1
|
Gergely TG, Drobni ZD, Sayour NV, Ferdinandy P, Varga ZV. Molecular fingerprints of cardiovascular toxicities of immune checkpoint inhibitors. Basic Res Cardiol 2024:10.1007/s00395-024-01068-8. [PMID: 39023770 DOI: 10.1007/s00395-024-01068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy by unleashing the power of the immune system against malignant cells. However, their use is associated with a spectrum of adverse effects, including cardiovascular complications, which can pose significant clinical challenges. Several mechanisms contribute to cardiovascular toxicity associated with ICIs. First, the dysregulation of immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein-1 (PD-1) and its ligand (PD-L1), and molecular mimicry with cardiac autoantigens, leads to immune-related adverse events, including myocarditis and vasculitis. These events result from the aberrant activation of T cells against self-antigens within the myocardium or vascular endothelium. Second, the disruption of immune homeostasis by ICIs can lead to autoimmune-mediated inflammation of cardiac tissues, manifesting as cardiac dysfunction and heart failure, arrhythmias, or pericarditis. Furthermore, the upregulation of inflammatory cytokines, particularly tumor necrosis factor-alpha, interferon-γ, interleukin-1β, interleukin-6, and interleukin-17 contributes to cardiac and endothelial dysfunction, plaque destabilization, and thrombosis, exacerbating cardiovascular risk on the long term. Understanding the intricate mechanisms of cardiovascular side effects induced by ICIs is crucial for optimizing patient care and to ensure the safe and effective integration of immunotherapy into a broader range of cancer treatment protocols. The clinical implications of these mechanisms underscore the importance of vigilant monitoring and early detection of cardiovascular toxicity in patients receiving ICIs. Future use of these key pathological mediators as biomarkers may aid in prompt diagnosis of cardiotoxicity and will allow timely interventions.
Collapse
Affiliation(s)
- Tamás G Gergely
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Zsófia D Drobni
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Nabil V Sayour
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Péter Ferdinandy
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary.
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary.
| |
Collapse
|
2
|
Jones PW, Mallat Z, Nus M. T-Cell/B-Cell Interactions in Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:1502-1511. [PMID: 38813700 PMCID: PMC11208060 DOI: 10.1161/atvbaha.124.319845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Atherosclerosis is a complex inflammatory disease in which the adaptive immune response plays an important role. While the overall impact of T and B cells in atherosclerosis is relatively well established, we are only beginning to understand how bidirectional T-cell/B-cell interactions can exert prominent atheroprotective and proatherogenic functions. In this review, we will focus on these T-cell/B-cell interactions and how we could use them to therapeutically target the adaptive immune response in atherosclerosis.
Collapse
Affiliation(s)
- Peter William Jones
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| | - Ziad Mallat
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
- INSERM U970, Paris Cardiovascular Research Centre, France (Z.M.)
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| |
Collapse
|
3
|
Xu L, Chen F, Fan W, Saito S, Cao D. The role of γδT lymphocytes in atherosclerosis. Front Immunol 2024; 15:1369202. [PMID: 38774876 PMCID: PMC11106432 DOI: 10.3389/fimmu.2024.1369202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Atherosclerosis poses a significant threat to human health, impacting overall well-being and imposing substantial financial burdens. Current treatment strategies mainly focus on managing low-density lipids (LDL) and optimizing liver functions. However, it's crucial to recognize that Atherosclerosis involves more than just lipid accumulation; it entails a complex interplay of immune responses. Research highlights the pivotal role of lipid-laden macrophages in the formation of atherosclerotic plaques. These macrophages attract lymphocytes like CD4 and CD8 to the inflamed site, potentially intensifying the inflammatory response. γδ T lymphocytes, with their diverse functions in innate and adaptive immune responses, pathogen defense, antigen presentation, and inflammation regulation, have been implicated in the early stages of Atherosclerosis. However, our understanding of the roles of γδ T cells in Atherosclerosis remains limited. This mini-review aims to shed light on the characteristics and functions of γδ T cells in Atherosclerosis. By gaining insights into the roles of γδ T cells, we may uncover a promising strategy to mitigate plaque buildup and dampen the inflammatory response, thereby opening new avenues for effectively managing this condition.
Collapse
Affiliation(s)
- LiMin Xu
- Department of Neurosurgery, Shenzhen Entry-Exit Frontier Inspection Hospital, Shenzhen, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
4
|
Kumar K, Rawat P, Kaur S, Singh N, Yadav HN, Singh D, Jaggi AS, Sethi D. Unveiling Wide Spectrum Therapeutic Implications and Signaling Mechanisms of Valsartan in Diverse Disorders: A Comprehensive Review. Curr Drug Res Rev 2024; 16:268-288. [PMID: 37461345 DOI: 10.2174/2589977515666230717120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2024]
Abstract
Valsartan is an orally active non-peptide angiotensin receptor antagonist, an effective and well-tolerated anti-hypertensive drug. Besides its antihypertensive action, it has clinical implications in many other disorders, like heart failure (HF), arrhythmia, chronic kidney disease (CKD), diabetic complications (DM), atherosclerosis, etc. Besides angiotensin receptor blocking activity, valsartan reduces circulating levels of biochemical markers, such as hs-CRP, which is responsible for its anti-inflammatory and anti-oxidant activity. Moreover, valsartan also acts by inhibiting or inducing various signalling pathways, such as inducing autophagy via the AKT/mTOR/S6K pathway or inhibiting the TLR/NF-kB pathway. The current review exhaustively discusses the therapeutic implications of valsartan with specific emphasis on the mechanism of action in various disorders. The article provides a detailed spectrum of the therapeutic profile of valsartan and will likely be very useful to researchers working in the relevant research areas.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Pooja Rawat
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Simrat Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Dimple Sethi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
5
|
Luca AC, David SG, David AG, Țarcă V, Pădureț IA, Mîndru DE, Roșu ST, Roșu EV, Adumitrăchioaiei H, Bernic J, Cojocaru E, Țarcă E. Atherosclerosis from Newborn to Adult-Epidemiology, Pathological Aspects, and Risk Factors. Life (Basel) 2023; 13:2056. [PMID: 37895437 PMCID: PMC10608492 DOI: 10.3390/life13102056] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality and morbidity throughout the world, accounting for 16.7 million deaths each year. The underlying pathological process for the majority of cardiovascular diseases is atherosclerosis, a slowly progressing, multifocal, chronic, immune-inflammatory disease that involves the intima of large and medium-sized arteries. The process of atherosclerosis begins in childhood as fatty streaks-an accumulation of lipids, inflammatory cells, and smooth muscle cells in the arterial wall. Over time, a more complex lesion develops into an atheroma and characteristic fibrous plaques. Atherosclerosis alone is rarely fatal; it is the further changes that render fibrous plaques vulnerable to rupture; plaque rupture represents the most common cause of coronary thrombosis. The prevalence of atherosclerosis is increasing worldwide and more than 50% of people with circulatory disease die of it, mostly in modern societies. Epidemiological studies have revealed several environmental and genetic risk factors that are associated with the early formation of a pathogenic foundation for atherosclerosis, such as dyslipidemia, hypertension, diabetes mellitus, obesity, and smoking. The purpose of this review is to bring together the current information concerning the origin and progression of atherosclerosis in childhood as well as the identification of known risk factors for atherosclerotic cardiovascular disease in children.
Collapse
Affiliation(s)
- Alina Costina Luca
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (D.E.M.); (E.V.R.)
| | - Simona Georgiana David
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Alexandru Gabriel David
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Viorel Țarcă
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ioana-Alexandra Pădureț
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Dana Elena Mîndru
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (D.E.M.); (E.V.R.)
| | - Solange Tamara Roșu
- Nursing Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Eduard Vasile Roșu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (D.E.M.); (E.V.R.)
| | - Heidrun Adumitrăchioaiei
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Jana Bernic
- Discipline of Pediatric Surgery, “Nicolae Testemițanu” State University of Medicine and Pharmacy, 2025 Chisinau, Moldova;
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I—Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Țarcă
- Surgery II Department—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
6
|
Cesaro A, De Michele G, Fimiani F, Acerbo V, Scherillo G, Signore G, Rotolo FP, Scialla F, Raucci G, Panico D, Gragnano F, Moscarella E, Scudiero O, Mennitti C, Calabrò P. Visceral adipose tissue and residual cardiovascular risk: a pathological link and new therapeutic options. Front Cardiovasc Med 2023; 10:1187735. [PMID: 37576108 PMCID: PMC10421666 DOI: 10.3389/fcvm.2023.1187735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Obesity is a heterogeneous disease that affects almost one-third of the global population. A clear association has been established between obesity and cardiovascular disease (CVD). However, CVD risk is known to be related more to the local distribution of fat than to total body fat. Visceral adipose tissue (VAT) in particular has a high impact on CVD risk. This manuscript reviews the role of VAT in residual CV risk and the available therapeutic strategies for decreasing residual CV risk related to VAT accumulation. Among the many pathways involved in residual CV risk, obesity and particularly VAT accumulation play a major role by generating low-grade systemic inflammation, which in turn has a high prognostic impact on all-cause mortality and myocardial infarction. In recent years, many therapeutic approaches have been developed to reduce body weight. Orlistat was shown to reduce both weight and VAT but has low tolerability and many drug-drug interactions. Naltrexone-bupropion combination lowers body weight but has frequent side effects and is contraindicated in patients with uncontrolled hypertension. Liraglutide and semaglutide, glucagon-like peptide 1 (GLP-1) agonists, are the latest drugs approved for the treatment of obesity, and both have been shown to induce significant body weight loss. Liraglutide, semaglutide and other GLP-1 agonists also showed a positive effect on CV outcomes in diabetic patients. In addition, liraglutide showed to specifically reduce VAT and inflammatory biomarkers in obese patients without diabetes. GLP-1 agonists are promising compounds to limit inflammation in human visceral adipocytes.
Collapse
Affiliation(s)
- Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Gianantonio De Michele
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Fabio Fimiani
- Unit of Inherited and Rare Cardiovascular Diseases, A.O.R.N. Dei Colli “V. Monaldi”, Naples, Italy
| | - Vincenzo Acerbo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Gianmaria Scherillo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Giovanni Signore
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Francesco Paolo Rotolo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Francesco Scialla
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Giuseppe Raucci
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Domenico Panico
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Elisabetta Moscarella
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Ceinge Biotecnologie Avanzate Franco Salvatore S. C. a R. L., Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| |
Collapse
|
7
|
Li D, Huang Z, Dai Y, Guo L, Lin S, Liu X. Bioinformatic identification of potential biomarkers and therapeutic targets in carotid atherosclerosis and vascular dementia. Front Neurol 2023; 13:1091453. [PMID: 36703641 PMCID: PMC9872033 DOI: 10.3389/fneur.2022.1091453] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Background Vascular disease is the second most common cause of dementia. The prevalence of vascular dementia (VaD) has increased over the past decade. However, there are no licensed treatments for this disease. Carotid atherosclerosis (CAS) is highly prevalent and is the main cause of ischemic stroke and VaD. We studied co-expressed genes to understand the relationships between CAS and VaD and further reveal the potential biomarkers and therapeutic targets of CAS and VaD. Methods CAS and VaD differentially expressed genes (DEGs) were identified through bioinformatic analysis Gene Expression Omnibus (GEO) datasets GSE43292 and GSE122063, respectively. Furthermore, a variety of target prediction methods and network analysis approaches were used to assess the protein-protein interaction (PPI) networks, the Gene Ontology (GO) terms, and the pathway enrichment for DEGs, and the top 7 hub genes, coupled with corresponding predicted miRNAs involved in CAS and VaD, were assessed as well. Result A total of 60 upregulated DEGs and 159 downregulated DEGs were identified, of which the top 7 hub genes with a high degree of connectivity were selected. Overexpression of these hub genes was associated with CAS and VaD. Finally, the top 7 hub genes were coupled with corresponding predicted miRNAs. hsa-miR-567 and hsa-miR-4652-5p may be significantly associated with CAS and VaD.
Collapse
|
8
|
Minkowitz S, Ayeni O, Haffejee M, Joffe M. The effect of medical castration on lipid levels in black South African men with prostate cancer. AFRICAN JOURNAL OF UROLOGY 2022. [DOI: 10.1186/s12301-022-00328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Abstract
Background
In South Africa, androgen deprivation therapy (ADT) is commonly given as primary therapy for prostate cancer (PCa) due to many patients presenting with advanced disease. The metabolic adverse effects of ADT on lipid profile and weight gain have been reported mainly in Caucasian populations, but few studies have been performed in African populations. Men of African descent generally have favorable lipid profiles compared to other populations, and our study looked to analyze the effect of medical castration on lipid levels in black South African men with PCa.
Methods
The aim of this study is to describe the changes in blood total cholesterol, triglycerides, LDL and HDL at 6 months and at 1 year in men with prostate cancer newly initiated on ADT. Changes to BMI, waist circumference and HbA1c were also measured after 1 year of ADT.
Our study was conducted at Chris Hani Baragwanath Academic Hospital which is a teaching hospital affiliated with the University of the Witwatersrand. It is located in Soweto, South of Johannesburg, and serves the 1.3 million local residents who are predominantly black and of the lower-income bracket. This study enrolled 38 black South African men who were starting to receive ADT for PCa. Subjects were evaluated at baseline and at 6 and 12 months. Lipid profiles and HbA1C levels were measured using blood samples, and body composition was measured using BMI and waist circumference.
Results
In this prospective single-center study, we found that ADT resulted in a significant rise in triglyceride levels and weight gain in black South African men reaching mean levels of obesity using ethnic-specific definitions. High-density lipoproteins levels decreased significantly particularly in the first 6 months of treatment and thereafter began to rise. ADT also resulted in an increased HbA1C level which is a marker for insulin resistance.
Conclusions
Androgen deprivation therapy unfavorably changed the body habitus and lipid profile of men with PCa. It was demonstrated that even black South Africans who generally have favorable lipid profiles compared to their counterparts are at risk of developing metabolic syndrome while being treated with ADT.
Collapse
|
9
|
Interleukin-27 Ameliorates Atherosclerosis in ApoE-/- Mice through Regulatory T Cell Augmentation and Dendritic Cell Tolerance. Mediators Inflamm 2022; 2022:2054879. [PMID: 36405994 PMCID: PMC9674420 DOI: 10.1155/2022/2054879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis, which is characterized by chronic inflammation in the arterial wall, is driven by immune cells and cytokines. Recent evidence indicated that interleukin (IL)-27 showed pleiotropic properties in immune diseases. However, precise mechanisms of IL-27, especially in atherosclerosis remains unknown. In our research, we examined the influence of the administration of IL-27 and an anti-IL-27p28 antibody (anti-IL-27p28-Ab) on both the initiation and the progression of atherosclerosis. In the groups (both the initiation and the progression) receiving recombinant IL-27 administration, the formation of atherosclerotic plaques was suspended, and the percentage of regulatory T cells (LAP+ or Foxp3+) in the spleen and peripheral blood was increased. Meanwhile, the number of T helper 1 (Th1) and T helper 17 (Th17) cells was decreased. In the peripheral blood plasma, TGF-β and IL-10 expression were increased, while the levels of IFN-γ and IL-17 were reduced. As for lesions, the mRNA expression of Foxp3, TGF-β, and IL-10 was increased, while that of IFN-γ and IL-17 was reduced. In the anti-IL-27p28 antibody groups, we obtained opposite results. We also observed that DCs treated with IL-27 display a tolerogenic phenotype and that IL-27–treated tolerogenic DCs (tDCs) are likely to play a protective role during atherosclerosis. Our study indicates that IL-27 or adoptive transfer of IL-27 loaded tDCs may be a new therapeutic approach in atherosclerosis.
Collapse
|
10
|
Wang Q, Wang Y, Xu D. Research progress on Th17 and T regulatory cells and their cytokines in regulating atherosclerosis. Front Cardiovasc Med 2022; 9:929078. [PMID: 36211578 PMCID: PMC9534355 DOI: 10.3389/fcvm.2022.929078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Coronary heart disease due to atherosclerosis is the leading cause of death worldwide. Atherosclerosis is considered a chronic inflammatory state in the arterial wall that promotes disease progression and outcome, and immune cells play an important role in the inflammatory process. Purpose We review the mechanisms of CD4+ T subsets, i.e., helper T17 (Th17) cells and regulatory T cells (Tregs), in regulating atherosclerosis, focusing on the role of interleukin (IL)-17, IL-10, and other cytokines in this disease and the factors influencing the effects of these cytokines. Results IL-17 secreted by Th17 cells can promote atherosclerosis, but few studies have reported that IL-17 can also stabilize atherosclerotic plaques. Tregs play a protective role in atherosclerosis, and Th17/Treg imbalance also plays an important role in atherosclerosis. Conclusion The immune response is important in regulating atherosclerosis, and studying the mechanism of action of each immune cell on atherosclerosis presents directions for the treatment of atherosclerosis. Nevertheless, the current studies are insufficient for elucidating the mechanism of action, and further in-depth studies are needed to provide a theoretical basis for clinical drug development.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yurong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Danyan Xu
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Vuong JT, Stein-Merlob AF, Nayeri A, Sallam T, Neilan TG, Yang EH. Immune Checkpoint Therapies and Atherosclerosis: Mechanisms and Clinical Implications: JACC State-of-the-Art Review. J Am Coll Cardiol 2022; 79:577-593. [PMID: 35144750 PMCID: PMC8983019 DOI: 10.1016/j.jacc.2021.11.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Immune checkpoint inhibitor therapy has revolutionized the treatment of advanced malignancies in recent years. Numerous reports have detailed the myriad of possible adverse inflammatory effects of immune checkpoint therapies, including within the cardiovascular system. However, these reports have been largely limited to myocarditis. The critical role of inflammation and adaptive immunity in atherosclerosis has been well characterized in preclinical studies, and several emerging clinical studies indicate a potential role of immune checkpoint targeting therapies in the development and exacerbation of atherosclerosis. In this review, we provide an overview of the role of T-cell immunity in atherogenesis and describe the molecular effects and clinical associations of both approved and investigational immune checkpoint therapy on atherosclerosis. We also highlight the role of cholesterol metabolism in oncogenesis and discuss the implications of these associations on future treatment and monitoring of atherosclerotic cardiovascular disease in the oncologic population receiving immune checkpoint therapy.
Collapse
Affiliation(s)
- Jacqueline T Vuong
- Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Ashley F Stein-Merlob
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Arash Nayeri
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Tomas G Neilan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric H Yang
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA; UCLA Cardio-Oncology Program, Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
12
|
Vitamin D Level in Patients with Consecutive Acute Coronary Syndrome Is Not Correlated with the Parameters of Platelet Activity. J Clin Med 2022; 11:jcm11030707. [PMID: 35160157 PMCID: PMC8836793 DOI: 10.3390/jcm11030707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Coronary artery disease continues to be the leading cause of death in developed countries. Elevated mean platelet volume (MPV) is associated with an increased incidence of myocardial infarction (MI) and MI-related mortality. Vitamin D concentrations affect the level and function of platelets, which are the crucial mediator of atherothrombosis and plaque rupture. The main aim of this study was to examine the relationship of serum 25-hydroxyvitamin D (25(OH)D) levels with the platelet activity in patients with a history of an acute coronary syndrome (ACS). This prospective study recruited 268 patients with a history of MI who underwent coronary angiography due to the suspicion of another ACS. Serum 25(OH)D concentration was determined by electrochemiluminescence. Platelet activity was assessed using the MPV and platelet-large cell ratio (P-LCR) parameters. There was no significant difference in MPV and P-LCR values between patients diagnosed with subsequent MI and patients with chronic coronary syndrome (CCS). A significantly lower level of 25(OH)D was demonstrated in patients who had another MI compared to those with CCS (p < 0.05). No significant correlation of 25(OH)D concentrations with platelet activity parameters values was found. The subgroup of patients with consecutive MI was characterized by significantly lower serum vitamin D levels, but this was not related to the analyzed parameters of platelet activity.
Collapse
|
13
|
Matsushita H, Hayashi H, Nurminsky K, Dunn T, He Y, Pitaktong I, Koda Y, Xu S, Nguyen V, Inoue T, Rodgers D, Nelson K, Johnson J, Hibino N. Novel reinforcement of corrugated nanofiber tissue-engineered vascular graft to prevent aneurysm formation for arteriovenous shunts in an ovine model. JVS Vasc Sci 2022; 3:182-191. [PMID: 35495567 PMCID: PMC9044007 DOI: 10.1016/j.jvssci.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Many patients who require hemodialysis treatment will often require a prosthetic graft after multiple surgeries. However, the patency rate of grafts currently available commercially has not been satisfactory. Tissue engineering vascular grafts (TEVGs) are biodegradable scaffolds created to promote autologous cell proliferation and functional neotissue regeneration and, accordingly, have antithrombogenicity. Therefore, TEVGs can be an alternative prosthesis for small diameter grafts. However, owing to the limitations of the graft materials, most TEVGs are rigid and can easily kink when implanted in limited spaces, precluding future clinical application. Previously, we developed a novel corrugated nanofiber graft to prevent graft kinking. Reinforcement of these grafts to ensure their safety is required in a preclinical study. In the present study, three types of reinforcement were applied, and their effectiveness was examined using large animals. Methods In the present study, three different reinforcements for the graft composed of corrugated poly-ε-caprolactone (PCL) blended with poly(L-lactide-co-ε-caprolactone) (PLCL) created with electrospinning were evaluated: 1) a polydioxanone suture, 2) a 2-0 polypropylene suture, 3) a polyethylene terephthalate/polyurethane (PET/PU) outer layer, and PCL/PLCL as the control. These different grafts were then implanted in a U-shape between the carotid artery and jugular vein in seven ovine models for a total of 14 grafts during a 3-month period. In evaluating the different reinforcements, the main factors considered were cell proliferation and a lack of graft dilation, which were evaluated using ultrasound examinations and histologic and mechanical analysis. Results No kinking of the grafts occurred. Overall, re-endothelialization was observed in all the grafts at 3 months after surgery without graft rupture or calcification. The PCL/PLCL grafts and PCL/PLCL grafts with a polydioxanone suture showed high cell infiltration; however, they had become dilated 10 weeks after surgery. In contrast, the PCL/PLCL graft with the 2-0 suture and the PCL/PLCL graft covered with a PET/PU layer did not show any graft expansion. The PCL/PLCL graft covered with a PET/PU layer showed less cell infiltration than that of the PCL/PLCL graft. Conclusions Reinforcement is required to create grafts that can withstand arterial pressure. Reinforcement with suture materials has the potential to maintain cell infiltration into the graft, which could improve the neotissue formation of the graft. In our basic science research study, we investigated tissue engineered vascular grafts for arteriovenous shunts. Our grafts were created with poly-ε-caprolactone and poly(L-lactide-co-ε-caprolactone) and designed with corrugated walls to avoid graft kinking. The grafts were implanted between the carotid artery and external jugular vein in a U-shape using an ovine model. To withstand the high pressure of blood on the arterial system, two types of reinforcement were applied to these tissue engineering vascular grafts. Because reinforcement of the graft could interfere with cell infiltration into the tissue engineering vascular grafts, the methods and material of reinforcement were investigated, in addition to the mechanical properties of the graft.
Collapse
|
14
|
Chan YH, Ramji DP. Key Roles of Inflammation in Atherosclerosis: Mediators Involved in Orchestrating the Inflammatory Response and Its Resolution in the Disease Along with Therapeutic Avenues Targeting Inflammation. Methods Mol Biol 2022; 2419:21-37. [PMID: 35237956 DOI: 10.1007/978-1-0716-1924-7_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inflammation is a critical driver of all stages of atherosclerosis, from lesion development to plaque rupture. Cytokines are mediators of the immune response and in atherosclerosis, the balance of anti- and pro-inflammatory cytokines is tipped in favor of the latter, resulting in persistent and unresolved inflammation. Although reducing plasma cholesterol levels mainly via the use of statins has positively impacted patient outcomes and reduced mortality rates, the presence of significant residual inflammation and cardiovascular risk posttherapy emphasizes the prevailing risk of primary and secondary events driven by inflammation independently of hyperlipidemia. Given the dominant role of inflammation in driving pathogenesis, alternative therapeutic avenues beyond targeting lowering of plasma lipids are required. This chapter will discuss the role of inflammation and pro-inflammatory cytokines in driving atherogenesis and disease progression, the therapeutic potential of targeting cytokines for atherosclerosis and promising avenues in this area.
Collapse
Affiliation(s)
- Yee-Hung Chan
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK.
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
15
|
van Duijn J, de Jong MJM, Benne N, Leboux RJT, van Ooijen ME, Kruit N, Foks AC, Jiskoot W, Bot I, Kuiper J, Slütter B. Tc17 CD8+ T cells accumulate in murine atherosclerotic lesions, but do not contribute to early atherosclerosis development. Cardiovasc Res 2021; 117:2755-2766. [PMID: 33063097 PMCID: PMC8683708 DOI: 10.1093/cvr/cvaa286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/04/2020] [Accepted: 09/30/2020] [Indexed: 01/09/2023] Open
Abstract
AIMS CD8+ T cells can differentiate into subpopulations that are characterized by a specific cytokine profile, such as the Tc17 population that produces interleukin-17. The role of this CD8+ T-cell subset in atherosclerosis remains elusive. In this study, we therefore investigated the contribution of Tc17 cells to the development of atherosclerosis. METHODS AND RESULTS Flow cytometry analysis of atherosclerotic lesions from apolipoprotein E-deficient mice revealed a pronounced increase in RORγt+CD8+ T cells compared to the spleen, indicating a lesion-specific increase in Tc17 cells. To study whether and how the Tc17 subset affects atherosclerosis, we performed an adoptive transfer of Tc17 cells or undifferentiated Tc0 cells into CD8-/- low-density lipoprotein receptor-deficient mice fed a Western-type diet. Using flow cytometry, we showed that Tc17 cells retained a high level of interleukin-17A production in vivo. Moreover, Tc17 cells produced lower levels of interferon-γ than their Tc0 counterparts. Analysis of the aortic root revealed that the transfer of Tc17 cells did not increase atherosclerotic lesion size, in contrast to Tc0-treated mice. CONCLUSION These findings demonstrate a lesion-localized increase in Tc17 cells in an atherosclerotic mouse model. Tc17 cells appeared to be non-atherogenic, in contrast to their Tc0 counterpart.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Aorta/immunology
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/immunology
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/genetics
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/transplantation
- Cell Differentiation
- Cells, Cultured
- Disease Models, Animal
- Interferon-gamma/metabolism
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Phenotype
- Plaque, Atherosclerotic
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Janine van Duijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Maaike J M de Jong
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Naomi Benne
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Romain J T Leboux
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Marieke E van Ooijen
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Nicky Kruit
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| |
Collapse
|
16
|
Kadiri JJ, Tadayon S, Thapa K, Suominen A, Hollmén M, Rinne P. Melanocortin 1 Receptor Deficiency in Hematopoietic Cells Promotes the Expansion of Inflammatory Leukocytes in Atherosclerotic Mice. Front Immunol 2021; 12:774013. [PMID: 34868038 PMCID: PMC8640177 DOI: 10.3389/fimmu.2021.774013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Melanocortin receptor 1 (MC1-R) is expressed in leukocytes, where it mediates anti-inflammatory actions. We have previously observed that global deficiency of MC1-R signaling perturbs cholesterol homeostasis, increases arterial leukocyte accumulation and accelerates atherosclerosis in apolipoprotein E knockout (Apoe-/-) mice. Since various cell types besides leukocytes express MC1-R, we aimed at investigating the specific contribution of leukocyte MC1-R to the development of atherosclerosis. For this purpose, male Apoe-/- mice were irradiated, received bone marrow from either female Apoe-/- mice or MC1-R deficient Apoe-/- mice (Apoe-/- Mc1re/e) and were analyzed for tissue leukocyte profiles and atherosclerotic plaque phenotype. Hematopoietic MC1-R deficiency significantly elevated total leukocyte counts in the blood, bone marrow and spleen, an effect that was amplified by feeding mice a cholesterol-rich diet. The increased leukocyte counts were largely attributable to expanded lymphocyte populations, particularly CD4+ T cells. Furthermore, the number of monocytes was elevated in Apoe-/- Mc1re/e chimeric mice and it paralleled an increase in hematopoietic stem cell count in the bone marrow. Despite robust leukocytosis, atherosclerotic plaque size and composition as well as arterial leukocyte counts were unaffected by MC1-R deficiency. To address this discrepancy, we performed an in vivo homing assay and found that MC1-R deficient CD4+ T cells and monocytes were preferentially entering the spleen rather than homing in peri-aortic lymph nodes. This was mechanistically associated with compromised chemokine receptor 5 (CCR5)-dependent migration of CD4+ T cells and a defect in the recycling capacity of CCR5. Finally, our data demonstrate for the first time that CD4+ T cells also express MC1-R. In conclusion, MC1-R regulates hematopoietic stem cell proliferation and tissue leukocyte counts but its deficiency in leukocytes impairs cell migration via a CCR5-dependent mechanism.
Collapse
Affiliation(s)
- James J Kadiri
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Drug Research Doctoral Programme (DRDP), University of Turku, Turku, Finland
| | - Sina Tadayon
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Keshav Thapa
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Drug Research Doctoral Programme (DRDP), University of Turku, Turku, Finland
| | - Anni Suominen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Drug Research Doctoral Programme (DRDP), University of Turku, Turku, Finland
| | - Maija Hollmén
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Petteri Rinne
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
17
|
Farahi L, Sinha SK, Lusis AJ. Roles of Macrophages in Atherogenesis. Front Pharmacol 2021; 12:785220. [PMID: 34899348 PMCID: PMC8660976 DOI: 10.3389/fphar.2021.785220] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that may ultimately lead to local proteolysis, plaque rupture, and thrombotic vascular disease, resulting in myocardial infarction, stroke, and sudden cardiac death. Circulating monocytes are recruited to the arterial wall in response to inflammatory insults and differentiate into macrophages which make a critical contribution to tissue damage, wound healing, and also regression of atherosclerotic lesions. Within plaques, macrophages take up aggregated lipoproteins which have entered the vessel wall to give rise to cholesterol-engorged foam cells. Also, the macrophage phenotype is influenced by various stimuli which affect their polarization, efferocytosis, proliferation, and apoptosis. The heterogeneity of macrophages in lesions has recently been addressed by single-cell sequencing techniques. This article reviews recent advances regarding the roles of macrophages in different stages of disease pathogenesis from initiation to advanced atherosclerosis. Macrophage-based therapies for atherosclerosis management are also described.
Collapse
Affiliation(s)
- Lia Farahi
- Monoclonal Antibody Research Center, Avicenna Research Institute, Tehran, Iran
| | - Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aldons J. Lusis
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Abstract
Atherosclerosis is the leading cause of acute cardiovascular events, and vascular calcification is an important pathological phenomenon in atherosclerosis. Recently, many studies have shown that immune cells are closely associated with the development of atherosclerosis and calcification, but there are many conflicting viewpoints because of immune system complications, such as the pro-atherosclerotic and atheroprotective effects of regulatory B cells (Bregs), T helper type 2 (Th2) cells and T helper type 17 (Th17) cells. In this review, we summarize the studies on the roles of immune cells, especially lymphocytes and macrophages, in atherosclerotic calcification. Furthermore, we prepared graphs showing the relationship between T cells, B cells and macrophages and atherosclerotic calcification. Finally, we highlight some potential issues that are closely associated with the function of immune cells in atherosclerotic calcification. Based on current research results, this review summarizes the relationship between immune cells and atherosclerotic calcification, and it will be beneficial to understand the relationship of immune cells and atherosclerotic calcification.
Collapse
Affiliation(s)
- Jingsong Cao
- Clinical Medicine Research Center, 574417The First Affiliated Hospital of University of South China, Hengyang, China.,Department of Endocrinology and Metabolism, 574417The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xuyu Zu
- Clinical Medicine Research Center, 574417The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jianghua Liu
- Clinical Medicine Research Center, 574417The First Affiliated Hospital of University of South China, Hengyang, China.,Department of Endocrinology and Metabolism, 574417The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.,Department of Metabolism and Endocrinology, 574417The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
19
|
Bahrami A, Sathyapalan T, Sahebkar A. The Role of Interleukin-18 in the Development and Progression of Atherosclerosis. Curr Med Chem 2021; 28:1757-1774. [PMID: 32338205 DOI: 10.2174/0929867327666200427095830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/14/2020] [Accepted: 04/28/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis (AS), as a chronic inflammatory disorder of the cardiovascular system, is one of the leading causes of ischemic heart disease, stroke and peripheral vascular disease. There is growing evidence on the role of innate and adaptive immunity in the pathogenesis of atherosclerosis. Interleukin-18 is one of the novel proinflammatory cytokines involved in atherogenesis, atherosclerotic plaque instability and plaque rupture. In this review, we overview the findings of preclinical and clinical studies about the role and mechanism of action of IL-18 in the pathogenesis of AS, which could offer novel prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | |
Collapse
|
20
|
El-Far M, Durand M, Turcotte I, Larouche-Anctil E, Sylla M, Zaidan S, Chartrand-Lefebvre C, Bunet R, Ramani H, Sadouni M, Boldeanu I, Chamberland A, Lesage S, Baril JG, Trottier B, Thomas R, Gonzalez E, Filali-Mouhim A, Goulet JP, Martinson JA, Kassaye S, Karim R, Kizer JR, French AL, Gange SJ, Ancuta P, Routy JP, Hanna DB, Kaplan RC, Chomont N, Landay AL, Tremblay CL. Upregulated IL-32 Expression And Reduced Gut Short Chain Fatty Acid Caproic Acid in People Living With HIV With Subclinical Atherosclerosis. Front Immunol 2021; 12:664371. [PMID: 33936102 PMCID: PMC8083984 DOI: 10.3389/fimmu.2021.664371] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART), people living with HIV (PLWH) are still at higher risk for cardiovascular diseases (CVDs) that are mediated by chronic inflammation. Identification of novel inflammatory mediators with the inherent potential to be used as CVD biomarkers and also as therapeutic targets is critically needed for better risk stratification and disease management in PLWH. Here, we investigated the expression and potential role of the multi-isoform proinflammatory cytokine IL-32 in subclinical atherosclerosis in PLWH (n=49 with subclinical atherosclerosis and n=30 without) and HIV- controls (n=25 with subclinical atherosclerosis and n=24 without). While expression of all tested IL-32 isoforms (α, β, γ, D, ϵ, and θ) was significantly higher in peripheral blood from PLWH compared to HIV- controls, IL-32D and IL-32θ isoforms were further upregulated in HIV+ individuals with coronary artery atherosclerosis compared to their counterparts without. Upregulation of these two isoforms was associated with increased plasma levels of IL-18 and IL-1β and downregulation of the atheroprotective protein TRAIL, which together composed a unique atherosclerotic inflammatory signature specific for PLWH compared to HIV- controls. Logistic regression analysis demonstrated that modulation of these inflammatory variables was independent of age, smoking, and statin treatment. Furthermore, our in vitro functional data linked IL-32 to macrophage activation and production of IL-18 and downregulation of TRAIL, a mechanism previously shown to be associated with impaired cholesterol metabolism and atherosclerosis. Finally, increased expression of IL-32 isoforms in PLWH with subclinical atherosclerosis was associated with altered gut microbiome (increased pathogenic bacteria; Rothia and Eggerthella species) and lower abundance of the gut metabolite short-chain fatty acid (SCFA) caproic acid, measured in fecal samples from the study participants. Importantly, caproic acid diminished the production of IL-32, IL-18, and IL-1β in human PBMCs in response to bacterial LPS stimulation. In conclusion, our studies identified an HIV-specific atherosclerotic inflammatory signature including specific IL-32 isoforms, which is regulated by the SCFA caproic acid and that may lead to new potential therapies to prevent CVD in ART-treated PLWH.
Collapse
Affiliation(s)
- Mohamed El-Far
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | - Madeleine Durand
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Isabelle Turcotte
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | | | - Mohamed Sylla
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | - Sarah Zaidan
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Carl Chartrand-Lefebvre
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Radiologie, Radio-oncologie et Médecine Nucléaire, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Rémi Bunet
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Hardik Ramani
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Manel Sadouni
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | - Irina Boldeanu
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | - Annie Chamberland
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | - Sylvie Lesage
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Jean-Guy Baril
- Centre de médecine urbaine du Quartier latin, Montréal, QC, Canada
| | - Benoit Trottier
- Centre de médecine urbaine du Quartier latin, Montréal, QC, Canada
| | | | - Emmanuel Gonzalez
- Department of Human Genetics, Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada.,Microbiome Platform Research, McGill Interdisciplinary Initiative in Infection and Immunity, McGill University, Montreal, QC, Canada
| | - Ali Filali-Mouhim
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | | | - Jeffrey A Martinson
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Seble Kassaye
- Department of Medicine, Georgetown University, Washington, DC, United States
| | - Roksana Karim
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States.,Departments of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Audrey L French
- Division of Infectious Diseases, Stroger Hospital of Cook County, Chicago IL, United States
| | - Stephen J Gange
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Petronela Ancuta
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jean-Pierre Routy
- Research Institute of McGill University Health Centre, Montréal, QC, Canada
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States.,Divsion of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Nicolas Chomont
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Cécile L Tremblay
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
21
|
Ferrari D, la Sala A, Milani D, Celeghini C, Casciano F. Purinergic Signaling in Controlling Macrophage and T Cell Functions During Atherosclerosis Development. Front Immunol 2021; 11:617804. [PMID: 33664731 PMCID: PMC7921745 DOI: 10.3389/fimmu.2020.617804] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a hardening and narrowing of arteries causing a reduction of blood flow. It is a leading cause of death in industrialized countries as it causes heart attacks, strokes, and peripheral vascular disease. Pathogenesis of the atherosclerotic lesion (atheroma) relies on the accumulation of cholesterol-containing low-density lipoproteins (LDL) and on changes of artery endothelium that becomes adhesive for monocytes and lymphocytes. Immunomediated inflammatory response stimulated by lipoprotein oxidation, cytokine secretion and release of pro-inflammatory mediators, worsens the pathological context by amplifying tissue damage to the arterial lining and increasing flow-limiting stenosis. Formation of thrombi upon rupture of the endothelium and the fibrous cup may also occur, triggering thrombosis often threatening the patient’s life. Purinergic signaling, i.e., cell responses induced by stimulation of P2 and P1 membrane receptors for the extracellular nucleotides (ATP, ADP, UTP, and UDP) and nucleosides (adenosine), has been implicated in modulating the immunological response in atherosclerotic cardiovascular disease. In this review we will describe advancements in the understanding of purinergic modulation of the two main immune cells involved in atherogenesis, i.e., monocytes/macrophages and T lymphocytes, highlighting modulation of pro- and anti-atherosclerotic mediated responses of purinergic signaling in these cells and providing new insights to point out their potential clinical significance.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, Ferrara, Italy
| | - Andrea la Sala
- Certification Unit, Health Directorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Daniela Milani
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Claudio Celeghini
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
22
|
Th17/Treg Imbalance and Atherosclerosis. DISEASE MARKERS 2020; 2020:8821029. [PMID: 33193911 PMCID: PMC7648711 DOI: 10.1155/2020/8821029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 01/23/2023]
Abstract
Atherosclerosis is nowadays recognized as a chronic inflammatory disease of large arteries. In recent years, cellular and molecular biology studies on atherosclerosis confirmed that the occurrence and development are related to inflammation and autoimmunity. A variety of immune cells, cytokines, and transcription factors are involved in this process. Current studies found that T helper cell 17, regulatory T cells, and their cytokines play an important role in the development of atherosclerosis and vulnerable plaque rupture. Here, we provide a review of the up-to-date applications of T helper cell 17, regulatory T cells, cytokines, and their balance in the prognosis and therapy of atherosclerosis.
Collapse
|
23
|
Nazarian-Samani Z, Sewell RDE, Rafieian-Kopaei M. Inflammasome Signaling and Other Factors Implicated in Atherosclerosis Development and Progression. Curr Pharm Des 2020; 26:2583-2590. [DOI: 10.2174/1381612826666200504115045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
Chronic inflammation plays an extensive role in the onset and progression of metabolic disorders such
as atherosclerosis, type 2 diabetes, gout and obesity. Atherosclerosis accounts for up to 70% mortality in patients
with type 2 diabetes and is also a chronic condition that causes atrial stenosis due to a lipometabolism imbalance.
The purpose of this article is to consider the inflammatory factors implicated in atherosclerosis and their role in
the development and progression of this vascular disease. The inflammasome signaling pathway is an important
inflammatory mechanism involved in the development of atherosclerosis. The most important inflammasome
pathway in this respect is the NLRP3 inflammasome (Nucleotide-binding oligomerization domain (NOD)-like
receptor with a pyrin domain 3), whose activation leads to the generation of important inflammatory cytokines
including interleukins 1β and 18 (IL-1β and 18). The activities of these mature cytokines and inflammatory factors
produced by other inflammatory pathways lead to arterial inflammation and eventually arterial occlusion,
which can result in life-threatening complications such as myocardial infarction and stroke. Therefore, it is essential
to seek out more precise mechanisms for the activation of inflammasomes and other inflammatory pathways
for the development of therapeutic strategies of atherosclerosis.
Collapse
Affiliation(s)
- Zeinab Nazarian-Samani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB. Wales, United Kingdom
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
24
|
Padgett LE, Araujo DJ, Hedrick CC, Olingy CE. Functional crosstalk between T cells and monocytes in cancer and atherosclerosis. J Leukoc Biol 2020; 108:297-308. [PMID: 32531833 DOI: 10.1002/jlb.1mir0420-076r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Monocytes and monocyte-derived cells, including Mϕs and dendritic cells, exhibit a diverse array of phenotypic states that are dictated by their surrounding microenvironment. These cells direct T cell activation and function via cues that range from being immunosuppressive to immunostimulatory. Solid tumors and atherosclerotic plaques represent two pathological niches with distinct immune microenvironments. While monocytes and their progeny possess a phenotypic spectrum found within both disease contexts, most within tumors are pro-tumoral and support evasion of host immune responses by tumor cells. In contrast, monocyte-derived cells within atherosclerotic plaques are usually pro-atherogenic, pro-inflammatory, and predominantly directed against self-antigens. Consequently, cancer immunotherapies strive to enhance the immune response against tumor antigens, whereas atherosclerosis treatments seek to dampen the immune response against lipid antigens. Insights into monocyte-T cell interactions within these niches could thus inform therapeutic strategies for two immunologically distinct diseases. Here, we review monocyte diversity, interactions between monocytes and T cells within tumor and plaque microenvironments, how certain therapies have leveraged these interactions, and novel strategies to assay such associations.
Collapse
Affiliation(s)
- Lindsey E Padgett
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Daniel J Araujo
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Claire E Olingy
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| |
Collapse
|
25
|
Amirfakhryan H. Vaccination against atherosclerosis: An overview. Hellenic J Cardiol 2020; 61:78-91. [DOI: 10.1016/j.hjc.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
|
26
|
Tay C, Kanellakis P, Hosseini H, Cao A, Toh BH, Bobik A, Kyaw T. B Cell and CD4 T Cell Interactions Promote Development of Atherosclerosis. Front Immunol 2020; 10:3046. [PMID: 31998318 PMCID: PMC6965321 DOI: 10.3389/fimmu.2019.03046] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
Interaction between B and CD4 T cells is crucial for their optimal responses in adaptive immunity. Immune responses augmented by their partnership promote chronic inflammation. Here we report that interaction between B and CD4 T cells augments their atherogenicity to promote lipid-induced atherosclerosis. Genetic deletion of the gene encoding immunoglobulin mu (μ) heavy chain (μMT) in ApoE−/− mice resulted in global loss of B cells including those in atherosclerotic plaques, undetectable immunoglobulins and impaired germinal center formation. Despite unaffected numbers in the circulation and peripheral lymph nodes, CD4 T cells were also reduced in spleens as were activated and memory CD4 T cells. In hyperlipidemic μMT−/− ApoE−/− mice, B cell deficiency decreased atherosclerotic lesions, accompanied by absence of immunoglobulins and reduced CD4 T cell accumulation in lesions. Adoptive transfer of B cells deficient in either MHCII or co-stimulatory molecule CD40, molecules required for B and CD4 T cell interaction, into B cell-deficient μMT−/− ApoE−/− mice failed to increase atherosclerosis. In contrast, wildtype B cells transferred into μMT−/− ApoE−/− mice increased atherosclerosis and increased CD4 T cells in lesions including activated and memory CD4 T cells. Transferred B cells also increased their expression of atherogenic cytokines IL-1β, TGF-β, MCP-1, M-CSF, and MIF, with partial restoration of germinal centers and plasma immunoglobulins. Our study demonstrates that interaction between B and CD4 T cells utilizing MHCII and CD40 is essential to augment their function to increase atherosclerosis in hyperlipidemic mice. These findings suggest that targeting B cell and CD4 T cell interaction may be a therapeutic strategy to limit atherosclerosis progression.
Collapse
Affiliation(s)
- Christopher Tay
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Peter Kanellakis
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Hamid Hosseini
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Anh Cao
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Tin Kyaw
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Abstract
There is now overwhelming experimental and clinical evidence that atherosclerosis is a chronic inflammatory disease. Lessons from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice, and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb atherosclerosis. Here, we summarize and discuss the pathogenesis of atherosclerosis with a focus on adaptive immunity. We discuss some limitations of animal models and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment.
Collapse
Affiliation(s)
- Dennis Wolf
- From the Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (D.W.).,Faculty of Medicine, University of Freiburg, Germany (D.W.)
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (K.L.).,Department of Bioengineering, University of California San Diego, La Jolla (K.L.)
| |
Collapse
|
28
|
Reiss AB, Silverman A, Khalfan M, Vernice NA, Kasselman LJ, Carsons SE, De Leon J. Accelerated Atherosclerosis in Rheumatoid Arthritis: Mechanisms and Treatment. Curr Pharm Des 2019; 25:969-986. [DOI: 10.2174/1381612825666190430113212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/14/2019] [Indexed: 12/11/2022]
Abstract
Background:Rheumatoid arthritis (RA) is a chronic systemic autoimmune inflammatory disorder that increases the risk of developing cardiovascular disease. There is accumulating evidence that the RA disease state accelerates the formation of atherosclerotic plaques. Treatments for RA improve joint symptomatology and may reduce inflammation, but consideration of their effects on the cardiovascular system is generally low priority.Objective:Since cardiovascular disease is the leading cause of mortality in RA patients, the impact of RA therapies on atherosclerosis is an area in need of attention and the focus of this review.Results:The drugs used to treat RA may be analgesics, conventional disease-modifying anti-rheumatic drugs, and/or biologics, including antibodies against the cytokine tumor necrosis factor-α. Pain relievers such as nonselective non-steroidal anti-inflammatory drugs and cyclooxygenase inhibitors may adversely affect lipid metabolism and cyclooxygenase inhibitors have been associated with increased adverse cardiovascular events, such as myocardial infarction and stroke. Methotrexate, the anchor disease-modifying anti-rheumatic drug in RA treatment has multiple atheroprotective advantages and is often combined with other therapies. Biologic inhibitors of tumor necrosis factor-α may be beneficial in preventing cardiovascular disease because tumor necrosis factor-α promotes the initiation and progression of atherosclerosis. However, some studies show a worsening of the lipid profile in RA with blockade of this cytokine, leading to higher total cholesterol and triglycerides.Conclusion:Greater understanding of the pharmacologic activity of RA treatments on the atherosclerotic process may lead to improved care, addressing both damages to the joints and heart.
Collapse
Affiliation(s)
- Allison B. Reiss
- Winthrop Research Institute, Department of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY 11501, United States
| | - Andrew Silverman
- Winthrop Research Institute, Department of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY 11501, United States
| | - Muhammed Khalfan
- Winthrop Research Institute, Department of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY 11501, United States
| | - Nicholas A. Vernice
- Winthrop Research Institute, Department of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY 11501, United States
| | - Lora J. Kasselman
- Winthrop Research Institute, Department of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY 11501, United States
| | - Steven E. Carsons
- Winthrop Research Institute, Department of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY 11501, United States
| | - Joshua De Leon
- Winthrop Research Institute, Department of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY 11501, United States
| |
Collapse
|
29
|
Xu MM, Murphy PA, Vella AT. Activated T-effector seeds: cultivating atherosclerotic plaque through alternative activation. Am J Physiol Heart Circ Physiol 2019; 316:H1354-H1365. [PMID: 30925075 PMCID: PMC6620674 DOI: 10.1152/ajpheart.00148.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic inflammatory pathology that precipitates substantial morbidity and mortality. Although initiated by physiological patterns of low and disturbed flow that differentially prime endothelial cells at sites of vessel branch points and curvature, the chronic, smoldering inflammation of atherosclerosis is accelerated by comorbidities involving inappropriate activation of the adaptive immune system, such as autoimmunity. The innate contributions to atherosclerosis, especially in the transition of monocyte to lipid-laden macrophage, are well established, but the mechanisms underpinning the infiltration, persistence, and effector dynamics of CD8 T cells in particular are not well understood. Adaptive immunity is centered on a classical cascade of antigen recognition and activation, costimulation, and effector cytokine secretion upon recall of antigen. However, chronic inflammation can generate alternative cues that supplant this behavior pattern and promote the retention and activation of peripherally activated T cells. Furthermore, the atherogenic foci that activated immune cell infiltrate are unique lipid-laden environments that offer a diverse array of stimuli, including those of survival, antigen hyporesponsiveness, and inflammatory cytokine expression. This review will focus on how known cardiovascular comorbidities may be influencing CD8 T-cell activation and how, once infiltrated within atherogenic foci, these T cells face a multitude of cues that skew the classical cascade of T-cell behavior, highlighting alternative modes of activation that may help contextualize associations of autoimmunity, viral infection, and immunotherapy with cardiovascular morbidity.
Collapse
Affiliation(s)
- Maria M Xu
- Department of Immunology, School of Medicine, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Patrick A Murphy
- Center for Vascular Biology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health School of Medicine , Farmington, Connecticut
| |
Collapse
|
30
|
Xu MM, Ménoret A, Nicholas SAE, Günther S, Sundberg EJ, Zhou B, Rodriguez A, Murphy PA, Vella AT. Direct CD137 costimulation of CD8 T cells promotes retention and innate-like function within nascent atherogenic foci. Am J Physiol Heart Circ Physiol 2019; 316:H1480-H1494. [PMID: 30978132 DOI: 10.1152/ajpheart.00088.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Effector CD8 T cells infiltrate atherosclerotic lesions and are correlated with cardiovascular events, but the mechanisms regulating their recruitment and retention are not well understood. CD137 (4-1BB) is a costimulatory receptor induced on immune cells and expressed at sites of human atherosclerotic plaque. Genetic variants associated with decreased CD137 expression correlate with carotid-intimal thickness and its deficiency in animal models attenuates atherosclerosis. These effects have been attributed in part to endothelial responses to low and disturbed flow (LDF), but CD137 also generates robust effector CD8 T cells as a costimulatory signal. Thus, we asked whether CD8 T cell-specific CD137 stimulation contributes to their infiltration, retention, and IFNγ production in early atherogenesis. We tested this through adoptive transfer of CD8 T cells into recipient C57BL/6J mice that were then antigen primed and CD137 costimulated. We analyzed atherogenic LDF vessels in normolipidemic and PCSK9-mediated hyperlipidemic models and utilized a digestion protocol that allowed for lesional T-cell characterization via flow cytometry and in vitro stimulation. We found that CD137 activation, specifically of effector CD8 T cells, triggers their intimal infiltration into LDF vessels and promotes a persistent innate-like proinflammatory program. Residence of CD137+ effector CD8 T cells further promoted infiltration of endogenous CD8 T cells with IFNγ-producing potential, whereas CD137-deficient CD8 T cells exhibited impaired vessel infiltration, minimal IFNγ production, and reduced infiltration of endogenous CD8 T cells. Our studies thus provide novel insight into how CD137 costimulation of effector T cells, independent of plaque-antigen recognition, instigates their retention and promotes innate-like responses from immune infiltrates within atherogenic foci. NEW & NOTEWORTHY Our studies identify CD137 costimulation as a stimulus for effector CD8 T-cell infiltration and persistence within atherogenic foci, regardless of atherosclerotic-antigen recognition. These costimulated effector cells, which are generated in pathological states such as viral infection and autoimmunity, have innate-like proinflammatory programs in circulation and within the atherosclerotic microenvironment, providing mechanistic context for clinical correlations of cardiovascular morbidity with increased CD8 T-cell infiltration and markers of activation in the absence of established antigen specificity.
Collapse
Affiliation(s)
- Maria M Xu
- Department of Immunology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Antoine Ménoret
- Department of Immunology, University of Connecticut Health School of Medicine , Farmington, Connecticut.,Institute for Systems Genomics, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Sarah-Anne E Nicholas
- Center for Vascular Biology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Sebastian Günther
- Institute of Human Virology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine , Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland.,Department of Microbiology and Immunology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Beiyan Zhou
- Department of Immunology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Annabelle Rodriguez
- Center for Vascular Biology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Patrick A Murphy
- Center for Vascular Biology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Anthony T Vella
- Department of Immunology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| |
Collapse
|
31
|
Huang Y, Hu H, Liu L, Ye J, Wang Z, Que B, Liu W, Shi Y, Zeng T, Shi L, Ji Q, Chang C, Lin Y. Interleukin-12p35 Deficiency Reverses the Th1/Th2 Imbalance, Aggravates the Th17/Treg Imbalance, and Ameliorates Atherosclerosis in ApoE-/- Mice. Mediators Inflamm 2019; 2019:3152040. [PMID: 31093011 PMCID: PMC6481022 DOI: 10.1155/2019/3152040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/09/2018] [Indexed: 12/31/2022] Open
Abstract
Interleukin- (IL-) 35, a novel functional cytokine of regulatory T cells (Treg) comprised of the IL-12p35 subunit and the other subunit Epstein-Barr virus-induced gene 3 (EBI3), regulates the activity of CD4+ T cells and macrophages, thereby playing a critical role in inflammatory and autoimmune diseases. Previous studies demonstrated that both recombinant mice and human IL-35 attenuated atherosclerosis in ApoE-/- mice. Additionally, EBI3 deficiency enhanced the activation of macrophages and increased atherosclerotic lesions in LDLR-/- mice. This study generated double-deficient mice for ApoE and IL-12p35 (ApoE-/- IL-12p35-/- mice) and investigated the effect of IL-12p35 deficiency on atherosclerosis. IL-12p35 deficiency alleviated Th1/Th2 imbalance, aggravated Th17/Treg imbalance, and attenuated atherosclerotic plaque formation in ApoE-/- mice. Additionally, exogenous rIL-35 treatment reversed the imbalance of Th17/Treg and attenuated atherosclerosis in ApoE-/- mice. These findings suggest that IL-12p35 deficiency ameliorates atherosclerosis in ApoE-/- mice, partially, via attenuating the Th1/Th2 imbalance, although IL-12p35 deficiency aggravates the Th17/Treg imbalance.
Collapse
Affiliation(s)
- Ying Huang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Ultrasound, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Haiying Hu
- Department of Cardiology, Handan First Hospital, Handan 056002, China
| | - Ling Liu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jing Ye
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Cardiology, Renmin Hospital of Wuhan University and Cardiovascular Research Institute, Wuhan University and Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhen Wang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Cardiology, Renmin Hospital of Wuhan University and Cardiovascular Research Institute, Wuhan University and Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Bin Que
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Wenjing Liu
- Department of Cardiology, Handan First Hospital, Handan 056002, China
| | - Ying Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Tao Zeng
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Chao Chang
- Department of Cardiology, Handan First Hospital, Handan 056002, China
| | - Yingzhong Lin
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
32
|
Abstract
There is now overwhelming experimental and clinical evidence that arteriosclerosis is a chronic inflammatory disease. Lessons learned from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice models and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb arteriosclerosis. This article summarizes and discusses the pathogenesis of arteriosclerosis with a focus on the role of the adaptive immune system. Some limitations of animal models are discussed and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment are emphasized.
Collapse
Affiliation(s)
- D Wolf
- Abteilung für Kardiologie und Angiologie I, Universitäts-Herzzentrum Freiburg, Freiburg, Deutschland
- Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
| | - K Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, 92037, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Jian D, Wang W, Zhou X, Jia Z, Wang J, Yang M, Zhao W, Jiang Z, Hu X, Zhu J. Interferon-induced protein 35 inhibits endothelial cell proliferation, migration and re-endothelialization of injured arteries by inhibiting the nuclear factor-kappa B pathway. Acta Physiol (Oxf) 2018; 223:e13037. [PMID: 29350881 DOI: 10.1111/apha.13037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
AIM Endothelial recovery, or re-endothelialization, plays an important role in intimal hyperplasia and atherosclerosis after endothelial injury. Studying the mechanisms of re-endothelialization and strategies to promote efficient endothelial recovery are still needed. Interferon-induced protein 35 (IFI35) is an IFN-γ-induced protein that plays important roles in the antivirus-related immune-inflammatory response. In this study, we tested whether overexpression IFI35 affects the proliferation and migration of endothelial cells (ECs) and re-endothelialization. METHODS Wire injury of the carotid artery was induced in C57BL/6 mice, which was followed by IFI35 or null adenovirus transduction. Evans blue staining and HE staining were performed to evaluate the re-endothelialization rate and neointima formation. In vitro studies, primary human umbilical vein endothelial cells (HUVECs) were transfected with Ad-IFI35 or siRNA-IFI35 to evaluate its potential roles in cell proliferation and migration. Furthermore, the potential mechanism relating inhibition of NF-κB/p65 pathway was elaborated by luciferase assay and IFI35 domain deletion assay. RESULTS In IFI35 adenovirus-transduced mice, the re-endothelialization rates at days 3, 7 were significantly reduced compared to those in null adenovirus-transduced mice (5% and 35%, vs 20% and 50%, respectively). Meanwhile, subsequent neointimal hyperplasia was obviously increased in IFI35 adenovirus-transduced mice. In vitro studies further indicated that IFI35 inhibits both EC proliferation and migration by inhibiting the NF-κB/p65 pathway. Subsequent studies demonstrated that IFI35 functionally interacted with Nmi through its NID1 domain and that knock-down of Nmi significantly mitigated the inhibitory effect of IFI35 on EC proliferation and migration. CONCLUSION Our study revealed a novel mechanism through which IFI35 affects the proliferation and migration of ECs as well as neointima formation, specifically through inhibition of the NF-κB/p65 pathway. Thus, IFI35 is a promising target for the prevention and treatment of post-injury vascular intimal hyperplasia.
Collapse
Affiliation(s)
- D. Jian
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - W. Wang
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - X. Zhou
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - Z. Jia
- Department of Cardio-Thoracic Surgery; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - J. Wang
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - M. Yang
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - W. Zhao
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - Z. Jiang
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - X. Hu
- Department of Intensive Care Unit; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| | - J. Zhu
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang China
| |
Collapse
|
34
|
Hyperglycemia does not affect tissue repair responses in shear stress-induced atherosclerotic plaques in ApoE-/- mice. Sci Rep 2018; 8:7530. [PMID: 29760458 PMCID: PMC5951920 DOI: 10.1038/s41598-018-25942-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
The mechanisms responsible for macrovascular complications in diabetes remain to be fully understood. Recent studies have identified impaired vascular repair as a possible cause of plaque vulnerability in diabetes. This notion is supported by observations of a reduced content of fibrous proteins and smooth muscle cell mitogens in carotid endarterectomy from diabetic patients along with findings of decreased circulating levels of endothelial progenitor cells. In the present study we used a diabetic mouse model to characterize how hyperglycemia affects arterial repair responses. We induced atherosclerotic plaque formation in ApoE-deficient (ApoE−/−) and heterozygous glucokinase knockout ApoE-deficient mice (ApoE−/− GK+/−) mice with a shear stress-modifying cast. There were no differences in cholesterol or triglyceride levels between the ApoE−/− and ApoE−/− GK+/− mice. Hyperglycemia did not affect the size of the formed atherosclerotic plaques, and no effects were seen on activation of cell proliferation, smooth muscle cell content or on the expression and localization of collagen, elastin and several other extracellular matrix proteins. The present study demonstrates that hyperglycemia per se has no significant effects on tissue repair processes in injured mouse carotid arteries, suggesting that other mechanisms are involved in diabetic plaque vulnerability.
Collapse
|
35
|
Rajendran P, Chen YF, Chen YF, Chung LC, Tamilselvi S, Shen CY, Day CH, Chen RJ, Viswanadha VP, Kuo WW, Huang CY. The multifaceted link between inflammation and human diseases. J Cell Physiol 2018; 233:6458-6471. [PMID: 29323719 DOI: 10.1002/jcp.26479] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022]
Abstract
Increasing reports on epidemiological, diagnostic, and clinical studies suggest that dysfunction of the inflammatory reaction results in chronic illnesses such as cancer, arthritis, arteriosclerosis, neurological disorders, liver diseases, and renal disorders. Chronic inflammation might progress if injurious agent persists; however, more typically than not, the response is chronic from the start. Distinct to most changes in acute inflammation, chronic inflammation is characterized by the infiltration of damaged tissue by mononuclear cells like macrophages, lymphocytes, and plasma cells, in addition to tissue destruction and attempts to repair. Phagocytes are the key players in the chronic inflammatory response. However, the important drawback is the activation of pathological phagocytes, which might result from continued tissue damage and lead to harmful diseases. The longer the inflammation persists, the greater the chance for the establishment of human diseases. The aim of this review was to focus on advances in the understanding of chronic inflammation and to summarize the impact and involvement of inflammatory agents in certain human diseases.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ya-Fang Chen
- Department of Obstetrics and Gynecology, Taichung Veteran's General Hospital, Taichung, Taiwan.,Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Feng Chen
- Section of Cardiology, Yuan Rung Hospital, Yuanlin, Taiwan
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan County, Taiwan
| | - Shanmugam Tamilselvi
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
36
|
Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease. Oncotarget 2018; 7:48788-48812. [PMID: 27166190 PMCID: PMC5217051 DOI: 10.18632/oncotarget.9195] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/22/2016] [Indexed: 02/06/2023] Open
Abstract
Key factors contributing to early stages of atherosclerosis and plaque development include the pro-inflammatory cytokines Interferon (IFN)α, IFNγ and Interleukin (IL)-6 and Toll-like receptor 4 (TLR4) stimuli. Together, they trigger activation of Signal Transducer and Activator of Transcription (STAT) and Interferon Regulatory Factor (IRF) families. In particular, STAT1, 2 and 3; IRF1 and 8 have recently been recognized as prominent modulators of inflammation, especially in immune and vascular cells during atherosclerosis. Moreover, inflammation-mediated activation of these STATs and IRFs coordinates a platform for synergistic amplification leading to pro-atherogenic responses. Searches for STAT3-targeting compounds, exploring the pTyr-SH2 interaction area of STAT3, yielded many small molecules including natural products. Only a few inhibitors for other STATs, but none for IRFs, are described. Promising results for several STAT3 inhibitors in recent clinical trials predicts STAT3-inhibiting strategies may find their way to the clinic. However, many of these inhibitors do not seem STAT-specific, display toxicity and are not very potent. This illustrates the need for better models, and screening and validation tools for novel STAT and IRF inhibitors. This review presents a summary of these findings. It postulates STAT1, STAT2 and STAT3 and IRF1 and IRF8 as interesting therapeutic targets and targeted inhibition could be a potential treatment strategy in CVDs. In addition, it proposes a pipeline approach that combines comparative in silico docking of STAT-SH2 and IRF-DBD models with in vitro STAT and IRF activation inhibition validation, as a novel tool to screen multi-million compound libraries and identify specific inhibitors for STATs and IRFs.
Collapse
|
37
|
Weiss TW, Rohla M. Metabolic syndrome, inflammation and atherothrombosis. Hamostaseologie 2017; 33:283-94. [DOI: 10.5482/hamo-13-07-0035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/16/2013] [Indexed: 12/17/2022] Open
Abstract
SummaryExtensive research of the past decades altered our traditional concept about the genesis of atherosclerosis fundamentally. Today, the crucial role of inflammation in the formation and progression of atherosclerotic plaques is indisputable. Patients at high risk for developing cardiovascular disease, owing to poor diet, obesity and low physical activity have been shown to exhibit a particular inflammatory pattern.Therefore, the present review highlights the crosslink between the metabolic syndrome (MetS), adipose tissue, adipokines and selected inflammatory cytokines in the context of atherothrombosis and cardiovascular disease.
Collapse
|
38
|
Wolf D, Stachon P, Bode C, Zirlik A. Inflammatory mechanisms in atherosclerosis. Hamostaseologie 2017; 34:63-71. [DOI: 10.5482/hamo-13-09-0050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023] Open
Abstract
SummaryThroughout the last two decades inflammation has been recognized as the central mechanism underlying atherogenesis. A multitude of basic science work demonstrates the pivotal role of inflammatory processes during every step of atherosclerotic plaque formation: From initiation via propagation to complication.This review describes some of the key mechanisms involved with a particular focus on the diverse group of inflammatory cells and their subsets that distinctly contribute to atherogenic and anti-atherogenic phenomena. Furthermore, we summarize the controlling action of a tight network of co-stimulatory molecules and cytokines orchestrating the inflammatory and anti-inflammatory effector functions. Finally, the current status of clinical trials evaluating anti-inflammatory/ immune-modulatory treatment strategies is summarized and an outlook for future therapeutic implications is provided.
Collapse
|
39
|
Braun JBS, Ruchel JB, Manzoni AG, Abdalla FH, Casalli EA, Castilhos LG, Passos DF, Leal DBR. Pretreatment with quercetin prevents changes in lymphocytes E-NTPDase/E-ADA activities and cytokines secretion in hyperlipidemic rats. Mol Cell Biochem 2017; 444:63-75. [PMID: 29188537 DOI: 10.1007/s11010-017-3231-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
Abstract
Hyperlipidemia (HL) is a condition associated with endothelial dysfunction and inflammatory disorders. Purinergic system ectoenzymes play an important role in modulating the inflammatory and immune response. This study investigated whether the preventive treatment with quercetin is able to prevent changes caused by hyperlipidemia in the purinergic system, through the activities of E-NTPDase and E-ADA in lymphocytes, and quantify the nucleotides and nucleoside, and the secretion of anti- and proinflammatory cytokines. Animals were divided into saline/control, saline/quercetin 5 mg/kg, saline/quercetin 25 mg/kg, saline/quercetin 50 mg/kg, saline/simvastatin (0.04 mg/kg), hyperlipidemia, hyperlipidemia/quercetin 5 mg/kg, hyperlipidemia/quercetin 25 mg/kg, hyperlipidemia/quercetin 50 mg/kg, and hyperlipidemia/simvastatin. Animals were pretreated with quercetin for 30 days and hyperlipidemia was subsequently induced by intraperitoneal administration of 500 mg/kg of poloxamer-407. Simvastatin was administered after the induction of hyperlipidemia. Lymphocytes were isolated and E-NTPDase and E-ADA activities were determined. Serum was separated for the cytokines and nucleotide/nucleoside quantification. E-NTPDase and E-ADA activities were increased in lymphocytes from hyperlipidemic rats and pretreatment with quercetin was able to prevent the increase in the activities of these enzymes caused by hyperlipidemia. Hyperlipidemic rats when receiving pretreatment with quercetin and treatment with simvastatin showed decreased levels of ATP and ADP when compared to the untreated hyperlipidemic group. The IFN-γ and IL-4 cytokines were increased in the hyperlipidemic group when compared with control group, and decreased when hyperlipidemic rats received the pretreatment with quercetin. However, pretreatment with quercetin was able to prevent the alterations caused by hyperlipidemia probably by regulating the inflammatory process. We can suggest that the quercetin is a promising compound to be used as an adjuvant in the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Josiane B S Braun
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil. .,Laboratório de Imunobiologia Experimental e Aplicada, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, Santa Maria, RS, 97105-900, Brazil.
| | - Jader B Ruchel
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.,Laboratório de Imunobiologia Experimental e Aplicada, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, Santa Maria, RS, 97105-900, Brazil
| | - Alessandra G Manzoni
- Laboratório de Imunobiologia Experimental e Aplicada, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, Santa Maria, RS, 97105-900, Brazil
| | - Fátima H Abdalla
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Emerson A Casalli
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lívia G Castilhos
- Programa de Pós Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Daniela F Passos
- Laboratório de Imunobiologia Experimental e Aplicada, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, Santa Maria, RS, 97105-900, Brazil.
| | - Daniela B R Leal
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.,Laboratório de Imunobiologia Experimental e Aplicada, Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, prédio 20, Santa Maria, RS, 97105-900, Brazil.,Programa de Pós Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
40
|
Wolters TLC, Netea MG, Hermus ARMM, Smit JWA, Netea-Maier RT. IGF1 potentiates the pro-inflammatory response in human peripheral blood mononuclear cells via MAPK. J Mol Endocrinol 2017; 59:129-139. [PMID: 28611056 DOI: 10.1530/jme-17-0062] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/13/2017] [Indexed: 01/01/2023]
Abstract
Acromegaly is characterized by growth hormone (GH) and insulin-like growth factor 1 (IGF1) excess and is accompanied by an increased cardiovascular diseases (CVD) risk. As innate immune responses are crucial in CVD development, and IGF1 is linked to subclinical inflammation, we hypothesized that GH/IGF1 excess contributes to CVD development by potentiating systemic inflammation. We aimed to assess the effects of GH/IGF1 on inflammatory cytokine production. Whole blood from acromegaly patients and healthy volunteers and peripheral blood mononuclear cells (PBMCs) from healthy volunteers were stimulated with Toll-like receptor (TLR) ligands, with or without adding GH or IGF1 (in PBMC). Cytokine concentrations were measured by ELISA. The underlying signalling pathways were investigated by the inhibition of downstream targets of the IGF1 receptor. The following results were obtained. GH or IGF1 alone did not influence cytokine production in PBMCs. GH did not affect TLR-induced cytokine production, but co-stimulation with IGF1 dose dependently increased the TLR ligand-induced production of IL6 (P < 0.01), TNF alpha (P = 0.02) and IFNg (P < 0.01), as well as the production of the anti-inflammatory cytokine IL10 (P = 0.01). IGF1 had no effect on IL1B, IL17 and IL22 production. Inhibition of the MAPK pathway, but not mTOR, completely abrogated the synergistic effect of IGF1 on the LPS-induced IL6 and TNF alpha production. In whole blood of acromegaly patients, ex vivo IL6 production was increased (P < 0.01). In conclusion, IGF1, but not GH, has pro-inflammatory effects, probably via the MAPK signalling pathway and might be involved in the pathogenesis of atherosclerosis in acromegaly. The increased IL10 production possibly counteracts the pro-inflammatory effects.
Collapse
Affiliation(s)
| | - Mihai Gheorghe Netea
- Department of Internal MedicineRadboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
41
|
Influence on Adiposity and Atherogenic Lipaemia of Fatty Meals and Snacks in Daily Life. J Lipids 2017; 2017:1375342. [PMID: 28706738 PMCID: PMC5494570 DOI: 10.1155/2017/1375342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/09/2017] [Indexed: 11/18/2022] Open
Abstract
The present work reviewed the connections of changes in consumption of high-fat food with changes in adiposity and lipaemia in adults with overweight or obesity. Hyperlipaemia from higher fat meals and excessive adiposity contributes to atherogenic process. Low-fat diet interventions decrease body fat, lipaemia, and atherosclerosis markers. Inaccuracy of physical estimates of dietary fat intake remains, however, a limit to establishing causal connections. To fill this gap, tracking fat-rich eating episodes at short intervals quantifies the behavioural frequency suggested to measure (by regression of changes in real time) direct effects of this eating pattern on adiposity and atherogenic lipaemia. Such evidence will provide the basis for an approach focused on a sustained decrease in frequency of fatty meals or snacks to reduce obesity, hyperlipaemia, and atherosclerosis.
Collapse
|
42
|
Coppo M, Bandinelli M, Chiostri M, Poggesi L, Boddi M. Persistent and selective upregulation of renin-angiotensin system in circulating T lymphocytes in unstable angina. J Renin Angiotensin Aldosterone Syst 2017; 18:1470320317698849. [PMID: 28281389 PMCID: PMC5843884 DOI: 10.1177/1470320317698849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: Unstable angina is associated with an acute systemic inflammatory reaction and circulating T lymphocytes are activated. We investigated whether in unstable angina with marked immune system activation a selective upregulation of the circulating T-cell renin–angiotensin system, modulated by angiotensin II, could occur. Methods: We studied 13 unstable angina patients, 10 patients with stable angina and 10 healthy subjects. After T-lymphocyte isolation, mRNAs for angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor (AT1-R) were quantified at baseline and after angiotensin II stimulation. ACE activity in cell pellet and supernatant and angiotensin II cell content were measured. Results: Plasma renin activity was similar in controls, stable and unstable angina patients. At baseline ACE and AT1-R mRNA levels were higher (P<0.05) in T cells from unstable angina patients than in T cells from stable angina patients and controls, and further increased after angiotensin II addition to cultured T cells. ACE activity of unstable angina T cells was significantly higher than that of T cells from controls and stable angina patients. Only in T cells from unstable angina patients did angiotensin II stimulation cause the almost complete release of ACE activity in the supernatant. Conclusions: The circulating T-cell-based renin–angiotensin system from unstable angina patients was selectively upregulated. In vivo unstable angina T cells could locally increase angiotensin II concentration in tissues where they migrate independently of the circulating renin–angiotensin system.
Collapse
Affiliation(s)
- Mirella Coppo
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Manuela Bandinelli
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Marco Chiostri
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Loredana Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Maria Boddi
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| |
Collapse
|
43
|
Liang Y, Yang C, Zhou Q, Pan W, Zhong W, Ding R, Wang A. Serum Monokine Induced by Gamma Interferon Is Associated With Severity of Coronary Artery Disease. Int Heart J 2017; 58:24-29. [DOI: 10.1536/ihj.15-472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Youfeng Liang
- Department of Cardiology, Hefei Third Clinical College of Anhui Medical University
| | - Chun Yang
- Department of Cadre Cardiology, Nanjing General Hospital of Nanjing Command
| | - Qi Zhou
- Department of Heart Function Examinations, Hefei Third Clinical College of Anhui Medical University
| | - Wenbo Pan
- Department of Cardiology, Hefei Third Clinical College of Anhui Medical University
| | - Wansheng Zhong
- Department of Cardiology, Hefei Third Clinical College of Anhui Medical University
| | - Ruyue Ding
- Department of Cardiology, Hefei Third Clinical College of Anhui Medical University
| | - Ailing Wang
- Department of Cardiology, First Affiliated Hospital of Anhui Medical University
| |
Collapse
|
44
|
Taleb S. Inflammation in atherosclerosis. Arch Cardiovasc Dis 2016; 109:708-715. [DOI: 10.1016/j.acvd.2016.04.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
|
45
|
Wang K, Jin F, Zhang Z, Sun X. Angiotensin II Promotes the Development of Carotid Atherosclerosis in Type 2 Diabetes Patients via Regulating the T Cells Activities: A Cohort Study. Med Sci Monit 2016; 22:4000-4008. [PMID: 27782101 PMCID: PMC5094472 DOI: 10.12659/msm.900842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Specific T cell phenotype has been reported to potentially contribute to the development of angiotensin II (Ang II)-induced several vascular disorders. Type 2 diabetes mellitus (T2DM) is intimately associated with cardiovascular disease. The present study aimed to investigate the relationship between T cell phenotypes and Ang II in T2DM patients combined with carotid atherosclerosis (CA). Material/Methods This study was performed on 50 patients with T2DM in our hospital. Based on the presence of CA, they were divided into CA group (presence of CA, n=30) or T2DM group (absence of CA, n=20). Additionally, 10 healthy participants were selected as controls. Basic characteristics of all participants were collected and recorded. Peripheral blood mononuclear cells (PBMCs) isolated from patients and controls with or without Ang II and Ang II receptor blocker (ARB) treatment were used to detect Th1, Th2, and Th17 cell proportions, mRNA levels of T-bet, GATA3, and RORγt as well as the expression of IFN-γ, IL-4, and IL-17 by flow cytometry, ELISA, and Real-Time PCR. Results Ang II levels were notably higher in patients in the CA group than those in the T2DM and control group (p<0.05). Th1 and Th17 positive cells, mRNA levels of T-bet and RORγt as well as the expression of IFN-γ and IL-17 were significantly increased in the CA group compared with the T2DM group and control group (p<0.05). Moreover, the activities of T cells and related cytokines were significantly increased of healthy controls after Ang II treatment (p<0.05), while these changes were notably weakened by ARB treatment (p<0.05). Conclusions Ang II promotes the development of CA in T2DM patients by regulating T cells activities.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Feng Jin
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Zhanpu Zhang
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
46
|
Jung IH, Oh GT. The Roles of CD137 Signaling in Atherosclerosis. Korean Circ J 2016; 46:753-761. [PMID: 27826331 PMCID: PMC5099328 DOI: 10.4070/kcj.2016.46.6.753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/04/2016] [Accepted: 04/12/2016] [Indexed: 12/19/2022] Open
Abstract
The tumor necrosis factor receptor superfamily (TNFRSF), which includes CD40, LIGHT, and OX40, plays important roles in the initiation and progression of cardiovascular diseases, involving atherosclerosis. CD137, a member of TNFRSF, is a well-known activation-induced T cell co-stimulatory molecule and has been reported to be expressed in human atherosclerotic plaque lesions, and plays pivotal roles in mediating disease processes. In this review, we focus on and summarize recent advances in mouse studies on the involvement of CD137 signaling in the pathogenesis and plaque stability of atherosclerosis, thereby highlighting a valuable therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- In-Hyuk Jung
- Department of Life Sciences, Ewha Womans University, Seoul, Korea.; Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Goo Taeg Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
47
|
Takata K, Imaizumi S, Zhang B, Miura SI, Saku K. Stabilization of high-risk plaques. Cardiovasc Diagn Ther 2016; 6:304-21. [PMID: 27500090 DOI: 10.21037/cdt.2015.10.03] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of atherosclerotic cardiovascular diseases (ASCVDs) is increasing globally and they have become the leading cause of death in most countries. Numerous experimental and clinical studies have been conducted to identify major risk factors and effective control strategies for ASCVDs. The development of imaging modalities with the ability to determine the plaque composition enables us to further identify high-risk plaque and evaluate the effectiveness of different treatment strategies. While intensive lipid-lowering by statins can stabilize or even regress plaque by various mechanisms, such as the reduction of lipid accumulation in a necrotic lipid core, the reduction of inflammation, and improvement of endothelial function, there are still considerable residual risks that need to be understood. We reviewed important findings regarding plaque vulnerability and some encouraging emerging approaches for plaque stabilization.
Collapse
Affiliation(s)
- Kohei Takata
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Satoshi Imaizumi
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Bo Zhang
- Department of Biochemistry, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Shin-Ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Keijiro Saku
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| |
Collapse
|
48
|
Paul VSV, Paul CMP, Kuruvilla S. Quantification of Various Inflammatory Cells in Advanced Atherosclerotic Plaques. J Clin Diagn Res 2016; 10:EC35-8. [PMID: 27437229 DOI: 10.7860/jcdr/2016/19354.7879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/25/2016] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Atherosclerosis, the pathological basis of coronary artery disease is being extensively studied as understanding of the complex processes involved in the formation and progression that can provide an insight into prevention and treatment of the same. This is an autopsy study to identify and quantify various inflammatory cells in advanced atherosclerotic plaques. AIM This study aims at identifying and categorizing the various inflammatory cells present in advanced atherosclerotic plaques, noting their distribution in the plaque, quantifying them using histomorphometry and comparing them across plaques of different AHA types. MATERIALS AND METHODS Post-mortem angiogram was performed on 3 heart specimens obtained at autopsy of random Road Traffic Accident (RTA) cases which revealed evidence of coronary artery disease. End-arterectomy was done and the arteries with atherosclerotic plaques were cut into serial sections and made into tissue blocks. Sections from these blocks were stained with H & E stain and the plaques were classified based on AHA classification. 50 advanced atherosclerotic plaques of AHA Type IV and V were chosen for this study and were screened for inflammatory cells, first with H & E stain and then with different immunohistochemical stains for T-lymphocytes, B-lymphocytes and neutrophils. The T-lymphocytes thus identified was further sub-typed into CD4+ and CD8+ cells again using IHC markers and the percentage area of each was measured using histomorphometry. Then, these values were compared between AHA Type IV and AHA Type V lesions. RESULTS It was found that the inflammatory cells found in advanced atherosclerotic plaques were predominantly T-lymphocytes as evidenced by their CD3 positivity and they were found to be distributed mainly around the shoulder region and fibrous cap of the plaque. When categorized further, it was found that CD8+ T-cells were always more than CD4+ T-cells in advanced lesions. Meloperoxidase stain for neutrophils was negative in all the plaques examined. The difference in the amount of inflammatory cells between AHA type IV and Type V was not statistically significant. CONCLUSION The study of the amount of inflammatory cells in atherosclerotic plaques and understanding their role in the pathophysiology of advanced plaques may have therapeutic implications.
Collapse
Affiliation(s)
| | | | - Sarah Kuruvilla
- Senior Consultant and Head of the Department, Department of Pathology, The Madras Medical Mission Hospital , Chennai, India
| |
Collapse
|
49
|
Spitz C, Winkels H, Bürger C, Weber C, Lutgens E, Hansson GK, Gerdes N. Regulatory T cells in atherosclerosis: critical immune regulatory function and therapeutic potential. Cell Mol Life Sci 2016; 73:901-22. [PMID: 26518635 PMCID: PMC11108393 DOI: 10.1007/s00018-015-2080-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/30/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that is mediated by innate and adaptive immune responses. The disease is characterized by sub-endothelial accumulation and modification of lipids in the artery wall triggering an inflammatory reaction which promotes lesion progression and eventual plaque rupture, thrombus formation, and the respective clinical sequelae such as myocardial infarction or stroke. During the past decade, T-cell-mediated immune responses, especially control of pro-inflammatory signals by regulatory T cells (Tregs), have increasingly attracted the interest of experimental and clinical researchers. By suppression of T cell proliferation and secretion of anti-inflammatory cytokines, such as interleukin-10 (IL-10) and transforming growth factor-β, Tregs exert their atheroprotective properties. Atherosclerosis-prone, hyperlipidemic mice harbor systemically less Tregs compared to wild-type mice, suggesting an imbalance of immune cells which affects local and systemic inflammatory and potentially metabolic processes leading to atherogenesis. Restoring or increasing Treg frequency and enhancing their suppressive capacity by various modulations may pose a promising approach for treating inflammatory conditions such as cardiovascular diseases. In this review, we briefly summarize the immunological basics of atherosclerosis and introduce the role and contribution of different subsets of T cells. We then discuss experimental data and current knowledge pertaining to Tregs in atherosclerosis and perspectives on manipulating the adaptive immune system to alleviate atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Charlotte Spitz
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Pettenkoferstr. 9, 80336, Munich, Germany
| | - Holger Winkels
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Pettenkoferstr. 9, 80336, Munich, Germany
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Christina Bürger
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Pettenkoferstr. 9, 80336, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Pettenkoferstr. 9, 80336, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Esther Lutgens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Pettenkoferstr. 9, 80336, Munich, Germany
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Göran K Hansson
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Pettenkoferstr. 9, 80336, Munich, Germany.
| |
Collapse
|
50
|
Serum Galectin-9 Levels Are Associated with Coronary Artery Disease in Chinese Individuals. Mediators Inflamm 2015; 2015:457167. [PMID: 26663989 PMCID: PMC4667018 DOI: 10.1155/2015/457167] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 09/10/2015] [Accepted: 09/13/2015] [Indexed: 01/12/2023] Open
Abstract
Background. Recently, several studies suggest that galectin-9 (Gal-9) might play a pivotal role in the pathogenesis of autoimmune diseases. However, the exact role of Gal-9 in atherosclerosis remains to be elucidated. Methods. Serum Gal-9, high-sensitivity C-reactive protein (hs-CRP), interferon- (IFN-) γ, interleukin- (IL-) 4, IL-17, and transforming growth factor- (TGF-) β1 were measured. The effect of Gal-9 on peripheral blood mononuclear cells (PBMC) was investigated in patients with normal coronary artery (NCA). Results. The lowest level of Gal-9 was found in the ST-segment elevation myocardial infarction (STEMI) group, followed by the non-ST-segment elevation ACS (NSTEACS), the NCA, and the stable angina pectoris (SAP) groups, respectively. Additionally, Gal-9 was found to be independently associated with hs-CRP, lipoprotein(a), and creatinine. Notably, Gal-9 was also noted to be an independent predictor of the Gensini score. Moreover, Gal-9 suppressed T-helper 17 (Th17) and expanded regulatory T cells (Tregs), resulting in decreased IL-17 production and increased secretion of TGF-β1. Conclusions. Serum Gal-9 is associated with not only coronary artery disease (CAD), but also the severity of coronary arteries stenosis. Gal-9 can expand Tregs and suppress Th17 development in activated PBMC, implying that Gal-9 has the potential to dampen the development of atherosclerosis and may be a new therapy for CAD.
Collapse
|