1
|
Ye D, Miyoshi A, Ushitani T, Kadoya M, Igeta M, Konishi K, Shoji T, Yasuda K, Kitaoka S, Yagi H, Kuroda E, Yamamoto Y, Cheng J, Koyama H. RAGE in circulating immune cells is fundamental for hippocampal inflammation and cognitive decline in a mouse model of latent chronic inflammation. Brain Behav Immun 2024; 116:329-348. [PMID: 38142917 DOI: 10.1016/j.bbi.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Latent chronic inflammation has been proposed as a key mediator of multiple derangements in metabolic syndrome (MetS), which are increasingly becoming recognized as risk factors for age-related cognitive decline. However, the question remains whether latent chronic inflammation indeed induces brain inflammation and cognitive decline. METHODS A mouse model of latent chronic inflammation was constructed by a chronic subcutaneous infusion of low dose lipopolysaccharide (LPS) for four weeks. A receptor for advanced glycation end products (RAGE) knockout mouse, a chimeric myeloid cell specific RAGE-deficient mouse established by bone marrow transplantation and a human endogenous secretory RAGE (esRAGE) overexpressing adenovirus system were utilized to examine the role of RAGE in vivo. The cognitive function was examined by a Y-maze test, and the expression level of genes was determined by quantitative RT-PCR, western blot, immunohistochemical staining, or ELISA assays. RESULTS Latent chronic inflammation induced MetS features in C57BL/6J mice, which were associated with cognitive decline and brain inflammation characterized by microgliosis, monocyte infiltration and endothelial inflammation, without significant changes in circulating cytokines including TNF-α and IL-1β. These changes as well as cognitive impairment were rescued in RAGE knockout mice or chimeric mice lacking RAGE in bone marrow cells. P-selectin glycoprotein ligand-1 (PSGL-1), a critical adhesion molecule, was induced in circulating mononuclear cells in latent chronic inflammation in wild-type but not RAGE knockout mice. These inflammatory changes and cognitive decline induced in the wild-type mice were ameliorated by an adenoviral increase in circulating esRAGE. Meanwhile, chimeric RAGE knockout mice possessing RAGE in myeloid cells were still resistant to cognitive decline and brain inflammation. CONCLUSIONS These findings indicate that RAGE in inflammatory cells is necessary to mediate stimuli of latent chronic inflammation that cause brain inflammation and cognitive decline, potentially by orchestrating monocyte activation via regulation of PSGL-1 expression. Our results also suggest esRAGE-mediated inflammatory regulation as a potential therapeutic option for cognitive dysfunction in MetS with latent chronic inflammation.
Collapse
Affiliation(s)
- Dasen Ye
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Akio Miyoshi
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Tomoe Ushitani
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Manabu Kadoya
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Masataka Igeta
- Department of Biostatistics, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Kosuke Konishi
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Takuhito Shoji
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Koubun Yasuda
- Department of Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Shiho Kitaoka
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Hideshi Yagi
- Department of Anatomy and Cell Biology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Etsushi Kuroda
- Department of Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Jidong Cheng
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan; Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Hidenori Koyama
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan.
| |
Collapse
|
2
|
Miranda ER, Mey JT, Blackburn BK, Chaves AB, Fuller KNZ, Perkins RK, Ludlow AT, Haus JM. Soluble RAGE and skeletal muscle tissue RAGE expression profiles in lean and obese young adults across differential aerobic exercise intensities. J Appl Physiol (1985) 2023; 135:849-862. [PMID: 37675469 PMCID: PMC10642519 DOI: 10.1152/japplphysiol.00748.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Nearly 40% of Americans have obesity and are at increased risk for developing type 2 diabetes. Skeletal muscle is responsible for >80% of insulin-stimulated glucose uptake that is attenuated by the inflammatory milieu of obesity and augmented by aerobic exercise. The receptor for advanced glycation endproducts (RAGE) is an inflammatory receptor directly linking metabolic dysfunction with inflammation. Circulating soluble isoforms of RAGE (sRAGE) formed either by proteolytic cleavage (cRAGE) or alternative splicing (esRAGE) act as decoys for RAGE ligands, thereby counteracting RAGE-mediated inflammation. We aimed to determine if RAGE expression or alternative splicing of RAGE is altered by obesity in muscle, and whether acute aerobic exercise (AE) modifies RAGE and sRAGE. Young (20-34 yr) participants without [n = 17; body mass index (BMI): 22.6 ± 2.6 kg/m2] and with obesity (n = 7; BMI: 32.8 ± 2.9 kg/m2) performed acute aerobic exercise (AE) at 40%, 65%, or 80% of maximal aerobic capacity (V̇o2max; mL/kg/min) on separate visits. Blood was taken before and 30 min after each AE bout. Muscle biopsy samples were taken before, 30 min, and 3 h after the 80% V̇o2max AE bout. Individuals with obesity had higher total RAGE and esRAGE mRNA and RAGE protein (P < 0.0001). In addition, RAGE and esRAGE transcripts correlated to transcripts of the NF-κB subunit P65 (P < 0.05). There was no effect of AE on total RAGE or esRAGE transcripts, or RAGE protein (P > 0.05), and AE tended to decrease circulating sRAGE in particular at lower intensities of exercise. RAGE expression is exacerbated in skeletal muscle with obesity, which may contribute to muscle inflammation via NF-κB. Future work should investigate the consequences of increased skeletal muscle RAGE on the development of obesity-related metabolic dysfunction and potential mitigating strategies.NEW & NOTEWORTHY This study is the first to investigate the effects of aerobic exercise intensity on circulating sRAGE isoforms, muscle RAGE protein, and muscle RAGE splicing. sRAGE isoforms tended to diminish with exercise, although this effect was attenuated with increasing exercise intensity. Muscle RAGE protein and gene expression were unaffected by exercise. However, individuals with obesity displayed nearly twofold higher muscle RAGE protein and gene expression, which positively correlated with expression of the P65 subunit of NF-κB.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Jacob T Mey
- Integrated Physiology and Molecular Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Brian K Blackburn
- Applied Health Sciences and Kinesiology, Humboldt State University, Arcata, California, United States
| | - Alec B Chaves
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States
| | - Kelly N Z Fuller
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Ryan K Perkins
- Department of Kinesiology, California State University Chico, Chico, California, United States
| | - Andrew T Ludlow
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
- Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
3
|
Delrue C, Delanghe JR, Speeckaert MM. The role of sRAGE in cardiovascular diseases. Adv Clin Chem 2023; 117:53-102. [PMID: 37973322 DOI: 10.1016/bs.acc.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Advanced glycation end products (AGEs), by-products of glucose metabolism, have been linked to the emergence of cardiovascular disorders (CVD). AGEs can cause tissue damage in four different ways: (1) by altering protein function, (2) by crosslinking proteins, which makes tissue stiffer, (3) by causing the generation of free radicals, and (4) by activating an inflammatory response after binding particular AGE receptors, such as the receptor for advanced glycation end products (RAGE). It is suggested that the soluble form of RAGE (sRAGE) blocks ligand-mediated pro-inflammatory and oxidant activities by serving as a decoy. Therefore, several studies have investigated the possible anti-inflammatory and anti-oxidant characteristics of sRAGE, which may help lower the risk of CVD. According to the results of various studies, the relationship between circulating sRAGE, cRAGE, and esRAGE and CVD is inconsistent. To establish the potential function of sRAGE as a therapeutic target in the treatment of cardiovascular illnesses, additional studies are required to better understand the relationship between sRAGE and CVD. In this review, we explored the potential function of sRAGE in different CVD, highlighting unanswered concerns and outlining the possibilities for further investigation.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
4
|
Ragazzi E, Burlina S, Cosma C, Chilelli NC, Lapolla A, Sartore G. Anti-diabetic combination therapy with pioglitazone or glimepiride added to metformin on the AGE-RAGE axis: a randomized prospective study. Front Endocrinol (Lausanne) 2023; 14:1163554. [PMID: 37635976 PMCID: PMC10453795 DOI: 10.3389/fendo.2023.1163554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The ratio between advanced glycation end products (AGEs) and soluble form of receptor (s-RAGE) has been proposed as a risk marker for renal and cardiovascular diseases. The aim of this study was to evaluate in the diabetes condition the influence of two different oral anti-diabetic treatments on the AGE/s-RAGE ratio, during a 5-year observation period. Methods Seventy-three patients with type 2 diabetes mellitus were randomly assigned to a drug therapy with pioglitazone or glimepiride, combined to metformin. Each subject was evaluated at baseline and after 5 years of treatment. Results In both groups s-RAGE levels did not significantly vary, while the levels of AGE and AGE/s-RAGE were both significantly reduced, basal compared to 5-year values. Within pioglitazone group, as well within glimepiride group, significant variations (Δ, as difference between 5 years of treatment minus basal) were observed for AGE (Δ= -21.1±13.4 µg/ml, P<0.001 for pioglitazone; Δ= -14.4±11.4 µg/ml, P<0.001 for glimepiride) and in AGE/s-RAGE (Δ= -0.037±0.022 µg/pg, P<0.001 for pioglitazone; Δ= -0.024±0.020µg/pg, P<0.001 for glimepiride), suggesting an average decrease of the parameters by more than 50% in both treatments. Pioglitazone was more effective than glimepiride in reducing AGE/s-RAGE ratio after 5 years of therapy. Conclusion These data can help to explain the benefits of oral anti-diabetic therapy in relation to the reduction of cardiovascular risk, as suggested by variations in AGE/s-RAGE ratio as biochemical marker of endothelial function; in particular, treatment with pioglitazone seems to offer greater long-term benefit on AGE-RAGE axis.
Collapse
Affiliation(s)
- Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Silvia Burlina
- Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Chiara Cosma
- Department of Medicine – DIMED, University of Padova, Padova, Italy
| | | | | | - Giovanni Sartore
- Department of Medicine – DIMED, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Alzayadneh EM, Al Bdour SA, Elayeh ER, Ababneh MM, Al-ani RA, Shatanawi A, Al-Iede M, Al-Zayadneh E. Assessment of Fraction of Exhaled Nitric Oxide and Soluble Receptor for Advanced Glycation End Products Biomarkers for Jordanian Asthmatic Children. J Asthma Allergy 2023; 16:793-811. [PMID: 37559895 PMCID: PMC10408658 DOI: 10.2147/jaa.s415481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
PURPOSE Fraction of exhaled nitric oxide (FeNO) and soluble advanced glycation end-product receptor (sRAGE) are proposed as biomarkers of asthma, therefore we sought to assess their use in asthmatic children of Jordan. PATIENTS AND METHODS We conducted a case-control study at The University of Jordan Hospital. A total of 141 asthmatic children followed by respiratory pediatricians and 118 healthy children aged 4-18 years were recruited. FeNO was measured by NObreath device and serum sRAGE by ELISA that detect endogenously soluble isoform (esRAGE) and total soluble RAGE (sRAGE). RESULTS sRAGE in asthmatic was half of the control (p <0.001). In addition, ratio of esRAGE/sRAGE was two-fold higher in asthmatic (p = <0.001). Neither FeNO nor esRAGE levels were significantly different between groups. FeNO and asthma control test (ACT) score were negatively correlated corrected for age and body mass index (BMI), (r = -0.180, p= 0.034). For the uncontrolled asthma group, esRAGE/sRAGE negatively correlated with ACT score (r = -.329, p = 0.038). Receiver operating curve (ROC) analysis revealed significant predictive value (PV) for sRAGE and esRAGE/sRAGE in asthma detection with area under the curve (AUC) of (0.751 ± 0.031) and (0.711±.033), consequently. However, no biomarker had a significant PV for lack of control. CONCLUSION The current study supports utilizing sRAGE as a marker for asthma and present a potential therapeutic target. However, our results indicate that both FeNO and sRAGE have a limited role in the management of asthmatic children or assessment of asthma control.
Collapse
Affiliation(s)
- Ebaa M Alzayadneh
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Suzan A Al Bdour
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Eman R Elayeh
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mai M Ababneh
- Department of Pediatrics, School of Medicine, The University of Jordan, Amman, Jordan
| | - Ruqaya A Al-ani
- Department of Pediatrics, School of Medicine, The University of Jordan, Amman, Jordan
| | - Alia Shatanawi
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Montaha Al-Iede
- Department of Pediatrics, School of Medicine, The University of Jordan, Amman, Jordan
| | - Enas Al-Zayadneh
- Department of Pediatrics, School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
6
|
Šebeková K, Staruchová M, Mišľanová C, Líšková A, Horváthová M, Tulinská J, Lehotská Mikušová M, Szabová M, Gurecká R, Koborová I, Csongová M, Tábi T, Szökö É, Volkovová K. Association of Inflammatory and Oxidative Status Markers with Metabolic Syndrome and Its Components in 40-to-45-Year-Old Females: A Cross-Sectional Study. Antioxidants (Basel) 2023; 12:1221. [PMID: 37371951 DOI: 10.3390/antiox12061221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress and sterile inflammation play roles in the induction and maintenance of metabolic syndrome (MetS). This study cohort included 170 females aged 40 to 45 years who were categorized according to the presentation of MetS components (e.g., central obesity, insulin resistance, atherogenic dyslipidemia, and elevated systolic blood pressure) as controls not presenting a single component (n = 43), those with pre-MetS displaying one to two components (n = 70), and females manifesting MetS, e.g., ≥3 components (n = 53). We analyzed the trends of seventeen oxidative and nine inflammatory status markers across three clinical categories. A multivariate regression of selected oxidative status and inflammatory markers on the components of MetS was performed. Markers of oxidative damage (malondialdehyde and advanced-glycation-end-products-associated fluorescence of plasma) were similar across the groups. Healthy controls displayed lower uricemia and higher bilirubinemia than females with MetS; and lower leukocyte counts, concentrations of C-reactive protein, interleukine-6, and higher levels of carotenoids/lipids and soluble receptors for advanced glycation end-products than those with pre-MetS and MetS. In multivariate regression models, levels of C-reactive protein, uric acid, and interleukine-6 were consistently associated with MetS components, although the impacts of single markers differed. Our data suggest that a proinflammatory imbalance precedes the manifestation of MetS, while an imbalance of oxidative status accompanies overt MetS. Further studies are needed to elucidate whether determining markers beyond traditional ones could help improve the prognosis of subjects at an early stage of MetS.
Collapse
Affiliation(s)
- Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University in Bratislava, 83303 Bratislava, Slovakia
| | - Marta Staruchová
- Institute of Biology, Medical Faculty, Slovak Medical University in Bratislava, 83303 Bratislava, Slovakia
| | - Csilla Mišľanová
- Institute of Nutrition, Faculty of Nursing and Medical Professional Studies, Slovak Medical University in Bratislava, 83303 Bratislava, Slovakia
| | - Aurélia Líšková
- Department of Immunology and Immunotoxicology, Slovak Medical University in Bratislava, 83303 Bratislava, Slovakia
| | - Mira Horváthová
- Department of Immunology and Immunotoxicology, Slovak Medical University in Bratislava, 83303 Bratislava, Slovakia
| | - Jana Tulinská
- Department of Immunology and Immunotoxicology, Slovak Medical University in Bratislava, 83303 Bratislava, Slovakia
| | - Miroslava Lehotská Mikušová
- Department of Immunology and Immunotoxicology, Slovak Medical University in Bratislava, 83303 Bratislava, Slovakia
| | - Michaela Szabová
- Department of Immunology and Immunotoxicology, Slovak Medical University in Bratislava, 83303 Bratislava, Slovakia
| | - Radana Gurecká
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University in Bratislava, 83303 Bratislava, Slovakia
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University in Bratislava, 83303 Bratislava, Slovakia
| | - Ivana Koborová
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University in Bratislava, 83303 Bratislava, Slovakia
| | - Melinda Csongová
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University in Bratislava, 83303 Bratislava, Slovakia
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1085 Budapest, Hungary
| | - Éva Szökö
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1085 Budapest, Hungary
| | - Katarína Volkovová
- Institute of Biology, Medical Faculty, Slovak Medical University in Bratislava, 83303 Bratislava, Slovakia
| |
Collapse
|
7
|
Reynaert NL, Vanfleteren LEGW, Perkins TN. The AGE-RAGE Axis and the Pathophysiology of Multimorbidity in COPD. J Clin Med 2023; 12:jcm12103366. [PMID: 37240472 DOI: 10.3390/jcm12103366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease of the airways and lungs due to an enhanced inflammatory response, commonly caused by cigarette smoking. Patients with COPD are often multimorbid, as they commonly suffer from multiple chronic (inflammatory) conditions. This intensifies the burden of individual diseases, negatively affects quality of life, and complicates disease management. COPD and comorbidities share genetic and lifestyle-related risk factors and pathobiological mechanisms, including chronic inflammation and oxidative stress. The receptor for advanced glycation end products (RAGE) is an important driver of chronic inflammation. Advanced glycation end products (AGEs) are RAGE ligands that accumulate due to aging, inflammation, oxidative stress, and carbohydrate metabolism. AGEs cause further inflammation and oxidative stress through RAGE, but also through RAGE-independent mechanisms. This review describes the complexity of RAGE signaling and the causes of AGE accumulation, followed by a comprehensive overview of alterations reported on AGEs and RAGE in COPD and in important co-morbidities. Furthermore, it describes the mechanisms by which AGEs and RAGE contribute to the pathophysiology of individual disease conditions and how they execute crosstalk between organ systems. A section on therapeutic strategies that target AGEs and RAGE and could alleviate patients from multimorbid conditions using single therapeutics concludes this review.
Collapse
Affiliation(s)
- Niki L Reynaert
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Lowie E G W Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Timothy N Perkins
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
8
|
Shati AA, Maarouf A, Dawood AF, Bayoumy NM, Alqahtani YA, A. Eid R, Alqahtani SM, Abd Ellatif M, Al-Ani B, Albawardi A. Lower Extremity Arterial Disease in Type 2 Diabetes Mellitus: Metformin Inhibits Femoral Artery Ultrastructural Alterations as well as Vascular Tissue Levels of AGEs/ET-1 Axis-Mediated Inflammation and Modulation of Vascular iNOS and eNOS Expression. Biomedicines 2023; 11:biomedicines11020361. [PMID: 36830898 PMCID: PMC9953164 DOI: 10.3390/biomedicines11020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Lower extremity arterial disease (LEAD) is a major risk factor for amputation in diabetic patients. The advanced glycation end products (AGEs)/endothelin-1 (ET-1)/nitric oxide synthase (NOS) axis-mediated femoral artery injury with and without metformin has not been previously investigated. Type 2 diabetes mellitus (T2DM) was established in rats, with another group of rats treated for two weeks with 200 mg/kg metformin, before being induced with T2DM. The latter cohort were continued on metformin until they were sacrificed at week 12. Femoral artery injury was established in the diabetic group as demonstrated by substantial alterations to the femoral artery ultrastructure, which importantly were ameliorated by metformin. In addition, diabetes caused a significant (p < 0.0001) upregulation of vascular tissue levels of AGEs, ET-1, and iNOS, as well as high blood levels of glycated haemoglobin, TNF-α, and dyslipidemia. All of these parameters were also significantly inhibited by metformin. Moreover, metformin treatment augmented arterial eNOS expression which had been inhibited by diabetes progression. Furthermore, a significant correlation was observed between femoral artery endothelial tissue damage and glycemia, AGEs, ET-1, TNF-α, and dyslipidemia. Thus, in a rat model of T2DM-induced LEAD, an association between femoral artery tissue damage and the AGEs/ET-1/inflammation/NOS/dyslipidemia axis was demonstrated, with metformin treatment demonstrating beneficial vascular protective effects.
Collapse
Affiliation(s)
- Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Amro Maarouf
- Department of Clinical Biochemistry, Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B9 5SS, UK
| | - Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nervana M. Bayoumy
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Saeed M. Alqahtani
- Department of Surgery, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohamed Abd Ellatif
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
- Department of Medical Biochemistry, College of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Alia Albawardi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
9
|
Is There a Link between Obesity Indices and Skin Autofluorescence? A Response from the ILERVAS Project. Nutrients 2022; 15:nu15010203. [PMID: 36615860 PMCID: PMC9824455 DOI: 10.3390/nu15010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
There is controversial information about the accumulation of advanced glycation end-products (AGEs) in obesity. We assessed the impact of total and abdominal adiposity on AGE levels via a cross-sectional investigation with 4254 middle-aged subjects from the ILERVAS project. Skin autofluorescence (SAF), a non-invasive assessment of subcutaneous AGEs, was measured. Total adiposity indices (BMI and Clínica Universidad de Navarra-Body Adiposity Estimator (CUN-BAE)) and abdominal adiposity (waist circumference and body roundness index (BRI)) were assessed. Lean mass was estimated using the Hume index. The area under the receiver operating characteristic (ROC) curve was evaluated for each index. Different cardiovascular risk factors (smoking, prediabetes, hypertension and dyslipidemia) were evaluated. In the study population, 26.2% showed elevated SAF values. No differences in total body fat, visceral adiposity and lean body mass were detected between patients with normal and high SAF values. SAF levels showed a very slight but positive correlation with total body fat percentage (estimated by the CUN-BAE formula) and abdominal adiposity (estimated by the BRI). However, none of them had sufficient power to identify patients with high SAF levels (area under the ROC curve <0.52 in all cases). Finally, a progressive increase in SAF levels was observed in parallel with cardiovascular risk factors in the entire population and when patients with normal weight, overweight and obesity were evaluated separately. In conclusion, total obesity and visceral adiposity are not associated with a greater deposit of AGE. The elevation of AGE in obesity is related to the presence of cardiometabolic risk.
Collapse
|
10
|
Prasad K. Involvement of AGE and Its Receptors in the Pathogenesis of Hypertension in Elderly People and Its Treatment. Int J Angiol 2022; 31:213-221. [PMID: 36588874 PMCID: PMC9803554 DOI: 10.1055/s-0042-1756175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Both systolic and diastolic blood pressures increase with age up to 50 to 60 years of age. After 60 years of age systolic pressure rises to 84 years of age but diastolic pressure remains stable or even decreases. In the oldest age group (85-99 years), the systolic blood pressure (SBP) is high and diastolic pressure (DBP) is the lowest. Seventy percent of people older than 65 years are hypertensive. This paper deals with the role of advanced glycation end products (AGE) and its cell receptor (RAGE) and soluble receptor (sRAGE) in the development of hypertension in the elderly population. Plasma/serum levels of AGE are higher in older people as compared with younger people. Serum levels of AGE are positively correlated with age, arterial stiffness, and hypertension. Low serum levels of sRAGE are associated with arterial stiffness and hypertension. Levels of sRAGE are negatively correlated with age and blood pressure. Levels of sRAGE are lower in patients with arterial stiffness and hypertension than patients with high levels of sRAGE. AGE could induce hypertension through numerous mechanisms including, cross-linking with collagen, reduction of nitric oxide, increased expression of endothelin-1, and transforming growth factor-β (TGF-β). Interaction of AGE with RAGE could produce hypertension through the generation of reactive oxygen species, increased sympathetic activity, activation of nuclear factor-kB, and increased expression of cytokines, cell adhesion molecules, and TGF- β. In conclusion, the AGE-RAGE axis could be involved in hypertension in elderly people. Treatment for hypertension in elderly people should be targeted at reduction of AGE levels in the body, prevention of AGE formation, degradation of AGE in vivo, downregulation of RAGE expression, blockade of AGE-RAGE interaction, upregulation of sRAGE expression, and use of antioxidants.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Siddiqui S, Mateen S, Ahmad R, Moin S. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS). J Assist Reprod Genet 2022; 39:2439-2473. [PMID: 36190593 PMCID: PMC9723082 DOI: 10.1007/s10815-022-02625-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/19/2022] [Indexed: 10/10/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a prevailing endocrine and metabolic disorder occurring in about 6-20% of females in reproductive age. Most symptoms of PCOS arise early during puberty. Since PCOS involves a combination of signs and symptoms, thus it is considered as a heterogeneous disorderliness. The most accepted diagnostic criteria is Rotterdam criteria which involves two of the latter three features: (a) hyperandrogenism, (b) oligo- or an-ovulation, and (c) polycystic ovaries. The persistent hormonal imbalance leads to multiple small antral follicles formation and irregular menstrual cycle, ultimately causing infertility among females. Insulin resistance, cardiovascular diseases, abdominal obesity, psychological disorders, infertility, and cancer are also related to PCOS. These pathophysiologies associated with PCOS are interrelated with each other. Hyperandrogenism causes insulin resistance and hyperglycemia, leading to ROS formation, oxidative stress, and abdominal adiposity. In consequence, inflammation, ROS production, insulin resistance, and hyperandrogenemia also increase. Elevation of AGEs in the body either produced endogenously or consumed from diet exaggerates PCOS symptoms and is also related to ovarian dysfunction. This review summarizes how AGE formation, inflammation, and oxidative stress are significantly essential in PCOS progression. Alterations during prenatal development like exposure to excess AMH, androgens, or toxins (bisphenol-A, endocrine disruptors, etc.) may also be the etiologic mechanism behind PCOS. Although the etiology of this disorder is unclear, environmental and genetic factors are primarily involved. Physical inactivity, as well as unhealthy eating habits, has a vital role in the progression of PCOS. This review outlines a collection of specific genes phenotypically linked with PCOS. Furthermore, beneficial effect of metformin in maintaining endocrine abnormalities and ovarian function is also mentioned. Kisspeptin is a protein which helps in onset of puberty and increases GnRH pulsatile release during ovulation as well as role of KNDy neurons in GnRH pulsatile signal required for reproduction are also elaborated. This review also focuses on the immunology related to PCOS involving chronic low-grade inflammation, and how the alterations within the follicular microenvironment are intricated in the development of infertility in PCOS patients. How PCOS develops following antiepileptic and psychiatric medication is also expanded in this review. Initiation of antiandrogen treatment in early age (≤ 25 years) might be helpful in spontaneous conception in PCOS women. The role of BMP (bone morphogenetic proteins) in folliculogenesis and their expression in oocytes and granulosa cells are also explained. GDF8 and SERPINE1 expression in PCOS is given in detail.
Collapse
Affiliation(s)
- Sana Siddiqui
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar, Pradesh -202002, India
| | - Somaiya Mateen
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar, Pradesh -202002, India
| | - Rizwan Ahmad
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar, Pradesh -202002, India
| | - Shagufta Moin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar, Pradesh -202002, India.
| |
Collapse
|
12
|
El-Dakroury WA, Zewail MB, Amin MM. Design, optimization, and in-vivo performance of glipizide-loaded O-carboxymethyl chitosan nanoparticles in insulin resistant/type 2 diabetic rat model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Jiang T, Zhang Y, Dai F, Liu C, Hu H, Zhang Q. Advanced glycation end products and diabetes and other metabolic indicators. Diabetol Metab Syndr 2022; 14:104. [PMID: 35879776 PMCID: PMC9310394 DOI: 10.1186/s13098-022-00873-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetes is a global concern among adults. Previous studies have suggested an association between different screening methods and diabetes; however, increasing evidence has suggested the importance of early screening for diabetes mellitus (DM) and its influencing factors. In this study, we aimed to explore whether the non-invasive detection of advanced glycation end products (AGEs) in the early screening of DM in the Chinese community and whether body mass index (BMI) and metabolic indexes could moderate this relationship. METHODS Three community health service centers in Hefei that signed the medical consortium agreement with the First Affiliated Hospital of Anhui Medical University were selected to screen the population aged 30-90 years in each community using a multi-stage cluster sampling method from January 2018 to January 2019. Univariate analysis of variance was used to compare the differences in general data, biochemical indexes, skin AGEs levels, and blood glucose among groups. In addition, a multivariable logistic regression analysis was performed. RESULTS A total of 912 patients with a community health physical examination and no history of diabetes were selected, excluding those with missing values > 5%. Finally, 906 samples were included in the study with an effective rate of 99.3%. The prevalence in the normal, impaired glucose tolerance, and DM groups were 79.8%, 10.0%, and 10.2%, respectively. By dividing AGE by quartile, AGE accumulation was classified as ≤ P25, P25-P50, P50-P75, and > P75. Higher AGE accumulation (χ2 = 37.95), BMI (χ2 = 12.20), systolic blood pressure (SBP) (χ2 = 8.46), triglyceride (TG) (χ2 = 6.23), and older age (χ2 = 20.11) were more likely to have a higher prevalence of fasting blood glucose (FBG). The analyses revealed significant correlations between AGE accumulation, BMI, TG, total cholesterol (TC), and FBG (P < 0.05). CONCLUSION As the findings indicate, priority should be given to the quality of metabolic-related indicators, such as BMI, TG, and TC, employed to effectively reduce the FBG of Chinese participants with high AGE accumulation. Skin autofluorescence may prove to be a rapid and non-invasive method for assessing the metabolic progression of all glucose level layers.
Collapse
Affiliation(s)
- Tian Jiang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yi Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fang Dai
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Chao Liu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Honglin Hu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
14
|
Advanced Glycation End Products (AGEs) and Chronic Kidney Disease: Does the Modern Diet AGE the Kidney? Nutrients 2022; 14:nu14132675. [PMID: 35807857 PMCID: PMC9268915 DOI: 10.3390/nu14132675] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
Since the 1980s, chronic kidney disease (CKD) affecting all ages has increased by almost 25%. This increase may be partially attributable to lifestyle changes and increased global consumption of a “western” diet, which is typically energy dense, low in fruits and vegetables, and high in animal protein and ultra-processed foods. These modern food trends have led to an increase in the consumption of advanced glycation end products (AGEs) in conjunction with increased metabolic dysfunction, obesity and diabetes, which facilitates production of endogenous AGEs within the body. When in excess, AGEs can be pathological via both receptor-mediated and non-receptor-mediated pathways. The kidney, as a major site for AGE clearance, is particularly vulnerable to AGE-mediated damage and increases in circulating AGEs align with risk of CKD and all-cause mortality. Furthermore, individuals with significant loss of renal function show increased AGE burden, particularly with uraemia, and there is some evidence that AGE lowering via diet or pharmacological inhibition may be beneficial for CKD. This review discusses the pathways that drive AGE formation and regulation within the body. This includes AGE receptor interactions and pathways of AGE-mediated pathology with a focus on the contribution of diet on endogenous AGE production and dietary AGE consumption to these processes. We then analyse the contribution of AGEs to kidney disease, the evidence for dietary AGEs and endogenously produced AGEs in driving pathogenesis in diabetic and non-diabetic kidney disease and the potential for AGE targeted therapies in kidney disease.
Collapse
|
15
|
Molinari P, Caldiroli L, Dozio E, Rigolini R, Giubbilini P, Corsi Romanelli MM, Castellano G, Vettoretti S. Association between Advanced Glycation End-Products and Sarcopenia in Patients with Chronic Kidney Disease. Biomedicines 2022; 10:biomedicines10071489. [PMID: 35884793 PMCID: PMC9313160 DOI: 10.3390/biomedicines10071489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: In patients with chronic kidney disease (CKD), there is an overproduction and accumulation of advanced glycation end-products (AGEs). Since AGEs may have detrimental effects on muscular trophism and performance, we evaluated whether they may contribute to the onset of sarcopenia in CKD patients. Methods: We enrolled 117 patients. The AGEs were quantified by fluorescence intensity using a fluorescence spectrophotometer and soluble receptor for AGE (sRAGE) isoforms by ELISA. As for the sarcopenia definition, we used the European Working Group on Sarcopenia in Older People (EWGSOP2) criteria. Results: The average age was 80 ± 11 years, 70% were males, and the mean eGFR was 25 + 11 mL/min/1.73 m2. Sarcopenia was diagnosed in 26 patients (with a prevalence of 22%). The sarcopenic patients had higher levels of circulating AGEs (3405 ± 951 vs. 2912 ± 722 A.U., p = 0.005). AGEs were higher in subjects with a lower midarm muscle circumference (MAMC) (3322 ± 919 vs. 2883 ± 700 A.U., respectively; p = 0.005) and were directly correlated with the gait test time (r = 0.180, p = 0.049). The total sRAGE and its different isoforms (esRAGE and cRAGE) did not differ in patients with or without sarcopenia. Conclusions: In older CKD patients, AGEs, but not sRAGE, are associated with the presence of sarcopenia. Therefore, AGEs may contribute to the complex pathophysiology leading to the development of sarcopenia in CKD patients.
Collapse
Affiliation(s)
- Paolo Molinari
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (P.M.); (L.C.); (G.C.)
| | - Lara Caldiroli
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (P.M.); (L.C.); (G.C.)
| | - Elena Dozio
- Department of Biomedical Science for Health, Laboratory of Clinical Pathology, Università degli Studi di Milano, 20133 Milan, Italy; (E.D.); (M.M.C.R.)
| | - Roberta Rigolini
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (R.R.); (P.G.)
| | - Paola Giubbilini
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (R.R.); (P.G.)
| | - Massimiliano M. Corsi Romanelli
- Department of Biomedical Science for Health, Laboratory of Clinical Pathology, Università degli Studi di Milano, 20133 Milan, Italy; (E.D.); (M.M.C.R.)
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (R.R.); (P.G.)
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (P.M.); (L.C.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Simone Vettoretti
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (P.M.); (L.C.); (G.C.)
- Correspondence: ; Tel.: +02-55-03-45-52; Fax: +02-55-03-45-50
| |
Collapse
|
16
|
D’Cunha NM, Sergi D, Lane MM, Naumovski N, Gamage E, Rajendran A, Kouvari M, Gauci S, Dissanayka T, Marx W, Travica N. The Effects of Dietary Advanced Glycation End-Products on Neurocognitive and Mental Disorders. Nutrients 2022; 14:nu14122421. [PMID: 35745150 PMCID: PMC9227209 DOI: 10.3390/nu14122421] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Advanced glycation end products (AGEs) are glycated proteins or lipids formed endogenously in the human body or consumed through diet. Ultra-processed foods and some culinary techniques, such as dry cooking methods, represent the main sources and drivers of dietary AGEs. Tissue accumulation of AGEs has been associated with cellular aging and implicated in various age-related diseases, including type-2 diabetes and cardiovascular disease. The current review summarizes the literature examining the associations between AGEs and neurocognitive and mental health disorders. Studies indicate that elevated circulating AGEs are cross-sectionally associated with poorer cognitive function and longitudinally increase the risk of developing dementia. Additionally, preliminary studies show that higher skin AGE accumulation may be associated with mental disorders, particularly depression and schizophrenia. Potential mechanisms underpinning the effects of AGEs include elevated oxidative stress and neuroinflammation, which are both key pathogenetic mechanisms underlying neurodegeneration and mental disorders. Decreasing dietary intake of AGEs may improve neurological and mental disorder outcomes. However, more sophisticated prospective studies and analytical approaches are required to verify directionality and the extent to which AGEs represent a mediator linking unhealthy dietary patterns with cognitive and mental disorders.
Collapse
Affiliation(s)
- Nathan M. D’Cunha
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Melissa M. Lane
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nenad Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Elizabeth Gamage
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Anushri Rajendran
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Matina Kouvari
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Sarah Gauci
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia;
- Heart and Mind Research, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Thusharika Dissanayka
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Wolfgang Marx
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nikolaj Travica
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Correspondence:
| |
Collapse
|
17
|
Prasad K, Khan AS, Bhanumathy KK. Does AGE-RAGE Stress Play a Role in the Development of Coronary Artery Disease in Obesity? Int J Angiol 2022; 31:1-9. [PMID: 35221846 PMCID: PMC8881108 DOI: 10.1055/s-0042-1742587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
This article deals with the role of AGE (advanced glycation end products)-RAGE (receptor for AGE) stress (AGE/sRAGE) in the development of coronary artery disease (CAD) in obesity. CAD is due to atherosclerosis in coronary artery. The serum/plasma levels of AGE and sRAGE are reduced, while AGE-RAGE stress and expression of RAGE are elevated in obese individuals. However, the levels of AGE are elevated in obese individuals with more than one metabolic syndrome. The increases in the AGE-RAGE stress would elevate the expression and production of atherogenic factors, including reactive oxygen species, nuclear factor-kappa B, cytokines, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, endothelial leukocyte adhesion molecules, monocyte chemoattractant protein-1, granulocyte-macrophage colony-stimulating factor, and growth factors. Low levels of sRAGE would also increase the atherogenic factors. The increases in the AGE-RAGE stress and decreases in the levels of sRAGE would induce development of atherosclerosis, leading to CAD. The therapeutic regimen for AGE-RAGE stress-induced CAD in obesity would include lowering of AGE intake, prevention of AGE formation, degradation of AGE in vivo, suppression of RAGE expression, blockade of AGE-RAGE interaction, downregulation of sRAGE expression, and use of antioxidants. In conclusion, the data suggest that AGE-RAGE stress is involved in the development of CAD in obesity, and the therapeutic interventions to reduce AGE-RAGE would be helpful in preventing, regressing, and slowing the progression of CAD in obesity.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,Address for correspondence Kailash Prasad, MBBS, MD, PhD, DSc Department of Physiology (APP), College of Medicine, University of Saskatoon107 Wiggins Road, Saskatoon, SK, S7N 5E5Canada
| | - Amal S. Khan
- Community, Health and Epidemiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kalpana K. Bhanumathy
- Division of Oncology, Cancer Cluster Unit, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
18
|
The Decrease in Serum sRAGE Levels Upon Smoking is Associated with Activated Neutrophils. Lung 2022; 200:687-690. [PMID: 36282357 PMCID: PMC9675764 DOI: 10.1007/s00408-022-00585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 12/30/2022]
Abstract
The serum level of the soluble Receptor for Advanced Glycation End-products (sRAGE) is a promising blood biomarker for the development, severity, and progression of chronic obstructive pulmonary disease (COPD). However, cigarette smoking causes a nearly instant drop in circulating sRAGE levels, strongly impacting on the variability in sRAGE levels. In the current study, we investigated the possible mechanism behind the sudden drop in sRAGE upon smoking. We showed that the number of activated neutrophils in blood significantly increases within two hours upon smoking three cigarettes within one hour. Furthermore, an increased expression of the leukocyte activation marker CD11b, which is a known ligand for RAGE, was observed upon smoking. Additionally, the in vitro activation of neutrophils increased their capacity to bind sRAGE. Together, these data indicate that smoking activates neutrophils in the circulation with concomitant upregulation of the RAGE ligand CD11b, leading to reduced levels of sRAGE in serum.
Collapse
|
19
|
Dimova R, Chakarova N, Grozeva G, Tankova T. The relationship between endogenous secretory RAGE and cardiac autonomic function in prediabetes. Int J Clin Pract 2021; 75:e14769. [PMID: 34473880 DOI: 10.1111/ijcp.14769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022] Open
Abstract
AIMS The putative protective role of esRAGE for cardiac autonomic function (CAF) remains unclear. To address this question, the present study has assessed the relationship of serum AGEs, sRAGE and esRAGE, and tissue AGEs with CAF in a high-risk population without diabetes. MATERIAL AND METHODS This study enrolled 48 subjects of mean age 52.7 ± 11.2 years and mean BMI 28.4 ± 6.3 kg/m2 , divided into two groups according to glucose tolerance: 16 with normal glucose tolerance (NGT) and 24 with prediabetes. A standard oral glucose tolerance test (OGTT) was performed. The glucose tolerance was defined according to 2006 WHO criteria. Fasting, 120-minutes glucose, lipids, creatinine, and HbA1c were measured. eGFR was calculated (CKD-EPI). Fasting, 120-minutes insulin (ECLIA method), advanced glycation end products (AGEs), plasma-soluble receptor for AGE (sRAGE), and endogenous secreted isoform of the receptor for AGE (esRAGE), (ELISA method) were assessed. HOMA-IR was calculated. Tissue AGEs were assessed by skin autofluorescence (AGE-Reader, DiagnOpticsTM). CAF was evaluated with ANX 3.0 autonomic nervous-monitoring system (ANSAR), applying deep breathing, Valsalva, and standing. RESULTS There was a significant decline in CAF in prediabetes in comparison with NGT. Serum and tissue AGEs, sRAGE, and esRAGE levels were similar between groups. On the matrix analysis, both sympathetic and parasympathetic activities at baseline and after standing and sympathetic tone during Valsalva were positively related to esRAGE in prediabetes. Multivariate regression analysis showed that esRAGE is an independent contributor to sympathetic, parasympathetic, and total autonomic tone in prediabetes accounting for about 28%, 34%, and 35% of their variances, respectively. CONCLUSION Our results have demonstrated that CAF is decreased in prediabetes. esRAGE, but not sRAGE, is reciprocally related to CAF, probably opposing the negative effects of glycation.
Collapse
Affiliation(s)
- Rumyana Dimova
- Division of Diabetology, Department of Endocrinology, Medical University Sofia, Sofia, Bulgaria
| | - Nevena Chakarova
- Division of Diabetology, Department of Endocrinology, Medical University Sofia, Sofia, Bulgaria
| | - Greta Grozeva
- Division of Diabetology, Department of Endocrinology, Medical University Sofia, Sofia, Bulgaria
| | - Tsvetalina Tankova
- Division of Diabetology, Department of Endocrinology, Medical University Sofia, Sofia, Bulgaria
| |
Collapse
|
20
|
Wei S, Shang S, Dang L, Gao F, Gao Y, Gao L, Chen C, Huo K, Wang J, Wang J, Qu Q. Blood Triglyceride and High-Density Lipoprotein Levels Are Associated with Plasma Amyloid-β Transport: A Population-Based Cross-Sectional Study. J Alzheimers Dis 2021; 84:303-314. [PMID: 34542070 DOI: 10.3233/jad-210405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Studies have found that blood lipids are associated with plasma amyloid-β (Aβ) levels, but the underlying mechanism is still unclear. Two Aβ transporters, soluble form of low-density lipoprotein receptor related protein-1 (sLRP1) and soluble receptor of advanced glycation end products (sRAGE), are crucial in peripheral Aβ transport. OBJECTIVE The aim was to investigate the effects of lipids on the relationships between plasma Aβ and transporter levels. METHODS This study included 1,436 adults aged 40 to 88 years old. Blood Aβ, sLRP1, sRAGE, and lipid levels were measured. Univariate and multivariate analyses were used to analyze the relationships between lipids and plasma Aβ, sLRP1, and sRAGE. RESULTS After adjusting for all possible covariates, high-density lipoprotein (HDL-c) was positively associated with plasma Aβ42 and sRAGE (β= 6.158, p = 0.049; β= 121.156, p < 0.001, respectively), while triglyceride (TG) was negatively associated with plasma Aβ40, Aβ42, and sRAGE (β= -48.389, p = 0.017; β= -11.142, p = 0.020; β= -147.937, p = 0.003, respectively). Additionally, positive correlations were found between plasma Aβ and sRAGE in the normal TG (Aβ40: β= 0.034, p = 0.005; Aβ42: β= 0.010, p = 0.001) and HDL-c groups (Aβ40: β= 0.023, p = 0.033; Aβ42: β= 0.008, p = 0.002) but not in the high TG and low HDL-c groups. CONCLUSION Abnormal levels of TG and HDL-c are associated with decreased Aβ and sRAGE levels. Positive correlations between plasma Aβ and sRAGE were only found in the normal TG and HDL-c groups but not in the high TG and low HDL-c groups. These results indicated that dyslipidemia contributing to plasma Aβ levels might also be involved in peripheral Aβ clearance.
Collapse
Affiliation(s)
- Shan Wei
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Suhang Shang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liangjun Dang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Gao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yao Gao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ling Gao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kang Huo
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyi Wang
- Huyi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Munesue SI, Liang M, Harashima A, Zhong J, Furuhara K, Boitsova EB, Cherepanov SM, Gerasimenko M, Yuhi T, Yamamoto Y, Higashida H. Transport of oxytocin to the brain after peripheral administration by membrane-bound or soluble forms of receptors for advanced glycation end-products. J Neuroendocrinol 2021; 33:e12963. [PMID: 33733541 DOI: 10.1111/jne.12963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022]
Abstract
Oxytocin (OT) is a neuropeptide hormone. Single and repetitive administration of OT increases social interaction and maternal behaviour in humans and mammals. Recently, it was found that the receptor for advanced glycation end-products (RAGE) is an OT-binding protein and plays a critical role in the uptake of OT to the brain after peripheral OT administration. Here, we address some unanswered questions on RAGE-dependent OT transport. First, we found that, after intranasal OT administration, the OT concentration increased in the extracellular space of the medial prefrontal cortex (mPFC) of wild-type male mice, as measured by push-pull microperfusion. No increase of OT in the mPFC was observed in RAGE knockout male mice. Second, in a reconstituted in vitro blood-brain barrier system, inclusion of the soluble form of RAGE (endogenous secretory RAGE [esRAGE]), an alternative splicing variant, in the luminal (blood) side had no effect on the transport of OT to the abluminal (brain) chamber. Third, OT concentrations in the cerebrospinal fluid after i.p. OT injection were slightly higher in male mice overexpressing esRAGE (esRAGE transgenic) compared to those in wild-type male mice, although this did not reach statistical significance. Although more extensive confirmation is necessary because of the small number of experiments in the present study, the reported data support the hypothesis that RAGE may be involved in the transport of OT to the mPFC from the circulation. These results suggest that the soluble form of RAGE in the plasma does not function as a decoy in vitro.
Collapse
Affiliation(s)
- Sei-Ichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - MingKun Liang
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Jing Zhong
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Kazumi Furuhara
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Elizabeta B Boitsova
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk, Russia
| | - Stanislav M Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk, Russia
| |
Collapse
|
22
|
Abstract
Coronary artery atherosclerosis and atherosclerotic plaque rupture cause coronary artery disease (CAD). Advanced glycation end products (AGE) and its cell receptor RAGE, and soluble receptor (sRAGE) and endogenous secretory RAGE (esRAGE) may be involved in the development of atherosclerosis. AGE and its interaction with RAGE are atherogenic, while sRAGE and esRAGE have antiatherogenic effects. AGE-RAGE stress is a ratio of AGE/sRAGE. A high AGE-RAGE stress results in development and progression of CAD and vice-versa. AGE levels in serum and skin, AGE/sRAGE in patients with CAD, and expression of RAGE in animal model of atherosclerosis were higher, while serum levels of esRAGE were lower in patients with CAD compared with controls. Serum levels of sRAGE in CAD patients were contradictory, increased or decreased. This contradictory data may be due to type of patients used, because the sRAGE levels are elevated in diabetics and end-stage renal disease. AGE/sRAGE ratio is elevated in patients with reduced or elevated levels of serum sRAGE. It is to stress that AGE, RAGE, sRAGE, or esRAGE individually cannot serve as universal biomarker. AGE and sRAGE should be measured simultaneously to assess the AGE-RAGE stress. The treatment of CAD should be targeted at reduction in AGE levels, prevention of AGE formation, degradation of AGE in vivo, suppression of RAGE expression, blockade of RAGE, elevation of sRAGE, and use of antioxidants. In conclusion, AGE-RAGE stress would initiate the development and progression of atherosclerosis. Treatment modalities would prevent, regress, and slow the progression of CAD.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
23
|
Nwadiugwu MC. Inflammatory Activities in Type 2 Diabetes Patients With Co-morbid Angiopathies and Exploring Beneficial Interventions: A Systematic Review. Front Public Health 2021; 8:600427. [PMID: 33569370 PMCID: PMC7868423 DOI: 10.3389/fpubh.2020.600427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Diabetes is a long-term condition that can be treated and controlled but do not yet have a cure; it could be induced by inflammation and the goal of managing it is to prevent additional co-morbidities and reduce glycemic fluctuations. There is a need to examine inflammatory activities in diabetes-related angiopathies and explore interventions that could reduce the risk for future outcome or ameliorate its effects to provide insights for improved care and management strategies. Method: The study was conducted in Embase (1946–2020), Ovid Medline (1950–2020), and PubMed databases (1960–2020) using the PICO framework. Primary studies (randomized controlled trials) on type 2 diabetes mellitus and inflammatory activities in diabetes-related angiopathies were included. Terms for the review were retrieved from the Cochrane library and from PROSPERO using its MeSH thesaurus qualifiers. Nine articles out of 454 total hits met the eligibility criteria. The quality assessment for the selected study was done using the Center for Evidence-Based Medicine Critical Appraisal Sheet. Results: Data analysis showed that elevated CRP, TNF-α, and IL-6 were the most commonly found inflammatory indicator in diabetes-related angiopathies, while increased IL-10 and soluble RAGE was an indicator for better outcome. Use of drugs such as salsalate, pioglitazone, simvastatin, and fenofibrate but not glimepiride or benfotiamine reported a significant decrease in inflammatory events. Regular exercise and consumption of dietary supplements such as ginger, hesperidin which have anti-inflammatory properties, and those containing prebiotic fibers (e.g., raspberries) revealed a consistent significant (p < 0.05) reduction in inflammatory activities. Conclusion: Inflammatory activities are implicated in diabetes-related angiopathies; regular exercise, the intake of healthy dietary supplements, and medications with anti-inflammatory properties could result in improved protective risk outcome for diabetes patients by suppressing inflammatory activities and elevating anti-inflammatory events.
Collapse
Affiliation(s)
- Martin C Nwadiugwu
- Faculty of Health and Sports, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
24
|
Association Between Soluble Receptor for Advanced Glycation End Product and Endogenous Secretory Soluble Receptor for Advanced Glycation End Product Levels and Carotid Atherosclerosis in Diabetes: A Systematic Review and Meta-analysis. Can J Diabetes 2021; 45:634-640. [PMID: 33773934 DOI: 10.1016/j.jcjd.2021.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/26/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND The soluble receptor for advanced glycation end product (sRAGE) and endogenous secretory RAGE (esRAGE) are novel biomarkers that are associated with vascular disease. We carried out a systematic review to provide a more complete picture of sRAGE, esRAGE, carotid atherosclerosis and cardiovascular disease (CVD) in patients with diabetes. METHODS We searched the Cochrane Library, PubMed and Embase databases. Systematic review best practices were followed, and study quality was assessed. RESULTS Ultimately, 11 studies met all the inclusion criteria. Meta-analysis indicated that esRAGE was not significantly lower in patients with type 1 diabetes (T1D) (standardized mean difference [SMD], -0.76; 95% confidence interval [CI], -1.57 to 0.05; I2=90%; p=0.002), whereas it was significantly lower in patients with type 2 diabetes (T2D) (SMD, -1.08; 95% CI, -1.53 to -0.62; I2=80%; p=0.006). Meta-analysis suggested that sRAGE levels were not significantly lower or higher in T1D (SMD, 0.06; 95% CI, -0.14 to 0.26; I2=38%; p=0.20) or T2D (SMD, 0.00; 95% CI, -0.26 to 0.26; I2=0.00%; p=1.00) patients. The level of esRAGE was inversely correlated with carotid intima-media thickness (IMT) in T2D patients, whereas there was a contrasting relationship between sRAGE and carotid IMT in T1D patients. Higher sRAGE was associated with cardiovascular events. CONCLUSION Our meta-analysis showed that circulating esRAGE was lower and inversely correlated with IMT in T2D patients.
Collapse
|
25
|
Zhang Y, Jiang T, Liu C, Hu H, Dai F, Xia L, Zhang Q. Effectiveness of Early Advanced Glycation End Product Accumulation Testing in the Diagnosis of Diabetes: A Health Risk Factor Analysis Using the Body Mass Index as a Moderator. Front Endocrinol (Lausanne) 2021; 12:766778. [PMID: 35370932 PMCID: PMC8967381 DOI: 10.3389/fendo.2021.766778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To evaluate the value of non-invasive detection of advanced glycation end products (AGEs) in the early screening of type 2 diabetes mellitus (T2DM) in the community of China. METHODS From January 2018 to January 2019, a total of 912 patients with community health physical examination and no history of T2DM were selected, excluding the results of missing value > 5%. Finally, 906 samples were included in the study, with a response rate of 99.3%. Non-invasive diabetic detection technology was used to detect AGEs in the upper arm skin of all participants, AGE accumulations were classified as ≤P25, P25∼P50, P50∼P75, and >P75; HbA1c, insulin, C-peptide, total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), creatinine, urea, and other indicators were measured at the same time. Univariate analysis of variance was used to compare the differences in general data, biochemical indexes, skin AGE levels, and blood glucose among groups, and logistic regression analysis and latent category analysis were performed. RESULTS In univariate analysis, SBP, FBG, HbA1c, and age were correlated with higher AGE (p < 0.01); TG, TC, HDL, UA, and gender were not positively correlated with AGE (p < 0.01). After controlling for covariates (waist circumference, hip circumference), AGE accumulation was interacted with other variables. The results of latent category analysis (LCA) showed that the health risk factors (HRFs), including age, systolic blood pressure, HbA1c, FBG, triglyceride, total cholesterol, HDL-C, and uric acid, were divided as three groups, and AGE is divided into four categories according to the quartile method, which were low risk (≤P25), low to medium risk (P25∼P50), medium to high (P50∼P75), and high risk (>P75), respectively. The association between the quartile AGE and risk factors of the OR values was 1.09 (95% CI: 1.42, 2.86), 2.61 (95% CI: 1.11, 6.14), and 5.41 (95% CI: 2.42, 12.07), respectively. The moderation analysis using the PROCESS program was used to analyze whether BMI moderated the link between risk factors and AGE accumulation. There was also a significant three-way interaction among HRFs, BMI, and gender for AGE accumulation in the total sample (β = -0.30). CONCLUSION Non-invasive skin detection of AGEs has a certain application value for the assessment of T2DM risk and is related to a variety of risk factors.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Tian Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chao Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Honglin Hu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fang Dai
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Xia
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiu Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Qiu Zhang,
| |
Collapse
|
26
|
Patregnani JT, Brooks BA, Chorvinsky E, Pillai DK. High BAL sRAGE is Associated with Low Serum Eosinophils and IgE in Children with Asthma. CHILDREN (BASEL, SWITZERLAND) 2020; 7:E110. [PMID: 32846877 PMCID: PMC7552609 DOI: 10.3390/children7090110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Asthma remains the most common chronic lung disease in childhood in the United States. The receptor for advanced glycation end products (RAGE) has been recognized as both a marker of and participant in pulmonary pathophysiology. While membrane-bound RAGE (mRAGE) perpetuates the type 2 immune response, the soluble form (sRAGE) may act as a decoy receptor for pro-inflammatory ligands. Bronchoalveolar samples from 45 pediatric patients with asthma were obtained. Patients were divided into high and low BAL sRAGE groups using median sRAGE. Descriptive statistical analysis and non-parametric testing were applied. Children in the "high" sRAGE group had a lower median serum eosinophil (0.27 [SE ± 0.04] vs. 0.57 [± 0.06] K/mcl, adjusted p = 0.003) and lower serum IgE level (194.4 [± 60.7] vs. 676.2 ± 140.5) IU/mL, adjusted p = 0.004) as compared to the "low" sRAGE group. When controlling for age and body mass index percentile, absolute eosinophil count (p = 0.03) and serum IgE (p = 0.043) remained significantly lower in the "high" sRAGE group. Children with asthma and high levels of BAL sRAGE have lower serum eosinophil and IgE levels. These findings are consistent with the hypothesis that sRAGE may act as a decoy receptor by binding ligands that normally interact with mRAGE.
Collapse
Affiliation(s)
- Jason T. Patregnani
- Division of Cardiac Critical Care Medicine, Children’s National Hospital, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20052, USA; (E.C.); (D.K.P.)
| | - Bonnie A. Brooks
- Division of Critical Care Medicine, Children’s National Hospital, Washington, DC 20010, USA;
| | - Elizabeth Chorvinsky
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20052, USA; (E.C.); (D.K.P.)
| | - Dinesh K. Pillai
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20052, USA; (E.C.); (D.K.P.)
- Division of Pulmonology, Children’s National Hospital, Washington, DC 20010, USA
| |
Collapse
|
27
|
Steenbeke M, De Bruyne S, De Buyzere M, Lapauw B, Speeckaert R, Petrovic M, Delanghe JR, Speeckaert MM. The role of soluble receptor for advanced glycation end-products (sRAGE) in the general population and patients with diabetes mellitus with a focus on renal function and overall outcome. Crit Rev Clin Lab Sci 2020; 58:113-130. [PMID: 32669010 DOI: 10.1080/10408363.2020.1791045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Isoforms of the receptor for advanced glycation end-product (RAGE) protein, which lack the transmembrane and the signaling (soluble RAGE or sRAGE) domains are hypothesized to counteract the detrimental action of the full-length receptor by acting as a decoy, and they provide a potential tool to treat RAGE-associated diseases. Multiple studies have explored the relationship between sRAGE and endogenous secretory RAGE and its polymorphism and obesity, metabolic syndrome, atherosclerosis, kidney function, and increased mortality in the general population. In addition, sRAGE may be a key player in the pathogenesis of diabetes mellitus and its microvascular (e.g. kidney disease) as well as macrovascular (e.g. cardiovascular disease) complications. In this review, we focus on the role of sRAGE as a biomarker in these specific areas. As there is a lack of an underlying unifying hypothesis about how sRAGE changes according to the disease condition or risk factor, there is a call to incorporate all three players of the AGE-RAGE axis into a new universal biomarker/risk marker: (AGE + RAGE)/sRAGE. However, the measurement of RAGE in humans is not practical as it is a cell-bound receptor for which tissue is required for analysis. A high AGE/sRAGE ratio may be a valuable alternative and practical universal biomarker/risk marker for diseases associated with the AGE-RAGE axis, irrespective of low or high serum sRAGE concentrations.
Collapse
Affiliation(s)
- Mieke Steenbeke
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Sander De Bruyne
- Department of Clinical Chemistry, Ghent University Hospital, Ghent, Belgium
| | - Marc De Buyzere
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | | | - Mirko Petrovic
- Department of Geriatrics, Ghent University Hospital, Ghent, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium.,Research Foundation Flanders, Brussels, Belgium
| |
Collapse
|
28
|
Tavares JF, Ribeiro PVM, Coelho OGL, Silva LED, Alfenas RCG. Can advanced glycation end-products and their receptors be affected by weight loss? A systematic review. Obes Rev 2020; 21:e13000. [PMID: 31950676 DOI: 10.1111/obr.13000] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023]
Abstract
Advanced glycation end products (AGEs) have been implicated in the pathogenesis of most chronic diseases. Therefore, identification of treatments that can attenuate the effects of these compounds and prevent cardiometabolic complications is of extreme public health interest. Recently, body weight management interventions showed positive results on reducing serum AGE concentrations. Moreover, the soluble receptor for advanced glycation end products (sRAGE) is considered to be a novel biomarker to identify patients with obesity most likely to benefit from weight management interventions. This systematic review aimed to critically analyze papers evaluating the effects of weight loss on serum AGEs and its receptors in adults with excess body weight. MEDLINE, Cochrane, Scopus, and Lilacs databases were searched. Three studies evaluating the response of AGEs to energy-restricted diets and six assessing sRAGE as the primary outcome were included. Energy-restricted diets and bariatric surgery reduced serum AGE concentrations, but effects on endogenous secretory RAGE (esRAGE) and sRAGE concentrations are conflicting. These results may be associated with mechanisms related to changes in dietary intake and limiting endogenous AGE formation. Therefore, the role of energy-restricted diets and bariatric surgery on lowering serum AGE concentrations, as well as its effects on AGEs receptors, deserves further investigation.
Collapse
Affiliation(s)
- Juliana F Tavares
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Priscila V M Ribeiro
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Olívia G L Coelho
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Laís E da Silva
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Rita C G Alfenas
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
29
|
Malin SK, Navaneethan SD, Fealy CE, Scelsi A, Huang H, Rocco M, Kirwan JP. Exercise plus caloric restriction lowers soluble RAGE in adults with chronic kidney disease. Obes Sci Pract 2020; 6:307-312. [PMID: 32523720 PMCID: PMC7278900 DOI: 10.1002/osp4.408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION The incidence of chronic kidney disease (CKD) has increased in recent years. CKD is associated with obesity, type 2 diabetes, and cardiovascular disease, although the mechanism remains unclear. Elevated soluble form of the receptor for advanced glycation end products ( RAGE) is related to proinflammatory signaling pathways that may promote diabetic nephropathy and vascular dysfunction. Because lifestyle modification reduces systematic inflammation in adults with obesity and hyperglycaemia, the hypothesis that exercise plus caloric restriction would lower soluble RAGE in adults with CKD was tested in this study. METHODS Eight adults (n = 6 females; age: 56.3 ± 2.8 y; BMI: 43.7 ± 2.2 kg/m2; 2-h OGTT glucose: 215 ± 9.8 mg/dL; eGFR: 49.6 ± 3.3 mL/min/1.73 m2) were enrolled in a 12-week pilot lifestyle intervention (supervised aerobic exercise [5 d/wk, up to 60 min/d at approximately 65%-85% HRmax] plus low-fat dietary counseling). Body composition (DXA), aerobic fitness (VO2max), insulin sensitivity (120 min 75 g OGTT; Matsuda Index), plasma levels of soluble RAGE and fetuin-A were measured before and after the intervention. RESULTS Exercise reduced body weight, fasting glucose, and fetuin-A as well as increased VO2max, glucose tolerance, and insulin sensitivity (all P < .05). Lifestyle intervention decreased plasma soluble RAGE (pre: 1018.1 ± 163 vs post: 810.6 ± 119.6 ng/mL; P = .02), and the decrease was associated with a lower 2-hour blood glucose (r = 0.76, P = .03) and with increased insulin sensitivity (r = -0.90, P < .01). CONCLUSIONS Exercise and caloric restriction are effective at lowering soluble RAGE in relation to glucose regulation in patients with CKD.
Collapse
Affiliation(s)
- Steven K. Malin
- Department of KinesiologyUniversity of VirginiaCharlottesvilleVAUSA
- Division of Endocrinology and MetabolismUniversity of VirginiaCharlottesvilleVAUSA
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVAUSA
| | - Sankar D. Navaneethan
- Selzman Institute for Kidney Health, Section of Nephrology, Department of MedicineBaylor College of MedicineHoustonTXUSA
| | - Ciaran E. Fealy
- Department of Pathobiology, Lerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Amanda Scelsi
- Department of Pathobiology, Lerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Hazel Huang
- Department of Pathobiology, Lerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Michael Rocco
- Heart and Vascular InstituteCleveland ClinicClevelandOHUSA
| | - John P. Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLAUSA
| |
Collapse
|
30
|
Change of some oxidative stress parameters after supplementation with whey protein isolate in patients with type 2 diabetes. Nutrition 2020; 73:110700. [DOI: 10.1016/j.nut.2019.110700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/03/2019] [Accepted: 11/27/2019] [Indexed: 02/02/2023]
|
31
|
Soave I, Occhiali T, Assorgi C, Marci R, Caserta D. Environmental toxin exposure in polycystic ovary syndrome women and possible ovarian neoplastic repercussion. Curr Med Res Opin 2020; 36:693-703. [PMID: 32046531 DOI: 10.1080/03007995.2020.1729108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: Over the last two decades, increasing attention has been paid to environmental toxins and their effects on the female reproductive system. Endocrine disrupting chemicals (EDCs) are exogenous substances or mixtures that can mimic the action of steroid hormones and interfere with their metabolism. Advanced glycation end products (AGEs) are proinflammatory molecules that can interact with cell surface receptors and mediate the triggering of proinflammatory pathways and oxidative stress. The purpose of this review is to explore the effects of environmental toxin exposure in the pathogenesis of both polycystic ovary syndrome (PCOS) and OC (ovarian cancer), considered separately, and also to evaluate possible neoplastic ovarian repercussion after exposure in patients diagnosed with PCOS.Materials and methods: We searched PubMed for articles published in the English language with the use of the following MeSH search terms: "polycystic ovary syndrome" and "ovarian cancer" combined with "endocrine disruptors". Titles and abstracts were examined and full articles that met the selection criteria were retrieved. A manual search of review articles and cross-references completed the search.Results: Extensive data from different studies collected in recent years concerning the effects of EDC/AGE exposure have confirmed their role in the pathophysiology of both PCOS and OC. They favor PCOS/OC development through different mechanisms that finally lead to hormonal and metabolic disruption and epigenetic modifications.Conclusions: Environmental toxin exposure in PCOS women could favor neoplastic transformation by exacerbating and potentiating some PCOS features. Further research, although difficult, is needed in order to prevent further diffusion of these substances in the environment, or at least to provide adequate information to the population considered at risk.
Collapse
Affiliation(s)
- Ilaria Soave
- Department of Surgical and Clinical Sciences and Translational Medicine, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Tommaso Occhiali
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Chiara Assorgi
- Department of Surgical and Clinical Sciences and Translational Medicine, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Roberto Marci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Donatella Caserta
- Department of Surgical and Clinical Sciences and Translational Medicine, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
32
|
Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3818196. [PMID: 32256950 PMCID: PMC7104326 DOI: 10.1155/2020/3818196] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
The advanced glycation end products (AGEs) are organic molecules formed in any living organisms with a great variety of structural and functional properties. They are considered organic markers of the glycation process. Due to their great heterogeneity, there is no specific test for their operational measurement. In this review, we have updated the most common chromatographic, colorimetric, spectroscopic, mass spectrometric, and serological methods, typically used for the determination of AGEs in biological samples. We have described their signaling and signal transduction mechanisms and cell epigenetic effects. Although mass spectrometric analysis is not widespread in the detection of AGEs at the clinical level, this technique is highly promising for the early diagnosis and therapeutics of diseases caused by AGEs. Protocols are available for high-resolution mass spectrometry of glycated proteins although they are characterized by complex machine management. Simpler procedures are available although much less precise than mass spectrometry. Among them, immunochemical tests are very common since they are able to detect AGEs in a simple and immediate way. In these years, new methodologies have been developed using an in vivo novel and noninvasive spectroscopic methods. These methods are based on the measurement of autofluorescence of AGEs. Another method consists of detecting AGEs in the human skin to detect chronic exposure, without the inconvenience of invasive methods. The aim of this review is to compare the different approaches of measuring AGEs at a clinical perspective due to their strict association with oxidative stress and inflammation.
Collapse
|
33
|
Prasad K. AGE-RAGE Stress in the Pathophysiology of Atrial Fibrillation and Its Treatment. Int J Angiol 2019; 29:72-80. [PMID: 32476808 DOI: 10.1055/s-0039-3400541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common of cardiac arrhythmias. Mechanisms such as atrial structural remodeling and electrical remodeling have been implicated in the pathogenesis of AF. The data to date suggest that advanced glycation end products (AGEs) and its cell receptor RAGE (receptor for AGE) and soluble receptor (sRAGE) are involved in the pathogenesis of AF. This review focuses on the role of AGE-RAGE axis in the pathogenesis of AF. Interaction of AGE with RAGE generates reactive oxygen species, cytokines, and vascular cell adhesion molecules. sRAGE is a cytoprotective agent. The data show that serum levels of AGE and sRAGE, and expression of RAGE, are elevated in AF patients. Elevated levels of sRAGE did not protect the development of AF. This might be due to greater elevation of AGE than sRAGE. Measurement of AGE-RAGE stress (AGE/sRAGE) would be appropriate as compared with measurement of AGE or RAGE or sRAGE alone in AF patients. AGE and its interaction with RAGE can induce AF through alteration in cellular protein and extracellular matrix. AGE and its interaction with RAGE induce atrial structural and electrical remodeling. The treatment strategy should be directed toward reduction in AGE levels, suppression of RAGE expression, blocking of binding of AGE to RAGE, and elevation of sRAGE and antioxidants. In conclusion, AGE-RAGE axis is involved in the development of AF through atrial structural and electrical remodeling. The treatment modalities for AF should include lowering of AGE, suppression of RAGE, elevation of sRAGE, and use of antioxidants.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatchewan, Saskatoon, Canada
| |
Collapse
|
34
|
Lim K, Kalim S. The Role of Nonenzymatic Post-translational Protein Modifications in Uremic Vascular Calcification. Adv Chronic Kidney Dis 2019; 26:427-436. [PMID: 31831121 DOI: 10.1053/j.ackd.2019.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 01/11/2023]
Abstract
Considerable technological advances have enabled the identification and linkage of nonenzymatic post-translationally modified proteins to the pathogenesis of cardiovascular disease (CVD) in patients with kidney failure. Through processes such as the nonenzymatic carbamylation reaction as well as the formation of advanced glycation end products, we now know that protein modifications are invariably associated with the development of CVD beyond a mere epiphenomenon and this has become an important focus of nephrology research in recent years. Although the specific mechanisms by which protein modifications occurring in kidney failure that may contribute to CVD are diverse and include pathways such as inflammation and fibrosis, vascular calcification has emerged as a distinct pathological sequelae of protein modifications. In this review, we consider the biological mechanisms and clinical relevance of protein carbamylation and advanced glycation end products in CVD development with a focus on vascular calcification.
Collapse
|
35
|
Soluble receptor for advanced glycation end-products independently influences individual age-dependent increase of arterial stiffness. Hypertens Res 2019; 43:111-120. [DOI: 10.1038/s41440-019-0347-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/14/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023]
|
36
|
Lee TW, Kao YH, Chen YJ, Chao TF, Lee TI. Therapeutic potential of vitamin D in AGE/RAGE-related cardiovascular diseases. Cell Mol Life Sci 2019; 76:4103-4115. [PMID: 31250032 PMCID: PMC11105755 DOI: 10.1007/s00018-019-03204-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases (CVDs) are among the leading threats to human health. The advanced glycation end product (AGE) and receptor for AGE (RAGE) signaling pathway regulates the pathogenesis of CVDs, through its effects on arterial stiffness, atherosclerosis, mitochondrial dysfunction, oxidative stress, calcium homeostasis, and cytoskeletal function. Targeting the AGE/RAGE pathway is a potential therapeutic strategy for ameliorating CVDs. Vitamin D has several beneficial effects on the cardiovascular system. Experimental findings have shown that vitamin D regulates AGE/RAGE signaling and its downstream effects. This article provides a comprehensive review of the mechanistic insights into AGE/RAGE involvement in CVDs and the modulation of the AGE/RAGE signaling pathways by vitamin D.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Xinglong Road, Section 3 Wenshan District, Taipei, 11696, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Xinglong Road, Section 3 Wenshan District, Taipei, 11696, Taiwan.
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
37
|
Dallak M, Haidara MA, Bin-Jaliah I, Eid RA, Amin SN, Abdel Latif NS, Al-Ani B. Metformin suppresses aortic ultrastrucural damage and hypertension induced by diabetes: a potential role of advanced glycation end products. Ultrastruct Pathol 2019; 43:190-198. [PMID: 31522593 DOI: 10.1080/01913123.2019.1666952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease secondary to diabetes represents a significant challenge to the health community. The advanced glycation end products (AGEs) play an important role in diabetes-mediated vascular injury. We tested whether metformin can suppress aortic AGEs production and protect against aortic injuries (aortopathy) and hypertension in streptozotocin-induced type 2 diabetes mellitus (T2DM) animal model. T2DM was induced in rats two weeks after being fed on a high carbohydrate and fat diet (HCFD), and continued on a HCFD until being sacrificed at week 12 (model group). The protective group was put on metformin two weeks before diabetic induction and continued on metformin and HCFD until the end of the experiment, at week 12. Using electron microscopy examinations, we observed in the model group substantial damage to the ultrastructure of aortic endothelial and vascular smooth muscle layers as demonstrated by markedly distorted vacuolated endothelial and vascular smooth muscle cells with pyknotic nuclei detached from the underlying basement membrane, which were protected by metformin. Also, metformin significantly (p < .05) decreased both systolic and diastolic blood pressure, aortic levels of AGEs, and blood levels of oxidative stress and inflammatory biomarkers. We conclude that metformin protects against T2DM-induced aortopathy and hypertension, possibly via the inhibition of AGEs, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Mohammad Dallak
- Departments of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamed A Haidara
- Departments of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ismaeel Bin-Jaliah
- Departments of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Refaat A Eid
- Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Shaimaa N Amin
- Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Giza, Egypt
| | - Noha S Abdel Latif
- Medical Pharmacology, Kasr Al-Aini Faculty of Medicine, Cairo University, Giza, Egypt
| | - Bahjat Al-Ani
- Departments of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
38
|
Di Pino A, Urbano F, Scicali R, Di Mauro S, Filippello A, Scamporrino A, Piro S, Purrello F, Rabuazzo AM. 1 h Postload Glycemia Is Associated with Low Endogenous Secretory Receptor for Advanced Glycation End Product Levels and Early Markers of Cardiovascular Disease. Cells 2019; 8:cells8080910. [PMID: 31426413 PMCID: PMC6721743 DOI: 10.3390/cells8080910] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/30/2022] Open
Abstract
We investigated the correlation of the soluble receptor for advanced glycation end products (sRAGE) and endogenous secretory RAGE (esRAGE) with markers of cardiovascular disease in subjects with normal glucose tolerance (NGT) and 1 h postload glucose ≥155 mg/dL after an oral glucose tolerance test. We stratified 282 subjects without a previous diagnosis of diabetes into three groups: 123 controls (NGT and 1 h postload glycemia <155 mg/dL), 84 NGT and 1 h postload glycemia ≥155 mg/dL (NGT 1 h high), and 75 subjects with impaired fasting glucose and/or impaired glucose tolerance (IFG/IGT). NGT 1 h high subjects exhibited lower esRAGE (0.36 ± 0.18 vs. 0.4 5 ± 0.2, p < 0.05) and higher S100A12 levels than controls (5684 (3193.2–8295.6) vs. 3960.1 (2101.8–7419), p < 0.05). Furthermore, they showed an increased pulse wave velocity (PWV) and intima–media thickness (IMT). No differences were found between the NGT 1 h high group and the IFG/IGT group regarding cardiometabolic profiles. After multiple regression analyses, esRAGE was associated with glycated hemoglobin (HbA1c) and high-sensitivity C-reactive protein (hs-CRP). Age, HbA1c, and esRAGE were the determinants of IMT, whereas S100A12 and systolic pressure were the determinants of PWV. The NGT 1 h high group exhibited low esRAGE levels and an altered cardiometabolic profile. HbA1c, S100A12, and hs-CRP were associated with these alterations. In conclusion, subjects with NGT are not a homogeneous population, and they present different cardiovascular and glycometabolic risks.
Collapse
|
39
|
Abdulle A, Inman CK, Saleh A, Noshi M, Galani D, Abdelwareth L, Alsafar H, Elfatih A, Al Shamsi H, Ali R, Li H, Ramasamy R, Schmidt AM, Benbarka MM, Hassan MH. Metabolic dysfunction in Emirati subjects in Abu Dhabi: Relationship to levels of soluble RAGEs. J Clin Transl Endocrinol 2019; 16:100192. [PMID: 31080742 PMCID: PMC6503160 DOI: 10.1016/j.jcte.2019.100192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/07/2019] [Accepted: 04/22/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The United Arab Emirates is experiencing increasing rates of type 2 diabetes (T2D) and its complications. As soluble levels of the receptor for advanced glycation end products, (sRAGE), and endogenous secretory RAGE (esRAGE), the latter an alternatively spliced form of AGER (the gene encoding RAGE), have been reported to be associated with T2D and its complications, we tested for potential relationships between these factors and T2D status in Emirati subjects. METHODS In a case-control study, we recruited Emirati subjects with T2D and controls from the Sheikh Khalifa Medical City in Abu Dhabi. Anthropomorphic characteristics, levels of plasma sRAGE and esRAGE, and routine chemistry variables were measured. RESULTS Two hundred and sixteen T2D subjects and 215 control subjects (mean age, 57.4 ± 12.1 vs. 50.7 ± 15.4 years; P < 0.0001, respectively) were enrolled. Univariate analyses showed that levels of sRAGE were significantly lower in the T2D vs. control subjects (1033.9 ± 545.3 vs. 1169.2 ± 664.1 pg/ml, respectively; P = 0.02). Multivariate analyses adjusting for age, sex, systolic blood pressure, pulse, body mass index, Waist/Hip circumference ratio, fasting blood glucose, HDL, LDL, insulin, triglycerides, Vitamin D and urea levels revealed that the difference in sRAGE levels between T2D and control subjects remained statistically-significant, P = 0.03, but not after including estimated glomerular filtration rate in the model, P = 0.14. There were no significant differences in levels of esRAGE. Levels of plasma insulin were significantly higher in the control vs. the T2D subjects (133.6 ± 149.9 vs. 107.6 ± 93.3 pg/L. respectively; P = 0.01, after adjustment for age and sex). CONCLUSION/DISCUSSION Levels of sRAGE, but not esRAGE, were associated with T2D status in Abu Dhabi, but not after correction for eGFR. Elevated levels of plasma insulin in both control and T2D subjects suggests the presence of metabolic dysfunction, even in subjects without diabetes.
Collapse
Key Words
- ADAM10, a disintegrin and metalloproteinase domain-containing protein 10
- AGEs, advanced glycation endproducts
- ARIC, Atherosclerosis Risk in Communities
- BMI, body mass index
- CARDS, Collaborative Atorvastatin Diabetes Study
- CV, coefficient of variation
- DBP, diastolic blood pressure
- ELISA, enzyme-linked immunosorbent assay
- ESRD, end stage renal disease
- FBG, fasting blood glucose
- HDL, high density lipoprotein
- HbA1c, glycosylated hemoglobin
- Insulin resistance
- Kidney function
- LADA, latent autoimmune diabetes of the adult
- LDL, low density lipoprotein
- MMP, matrix metalloproteinase
- RAGE, receptor for advanced glycation endproducts
- Receptor for advanced glycation endproducts (RAGE)
- SBP, systolic blood pressure
- SKMC, Sheikh Khalifa Medical City
- Soluble RAGE (sRAGE)
- T2D, type 2 diabetes
- TG, triglycerides
- Type 2 diabetes
- UAE, United Arab Emirates
- UAEHFS, United Arab Emirates Healthy Futures Study
- W/H ratio, Waist/Hip circumference ratio
- eGFR, estimated glomerular filtration rate
- esRAGE (endogenous secretory RAGE)
- esRAGE, endogenous secretory RAGE
- hsCRP, high sensitivity C-reactive protein
- sRAGE, soluble RAGE
Collapse
Affiliation(s)
- Abdishakur Abdulle
- Public Health Research Center, New York University Abu Dhabi, United Arab Emirates
| | - Claire K. Inman
- Public Health Research Center, New York University Abu Dhabi, United Arab Emirates
| | - Abdelkarim Saleh
- Department of Medicine, Sheikh Khalifa Medical City, United Arab Emirates
| | - Mohamed Noshi
- Department of Medicine, Sheikh Khalifa Medical City, United Arab Emirates
| | - Divya Galani
- Public Health Research Center, New York University Abu Dhabi, United Arab Emirates
| | - Laila Abdelwareth
- Department of Pathology, Cleveland Clinic Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
| | - Abubaker Elfatih
- Department of Medicine, Sheikh Khalifa Medical City, United Arab Emirates
| | - Hefsa Al Shamsi
- Department of Medicine, Sheikh Khalifa Medical City, United Arab Emirates
| | - Raghib Ali
- Public Health Research Center, New York University Abu Dhabi, United Arab Emirates
| | - Huilin Li
- Department of Population Health, New York University School of Medicine, NY, USA
| | | | - Ann Marie Schmidt
- Department of Medicine, New York University School of Medicine, NY, USA
| | | | - Mohamed H. Hassan
- Department of Medicine, Sheikh Khalifa Medical City, United Arab Emirates
| |
Collapse
|
40
|
AGE-RAGE stress: a changing landscape in pathology and treatment of Alzheimer's disease. Mol Cell Biochem 2019; 459:95-112. [PMID: 31079281 DOI: 10.1007/s11010-019-03553-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/04/2019] [Indexed: 12/27/2022]
Abstract
Numerous hypotheses including amyloid cascade, cholinergic, and oxidative have been proposed for pathogenesis of Alzheimer's disease (AD). The data suggest that advanced glycation end products (AGEs) and its receptor RAGE (receptor for AGE) are involved in the pathogenesis of AD. AGE-RAGE stress, defined as a balance between stressors (AGE, RAGE) and anti-stressors (sRAGE, AGE degraders) in favor of stressors, has been implicated in pathogenesis of diseases. AGE and its interaction with RAGE-mediated increase in the reactive oxygen species (ROS) damage brain because of its increased vulnerability to ROS. AGE and ROS increase the synthesis of amyloid β (Aβ) leading to deposition of Aβ and phosphorylation of tau, culminating in formation of plaques and neurofibrillary tangles. ROS increase the synthesis of Aβ, high-mobility group box 1(HMGB1), and S100 that interacts with RAGE to produce additional ROS resulting in enhancement of AD pathology. Elevation of ROS precedes the Aβ plaques formation. Because of involvement of AGE and RAGE in AD pathology, the treatment should be targeted at lowering AGE levels through reduction in consumption and formation of AGE, and lowering expression of RAGE, blocking of RAGE ligand binding, increasing levels of soluble RAGE (sRAGE), and use of antioxidants. The above treatment aspect of AD is lacking. In conclusion, AGE-RAGE stress initiates, and Aβ, HMGB1, and S100 enhance the progression of AD. Reduction of levels of AGE and RAGE, elevation of sRAGE, and antioxidants would be beneficial therapeutic modalities in the prevention, regression, and slowing of progression of AD.
Collapse
|
41
|
McKay EC, Beck JS, Khoo SK, Dykema KJ, Cottingham SL, Winn ME, Paulson HL, Lieberman AP, Counts SE. Peri-Infarct Upregulation of the Oxytocin Receptor in Vascular Dementia. J Neuropathol Exp Neurol 2019; 78:436-452. [PMID: 30990880 PMCID: PMC6467199 DOI: 10.1093/jnen/nlz023] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vascular dementia (VaD) is cognitive decline linked to reduced cerebral blood perfusion, yet there are few therapeutic options to protect cognitive function following cerebrovascular accidents. The purpose of this study was to profile gene expression changes unique to VaD to identify and characterize disease relevant changes that could offer clues for future therapeutic direction. Microarray-based profiling and validation studies of postmortem frontal cortex samples from VaD, Alzheimer disease, and age-matched control subjects revealed that the oxytocin receptor (OXTR) was strongly and differentially upregulated in VaD. Further characterization in fixed tissue from the same cases showed that OXTR upregulation occurs de novo around and within microinfarcts in peri-infarct reactive astrocytes as well as within vascular profiles, likely on microvascular endothelial cells. These results indicate that increased OXTR expression in peri-infarct regions may be a specific response to microvascular insults. Given the established OXTR signaling cascades that elicit antioxidant, anti-inflammatory, and pro-angiogenic responses, the present findings suggest that de novo OXTR expression in the peri-infarct space is a tissue-protective response by astroglial and vascular cells in the wake of ischemic damage that could be exploited as a therapeutic option for the preservation of cognition following cerebrovascular insults.
Collapse
Affiliation(s)
- Erin C McKay
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - John S Beck
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan
| | - Sok Kean Khoo
- Department of Cell and Molecular Biology, Grand Valley State University, Grand Rapids, Michigan
| | - Karl J Dykema
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Sandra L Cottingham
- Department of Pathology, Spectrum Health and Helen DeVos Children’s Hospital, Grand Rapids, Michigan
| | - Mary E Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
- Michigan Alzheimer’s Disease Core Center, Ann Arbor, Michigan
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Michigan Alzheimer’s Disease Core Center, Ann Arbor, Michigan
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
- Michigan Alzheimer’s Disease Core Center, Ann Arbor, Michigan
- Department of Family Medicine, Michigan State University, Grand Rapids, Michigan
- Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, Michigan
| |
Collapse
|
42
|
Gateva AT, Assyov YS, Tsakova AD, Kamenov ZA. Serum AGEs and sRAGE levels are not related to vascular complications in patients with prediabetes. Diabetes Metab Syndr 2019; 13:1005-1010. [PMID: 31336435 DOI: 10.1016/j.dsx.2019.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/17/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND While hyperglycemia has a key role in the pathogenesis of microvascular complications of diabetes, it is just one of the many factors contributing to macrovascular damage. The aim of the present study is to investigate the link between serum pentosidine and sRAGE levels and vascular complications in patients with prediabetes compared to normal glucose tolerance controls with obesity. METHODS In this study were included 76 patients with mean age 50.7 ± 10.7 years, divided into two age and BMI-matched groups - group 1 with obesity without glycemic disturbances (n = 38) and group 2 with obesity and prediabetes (n = 38). RESULTS There was no significant difference in pentosidine and sRAGE levels between patients with obesity and prediabetes. Patients with hypertension had lower levels of sRAGE compared to nonhypertensive subjects. sRAGE showed a weak negative correlation to blood glucose on 60th min of OGTT and HOMA index. There was no correlation between sRAGE and pentosidine levels and the markers of micro- and macrovascular complications. There was no difference in sRAGE and pentosidine levels between patients with and without endothelial dysfunction. CONCLUSIONS sRAGE and pentosidine levels are similar in patients with obesity with and without prediabetes and do not correlate to the markers of micro- and macrovascular complications.
Collapse
Affiliation(s)
- Antoaneta T Gateva
- Clinic of Endocrinology, University Hospital "Alexandrovska", Medical University-Sofia, 1 Georgi Sofiiski str, 1431, Sofia, Bulgaria.
| | - Yavor S Assyov
- Clinic of Endocrinology, University Hospital "Alexandrovska", Medical University-Sofia, 1 Georgi Sofiiski str, 1431, Sofia, Bulgaria
| | - Adelina D Tsakova
- Central Clinical Laboratory, University Hospital "Alexandrovska", Medical University-Sofia, 1 Georgi Sofiiski str, 1431, Sofia, Bulgaria
| | - Zdravko A Kamenov
- Clinic of Endocrinology, University Hospital "Alexandrovska", Medical University-Sofia, 1 Georgi Sofiiski str, 1431, Sofia, Bulgaria
| |
Collapse
|
43
|
Lamb LS, Davis TME, Forbes J, Irrgang F, Golledge J, Flicker L, Yeap BB. Response to Letter to the Editor: "Advanced Glycation End Products and esRAGE Are Associated With Bone Turnover and Incidence of Hip Fracture in Older Men". J Clin Endocrinol Metab 2019; 104:684-685. [PMID: 30351368 DOI: 10.1210/jc.2018-02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Lydia S Lamb
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Timothy M E Davis
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Josephine Forbes
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Felix Irrgang
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
- Department of Vascular and Endovascular Surgery, Townsville Hospital, Townsville, Queensland, Australia
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Western Australian Centre for Health and Ageing, Centre for Medical Research, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Bu B Yeap
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia
| |
Collapse
|
44
|
Pathological Implications of Receptor for Advanced Glycation End-Product ( AGER) Gene Polymorphism. DISEASE MARKERS 2019; 2019:2067353. [PMID: 30863465 PMCID: PMC6378764 DOI: 10.1155/2019/2067353] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/01/2019] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) is a cell surface transmembrane multiligand receptor, encoded by the AGER gene. RAGE presents many transcripts, is expressed mainly in the lung, and involves multiple pathways (such as NFκB, Akt, p38, and MAP kinases) that initiate and perpetuate an unfavorable proinflammatory state. Due to these numerous functional activities, RAGE is implicated in multiple diseases. AGER is a highly polymorphic gene, with polymorphisms or SNP (single-nucleotide polymorphism) that could be responsible or co-responsible for disease development. This review was designed to shed light on the pathological implications of AGER polymorphisms. Five polymorphisms are described: rs2070600, rs1800624, rs1800625, rs184003, and a 63 bp deletion. The rs2070600 SNP may be associated with the development of human autoimmune disease, diabetes complications, cancer, and lung diseases such as chronic obstructive pulmonary disease and acute respiratory distress syndrome. The rs1800624 SNP involves AGER gene regulation and may be related to reduced risk of heart disease, cancer, Crohn's disease, and type 1 diabetes complications. The rs1800625 SNP may be associated with the development of diabetic retinopathy, cancer, and lupus but may be protective against cardiovascular risk. The rs184003 SNP seems related to coronary artery disease, breast cancer, and diabetes. The 63 bp deletion may be associated with reduced survival from heart diseases during diabetic nephropathy. Here, these potential associations between AGER polymorphisms and the development of diseases are discussed, as there have been conflicting findings on the pathological impact of AGER SNPs in the literature. These contradictory results might be explained by distinct AGER SNP frequencies depending on ethnicity.
Collapse
|
45
|
Chen XJ, Wu WJ, Zhou Q, Jie JP, Chen X, Wang F, Gong XH. Retracted: Advanced glycation end-products induce oxidative stress through the Sirt1/Nrf2 axis by interacting with the receptor of AGEs under diabetic conditions. J Cell Biochem 2019; 120:2159-2170. [PMID: 30324763 DOI: 10.1002/jcb.27524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/30/2018] [Indexed: 02/02/2023]
Abstract
Despite the administration of exogenous insulin and other medications used to control many aspects of diabetes mellitus (DM), increased oxidative stress has been increasingly acknowledged in DM development and complications. Therefore, this study aims to investigate the role of advanced glycation end-products (AGEs) in oxidative stress (OS) of thyroid cells in patients with DM. Patients with DM with or without thyroid dysfunction (TD) were enrolled. Thyroid toxic damage was induced by adding AGE-modified bovine serum albumin (AGE-BSA) to normal human thyroid follicular epithelial cells. The cell viability, cell cycle, and cell apoptosis, as well as the content of reactive oxygen species (ROS), catalase (CAT), and malondialdehyde (MDA) in cells were measured. Thyroid hormones, T3, T4, FT3, and FT4 levels were measured by enzyme-linked immunosorbent assay. Receptor for advanced glycation end products (RAGE), sirtuin1 ( Sirt1), and NF-E2-related factor 2 ( Nrf2) expressions were detected, and the mitochondrial membrane potential was measured. We found increased AGEs in the serum of DM patients with TD. By increasing AGE-BSA concentration, cell viability; the thyroid hormones T3, T4, FT3, and FT4 levels; and mitochondrial membrane potential all significantly decreased. However, the increase in AGE-BSA concentration led to an increase in cell apoptosis, RAGE, and nuclear factor-κB expressions but produced the opposite effect on Sirt1, Nrf2, and heme oxygenase-1 expressions, as well as a decrease in antioxidant response element protein levels. The AGE-BSA increased ROS and MDA levels and reduced CAT level in normal human thyroid follicular epithelial cells on a dose independence basis. Our results demonstrated that AGEs-mediated direct increase of RAGE produced OS in thyroid cells of DM by inactivating the Sirt1/Nrf2 axis.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Jun Wu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Zhou
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jin-Ping Jie
- Department of Endocrinology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang Wang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Hua Gong
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
46
|
Fishman SL, Sonmez H, Basman C, Singh V, Poretsky L. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med 2018; 24:59. [PMID: 30470170 PMCID: PMC6251169 DOI: 10.1186/s10020-018-0060-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022] Open
Abstract
Background Traditional risk factors are insufficient to explain all cases of coronary artery disease (CAD) in patients with diabetes mellitus (DM). Advanced glycation end-products (AGEs) and their receptors may play important roles in the development and progression of CAD. Body Hyperglycemia is the hallmark feature of DM. An increase in the incidence of both micro-and macrovascular complications of diabetes has been observed with increased duration of hyperglycemia. This association persists even after glycemic control has been achieved, suggesting an innate mechanism of “metabolic memory.” AGEs are glycated proteins that may serve as mediators of metabolic memory due to their increased production in the setting of hyperglycemia and generally slow turnover. Elevated AGE levels can lead to abnormal cross linking of extracellular and intracellular proteins disrupting their normal structure and function. Furthermore, activation of AGE receptors can induce complex signaling pathways leading to increased inflammation, oxidative stress, enhanced calcium deposition, and increased vascular smooth muscle apoptosis, contributing to the development of atherosclerosis. Through these mechanisms, AGEs may be important mediators of the development of CAD. However, clinical studies regarding the role of AGEs and their receptors in advancing CAD are limited, with contradictory results. Conclusion AGEs and their receptors may be useful biomarkers for the presence and severity of CAD. Further studies are needed to evaluate the utility of circulating and tissue AGE levels in identifying asymptomatic patients at risk for CAD or to identify patients who may benefit from invasive intervention.
Collapse
Affiliation(s)
- Sarah Louise Fishman
- Division of Endocrinology, Department of Medicine, Lenox Hill Hospital, Northwell Health, 110 East 59th St #8B, New York, NY, 10022, USA
| | - Halis Sonmez
- Center for Diabetes and Endocrinology, 111 Salem Tpke, Norwich, CT, 06360, USA
| | - Craig Basman
- Department of Cardiology, Lenox Hill Hospital, Northwell Health, 100 East 77th St, New York, NY, 10065, USA
| | - Varinder Singh
- Department of Cardiology, Lenox Hill Hospital, Northwell Health, 100 East 77th St, New York, NY, 10065, USA
| | - Leonid Poretsky
- Division of Endocrinology, Department of Medicine, Lenox Hill Hospital, Northwell Health, 110 East 59th St #8B, New York, NY, 10022, USA.
| |
Collapse
|
47
|
Miyoshi A, Koyama S, Sasagawa-Monden M, Kadoya M, Konishi K, Shoji T, Inaba M, Yamamoto Y, Koyama H. JNK and ATF4 as two important platforms for tumor necrosis factor-α-stimulated shedding of receptor for advanced glycation end products. FASEB J 2018; 33:3575-3589. [PMID: 30452882 DOI: 10.1096/fj.201701553rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Soluble receptor for advanced glycation end products (sRAGE), shed from cell surfaces, is found in human circulation and has been implicated in cardiovascular disease. Its pathophysiological regulation and underlying mechanisms are scarcely understood. In endothelium-specific human RAGE transgenic mice, human sRAGE was detected in circulation, whereas its level was markedly increased after LPS treatment. That increase was preceded by a rapid rise in TNF-α level. Treatment with TNF-α also significantly increased serum sRAGE. In human microvascular endothelial cells or human umbilical vein endothelial cells with RAGE overexpression, TNF-α markedly induced RAGE shedding, which was dependent on MMP9 and ADAM10. TNF-α-stimulated MMP9 expression was completely dependent on JNK activation, with its inhibition partially effective in suppressing TNF-α-induced RAGE shedding. In contrast, TNF-α transiently induced activation transcription factor (ATF)4, a major component in unfolded protein response (UPR), whereas knockdown of ATF4 abrogated TNF-α-stimulated RAGE shedding. Protein levels of the pro and activated forms of ADAM10 were also decreased by ATF4 knockdown, whereas inhibition of other components of UPR, including XBP1 and ATF6, failed to block TNF-α-stimulated RAGE shedding. Although the endoplasmic reticulum stressors thapsigargin and tunicamycin induced markedly and sustained expression of ATF4 and XBP-1, they did not induce RAGE shedding to the same level as TNF-α, suggesting that ATF4 is necessary but not sufficient alone for TNF-α-mediated RAGE shedding. ATF4 inhibition did not affect TNF-α-stimulated MMP9 expression, whereas inhibition of JNK activity did not influence ADAM10 activation. Thus, inflammatory cascades including TNF-α induced RAGE shedding in endothelial cells in vivo and in vitro. JNK and ATF4 may be 2 platforms for regulation of TNF-α-stimulated RAGE shedding.-Miyoshi, A., Koyama, S., Sasagawa-Monden, M., Kadoya, M., Konishi, K., Shoji, T., Inaba, M., Yamamoto, Y., Koyama, H. JNK and ATF4 as two important platforms for tumor necrosis factor-α-stimulated shedding of receptor for advanced glycation end products.
Collapse
Affiliation(s)
- Akio Miyoshi
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Sachie Koyama
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masayo Sasagawa-Monden
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Endocrinology, Metabolism, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan; and
| | - Manabu Kadoya
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kosuke Konishi
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takuhito Shoji
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masaaki Inaba
- Department of Endocrinology, Metabolism, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan; and
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hidenori Koyama
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
48
|
Miranda ER, Fuller KNZ, Perkins RK, Kroeger CM, Trepanowski JF, Varady KA, Haus JM. Endogenous secretory RAGE increases with improvements in body composition and is associated with markers of adipocyte health. Nutr Metab Cardiovasc Dis 2018; 28:1155-1165. [PMID: 30297199 PMCID: PMC6231965 DOI: 10.1016/j.numecd.2018.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The receptor for advanced glycation end products (RAGE) is implicated in obesogenesis. Conversely, soluble RAGE (sRAGE) competitively inhibits RAGE. Our aim was to determine the effects of weight-loss via alternate day fasting (ADF) on sRAGE isoforms and evaluate potential relationships with body composition. METHODS AND RESULTS 42 obese participants were randomized to control (CON) or ADF. For 24 weeks, the ADF group consumed 25% or 125% of their caloric requirements on alternating days while the CON group did not change their diet. Body fat was measured via DXA, visceral fat (VAT) via MRI and subcutaneous fat (SAT) was derived by subtracting VAT from total fat. sRAGE isoforms were measured via ELISAs. After 24 weeks, ADF -6.8 (-9.5, -3.5)kg (Median, IQR) lost more weight than CON -0.3 (-1.9, 1.0)kg (p < 0.05). The change in endogenous secretory RAGE (esRAGE) was different between ADF 15 (-30, 78)pg/mL and CON -21 (-72, 16)pg/mL after 24 weeks (p < 0.05). To examine the effect of changes in body composition, the cohort was stratified by median weight-, fat-, SAT-, and VAT-loss. The changes in all sRAGE isoforms were different between those above and below median weight-loss (p < 0.05) with sRAGE isoforms tending to decrease in individuals below the median. Changes in total sRAGE and esRAGE were different between individuals above compared to below median fat- and SAT-loss (p < 0.05). Those above median fat-loss increased esRAGE by 29 (-5, 66)pg/mL (p < 0.05). CONCLUSION Improvements in body composition are related to increased sRAGE isoforms, implicating sRAGE as a potential target for the treatment of obesity. CLINICAL TRIAL REGISTRATION NCT00960505.
Collapse
Affiliation(s)
- E R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - K N Z Fuller
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - R K Perkins
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - C M Kroeger
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, United States
| | - J F Trepanowski
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - K A Varady
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - J M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
49
|
Role of the Soluble Receptor for Advanced Glycation End Products (sRAGE) as a Prognostic Factor for Mortality in Hemodialysis and Peritoneal Dialysis Patients. Mediators Inflamm 2018; 2018:1347432. [PMID: 30410419 PMCID: PMC6205103 DOI: 10.1155/2018/1347432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/20/2018] [Indexed: 01/19/2023] Open
Abstract
End-stage renal disease patients on dialysis (CKD-G5D) have a high mortality rate due to cardiovascular diseases (CVD). In these patients, inflammation, oxidative stress, and uremia increase the production of glycation products (AGEs) which in turn accelerate CVD onset and progression. Recently, attention has been given to the soluble receptor for AGEs (sRAGE) as a marker of inflammation, oxidative stress, atherosclerosis, and heart failure in CKD-G5D. However, its association with patient outcomes is still under debate. Our aim is to explore whether sRAGE may be a predictor of mortality in CKD-G5D. We studied 123 CKD-G5D for 24 months. Of these patients, 56 were on hemodialysis (HD) and 67 on peritoneal dialysis (PD). Demographic, anthropometric, biochemical, and clinical data were recorded. sRAGE was quantified by enzyme-linked immunosorbent assay. sRAGE was a predictor of mortality at 2-year follow-up. Each increase of 100 pg/mL in sRAGE levels was associated with an approximately 7% increased risk of mortality. Furthermore, in the entire study group, as well as in PD and HD patient subgroups, sRAGE was positively correlated with brain natriuretic peptide (BNP) levels. Mortality rates as well as sRAGE levels in patients who died did not differ between PD and HD patients. In conclusion, the positive association observed with BNP levels suggests a role for sRAGE as a prognostic factor for mortality in CKD-G5D patients displaying an active process of cardiac remodeling.
Collapse
|
50
|
Wu F, Afanasyeva Y, Zeleniuch-Jacquotte A, Zhang J, Schmidt AM, Chen Y. Temporal reliability of serum soluble and endogenous secretory receptors for advanced glycation end-products (sRAGE and esRAGE) in healthy women. Cancer Causes Control 2018; 29:901-905. [PMID: 30099629 DOI: 10.1007/s10552-018-1066-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/02/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE The soluble receptor for advanced glycation end-products (sRAGE) and endogenous secretory RAGE (esRAGE) have been considered as biomarkers of several chronic diseases. However, the temporal reliability of their concentrations in the circulation is yet to be demonstrated. We evaluated whether a single measurement of serum sRAGE and esRAGE could serve as an estimate for usual serum levels in epidemiologic studies. METHODS Serum sRAGE and esRAGE were measured using ELISAs in three yearly samples from 36 participants in the New York University Women's Health Study. The intraclass correlation coefficient (ICC) was used to evaluate temporal reliability. RESULTS The intra- and inter-batch coefficients of variation were 3.0% and 14.8% for sRAGE and 6.5% and 34.7% for esRAGE, and decreased to 0.4% and 2.1% for sRAGE and 1.0% and 6.3% for esRAGE after log2-transformation of the data. On the original scale, the ICCs of a single measurement of serum sRAGE and esRAGE were 0.89 (95% CI 0.82-0.94) and 0.87 (95% CI 0.79-0.93), respectively, and were similar using log2-transformed data. CONCLUSION Our results indicate that a single measurement of serum sRAGE and esRAGE is a sufficiently reliable measure of their usual levels that can be used in epidemiologic studies.
Collapse
Affiliation(s)
- Fen Wu
- Department of Population Health, New York University School of Medicine, 650 1st Avenue, New York, NY, 10016, USA
| | - Yelena Afanasyeva
- Department of Population Health, New York University School of Medicine, 650 1st Avenue, New York, NY, 10016, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, 650 1st Avenue, New York, NY, 10016, USA
| | - Jinghua Zhang
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Ann Marie Schmidt
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, 650 1st Avenue, New York, NY, 10016, USA.
| |
Collapse
|