnancy glucose concentrations. Recently it was reported that fetal polymorphisms with strong associations with birth weight tend to mediate these independently of increases in maternal pregnancy glucose concentrations. We therefore investigated whether potential associations between the fetal allele score and birth weight were related to maternal glucose concentrations in the Cambridge Baby Growth Study. Results The fetal imprinted gene allele score was positively associated with birth weight (β = 63 (17–109) g/risk allele, β′ = 0.113, p = 7.6 × 10−3, n = 405). This association was partially attenuated by adjusting for maternal glucose concentrations (β = 50 (4–95) g/risk allele, β′ = 0.089, p = 0.03, n = 405). The allele score was also positively associated with risk of being large for gestational age at birth (odds ratio 1.60 (1.19–2.15) per risk allele, p = 2.1 × 10−3, n = 660) and negatively associated with risk of being small for gestational age at birth (odds ratio 0.65 (0.44–0.96) per risk allele, p = 0.03, n = 660). The large for gestational age at birth association was also partially attenuated by maternal glucose concentrations. These results suggest that associations between the fetal imprinted gene allele score and size at birth are mediated through both glucose-dependent and glucose-independent mechanisms.
Collapse
Affiliation(s)
- Clive J Petry
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 116, Cambridge, CB2 0QQ, UK.
| | - Ken K Ong
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 116, Cambridge, CB2 0QQ, UK.,Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK.,The Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ieuan A Hughes
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 116, Cambridge, CB2 0QQ, UK
| | - Carlo L Acerini
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 116, Cambridge, CB2 0QQ, UK
| | - David B Dunger
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 116, Cambridge, CB2 0QQ, UK.,The Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
44
|
Castillo-Castrejon M, Powell TL. Placental Nutrient Transport in Gestational Diabetic Pregnancies. Front Endocrinol (Lausanne) 2017; 8:306. [PMID: 29163373 PMCID: PMC5682011 DOI: 10.3389/fendo.2017.00306] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022] Open
Abstract
Maternal obesity during pregnancy is rising and is associated with increased risk of developing gestational diabetes mellitus (GDM), defined as glucose intolerance first diagnosed in pregnancy (1). Fetal growth is determined by the maternal nutrient supply and placental nutrient transfer capacity. GDM-complicated pregnancies are more likely to be complicated by fetal overgrowth or excess adipose deposition in utero. Infants born from GDM mothers have an increased risk of developing cardiovascular and metabolic disorders later in life. Diverse factors, such as ethnicity, age, fetal sex, clinical treatment for glycemic control, gestational weight gain, and body mass index among others, represent a challenge for studying underlying mechanisms in GDM subjects. Determining the individual roles of glucose intolerance, obesity, and other factors on placental function and fetal growth remains a challenge. This review provides an overview of changes in placental macronutrient transport observed in human pregnancies complicated by GDM. Improved knowledge and understanding of the alterations in placenta function that lead to pathological fetal growth will allow for development of new therapeutic interventions and treatments to improve pregnancy outcomes and lifelong health for the mother and her children.
Collapse
Affiliation(s)
- Marisol Castillo-Castrejon
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatrics, Section of Neonatology, University of Colorado, Aurora, CO, United States
- *Correspondence: Theresa L. Powell,
| |
Collapse
|