1
|
Bhattacharyya A, Barbee KA. Vascular endothelial cell morphology and alignment regulate VEGF-induced endothelial nitric oxide synthase activation. Cytoskeleton (Hoboken) 2024; 81:473-487. [PMID: 38775643 PMCID: PMC11496009 DOI: 10.1002/cm.21872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 06/13/2024]
Abstract
Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) inhibits platelet and leukocyte adhesion while promoting vasorelaxation in smooth muscle cells. Dysfunctional regulation of eNOS is a hallmark of various vascular pathologies, notably atherosclerosis, often associated with areas of low shear stress on endothelial cells (ECs). While the link between EC morphology and local hemodynamics is acknowledged, the specific impact of EC morphology on eNOS regulation remains unclear. Morphological differences between elongated, aligned ECs and polygonal, randomly oriented ECs correspond to variations in focal adhesion and cytoskeletal organization, suggesting differing levels of cytoskeletal prestress. However, the functional outcomes of cytoskeletal prestress, particularly in the absence of shear stress, are not extensively studied in ECs. Some evidence suggests that elongated ECs exhibit decreased immunogenicity and enhanced NO production. This study aims to elucidate the signaling pathways governing VEGF-stimulated eNOS regulation in the aligned EC phenotype characterized by elongated and aligned cells within a monolayer. Using anisotropic topographic cues, bovine aortic endothelial cells (BAECs) were elongated and aligned, followed by VEGF treatment in the presence or absence of cytoskeletal tension inhibitors. Phosphorylation of eNOS ser1179, AKT ser437 and FAK Tyr397 in response to VEGF challenge were significantly heightened in aligned ECs compared to unaligned ECs. Moreover this response proved to be robustly tied to cytoskeletal tension as evinced by the abrogation of responses in the presence of the myosin II ATPase inhibitor, blebbistatin. Notably, this work demonstrates for the first time the reliance on FAK phosphorylation in VEGF-mediated eNOS activation and the comparatively greater contribution of the cytoskeletal machinery in propagating VEGF-eNOS signaling in aligned and elongated ECs. This research underscores the importance of utilizing appropriate vascular models in drug development and sheds light on potential mechanisms underlying vascular function and pathology that can help inform vascular graft design.
Collapse
Affiliation(s)
- Aparna Bhattacharyya
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Market St., Philadelphia, PA 19104, USA
| | - Kenneth A. Barbee
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Market St., Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Mankhong S, Den-Udom T, Tanawattanasuntorn T, Suriyun T, Muta K, Kitiyakara C, Ketsawatsomkron P. The microbial metabolite p-cresol compromises the vascular barrier and induces endothelial cytotoxicity and inflammation in a 3D human vessel-on-a-chip. Sci Rep 2024; 14:18553. [PMID: 39122790 PMCID: PMC11316076 DOI: 10.1038/s41598-024-69124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Increased protein-bound uremic toxins (PBUTs) in patients with chronic kidney disease (CKD) are associated with cardiovascular diseases (CVDs); however, whether retention of PBUTs causes CVD remains unclear. Previous studies assessing the impacts of PBUTs on the vasculature have relied on 2D cell cultures lacking in vivo microenvironments. Here, we investigated the impact of various PBUTs (p-cresol (PC), indoxyl sulfate (IS), and p-cresyl sulfate (PCS)) on microvascular function using an organ-on-a-chip (OOC). Human umbilical vein endothelial cells were used to develop 3D vessels. Chronic exposure to PC resulted in significant vascular leakage compared with controls, whereas IS or PCS treatment did not alter the permeability of 3D vessels. Increased permeability induced by PC was correlated with derangement of cell adherens junction complex, vascular endothelial (VE)-cadherin and filamentous (F)-actin. Additionally, PC decreased endothelial viability in a concentration-dependent manner with a lower IC50 in 3D vessels than in 2D cultures. IS slightly decreased cell viability, while PCS did not affect viability. PC induced inflammatory responses by increasing monocyte adhesion to endothelial surfaces of 3D vessels and IL-6 production. In conclusion, this study leveraged an OOC to determine the diverse effects of PBUTs, demonstrating that PC accumulation is detrimental to ECs during kidney insufficiency.
Collapse
Affiliation(s)
- Sakulrat Mankhong
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Moo 14, Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand
| | - Thittaya Den-Udom
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Moo 14, Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tanotnon Tanawattanasuntorn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Moo 14, Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand
| | - Thunwarat Suriyun
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Moo 14, Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand
| | - Kenjiro Muta
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Moo 14, Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand
| | - Chagriya Kitiyakara
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pimonrat Ketsawatsomkron
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Moo 14, Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand.
| |
Collapse
|
3
|
Bywaters BC, Trache A, Rivera GM. Modulation of arterial intima stiffness by disturbed blood flow. Exp Biol Med (Maywood) 2024; 249:10090. [PMID: 39143955 PMCID: PMC11323813 DOI: 10.3389/ebm.2024.10090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
The intima, comprising the endothelium and the subendothelial matrix, plays a crucial role in atherosclerosis pathogenesis. The mechanical stress arising from disturbed blood flow (d-flow) and the stiffening of the arterial wall contributes to endothelial dysfunction. However, the specific impacts of these physical forces on the mechanical environment of the intima remain undetermined. Here, we investigated whether inhibiting collagen crosslinking could ameliorate the detrimental effects of persistent d-flow on the mechanical properties of the intima. Partial ligation of the left carotid artery (LCA) was performed in C57BL/6J mice, inducing d-flow. The right carotid artery (RCA) served as an internal control. Carotids were collected 2 days and 2 weeks after surgery to study acute and chronic effects of d-flow on the mechanical phenotype of the intima. The chronic effects of d-flow were decoupled from the ensuing arterial wall stiffening by administration of β-aminopropionitrile (BAPN), an inhibitor of collagen crosslinking by lysyl oxidase (LOX) enzymes. Atomic force microscopy (AFM) was used to determine stiffness of the endothelium and the denuded subendothelial matrix in en face carotid preparations. The stiffness of human aortic endothelial cells (HAEC) cultured on soft and stiff hydrogels was also determined. Acute exposure to d-flow caused a slight decrease in endothelial stiffness in male mice but had no effect on the stiffness of the subendothelial matrix in either sex. Regardless of sex, the intact endothelium was softer than the subendothelial matrix. In contrast, exposure to chronic d-flow led to a substantial increase in the endothelial and subendothelial stiffness in both sexes. The effects of chronic d-flow were largely prevented by concurrent BAPN administration. In addition, HAEC displayed reduced stiffness when cultured on soft vs. stiff hydrogels. We conclude that chronic d-flow results in marked stiffening of the arterial intima, which can be effectively prevented by inhibition of collagen crosslinking.
Collapse
Affiliation(s)
- Briana C. Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Andreea Trache
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Gonzalo M. Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Wu Z, Liu Q, Zhao Y, Fang C, Zheng W, Zhao Z, Zhang N, Yang X. Rhogef17: A novel target for endothelial barrier function. Biomed Pharmacother 2024; 170:115983. [PMID: 38134633 DOI: 10.1016/j.biopha.2023.115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
ARHGEF17 encodes the protein RhoGEF17, which is highly expressed in vascular endothelial cells. It is a guanine nucleotide exchange factor (GEF) that accelerates the exchange of GDP with GTP on many small GTPases through its Dbl homology (DH) domain, enabling the activation of Rho-GTPases such as RhoA, RhoB, and RhoC. Rho GTPase-regulated changes in the actin cytoskeleton and cell adhesion kinetics are the main mechanisms mediating many endothelial cell (EC) alterations, including cell morphology, migration, and division changes, which profoundly affect EC barrier function. This review focuses on ARHGEF17 expression, activation and biological functions in ECs, linking its regulation of cellular morphology, migration, mitosis and other cellular behaviors to disease onset and progression. Understanding ARHGEF17 mechanisms of action will contribute to the design of therapeutic approaches targeting RhoGEF17, a potential drug target for the treatment of various endothelium-related diseases, Such as vascular inflammation, carcinogenesis and transendothelial metastasis of tumors.
Collapse
Affiliation(s)
- Zhuolin Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Quanlei Liu
- Department of Neurosurgery, Capital Medical University, Xuanwu Hospital, Beijing, China
| | - Yan Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Wen Zheng
- Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zilin Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Nai Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
5
|
Wadey KS, Somos A, Leyden G, Blythe H, Chan J, Hutchinson L, Poole A, Frankow A, Johnson JL, George SJ. Pro-inflammatory role of Wnt/β-catenin signaling in endothelial dysfunction. Front Cardiovasc Med 2023; 9:1059124. [PMID: 36794234 PMCID: PMC9923234 DOI: 10.3389/fcvm.2022.1059124] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
Background Endothelial dysfunction is a critical component of both atherosclerotic plaque formation and saphenous vein graft failure. Crosstalk between the pro-inflammatory TNF-α-NFκB signaling axis and the canonical Wnt/β-catenin signaling pathway potentially plays an important role in regulating endothelial dysfunction, though the exact nature of this is not defined. Results In this study, cultured endothelial cells were challenged with TNF-α and the potential of a Wnt/β-catenin signaling inhibitor, iCRT-14, in reversing the adverse effects of TNF-α on endothelial physiology was evaluated. Treatment with iCRT-14 lowered nuclear and total NFκB protein levels, as well as expression of NFκB target genes, IL-8 and MCP-1. Inhibition of β-catenin activity with iCRT-14 suppressed TNF-α-induced monocyte adhesion and decreased VCAM-1 protein levels. Treatment with iCRT-14 also restored endothelial barrier function and increased levels of ZO-1 and focal adhesion-associated phospho-paxillin (Tyr118). Interestingly, inhibition of β-catenin with iCRT-14 enhanced platelet adhesion in cultured TNF-α-stimulated endothelial cells and in an ex vivo human saphenous vein model, most likely via elevating levels of membrane-tethered vWF. Wound healing was moderately retarded by iCRT-14; hence, inhibition of Wnt/β-catenin signaling may interfere with re-endothelialisation in grafted saphenous vein conduits. Conclusion Inhibition of the Wnt/β-catenin signaling pathway with iCRT-14 significantly recovered normal endothelial function by decreasing inflammatory cytokine production, monocyte adhesion and endothelial permeability. However, treatment of cultured endothelial cells with iCRT-14 also exerted a pro-coagulatory and moderate anti-wound healing effect: these factors may affect the suitability of Wnt/β-catenin inhibition as a therapy for atherosclerosis and vein graft failure.
Collapse
Affiliation(s)
- Kerry S. Wadey
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom,*Correspondence: Kerry S. Wadey,
| | - Alexandros Somos
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Genevieve Leyden
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Hazel Blythe
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Jeremy Chan
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Lawrence Hutchinson
- School of Physiology, Pharmacology and Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Alastair Poole
- School of Physiology, Pharmacology and Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Aleksandra Frankow
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Jason L. Johnson
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Sarah J. George
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
6
|
de Graaf MNS, Vivas A, Kasi DG, van den Hil FE, van den Berg A, van der Meer AD, Mummery CL, Orlova VV. Multiplexed fluidic circuit board for controlled perfusion of 3D blood vessels-on-a-chip. LAB ON A CHIP 2022; 23:168-181. [PMID: 36484766 PMCID: PMC9764810 DOI: 10.1039/d2lc00686c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/21/2022] [Indexed: 06/11/2023]
Abstract
Three-dimensional (3D) blood vessels-on-a-chip (VoC) models integrate the biological complexity of vessel walls with dynamic microenvironmental cues, such as wall shear stress (WSS) and circumferential strain (CS). However, these parameters are difficult to control and are often poorly reproducible due to the high intrinsic diameter variation of individual 3D-VoCs. As a result, the throughput of current 3D systems is one-channel-at-a-time. Here, we developed a fluidic circuit board (FCB) for simultaneous perfusion of up to twelve 3D-VoCs using a single set of control parameters. By designing the internal hydraulic resistances in the FCB appropriately, it was possible to provide a pre-set WSS to all connected 3D-VoCs, despite significant variation in lumen diameters. Using this FCB, we found that variation of CS or WSS induce morphological changes to human induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs) and conclude that control of these parameters using a FCB is necessary to study 3D-VOCs.
Collapse
Affiliation(s)
- Mees N S de Graaf
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Aisen Vivas
- Applied Stem Cell Technologies, University of Twente, 7500AE Enschede, The Netherlands
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, 7500AE Enschede, The Netherlands
| | - Dhanesh G Kasi
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Francijna E van den Hil
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Albert van den Berg
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, 7500AE Enschede, The Netherlands
| | | | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
- Applied Stem Cell Technologies, University of Twente, 7500AE Enschede, The Netherlands
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
7
|
Yadunandanan Nair N, Samuel V, Ramesh L, Marib A, David DT, Sundararaman A. Actin cytoskeleton in angiogenesis. Biol Open 2022; 11:bio058899. [PMID: 36444960 PMCID: PMC9729668 DOI: 10.1242/bio.058899] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Actin, one of the most abundant intracellular proteins in mammalian cells, is a critical regulator of cell shape and polarity, migration, cell division, and transcriptional response. Angiogenesis, or the formation of new blood vessels in the body is a well-coordinated multi-step process. Endothelial cells lining the blood vessels acquire several new properties such as front-rear polarity, invasiveness, rapid proliferation and motility during angiogenesis. This is achieved by changes in the regulation of the actin cytoskeleton. Actin remodelling underlies the switch between the quiescent and angiogenic state of the endothelium. Actin forms endothelium-specific structures that support uniquely endothelial functions. Actin regulators at endothelial cell-cell junctions maintain the integrity of the blood-tissue barrier while permitting trans-endothelial leukocyte migration. This review focuses on endothelial actin structures and less-recognised actin-mediated endothelial functions. Readers are referred to other recent reviews for the well-recognised roles of actin in endothelial motility, barrier functions and leukocyte transmigration. Actin generates forces that are transmitted to the extracellular matrix resulting in vascular matrix remodelling. In this review, we attempt to synthesize our current understanding of the roles of actin in vascular morphogenesis. We speculate on the vascular bed specific differences in endothelial actin regulation and its role in the vast heterogeneity in endothelial morphology and function across the various tissues of our body.
Collapse
Affiliation(s)
- Nidhi Yadunandanan Nair
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Victor Samuel
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Lariza Ramesh
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Areeba Marib
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Deena T. David
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Ananthalakshmy Sundararaman
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| |
Collapse
|
8
|
Morphology of Biomaterials Affect O-Glycosylation of HUVECs. J Funct Biomater 2022; 13:jfb13040235. [PMID: 36412876 PMCID: PMC9680501 DOI: 10.3390/jfb13040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Biomaterials have been widely used as substitutes for diseased tissue in surgery and have gained great success and attention. At present, the biocompatibility of biomaterials such as PET woven fabrics is often evaluated both in vitro and in vivo. However, the current experimental methods cannot reveal the relationship between material surfaces and cell adhesion, and few research works have focused on the mechanisms of how the surface morphology of biomaterials affects cell adhesion and proliferation. Thus, it is meaningful to find out how the altered surfaces could affect cell adhesion and growth. In this study, we employed Ar low-temperature plasma treatment technology to create nano-grooves on the warp yarn of PET woven fabrics and seeded human umbellar vein endothelial cells (HUVEC) on these fabrics. We then assessed the O-glycan and N-glycan profiles of the cells grown on different structures of the polyester woven fabrics. The result showed that the surface morphology of polyester woven fabrics could affect the O-glycan profile but not the N-glycan profile of cultured HUVEC. Taken together, the study describes the effects of the surface morphology of biomaterial on the biosynthesis of cellular glycans and may provide new insights into the design and manufacture of biomaterials used as blood vessels based on the expression profiles of O-glycans on cultured cells.
Collapse
|
9
|
Francis CR, Kincross H, Kushner EJ. Rab35 governs apicobasal polarity through regulation of actin dynamics during sprouting angiogenesis. Nat Commun 2022; 13:5276. [PMID: 36075898 PMCID: PMC9458672 DOI: 10.1038/s41467-022-32853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
In early blood vessel development, trafficking programs, such as those using Rab GTPases, are tasked with delivering vesicular cargo with high spatiotemporal accuracy. However, the function of many Rab trafficking proteins remain ill-defined in endothelial tissue; therefore, their relevance to blood vessel development is unknown. Rab35 has been shown to play an enigmatic role in cellular behaviors which differs greatly between tissue-type and organism. Importantly, Rab35 has never been characterized for its potential contribution in sprouting angiogenesis; thus, our goal was to map Rab35’s primary function in angiogenesis. Our results demonstrate that Rab35 is critical for sprout formation; in its absence, apicobasal polarity is entirely lost in vitro and in vivo. To determine mechanism, we systematically explored established Rab35 effectors and show that none are operative in endothelial cells. However, we find that Rab35 partners with DENNd1c, an evolutionarily divergent guanine exchange factor, to localize to actin. Here, Rab35 regulates actin polymerization through limiting Rac1 and RhoA activity, which is required to set up proper apicobasal polarity during sprout formation. Our findings establish that Rab35 is a potent brake of actin remodeling during blood vessel development. The promiscuous GTPase Rab35 has been shown to be involved in many important cellular functions. In this article, Francis et al. illustrate how Rab35 acts as a critical brake to actin remodeling during sprouting angiogenesis and how it is necessary for proper blood vessel development.
Collapse
Affiliation(s)
- Caitlin R Francis
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Hayle Kincross
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, USA.
| |
Collapse
|
10
|
Pillay LM, Yano JJ, Davis AE, Butler MG, Ezeude MO, Park JS, Barnes KA, Reyes VL, Castranova D, Gore AV, Swift MR, Iben JR, Kenton MI, Stratman AN, Weinstein BM. In vivo dissection of Rhoa function in vascular development using zebrafish. Angiogenesis 2022; 25:411-434. [PMID: 35320450 DOI: 10.1007/s10456-022-09834-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022]
Abstract
The small monomeric GTPase RHOA acts as a master regulator of signal transduction cascades by activating effectors of cellular signaling, including the Rho-associated protein kinases ROCK1/2. Previous in vitro cell culture studies suggest that RHOA can regulate many critical aspects of vascular endothelial cell (EC) biology, including focal adhesion, stress fiber formation, and angiogenesis. However, the specific in vivo roles of RHOA during vascular development and homeostasis are still not well understood. In this study, we examine the in vivo functions of RHOA in regulating vascular development and integrity in zebrafish. We use zebrafish RHOA-ortholog (rhoaa) mutants, transgenic embryos expressing wild type, dominant negative, or constitutively active forms of rhoaa in ECs, pharmacological inhibitors of RHOA and ROCK1/2, and Rock1 and Rock2a/b dgRNP-injected zebrafish embryos to study the in vivo consequences of RHOA gain- and loss-of-function in the vascular endothelium. Our findings document roles for RHOA in vascular integrity, developmental angiogenesis, and vascular morphogenesis in vivo, showing that either too much or too little RHOA activity leads to vascular dysfunction.
Collapse
Affiliation(s)
- Laura M Pillay
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Joseph J Yano
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
- Department of Cell and Molecular Biology, University of Pennsylvania, 440 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Andrew E Davis
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Matthew G Butler
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Megan O Ezeude
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Jong S Park
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Keith A Barnes
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Vanessa L Reyes
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Daniel Castranova
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Aniket V Gore
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Matthew R Swift
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - James R Iben
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Madeleine I Kenton
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Amber N Stratman
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brant M Weinstein
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Monteiro NO, Oliveira C, Silva TH, Martins A, Fangueiro JF, Reis RL, Neves NM. Biomimetic Surface Topography from the Rubus fruticosus Leaf as a Guidance of Angiogenesis in Tissue Engineering Applications. ACS Biomater Sci Eng 2022; 8:2943-2953. [PMID: 35706335 DOI: 10.1021/acsbiomaterials.2c00264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The promotion of angiogenesis is a fundamental step for efficient organ/tissue reconstitution and replacement. Thus, several strategies to promote vascularization of scaffolds were studied to satisfy this unsolved clinical need. The interface between cells and substrates is a determinant for the success of tissue engineering (TE) strategies. Substrate's topography is reported to play a key role in influencing endothelial cell behavior, namely, on its proliferation, metabolic activity, morphology, migration, and secretion of cytokines and chemokines. Therefore, surface topography of the biomaterial-based grafts is a crucial property that is considered in the development of a new TE approach. Herein, we hypothesize that the surface of Rubus fruticosus leaf plays a crucial role in driving angiogenesis since its architecture resembles the vascular structures at a biologically relevant size scale. For this, we produced biomimetic polycaprolactone (PCL) membranes (BpMs) replicating the surface topography of a R. fruticosus leaf by replica molding and nanoimprint lithography. Our results showed an enhanced performance in terms of proliferation of the human endothelial cell line on top of the BpM. Moreover, an asymmetric cellular spatial distribution among the surface of the BpM was observed. These cells seem to have higher density for longer time periods in the region that replicates the leaf veins. Finally, we assess the angiogenic capacity through a chick chorioallantoic membrane assay, revealing that BpMs are more prone to support angiogenesis than flat PCL membranes. We strongly believe that this strategy can bring new insights into developing TE strategies with an enhanced performance in terms of the vascular integration between the host and the scaffolds implanted.
Collapse
Affiliation(s)
- Nelson O Monteiro
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's─PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Catarina Oliveira
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's─PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's─PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's─PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana F Fangueiro
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's─PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's─PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's─PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
12
|
Royse MK, Means AK, Calderon GA, Kinstlinger IS, He Y, Durante MR, Procopio A, Veiseh O, Xu J. A 3D printable perfused hydrogel vascular model to assay ultrasound-induced permeability. Biomater Sci 2022; 10:3158-3173. [DOI: 10.1039/d2bm00223j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of an in vitro model to study vascular permeability is vital for clinical applications such as the targeted delivery of therapeutics. This work demonstrates the use of a...
Collapse
|
13
|
van Steen ACI, Kempers L, Schoppmeyer R, Blokker M, Beebe DJ, Nolte MA, van Buul JD. Transendothelial migration induces differential migration dynamics of leukocytes in tissue matrix. J Cell Sci 2021; 134:272419. [PMID: 34622930 DOI: 10.1242/jcs.258690] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/27/2021] [Indexed: 01/14/2023] Open
Abstract
Leukocyte extravasation into inflamed tissue is a complex process that is difficult to capture as a whole in vitro. We employed a blood-vessel-on-a-chip model in which human endothelial cells were cultured in a tube-like lumen in a collagen-1 matrix. The vessels are leak tight, creating a barrier for molecules and leukocytes. Addition of inflammatory cytokine TNF-α (also known as TNF) caused vasoconstriction, actin remodelling and upregulation of ICAM-1. Introducing leukocytes into the vessels allowed real-time visualization of all different steps of the leukocyte transmigration cascade, including migration into the extracellular matrix. Individual cell tracking over time distinguished striking differences in migratory behaviour between T-cells and neutrophils. Neutrophils cross the endothelial layer more efficiently than T-cells, but, upon entering the matrix, neutrophils display high speed but low persistence, whereas T-cells migrate with low speed and rather linear migration. In conclusion, 3D imaging in real time of leukocyte extravasation in a vessel-on-a-chip enables detailed qualitative and quantitative analysis of different stages of the full leukocyte extravasation process in a single assay. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Abraham C I van Steen
- Department of Molecular Hematology, Sanquin Research, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | - Lanette Kempers
- Department of Molecular Hematology, Sanquin Research, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | - Rouven Schoppmeyer
- Department of Molecular Hematology, Sanquin Research, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Max Blokker
- Department of Physics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - David J Beebe
- Department of Biomedical Engineering, Department of Pathology and Laboratory Medicine, Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Drive, Madison, WI 53705, USA
| | - Martijn A Nolte
- Department of Molecular Hematology, Sanquin Research, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | - Jaap D van Buul
- Department of Molecular Hematology, Sanquin Research, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
14
|
Gagat M, Zielińska W, Mikołajczyk K, Zabrzyński J, Krajewski A, Klimaszewska-Wiśniewska A, Grzanka D, Grzanka A. CRISPR-Based Activation of Endogenous Expression of TPM1 Inhibits Inflammatory Response of Primary Human Coronary Artery Endothelial and Smooth Muscle Cells Induced by Recombinant Human Tumor Necrosis Factor α. Front Cell Dev Biol 2021; 9:668032. [PMID: 34604206 PMCID: PMC8484921 DOI: 10.3389/fcell.2021.668032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor α (TNFα) is one of the most important proinflammatory cytokines, which affects many processes associated with the growth and characteristics of endothelial, smooth muscle, and immune system cells. However, there is no correlation between most in vivo and in vitro studies on its role in endothelial cell proliferation and migration. In this study, we examined the effect of recombinant human (rh) TNFα produced in HEK293 cells on primary human coronary artery endothelial cells (pHCAECs) in the context of F-actin organization and such processes as migration and adhesion. Furthermore, we evaluated the possibility of the inhibition of the endothelial inflammatory response by the CRISPR-based regulation of TPM1 gene expression. We showed that TNFα-induced activation of pHCAECs was related to the reorganization of the actin cytoskeleton into parallel-arranged stress fibers running along the longer axis of pHCAECs. It allowed for the directed and parallel motion of the cells during coordinated migration. This change in F-actin organization promoted strong but discontinuous cell–cell contacts involved in signalization between migrating cells. Moreover, this form of intercellular connections together with locally increased adhesion was related to the formation of migrasomes and further migracytosis. Stabilization of the actin cytoskeleton through the CRISPR-based activation of endogenous expression of TPM1 resulted in the inhibition of the inflammatory response of pHCAECs following treatment with rh TNFα and stabilization of cell–cell junctions through reduced cleavage of vascular endothelial cadherin (VE-cadherin) and maintenance of the stable levels of α- and β-catenins. We also showed that CRISPR-based activation of TPM1 reduced inflammatory activation, proliferation, and migration of primary human coronary artery smooth muscle cells. Therefore, products of the TPM1 gene may be a potential therapeutic target for the treatment of proinflammatory vascular disorders.
Collapse
Affiliation(s)
- Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Wioletta Zielińska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Klaudia Mikołajczyk
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Jan Zabrzyński
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland.,Department of General Orthopaedics, Musculoskeletal Oncology and Trauma Surgery, University of Medical Sciences, Poznań, Poland
| | - Adrian Krajewski
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| |
Collapse
|
15
|
Zhao P, Yao Q, Zhang PJ, The E, Zhai Y, Ao L, Jarrett MJ, Dinarello CA, Fullerton DA, Meng X. Single-cell RNA-seq reveals a critical role of novel pro-inflammatory EndMT in mediating adverse remodeling in coronary artery-on-a-chip. SCIENCE ADVANCES 2021; 7:eabg1694. [PMID: 34417174 PMCID: PMC8378826 DOI: 10.1126/sciadv.abg1694] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/30/2021] [Indexed: 05/09/2023]
Abstract
A three-dimensional microengineered human coronary artery-on-a-chip was developed for investigation of the mechanism by which low and oscillatory shear stress (OSS) induces pro-atherogenic changes. Single-cell RNA sequencing revealed that OSS induced distinct changes in endothelial cells (ECs) including pro-inflammatory endothelial-to-mesenchymal transition (EndMT). OSS promoted pro-inflammatory EndMT through the Notch1/p38 MAPK-NF-κB signaling axis. Moreover, OSS-induced EC phenotypic changes resulted in proliferation and extracellular matrix (ECM) protein up-regulation in smooth muscle cells (SMCs) through the RANTES-mediated paracrine mechanism. IL-37 suppressed OSS-induced pro-inflammatory EndMT and thereby abrogated SMC proliferation and ECM protein remodeling. Overall, this study provides insights into endothelial heterogeneity under atheroprone shear stress and identifies the mechanistic role of a novel EC subtype in promoting adverse vascular remodeling. Further, this study demonstrates that anti-inflammatory approach is capable of mitigating vascular pathobiology evoked by atheroprone shear stress.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Surgery, University of Colorado Denver, Aurora, CO, USA
| | - Qingzhou Yao
- Department of Surgery, University of Colorado Denver, Aurora, CO, USA
| | - Pei-Jian Zhang
- Department of Surgery, University of Colorado Denver, Aurora, CO, USA
| | - Erlinda The
- Department of Surgery, University of Colorado Denver, Aurora, CO, USA
| | - Yufeng Zhai
- Department of Surgery, University of Colorado Denver, Aurora, CO, USA
| | - Lihua Ao
- Department of Surgery, University of Colorado Denver, Aurora, CO, USA
| | - Michael J Jarrett
- Department of Surgery, University of Colorado Denver, Aurora, CO, USA
| | | | - David A Fullerton
- Department of Surgery, University of Colorado Denver, Aurora, CO, USA
| | - Xianzhong Meng
- Department of Surgery, University of Colorado Denver, Aurora, CO, USA.
| |
Collapse
|
16
|
Dessalles CA, Leclech C, Castagnino A, Barakat AI. Integration of substrate- and flow-derived stresses in endothelial cell mechanobiology. Commun Biol 2021; 4:764. [PMID: 34155305 PMCID: PMC8217569 DOI: 10.1038/s42003-021-02285-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Endothelial cells (ECs) lining all blood vessels are subjected to large mechanical stresses that regulate their structure and function in health and disease. Here, we review EC responses to substrate-derived biophysical cues, namely topography, curvature, and stiffness, as well as to flow-derived stresses, notably shear stress, pressure, and tensile stresses. Because these mechanical cues in vivo are coupled and are exerted simultaneously on ECs, we also review the effects of multiple cues and describe burgeoning in vitro approaches for elucidating how ECs integrate and interpret various mechanical stimuli. We conclude by highlighting key open questions and upcoming challenges in the field of EC mechanobiology.
Collapse
Affiliation(s)
- Claire A Dessalles
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Claire Leclech
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Alessia Castagnino
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
17
|
Arts JJG, Mahlandt EK, Schimmel L, Grönloh MLB, van der Niet S, Klein BJAM, Fernandez-Borja M, van Geemen D, Huveneers S, van Rijssel J, Goedhart J, van Buul JD. Endothelial Focal Adhesions Are Functional Obstacles for Leukocytes During Basolateral Crawling. Front Immunol 2021; 12:667213. [PMID: 34084168 PMCID: PMC8167051 DOI: 10.3389/fimmu.2021.667213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
An inflammatory response requires leukocytes to migrate from the circulation across the vascular lining into the tissue to clear the invading pathogen. Whereas a lot of attention is focused on how leukocytes make their way through the endothelial monolayer, it is less clear how leukocytes migrate underneath the endothelium before they enter the tissue. Upon finalization of the diapedesis step, leukocytes reside in the subendothelial space and encounter endothelial focal adhesions. Using TIRF microscopy, we show that neutrophils navigate around these focal adhesions. Neutrophils recognize focal adhesions as physical obstacles and deform to get around them. Increasing the number of focal adhesions by silencing the small GTPase RhoJ slows down basolateral crawling of neutrophils. However, apical crawling and diapedesis itself are not affected by RhoJ depletion. Increasing the number of focal adhesions drastically by expressing the Rac1 GEF Tiam1 make neutrophils to avoid migrating underneath these Tiam1-expressing endothelial cells. Together, our results show that focal adhesions mark the basolateral migration path of neutrophils.
Collapse
Affiliation(s)
- Janine J. G. Arts
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Eike K. Mahlandt
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Lilian Schimmel
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Max L. B. Grönloh
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Sanne van der Niet
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Bart J. A. M. Klein
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Mar Fernandez-Borja
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Daphne van Geemen
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Jos van Rijssel
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Joachim Goedhart
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Jaap D. van Buul
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Liu M, Wang D, Gu S, Tian B, Liang J, Suo Q, Zhang Z, Yang G, Zhou Y, Li S. Micro/nano materials regulate cell morphology and intercellular communication by extracellular vesicles. Acta Biomater 2021; 124:130-138. [PMID: 33567350 DOI: 10.1016/j.actbio.2021.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) have emerged as important nano-cargo carriers for cell-cell communication, yet how biophysical factors regulate EV-mediated signaling is not well understood. Here we show that microgrooves can modulate the morphology of endothelial cells (ECs), and regulate the phenotype of smooth muscle cells (SMCs) through EVs in co-culture. Elongated ECs, in comparison with polygonal ECs, increased the expression of contractile markers in SMCs. Depletion of EVs in the culture medium abolished this effect. Further analysis demonstrated that elongated ECs significantly upregulated miR-143/miR-145, leading to the increase of these microRNAs in EC-secreted EVs that were transferred to SMCs under a co-culture condition. Inhibition of EV secretion from ECs abolished the EC-SMC communication and the increased expression of SMC contractile markers. Moreover, electrospun nano-fibrous scaffolds with aligned fibers had the same effects as microgrooves to induce EC secretion of EVs to regulate SMC phenotypic marker expression. These results demonstrate that micro and nano materials can be used to engineer cell morphology and regulate EV secretion for cell-cell communication, which will have significant implications in the engineering of blood vessels and other tissues. STATEMENT OF SIGNIFICANCE: By manipulating EC morphology with micro/nano materials, we show that EV-mediated signaling can regulate SMC phenotypic marker expression. This is a very thorough and unique study to demonstrate the function of extracellular vesicles (EVs) as important nano-carriers in cell-cell communication. The originality of this study is to demonstrate that EC morphology modulates the phenotype of smooth muscle cells via extracellular vesicles enclosing miR143/miR145. These findings underscore the important role of biophysical changes in cell-cell communications, and provide a rational basis for engineering micro/nano materials to control cell-cell communications for cell and tissue engineering.
Collapse
Affiliation(s)
- Mengya Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Dan Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Shuangying Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Baoxiang Tian
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Jiaqi Liang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Qian Suo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Zhijun Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Guoyuan Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yue Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| | - Song Li
- Department of Bioengineering and Department of Medicine, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
19
|
Klems A, van Rijssel J, Ramms AS, Wild R, Hammer J, Merkel M, Derenbach L, Préau L, Hinkel R, Suarez-Martinez I, Schulte-Merker S, Vidal R, Sauer S, Kivelä R, Alitalo K, Kupatt C, van Buul JD, le Noble F. The GEF Trio controls endothelial cell size and arterial remodeling downstream of Vegf signaling in both zebrafish and cell models. Nat Commun 2020; 11:5319. [PMID: 33087700 PMCID: PMC7578835 DOI: 10.1038/s41467-020-19008-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Arterial networks enlarge in response to increase in tissue metabolism to facilitate flow and nutrient delivery. Typically, the transition of a growing artery with a small diameter into a large caliber artery with a sizeable diameter occurs upon the blood flow driven change in number and shape of endothelial cells lining the arterial lumen. Here, using zebrafish embryos and endothelial cell models, we describe an alternative, flow independent model, involving enlargement of arterial endothelial cells, which results in the formation of large diameter arteries. Endothelial enlargement requires the GEF1 domain of the guanine nucleotide exchange factor Trio and activation of Rho-GTPases Rac1 and RhoG in the cell periphery, inducing F-actin cytoskeleton remodeling, myosin based tension at junction regions and focal adhesions. Activation of Trio in developing arteries in vivo involves precise titration of the Vegf signaling strength in the arterial wall, which is controlled by the soluble Vegf receptor Flt1. Arterial flow regulates artery diameter but other mechanisms may also affect this. Here, the authors show that the guanine nucleotide exchange factor Trio and GTPases Rac1 and RhoG, triggers F-actin remodeling in arterial endothelial cells, independent of flow, to enhance lumen diameter in zebrafish and cell models.
Collapse
Affiliation(s)
- Alina Klems
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Jos van Rijssel
- Molecular Cell Biology lab, Department Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center at the University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
| | - Anne S Ramms
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany.,Institute for Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021, Karlsruhe, Germany
| | - Raphael Wild
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Julia Hammer
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Melanie Merkel
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Laura Derenbach
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Laetitia Préau
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Rabea Hinkel
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany and DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Irina Suarez-Martinez
- Institute of Cardiovascular Organogenesis and Regeneration WWU Münster, Münster, Germany & Faculty of Medicine, WWU Münster, Münster, Germany & Cells in Motion Cluster of Excellence, Münster, Münster, Germany
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration WWU Münster, Münster, Germany & Faculty of Medicine, WWU Münster, Münster, Germany & Cells in Motion Cluster of Excellence, Münster, Münster, Germany
| | - Ramon Vidal
- Max Delbrück Center for Molecular Medicine (MDC), Berlin Institute of Medical Systems Biology & Berlin Institute of Health, Robert Rössle Strasse 10, 13092, Berlin, Germany
| | - Sascha Sauer
- Max Delbrück Center for Molecular Medicine (MDC), Berlin Institute of Medical Systems Biology & Berlin Institute of Health, Robert Rössle Strasse 10, 13092, Berlin, Germany
| | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, and Wihuri Research Institute, Helsinki, Finland
| | - Kari Alitalo
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, and Wihuri Research Institute, Helsinki, Finland
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, TUM Munich, Germany, and DZHK, (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Jaap D van Buul
- Molecular Cell Biology lab, Department Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center at the University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands.,Leeuwenhoek Centre for Advanced Microscopy, section Molecular Cytology at Swammerdam Institute for Life Sciences at University of Amsterdam, Amsterdam, The Netherlands
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany. .,Institute for Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021, Karlsruhe, Germany. .,Institute of Experimental Cardiology, University of Heidelberg, Heidelberg Germany and DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
20
|
Leclech C, Natale CF, Barakat AI. The basement membrane as a structured surface - role in vascular health and disease. J Cell Sci 2020; 133:133/18/jcs239889. [PMID: 32938688 DOI: 10.1242/jcs.239889] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The basement membrane (BM) is a thin specialized extracellular matrix that functions as a cellular anchorage site, a physical barrier and a signaling hub. While the literature on the biochemical composition and biological activity of the BM is extensive, the central importance of the physical properties of the BM, most notably its mechanical stiffness and topographical features, in regulating cellular function has only recently been recognized. In this Review, we focus on the biophysical attributes of the BM and their influence on cellular behavior. After a brief overview of the biochemical composition, assembly and function of the BM, we describe the mechanical properties and topographical structure of various BMs. We then focus specifically on the vascular BM as a nano- and micro-scale structured surface and review how its architecture can modulate endothelial cell structure and function. Finally, we discuss the pathological ramifications of the biophysical properties of the vascular BM and highlight the potential of mimicking BM topography to improve the design of implantable endovascular devices and advance the burgeoning field of vascular tissue engineering.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| | - Carlo F Natale
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France.,Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Abdul I Barakat
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
21
|
Taha M, Aldirawi M, März S, Seebach J, Odenthal-Schnittler M, Bondareva O, Bojovic V, Schmandra T, Wirth B, Mietkowska M, Rottner K, Schnittler H. EPLIN-α and -β Isoforms Modulate Endothelial Cell Dynamics through a Spatiotemporally Differentiated Interaction with Actin. Cell Rep 2020; 29:1010-1026.e6. [PMID: 31644899 DOI: 10.1016/j.celrep.2019.09.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/08/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Actin-binding proteins are essential for linear and branched actin filament dynamics that control shape change, cell migration, and cell junction remodeling in vascular endothelium (endothelial cells [ECs]). The epithelial protein lost in neoplasm (EPLIN) is an actin-binding protein, expressed as EPLIN-α and EPLIN-β by alternative promoters; however, the isoform-specific functions are not yet understood. Aortic compared to cava vein ECs and shear stress-exposed cultured ECs express increased EPLIN-β levels that stabilize stress fibers. In contrast, EPLIN-α expression is increased in growing and migrating ECs, is targeted to membrane protrusions, and terminates their growth via interaction with the Arp2/3 complex. The data indicate that EPLIN-α controls protrusion dynamics while EPLIN-β has an actin filament stabilizing role, which is consistent with FRAP analyses demonstrating a lower EPLIN-β turnover rate compared to EPLIN-α. Together, EPLIN isoforms differentially control actin dynamics in ECs, essential in shear stress responses, cell migration, and barrier function.
Collapse
Affiliation(s)
- Muna Taha
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Mohammed Aldirawi
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Sigrid März
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Jochen Seebach
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Maria Odenthal-Schnittler
- Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Department of Ophthalmology, Westfälische Wilhelms University of Münster, Medical Center, 48149 Münster, Germany
| | - Olga Bondareva
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Vesna Bojovic
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Thomas Schmandra
- Heart and Vascular Clinic Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| | - Benedikt Wirth
- Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Institute for Analysis and Numerics, Westfälische Wilhelms University of Münster, 48149 Münster Germany
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany.
| |
Collapse
|
22
|
Boolean model of anchorage dependence and contact inhibition points to coordinated inhibition but semi-independent induction of proliferation and migration. Comput Struct Biotechnol J 2020; 18:2145-2165. [PMID: 32913583 PMCID: PMC7451872 DOI: 10.1016/j.csbj.2020.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/23/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
Epithelial cells respond to their physical neighborhood with mechano-sensitive behaviors required for development and tissue maintenance. These include anchorage dependence, matrix stiffness-dependent proliferation, contact inhibition of proliferation and migration, and collective migration that balances cell crawling with the maintenance of cell junctions. While required for development and tissue repair, these coordinated responses to the microenvironment also contribute to cancer metastasis. Predictive models of the signaling networks that coordinate these behaviors are critical in controlling cell behavior to halt disease. Here we propose a Boolean regulatory network model that synthesizes mechanosensitive signaling that links anchorage to a matrix of varying stiffness and cell density sensing to contact inhibition, proliferation, migration, and apoptosis. Our model can reproduce anchorage dependence and anoikis, detachment-induced cytokinesis errors, the effect of matrix stiffness on proliferation, and contact inhibition of proliferation and migration by two mechanisms that converge on the YAP transcription factor. In addition, we offer testable predictions related to cell cycle-dependent anoikis sensitivity, the molecular requirements for abolishing contact inhibition, and substrate stiffness dependent expression of the catalytic subunit of PI3K. Moreover, our model predicts heterogeneity in migratory vs. non-migratory phenotypes in sub-confluent monolayers, and co-inhibition but semi-independent induction of proliferation vs. migration as a function of cell density and mitogenic stimulation. Our model serves as a stepping-stone towards modeling mechanosensitive routes to the epithelial to mesenchymal transition, capturing the effects of the mesenchymal state on anoikis resistance, and understanding the balance between migration versus proliferation at each stage of the epithelial to mesenchymal transition.
Collapse
|
23
|
Tang VW. Collagen, stiffness, and adhesion: the evolutionary basis of vertebrate mechanobiology. Mol Biol Cell 2020; 31:1823-1834. [PMID: 32730166 PMCID: PMC7525820 DOI: 10.1091/mbc.e19-12-0709] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023] Open
Abstract
The emergence of collagen I in vertebrates resulted in a dramatic increase in the stiffness of the extracellular environment, supporting long-range force propagation and the development of low-compliant tissues necessary for the development of vertebrate traits including pressurized circulation and renal filtration. Vertebrates have also evolved integrins that can bind to collagens, resulting in the generation of higher tension and more efficient force transmission in the extracellular matrix. The stiffer environment provides an opportunity for the vertebrates to create new structures such as the stress fibers, new cell types such as endothelial cells, new developmental processes such as neural crest delamination, and new tissue organizations such as the blood-brain barrier. Molecular players found only in vertebrates allow the modification of conserved mechanisms as well as the design of novel strategies that can better serve the physiological needs of the vertebrates. These innovations collectively contribute to novel morphogenetic behaviors and unprecedented increases in the complexities of tissue mechanics and functions.
Collapse
Affiliation(s)
- Vivian W. Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
24
|
Cell matrix adhesion in cell migration. Essays Biochem 2020; 63:535-551. [PMID: 31444228 DOI: 10.1042/ebc20190012] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
The ability of cells to migrate is a fundamental physiological process involved in embryonic development, tissue homeostasis, immune surveillance and wound healing. In order for cells to migrate, they must interact with their environment using adhesion receptors, such as integrins, and form specialized adhesion complexes that mediate responses to different extracellular cues. In this review, we discuss the role of integrin adhesion complexes (IACs) in cell migration, highlighting the layers of regulation that are involved, including intracellular signalling cascades, mechanosensing and reciprocal feedback to the extracellular environment. We also discuss the role of IACs in extracellular matrix remodeling and how they impact upon cell migration.
Collapse
|
25
|
van der Stoel M, Schimmel L, Nawaz K, van Stalborch AM, de Haan A, Klaus-Bergmann A, Valent ET, Koenis DS, van Nieuw Amerongen GP, de Vries CJ, de Waard V, Gloerich M, van Buul JD, Huveneers S. DLC1 is a direct target of activated YAP/TAZ that drives collective migration and sprouting angiogenesis. J Cell Sci 2020; 133:jcs239947. [PMID: 31964713 DOI: 10.1242/jcs.239947] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
Endothelial YAP/TAZ (YAP is also known as YAP1, and TAZ as WWTR1) signaling is crucial for sprouting angiogenesis and vascular homeostasis. However, the underlying molecular mechanisms that explain how YAP/TAZ control the vasculature remain unclear. This study reveals that the focal adhesion protein deleted-in-liver-cancer 1 (DLC1) is a direct transcriptional target of the activated YAP/TAZ-TEAD complex. We find that substrate stiffening and VEGF stimuli promote expression of DLC1 in endothelial cells. In turn, DLC1 expression levels are YAP and TAZ dependent, and constitutive activation of YAP is sufficient to drive DLC1 expression. DLC1 is needed to limit F-actin fiber formation, integrin-based focal adhesion lifetime and integrin-mediated traction forces. Depletion of endothelial DLC1 strongly perturbs cell polarization in directed collective migration and inhibits the formation of angiogenic sprouts. Importantly, ectopic expression of DLC1 is sufficient to restore migration and angiogenic sprouting in YAP-depleted cells. Together, these findings point towards a crucial and prominent role for DLC1 in YAP/TAZ-driven endothelial adhesion remodeling and collective migration during angiogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Miesje van der Stoel
- Amsterdam UMC, University of Amsterdam, location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Lilian Schimmel
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Kalim Nawaz
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Anne-Marieke van Stalborch
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Annett de Haan
- Amsterdam UMC, University of Amsterdam, location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Alexandra Klaus-Bergmann
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), 10785 Berlin, Germany
| | - Erik T Valent
- Amsterdam UMC, Free University, location VUMC, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
| | - Duco S Koenis
- Amsterdam UMC, University of Amsterdam, location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Geerten P van Nieuw Amerongen
- Amsterdam UMC, Free University, location VUMC, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
| | - Carlie J de Vries
- Amsterdam UMC, University of Amsterdam, location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Vivian de Waard
- Amsterdam UMC, University of Amsterdam, location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Martijn Gloerich
- University Medical Center Utrecht, Center for Molecular Medicine, Dept. Molecular Cancer Research, 3584 CX Utrecht, The Netherlands
| | - Jaap D van Buul
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
26
|
Beldman T, Malinova TS, Desclos E, Grootemaat AE, Misiak ALS, van der Velden S, van Roomen CPAA, Beckers L, van Veen HA, Krawczyk PM, Hoebe RA, Sluimer JC, Neele AE, de Winther MPJ, van der Wel NN, Lutgens E, Mulder WJM, Huveneers S, Kluza E. Nanoparticle-Aided Characterization of Arterial Endothelial Architecture during Atherosclerosis Progression and Metabolic Therapy. ACS NANO 2019; 13:13759-13774. [PMID: 31268670 PMCID: PMC6933811 DOI: 10.1021/acsnano.8b08875] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/03/2019] [Indexed: 05/08/2023]
Abstract
Atherosclerosis is associated with a compromised endothelial barrier, facilitating the accumulation of immune cells and macromolecules in atherosclerotic lesions. In this study, we investigate endothelial barrier integrity and the enhanced permeability and retention (EPR) effect during atherosclerosis progression and therapy in Apoe-/- mice using hyaluronan nanoparticles (HA-NPs). Utilizing ultrastructural and en face plaque imaging, we uncover a significantly decreased junction continuity in the atherosclerotic plaque-covering endothelium compared to the normal vessel wall, indicative of disrupted endothelial barrier. Intriguingly, the plaque advancement had a positive effect on junction stabilization, which correlated with a 3-fold lower accumulation of in vivo administrated HA-NPs in advanced plaques compared to early counterparts. Furthermore, by using super-resolution and correlative light and electron microscopy, we trace nanoparticles in the plaque microenvironment. We find nanoparticle-enriched endothelial junctions, containing 75% of detected HA-NPs, and a high HA-NP accumulation in the endothelium-underlying extracellular matrix, which suggest an endothelial junctional traffic of HA-NPs to the plague. Finally, we probe the EPR effect by HA-NPs in the context of metabolic therapy with a glycolysis inhibitor, 3PO, proposed as a vascular normalizing strategy. The observed trend of attenuated HA-NP uptake in aortas of 3PO-treated mice coincides with the endothelial silencing activity of 3PO, demonstrated in vitro. Interestingly, the therapy also reduced the plaque inflammatory burden, while activating macrophage metabolism. Our findings shed light on natural limitations of nanoparticle accumulation in atherosclerotic plaques and provide mechanistic insight into nanoparticle trafficking across the atherosclerotic endothelium. Furthermore, our data contribute to the rising field of endothelial barrier modulation in atherosclerosis.
Collapse
Affiliation(s)
- Thijs
J. Beldman
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Tsveta S. Malinova
- Vascular
Microenvironment and Integrity, Department of Medical Biochemistry,
Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, Amsterdam 1105 AZ, The
Netherlands
| | - Emilie Desclos
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Anita E. Grootemaat
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Aresh L. S. Misiak
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Saskia van der Velden
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Cindy P. A. A. van Roomen
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Linda Beckers
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Henk A. van Veen
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Przemyslaw M. Krawczyk
- Department
of Medical Biology, Amsterdam University
Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Ron A. Hoebe
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Judith C. Sluimer
- Department
of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht 6229 ER, The Netherlands
| | - Annette E. Neele
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Menno P. J. de Winther
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Institute
for Cardiovascular Prevention, Ludwig Maximilians
University, Munich 80336, Germany
| | - Nicole N. van der Wel
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Esther Lutgens
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Institute
for Cardiovascular Prevention, Ludwig Maximilians
University, Munich 80336, Germany
| | - Willem J. M. Mulder
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Translational
and Molecular Imaging Institute, Icahn School
of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Stephan Huveneers
- Vascular
Microenvironment and Integrity, Department of Medical Biochemistry,
Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, Amsterdam 1105 AZ, The
Netherlands
| | - Ewelina Kluza
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
27
|
Lock JG, Baschieri F, Jones MC, Humphries JD, Montagnac G, Strömblad S, Humphries MJ. Clathrin-containing adhesion complexes. J Cell Biol 2019; 218:2086-2095. [PMID: 31208994 PMCID: PMC6605790 DOI: 10.1083/jcb.201811160] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022] Open
Abstract
An understanding of the mechanisms whereby cell adhesion complexes (ACs) relay signals bidirectionally across the plasma membrane is necessary to interpret the role of adhesion in regulating migration, differentiation, and growth. A range of AC types has been defined, but to date all have similar compositions and are dependent on a connection to the actin cytoskeleton. Recently, a new class of AC has been reported that normally lacks association with both the cytoskeleton and integrin-associated adhesome components, but is rich in components of the clathrin-mediated endocytosis machinery. The characterization of this new type of adhesion structure, which is emphasized by mitotic cells and cells in long-term culture, identifies a hitherto underappreciated link between the adhesion machinery and clathrin structures at the plasma membrane. While this discovery has implications for how ACs are assembled and disassembled, it raises many other issues. Consequently, to increase awareness within the field, and stimulate research, we explore a number of the most significant questions below.
Collapse
Affiliation(s)
- John G Lock
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Francesco Baschieri
- Institut National de la Santé et de la Recherche Médicale U1170, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Matthew C Jones
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonathan D Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Guillaume Montagnac
- Institut National de la Santé et de la Recherche Médicale U1170, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
28
|
Diaz C, Neubauer S, Rechenmacher F, Kessler H, Missirlis D. Recruitment of integrin ανβ3 to integrin α5β1-induced clusters enables focal adhesion maturation and cell spreading. J Cell Sci 2019; 133:jcs.232702. [DOI: 10.1242/jcs.232702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
The major fibronectin (FN) binding integrins α5β1 and αvβ3 exhibit cooperativity during cell adhesion, migration and mechanosensing, through mechanisms that are not yet fully resolved. Exploiting mechanically-tunable, nano-patterned substrates, and peptidomimetic ligands designed to selectively bind corresponding integrins, we report that focal adhesions (FAs) of endothelial cells assembled on integrin α5β1-selective substrates, rapidly recruit αvβ3 integrins, but not vice versa. Blocking of integrin αvβ3 hindered FA maturation and cell spreading on α5β1-selective substrates, indicating a mechanism dependent on extracellular ligand binding and highlighting the requirement of αvβ3 engagement for efficient adhesion. Recruitment of αvβ3 integrins additionally occurred on hydrogel substrates of varying mechanical properties, above a threshold stiffness supporting FA formation. Mechanistic studies revealed the need for soluble factors present in serum to allow recruitment, and excluded exogenous, or endogenous, FN as the responsible ligand for integrin αvβ3 accumulation to adhesion clusters. Our findings highlight a novel mechanism of integrin co-operation and the critical role for αvβ3 integrins in promoting cell adhesion on α5β1-selective substrates.
Collapse
Affiliation(s)
- Carolina Diaz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research; postal address: Jahnstr. 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg University; postal address: INF 253, D-69120 Heidelberg, Germany
| | - Stefanie Neubauer
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München; postal address: Lichtenbergstr. 4, D-85747, Garching, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München; postal address: Lichtenbergstr. 4, D-85747, Garching, Germany
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München; postal address: Lichtenbergstr. 4, D-85747, Garching, Germany
| | - Dimitris Missirlis
- Department of Cellular Biophysics, Max Planck Institute for Medical Research; postal address: Jahnstr. 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg University; postal address: INF 253, D-69120 Heidelberg, Germany
| |
Collapse
|
29
|
Abstract
PIEZOs are mechanically activated cation channels. Recently, loss-of-function mutations of human PIEZO1 were found among patients with familial lymphedema, suggesting a requirement of PIEZO1 in the lymphatic system. In this paper, utilizing mouse models lacking PIEZO1 in endothelial cells, we show that this ion channel is required for the formation of lymphatic valves, a key structure for proper circulation of lymph in the body. The requirement of PIEZO1 in valve formation provides mechanistic insight on how PIEZO1 variants cause lymphatic dysfunction in patients. This study also extends the relevance of PIEZOs beyond acute signaling molecules (e.g., touch sensation) and highlights the importance of these ion channels in controlling morphological/structural specification during development. PIEZO1 is a cation channel that is activated by mechanical forces such as fluid shear stress or membrane stretch. PIEZO1 loss-of-function mutations in patients are associated with congenital lymphedema with pleural effusion. However, the mechanistic link between PIEZO1 function and the development or function of the lymphatic system is currently unknown. Here, we analyzed two mouse lines lacking PIEZO1 in endothelial cells (via Tie2Cre or Lyve1Cre) and found that they exhibited pleural effusion and died postnatally. Strikingly, the number of lymphatic valves was dramatically reduced in these mice. Lymphatic valves are essential for ensuring proper circulation of lymph. Mechanical forces have been implicated in the development of lymphatic vasculature and valve formation, but the identity of mechanosensors involved is unknown. Expression of FOXC2 and NFATc1, transcription factors known to be required for lymphatic valve development, appeared normal in Tie2Cre;Piezo1cKO mice. However, the process of protrusion in the valve leaflets, which is associated with collective cell migration, actin polymerization, and remodeling of cell–cell junctions, was impaired in Tie2Cre;Piezo1cKO mice. Consistent with these genetic findings, activation of PIEZO1 by Yoda1 in cultured lymphatic endothelial cells induced active remodeling of actomyosin and VE-cadherin+ cell–cell adhesion sites. Our analysis provides evidence that mechanically activated ion channel PIEZO1 is a key regulator of lymphatic valve formation.
Collapse
|
30
|
Fan J, Ray P, Lu Y, Kaur G, Schwarz JJ, Wan LQ. Cell chirality regulates intercellular junctions and endothelial permeability. SCIENCE ADVANCES 2018; 4:eaat2111. [PMID: 30397640 PMCID: PMC6200360 DOI: 10.1126/sciadv.aat2111] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Cell chirality is a newly discovered intrinsic property of the cell, reflecting the bias of the cell to polarize in the left-right axis. Despite increasing evidence on its substantial role in the asymmetric development of embryos, little is known about implications of cell chirality in physiology and disease. We demonstrate that cell chirality accounts for the nonmonotonic, dose-response relationship between endothelial permeability and protein kinase C (PKC) activation. The permeability of the endothelial cell layer is tightly controlled in our body, and dysregulation often leads to tissue inflammation and diseases. Our results show that low-level PKC activation is sufficient to reverse cell chirality through phosphatidylinositol 3-kinase/AKT signaling and alters junctional protein organization between cells with opposite chirality, leading to an unexpected substantial change in endothelial permeability. Our findings suggest that cell chirality regulates intercellular junctions in important ways, providing new opportunities for drug delivery across tightly connected semipermeable cellular sheets.
Collapse
Affiliation(s)
- Jie Fan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Poulomi Ray
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yaowei Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Gurleen Kaur
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - John J. Schwarz
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Leo Q. Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
31
|
Karki P, Birukova AA. Substrate stiffness-dependent exacerbation of endothelial permeability and inflammation: mechanisms and potential implications in ALI and PH (2017 Grover Conference Series). Pulm Circ 2018; 8:2045894018773044. [PMID: 29714090 PMCID: PMC5987909 DOI: 10.1177/2045894018773044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The maintenance of endothelial barrier integrity is absolutely essential to prevent the vascular leak associated with pneumonia, pulmonary edema resulting from inhalation of toxins, acute elevation to high altitude, traumatic and septic lung injury, acute lung injury (ALI), and its life-threatening complication, acute respiratory distress syndrome (ARDS). In addition to the long-known edemagenic and inflammatory agonists, emerging evidences suggest that factors of endothelial cell (EC) mechanical microenvironment such as blood flow, mechanical strain of the vessel, or extracellular matrix stiffness also play an essential role in the control of endothelial permeability and inflammation. Recent studies from our group and others have demonstrated that substrate stiffening causes endothelial barrier disruption and renders EC more susceptible to agonist-induced cytoskeletal rearrangement and inflammation. Further in vivo studies have provided direct evidence that proinflammatory stimuli increase lung microvascular stiffness which in turn exacerbates endothelial permeability and inflammation and perpetuates a vicious circle of lung inflammation. Accumulating evidence suggests a key role for RhoA GTPases signaling in stiffness-dependent mechanotransduction mechanisms defining EC permeability and inflammatory responses. Vascular stiffening is also known to be a key contributor to other cardiovascular diseases such as arterial pulmonary hypertension (PH), although the precise role of stiffness in the development and progression of PH remains to be elucidated. This review summarizes the current understanding of stiffness-dependent regulation of pulmonary EC permeability and inflammation, and discusses potential implication of pulmonary vascular stiffness alterations at macro- and microscale in development and modulation of ALI and PH.
Collapse
Affiliation(s)
- Pratap Karki
- 12264 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Anna A Birukova
- 12264 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Izawa Y, Gu YH, Osada T, Kanazawa M, Hawkins BT, Koziol JA, Papayannopoulou T, Spatz M, Del Zoppo GJ. β1-integrin-matrix interactions modulate cerebral microvessel endothelial cell tight junction expression and permeability. J Cereb Blood Flow Metab 2018; 38:641-658. [PMID: 28787238 PMCID: PMC5888854 DOI: 10.1177/0271678x17722108] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Acutely following focal cerebral ischemia disruption of the microvessel blood-brain barrier allows transit of plasma proteins into the neuropil as edema formation that coincides with loss of microvessel endothelial β1-integrins. We extend previous findings to show that interference with endothelial β1-integrin-matrix adhesion by the monoclonal IgM Ha2/5 increases the permeability of primary cerebral microvascular endothelial cell monolayers through reorganization of claudin-5, occludin, and zonula occludens-1 (ZO-1) from inter-endothelial borders. Interference with β1-integrin-matrix adhesion initiates F-actin conformational changes that coincide with claudin-5 redistribution. β1-integrin-matrix interference simultaneously increases phosphorylation of myosin light chain (MLC), while inhibition of MLC kinase (MLCK) and Rho kinase (ROCK) abolishes the Ha2/5-dependent increased endothelial permeability by 6 h after β1-integrin-matrix interference. These observations are supported by concordant observations in the cortex of a high-quality murine conditional β1-integrin deletion construct. Together they support the hypothesis that detachment of β1-integrins from abluminal matrix ligands increases vascular endothelial permeability through reorganization of tight junction (TJ) proteins via altered F-actin conformation, and indicate that the β1-integrin-MLC signaling pathway is engaged when β1-integrin detachment occurs. These findings provide a novel approach to the research and treatment of cerebral disorders where the breakdown of the blood-brain barrier accounts for their progression and complication.
Collapse
Affiliation(s)
- Yoshikane Izawa
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,2 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yu-Huan Gu
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Takashi Osada
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,2 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Masato Kanazawa
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,3 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Brian T Hawkins
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,4 Discovery, Science, & Technology, RTI International, Research Triangle Park, NC, USA
| | - James A Koziol
- 5 Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Thalia Papayannopoulou
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Maria Spatz
- 6 Stroke Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Gregory J Del Zoppo
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,7 Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
33
|
Belova LA, Mashin VV, Kolotik-Kameneva OY, Belova NV, Scuderi A, Antignani PL. [The influence of Cytoflavin therapy on the cerebral hemodynamics in patients with various stages of hypertensive disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:28-35. [PMID: 28805757 DOI: 10.17116/jnevro20171177128-35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AIM To study an influence of cytoflavin therapy on the cerebral hemodynamics in patients with various stages of hypertensive disease (HD). MATERIAL AND METHODS One hundred and forty patients with HD, I-III stages, were randomized into 2 groups: patients of group 1 received complex treatment (antihypertensive therapy and cytoflavin), patients of group 2 were treated with antihypertensive therapy. The control group consisted of 30 healthy people. The changes in cerebral hemodynamics using the algorithm of the complex ultrasound study of cerebral vascular system were assessed. RESULTS Disturbances of hemodynamics at all structural/functional levels of cerebral vascular system were found in all HD stages. There were a decrease in the blood flow through the common carotid, inner carotid, spinal and middle cerebral arteries, reactivity of veins of Rosenthal, blood flow through veins of Rosenthal and inner jugular veins and an increase of blood flow through spinal veins. The hemodynamic study showed that in group 1 there was the increase of blood flow through common carotid, inner carotid, middle cerebral arteries in stage I and through spinal arteries in stage I-II of HD; improvement of the reactivity of veins of Rosenthal, restoration of blood flow parameters through the veins of Rosenthal and inner jugular veins to control values, the decrease in blood flow velocity through the spinal veins in all HD stages. CONCLUSION HD is accompanied by the damage of all structural/functional levels of cerebral vascular system. The use of cytoflavin in the complex therapy of HD exerts a positive influence on the cerebral hemodynamics reducing the severity of arterial insufficiency in the initial stages of disease, improving microcirculation and venous hemodynamics in all HD stages.
Collapse
Affiliation(s)
- L A Belova
- The Ulyanovsk State University, Department оf Neurology, Neurosurgery, Physiotherapy and Physical Therapy, Ulyanovsk, Russia
| | - V V Mashin
- The Ulyanovsk State University, Department оf Neurology, Neurosurgery, Physiotherapy and Physical Therapy, Ulyanovsk, Russia
| | - O Yu Kolotik-Kameneva
- MGHC 'Central Clinical Medical Sanitary Part', Neurologic Office for Patients with a Stroke, Ulyanovsk, Russia
| | - N V Belova
- FSSI 'Scientific center of neurology', Moscow, Russia
| | - A Scuderi
- University Hospital Santa Lucinda, Sorocaba, Brasil
| | - P L Antignani
- Vascular Center of 'Nuova Villa Claudia', Rome, Italy
| |
Collapse
|
34
|
Urner S, Kelly-Goss M, Peirce SM, Lammert E. Mechanotransduction in Blood and Lymphatic Vascular Development and Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:155-208. [PMID: 29310798 DOI: 10.1016/bs.apha.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood and lymphatic vasculatures are hierarchical networks of vessels, which constantly transport fluids and, therefore, are exposed to a variety of mechanical forces. Considering the role of mechanotransduction is key for fully understanding how these vascular systems develop, function, and how vascular pathologies evolve. During embryonic development, for example, initiation of blood flow is essential for early vascular remodeling, and increased interstitial fluid pressure as well as initiation of lymph flow is needed for proper development and maturation of the lymphatic vasculature. In this review, we introduce specific mechanical forces that affect both the blood and lymphatic vasculatures, including longitudinal and circumferential stretch, as well as shear stress. In addition, we provide an overview of the role of mechanotransduction during atherosclerosis and secondary lymphedema, which both trigger tissue fibrosis.
Collapse
Affiliation(s)
- Sofia Urner
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Molly Kelly-Goss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
35
|
Qiu Y, Tong S, Zhang L, Sakurai Y, Myers DR, Hong L, Lam WA, Bao G. Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions. Nat Commun 2017; 8:15594. [PMID: 28593939 PMCID: PMC5472756 DOI: 10.1038/ncomms15594] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
The vascular endothelium presents a major transport barrier to drug delivery by only allowing selective extravasation of solutes and small molecules. Therefore, enhancing drug transport across the endothelial barrier has to rely on leaky vessels arising from disease states such as pathological angiogenesis and inflammatory response. Here we show that the permeability of vascular endothelium can be increased using an external magnetic field to temporarily disrupt endothelial adherens junctions through internalized iron oxide nanoparticles, activating the paracellular transport pathway and facilitating the local extravasation of circulating substances. This approach provides a physically controlled drug delivery method harnessing the biology of endothelial adherens junction and opens a new avenue for drug delivery in a broad range of biomedical research and therapeutic applications. The transportation of large molecules through the vascular endothelium presents a major challenge for in vivo drug delivery. Here, the authors demonstrate the potential of using external magnetic fields and magnetic nanoparticles to enhance the local extravasation of circulating large molecules.
Collapse
Affiliation(s)
- Yongzhi Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30332, USA.,Winship Cancer Institute of Emory University, Atlanta, Georgia 30332, USA
| | - Sheng Tong
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | - Linlin Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | - Yumiko Sakurai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30332, USA.,Winship Cancer Institute of Emory University, Atlanta, Georgia 30332, USA
| | - David R Myers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30332, USA.,Winship Cancer Institute of Emory University, Atlanta, Georgia 30332, USA
| | - Lin Hong
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | - Wilbur A Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30332, USA.,Winship Cancer Institute of Emory University, Atlanta, Georgia 30332, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
36
|
Alon R, van Buul JD. Leukocyte Breaching of Endothelial Barriers: The Actin Link. Trends Immunol 2017; 38:606-615. [PMID: 28559148 DOI: 10.1016/j.it.2017.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/16/2022]
Abstract
Leukocyte transendothelial migration (TEM) takes place across micron-wide gaps in specific post-capillary venules generated by the transmigrating leukocyte. Because endothelial cells contain a dense cytoskeletal network, transmigrating leukocytes must overcome these mechanical barriers as they squeeze their nuclei through endothelial gaps and pores. Recent findings suggest that endothelial cells are not a passive barrier, and upon engagement by transmigrating leukocytes trigger extensive dynamic modifications of their actin cytoskeleton. Unexpectedly, endothelial contractility functions as a restrictor of endothelial gap enlargement rather than as a facilitator of gap formation as was previously suggested. In this review we discuss current knowledge regarding how accurately timed endothelial actin-remodeling events are triggered by squeezing leukocytes and coordinate leukocyte TEM while preserving blood vessel integrity.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Jaap D van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Di Russo J, Luik AL, Yousif L, Budny S, Oberleithner H, Hofschröer V, Klingauf J, van Bavel E, Bakker EN, Hellstrand P, Bhattachariya A, Albinsson S, Pincet F, Hallmann R, Sorokin LM. Endothelial basement membrane laminin 511 is essential for shear stress response. EMBO J 2016; 36:183-201. [PMID: 27940654 PMCID: PMC5239996 DOI: 10.15252/embj.201694756] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/09/2022] Open
Abstract
Shear detection and mechanotransduction by arterial endothelium requires junctional complexes containing PECAM-1 and VE-cadherin, as well as firm anchorage to the underlying basement membrane. While considerable information is available for junctional complexes in these processes, gained largely from in vitro studies, little is known about the contribution of the endothelial basement membrane. Using resistance artery explants, we show that the integral endothelial basement membrane component, laminin 511 (laminin α5), is central to shear detection and mechanotransduction and its elimination at this site results in ablation of dilation in response to increased shear stress. Loss of endothelial laminin 511 correlates with reduced cortical stiffness of arterial endothelium in vivo, smaller integrin β1-positive/vinculin-positive focal adhesions, and reduced junctional association of actin-myosin II In vitro assays reveal that β1 integrin-mediated interaction with laminin 511 results in high strengths of adhesion, which promotes p120 catenin association with VE-cadherin, stabilizing it at cell junctions and increasing cell-cell adhesion strength. This highlights the importance of endothelial laminin 511 in shear response in the physiologically relevant context of resistance arteries.
Collapse
Affiliation(s)
- Jacopo Di Russo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Anna-Liisa Luik
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lema Yousif
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Sigmund Budny
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Hans Oberleithner
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Verena Hofschröer
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Juergen Klingauf
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Medical Physics, University of Muenster, Muenster, Germany
| | - Ed van Bavel
- Biomedical Engineering and Physics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik Ntp Bakker
- Biomedical Engineering and Physics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | - Frederic Pincet
- Laboratoire de Physique Statistique, École Normale Superieure - PSL Research University, Paris, France.,CNRS UMR8550, Sorbonne Universités - UPMC Univ Paris 06, Université Paris, Paris, France
| | - Rupert Hallmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lydia M Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany .,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| |
Collapse
|
38
|
Hayer A, Shao L, Chung M, Joubert LM, Yang HW, Tsai FC, Bisaria A, Betzig E, Meyer T. Engulfed cadherin fingers are polarized junctional structures between collectively migrating endothelial cells. Nat Cell Biol 2016; 18:1311-1323. [PMID: 27842057 DOI: 10.1038/ncb3438] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 10/11/2016] [Indexed: 12/11/2022]
Abstract
The development and maintenance of tissues requires collective cell movement, during which neighbouring cells coordinate the polarity of their migration machineries. Here, we ask how polarity signals are transmitted from one cell to another across symmetrical cadherin junctions, during collective migration. We demonstrate that collectively migrating endothelial cells have polarized VE-cadherin-rich membrane protrusions, 'cadherin fingers', which leading cells extend from their rear and follower cells engulf at their front, thereby generating opposite membrane curvatures and asymmetric recruitment of curvature-sensing proteins. In follower cells, engulfment of cadherin fingers occurs along with the formation of a lamellipodia-like zone with low actomyosin contractility, and requires VE-cadherin/catenin complexes and Arp2/3-driven actin polymerization. Lateral accumulation of cadherin fingers in follower cells precedes turning, and increased actomyosin contractility can initiate cadherin finger extension as well as engulfment by a neighbouring cell, to promote follower behaviour. We propose that cadherin fingers serve as guidance cues that direct collective cell migration.
Collapse
Affiliation(s)
- Arnold Hayer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lin Shao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lydia-Marie Joubert
- Cell Sciences Imaging Facility, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Hee Won Yang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Feng-Chiao Tsai
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Anjali Bisaria
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
39
|
Cell-cell junctional mechanotransduction in endothelial remodeling. Cell Mol Life Sci 2016; 74:279-292. [PMID: 27506620 PMCID: PMC5219012 DOI: 10.1007/s00018-016-2325-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/15/2016] [Accepted: 08/03/2016] [Indexed: 02/06/2023]
Abstract
The vasculature is one of the most dynamic tissues that encounter numerous mechanical cues derived from pulsatile blood flow, blood pressure, activity of smooth muscle cells in the vessel wall, and transmigration of immune cells. The inner layer of blood and lymphatic vessels is covered by the endothelium, a monolayer of cells which separates blood from tissue, an important function that it fulfills even under the dynamic circumstances of the vascular microenvironment. In addition, remodeling of the endothelial barrier during angiogenesis and trafficking of immune cells is achieved by specific modulation of cell-cell adhesion structures between the endothelial cells. In recent years, there have been many new discoveries in the field of cellular mechanotransduction which controls the formation and destabilization of the vascular barrier. Force-induced adaptation at endothelial cell-cell adhesion structures is a crucial node in these processes that challenge the vascular barrier. One of the key examples of a force-induced molecular event is the recruitment of vinculin to the VE-cadherin complex upon pulling forces at cell-cell junctions. Here, we highlight recent advances in the current understanding of mechanotransduction responses at, and derived from, endothelial cell-cell junctions. We further discuss their importance for vascular barrier function and remodeling in development, inflammation, and vascular disease.
Collapse
|
40
|
Dorland YL, Malinova TS, van Stalborch AMD, Grieve AG, van Geemen D, Jansen NS, de Kreuk BJ, Nawaz K, Kole J, Geerts D, Musters RJP, de Rooij J, Hordijk PL, Huveneers S. The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions. Nat Commun 2016; 7:12210. [PMID: 27417273 PMCID: PMC4947187 DOI: 10.1038/ncomms12210] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 06/10/2016] [Indexed: 12/14/2022] Open
Abstract
Vascular homoeostasis, development and disease critically depend on the regulation of endothelial cell-cell junctions. Here we uncover a new role for the F-BAR protein pacsin2 in the control of VE-cadherin-based endothelial adhesion. Pacsin2 concentrates at focal adherens junctions (FAJs) that are experiencing unbalanced actomyosin-based pulling. FAJs move in response to differences in local cytoskeletal geometry and pacsin2 is recruited consistently to the trailing end of fast-moving FAJs via a mechanism that requires an intact F-BAR domain. Photoconversion, photobleaching, immunofluorescence and super-resolution microscopy reveal polarized dynamics, and organization of junctional proteins between the front of FAJs and their trailing ends. Interestingly, pacsin2 recruitment inhibits internalization of the VE-cadherin complex from FAJ trailing ends and is important for endothelial monolayer integrity. Together, these findings reveal a novel junction protective mechanism during polarized trafficking of VE-cadherin, which supports barrier maintenance within dynamic endothelial tissue.
Collapse
Affiliation(s)
- Yvonne L Dorland
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Tsveta S Malinova
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Anne-Marieke D van Stalborch
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Adam G Grieve
- Hubrecht Institute and University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Daphne van Geemen
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Nicolette S Jansen
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Bart-Jan de Kreuk
- Department of Medicine, University of California, San Diego, California 92093, USA
| | - Kalim Nawaz
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Jeroen Kole
- Department of Physiology, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Dirk Geerts
- Department of Pediatric Oncology/Hematology, Erasmus University Medical Center, Rotterdam 3015 GE, The Netherlands
| | - René J P Musters
- Department of Physiology, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Johan de Rooij
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584 CG, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Stephan Huveneers
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066 CX, The Netherlands.,Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
41
|
Affiliation(s)
- Chantal M. Boulanger
- From the INSERM, U970, Paris Cardiovascular Research Center–PARCC, and Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France
| |
Collapse
|
42
|
Hordijk PL. Recent insights into endothelial control of leukocyte extravasation. Cell Mol Life Sci 2016; 73:1591-608. [PMID: 26794844 PMCID: PMC11108429 DOI: 10.1007/s00018-016-2136-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/30/2022]
Abstract
In the process of leukocyte migration from the circulation across the vascular wall, the crosstalk with endothelial cells that line the blood vessels is essential. It is now firmly established that in endothelial cells important signaling events are initiated upon leukocyte adhesion that impinge on the regulation of cell-cell contact and control the efficiency of transendothelial migration. In addition, several external factors such as shear force and vascular stiffness were recently identified as important regulators of endothelial signaling and, consequently, leukocyte transmigration. Here, I review recent insights into endothelial signaling events that are linked to leukocyte migration across the vessel wall. In this field, protein phosphorylation and Rho-mediated cytoskeletal dynamics are still widely studied using increasingly sophisticated mouse models. In addition, activation of tyrosine phosphatases, changes in endothelial cell stiffness as well as different vascular beds have all been established as important factors in endothelial signaling and leukocyte transmigration. Finally, I address less-well-studied but interesting components in the endothelium that also control transendothelial migration, such as the ephrins and their Eph receptors, that provide novel insights in the complexity associated with this process.
Collapse
Affiliation(s)
- Peter L Hordijk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Swammerdam Institute for Life Sciences, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands.
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Beckers CML, Knezevic N, Valent ET, Tauseef M, Krishnan R, Rajendran K, Hardin CC, Aman J, van Bezu J, Sweetnam P, van Hinsbergh VWM, Mehta D, van Nieuw Amerongen GP. ROCK2 primes the endothelium for vascular hyperpermeability responses by raising baseline junctional tension. Vascul Pharmacol 2015; 70:45-54. [PMID: 25869521 PMCID: PMC4606924 DOI: 10.1016/j.vph.2015.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 03/04/2015] [Accepted: 03/08/2015] [Indexed: 12/25/2022]
Abstract
Rho kinase mediates the effects of inflammatory permeability factors by increasing actomyosin-generated traction forces on endothelial adherens junctions, resulting in disassembly of intercellular junctions and increased vascular leakage. In vitro, this is accompanied by the Rho kinase-driven formation of prominent radial F-actin fibers, but the in vivo relevance of those F-actin fibers has been debated, suggesting other Rho kinase-mediated events to occur in vascular leak. Here, we delineated the contributions of the highly homologous isoforms of Rho kinase (ROCK1 and ROCK2) to vascular hyperpermeability responses. We show that ROCK2, rather than ROCK1 is the critical Rho kinase for regulation of thrombin receptor-mediated vascular permeability. Novel traction force mapping in endothelial monolayers, however, shows that ROCK2 is not required for the thrombin-induced force enhancements. Rather, ROCK2 is pivotal to baseline junctional tension as a novel mechanism by which Rho kinase primes the endothelium for hyperpermeability responses, independent from subsequent ROCK1-mediated contractile stress-fiber formation during the late phase of the permeability response.
Collapse
Affiliation(s)
- Cora M L Beckers
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Nebojsa Knezevic
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL 60612, USA
| | - Erik T Valent
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Mohammad Tauseef
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL 60612, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kavitha Rajendran
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - C Corey Hardin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jurjan Aman
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Jan van Bezu
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Paul Sweetnam
- Surface Logix-737, Concord Ave., Cambridge, MA 02138, USA
| | - Victor W M van Hinsbergh
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Dolly Mehta
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL 60612, USA
| | - Geerten P van Nieuw Amerongen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands; Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
44
|
Schaefer A, Hordijk PL. Cell-stiffness-induced mechanosignaling - a key driver of leukocyte transendothelial migration. J Cell Sci 2015; 128:2221-30. [PMID: 26092932 DOI: 10.1242/jcs.163055] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The breaching of cellular and structural barriers by migrating cells is a driving factor in development, inflammation and tumor cell metastasis. One of the most extensively studied examples is the extravasation of activated leukocytes across the vascular endothelium, the inner lining of blood vessels. Each step of this leukocyte transendothelial migration (TEM) process is regulated by distinct endothelial adhesion receptors such as the intercellular adhesion molecule 1 (ICAM1). Adherent leukocytes exert force on these receptors, which sense mechanical cues and transform them into localized mechanosignaling in endothelial cells. In turn, the function of the mechanoreceptors is controlled by the stiffness of the endothelial cells and of the underlying substrate representing a positive-feedback loop. In this Commentary, we focus on the mechanotransduction in leukocytes and endothelial cells, which is induced in response to variations in substrate stiffness. Recent studies have described the first key proteins involved in these mechanosensitive events, allowing us to identify common regulatory mechanisms in both cell types. Finally, we discuss how endothelial cell stiffness controls the individual steps in the leukocyte TEM process. We identify endothelial cell stiffness as an important component, in addition to locally presented chemokines and adhesion receptors, which guides leukocytes to sites that permit TEM.
Collapse
Affiliation(s)
- Antje Schaefer
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Peter L Hordijk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
45
|
Fraccaroli A, Pitter B, Taha AA, Seebach J, Huveneers S, Kirsch J, Casaroli-Marano RP, Zahler S, Pohl U, Gerhardt H, Schnittler HJ, Montanez E. Endothelial alpha-parvin controls integrity of developing vasculature and is required for maintenance of cell-cell junctions. Circ Res 2015; 117:29-40. [PMID: 25925587 PMCID: PMC4470528 DOI: 10.1161/circresaha.117.305818] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/29/2015] [Indexed: 02/01/2023]
Abstract
Supplemental Digital Content is available in the text. Rationale: Angiogenesis and vessel integrity depend on the adhesion of endothelial cells (ECs) to the extracellular matrix and to adjacent ECs. The focal adhesion protein α-parvin (α-pv) is essential for vascular development. However, the role of α-pv in ECs in vivo is not known. Objective: To determine the function of α-pv in ECs during vascular development in vivo and the underlying mechanisms. Methods and Results: We deleted the α-pv gene specifically in ECs of mice to study its role in angiogenesis and vascular development. Here, we show that endothelial-specific deletion of α-pv in mice results in late embryonic lethality associated with hemorrhages and reduced vascular density. Postnatal-induced EC-specific deletion of α-pv leads to retinal hypovascularization because of reduced vessel sprouting and excessive vessel regression. In the absence of α-pv, blood vessels display impaired VE-cadherin junction morphology. In vitro, α-pv–deficient ECs show reduced stable adherens junctions, decreased monolayer formation, and impaired motility, associated with reduced formation of integrin-mediated cell–extracellular matrix adhesion structures and an altered actin cytoskeleton. Conclusions: Endothelial α-pv is essential for vessel sprouting and for vessel stability.
Collapse
Affiliation(s)
- Alessia Fraccaroli
- From the Walter-Brendel-Centre of Experimental Medicine (A.F., B.P., J.K., U.P., E.M.) and Department of Pharmacy (S.Z.), Ludwig-Maximilians University Munich, Munich, Germany; Institute of Anatomy and Vascular Biology, WWU-Münster, Münster, Germany (A.A.T., J.S., H.-J.S.); Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands (S.H.); Department of Surgery, School of Medicine and Hospital Clinic de Barcelona (IDIBAPS), University of Barcelona, Barcelona, Spain (R.P.C.-M.); and Vascular Biology Laboratory, London Research Institute-Cancer Research United Kingdom, London, United Kingdom (H.G.)
| | - Bettina Pitter
- From the Walter-Brendel-Centre of Experimental Medicine (A.F., B.P., J.K., U.P., E.M.) and Department of Pharmacy (S.Z.), Ludwig-Maximilians University Munich, Munich, Germany; Institute of Anatomy and Vascular Biology, WWU-Münster, Münster, Germany (A.A.T., J.S., H.-J.S.); Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands (S.H.); Department of Surgery, School of Medicine and Hospital Clinic de Barcelona (IDIBAPS), University of Barcelona, Barcelona, Spain (R.P.C.-M.); and Vascular Biology Laboratory, London Research Institute-Cancer Research United Kingdom, London, United Kingdom (H.G.)
| | - Abdallah Abu Taha
- From the Walter-Brendel-Centre of Experimental Medicine (A.F., B.P., J.K., U.P., E.M.) and Department of Pharmacy (S.Z.), Ludwig-Maximilians University Munich, Munich, Germany; Institute of Anatomy and Vascular Biology, WWU-Münster, Münster, Germany (A.A.T., J.S., H.-J.S.); Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands (S.H.); Department of Surgery, School of Medicine and Hospital Clinic de Barcelona (IDIBAPS), University of Barcelona, Barcelona, Spain (R.P.C.-M.); and Vascular Biology Laboratory, London Research Institute-Cancer Research United Kingdom, London, United Kingdom (H.G.)
| | - Jochen Seebach
- From the Walter-Brendel-Centre of Experimental Medicine (A.F., B.P., J.K., U.P., E.M.) and Department of Pharmacy (S.Z.), Ludwig-Maximilians University Munich, Munich, Germany; Institute of Anatomy and Vascular Biology, WWU-Münster, Münster, Germany (A.A.T., J.S., H.-J.S.); Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands (S.H.); Department of Surgery, School of Medicine and Hospital Clinic de Barcelona (IDIBAPS), University of Barcelona, Barcelona, Spain (R.P.C.-M.); and Vascular Biology Laboratory, London Research Institute-Cancer Research United Kingdom, London, United Kingdom (H.G.)
| | - Stephan Huveneers
- From the Walter-Brendel-Centre of Experimental Medicine (A.F., B.P., J.K., U.P., E.M.) and Department of Pharmacy (S.Z.), Ludwig-Maximilians University Munich, Munich, Germany; Institute of Anatomy and Vascular Biology, WWU-Münster, Münster, Germany (A.A.T., J.S., H.-J.S.); Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands (S.H.); Department of Surgery, School of Medicine and Hospital Clinic de Barcelona (IDIBAPS), University of Barcelona, Barcelona, Spain (R.P.C.-M.); and Vascular Biology Laboratory, London Research Institute-Cancer Research United Kingdom, London, United Kingdom (H.G.)
| | - Julian Kirsch
- From the Walter-Brendel-Centre of Experimental Medicine (A.F., B.P., J.K., U.P., E.M.) and Department of Pharmacy (S.Z.), Ludwig-Maximilians University Munich, Munich, Germany; Institute of Anatomy and Vascular Biology, WWU-Münster, Münster, Germany (A.A.T., J.S., H.-J.S.); Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands (S.H.); Department of Surgery, School of Medicine and Hospital Clinic de Barcelona (IDIBAPS), University of Barcelona, Barcelona, Spain (R.P.C.-M.); and Vascular Biology Laboratory, London Research Institute-Cancer Research United Kingdom, London, United Kingdom (H.G.)
| | - Ricardo P Casaroli-Marano
- From the Walter-Brendel-Centre of Experimental Medicine (A.F., B.P., J.K., U.P., E.M.) and Department of Pharmacy (S.Z.), Ludwig-Maximilians University Munich, Munich, Germany; Institute of Anatomy and Vascular Biology, WWU-Münster, Münster, Germany (A.A.T., J.S., H.-J.S.); Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands (S.H.); Department of Surgery, School of Medicine and Hospital Clinic de Barcelona (IDIBAPS), University of Barcelona, Barcelona, Spain (R.P.C.-M.); and Vascular Biology Laboratory, London Research Institute-Cancer Research United Kingdom, London, United Kingdom (H.G.)
| | - Stefan Zahler
- From the Walter-Brendel-Centre of Experimental Medicine (A.F., B.P., J.K., U.P., E.M.) and Department of Pharmacy (S.Z.), Ludwig-Maximilians University Munich, Munich, Germany; Institute of Anatomy and Vascular Biology, WWU-Münster, Münster, Germany (A.A.T., J.S., H.-J.S.); Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands (S.H.); Department of Surgery, School of Medicine and Hospital Clinic de Barcelona (IDIBAPS), University of Barcelona, Barcelona, Spain (R.P.C.-M.); and Vascular Biology Laboratory, London Research Institute-Cancer Research United Kingdom, London, United Kingdom (H.G.)
| | - Ulrich Pohl
- From the Walter-Brendel-Centre of Experimental Medicine (A.F., B.P., J.K., U.P., E.M.) and Department of Pharmacy (S.Z.), Ludwig-Maximilians University Munich, Munich, Germany; Institute of Anatomy and Vascular Biology, WWU-Münster, Münster, Germany (A.A.T., J.S., H.-J.S.); Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands (S.H.); Department of Surgery, School of Medicine and Hospital Clinic de Barcelona (IDIBAPS), University of Barcelona, Barcelona, Spain (R.P.C.-M.); and Vascular Biology Laboratory, London Research Institute-Cancer Research United Kingdom, London, United Kingdom (H.G.)
| | - Holger Gerhardt
- From the Walter-Brendel-Centre of Experimental Medicine (A.F., B.P., J.K., U.P., E.M.) and Department of Pharmacy (S.Z.), Ludwig-Maximilians University Munich, Munich, Germany; Institute of Anatomy and Vascular Biology, WWU-Münster, Münster, Germany (A.A.T., J.S., H.-J.S.); Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands (S.H.); Department of Surgery, School of Medicine and Hospital Clinic de Barcelona (IDIBAPS), University of Barcelona, Barcelona, Spain (R.P.C.-M.); and Vascular Biology Laboratory, London Research Institute-Cancer Research United Kingdom, London, United Kingdom (H.G.)
| | - Hans-J Schnittler
- From the Walter-Brendel-Centre of Experimental Medicine (A.F., B.P., J.K., U.P., E.M.) and Department of Pharmacy (S.Z.), Ludwig-Maximilians University Munich, Munich, Germany; Institute of Anatomy and Vascular Biology, WWU-Münster, Münster, Germany (A.A.T., J.S., H.-J.S.); Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands (S.H.); Department of Surgery, School of Medicine and Hospital Clinic de Barcelona (IDIBAPS), University of Barcelona, Barcelona, Spain (R.P.C.-M.); and Vascular Biology Laboratory, London Research Institute-Cancer Research United Kingdom, London, United Kingdom (H.G.)
| | - Eloi Montanez
- From the Walter-Brendel-Centre of Experimental Medicine (A.F., B.P., J.K., U.P., E.M.) and Department of Pharmacy (S.Z.), Ludwig-Maximilians University Munich, Munich, Germany; Institute of Anatomy and Vascular Biology, WWU-Münster, Münster, Germany (A.A.T., J.S., H.-J.S.); Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands (S.H.); Department of Surgery, School of Medicine and Hospital Clinic de Barcelona (IDIBAPS), University of Barcelona, Barcelona, Spain (R.P.C.-M.); and Vascular Biology Laboratory, London Research Institute-Cancer Research United Kingdom, London, United Kingdom (H.G.).
| |
Collapse
|
46
|
Huveneers S, Daemen MJAP, Hordijk PL. Between Rho(k) and a hard place: the relation between vessel wall stiffness, endothelial contractility, and cardiovascular disease. Circ Res 2015; 116:895-908. [PMID: 25722443 DOI: 10.1161/circresaha.116.305720] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular stiffness is a mechanical property of the vessel wall that affects blood pressure, permeability, and inflammation. As a result, vascular stiffness is a key driver of (chronic) human disorders, including pulmonary arterial hypertension, kidney disease, and atherosclerosis. Responses of the endothelium to stiffening involve integration of mechanical cues from various sources, including the extracellular matrix, smooth muscle cells, and the forces that derive from shear stress of blood. This response in turn affects endothelial cell contractility, which is an important property that regulates endothelial stiffness, permeability, and leukocyte-vessel wall interactions. Moreover, endothelial stiffening reduces nitric oxide production, which promotes smooth muscle cell contraction and vasoconstriction. In fact, vessel wall stiffening, and microcirculatory endothelial dysfunction, precedes hypertension and thus underlies the development of vascular disease. Here, we review the cross talk among vessel wall stiffening, endothelial contractility, and vascular disease, which is controlled by Rho-driven actomyosin contractility and cellular mechanotransduction. In addition to discussing the various inputs and relevant molecular events in the endothelium, we address which actomyosin-regulated changes at cell adhesion complexes are genetically associated with human cardiovascular disease. Finally, we discuss recent findings that broaden therapeutic options for targeting this important mechanical signaling pathway in vascular pathogenesis.
Collapse
Affiliation(s)
- Stephan Huveneers
- From the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences (S.H., P.L.H.) and Department of Pathology (M.J.A.P.D.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Mat J A P Daemen
- From the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences (S.H., P.L.H.) and Department of Pathology (M.J.A.P.D.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter L Hordijk
- From the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences (S.H., P.L.H.) and Department of Pathology (M.J.A.P.D.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|