1
|
Muhammad W, Liang M, Wang B, Xie J, Ahmed W, Gao C. NAC-Grafted ROS-Scavenging Polymer Nanoparticles for Modulation of Acute Lung Injury Microenvironment In Vivo. Biomacromolecules 2025; 26:528-540. [PMID: 39729531 DOI: 10.1021/acs.biomac.4c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
N-Acetyl cysteine (NAC) is an essential molecule that boosts acute lung injury (ALI) defense via its direct antioxidant capability. Nevertheless, the therapeutic use of NAC is limited due to its poor bioavailability and short half-life. In this study, NAC was grafted to the polyurethane consisting of poly(propylene fumarate), poly(thioketal), and 1,6-hexamethylene diisocyanate (PFTU) to reduce excessive oxidative stress and inflammatory factors in ALI. The NAC-grafted polymer nanoparticles (NPT@NPs) were prepared as a drug delivery system, which could effectively scavenge free radicals and reduce inflammation in vitro. The administration of NPT@NPs exhibited notable efficacy in ameliorating pulmonary edema, attenuating the presence of inflammatory cells, suppressing myeloperoxidase expression, diminishing the levels of pro-inflammatory cytokines, and reversing cell apoptosis in an ALI model induced by lipopolysaccharide (LPS). The NPT@NPs demonstrated significantly better efficacy compared to the free NAC in mitigating the deleterious effects of LPS on pulmonary tissue, thereby providing more effective protection against pulmonary inflammation.
Collapse
Affiliation(s)
- Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Min Liang
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
| | - Beiduo Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wajiha Ahmed
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Schini-Kerth VB, Diouf I, Muzammel H, Said A, Auger C. Natural Products to Promote Vascular Health. Handb Exp Pharmacol 2025; 287:33-60. [PMID: 39317849 DOI: 10.1007/164_2024_721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Maintaining good vascular health is a major component in healthy ageing as it reduces the risk of cardiovascular diseases. Endothelial dysfunction, in particular, is a key mechanism in the development of major cardiovascular diseases including hypertension, atherosclerosis and diabetes. Recently, endothelial senescence has emerged as a pivotal early event in age-related endothelial dysfunction. Endothelial function is characterized by an imbalance between the endothelial formation of vasoprotective mechanisms, including the formation of nitric oxide (NO) and endothelium-dependent hyperpolarization responses, and an increased level of oxidative stress involving several pro-oxidant enzymes such as NADPH oxidases and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Pre-clinical studies have indicated that natural products, in particular several polyphenol-rich foods, can trigger activating pathways in endothelial cells promoting an increased formation of NO and endothelium-dependent hyperpolarization. In addition, some can even exert beneficial effects on endothelial senescence. Moreover, some of these products have been associated with the prevention and/or improvement of established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. Therefore, intake of certain natural products, such as dietary and plant-derived polyphenol-rich products, appears to be an attractive approach for a healthy vascular system in ageing.
Collapse
Affiliation(s)
- Valérie B Schini-Kerth
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France.
| | - Ibrahima Diouf
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Hira Muzammel
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Amissi Said
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- Regenerative Nanomedicine, INSERM UMR 1260, CRBS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Auger C, Muzammel H, Diouf I, Schini-Kerth VB. Potential of Anthocyanin-rich Products to Prevent and Improve Endothelial Function and Senescence: Focus on Anthocyanins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27590-27618. [PMID: 39629614 DOI: 10.1021/acs.jafc.4c04727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Endothelial dysfunction is a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, diabetes, and aging. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors, including nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH), and vasocontracting factors, such as arachidonic acid-derived mediators generated by cyclooxygenases, and an increased level of oxidative stress. Recently, endothelial senescence was reported to be an early trigger of endothelial dysfunction. Preclinical studies indicate that polyphenol-rich food, including anthocyanin-rich products, can activate pathways promoting an increased formation of vasoprotective factors and can prevent the induction of endothelial dysfunction in endothelial cells and isolated blood vessels. Similarly, intake of anthocyanin-rich products has been associated with the prevention and/or the improvement of an endothelial dysfunction in several experimental models of cardiovascular diseases, including physiological aging. Moreover, clinical data indicate that polyphenol-rich and anthocyanin-rich products can improve endothelial function and vascular health in humans with cardiovascular diseases. The present review will discuss both experimental and clinical evidence indicating that several polyphenol-rich foods and natural products, and especially anthocyanin-rich products, can promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Cyril Auger
- University of Strasbourg, INSERM, Regenerative Nanomedicine UMR 1260, 67000 Strasbourg, France
| | - Hira Muzammel
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| | - Ibrahima Diouf
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| | - Valérie B Schini-Kerth
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| |
Collapse
|
4
|
Liang C, Zhao R, Du J, Zhao G, Zhang Y. The association between dietary selenium intake and telomere length in hypertension. J Clin Hypertens (Greenwich) 2024; 26:990-996. [PMID: 38967394 PMCID: PMC11301449 DOI: 10.1111/jch.14861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Telomere length is closely linked to biological aging, oxidative stress, and the development of cardiovascular diseases. This study aimed to assess the association between dietary selenium intake and telomere length in individuals with hypertension. Data on dietary selenium intake were captured through the National Health and Nutrition Examination Survey (NHANES) computer-assisted dietary interview system (CADI). Telomere length determination entailed selecting blood samples from all participants in the NHANES database. The analysis was performed using Analysis System software, with Empower stats utilized for data analysis. Results showed that there was a significant association between dietary selenium intake and telomere length in hypertension, particularly within the female group. In female hypertension cases, a 1 mcg increase in dietary selenium intake corresponded to a telomere length increase of 1.19 bp, even after adjusting for age, race, BMI, marital status, physical activity, energy intake, and stroke history. The relationship between dietary selenium intake and telomere length exhibited a linear pattern in female hypertension patients. This study identified a positive association between dietary selenium intake and telomere length in hypertension, particularly within the female group.
Collapse
Affiliation(s)
- Cui Liang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ruixue Zhao
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiaqi Du
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Guojun Zhao
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yanzhou Zhang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
5
|
Chittimalli K, Adkins S, Arora S, Singh J, Jarajapu YP. An Investigation of the Inflammatory Landscape in the Brain and Bone Marrow of the APP/PS1 Mouse. J Alzheimers Dis Rep 2024; 8:981-998. [PMID: 39114548 PMCID: PMC11305850 DOI: 10.3233/adr-240024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024] Open
Abstract
Background The APP/PS1 mouse model recapitulates pathology of human Alzheimer's disease (AD). While amyloid-β peptide deposition and neurodegeneration are features of AD, the pathology may involve inflammation and impaired vascular regeneration. Objective This study evaluated inflammatory environments in the brain and bone marrow (BM), and the impact on brain microvascular density. Methods BM and frontal cortex from male nine-month-old APP/PS1 or the control C57Bl6/j mice were studied. Vascular density and inflammatory cells were evaluated in the sections of frontal cortex by immunohistochemistry. Different subsets of hematopoietic stem/progenitor cells (BM) and monocyte-macrophages were characterized by flow cytometry and by clonogenic assays. Myelopoietic or inflammatory factors were evaluated by real-time RT-PCR or by western blotting. Results CD34+ or CD31+ vascular structures were lower (p < 0.01, n = 6) in the frontal cortex that was associated with decreased number of Lin-Sca-1+cKit+ vasculogenic progenitor cells in the BM and circulation (p < 0.02, n = 6) compared to the control. Multipotent progenitor cells MPP4, common lymphoid, common myeloid and myeloid progenitor cells were higher in the APP/PS1-BM compared to the control, which agreed with increased numbers of monocytes and pro-inflammatory macrophages. The expression of pro-myelopoietic factors and alarmins was higher in the APP/PS1 BM-HSPCs or in the BM-supernatants compared to the control. Frontal cortices of APP/PS1 mice showed higher number of pro-inflammatory macrophages (CD11b+F4/80+ or CD80+) and microglia (OX42+Iba1+). Conclusions These findings show that AD pathology in APP/PS1 mice is associated with upregulated myelopoiesis, which contributes to the brain inflammation and decreased vascularity.
Collapse
Affiliation(s)
- Kishore Chittimalli
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Stephen Adkins
- School of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Sanjay Arora
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Yagna P.R. Jarajapu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
6
|
Cacciapuoti M, Bertoldi G, Caputo I, Driussi G, Carraro G, Calò LA. Oxidative stress and its role in Fabry disease. J Nephrol 2024; 37:1201-1207. [PMID: 38878155 DOI: 10.1007/s40620-024-01934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/20/2024] [Indexed: 09/18/2024]
Abstract
Fabry disease is a rare X-linked disease characterized by deficient expression and activity of alpha-galactosidase A with consequent lysosomal accumulation of glycosphingolipids, particularly globotriaosylceramide in various organs. Currently, enzyme replacement therapy with recombinant human α-galactosidase is the cornerstone of the treatment of Fabry patients, although in the long term enzyme replacement therapy fails to halt disease progression, in particular in case of late diagnosis. This suggests that the adverse outcomes cannot be justified by the lysosomal accumulation of glycosphingolipids alone, and that additional therapies targeted at further pathophysiologic mechanisms might contribute to halting the progression of cardiac, cerebrovascular and kidney disease in Fabry patients. Recent evidence points toward the involvement of oxidative stress, oxidative stress signaling and inflammation in the pathophysiology of cardio cerebrovascular and kidney damage in Fabry patients. This review reports the current knowledge of the involvement of oxidative stress in Fabry disease, which clearly points toward the involvement of oxidative stress in the pathophysiology of the medium to long-term cardio-cerebrovascular-kidney damage of Fabry patients and summarizes the antioxidant therapeutic approaches currently available in the literature. This important role played by oxidative stress suggests potential novel additional therapeutic interventions by either pharmacologic or nutritional measures, on top of enzyme replacement therapy, aimed at improving/halting the progression of cardio-cerebrovascular disease and nephropathy that occur in Fabry patients.
Collapse
Affiliation(s)
- Martina Cacciapuoti
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Giovanni Bertoldi
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Ilaria Caputo
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Giulia Driussi
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Gianni Carraro
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Lorenzo A Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy.
| |
Collapse
|
7
|
Rossi KA, Almenara CCP, Simões RP, Mulher LCCS, Krause M, Carneiro MTWD, Padilha AS. Short-term Effects of Cadmium Exposure on Blood Pressure and Vascular Function in Wistar Rats. Biol Trace Elem Res 2024; 202:2645-2656. [PMID: 37697136 DOI: 10.1007/s12011-023-03851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
Chronic cadmium exposure is known to be associated with vascular changes and increased blood pressure, but its short-term effects on the cardiovascular system remain poorly understood. This study aimed to investigate the pressoric and vascular effects of a 7-day exposure to CdCl2 in Wistar rats. The rats were divided in control group (Ct), which received tap water, and the Cd group, which received a 100 mg/L CdCl2 solution via drinking water for 7 days. We analyzed body weight, plasma Cadmium concentration, systolic blood pressure (SBP), and vascular responses. Despite relatively low plasma Cadmium concentration, the Cd group exhibited elevated SBP and increased contractile response to phenylephrine. Endothelium removal and NOS inhibition increased contractions in both groups. In the Cd group's aorta, we observed enhanced levels of phospho-eNOS (Ser1177) and basal NO release. Cd group showed reduced Catalase expression and increased basal release of H2O2, with catalase reducing the contractile response. In arteries pre-contracted with phenylephrine, Cd group showed impaired endothelium-dependent (Acetylcholine) and independent (sodium nitroprussiate-SNP) relaxation responses. However, responses to SNP were similar after pre-contraction with KCl in both groups. These data suggest early effects of Cadmium on blood pressure and aortic function, indicating impaired H2O2-scavenging by catalase. Increased H2O2 due to Cadmium exposure might explain heightened responses to phenylephrine and weakened relaxation responses mediated by the NO-K+-channels pathway. Our findings shed light on Cadmium's short-term impact on the cardiovascular system, providing insights into potential mechanisms underlying its effects on blood pressure regulation and vascular function.
Collapse
Affiliation(s)
- Karoline Alves Rossi
- Physiological Sciences Post-Graduation Program, Federal University of Espírito Santo, Vitoria, ES, Brazil
| | | | - Rakel Passos Simões
- Physiological Sciences Post-Graduation Program, Federal University of Espírito Santo, Vitoria, ES, Brazil
| | | | - Maiara Krause
- Department of Chemistry, Federal University of Espírito Santo, Vitoria, ES, Brazil
| | | | - Alessandra Simão Padilha
- Physiological Sciences Post-Graduation Program, Federal University of Espírito Santo, Vitoria, ES, Brazil.
- Programa de Pós-Graduação Em Ciências Fisiológicas, CCS/UFES, Av. Marechal Campos, MaruípeVitoria, ES, 146829043-900, Brazil.
| |
Collapse
|
8
|
Araujo T, Spadella M, Carlos C, Tirapelli C, Chagas E, Pinheiro J, Chies A. Adjuvant-induced arthritis promotes vascular hyporesponsiveness to phenylephrine through a nitric oxide-related mechanism. Braz J Med Biol Res 2024; 57:e13304. [PMID: 38775546 PMCID: PMC11101166 DOI: 10.1590/1414-431x2024e13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/04/2024] [Indexed: 05/25/2024] Open
Abstract
Arthritis has important cardiovascular repercussions. Phenylephrine-induced vasoconstriction is impaired in rat aortas in the early phase of the adjuvant-induced arthritis (AIA), around the 15th day post-induction. Therefore, the present study aimed to verify the effects of AIA on hyporesponsiveness to phenylephrine in rat aortas. AIA was induced by intradermal injection of Mycobacterium tuberculosis (3.8 mg/dL) in the right hind paw of male Wistar rats (n=27). Functional experiments in isolated aortas were carried out 15 days after AIA induction. Morphometric and stereological analyses of the aortas were also performed 36 days after the induction of AIA. AIA did not promote structural modifications in the aortas at any of the time points studied. AIA reduced phenylephrine-induced contraction in endothelium-intact aortas, but not in endothelium-denuded aortas. However, AIA did not change KCl-induced contraction in either endothelium-intact or denuded aortas. L-NAME (non-selective NOS inhibitor), 1400W (selective iNOS inhibitor), and ODQ (guanylyl cyclase inhibitor) reversed AIA-induced hyporesponsiveness to phenylephrine in intact aortas. 7-NI (selective nNOS inhibitor) increased the contraction induced by phenylephrine in aortas from AIA rats. In summary, the hyporesponsiveness to phenylephrine induced by AIA was endothelium-dependent and mediated by iNOS-derived NO through activation of the NO-guanylyl cyclase pathway.
Collapse
Affiliation(s)
- T.S. Araujo
- Laboratório de Farmacologia, Faculdade de Medicina de Marília,
Marília, SP, Brasil
| | - M.A. Spadella
- Laboratório de Embriologia Humana, Faculdade de Medicina de
Marília, Marília, SP, Brasil
| | - C.P. Carlos
- Laboratório de Pesquisa Experimental, Faculdade de Medicina
Faceres, São José do Rio Preto, SP, Brasil
- Disciplina de Fisiologia, Faculdade de Medicina de Marília,
Marília, SP, Brasil
| | - C.R. Tirapelli
- Laboratório de Farmacologia Cardiovascular, Escola de Enfermagem
de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - E.F.B. Chagas
- Centro Interdisciplinar de Diabetes, Universidade de Marília,
Marília, SP, Brasil
- Programa de Mestrado Interdisciplinar em Interações Estruturais
e Funcionais em Reabilitação, Universidade de Marília, Marília, SP, Brasil
- Programa de Mestrado em Saúde e Envelhecimento, Faculdade de
Medicina de Marília, Marília, SP, Brasil
| | - J.C.D. Pinheiro
- Laboratório de Farmacologia, Faculdade de Medicina de Marília,
Marília, SP, Brasil
| | - A.B. Chies
- Laboratório de Farmacologia, Faculdade de Medicina de Marília,
Marília, SP, Brasil
| |
Collapse
|
9
|
Park B, Bakbak E, Teoh H, Krishnaraj A, Dennis F, Quan A, Rotstein OD, Butler J, Hess DA, Verma S. GLP-1 receptor agonists and atherosclerosis protection: the vascular endothelium takes center stage. Am J Physiol Heart Circ Physiol 2024; 326:H1159-H1176. [PMID: 38426865 DOI: 10.1152/ajpheart.00574.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Atherosclerotic cardiovascular disease is a chronic condition that often copresents with type 2 diabetes and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin mimetics endorsed by major professional societies for improving glycemic status and reducing atherosclerotic risk in people living with type 2 diabetes. Although the cardioprotective efficacy of GLP-1RAs and their relationship with traditional risk factors are well established, there is a paucity of publications that have summarized the potentially direct mechanisms through which GLP-1RAs mitigate atherosclerosis. This review aims to narrow this gap by providing comprehensive and in-depth mechanistic insight into the antiatherosclerotic properties of GLP-1RAs demonstrated across large outcome trials. Herein, we describe the landmark cardiovascular outcome trials that triggered widespread excitement around GLP-1RAs as a modern class of cardioprotective agents, followed by a summary of the origins of GLP-1RAs and their mechanisms of action. The effects of GLP-1RAs at each major pathophysiological milestone of atherosclerosis, as observed across clinical trials, animal models, and cell culture studies, are described in detail. Specifically, this review provides recent preclinical and clinical evidence that suggest GLP-1RAs preserve vessel health in part by preventing endothelial dysfunction, achieved primarily through the promotion of angiogenesis and inhibition of oxidative stress. These protective effects are in addition to the broad range of atherosclerotic processes GLP-1RAs target downstream of endothelial dysfunction, which include systemic inflammation, monocyte recruitment, proinflammatory macrophage and foam cell formation, vascular smooth muscle cell proliferation, and plaque development.
Collapse
Affiliation(s)
- Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fallon Dennis
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Ori D Rotstein
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of General Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, United States
- Department of Medicine, University of Mississippi, Jackson, Mississippi, United States
| | - David A Hess
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Bugara K, Pacwa A, Smedowski A. Molecular pathways in experimental glaucoma models. Front Neurosci 2024; 18:1363170. [PMID: 38562304 PMCID: PMC10982327 DOI: 10.3389/fnins.2024.1363170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Glaucoma is a complex and progressive disease that primarily affects the optic nerve axons, leading to irreversible vision loss. Although the exact molecular mechanisms underlying glaucoma pathogenesis are not fully understood, it is believed that except increased intraocular pressure, a combination of genetic and environmental factors play a role in the development of the disease. Animal models have been widely used in the study of glaucoma, allowing researchers to better understand the underlying mechanisms of the disease and test potential treatments. Several molecular pathways have been implicated in the pathogenesis of glaucoma, including oxidative stress, inflammation, and excitotoxic-induced neurodegeneration. This review summarizes the most important knowledge about molecular mechanisms involved in the glaucoma development. Although much research has been done to better understand the molecular mechanisms underlying this disease, there is still much to be learned to develop effective treatments and prevent vision loss in those affected by glaucoma.
Collapse
Affiliation(s)
- Klaudia Bugara
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Anna Pacwa
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| | - Adrian Smedowski
- GlaucoTech Co., Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
11
|
Salvagno M, Sterchele ED, Zaccarelli M, Mrakic-Sposta S, Welsby IJ, Balestra C, Taccone FS. Oxidative Stress and Cerebral Vascular Tone: The Role of Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2024; 25:3007. [PMID: 38474253 DOI: 10.3390/ijms25053007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Mario Zaccarelli
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20133 Milan, Italy
| | - Ian James Welsby
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1050 Elsene, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| |
Collapse
|
12
|
Curaj A, Vanholder R, Loscalzo J, Quach K, Wu Z, Jankowski V, Jankowski J. Cardiovascular Consequences of Uremic Metabolites: an Overview of the Involved Signaling Pathways. Circ Res 2024; 134:592-613. [PMID: 38422175 DOI: 10.1161/circresaha.123.324001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The crosstalk of the heart with distant organs such as the lung, liver, gut, and kidney has been intensively approached lately. The kidney is involved in (1) the production of systemic relevant products, such as renin, as part of the most essential vasoregulatory system of the human body, and (2) in the clearance of metabolites with systemic and organ effects. Metabolic residue accumulation during kidney dysfunction is known to determine cardiovascular pathologies such as endothelial activation/dysfunction, atherosclerosis, cardiomyocyte apoptosis, cardiac fibrosis, and vascular and valvular calcification, leading to hypertension, arrhythmias, myocardial infarction, and cardiomyopathies. However, this review offers an overview of the uremic metabolites and details their signaling pathways involved in cardiorenal syndrome and the development of heart failure. A holistic view of the metabolites, but more importantly, an exhaustive crosstalk of their known signaling pathways, is important for depicting new therapeutic strategies in the cardiovascular field.
Collapse
Affiliation(s)
- Adelina Curaj
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Raymond Vanholder
- Department of Internal Medicine and Pediatrics, Nephrology Section, University Hospital, Ghent, Belgium (R.V.)
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.L.)
| | - Kaiseng Quach
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Zhuojun Wu
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Vera Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands (J.J.)
- Aachen-Maastricht Institute for Cardiorenal Disease, RWTH Aachen University, Aachen, Germany (J.J.)
| |
Collapse
|
13
|
Shi S, Wang J, Gong H, Huang X, Mu B, Cheng X, Feng B, Jia L, Luo Q, Liu W, Chen Z, Huang C. PGC-1α-Coordinated Hypothalamic Antioxidant Defense Is Linked to SP1-LanCL1 Axis during High-Fat-Diet-Induced Obesity in Male Mice. Antioxidants (Basel) 2024; 13:252. [PMID: 38397850 PMCID: PMC10885970 DOI: 10.3390/antiox13020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
High-fat-diet (HFD)-induced obesity parallels hypothalamic inflammation and oxidative stress, but the correlations between them are not well-defined. Here, with mouse models targeting the antioxidant gene LanCL1 in the hypothalamus, we demonstrate that impaired hypothalamic antioxidant defense aggravates HFD-induced hypothalamic inflammation and obesity progress, and these could be improved in mice with elevated hypothalamic antioxidant defense. We also show that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a critical transcriptional coactivator, is implicated in regulating hypothalamic LanCL1 transcription, in collaboration with SP1 through a direct interaction, in response to HFD-induced palmitic acid (PA) accumulation. According to our results, when exposed to HFD, mice undergo a process of overwhelming hypothalamic antioxidant defense; short-time HFD exposure induces ROS production to activate PGC-1α and elevate LanCL1-mediated antioxidant defense, while long-time exposure promotes ubiquitin-mediated PGC-1α degradation and suppresses LanCL1 expression. Our findings show the critical importance of the hypothalamic PGC-1α-SP1-LanCL1 axis in regulating HFD-induced obesity, and provide new insights describing the correlations of hypothalamic inflammation and oxidative stress during this process.
Collapse
Affiliation(s)
- Shuai Shi
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jichen Wang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Huan Gong
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaohua Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.F.)
| | - Bin Mu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangyu Cheng
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.F.)
| | - Lanlan Jia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
15
|
Bhullar SK, Dhalla NS. Adaptive and maladaptive roles of different angiotensin receptors in the development of cardiac hypertrophy and heart failure. Can J Physiol Pharmacol 2024; 102:86-104. [PMID: 37748204 DOI: 10.1139/cjpp-2023-0226] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Angiotensin II (Ang II) is formed by the action of angiotensin-converting enzyme (ACE) in the renin-angiotensin system. This hormone is known to induce cardiac hypertrophy and heart failure and its actions are mediated by the interaction of both pro- and antihypertrophic Ang II receptors (AT1R and AT2R). Ang II is also metabolized by ACE 2 to Ang-(1-7), which elicits the activation of Mas receptors (MasR) for inducing antihypertrophic actions. Since heart failure under different pathophysiological situations is preceded by adaptive and maladaptive cardiac hypertrophy, we have reviewed the existing literature to gain some information regarding the roles of AT1R, AT2R, and MasR in both acute and chronic conditions of cardiac hypertrophy. It appears that the activation of AT1R may be involved in the development of adaptive and maladaptive cardiac hypertrophy as well as subsequent heart failure because both ACE inhibitors and AT1R antagonists exert beneficial effects. On the other hand, the activation of both AT2R and MasR may prevent the occurrence of maladaptive cardiac hypertrophy and delay the progression of heart failure, and thus therapy with different activators of these antihypertrophic receptors under chronic pathological stages may prove beneficial. Accordingly, it is suggested that a great deal of effort should be made to develop appropriate activators of both AT2R and MasR for the treatment of heart failure subjects.
Collapse
Affiliation(s)
- Sukhwinder K Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
16
|
Theofilis P, Vlachakis PK, Oikonomou E, Tsioufis K, Tousoulis D. Targeting the Gut Microbiome to Treat Cardiometabolic Disease. Curr Atheroscler Rep 2024; 26:25-34. [PMID: 38180642 DOI: 10.1007/s11883-023-01183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE OF REVIEW Cardiometabolic diseases, which include obesity, type 2 diabetes, and cardiovascular diseases, constitute a worldwide health crisis of unparalleled proportions. The human gut microbiota has emerged as a prominent topic of inquiry in the search for novel treatment techniques. This review summarizes current research on the potential of addressing the gut microbiota to treat cardiometabolic disease. RECENT FINDINGS Recent studies have highlighted a complex link between the gut microbiota and host physiology, shedding light on the several processes through which gut microorganisms impact metabolic health, inflammation, and cardiovascular function. Furthermore, a growing corpus of research is available on microbiome-based therapies such as dietary interventions, probiotics, prebiotics, synbiotics, and fecal microbiota transplantation. These therapies show promise as methods for reshaping the gut microbiota and, as a result, improving cardiometabolic outcomes. However, hurdles remain, ranging from the intricacies of microbiome research to the necessity for tailored treatments that take individual microbial variations into consideration, emphasizing the significance of furthering research to bridge the gap between microbiome science and clinical practice. The gut microbiome is a beacon of hope for improving the management of cardiometabolic disease in the age of precision medicine, since its association with their pathophysiology is constantly being unraveled and strengthened. Available studies point to the potential of gut microbiome-based therapeutics, which remains to be tested in appropriately designed clinical trials. Further preclinical research is, however, essential to provide answers to the existing obstacles, with the ultimate goal of enhancing patient care.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens Medical School, Vas. Sophias 114, 11527, Athens, Greece
| | - Panayotis K Vlachakis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens Medical School, Vas. Sophias 114, 11527, Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens Medical School, Vas. Sophias 114, 11527, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens Medical School, Vas. Sophias 114, 11527, Athens, Greece.
| |
Collapse
|
17
|
Liu B, Xia L, Li Y, Jiang S, Yu W, Zhang L, Shao XM, Xu Z, Xiao D. Prenatal Nicotine Exposure Raises Male Blood Pressure via FTO-Mediated NOX2/ROS Signaling. Hypertension 2024; 81:240-251. [PMID: 37795601 PMCID: PMC10873091 DOI: 10.1161/hypertensionaha.123.21766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Cigarette smoking/nicotine exposure in pregnancy shows an increased risk of hypertension in offspring, but the mechanisms are unclear. This study tested the hypothesis that m6A RNA hypomethylation epigenetically regulates vascular NOX (NADPH oxidase) and reactive oxygen species production, contributing to the fetal programming of a hypertensive phenotype in nicotine-exposed offspring. METHODS Pregnant rats were exposed to episodic chronic intermittent nicotine aerosol (CINA) or saline aerosol control from gestational day 4 to day 21, and experiments were performed in 6-month-old adult offspring. RESULTS Antenatal CINA exposure augmented Ang II (angiotensin II)-stimulated blood pressure response in male, but not female offspring. Moreover, CINA increased vascular NOX2 expression and superoxide production exclusively in male offspring. Inhibition of NOX2 with gp91ds-tat, both ex vivo and in vivo, mitigated the CINA-induced elevation in superoxide production and blood pressure response. Notably, CINA enhanced the expression of vascular m6A demethylase FTO (fat mass and obesity-associated protein), while reducing the total vascular m6A abundance and specific m6A methylation of the NOX2 gene. Additionally, ex vivo inhibition of FTO with FB23-2 attenuated CINA-induced increases in vascular NOX2 expression. In vitro experiments using human umbilical vein endothelial cells demonstrated that nicotine dose-dependently upregulated FTO and NOX2 protein abundance, which were reversed by treatment with the FTO inhibitor FB23-2 or FTO knockdown using siRNAs. CONCLUSIONS This study uncovers a new mechanism: m6A demethylase FTO-mediated epigenetic upregulation of vascular NOX2 signaling in CINA-induced hypertensive phenotype. This insight could lead to a therapeutic target for preventing and treating developmental hypertension programming.
Collapse
Affiliation(s)
- Bailin Liu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA 92354
- Perinatology Laboratory, Wuxi Maternity and Child Health Care Hospital, Women’s Hospital of Jiangnan University, Wuxi 214002, China
| | - Liang Xia
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA 92354
- Department of Surgical Intensive Care Unit, The First Affiliated hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA 92354
| | - Siyi Jiang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA 92354
| | - Wansu Yu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA 92354
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA 92354
| | - Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA90095, USA
| | - Zhice Xu
- Perinatology Laboratory, Wuxi Maternity and Child Health Care Hospital, Women’s Hospital of Jiangnan University, Wuxi 214002, China
- Institute for Fetology, First Hospital of Soochow University, 708 Renmin Road, Suzhou 215006, China
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA 92354
| |
Collapse
|
18
|
Rizza V, Maranta F, Cianfanelli L, Cartella I, Maisano F, Alfieri O, Cianflone D. Subacute postoperative atrial fibrillation after heart surgery: Incidence and predictive factors in cardiac rehabilitation. J Arrhythm 2024; 40:67-75. [PMID: 38333376 PMCID: PMC10848578 DOI: 10.1002/joa3.12956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 02/10/2024] Open
Abstract
Background Postoperative atrial fibrillation (POAF) is the most common arrhythmia following cardiac surgery (CS). It may occur between the 1st and the 4th postoperative day as acute POAF or between the 5th and the 30th as subacute (sPOAF). sPOAF is associated with higher thromboembolic risk, which consistently increase patients' morbidity. Neutrophil-to-lymphocyte ratio (NLR) is a low-cost inflammatory index proposed as possible POAF predictor. Identification of patients' risk categories might lead to improved postoperative outcomes. Methods The aim was to assess the incidence of sPOAF and to identify possible predictors in patients performing cardiovascular rehabilitation (CR) after CS. A single-center cohort study was performed on 737 post-surgical patients admitted to CR on sinus rhythm. Continuous monitoring with 12-lead ECG telemetry was performed. We evaluated the predictive role of anamnestic, clinical, and laboratory data, including baseline NLR. Results Subacute POAF was documented in 170 cases (23.1%). At the multivariate analysis, age (OR 1.03; p = .001), mitral valve surgery (OR 1.77; p = .012), acute POAF (OR 2.97; p < .001), and NLR at baseline (OR 1.13; p = .042) were found to be independent predictive factors of sPOAF following heart surgery. Conclusions sPOAF is common after CS. Age, mitral valve procedures, acute POAF, and preoperative NLR were proved to increase sPOAF occurrence in CR. NLR is an affordable and reliable parameter which might be used to qualify the risk of arrhythmias at CR admission. Identification of new predictors of postoperative atrial fibrillation may allow to improve patients' prognosis.
Collapse
Affiliation(s)
- Vincenzo Rizza
- Vita‐Salute San Raffaele UniversityMilanItaly
- Cardiac Rehabilitation UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Francesco Maranta
- Cardiac Rehabilitation UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Lorenzo Cianfanelli
- Cardiac Rehabilitation UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Iside Cartella
- School of Medicine and SurgeryMilano‐Bicocca UniversityMilanItaly
| | - Francesco Maisano
- Cardiac Surgery UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Ottavio Alfieri
- Cardiac Surgery UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Domenico Cianflone
- Vita‐Salute San Raffaele UniversityMilanItaly
- Cardiac Rehabilitation UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
19
|
Benavides S, Palavecino R, Riquelme JA, Montecinos L, Finkelstein JP, Donoso P, Sánchez G. Inhibition of NOX2 or NLRP3 inflammasome prevents cardiac remote ischemic preconditioning. Front Physiol 2024; 14:1327402. [PMID: 38288352 PMCID: PMC10822933 DOI: 10.3389/fphys.2023.1327402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction: Short episodes of ischemia-reperfusion (IR) in the heart (classical ischemic preconditioning, IPC) or in a limb (remote ischemic preconditioning, RIPC) before a prolonged ischemic episode, reduce the size of the infarct. It is unknown whether IPC and RIPC share common mechanisms of protection. Animals KO for NOX2, a superoxide-producing enzyme, or KO for NLRP3, a protein component of inflammasome, are not protected by IPC. The aim of this study was to investigate if NOX2 or NLRP3 inflammasome are involved in the protection induced by RIPC. Methods: We preconditioned rats using 4 × 5 min periods of IR in the limb with or without a NOX2 inhibitor (apocynin) or an NLRP3 inhibitor (Bay117082). In isolated hearts, we measured the infarct size after 30 min of ischemia and 60 min of reperfusion. In hearts from preconditioned rats we measured the activity of NOX2; the mRNA of Nrf2, gamma-glutamylcysteine ligase, glutathione dehydrogenase, thioredoxin reductase and sulfiredoxin by RT-qPCR; the content of glutathione; the activation of the NLRP3 inflammasome and the content of IL-1β and IL-10 in cardiac tissue. In exosomes isolated from plasma, we quantified NOX2 activity. Results: The infarct size after IR decreased from 40% in controls to 9% of the heart volume after RIPC. This protective effect was lost in the presence of both inhibitors. RIPC increased NOX2 activity in the heart and exosomes, as indicated by the increased association of p47phox to the membrane and by the increased oxidation rate of NADPH. RIPC also increased the mRNA of Nrf2 and antioxidant enzymes. Also, RIPC increased the content of glutathione and the GSH/GSSG ratio. The inflammasome proteins NLRP3, procaspase-1, and caspase-1 were all increased in the hearts of RIPC rats. At the end of RIPC protocol, IL-1β increased in plasma but decreased in cardiac tissue. At the same time, IL-10 did not change in cardiac tissue but increased by 70% during the next 50 min of perfusion. Conclusion: RIPC activates NOX2 which upregulates the heart's antioxidant defenses and activates the NLRP3 inflammasome which stimulates a cardiac anti-inflammatory response. These changes may underlie the decrease in the infarct size induced by RIPC.
Collapse
Affiliation(s)
- Sandra Benavides
- Physiopathology Program, Institute of Biomedical Sciences, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Rodrigo Palavecino
- Physiopathology Program, Institute of Biomedical Sciences, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Jaime A. Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Interuniversity Center for Healthy Aging, Santiago, Chile
| | - Luis Montecinos
- Physiology Program, Institute of Biomedical Sciences, School of Medicine, Universidad de Chile, Santiago, Chile
| | - José Pablo Finkelstein
- Physiology Program, Institute of Biomedical Sciences, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Paulina Donoso
- Physiology Program, Institute of Biomedical Sciences, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Gina Sánchez
- Physiopathology Program, Institute of Biomedical Sciences, School of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
20
|
Mudgal R, Singh S. Xanthine Oxidoreductase in the Pathogenesis of Endothelial Dysfunction: An Update. Curr Hypertens Rev 2024; 20:10-22. [PMID: 38318826 DOI: 10.2174/0115734021277772240124075120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in the formation of uric acid (UA) and is involved in the generation of reactive oxygen species (ROS). Overproduction of ROS has been linked to the pathogenesis of hypertension, atherosclerosis, and cardiovascular disease, with multiple studies over the last 30 years demonstrating that XOR inhibition is beneficial. The involvement of XOR and its constituents in the advancement of chronic inflammation and ROS, which are responsible for endothelial dysfunction, is the focus of this evidence-based review. An overabundance of XOR products and ROS appears to drive the inflammatory response, resulting in significant endothelium damage. It has also been demonstrated that XOR activity and ED are connected. Diabetes, hypertension, and cardiovascular disease are all associated with endothelial dysfunction. ROS mainly modifies the activity of vascular cells and can be important in normal vascular physiology as well as the development of vascular disease. Suppressing XOR activity appears to decrease endothelial dysfunction, probably because it lessens the generation of reactive oxygen species and the oxidative stress brought on by XOR. Although there has long been a link between higher vascular XOR activity and worse clinical outcomes, new research suggests a different picture in which positive results are mediated by XOR enzymatic activity. Here in this study, we aimed to review the association between XOR and vascular endothelial dysfunction. The prevention and treatment approaches against vascular endothelial dysfunction in atherosclerotic disease.
Collapse
Affiliation(s)
- Rajat Mudgal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
21
|
Orgil BO, Purevjav E. Molecular Pathways and Animal Models of Cardiomyopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:991-1019. [PMID: 38884766 DOI: 10.1007/978-3-031-44087-8_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiomyopathies are a heterogeneous group of disorders of the heart muscle that ultimately result in congestive heart failure. Rapid progress in genetics, molecular and cellular biology with breakthrough innovative genetic-engineering techniques, such as next-generation sequencing and multiomics platforms, stem cell reprogramming, as well as novel groundbreaking gene-editing systems over the past 25 years has greatly improved the understanding of pathogenic signaling pathways in inherited cardiomyopathies. This chapter will focus on intracellular and intercellular molecular signaling pathways that are activated by a genetic insult in cardiomyocytes to maintain tissue and organ level regulation and resultant cardiac remodeling in certain forms of cardiomyopathies. In addition, animal models of different clinical forms of human cardiomyopathies with their summaries of triggered key molecules and signaling pathways will be described.
Collapse
Affiliation(s)
- Buyan-Ochir Orgil
- Department of Pediatrics, The Heart Institute, Division of Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, The Heart Institute, Division of Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
22
|
Caiati C, Jirillo E. Pathogenesis of the Left Ventricular Diastolic Dysfunction: The Immune System Keeps Playing at the Backstage. Endocr Metab Immune Disord Drug Targets 2024; 24:173-177. [PMID: 37694788 DOI: 10.2174/1871530323666230911141418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Carlo Caiati
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
23
|
Jouabadi SM, Ataabadi EA, Golshiri K, Bos D, Stricker BHC, Danser AHJ, Mattace-Raso F, Roks AJM. Clinical Impact and Mechanisms of Nonatherosclerotic Vascular Aging: The New Kid to Be Blocked. Can J Cardiol 2023; 39:1839-1858. [PMID: 37495207 DOI: 10.1016/j.cjca.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Ischemic cardiovascular disease and stroke remain the leading cause of global morbidity and mortality. During aging, protective mechanisms in the body gradually deteriorate, resulting in functional, structural, and morphologic changes that affect the vascular system. Because atherosclerotic plaques are not always present along with these alterations, we refer to this kind of vascular aging as nonatherosclerotic vascular aging (NAVA). To maintain proper vascular function during NAVA, it is important to preserve intracellular signalling, prevent inflammation, and block the development of senescent cells. Pharmacologic interventions targeting these components are potential therapeutic approaches for NAVA, with a particular emphasis on inflammation and senescence. This review provides an overview of the pathophysiology of vascular aging and explores potential pharmacotherapies that can improve the function of aged vasculature, focusing on NAVA.
Collapse
Affiliation(s)
- Soroush Mohammadi Jouabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ehsan Ataei Ataabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Keivan Golshiri
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Bruno H C Stricker
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Francesco Mattace-Raso
- Division of Geriatric Medicine, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
24
|
Pedrosa MA, Labandeira CM, Lago-Baameiro N, Valenzuela R, Pardo M, Labandeira-Garcia JL, Rodriguez-Perez AI. Extracellular Vesicles and Their Renin-Angiotensin Cargo as a Link between Metabolic Syndrome and Parkinson's Disease. Antioxidants (Basel) 2023; 12:2045. [PMID: 38136165 PMCID: PMC10741149 DOI: 10.3390/antiox12122045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Several studies showed an association between metabolic syndrome (MetS) and Parkinson's disease (PD). The linking mechanisms remain unclear. MetS promotes low-grade peripheral oxidative stress and inflammation and dysregulation of the adipose renin-angiotensin system (RAS). Interestingly, brain RAS dysregulation is involved in the progression of dopaminergic degeneration and PD. Circulating extracellular vesicles (EVs) from MetS fat tissue can cross the brain-blood barrier and may act as linking signals. We isolated and characterized EVs from MetS and control rats and analyzed their mRNA and protein cargo using RT-PCR and the ExoView R200 platform, respectively. Furthermore, cultures of the N27 dopaminergic cell line and the C6 astrocytic cell line were treated with EVs from MetS rats. EVs were highly increased in MetS rat serum, which was inhibited by treatment of the rats with the angiotensin type-1-receptor blocker candesartan. Furthermore, EVs from MetS rats showed increased pro-oxidative/pro-inflammatory and decreased anti-oxidative/anti-inflammatory RAS components, which were inhibited in candesartan-treated MetS rats. In cultures, EVs from MetS rats increased N27 cell death and modulated C6 cell function, upregulating markers of neuroinflammation and oxidative stress, which were inhibited by the pre-treatment of cultures with candesartan. The results from rat models suggest EVs and their RAS cargo as a mechanism linking Mets and PD.
Collapse
Affiliation(s)
- Maria A. Pedrosa
- Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.P.); (R.V.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | | | - Nerea Lago-Baameiro
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, 15706 Santiago de Compostela, Spain; (N.L.-B.); (M.P.)
| | - Rita Valenzuela
- Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.P.); (R.V.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Maria Pardo
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, 15706 Santiago de Compostela, Spain; (N.L.-B.); (M.P.)
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose Luis Labandeira-Garcia
- Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.P.); (R.V.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Ana I. Rodriguez-Perez
- Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.P.); (R.V.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
25
|
Hara T, Fukuda D, Ganbaatar B, Pham PT, Aini K, Rahadian A, Suto K, Yagi S, Kusunose K, Yamada H, Soeki T, Sata M. Olive mill wastewater and hydroxytyrosol inhibits atherogenesis in apolipoprotein E-deficient mice. Heart Vessels 2023; 38:1386-1394. [PMID: 37462755 DOI: 10.1007/s00380-023-02290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/13/2023] [Indexed: 09/26/2023]
Abstract
The Mediterranean diet, which is characterized by high consumption of olive oil, prevents cardiovascular disease. Meanwhile, olive mill wastewater (OMWW), which is obtained as a byproduct during olive oil production, contains various promising bioactive components such as water-soluble polyphenols. Hydroxytyrosol (HT), the major polyphenol in OMWW, has anti-oxidative and anti-inflammatory properties; however, the atheroprotective effects of OMWW and HT remain to be fully understood. Here, we investigated the effect of OMWW and HT on atherogenesis. Male 8-week-old apolipoprotein E-deficient mice were fed a western-type diet supplemented with OMWW (0.30%w/w) or HT (0.02%w/w) for 20 weeks. The control group was fed a non-supplemented diet. OMWW and HT attenuated the development of atherosclerosis in the aortic arch as determined by Sudan IV staining (P < 0.01, respectively) without alteration of body weight, plasma lipid levels, and blood pressure. OMWW and HT also decreased the production of oxidative stress (P < 0.01, respectively) and the expression of NADPH oxidase subunits (e.g., NOX2 and p22phox) and inflammatory molecules (e.g. IL-1β and MCP-1) in the aorta. The results of in vitro experiments demonstrated that HT inhibited the expression of these molecules that were stimulated with LPS in RAW264.7 cells, murine macrophage-like cells. OMWW and HT similarly attenuated atherogenesis. HT is a major component of water-soluble polyphenols in OMWW, and it inhibited inflammatory activation of macrophages. Therefore, our results suggest that the atheroprotective effects of OMWW are at least partially attributable to the anti-inflammatory effects of HT.
Collapse
Affiliation(s)
- Tomoya Hara
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
- Department of Cardio-Diabetes Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Byambasuren Ganbaatar
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Phuong Tran Pham
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kunduziayi Aini
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Arief Rahadian
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kumiko Suto
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hirotsugu Yamada
- Department of Community Medicine for Cardiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Takeshi Soeki
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
26
|
Shehata NI, Abd EL-Salam DM, Hussein RM, Rizk SM. Effect of safranal or candesartan on 3-nitropropionicacid-induced biochemical, behavioral and histological alterations in a rat model of Huntington's disease. PLoS One 2023; 18:e0293660. [PMID: 37910529 PMCID: PMC10619823 DOI: 10.1371/journal.pone.0293660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
3-nitropropionic acid (3-NP) is a potent mitochondrial inhibitor mycotoxin. Systemic administration of 3-NP can induce Huntington's disease (HD)-like symptoms in experimental animals. Safranal (Safr) that is found in saffron essential oil has antioxidant, anti-inflammatory and anti-apoptotic actions. Candesartan (Cands) is an angiotensin receptor blocker that has the potential to prevent cognitive deficits. The present study aims to investigate the potential neuroprotective efficacy of Safr or Cands in 3-NP-induced rat model of HD. The experiments continued for nine consecutive days. Rats were randomly assigned into seven groups. The first group (Safr-control) was daily intraperitoneally injected with paraffin oil. The second group (Cands- and 3-NP-control) daily received an oral dose of 0.5% carboxymethylcellulose followed by an intraperitoneal injection of 0.9% saline. The third and fourth groups received a single daily dose of 50 mg/kg Safr (intraperitoneal) and 1 mg/kg Cands (oral), respectively. The sixth group was daily treated with 50 mg Safr kg/day (intraperitoneal) and was intraperitoneally injected with 20 mg 3-NP/ kg, from the 3rd till the 9th day. The seventh group was daily treated with 1 mg Cands /kg/day (oral) and was intraperitoneally injected with 20 mg 3-NP/ kg, from the 3rd till the 9th day. The present results revealed that 3-NP injection induced a considerable body weight loss, impaired memory and locomotor activity, reduced striatal monoamine levels. Furthermore, 3-NP administration remarkably increased striatal malondialdehyde and nitric oxide levels, whereas markedly decreased the total antioxidant capacity. Moreover, 3-NP significantly upregulated the activities of inducible nitric oxide synthase and caspase-3 as well as the Fas ligand, in striatum. On the contrary, Safr and Cands remarkably alleviated the above-mentioned 3-NP-induced alterations. In conclusion, Safr and Cands may prevent or delay the progression of HD and its associated impairments through their antioxidant, anti-inflammatory, anti-apoptotic and neuromodulator effects.
Collapse
Affiliation(s)
| | | | | | - Sherine Maher Rizk
- Faculty of Pharmacy, Biochemistry Department, Cairo University, Cairo, Egypt
| |
Collapse
|
27
|
Borowiec BG, McDonald AE, Wilkie MP. Upstream migrant sea lamprey (Petromyzon marinus) show signs of increasing oxidative stress but maintain aerobic capacity with age. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111503. [PMID: 37586606 DOI: 10.1016/j.cbpa.2023.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Following the parasitic juvenile phase of their life cycle, sea lamprey (Petromyzon marinus) mature into a reproductive but rapidly aging and deteriorating adult, and typically die shortly after spawning in May or June. However, pre-spawning upstream migrant sea lamprey can be maintained for several months beyond their natural lifespan when held in cold water (∼4-8 °C) under laboratory conditions. We exploited this feature to investigate the interactions between senescence, oxidative stress, and metabolic function in this phylogenetically ancient fish. We investigated how life history traits and mitochondria condition, as indicated by markers of oxidative stress (catalase activity, lipid peroxidation) and aerobic capacity (citrate synthase activity), changed in adult sea lamprey from June to December after capture during their upstream spawning migration. Body mass but not liver mass declined with age, resulting in an increase in hepatosomatic index. Both effects were most pronounced in males, which also tended to have larger livers than females. Lamprey experienced greater oxidative stress with age, as reflected by increasing activity of the antioxidant enzyme catalase and increasing levels of lipid peroxidation in liver mitochondrial isolates over time. Surprisingly, the activity of citrate synthase also increased with age in both sexes. These observations implicate mitochondrial dysfunction and oxidative stress in the senescence of sea lamprey. Due to their unique evolutionary position and the technical advantage of easily delaying the onset of senescence in lampreys using cold water, these animals could represent an evolutionary unique and tractable model to investigate senescence in vertebrates.
Collapse
Affiliation(s)
| | - Allison E McDonald
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada. https://twitter.com/AEMcDonaldWLU
| | - Michael P Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada
| |
Collapse
|
28
|
Hui W, Wenhua S, Shuojie Z, Lulin W, Panpan Z, Tongtong Z, Xiaoli X, Juhua D. How does NFAT3 regulate the occurrence of cardiac hypertrophy? IJC HEART & VASCULATURE 2023; 48:101271. [PMID: 37753338 PMCID: PMC10518445 DOI: 10.1016/j.ijcha.2023.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
Cardiac hypertrophy is initially an adaptive response to physiological and pathological stimuli. Although pathological myocardial hypertrophy is the main cause of morbidity and mortality, our understanding of its mechanism is still weak. NFAT3 (nuclear factor of activated T-cell-3) is a member of the nuclear factor of the activated T cells (NFAT) family. NFAT3 plays a critical role in regulating the expression of cardiac hypertrophy genes by inducing their transcription. Recently, accumulating evidence has indicated that NFAT3 is a potent regulator of the progression of cardiac hypertrophy. This review, for the first time, summarizes the current studies on NFAT3 in cardiac hypertrophy, including the pathophysiological processes and the underlying pathological mechanism, focusing on the nuclear translocation and transcriptional function of NFAT3. This review will provide deep insight into the pathogenesis of cardiac hypertrophy and a theoretical basis for identifying new therapeutic targets in the NFAT3 network.
Collapse
Affiliation(s)
- Wang Hui
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Su Wenhua
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Cardiology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhang Shuojie
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wang Lulin
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhao Panpan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhang Tongtong
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xie Xiaoli
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Dan Juhua
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
29
|
Wafi AM. Nrf2 and autonomic dysregulation in chronic heart failure and hypertension. Front Physiol 2023; 14:1206527. [PMID: 37719456 PMCID: PMC10500196 DOI: 10.3389/fphys.2023.1206527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Redox imbalance plays essential role in the pathogenesis of cardiovascular diseases. Chronic heart failure (CHF) and hypertension are associated with central oxidative stress, which is partly mediated by the downregulation of antioxidant enzymes in the central autonomic neurons that regulate sympathetic outflow, resulting in sympathoexcitation. Antioxidant proteins are partially regulated by the transcriptional factor nuclear factor erythroid 2-related factor 2 (Nrf2). Downregulation of Nrf2 is key to disrupting central redox homeostasis and mediating sympathetic nerve activity in the setting of Chronic heart failure and hypertension. Nrf2, in turn, is regulated by various mechanisms, such as extracellular vesicle-enriched microRNAs derived from several cell types, including heart and skeletal muscle. In this review, we discuss the role of Nrf2 in regulating oxidative stress in the brain and its impact on sympathoexcitation in Chronic heart failure and hypertension. Importantly, we also discuss interorgan communication via extracellular vesicle pathways that mediate central redox imbalance through Nrf2 signaling.
Collapse
Affiliation(s)
- Ahmed M. Wafi
- Physiology Department, Faculty of Medicine, Jazan University, Jizan, Saudi Arabia
| |
Collapse
|
30
|
Koumallos N, Sigala E, Milas T, Baikoussis NG, Aragiannis D, Sideris S, Tsioufis K. Angiotensin Regulation of Vascular Homeostasis: Exploring the Role of ROS and RAS Blockers. Int J Mol Sci 2023; 24:12111. [PMID: 37569484 PMCID: PMC10418800 DOI: 10.3390/ijms241512111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Extensive research has been conducted to elucidate and substantiate the crucial role of the Renin-Angiotensin System (RAS) in the pathogenesis of hypertension, cardiovascular disorders, and renal diseases. Furthermore, the role of oxidative stress in maintaining vascular balance has been well established. It has been observed that many of the cellular effects induced by Angiotensin II (Ang II) are facilitated by reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In this paper, we present a comprehensive overview of the role of ROS in the physiology of human blood vessels, specifically focusing on its interaction with RAS. Moreover, we delve into the mechanisms by which clinical interventions targeting RAS influence redox signaling in the vascular wall.
Collapse
Affiliation(s)
- Nikolaos Koumallos
- Cardiothoracic Department, Hippokration Hospital of Athens, 11527 Athens, Greece; (E.S.); (T.M.); (N.G.B.)
| | - Evangelia Sigala
- Cardiothoracic Department, Hippokration Hospital of Athens, 11527 Athens, Greece; (E.S.); (T.M.); (N.G.B.)
| | - Theodoros Milas
- Cardiothoracic Department, Hippokration Hospital of Athens, 11527 Athens, Greece; (E.S.); (T.M.); (N.G.B.)
| | - Nikolaos G. Baikoussis
- Cardiothoracic Department, Hippokration Hospital of Athens, 11527 Athens, Greece; (E.S.); (T.M.); (N.G.B.)
| | - Dimitrios Aragiannis
- Cardiology Department, Hippokration Hospital of Athens, 11527 Athens, Greece; (D.A.); (S.S.); (K.T.)
| | - Skevos Sideris
- Cardiology Department, Hippokration Hospital of Athens, 11527 Athens, Greece; (D.A.); (S.S.); (K.T.)
| | - Konstantinos Tsioufis
- Cardiology Department, Hippokration Hospital of Athens, 11527 Athens, Greece; (D.A.); (S.S.); (K.T.)
| |
Collapse
|
31
|
Kaltsas A, Zikopoulos A, Moustakli E, Zachariou A, Tsirka G, Tsiampali C, Palapela N, Sofikitis N, Dimitriadis F. The Silent Threat to Women's Fertility: Uncovering the Devastating Effects of Oxidative Stress. Antioxidants (Basel) 2023; 12:1490. [PMID: 37627485 PMCID: PMC10451552 DOI: 10.3390/antiox12081490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress (OS), which arises through an imbalance between the formation of reactive oxygen species (ROS) and antioxidant defenses, plays a key role in the pathophysiology of female infertility, with the latter constituting just one of a number of diseases linked to OS as a potential cause. The aim of the present article is to review the literature regarding the association between OS and female infertility. Among the reproductive diseases considered are endometriosis and polycystic ovary syndrome (PCOS), while environmental pollutants, lifestyle variables, and underlying medical conditions possibly resulting in OS are additionally examined. Current evidence points to OS likely contributing to the pathophysiology of the above reproductive disorders, with the amount of damage done by OS being influenced by such variables as duration and severity of exposure and the individual's age and genetic predisposition. Also discussed are the processes via which OS may affect female fertility, these including DNA damage and mitochondrial dysfunction. Finally, the last section of the manuscript contains an evaluation of treatment options, including antioxidants and lifestyle modification, capable of minimizing OS in infertile women. The prime message underlined by this review is the importance of considering OS in the diagnosis and treatment of female infertility. Further studies are, nevertheless required to identify the best treatment regimen and its ideal duration.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (A.Z.); (N.S.)
| | - Athanasios Zikopoulos
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (A.Z.); (N.S.)
| | - Efthalia Moustakli
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.M.); (G.T.)
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (A.Z.); (N.S.)
| | - Georgia Tsirka
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.M.); (G.T.)
| | | | - Natalia Palapela
- Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (A.Z.); (N.S.)
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
32
|
Ravera S, Signorello MG, Panfoli I. Platelet Metabolic Flexibility: A Matter of Substrate and Location. Cells 2023; 12:1802. [PMID: 37443836 PMCID: PMC10340290 DOI: 10.3390/cells12131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Platelets are cellular elements that are physiologically involved in hemostasis, inflammation, thrombotic events, and various human diseases. There is a link between the activation of platelets and their metabolism. Platelets possess considerable metabolic versatility. Although the role of platelets in hemostasis and inflammation is known, our current understanding of platelet metabolism in terms of substrate preference is limited. Platelet activation triggers an oxidative metabolism increase to sustain energy requirements better than aerobic glycolysis alone. In addition, platelets possess extra-mitochondrial oxidative phosphorylation, which could be one of the sources of chemical energy required for platelet activation. This review aims to provide an overview of flexible platelet metabolism, focusing on the role of metabolic compartmentalization in substrate preference, since the metabolic flexibility of stimulated platelets could depend on subcellular localization and functional timing. Thus, developing a detailed understanding of the link between platelet activation and metabolic changes is crucial for improving human health.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | | | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
33
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
34
|
Schenkl C, Heyne E, Doenst T, Schulze PC, Nguyen TD. Targeting Mitochondrial Metabolism to Save the Failing Heart. Life (Basel) 2023; 13:life13041027. [PMID: 37109556 PMCID: PMC10143865 DOI: 10.3390/life13041027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Despite considerable progress in treating cardiac disorders, the prevalence of heart failure (HF) keeps growing, making it a global medical and economic burden. HF is characterized by profound metabolic remodeling, which mostly occurs in the mitochondria. Although it is well established that the failing heart is energy-deficient, the role of mitochondria in the pathophysiology of HF extends beyond the energetic aspects. Changes in substrate oxidation, tricarboxylic acid cycle and the respiratory chain have emerged as key players in regulating myocardial energy homeostasis, Ca2+ handling, oxidative stress and inflammation. This work aims to highlight metabolic alterations in the mitochondria and their far-reaching effects on the pathophysiology of HF. Based on this knowledge, we will also discuss potential metabolic approaches to improve cardiac function.
Collapse
Affiliation(s)
- Christina Schenkl
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Paul Christian Schulze
- Department of Medicine I (Cardiology, Angiology, Critical Care Medicine), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Tien Dung Nguyen
- Department of Medicine I (Cardiology, Angiology, Critical Care Medicine), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
35
|
Abstract
Chronic kidney disease is associated with an increased risk for the development and progression of cardiovascular disorders including hypertension, dyslipidemia, and coronary artery disease. Chronic kidney disease may also affect the myocardium through complex systemic changes, resulting in structural remodeling such as hypertrophy and fibrosis, as well as impairments in both diastolic and systolic function. These cardiac changes in the setting of chronic kidney disease define a specific cardiomyopathic phenotype known as uremic cardiomyopathy. Cardiac function is tightly linked to its metabolism, and research over the past 3 decades has revealed significant metabolic remodeling in the myocardium during the development of heart failure. Because the concept of uremic cardiomyopathy has only been recognized in recent years, there are limited data on metabolism in the uremic heart. Nonetheless, recent findings suggest overlapping mechanisms with heart failure. This work reviews key features of metabolic remodeling in the failing heart in the general population and extends this to patients with chronic kidney disease. The knowledge of similarities and differences in cardiac metabolism between heart failure and uremic cardiomyopathy may help identify new targets for mechanistic and therapeutic research on uremic cardiomyopathy.
Collapse
Affiliation(s)
- T Dung Nguyen
- Department of Internal Medicine I, University Hospital Jena, Jena, Germany
| | | |
Collapse
|
36
|
Vorn R, Yoo HY. Food Restriction Augmented Alpha1-Adrenergic Mediated Contraction in Mesenteric Arteries. Biol Res Nurs 2023; 25:198-209. [PMID: 36203228 DOI: 10.1177/10998004221132247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Food restriction (FR) enhances sensitivity to cardiopulmonary reflexes and α1-adrenoreceptors in females in the presence of hypotension. However, the effect of FR on cardiopulmonary and vascular function in males is not well-understood. This study examines the effects of FR on cardiopulmonary, isolated arterial function, and potential underlying mechanisms. Male Sprague-Dawley (SD) rats were randomly divided into 3 groups and monitored for 5 weeks: (1) control (n = 30), (2) 20% food reduction (FR20, n = 30), and (3) 40% food reduction (FR40, n = 30). Non-invasive blood pressure was measured twice a week. Pulmonary arterial pressure (PAP) was measured using isolated/perfused lungs. The isolated vascular reactivity was assessed using double-wire myographs. FR rats exhibited a lower mean arterial pressure and heart rate; however, only the FR40 group exhibited statistically significant differences. We observed that FR enhanced sensitivity (EC50) to vasoconstriction induced by the α1-adrenoreceptor phenylephrine (PhE) but not to serotonin, U46619, or high K+ in the mesenteric arteries. PhE-mediated vasoconstriction in the mesenteric arteries was eliminated in the presence of the eNOS inhibitor (L-NAME). In addition, incubation with NOX2/4 inhibitors (apocynin, GKT137831, and VAS2870) and the reactive oxygen species (ROS) scavenger inhibitor (Tiron) eliminated the differences in PhE-mediated vasoconstriction, but the cyclooxygenase inhibitor (indomethacin) in the mesenteric arteries did not. Augmentation of α1-adrenergic-mediated contraction via the inhibition of the eNOS-NO pathway increased the activation of ROS through NOX2/4 in response to FR. Reduced eNOS-NO signaling may be a pathophysiological counterbalance to prevent hypovolemic shock in response to FR.
Collapse
Affiliation(s)
- Rany Vorn
- Department of Nursing, 26729Chung-Ang University, Seoul, Korea
- School of Nursing, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Hae Young Yoo
- Department of Nursing, 26729Chung-Ang University, Seoul, Korea
| |
Collapse
|
37
|
Sgarabotto L, Ravarotto V, Stefanelli LF, Cacciapuoti M, Davis PA, Nalesso F, Calò LA. Oxidants and Cardiorenal Vascular Remodeling—Insights from Rare Genetic Tubulopathies: Bartter’s and Gitelman’s Syndromes. Antioxidants (Basel) 2023; 12:antiox12040811. [PMID: 37107186 PMCID: PMC10135094 DOI: 10.3390/antiox12040811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/12/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Two human genetic tubulopathies, Bartter’s (BS) and Gitelman’s (GS) syndromes, have normo/hypotension and absent cardiac remodeling despite their apparent angiotensin system (RAS) activation. This seeming contradiction has led to an extensive investigation of BSGS patients, the result of which is that BSGS represents a mirror image of hypertension. BSGS’s unique set of properties has then permitted their use as a human model to probe and characterize RAS system pathways and oxidative stress in cardiovascular and renal remodeling and pathophysiology. This review details the results using GSBS patients that provide a deeper understanding of Ang II signaling and its associated oxidants/oxidative stress in humans. By providing a more complete and complex picture of cardiovascular and renal remodeling pathways and processes, studies of GSBS can inform the identification and selection of new targets and therapies to treat these and other oxidant-related disorders.
Collapse
Affiliation(s)
- Luca Sgarabotto
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Verdiana Ravarotto
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Lucia Federica Stefanelli
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Martina Cacciapuoti
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Paul A. Davis
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Federico Nalesso
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Lorenzo A. Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-049-8213071
| |
Collapse
|
38
|
Al Samarraie A, Pichette M, Rousseau G. Role of the Gut Microbiome in the Development of Atherosclerotic Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24065420. [PMID: 36982492 PMCID: PMC10051145 DOI: 10.3390/ijms24065420] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the primary cause of death globally, with nine million deaths directly attributable to ischemic heart diseases in 2020. Since the last few decades, great effort has been put toward primary and secondary prevention strategies through identification and treatment of major cardiovascular risk factors, including hypertension, diabetes, dyslipidemia, smoking, and a sedentary lifestyle. Once labelled “the forgotten organ”, the gut microbiota has recently been rediscovered and has been found to play key functions in the incidence of ASCVD both directly by contributing to the development of atherosclerosis and indirectly by playing a part in the occurrence of fundamental cardiovascular risk factors. Essential gut metabolites, such as trimethylamine N-oxide (TMAO), secondary bile acids, lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs), have been associated with the extent of ischemic heart diseases. This paper reviews the latest data on the impact of the gut microbiome in the incidence of ASCVD.
Collapse
Affiliation(s)
- Ahmad Al Samarraie
- Internal Medicine Department, Faculty of Medicine, University of Montreal, Montréal, QC H3T 1J4, Canada
| | - Maxime Pichette
- Cardiology Department, Faculty of Medicine, University of Montreal, Montréal, QC H3T 1J4, Canada
| | - Guy Rousseau
- Centre de Biomédecine, CIUSSS-NÎM/Hôpital du Sacré-Cœur, Montréal, QC H4J 1C5, Canada
- Correspondence:
| |
Collapse
|
39
|
BMP4 aggravates mitochondrial dysfunction of HRMECs. Heliyon 2023; 9:e13824. [PMID: 36895361 PMCID: PMC9988459 DOI: 10.1016/j.heliyon.2023.e13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Mitochondria are important places for the oxidative phosphorylation of glucose and the maintenance of cell oxidation and antioxidant stability. However, mitochondrial dysfunction causes cell dysfunction. Meanwhile, retinal vascular endothelial cell dysfunction may cause vascular inflammation, hemorrhage, angiogenesis, and other manifestations. Our previous studies have shown that Bone morphogenetic protein 4 (BMP4) is an important target for the treatment of retinal neovascularization, but the mechanism remains unclear. Therefore, our study aims to observe the effects of BMP4 on vascular endothelial cells and hopes to provide a new target for diabetic retinopathy. 4-Hydroxynonenal (4HNE), a kind of lipid peroxide, was used to induce the oxidative stress model. Human retinal microvascular endothelial cells (HRMECs) were randomly divided into control, 4HNE, negative control, and siBMP4 groups. Si-BMP4 significantly reduced leukocyte adhesion and 4HNE-induced high ROS level and restored the mitochondrial membrane potential and OCR. This indicates that BMP4 plays an important role in inducing leukocyte adhesion, oxidative stress, and mitochondrial dysfunction. The relationship between BMP4 and retinal vascular endothelial cell dysfunction is preliminarily confirmed by this study. Mitochondrial dysfunction and oxidative stress may be involved in BMP4-mediated retinal vascular endothelial cell dysfunction.
Collapse
|
40
|
Kotozaki Y, Satoh M, Nasu T, Tanno K, Tanaka F, Sasaki M. Human Plasma Xanthine Oxidoreductase Activity in Cardiovascular Disease: Evidence from a Population-Based Study. Biomedicines 2023; 11:biomedicines11030754. [PMID: 36979733 PMCID: PMC10045414 DOI: 10.3390/biomedicines11030754] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Xanthine oxidoreductase (XOR) and its products contribute to the development of chronic inflammation and oxidative stress. Excessive XOR activity is believed to promote inflammatory responses and atherosclerotic plaque formation, which are major cardiovascular risk factors. The mechanisms of XOR activity in the development and progression of cardiovascular disease (CVD), coupled with the complexity of the relationship between XOR activity and the biological effects of uric acid; reactive oxygen species; and nitric oxide, which are the major products of XOR activity, have long been debated, but have not yet been clearly elucidated. Recently, a system for measuring highly sensitive XOR activity in human plasma was established, and there has been progress in the research on the mechanisms of XOR activity. In addition, there are accumulating findings about the relationship between XOR activity and CVD. In this narrative review, we summarize existing knowledge regarding plasma XOR activity and its relationship with CVD and discuss future perspectives.
Collapse
Affiliation(s)
- Yuka Kotozaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Correspondence: (Y.K.); (M.S.)
| | - Mamoru Satoh
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Department of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Correspondence: (Y.K.); (M.S.)
| | - Takahito Nasu
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Department of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University, 2-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Kozo Tanno
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Department of Hygiene and Preventive Medicine, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Fumitaka Tanaka
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Iwate Medical University, 2-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Division of Ultrahigh field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
| |
Collapse
|
41
|
Capone F, Sotomayor-Flores C, Bode D, Wang R, Rodolico D, Strocchi S, Schiattarella GG. Cardiac metabolism in HFpEF: from fuel to signalling. Cardiovasc Res 2023; 118:3556-3575. [PMID: 36504368 DOI: 10.1093/cvr/cvac166] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) is marked by distinctive changes in myocardial uptake and utilization of energy substrates. Among the different types of HF, HF with preserved ejection fraction (HFpEF) is a highly prevalent, complex, and heterogeneous condition for which metabolic derangements seem to dictate disease progression. Changes in intermediate metabolism in cardiometabolic HFpEF-among the most prevalent forms of HFpEF-have a large impact both on energy provision and on a number of signalling pathways in the heart. This dual, metabolic vs. signalling, role is played in particular by long-chain fatty acids (LCFAs) and short-chain carbon sources [namely, short-chain fatty acids (SCFAs) and ketone bodies (KBs)]. LCFAs are key fuels for the heart, but their excess can be harmful, as in the case of toxic accumulation of lipid by-products (i.e. lipotoxicity). SCFAs and KBs have been proposed as a potential major, alternative source of energy in HFpEF. At the same time, both LCFAs and short-chain carbon sources are substrate for protein post-translational modifications and other forms of direct and indirect signalling of pivotal importance in HFpEF pathogenesis. An in-depth molecular understanding of the biological functions of energy substrates and their signalling role will be instrumental in the development of novel therapeutic approaches to HFpEF. Here, we summarize the current evidence on changes in energy metabolism in HFpEF, discuss the signalling role of intermediate metabolites through, at least in part, their fate as substrates for post-translational modifications, and highlight clinical and translational challenges around metabolic therapy in HFpEF.
Collapse
Affiliation(s)
- Federico Capone
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Division of Internal Medicine, Department of Medicine, University of Padua, Padua, Italy
| | - Cristian Sotomayor-Flores
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Rongling Wang
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefano Strocchi
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
42
|
Argonaute 2 Restores Erectile Function by Enhancing Angiogenesis and Reducing Reactive Oxygen Species Production in Streptozotocin (STZ)-Induced Type-1 Diabetic Mice. Int J Mol Sci 2023; 24:ijms24032935. [PMID: 36769259 PMCID: PMC9918048 DOI: 10.3390/ijms24032935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Severe vascular and nerve damage from diabetes is a leading cause of erectile dysfunction (ED) and poor response to oral phosphodiesterase 5 inhibitors. Argonaute 2 (Ago2), a catalytic engine in mammalian RNA interference, is involved in neurovascular regeneration under inflammatory conditions. In the present study, we report that Ago2 administration can effectively improve penile erection by enhancing cavernous endothelial cell angiogenesis and survival under diabetic conditions. We found that although Ago2 is highly expressed around blood vessels and nerves, it is significantly reduced in the penis tissue of diabetic mice. Exogenous administration of the Ago2 protein restored erectile function in diabetic mice by reducing reactive oxygen species production-signaling pathways (inducing eNOS Ser1177/NF-κB Ser536 signaling) and improving cavernous endothelial angiogenesis, migration, and cell survival. Our study provides new evidence that Ago2 mediation may be a promising therapeutic strategy and a new approach for diabetic ED treatment.
Collapse
|
43
|
de Oliveira TF, Rossi EM, da Costa CS, Graceli JB, Krause M, Carneiro MTWD, Almenara CCP, Padilha AS. Sex-dependent vascular effects of cadmium sub-chronic exposure on rats. Biometals 2023; 36:189-199. [PMID: 36418808 DOI: 10.1007/s10534-022-00470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Cadmium exposure is related to several cardiovascular diseases, such as hypertension, atherosclerosis and endothelial dysfunction. However, the toxic effect of cadmium can be dependent on the sex when examined sex in experimental models. The aim of this study was to analyze the effects of cadmium exposure on the cardiovascular system of male and female rodents. The experiments were carried out on both-sexes Wistar at 4 months of age, where from 3 months onwards, cadmium (CdCl2 100 mg/l in placed the drinking water for 30 days) or vehicle delivered (distilled water) was ingested. Before and after 30 days of exposure to cadmium, systolic blood pressure was regularly measured. After exposure, blood was collected to measure dosage of cadmium, in male and female, and estrogen in females. Vascular reactivity to phenylephrine (Phe), acetylcholine (ACh), and sodium nitroprusside (SNP) was studied at respective isolated aortic segments. After the period to Cd-exposure, systolic blood pressure was increased only in the male rats. Males also had higher levels of plasma cadmium than those of female rats, and exposure to the metal did not affect the amount of estrogen produced in the female rats. Increased myeloperoxidase (MPO) activity was also observed in both the males and females that had been exposed to the metal. Moreover, exposure to the cadmium reduced the ACh relaxation and increased vascular reactivity to Phe, resulting in an imbalance between nitric oxide superoxide anion in the isolated aorta of male rats. In female rats, sub-chronic cadmium exposure did not modify the vascular reactivity to Phe and neither to the ACh. The present study revealed that the Cd exposure for 30 days induced sex-dependent cardiovascular abnormalities.
Collapse
Affiliation(s)
| | - Emily Martineli Rossi
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Charles Santos da Costa
- Department of Morphology, Health Sciences Center, Universidade Federal do Espirito Santo, Vitória, ES, Brazil
| | - Jones Bernardes Graceli
- Department of Morphology, Health Sciences Center, Universidade Federal do Espirito Santo, Vitória, ES, Brazil
| | - Maiara Krause
- Department of Chemistry, Universidade Federal do Espirito Santo, Vitória, ES, Brazil
| | | | | | - Alessandra Simão Padilha
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| |
Collapse
|
44
|
Cai Z, Wu C, Xu Y, Cai J, Zhao M, Zu L. The NO-cGMP-PKG Axis in HFpEF: From Pathological Mechanisms to Potential Therapies. Aging Dis 2023; 14:46-62. [PMID: 36818566 PMCID: PMC9937694 DOI: 10.14336/ad.2022.0523] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for almost half of all heart failure (HF) cases worldwide. Unfortunately, its incidence is expected to continue to rise, and effective therapy to improve clinical outcomes is lacking. Numerous efforts currently directed towards the pathophysiology of human HFpEF are uncovering signal transduction pathways and novel therapeutic targets. The nitric oxide-cyclic guanosine phosphate-protein kinase G (NO-cGMP-PKG) axis has been described as an important regulator of cardiac function. Suppression of the NO-cGMP-PKG signalling pathway is involved in the progression of HFpEF. Therefore, the NO-cGMP-PKG signalling pathway is a potential therapeutic target for HFpEF. In this review, we aim to explore the mechanism of NO-cGMP-PKG in the progression of HFpEF and to summarize potential therapeutic drugs that target this signalling pathway.
Collapse
Affiliation(s)
- Zhulan Cai
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Cencen Wu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Yuan Xu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Jiageng Cai
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Menglin Zhao
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Lingyun Zu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| |
Collapse
|
45
|
Coman AE, Ceasovschih A, Petroaie AD, Popa E, Lionte C, Bologa C, Haliga RE, Cosmescu A, Slănină AM, Bacușcă AI, Șorodoc V, Șorodoc L. The Significance of Low Magnesium Levels in COVID-19 Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020279. [PMID: 36837480 PMCID: PMC9965430 DOI: 10.3390/medicina59020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Magnesium is the fourth most common mineral in the human body and the second richest intracellular cation. This element is necessary for many physiological reactions, especially in the cardiovascular and respiratory systems. COVID-19 is an infectious disease caused by SARS-CoV-2. The majority of people who become ill as a result of COVID-19 have mild-to-moderate symptoms and recover without specific treatment. Moreover, there are people who develop severe forms of COVID-19, which require highly specialized medical assistance. Magnesium deficiency may play a role in the pathophysiology of infection with SARS-CoV-2. The primary manifestation of COVID-19 remains respiratory, but the virus can spread to other organs and tissues, complicating the clinical picture and culminating in multiorgan failure. The key mechanisms involved in the disease include direct viral cytotoxicity, endothelial dysfunction, and exaggerated release of inflammatory cytokines. The aim of this review was to summarize the available data regarding the role of magnesium in COVID-19 patients and its particularities in different clinical settings.
Collapse
Affiliation(s)
- Adorata Elena Coman
- Preventive Medicine and Interdisciplinarity Department, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Alexandr Ceasovschih
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, 700111 Iasi, Romania
- Correspondence: (A.C.); (C.L.)
| | - Antoneta Dacia Petroaie
- Preventive Medicine and Interdisciplinarity Department, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Elena Popa
- Preventive Medicine and Interdisciplinarity Department, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Cătălina Lionte
- Internal Medicine Department, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (A.C.); (C.L.)
| | - Cristina Bologa
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, 700111 Iasi, Romania
- Internal Medicine Department, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Raluca Ecaterina Haliga
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, 700111 Iasi, Romania
- Internal Medicine Department, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adriana Cosmescu
- Preventive Medicine and Interdisciplinarity Department, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Ana Maria Slănină
- Preventive Medicine and Interdisciplinarity Department, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Agnes Iacinta Bacușcă
- Preventive Medicine and Interdisciplinarity Department, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Victorița Șorodoc
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, 700111 Iasi, Romania
- Internal Medicine Department, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laurențiu Șorodoc
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, 700111 Iasi, Romania
- Internal Medicine Department, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
46
|
Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023; 13:187. [PMID: 36837806 PMCID: PMC9960073 DOI: 10.3390/metabo13020187] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Suman Chaudhary
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - William P. Miller
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
47
|
Zhang Z, Zhao L, Zhou X, Meng X, Zhou X. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front Immunol 2023; 13:1098725. [PMID: 36703963 PMCID: PMC9871625 DOI: 10.3389/fimmu.2022.1098725] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Hypertension is regarded as the most prominent risk factor for cardiovascular diseases, which have become a primary cause of death, and recent research has demonstrated that chronic inflammation is involved in the pathogenesis of hypertension. Both innate and adaptive immunity are now known to promote the elevation of blood pressure by triggering vascular inflammation and microvascular remodeling. For example, as an important part of innate immune system, classically activated macrophages (M1), neutrophils, and dendritic cells contribute to hypertension by secreting inflammatory cy3tokines. In particular, interferon-gamma (IFN-γ) and interleukin-17 (IL-17) produced by activated T lymphocytes contribute to hypertension by inducing oxidative stress injury and endothelial dysfunction. However, the regulatory T cells and alternatively activated macrophages (M2) may have a protective role in hypertension. Although inflammation is related to hypertension, the exact mechanisms are complex and unclear. The present review aims to reveal the roles of inflammation, immunity, and oxidative stress in the initiation and evolution of hypertension. We envisage that the review will strengthen public understanding of the pathophysiological mechanisms of hypertension and may provide new insights and potential therapeutic strategies for hypertension.
Collapse
Affiliation(s)
| | | | | | - Xu Meng
- *Correspondence: Xianliang Zhou, ; Xu Meng,
| | | |
Collapse
|
48
|
Gao Z, Bao J, Hu Y, Tu J, Ye L, Wang L. Sodium-glucose Cotransporter 2 Inhibitors and Pathological Myocardial Hypertrophy. Curr Drug Targets 2023; 24:1009-1022. [PMID: 37691190 PMCID: PMC10879742 DOI: 10.2174/1389450124666230907115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new type of oral hypoglycemic drugs that exert a hypoglycemic effect by blocking the reabsorption of glucose in the proximal renal tubules, thus promoting the excretion of glucose from urine. Their hypoglycemic effect is not dependent on insulin. Increasing data shows that SGLT2 inhibitors improve cardiovascular outcomes in patients with type 2 diabetes. Previous studies have demonstrated that SGLT2 inhibitors can reduce pathological myocardial hypertrophy with or without diabetes, but the exact mechanism remains to be elucidated. To clarify the relationship between SGLT2 inhibitors and pathological myocardial hypertrophy, with a view to providing a reference for the future treatment thereof, this study reviewed the possible mechanisms of SGLT2 inhibitors in attenuating pathological myocardial hypertrophy. We focused specifically on the mechanisms in terms of inflammation, oxidative stress, myocardial fibrosis, mitochondrial function, epicardial lipids, endothelial function, insulin resistance, cardiac hydrogen and sodium exchange, and autophagy.
Collapse
Affiliation(s)
- Zhicheng Gao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaqi Bao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yilan Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junjie Tu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
49
|
Takla M, Saadeh K, Tse G, Huang CLH, Jeevaratnam K. Ageing and the Autonomic Nervous System. Subcell Biochem 2023; 103:201-252. [PMID: 37120470 DOI: 10.1007/978-3-031-26576-1_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The vertebrate nervous system is divided into central (CNS) and peripheral (PNS) components. In turn, the PNS is divided into the autonomic (ANS) and enteric (ENS) nervous systems. Ageing implicates time-related changes to anatomy and physiology in reducing organismal fitness. In the case of the CNS, there exists substantial experimental evidence of the effects of age on individual neuronal and glial function. Although many such changes have yet to be experimentally observed in the PNS, there is considerable evidence of the role of ageing in the decline of ANS function over time. As such, this chapter will argue that the ANS constitutes a paradigm for the physiological consequences of ageing, as well as for their clinical implications.
Collapse
Affiliation(s)
| | | | - Gary Tse
- Kent and Medway Medical School, Canterbury, UK
- University of Surrey, Guildford, UK
| | | | | |
Collapse
|
50
|
Sapsford TP, Johnson SR, Headrick JP, Branjerdporn G, Adhikary S, Sarfaraz M, Stapelberg NJC. Forgetful, sad and old: Do vascular cognitive impairment and depression share a common pre-disease network and how is it impacted by ageing? J Psychiatr Res 2022; 156:611-627. [PMID: 36372004 DOI: 10.1016/j.jpsychires.2022.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022]
Abstract
Vascular cognitive impairment (VCI) and depression frequently coexist in geriatric populations and reciprocally increase disease risks. We assert that a shared pre-disease state of the psycho-immune-neuroendocrine (PINE) network model mechanistically explains bidirectional associations between VCI and depression. Five pathophysiological sub-networks are identified that are shared by VCI and depression: neuroinflammation, kynurenine pathway imbalance, hypothalamic-pituitary-adrenal (HPA) axis overactivity, impaired neurotrophic support and cerebrovascular dysfunction. These do not act independently, and their complex interactions necessitate a systems biology approach to better define disease pathogenesis. The PINE network is already established in the context of non-communicable diseases (NCDs) such as depression, hypertension, atherosclerosis, coronary heart disease and type 2 diabetes mellitus. We build on previous literature to specifically explore mechanistic links between MDD and VCI in the context of PINE pathways and discuss key mechanistic commonalities linking these comorbid conditions and identify a common pre-disease state which precedes transition to VCI and MDD. We expand the model to incorporate bidirectional interactions with biological ageing. Diathesis factors for both VCI and depression feed into this network and the culmination of shared mechanisms (on an ageing substrate) lead to a critical network transition to one or both disease states. A common pre-disease state underlying VCI and depression can provide clinicians a unique opportunity for early risk assessment and intervention in disease development. Establishing the mechanistic elements and systems biology of this network can reveal early warning or predictive biomarkers together with novel therapeutic targets. Integrative studies are recommended to elucidate the dynamic networked biology of VCI and depression over time.
Collapse
Affiliation(s)
- Timothy P Sapsford
- Griffith University School of Medicine, Gold Coast, Queensland, Australia; Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia
| | - Susannah R Johnson
- Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia
| | - John P Headrick
- Griffith University School of Medicine, Gold Coast, Queensland, Australia
| | - Grace Branjerdporn
- Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia.
| | - Sam Adhikary
- Mater Young Adult Health Centre, Mater Hospital, Brisbane, Queensland, Australia
| | - Muhammad Sarfaraz
- Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia
| | - Nicolas J C Stapelberg
- Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia; Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|