1
|
Michels KB, Binder AM. Impact of folic acid supplementation on the epigenetic profile in healthy unfortified individuals - a randomized intervention trial. Epigenetics 2024; 19:2293410. [PMID: 38096372 PMCID: PMC10730197 DOI: 10.1080/15592294.2023.2293410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Folate is an essential mediator in one-carbon metabolism, which provides methyl groups for DNA synthesis and methylation. The availability of active methyl groups can be influenced by the uptake of folic acid. We conducted a randomized intervention trial to test the influence of folic acid supplementation on DNA methylation in an unfortified population in Germany. A total of 16 healthy male volunteers (age range 23-61 y) were randomized to receive either 400 μg (n = 9) or 800 μg (n = 7) folic acid supplements daily for 8 weeks. Infinium Human Methylation 450K BeadChip Microarrays were used to assay site-specific DNA methylation across the genome. Microarray analyses were conducted on PBL DNA. We estimated several epigenetic clocks and mean DNA methylation across all autosomal probes on the array. AgeAccel was estimated as the residual variation in each metric. In virtually all participants, both serum and red blood cell (RBC) folate increased successively throughout the trial period. Participants with a larger increase in RBC folate had a larger increase in DNAmAge AgeAccel (Spearman Rho: 0.56, p-value = 0.03). No notable changes in the methylome resulting from the folic acid supplementation emerged. In this population with adequate folate levels derived from diet, an increase in RBC folate had a modest impact on the epigenetic clock predicting chronologic age.
Collapse
Affiliation(s)
- Karin B. Michels
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Alexandra M. Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| |
Collapse
|
2
|
Wang J, Han X, Yang Y, Zeng Y, Qu Y, Yang H, Song J, Qiu C, Song H. The association of psychological and trauma-related factors with biological and facial aging acceleration: evidence from the UK Biobank. BMC Med 2024; 22:359. [PMID: 39227814 PMCID: PMC11373276 DOI: 10.1186/s12916-024-03578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Psychological and trauma-related factors are associated with many diseases and mortality. However, a comprehensive assessment of the association between psycho-trauma exposures and aging acceleration is currently lacking. METHODS Using data from 332,359 UK Biobank participants, we calculated biological aging acceleration, indexed by the presence of leukocyte telomere length (LTL) deviation (i.e., the difference between genetically determined and observed LTL > 0). The acceleration of facial aging (i.e., looking older than the chronological age) was assessed using a self-report question. Then, we estimated the associations of each psycho-trauma factor with biological and facial aging acceleration, using logistic regression models adjusted for multiple important covariates. Furthermore, restricted to 99,180 participants with complete psychological and trauma-related data, we identified clusters of individuals with distinct psycho-trauma patterns using the latent class analysis method and assessed their associations with aging acceleration using similar models. RESULTS We observed most of the studied psycho-trauma factors were associated with biological and facial aging acceleration. Compared to the "Absence of trauma and psychopathology" cluster, the "adverse childhood experiences (ACEs) with psychopathology" cluster showed strong associations with those aging measurements (odds ratio [OR] = 1.13 [1.05 - 1.23] for biological and 1.52 [1.18 - 1.95] for facial aging acceleration), while no such association was observed for the "ACEs without psychopathology" cluster (1.04 [0.99 - 1.09] and 1.02 [0.84 - 1.24]. CONCLUSIONS Our study demonstrated significant associations of psycho-trauma factors with both biological and facial aging acceleration. The differential aging consequences observed among ACEs exposed individuals with and without psychopathology prompt interventions aimed to improve individuals' psychological resilience to prevent aging acceleration.
Collapse
Affiliation(s)
- Junren Wang
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Xin Han
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yao Yang
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yu Zeng
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yuanyuan Qu
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Huazhen Yang
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Jie Song
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Changjian Qiu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huan Song
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, China.
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
3
|
Mendy A, Mersha TB. Epigenetic age acceleration and mortality risk prediction in U.S. adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.21.24312373. [PMID: 39228731 PMCID: PMC11370508 DOI: 10.1101/2024.08.21.24312373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background Epigenetic clocks have emerged as novel measures of biological age and potential predictors of mortality. We aimed to test whether epigenetic age acceleration (EAA) estimated using different epigenetic clocks predict long-term overall, cardiovascular or cancer mortality. Methods We analyzed data from 2,105 participants to the 1999-2002 National Health and Nutrition Examination Survey aged ≥50 years old who were followed for mortality through 2019. EAAs was calculated from the residuals of Horvath, Hannum, SkinBlood, Pheno, Zhang, Lin, Weidner, Vidal-Bralo and Grim epigenetic clocks regressed on chronological age. Using cox proportional hazards regression, we estimated the hazard ratio (HR) and 95% confidence interval (CI) for the association of EAA (per 5-year) and the DunedinPoAm pace of aging (per 10% increase) with overall, cardiovascular and cancer mortality, adjusting for covariates and white blood cell composition. Results During a median follow-up of 17.5 years, 998 deaths occurred, including 272 from cardiovascular disease and 209 from cancer. Overall mortality was most significantly predicted by Grim EAA (P < 0.0001; HR: 1.50, 95% CI: 1.32-1.71) followed by Hannum (P = 0.001; HR: 1.16, 95% CI: 1.07-1.27), Pheno (P = 0.001; HR: 1.13, 95% CI: 1.05-1.21), Horvath (P = 0.007; HR: 1.13, 95% CI: 1.04-1.22) and Vidal-Bralo (P = 0.008; HR: 1.13, 95% CI: 1.03-1.23) EAAs. Grim EAA predicted cardiovascular mortality (P < 0.0001; HR: 1.55, 95% CI: 1.29-1.86), whereas Hannum (P = 0.006; HR: 1.24, 95% CI: 1.07-1.44), Horvath (P = 0.02; HR: 1.18, 95% CI: 1.02-1.35) and Grim (P = 0.049; HR: 1.37, 95% CI: 1.00-1.87) EAAs predicted cancer mortality. DunedinPoAm pace of aging was associated with overall (P = 0.003; HR: 1.23, 95% CI: 1.08-1.38) and cardiovascular (P = 0.04; HR: 1.25, 95% CI: 1.01-1.55) mortality. Conclusions In a U.S. representative sample, Horvath, Hannum, Pheno, Vidal-Bralo and Grim EAA all predicted overall mortality but only Grim EAA predicted cardiovascular mortality and Horvath, Hannum or Grim EAA predicted cancer mortality. Pace of aging predicted overall and cardiovascular mortality.
Collapse
Affiliation(s)
- Angelico Mendy
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Tesfaye B. Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
4
|
Mao R, Wang F, Zhong Y, Meng X, Zhang T, Li J. Association of biological age acceleration with cardiac morphology, function, and incident heart failure: insights from UK Biobank participants. Eur Heart J Cardiovasc Imaging 2024; 25:1315-1323. [PMID: 38747402 DOI: 10.1093/ehjci/jeae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 08/28/2024] Open
Abstract
AIMS Advanced age is associated with an increased risk of adverse cardiovascular events. The relationship between biological age acceleration (BAA), cardiac size, cardiac function, and heart failure (HF) is not well-defined. METHODS AND RESULTS Utilizing the UK Biobank cohort, we assessed biological age using the Klemera-Doubal and PhenoAge methods. BAA was quantified by residual analysis compared with chronological age. Cardiovascular magnetic resonance (CMR) imaging provided detailed insights into cardiac structure and function. We employed multivariate regression to examine links between BAA and CMR-derived cardiac phenotypes. Cox proportional hazard regression models analysis was applied to explore the causative relationship between BAA and HF. Additionally, Mendelian randomization was used to investigate the genetic underpinnings of these associations. A significant correlation was found between increased BAA and deleterious changes in cardiac structure, such as diminished left ventricular mass, lower overall ventricular volume, and reduced stroke volumes across ventricles and atria. Throughout a median follow-up of 13.8 years, participants with greater biological aging showed a heightened risk of HF [26% per standard deviation (SD) increase in KDM-BA acceleration, 95% confidence intervals (CI): 23-28%; 33% per SD increase in PhenoAge acceleration, 95% CI: 32-35%]. Mendelian randomization analysis suggests a likely causal link between BAA, vital cardiac metrics, and HF risk. CONCLUSION In this cohort, accelerated biological aging may serve as a risk indicator for altered cardiac dimensions, functionality, and the onset of heart failure among middle-aged and elderly adults. It holds promise as a focal point for evaluating risk and developing targeted interventions.
Collapse
Affiliation(s)
- Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha City, Hunan Province 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha City, Hunan Province 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha City, Hunan Province 410008, China
| | - Fan Wang
- Department of Dermatology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha City, Hunan Province 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha City, Hunan Province 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha City, Hunan Province 410008, China
| | - Yun Zhong
- Department of Dermatology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha City, Hunan Province 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha City, Hunan Province 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha City, Hunan Province 410008, China
| | - Xin Meng
- Department of Dermatology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha City, Hunan Province 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha City, Hunan Province 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha City, Hunan Province 410008, China
| | - Tongtong Zhang
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, Sichuan Province 610031, China
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, 82 Qinglong Street, Chengdu, Sichuan Province 610031, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha City, Hunan Province 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha City, Hunan Province 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha City, Hunan Province 410008, China
| |
Collapse
|
5
|
Li X, Guo Y, Liang H, Wang J, Qi L. Genome-wide association analysis of hypertension and epigenetic aging reveals shared genetic architecture and identifies novel risk loci. Sci Rep 2024; 14:17792. [PMID: 39090212 PMCID: PMC11294447 DOI: 10.1038/s41598-024-68751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Hypertension is a disease associated with epigenetic aging. However, the pathogenic mechanism underlying this relationship remains unclear. We aimed to characterize the shared genetic architecture of hypertension and epigenetic aging, and identify novel risk loci. Leveraging genome-wide association studies (GWAS) summary statistics of hypertension (129,909 cases and 354,689 controls) and four epigenetic clocks (N = 34,710), we investigated genetic architectures and genetic overlap using bivariate casual mixture model and conditional/conjunctional false discovery rate methods. Functional gene-sets pathway analyses were performed by functional mapping and gene annotation (FUMA) protocol. Hypertension was polygenic with 2.8 K trait-influencing genetic variants. We observed cross-trait genetic enrichment and genetic overlap between hypertension and all four measures of epigenetic aging. Further, we identified 32 distinct genomic loci jointly associated with hypertension and epigenetic aging. Notably, rs1849209 was shared between hypertension and three epigenetic clocks (HannumAge, IEAA, and PhenoAge). The shared loci exhibited a combination of concordant and discordant allelic effects. Functional gene-set analyses revealed significant enrichment in biological pathways related to sensory perception of smell and nervous system processes. We observed genetic overlaps with mixed effect directions between hypertension and all four epigenetic aging measures, and identified 32 shared distinct loci with mixed effect directions, 25 of which were novel for hypertension. Shared genes enriched in biological pathways related to olfaction.
Collapse
Affiliation(s)
- Xin Li
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, 511436, China
| | - Yu Guo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150086, China
| | - Haihai Liang
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, 511436, China.
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China.
| | - Jinghao Wang
- Department of Pharmacy, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Lishuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
6
|
Campisi M, Cannella L, Bordin A, Moretto A, Scapellato ML, Mason P, Liviero F, Pavanello S. Revealing the Hidden Impacts: Insights into Biological Aging and Long-Term Effects in Pauci- and Asymptomatic COVID-19 Healthcare Workers. Int J Mol Sci 2024; 25:8056. [PMID: 39125624 PMCID: PMC11311509 DOI: 10.3390/ijms25158056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
This study explores the role of inflammation and oxidative stress, hallmarks of COVID-19, in accelerating cellular biological aging. We investigated early molecular markers-DNA methylation age (DNAmAge) and telomere length (TL)-in blood leukocytes, nasal cells (NCs), and induced sputum (IS) one year post-infection in pauci- and asymptomatic healthcare workers (HCWs) infected during the first pandemic wave (February-May 2020), compared to COPD patients, model for "aged lung". Data from questionnaires, Work Ability Index (WAI), blood analyses, autonomic cardiac balance assessments, heart rate variability (HRV), and pulmonary function tests were collected. Elevated leukocyte DNAmAge significantly correlated with advancing age, male sex, daytime work, and an aged phenotype characterized by chronic diseases, elevated LDL and glycemia levels, medications affecting HRV, and declines in lung function, WAI, lymphocyte count, hemoglobin levels, and HRV (p < 0.05). Increasing age, LDL levels, job positions involving intensive patient contact, and higher leukocyte counts collectively contributed to shortened leukocyte TL (p < 0.05). Notably, HCWs exhibited accelerated biological aging in IS cells compared to both blood leukocytes (p ≤ 0.05) and NCs (p < 0.001) and were biologically older than COPD patients (p < 0.05). These findings suggest the need to monitor aging in pauci- and asymptomatic COVID-19 survivors, who represent the majority of the general population.
Collapse
Affiliation(s)
- Manuela Campisi
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
| | - Luana Cannella
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
| | - Anna Bordin
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Angelo Moretto
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Maria Luisa Scapellato
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Paola Mason
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Filippo Liviero
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Sofia Pavanello
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | | |
Collapse
|
7
|
Nguyen S, McEvoy LK, Espeland MA, Whitsel EA, Lu A, Horvath S, Manson JE, Rapp SR, Shadyab AH. Associations of Epigenetic Age Estimators With Cognitive Function Trajectories in the Women's Health Initiative Memory Study. Neurology 2024; 103:e209534. [PMID: 38857479 PMCID: PMC11226313 DOI: 10.1212/wnl.0000000000209534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/05/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Epigenetic age estimators indicating faster/slower biological aging vs chronological age independently associate with several age-related outcomes; however, longitudinal associations with cognitive function are understudied. We examined associations of epigenetic age estimators with cognitive function measured annually. METHODS This longitudinal study consisted of older women enrolled in the Women's Health Initiative Memory Study with DNA methylation (DNAm) collected at baseline (1995-1998) from 3 ancillary studies and were followed up to 13 years. Global cognitive function was measured annually by Modified Mini-Mental State Examination (3MS; baseline-2007) and by modified Telephone Interview for Cognitive Status (TICS-m, 2008-2021). We calculated 5 epigenetic age estimators: extrinsic AgeAccel, intrinsic AgeAccel, AgeAccelPheno, AgeAccelGrim2, Dunedin Pace of Aging Calculated From the Epigenome (DunedinPACE), and AgeAccelGrim2 components (DNA-based plasma protein surrogates). We estimated longitudinal epigenetic age estimator-cognitive function associations using linear mixed-effects models containing age, education, race or ethnicity, and subsequently alcohol, smoking, body mass index, and comorbidities. We examined effect modification by APOE ε4 carriage. RESULTS A total of 795 participants were enrolled. The mean baseline age was 70.8 ± 4 years (10.7% Black, 3.9% Hispanic or Latina, 85.4% White), A 1-SD (0.12) increment in DunedinPACE associated with faster annual declines in TICS-m scores in minimally adjusted (β = -0.118, 95% CI -0.202 to -0.034; p = 0.0006) and fully adjusted (β = -0.123, 95% CI -0.211 to -0.036; p = 0.006) models. AgeAccelPheno associated with faster annual declines in TICS-m with minimal adjustment (β = -0.091, 95% CI -0.176 to -0.006; p = 0.035) but not with full adjustment. No other epigenetic age estimators associated with changes in 3MS or TICS-m. Higher values of DNAm-based surrogates of growth differentiation factor 15, beta-2 microglobulin, Cystatin C, tissue inhibitor metalloproteinase 1, and adrenomedullin associated with faster annual declines in 3MS and TICS-m. Higher DNAm log A1c associated with faster annual declines in TICS-m only. DunedinPACE associated with faster annual declines in 3MS among APOE ε4 carriers but not among noncarriers (p-interaction = 0.020). DISCUSSION Higher DunedinPACE associated with faster declines in TICS-m and 3MS scores among APOE ε4 carriers. DunedinPACE may help identify older women at risk of future cognitive decline. Limitations include the ancillary studies that collected epigenetic data not designed to study epigenetics and cognitive function. We examined epigenetic age estimators with global cognitive function and not specific cognitive domains. Findings may not generalize to men and more diverse populations.
Collapse
Affiliation(s)
- Steve Nguyen
- From the Division of Epidemiology (S.N., L.K.M., A.H.S.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla; Kaiser Permanente Washington Health Research Institute (L.K.M.), Seattle, WA; Departments of Internal Medicine and Biostatistics and Data Science (M.A.E.), Wake Forest University School of Medicine, Winston-Salem, NC; Department of Epidemiology (E.A.W.), Gillings School of Global Public Health; Department of Medicine (E.A.W.), School of Medicine, University of North Carolina, Chapel Hill; Altos Labs (A.L., S.H.), San Diego, CA; Department of Epidemiology (S.H.), UCLA Fielding School of Public Health, Los Angeles, CA; Division of Preventive Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry & Behavioral Medicine (S.R.R.), Wake Forest School of Medicine, Winston-Salem, NC; and Division of Geriatrics, Gerontology, and Palliative Care (A.H.S.), Department of Medicine, University of California, San Diego, La Jolla
| | - Linda K McEvoy
- From the Division of Epidemiology (S.N., L.K.M., A.H.S.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla; Kaiser Permanente Washington Health Research Institute (L.K.M.), Seattle, WA; Departments of Internal Medicine and Biostatistics and Data Science (M.A.E.), Wake Forest University School of Medicine, Winston-Salem, NC; Department of Epidemiology (E.A.W.), Gillings School of Global Public Health; Department of Medicine (E.A.W.), School of Medicine, University of North Carolina, Chapel Hill; Altos Labs (A.L., S.H.), San Diego, CA; Department of Epidemiology (S.H.), UCLA Fielding School of Public Health, Los Angeles, CA; Division of Preventive Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry & Behavioral Medicine (S.R.R.), Wake Forest School of Medicine, Winston-Salem, NC; and Division of Geriatrics, Gerontology, and Palliative Care (A.H.S.), Department of Medicine, University of California, San Diego, La Jolla
| | - Mark A Espeland
- From the Division of Epidemiology (S.N., L.K.M., A.H.S.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla; Kaiser Permanente Washington Health Research Institute (L.K.M.), Seattle, WA; Departments of Internal Medicine and Biostatistics and Data Science (M.A.E.), Wake Forest University School of Medicine, Winston-Salem, NC; Department of Epidemiology (E.A.W.), Gillings School of Global Public Health; Department of Medicine (E.A.W.), School of Medicine, University of North Carolina, Chapel Hill; Altos Labs (A.L., S.H.), San Diego, CA; Department of Epidemiology (S.H.), UCLA Fielding School of Public Health, Los Angeles, CA; Division of Preventive Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry & Behavioral Medicine (S.R.R.), Wake Forest School of Medicine, Winston-Salem, NC; and Division of Geriatrics, Gerontology, and Palliative Care (A.H.S.), Department of Medicine, University of California, San Diego, La Jolla
| | - Eric A Whitsel
- From the Division of Epidemiology (S.N., L.K.M., A.H.S.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla; Kaiser Permanente Washington Health Research Institute (L.K.M.), Seattle, WA; Departments of Internal Medicine and Biostatistics and Data Science (M.A.E.), Wake Forest University School of Medicine, Winston-Salem, NC; Department of Epidemiology (E.A.W.), Gillings School of Global Public Health; Department of Medicine (E.A.W.), School of Medicine, University of North Carolina, Chapel Hill; Altos Labs (A.L., S.H.), San Diego, CA; Department of Epidemiology (S.H.), UCLA Fielding School of Public Health, Los Angeles, CA; Division of Preventive Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry & Behavioral Medicine (S.R.R.), Wake Forest School of Medicine, Winston-Salem, NC; and Division of Geriatrics, Gerontology, and Palliative Care (A.H.S.), Department of Medicine, University of California, San Diego, La Jolla
| | - Ake Lu
- From the Division of Epidemiology (S.N., L.K.M., A.H.S.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla; Kaiser Permanente Washington Health Research Institute (L.K.M.), Seattle, WA; Departments of Internal Medicine and Biostatistics and Data Science (M.A.E.), Wake Forest University School of Medicine, Winston-Salem, NC; Department of Epidemiology (E.A.W.), Gillings School of Global Public Health; Department of Medicine (E.A.W.), School of Medicine, University of North Carolina, Chapel Hill; Altos Labs (A.L., S.H.), San Diego, CA; Department of Epidemiology (S.H.), UCLA Fielding School of Public Health, Los Angeles, CA; Division of Preventive Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry & Behavioral Medicine (S.R.R.), Wake Forest School of Medicine, Winston-Salem, NC; and Division of Geriatrics, Gerontology, and Palliative Care (A.H.S.), Department of Medicine, University of California, San Diego, La Jolla
| | - Steve Horvath
- From the Division of Epidemiology (S.N., L.K.M., A.H.S.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla; Kaiser Permanente Washington Health Research Institute (L.K.M.), Seattle, WA; Departments of Internal Medicine and Biostatistics and Data Science (M.A.E.), Wake Forest University School of Medicine, Winston-Salem, NC; Department of Epidemiology (E.A.W.), Gillings School of Global Public Health; Department of Medicine (E.A.W.), School of Medicine, University of North Carolina, Chapel Hill; Altos Labs (A.L., S.H.), San Diego, CA; Department of Epidemiology (S.H.), UCLA Fielding School of Public Health, Los Angeles, CA; Division of Preventive Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry & Behavioral Medicine (S.R.R.), Wake Forest School of Medicine, Winston-Salem, NC; and Division of Geriatrics, Gerontology, and Palliative Care (A.H.S.), Department of Medicine, University of California, San Diego, La Jolla
| | - Joann E Manson
- From the Division of Epidemiology (S.N., L.K.M., A.H.S.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla; Kaiser Permanente Washington Health Research Institute (L.K.M.), Seattle, WA; Departments of Internal Medicine and Biostatistics and Data Science (M.A.E.), Wake Forest University School of Medicine, Winston-Salem, NC; Department of Epidemiology (E.A.W.), Gillings School of Global Public Health; Department of Medicine (E.A.W.), School of Medicine, University of North Carolina, Chapel Hill; Altos Labs (A.L., S.H.), San Diego, CA; Department of Epidemiology (S.H.), UCLA Fielding School of Public Health, Los Angeles, CA; Division of Preventive Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry & Behavioral Medicine (S.R.R.), Wake Forest School of Medicine, Winston-Salem, NC; and Division of Geriatrics, Gerontology, and Palliative Care (A.H.S.), Department of Medicine, University of California, San Diego, La Jolla
| | - Stephen R Rapp
- From the Division of Epidemiology (S.N., L.K.M., A.H.S.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla; Kaiser Permanente Washington Health Research Institute (L.K.M.), Seattle, WA; Departments of Internal Medicine and Biostatistics and Data Science (M.A.E.), Wake Forest University School of Medicine, Winston-Salem, NC; Department of Epidemiology (E.A.W.), Gillings School of Global Public Health; Department of Medicine (E.A.W.), School of Medicine, University of North Carolina, Chapel Hill; Altos Labs (A.L., S.H.), San Diego, CA; Department of Epidemiology (S.H.), UCLA Fielding School of Public Health, Los Angeles, CA; Division of Preventive Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry & Behavioral Medicine (S.R.R.), Wake Forest School of Medicine, Winston-Salem, NC; and Division of Geriatrics, Gerontology, and Palliative Care (A.H.S.), Department of Medicine, University of California, San Diego, La Jolla
| | - Aladdin H Shadyab
- From the Division of Epidemiology (S.N., L.K.M., A.H.S.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla; Kaiser Permanente Washington Health Research Institute (L.K.M.), Seattle, WA; Departments of Internal Medicine and Biostatistics and Data Science (M.A.E.), Wake Forest University School of Medicine, Winston-Salem, NC; Department of Epidemiology (E.A.W.), Gillings School of Global Public Health; Department of Medicine (E.A.W.), School of Medicine, University of North Carolina, Chapel Hill; Altos Labs (A.L., S.H.), San Diego, CA; Department of Epidemiology (S.H.), UCLA Fielding School of Public Health, Los Angeles, CA; Division of Preventive Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry & Behavioral Medicine (S.R.R.), Wake Forest School of Medicine, Winston-Salem, NC; and Division of Geriatrics, Gerontology, and Palliative Care (A.H.S.), Department of Medicine, University of California, San Diego, La Jolla
| |
Collapse
|
8
|
Koncevičius K, Nair A, Šveikauskaitė A, Šeštokaitė A, Kazlauskaitė A, Dulskas A, Petronis A. Epigenetic age oscillates during the day. Aging Cell 2024; 23:e14170. [PMID: 38638005 PMCID: PMC11258449 DOI: 10.1111/acel.14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Since their introduction, epigenetic clocks have been extensively used in aging, human disease, and rejuvenation studies. In this article, we report an intriguing pattern: epigenetic age predictions display a 24-h periodicity. We tested a circadian blood sample collection using 17 epigenetic clocks addressing different aspects of aging. Thirteen clocks exhibited significant oscillations with the youngest and oldest age estimates around midnight and noon, respectively. In addition, daily oscillations were consistent with the changes of epigenetic age across different times of day observed in an independant populational dataset. While these oscillations can in part be attributed to variations in white blood cell type composition, cell count correction methods might not fully resolve the issue. Furthermore, some epigenetic clocks exhibited 24-h periodicity even in the purified fraction of neutrophils pointing at plausible contributions of intracellular epigenomic oscillations. Evidence for circadian variation in epigenetic clocks emphasizes the importance of the time-of-day for obtaining accurate estimates of epigenetic age.
Collapse
Affiliation(s)
- Karolis Koncevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius UniversityVilniusLithuania
| | - Akhil Nair
- Institute of Biotechnology, Life Sciences Center, Vilnius UniversityVilniusLithuania
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental HealthTorontoOntarioCanada
| | - Aušrinė Šveikauskaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius UniversityVilniusLithuania
| | - Agnė Šeštokaitė
- Laboratory for Genetic DiagnosticsNational Cancer InstituteVilniusLithuania
| | - Auksė Kazlauskaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius UniversityVilniusLithuania
| | - Audrius Dulskas
- Department of Abdominal and General Surgery and OncologyNational Cancer InstituteVilniusLithuania
- Faculty of MedicineVilnius UniversityVilniusLithuania
| | - Artūras Petronis
- Institute of Biotechnology, Life Sciences Center, Vilnius UniversityVilniusLithuania
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental HealthTorontoOntarioCanada
| |
Collapse
|
9
|
de Vries PS, Zannas AS. Early Life Cardiovascular Risk Factors and Midlife Epigenetic Aging: An Enduring Legacy. JACC Basic Transl Sci 2024; 9:591-592. [PMID: 38984039 PMCID: PMC11228106 DOI: 10.1016/j.jacbts.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Affiliation(s)
- Paul S de Vries
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, Texas, USA
| | - Anthony S Zannas
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Gascoigne EL, Roell KR, Eaves LA, Fry RC, Manuck TA. Accelerated epigenetic clock aging in maternal peripheral blood and preterm birth. Am J Obstet Gynecol 2024; 230:559.e1-559.e9. [PMID: 37690595 PMCID: PMC10920398 DOI: 10.1016/j.ajog.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Epigenetic clocks use CpG DNA methylation to estimate biological age. Acceleration is associated with cancer, heart disease, and shorter life span. Few studies evaluate DNA methylation age and pregnancy outcomes. AgeAccelGrim is a novel epigenetic clock that combines 7 DNA methylation components. OBJECTIVE This study aimed to determine whether maternal biological aging (via AgeAccelGrim) is associated with early preterm birth. STUDY DESIGN A prospective cohort of patients with singleton pregnancies and at high risk of spontaneous preterm birth delivering at a tertiary university hospital were included in this study. Genome-wide CpG methylation was measured using the Illumina EPIC BeadChip (Illumina, Inc, San Diego, CA) from maternal blood samples obtained at <28 weeks of gestation. AgeAccelGrim and its 7 DNA methylation components were estimated by the Horvath DNA methylation age online tool. Positive values are associated with accelerated biological aging, whereas negative values are associated with slower biological aging relative to each subject's age. The primary outcome was preterm birth at <34 weeks of gestation (any indication). The secondary outcomes were preterm birth at <37 and <28 weeks of gestation. AgeAccelGrim was analyzed as a continuous variable and in quartiles. Exploratory analyses evaluated each of the 7 DNA methylation components included in the composite AgeAccelGrim. Data were analyzed by chi-square test, t test, rank-sum test, logistic regression (controlling a priori for maternal age, cell counts, low socioeconomic status, and gestational age at the time of sample collection), and Kaplan-Meier survival analyses. The log-rank test was used to test the equality of the survival functions. RESULTS Overall, 163 patients met the inclusion criteria. Of the patients, 48%, 39%, and 21% delivered at <37, <34, and <28 weeks of gestation, respectively. The median AgeAccelGrim was -0.35 years (interquartile range, -2.24 to 1.31) for those delivering at term. Those delivering preterm had higher AgeAccelGrim values that were inversely proportional to delivery gestational age (preterm birth at <37 weeks of gestation: +0.40 years [interquartile range: -1.21 to +2.28]; preterm birth at <34 weeks of gestation: +0.51 years [interquartile range: -1.05 to +2.67]; preterm birth at <28 weeks of gestation: +1.05 years [interquartile range: -0.72 to +2.72]). Estimated DNA methylation of the 7 epigenetic clock component values was increased among those with preterm birth at <34 weeks of gestation, although the differences were only significant for DNA methylation of plasminogen activation inhibitor 1. In regression models, AgeAcccelGrim was associated with an elevated risk of preterm birth with increasing magnitude for increasing severity of preterm birth. For each 1-year increase in the AgeAccelGrim value (ie, each 1-year increase in biological age compared with chronologic age), the adjusted odds of preterm birth were 11% (adjusted odds ratio, 1.11; 95% confidence interval, 1.00-1.24), 13% (adjusted odds ratio, 1.13; 95% confidence interval, 1.01-1.26), and 18% (adjusted odds ratio, 1.18; 95% confidence interval, 1.04-1.35) higher for preterm birth at <37, <34, and <28 weeks of gestation, respectively. Similarly, individuals with accelerated biological aging (≥75th percentile AgeAccelGrim) had more than double the odds of preterm birth at <34 weeks of gestation (adjusted odds ratio, 2.36; 95% confidence interval, 1.10-5.08) and more than triple the odds of preterm birth at <28 weeks of gestation (adjusted odds ratio, 3.89; 95% confidence interval, 1.61-9.38). The adjusted odds ratio for preterm birth at <37 weeks of gestation was 1.73 but spanned the null (adjusted odds ratio, 1.73; 95% confidence interval, 0.81-3.69). In Kaplan-Meier survival analyses, those in the highest AgeAccelGrim quartile delivered the earliest (log-rank P value of <.001). CONCLUSION Accelerated biological aging was associated with preterm birth among high-risk patients. Future research confirming these findings and elucidating factors that slow biological aging may improve birth outcomes.
Collapse
Affiliation(s)
- Emily L Gascoigne
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kyle R Roell
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, Chapel Hill, NC; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC
| | - Lauren A Eaves
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, Chapel Hill, NC; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC
| | - Rebecca C Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, Chapel Hill, NC; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC
| | - Tracy A Manuck
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Institute for Environmental Health Solutions, Gillings School of Global Public Health, Chapel Hill, NC.
| |
Collapse
|
11
|
Sun X, Chen W, Razavi AC, Shi M, Pan Y, Li C, Argos M, Layden BT, Daviglus ML, He J, Carmichael OT, Bazzano LA, Kelly TN. Associations of Epigenetic Age Acceleration With CVD Risks Across the Lifespan: The Bogalusa Heart Study. JACC Basic Transl Sci 2024; 9:577-590. [PMID: 38984046 PMCID: PMC11228118 DOI: 10.1016/j.jacbts.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 07/11/2024]
Abstract
Although epigenetic age acceleration (EAA) might serve as a molecular signature of childhood cardiovascular disease (CVD) risk factors and further promote midlife subclinical CVD, few studies have comprehensively examined these life course associations. This study sought to test whether childhood CVD risk factors predict EAA in adulthood and whether EAA mediates the association between childhood CVD risks and midlife subclinical disease. Among 1,580 Bogalusa Heart Study participants, we estimated extrinsic EAA, intrinsic EAA, PhenoAge acceleration (PhenoAgeAccel), and GrimAge acceleration (GrimAgeAccel) during adulthood. We tested prospective associations of longitudinal childhood body mass index (BMI), blood pressure, lipids, and glucose with EAAs using linear mixed effects models. After confirming EAAs with midlife carotid intima-media thickness and carotid plaque, structural equation models examined mediating effects of EAAs on associations of childhood CVD risk factors with subclinical CVD measures. After stringent multiple testing corrections, each SD increase in childhood BMI was significantly associated with 0.6-, 0.9-, and 0.5-year increases in extrinsic EAA, PhenoAgeAccel, and GrimAgeAccel, respectively (P < 0.001 for all 3 associations). Likewise, each SD increase in childhood log-triglycerides was associated with 0.5- and 0.4-year increases in PhenoAgeAccel and GrimAgeAccel (P < 0.001 for both), respectively, whereas each SD increase in childhood high-density lipoprotein cholesterol was associated with a 0.3-year decrease in GrimAgeAccel (P = 0.002). Our findings indicate that PhenoAgeAccel mediates an estimated 27.4% of the association between childhood log-triglycerides and midlife carotid intima-media thickness (P = 0.022). Our data demonstrate that early life CVD risk factors may accelerate biological aging and promote subclinical atherosclerosis.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Alexander C Razavi
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Medical College of Soochow University, Jiangsu, China
| | - Yang Pan
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, Illinois, USA
| | - Brian T Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | | | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Wang K, Sartor MA, Colacino JA, Dolinoy DC, Svoboda LK. Sex-Specific Deflection of Age-Related DNA Methylation and Gene Expression in Mouse Heart by Perinatal Toxicant Exposures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591125. [PMID: 38712146 PMCID: PMC11071472 DOI: 10.1101/2024.04.25.591125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Global and site-specific changes in DNA methylation and gene expression are associated with cardiovascular aging and disease, but how toxicant exposures during early development influence the normal trajectory of these age-related molecular changes, and whether there are sex differences, has not yet been investigated. Objectives We used an established mouse model of developmental exposures to investigate the effects of perinatal exposure to either lead (Pb) or diethylhexyl phthalate (DEHP), two ubiquitous environmental contaminants strongly associated with CVD, on age-related cardiac DNA methylation and gene expression. Methods Dams were randomly assigned to receive human physiologically relevant levels of Pb (32 ppm in water), DEHP (25 mg/kg chow), or control water and chow. Exposures started two weeks prior to mating and continued until weaning at postnatal day 21 (3 weeks of age). Approximately one male and one female offspring per litter were followed to 3 weeks, 5 months, or 10 months of age, at which time whole hearts were collected (n ≥ 5 per sex per exposure). Enhanced reduced representation bisulfite sequencing (ERRBS) was used to assess the cardiac DNA methylome at 3 weeks and 10 months, and RNA-seq was conducted at all 3 time points. MethylSig and edgeR were used to identify age-related differentially methylated regions (DMRs) and differentially expressed genes (DEGs), respectively, within each sex and exposure group. Cell type deconvolution of bulk RNA-seq data was conducted using the MuSiC algorithm and publicly available single cell RNA-seq data. Results Thousands of DMRs and hundreds of DEGs were identified in control, DEHP, and Pb-exposed hearts across time between 3 weeks and 10 months of age. A closer look at the genes and pathways showing differential DNA methylation revealed that the majority were unique to each sex and exposure group. Overall, pathways governing development and differentiation were most frequently altered with age in all conditions. A small number of genes in each group showed significant changes in DNA methylation and gene expression with age, including several that were altered by both toxicants but were unchanged in control. We also observed subtle, but significant changes in the proportion of several cell types due to age, sex, and developmental exposure. Discussion Together these data show that perinatal Pb or DEHP exposures deflect normal age-related gene expression, DNA methylation programs, and cellular composition across the life course, long after cessation of exposure, and highlight potential biomarkers of developmental toxicant exposures. Further studies are needed to investigate how these epigenetic and transcriptional changes impact cardiovascular health across the life course.
Collapse
|
13
|
Raab H, Hauser ER, Kwee LC, Shah SH, Kraus WE, Ward-Caviness CK. Associations among NMR-measured inflammatory and metabolic biomarkers and accelerated aging in cardiac catheterization patients. Aging (Albany NY) 2024; 16:6652-6672. [PMID: 38656877 PMCID: PMC11087135 DOI: 10.18632/aging.205758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
Research into aging has grown substantially with the creation of molecular biomarkers of biological age that can be used to determine age acceleration. Concurrently, nuclear magnetic resonance (NMR) assessment of biomarkers of inflammation and metabolism provides researchers with new ways to examine intermediate risk factors for chronic disease. We used data from a cardiac catheterization cohort to examine associations between biomarkers of cardiometabolic health and accelerated aging assessed using both gene expression (Transcriptomic Age) and DNA methylation (Hannum Age, GrimAge, Horvath Age, and Phenotypic Age). Linear regression models were used to associate accelerated aging with each outcome (cardiometabolic health biomarkers) while adjusting for chronological age, sex, race, and neighborhood socioeconomic status. Our study shows a robust association between GlycA and GrimAge (5.71, 95% CI = 4.36, 7.05, P = 7.94 × 10-16), Hannum Age (1.81, 95% CI = 0.65, 2.98, P = 2.30 × 10-3), and Phenotypic Age (2.88, 95% CI = 1.91, 3.87, P = 1.21 × 10-8). We also saw inverse associations between apolipoprotein A-1 and aging biomarkers. These associations provide insight into the relationship between aging and cardiometabolic health that may be informative for vulnerable populations.
Collapse
Affiliation(s)
- Henry Raab
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC 27514, USA
| | - Elizabeth R. Hauser
- Duke University Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Lydia Coulter Kwee
- Duke University Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Svati H. Shah
- Duke University Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - William E. Kraus
- Duke University Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Cavin K. Ward-Caviness
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC 27514, USA
| |
Collapse
|
14
|
Forrester SN, Baek J, Hou L, Roger V, Kiefe CI. A Comparison of 5 Measures of Accelerated Biological Aging and Their Association With Incident Cardiovascular Disease: The CARDIA Study. J Am Heart Assoc 2024; 13:e032847. [PMID: 38606769 PMCID: PMC11262530 DOI: 10.1161/jaha.123.032847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Accelerated biological aging is an increasingly popular way to track the acceleration of biology over time that may not be captured by calendar time. Biological aging has been linked to external and internal chronic stressors and has the potential to be used clinically to understand a person's personalized functioning and predict future disease. We compared the association of different measures of biological aging and incident cardiovascular disease (CVD) overall and by race. METHODS AND RESULTS We used multiple informants models to compare the strength of clinical marker-derived age acceleration, 5 measures of epigenetic age acceleration (intrinsic and extrinsic epigenetic age acceleration, GrimAge acceleration, and PhenoAge acceleration), and 1 established clinical predictor of future CVD, Framingham 10-year risk score, with incident CVD over an 11-year period (2007-2018). Participants were 913 self-identified Black or White (41% and 59%, respectively) female or male (51% and 49%, respectively) individuals enrolled in the US-based CARDIA (Coronary Artery Risk Development in Young Adults) cohort study. The analytic baseline for this study was the 20-year follow-up examination (2005-2006; median age 45 years). We also included race-specific analysis. We found that all measures were modestly correlated with one another. However, clinical marker-derived age acceleration and Framingham 10-year risk score were more strongly associated with incident CVD than all the epigenetic measures. Clinical marker-derived age acceleration and Framingham 10-year risk score were not significantly different than one another in their association with incident CVD. CONCLUSIONS The type of accelerated aging measure should be taken into consideration when comparing their association with clinical outcomes. A multisystem clinical composite shows associations with incident CVD equally to a well-known clinical predictor.
Collapse
Affiliation(s)
- Sarah N. Forrester
- Division of Epidemiology, Department of Population and Quantitative Health SciencesUniversity of Massachusetts Chan Medical SchoolWorcesterMA
| | - Jonggyu Baek
- Division of Biostatistics and Health Services, Department of Population and Quantitative Health SciencesUniversity of Massachusetts Chan Medical SchoolWorcesterMA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoIL
| | - Veronique Roger
- Laboratory of Heart Disease PhenomicsNational Heart, Lung, and Blood InstituteBethesdaMD
| | - Catarina I. Kiefe
- Department of Population and Quantitative Health SciencesUniversity of Massachusetts Chan Medical SchoolWorcesterMA
| |
Collapse
|
15
|
Raisi-Estabragh Z, Szabo L, Schuermans A, Salih AM, Chin CWL, Vágó H, Altmann A, Ng FS, Garg P, Pavanello S, Marwick TH, Petersen SE. Noninvasive Techniques for Tracking Biological Aging of the Cardiovascular System: JACC Family Series. JACC Cardiovasc Imaging 2024:S1936-878X(24)00082-2. [PMID: 38597854 DOI: 10.1016/j.jcmg.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 04/11/2024]
Abstract
Population aging is one of the most important demographic transformations of our time. Increasing the "health span"-the proportion of life spent in good health-is a global priority. Biological aging comprises molecular and cellular modifications over many years, which culminate in gradual physiological decline across multiple organ systems and predispose to age-related illnesses. Cardiovascular disease is a major cause of ill health and premature death in older people. The rate at which biological aging occurs varies across individuals of the same age and is influenced by a wide range of genetic and environmental exposures. The authors review the hallmarks of biological cardiovascular aging and their capture using imaging and other noninvasive techniques and examine how this information may be used to understand aging trajectories, with the aim of guiding individual- and population-level interventions to promote healthy aging.
Collapse
Affiliation(s)
- Zahra Raisi-Estabragh
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom.
| | - Liliana Szabo
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Art Schuermans
- Faculty of Medicine, KU Leuven, Leuven, Belgium; Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ahmed M Salih
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Department of Population Health Sciences, University of Leicester, Leicester UK; Department of Computer Science, Faculty of Science, University of Zakho, Zakho, Kurdistan Region, Iraq
| | - Calvin W L Chin
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore; Cardiovascular Academic Clinical Programme, Duke National University of Singapore Medical School, Singapore, Singapore
| | - Hajnalka Vágó
- Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Andre Altmann
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pankaj Garg
- University of East Anglia, Norwich Medical School, Norwich, United Kingdom; Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy; Padua Hospital, Occupational Medicine Unit, Padua, Italy; University Center for Space Studies and Activities "Giuseppe Colombo" - CISAS, University of Padua, Padua, Italy
| | | | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; Health Data Research UK, London, United Kingdom
| |
Collapse
|
16
|
Chiu KC, Hsieh MS, Huang YT, Liu CY. Exposure to ambient temperature and heat index in relation to DNA methylation age: A population-based study in Taiwan. ENVIRONMENT INTERNATIONAL 2024; 186:108581. [PMID: 38507934 DOI: 10.1016/j.envint.2024.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Climate change caused an increase in ambient temperature in the past decades. Exposure to high ambient temperature could result in biological aging, but relevant studies in a warm environment were lacking. We aimed to study the exposure effects of ambient temperature and heat index (HI) in relation to age acceleration in Taiwan, a subtropical island in Asia. METHODS The study included 2,084 participants from Taiwan Biobank. Daily temperature and relative humidity data were collected from weather monitoring stations. Individual residential exposure was estimated by ordinary kriging. Moving averages of ambient temperature and HI from 1 to 180 days prior to enrollment were calculated to estimate the exposure effects in multiple time periods. Age acceleration was defined as the difference between DNA methylation age and chronological age. DNA methylation age was calculated by the Horvath's, Hannum's, Weidner's, ELOVL2, FHL2, phenotypic (Pheno), Skin & blood, and GrimAge2 (Grim2) DNA methylation age algorithms. Multivariable linear regression models, generalized additive models (GAMs), and distributed lag non-linear models (DLNMs) were conducted to estimate the effects of ambient temperature and HI exposures in relation to age acceleration. RESULTS Exposure to high ambient temperature and HI were associated with increased age acceleration, and the associations were stronger in prolonged exposure. The heat stress days with maximum HI in caution (80-90°F), extreme caution (90-103°F), danger (103-124°F), and extreme danger (>124°F) were also associated with increased age acceleration, especially in the extreme danger days. Each extreme danger day was associated with 571.38 (95 % CI: 42.63-1100.13), 528.02 (95 % CI: 36.16-1019.87), 43.9 (95 % CI: 0.28-87.52), 16.82 (95 % CI: 2.36-31.28) and 15.52 (95 % CI: 2.17-28.88) days increase in the Horvath's, Hannum's, Weidner's, Pheno, and Skin & blood age acceleration, respectively. CONCLUSION High ambient temperature and HI may accelerate biological aging.
Collapse
Affiliation(s)
- Kuan-Chih Chiu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ming-Shun Hsieh
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan, Taiwan; Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Department of Mathematics, College of Science, National Taiwan University, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chen-Yu Liu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Population Health Research Center, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
17
|
Vlasschaert C, Lanktree MB, Rauh MJ, Kelly TN, Natarajan P. Clonal haematopoiesis, ageing and kidney disease. Nat Rev Nephrol 2024; 20:161-174. [PMID: 37884787 PMCID: PMC10922936 DOI: 10.1038/s41581-023-00778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) is a preclinical condition wherein a sizeable proportion of an individual's circulating blood cells are derived from a single mutated haematopoietic stem cell. CHIP occurs frequently with ageing - more than 10% of individuals over 65 years of age are affected - and is associated with an increased risk of disease across several organ systems and premature death. Emerging evidence suggests that CHIP has a role in kidney health, including associations with predisposition to acute kidney injury, impaired recovery from acute kidney injury and kidney function decline, both in the general population and among those with chronic kidney disease. Beyond its direct effect on the kidney, CHIP elevates the susceptibility of individuals to various conditions that can detrimentally affect the kidneys, including cardiovascular disease, obesity and insulin resistance, liver disease, gout, osteoporosis and certain autoimmune diseases. Aberrant pro-inflammatory signalling, telomere attrition and epigenetic ageing are potential causal pathophysiological pathways and mediators that underlie CHIP-related disease risk. Experimental animal models have shown that inhibition of inflammatory cytokine signalling can ameliorate many of the pathological effects of CHIP, and assessment of the efficacy and safety of this class of medications for human CHIP-associated pathology is ongoing.
Collapse
Affiliation(s)
| | - Matthew B Lanktree
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Dalecka A, Bartoskova Polcrova A, Pikhart H, Bobak M, Ksinan AJ. Living in poverty and accelerated biological aging: evidence from population-representative sample of U.S. adults. BMC Public Health 2024; 24:458. [PMID: 38350911 PMCID: PMC10865704 DOI: 10.1186/s12889-024-17960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Biological aging reflects a decline in the functions and integrity of the human body that is closely related to chronological aging. A variety of biomarkers have been found to predict biological age. Biological age higher than chronological age (biological age acceleration) indicates an accelerated state of biological aging and a higher risk of premature morbidity and mortality. This study investigated how socioeconomic disadvantages influence biological aging. METHODS The data from the National Health and Nutrition Examination Survey (NHANES) IV, including 10 nationally representative cross-sectional surveys between 1999-2018, were utilized. The analytic sample consisted of N = 48,348 individuals (20-84 years). We used a total of 11 biomarkers for estimating the biological age. Our main outcome was biological age acceleration, indexed by PhenoAge acceleration (PAA) and Klemera-Doubal biological age acceleration (KDM-A). Poverty was measured as a ratio of family income to the poverty thresholds defined by the U.S. Census Bureau, adjusted annually for inflation and family size (5 categories). The PAA and KDM-A were regressed on poverty levels, age, their interaction, education, sex, race, and a data collection wave. Sample weights were used to make the estimates representative of the U.S. adult population. RESULTS The results showed that higher poverty was associated with accelerated biological aging (PAA: unstandardized coefficient B = 1.38 p <.001, KDM: B = 0.96, p = .026 when comparing the highest and the lowest poverty level categories), above and beyond other covariates. The association between PAA and KDM-A and age was U-shaped. Importantly, there was an interaction between poverty levels and age (p <.001), as the effect of poverty was most pronounced in middle-aged categories while it was modest in younger and elderly groups. CONCLUSION In a nationally representative US adult population, we found that higher poverty was positively associated with the acceleration of biological age, particularly among middle-aged persons.
Collapse
Affiliation(s)
- Andrea Dalecka
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | | | - Hynek Pikhart
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Martin Bobak
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Albert J Ksinan
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
19
|
El Kabbout R, Azhar N, Breuils-Bonnet S, Martineau S, Krishna V, Kalyana-Sundaram S, Boucherat O, Provencher S, Bonnet S, Potus F. Time Is Running Out in Pulmonary Arterial Hypertension: The Epigenetic Clock Is Clicking. Am J Respir Cell Mol Biol 2024; 70:140-143. [PMID: 38299796 DOI: 10.1165/rcmb.2023-0335le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Affiliation(s)
- Reem El Kabbout
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ) Québec, Québec, Canada
| | - Nabil Azhar
- Janssen Research & Development Spring House, Pennsylvania
| | - Sandra Breuils-Bonnet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ) Québec, Québec, Canada
| | - Sandra Martineau
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ) Québec, Québec, Canada
| | - Vinod Krishna
- Janssen Research & Development Spring House, Pennsylvania
| | | | - Olivier Boucherat
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ) Québec, Québec, Canada
| | - Steeve Provencher
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ) Québec, Québec, Canada
| | - Sébastien Bonnet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ) Québec, Québec, Canada
| | - François Potus
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ) Québec, Québec, Canada
| |
Collapse
|
20
|
Bey GS, Pike JR, Zannas AS, Xiao Q, Yu B, Shah AM, Palta P. The Relationship of Neighborhood Disadvantage, Biological Aging, and Psychosocial Risk and Resilience Factors in Heart Failure Incidence Among Black Persons: A Moderated Mediation Analysis. J Gerontol B Psychol Sci Soc Sci 2024; 79:gbad121. [PMID: 37591789 PMCID: PMC10745279 DOI: 10.1093/geronb/gbad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 08/19/2023] Open
Abstract
OBJECTIVES Deprived living environments contribute to greater heart failure (HF) risk among non-Hispanic Black persons, who disproportionately occupy disadvantaged neighborhoods. The mechanisms for these effects are not fully explicated, partially attributable to an insufficient understanding of the individual factors that contribute additional risk or resilience to the impact of neighborhood disadvantage on health. The objective of this study was, therefore, to clarify the complex pathways over which such exposures act to facilitate more targeted, effective interventions. Given the evidence for a mediating role of biological age and a moderating role of individual psychosocial characteristics in the neighborhood disadvantage-HF link, we tested a moderated mediation mechanism. METHODS Using multilevel causal moderated mediation models, we prospectively examined whether the association of neighborhood disadvantage with incident HF mediated through accelerated biological aging, captured by the GrimAge epigenetic clock, is moderated by hypothesized psychosocial risk (negative affect) and resilience (optimism) factors. RESULTS Among a sample of 1,448 Black participants in the shared Jackson Heart Study-Atherosclerosis Risk in Communities cohort (mean age 64.3 years), 334 adjudicated incident hospitalized HF events occurred over a median follow-up of 18 years. In models adjusted for age and sex, the indirect (GrimAge-mediated) effect of neighborhood disadvantage was moderated by psychosocial risk such that for every standard deviation increase in negative affect the hazards of HF was 1.18 (95% confidence interval = 1.05, 1.36). No moderated mediation effect was detected for optimism. DISCUSSION Findings support the necessity for multilevel interventions simultaneously addressing neighborhood and individual psychosocial risk in the reduction of HF among Black persons.
Collapse
Affiliation(s)
- Ganga S Bey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James R Pike
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Anthony S Zannas
- Department of Psychiatry and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Qian Xiao
- University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Bing Yu
- School of Public Health, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Amil M Shah
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Priya Palta
- Department of Neurology, University of North Carolina at Chapel Hill School of MedicineChapel Hill, North Carolina, USA
| |
Collapse
|
21
|
Tournoy TK, Moons P, Daelman B, De Backer J. Biological Age in Congenital Heart Disease-Exploring the Ticking Clock. J Cardiovasc Dev Dis 2023; 10:492. [PMID: 38132660 PMCID: PMC10743752 DOI: 10.3390/jcdd10120492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Over the past 50 years, there has been a major shift in age distribution of patients with congenital heart disease (CHD) thanks to significant advancements in medical and surgical treatment. Patients with CHD are, however, never cured and face unique challenges throughout their lives. In this review, we discuss the growing data suggesting accelerated aging in this population. Adults with CHD are more often and at a younger age confronted with age-related cardiovascular complications such as heart failure, arrhythmia, and coronary artery disease. These can be related to the original birth defect, complications of correction, or any residual defects. In addition, and less deductively, more systemic age-related complications are seen earlier, such as renal dysfunction, lung disease, dementia, stroke, and cancer. The occurrence of these complications at a younger age makes it imperative to further map out the aging process in patients across the spectrum of CHD. We review potential feasible markers to determine biological age and provide an overview of the current data. We provide evidence for an unmet need to further examine the aging paradigm as this stresses the higher need for care and follow-up in this unique, newly aging population. We end by exploring potential approaches to improve lifespan care.
Collapse
Affiliation(s)
- Tijs K. Tournoy
- Department of Cardiology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Philip Moons
- KU Leuven Department of Public Health and Primary Care, University of Leuven, 3000 Leuven, Belgium
- Institute of Health and Care Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Pediatrics and Child Health, University of Cape Town, Cape Town 7700, South Africa
| | - Bo Daelman
- KU Leuven Department of Public Health and Primary Care, University of Leuven, 3000 Leuven, Belgium
| | - Julie De Backer
- Department of Cardiology, Ghent University Hospital, 9000 Ghent, Belgium;
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
22
|
Bey G, Pike J, Palta P, Zannas A, Xiao Q, Love SA, Heiss G. Biological Age Mediates the Effects of Perceived Neighborhood Problems on Heart Failure Risk Among Black Persons. J Racial Ethn Health Disparities 2023; 10:3018-3030. [PMID: 36469285 PMCID: PMC10322228 DOI: 10.1007/s40615-022-01476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/09/2022]
Abstract
OBJECTIVE We assessed whether biological age, measured by the epigenetic clock GrimAge, mediates the association of objective and subjective neighborhood disadvantage with incident HF among Black persons. METHODS Participants were 1448 self-reported Black adults (mean age (standard deviation, SD) = 64.3 (5.5)) dually enrolled in two community-based cohorts in Jackson, Mississippi, the ARIC and JHS cohorts, who were free of HF as of January 1, 2000. Incident HF events leading to hospitalization through December 31, 2017, were classified using ICD-9 discharge codes of HF. Multilevel age- and sex-adjusted Cox causal mediation models were used to examine whether biological age (at the person and neighborhood level) mediated the effects of objective (the National Area Deprivation Index, ADI) and subjective (perceived neighborhood problems) neighborhood disadvantage on incident HF. RESULTS A total of 334 incident hospitalized HF events occurred over a median follow-up of 18.0 years. The total effect of the ADI and perceived neighborhood problems (SD units) on HF was hazard ration (HR) = 1.26 and 95% confidence interval (CI) 0.98-1.56 and HR = 1.26 and 95% CI 1.10-1.41, respectively. GrimAge mediated a majority of the effect of perceived neighborhood problems on HF (person-level indirect effect HR = 1.07; 95% CI 1.02-1.12 and neighborhood-level indirect effect HR = 1.18; 95% CI 1.03-1.34), with the combined indirect effect explaining 94.8% of the relationship. The combined indirect effect of ADI on incident HF was comparable but not statistically significant. CONCLUSIONS Subjective neighborhood disadvantage may confer an increased risk of HF among Black populations.
Collapse
Affiliation(s)
- Ganga Bey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - James Pike
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Priya Palta
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony Zannas
- Departments of Psychiatry and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qian Xiao
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Shelly-Ann Love
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
23
|
Jiang EX, Domingo-Relloso A, Abuawad A, Haack K, Tellez-Plaza M, Fallin MD, Umans JG, Best LG, Zhang Y, Kupsco A, Belsky DW, Cole SA, Navas-Acien A. Arsenic Exposure and Epigenetic Aging: The Association with Cardiovascular Disease and All-Cause Mortality in the Strong Heart Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127016. [PMID: 38133959 PMCID: PMC10743589 DOI: 10.1289/ehp11981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Inorganic arsenic (As) may increase the risk of cardiovascular disease (CVD) and all-cause mortality through accelerated aging, which can be estimated using epigenetic-based measures. OBJECTIVES We evaluated three DNA methylation-based aging measures (PhenoAge, GrimAge, DunedinPACE) (epigenetic aging measures) as potential mediators of the previously reported association of As exposure with CVD incidence, CVD mortality, and all-cause mortality in the Strong Heart Study (SHS), an epidemiological cohort of American Indian adults. METHODS Blood DNA methylation and urinary As levels were measured in 2,323 SHS participants (41.5% men, mean age of 55 years old). PhenoAge and GrimAge values were calculated using a residual-based method. We tested the association of urinary As with epigenetic aging measures using linear regression, the association of epigenetic aging measures with the three health outcomes using additive hazards models, and the mediation of As-related CVD incidence, CVD mortality, and all-cause mortality by epigenetic aging measures using the product of coefficients method. RESULTS SHS participants with higher vs. lower urinary As levels had similar PhenoAge age, older GrimAge age, and faster DunedinPACE. An interquartile range increase in urinary As was associated with higher of PhenoAge age acceleration [mean difference ( 95 % confidence interval ) = 0.48 (0.17, 0.80) years], GrimAge age acceleration [0.80 (0.60, 1.00) years], and DunedinPACE [0.011 (0.005, 0.018)], after adjusting for age, sex, center location, genetic components, smoking status, and body mass index. Of the 347 incident CVD events per 100,000 person-years associated with a doubling in As exposure, 21.3% (9.1, 57.1) and 22.6% (9.5, 56.9), were attributable to differences in GrimAge and DunedinPACE, respectively. DISCUSSION Arsenic exposure was associated with older GrimAge and faster DunedinPACE measures of biological age. Furthermore, accelerated biological aging measured from DNA methylation accounted for a relevant fraction of As-associated risk for CVD, CVD mortality, and all-cause mortality in the SHS, supporting the role of As in accelerated aging. Research of the biological underpinnings can contribute to a better understanding of the role of aging in arsenic-related disease. https://doi.org/10.1289/EHP11981.
Collapse
Affiliation(s)
- Enoch X. Jiang
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
- Department of Statistics and Operations Research, University of Valencia, Valencia, Spain
| | - Ahlam Abuawad
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - M. Danielle Fallin
- Department of Mental Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jason G. Umans
- MedStar Health Research Institute, Washington, DC, USA
- Center for Clinical and Translational Sciences, Georgetown/Howard Universities, Washington, DC, USA
| | - Lyle G. Best
- Missouri Breaks Industries Research, Eagle Butte, South Dakota, USA
| | - Ying Zhang
- Center for American Indian Health Research, Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Daniel W. Belsky
- Department of Epidemiology, Columbia University, New York, USA
- Butler Columbia Aging Center, Columbia University, New York, USA
| | - Shelley A. Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| |
Collapse
|
24
|
Topriceanu CC, Dev E, Ahmad M, Hughes R, Shiwani H, Webber M, Direk K, Wong A, Ugander M, Moon JC, Hughes AD, Maddock J, Schlegel TT, Captur G. Accelerated DNA methylation age plays a role in the impact of cardiovascular risk factors on the human heart. Clin Epigenetics 2023; 15:164. [PMID: 37853450 PMCID: PMC10583368 DOI: 10.1186/s13148-023-01576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND DNA methylation (DNAm) age acceleration (AgeAccel) and cardiac age by 12-lead advanced electrocardiography (A-ECG) are promising biomarkers of biological and cardiac aging, respectively. We aimed to explore the relationships between DNAm age and A-ECG heart age and to understand the extent to which DNAm AgeAccel relates to cardiovascular (CV) risk factors in a British birth cohort from 1946. RESULTS We studied four DNAm ages (AgeHannum, AgeHorvath, PhenoAge, and GrimAge) and their corresponding AgeAccel. Outcomes were the results from two publicly available ECG-based cardiac age scores: the Bayesian A-ECG-based heart age score of Lindow et al. 2022 and the deep neural network (DNN) ECG-based heart age score of Ribeiro et al. 2020. DNAm AgeAccel was also studied relative to results from two logistic regression-based A-ECG disease scores, one for left ventricular (LV) systolic dysfunction (LVSD), and one for LV electrical remodeling (LVER). Generalized linear models were used to explore the extent to which any associations between biological cardiometabolic risk factors (body mass index, hypertension, diabetes, high cholesterol, previous cardiovascular disease [CVD], and any CV risk factor) and the ECG-based outcomes are mediated by DNAm AgeAccel. We derived the total effects, average causal mediation effects (ACMEs), average direct effects (ADEs), and the proportion mediated [PM] with their 95% confidence intervals [CIs]. 498 participants (all 60-64 years) were included, with the youngest ECG heart age being 27 and the oldest 90. When exploring the associations between cardiometabolic risk factors and Bayesian A-ECG cardiac age, AgeAccelPheno appears to be a partial mediator, as ACME was 0.23 years [0.01, 0.52] p = 0.028 (i.e., PM≈18%) for diabetes, 0.34 [0.03, 0.74] p = 0.024 (i.e., PM≈15%) for high cholesterol, and 0.34 [0.03, 0.74] p = 0.024 (PM≈15%) for any CV risk factor. Similarly, AgeAccelGrim mediates ≈30% of the relationship between diabetes or high cholesterol and the DNN ECG-based heart age. When exploring the link between cardiometabolic risk factors and the A-ECG-based LVSD and LVER scores, it appears that AgeAccelPheno or AgeAccelGrim mediate 10-40% of these associations. CONCLUSION By the age of 60, participants with accelerated DNA methylation appear to have older, weaker, and more electrically impaired hearts. We show that the harmful effects of CV risk factors on cardiac age and health, appear to be partially mediated by DNAm AgeAccelPheno and AgeAccelGrim. This highlights the need to further investigate the potential cardioprotective effects of selective DNA methyltransferases modulators.
Collapse
Affiliation(s)
- Constantin-Cristian Topriceanu
- UCL MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, UK
- UCL Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6BT, UK
- Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK
| | - Eesha Dev
- UCL Medical School, Gower Street, London, UK
| | - Mahmood Ahmad
- Centre for Inherited Heart Muscle Conditions, The Royal Free Hospital, Pond Street, Hampstead, London, UK
| | - Rebecca Hughes
- UCL Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6BT, UK
- Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK
| | - Hunain Shiwani
- UCL Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6BT, UK
- Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK
| | - Matthew Webber
- UCL MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, UK
- UCL Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6BT, UK
| | - Kenan Direk
- UCL MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, UK
| | - Andrew Wong
- UCL MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, UK
| | - Martin Ugander
- Kolling Institute Royal North Shore Hospital, and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - James C Moon
- UCL Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6BT, UK
- Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK
| | - Alun D Hughes
- UCL MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, UK
- UCL Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6BT, UK
| | - Jane Maddock
- UCL MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, UK
- UCL Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6BT, UK
| | - Todd T Schlegel
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
- Nicollier-Schlegel SARL, Trélex, Switzerland
| | - Gabriella Captur
- UCL MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, UK.
- UCL Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6BT, UK.
- Centre for Inherited Heart Muscle Conditions, The Royal Free Hospital, Pond Street, Hampstead, London, UK.
| |
Collapse
|
25
|
Rabkin SW, Wong CN. Epigenetics in Heart Failure: Role of DNA Methylation in Potential Pathways Leading to Heart Failure with Preserved Ejection Fraction. Biomedicines 2023; 11:2815. [PMID: 37893188 PMCID: PMC10604152 DOI: 10.3390/biomedicines11102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
This review will focus on epigenetic modifications utilizing the DNA methylation mechanism, which is potentially involved in the pathogenesis of heart failure with preserved ejection fraction (HFpEF). The putative pathways of HFpEF will be discussed, specifically myocardial fibrosis, myocardial inflammation, sarcoplasmic reticulum Ca2+-ATPase, oxidative-nitrosative stress, mitochondrial and metabolic defects, as well as obesity. The relationship of HFpEF to aging and atrial fibrillation will be examined from the perspective of DNA methylation.
Collapse
Affiliation(s)
- Simon W. Rabkin
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Division of Cardiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Chenille N. Wong
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
26
|
Yaskolka Meir A, Keller M, Hoffmann A, Rinott E, Tsaban G, Kaplan A, Zelicha H, Hagemann T, Ceglarek U, Isermann B, Shelef I, Blüher M, Stumvoll M, Li J, Haange SB, Engelmann B, Rolle-Kampczyk U, von Bergen M, Hu FB, Stampfer MJ, Kovacs P, Liang L, Shai I. The effect of polyphenols on DNA methylation-assessed biological age attenuation: the DIRECT PLUS randomized controlled trial. BMC Med 2023; 21:364. [PMID: 37743489 PMCID: PMC10519069 DOI: 10.1186/s12916-023-03067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/31/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Epigenetic age is an estimator of biological age based on DNA methylation; its discrepancy from chronologic age warrants further investigation. We recently reported that greater polyphenol intake benefitted ectopic fats, brain function, and gut microbiota profile, corresponding with elevated urine polyphenols. The effect of polyphenol-rich dietary interventions on biological aging is yet to be determined. METHODS We calculated different biological aging epigenetic clocks of different generations (Horvath2013, Hannum2013, Li2018, Horvath skin and blood2018, PhenoAge2018, PCGrimAge2022), their corresponding age and intrinsic age accelerations, and DunedinPACE, all based on DNA methylation (Illumina EPIC array; pre-specified secondary outcome) for 256 participants with abdominal obesity or dyslipidemia, before and after the 18-month DIRECT PLUS randomized controlled trial. Three interventions were assigned: healthy dietary guidelines, a Mediterranean (MED) diet, and a polyphenol-rich, low-red/processed meat Green-MED diet. Both MED groups consumed 28 g walnuts/day (+ 440 mg/day polyphenols). The Green-MED group consumed green tea (3-4 cups/day) and Mankai (Wolffia globosa strain) 500-ml green shake (+ 800 mg/day polyphenols). Adherence to the Green-MED diet was assessed by questionnaire and urine polyphenols metabolomics (high-performance liquid chromatography quadrupole time of flight). RESULTS Baseline chronological age (51.3 ± 10.6 years) was significantly correlated with all methylation age (mAge) clocks with correlations ranging from 0.83 to 0.95; p < 2.2e - 16 for all. While all interventions did not differ in terms of changes between mAge clocks, greater Green-Med diet adherence was associated with a lower 18-month relative change (i.e., greater mAge attenuation) in Li and Hannum mAge (beta = - 0.41, p = 0.004 and beta = - 0.38, p = 0.03, respectively; multivariate models). Greater Li mAge attenuation (multivariate models adjusted for age, sex, baseline mAge, and weight loss) was mostly affected by higher intake of Mankai (beta = - 1.8; p = 0.061) and green tea (beta = - 1.57; p = 0.0016) and corresponded with elevated urine polyphenols: hydroxytyrosol, tyrosol, and urolithin C (p < 0.05 for all) and urolithin A (p = 0.08), highly common in green plants. Overall, participants undergoing either MED-style diet had ~ 8.9 months favorable difference between the observed and expected Li mAge at the end of the intervention (p = 0.02). CONCLUSIONS This study showed that MED and green-MED diets with increased polyphenols intake, such as green tea and Mankai, are inversely associated with biological aging. To the best of our knowledge, this is the first clinical trial to indicate a potential link between polyphenol intake, urine polyphenols, and biological aging. TRIAL REGISTRATION ClinicalTrials.gov, NCT03020186.
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Maria Keller
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University of Leipzig, Liebigstrasse 21, 04103, Leipzig, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
| | - Ehud Rinott
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel
| | - Gal Tsaban
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel
- Soroka University Medical Center, 84101, Be'er Sheva, Israel
| | - Alon Kaplan
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel
| | - Hila Zelicha
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel
| | - Tobias Hagemann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Ilan Shelef
- Soroka University Medical Center, 84101, Be'er Sheva, Israel
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University of Leipzig, Liebigstrasse 21, 04103, Leipzig, Germany
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University of Leipzig, Liebigstrasse 21, 04103, Leipzig, Germany
| | - Jun Li
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, MA, 02115, USA
| | - Sven-Bastian Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318, Leipzig, Germany
| | - Beatrice Engelmann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318, Leipzig, Germany
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, 04103, Leipzig, Germany
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Meir J Stampfer
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University of Leipzig, Liebigstrasse 21, 04103, Leipzig, Germany.
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA.
| | - Iris Shai
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel.
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- Faculty of Medicine, Leipzig University, Leipzig, 04103, Germany.
| |
Collapse
|
27
|
Song Y, Liu YS, Talarico F, Zhang Y, Hayward J, Wang M, Stroulia E, Dixon RA, Greiner R, Li X, Greenshaw A, Jie S, Cao B. Associations between Differential Aging and Lifestyle, Environment, Current, and Future Health Conditions: Findings from Canadian Longitudinal Study on Aging. Gerontology 2023; 69:1394-1403. [PMID: 37725932 DOI: 10.1159/000534015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Abstract
INTRODUCTION An aging population will bring a pressing challenge for the healthcare system. Insights into promoting healthy longevity can be gained by quantifying the biological aging process and understanding the roles of modifiable lifestyle and environmental factors, and chronic disease conditions. METHODS We developed a biological age (BioAge) index by applying multiple state-of-art machine learning models based on easily accessible blood test data from the Canadian Longitudinal Study of Aging (CLSA). The BioAge gap, which is the difference between BioAge index and chronological age, was used to quantify the differential aging, i.e., the difference between biological and chronological age, of the CLSA participants. We further investigated the associations between the BioAge gap and lifestyle, environmental factors, and current and future health conditions. RESULTS BioAge gap had strong associations with existing adverse health conditions (e.g., cancers, cardiovascular diseases, diabetes, and kidney diseases) and future disease onset (e.g., Parkinson's disease, diabetes, and kidney diseases). We identified that frequent consumption of processed meat, pork, beef, and chicken, poor outcomes in nutritional risk screening, cigarette smoking, exposure to passive smoking are associated with positive BioAge gap ("older" BioAge than expected). We also identified several modifiable factors, including eating fruits, legumes, vegetables, related to negative BioAge gap ("younger" BioAge than expected). CONCLUSIONS Our study shows that a BioAge index based on easily accessible blood tests has the potential to quantify the differential biological aging process that can be associated with current and future adverse health events. The identified risk and protective factors for differential aging indicated by BioAge gap are informative for future research and guidelines to promote healthy longevity.
Collapse
Affiliation(s)
- Yipeng Song
- University of Alberta, Department of Psychiatry, Edmonton, Alberta, Canada,
| | - Yang S Liu
- University of Alberta, Department of Psychiatry, Edmonton, Alberta, Canada
| | - Fernanda Talarico
- University of Alberta, Department of Psychiatry, Edmonton, Alberta, Canada
| | - Yanbo Zhang
- University of Alberta, Department of Psychiatry, Edmonton, Alberta, Canada
| | - Jake Hayward
- University of Alberta, Department of Emergency Medicine, Edmonton, Alberta, Canada
| | - Mengzhe Wang
- Ministry of Health (Alberta), Edmonton, Alberta, Canada
| | - Eleni Stroulia
- University of Alberta, Department of Computing Science, Edmonton, Alberta, Canada
| | - Roger A Dixon
- University of Alberta, Department of Psychology, Edmonton, Alberta, Canada
| | - Russell Greiner
- University of Alberta, Department of Psychiatry, Edmonton, Alberta, Canada
- University of Alberta, Department of Computing Science, Edmonton, Alberta, Canada
| | - Xinmin Li
- University of Alberta, Department of Psychiatry, Edmonton, Alberta, Canada
| | - Andrew Greenshaw
- University of Alberta, Department of Psychiatry, Edmonton, Alberta, Canada
| | - Sui Jie
- University of Aberdeen, The School of Psychology, Aberdeen, UK
| | - Bo Cao
- University of Alberta, Department of Psychiatry, Edmonton, Alberta, Canada
- University of Alberta, Department of Computing Science, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Zhang R, Wu M, Zhang W, Liu X, Pu J, Wei T, Zhu Z, Tang Z, Wei N, Liu B, Cui Q, Wang J, Liu F, Lv Y. Association between life's essential 8 and biological ageing among US adults. J Transl Med 2023; 21:622. [PMID: 37710295 PMCID: PMC10503107 DOI: 10.1186/s12967-023-04495-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Biological ageing is tightly linked to cardiovascular disease (CVD). We aimed to investigate the relationship between Life's Essential 8 (LE8), a currently updated measure of cardiovascular health (CVH), and biological ageing. METHODS This cross-sectional study selected adults ≥ 20 years of age from the 2005-2010 National Health and Nutrition Examination Survey. LE8 scores (range 0-100) were obtained from measurements based on American Heart Association definitions, divided into health behavior and health factor scores. Biological ageing was assessed by different methods including phenotypic age, phenotypic age acceleration (PhenoAgeAccel), biological age and biological age acceleration (BioAgeAccel). Correlations were analyzed by weighted linear regression and restricted cubic spline models. RESULTS Of the 11,729 participants included, the mean age was 47.41 ± 0.36 years and 5983 (51.01%) were female. The mean phenotypic and biological ages were 42.96 ± 0.41 and 46.75 ± 0.39 years, respectively, and the mean LE8 score was 67.71 ± 0.35. After adjusting for potential confounders, higher LE8 scores were associated with lower phenotypic age, biological age, PhenoAgeAccel, and BioAgeAccel, with nonlinear dose-response relationships. Negative associations were also found between health behavior and health factor scores and biological ageing, and were stronger for health factors. In health factor-specific analyses, the β negativity was greater for blood glucose and blood pressure. The inverse correlations of LE8 scores with phenotypic age and biological age in the stratified analyses remained solid across strata. CONCLUSIONS LE8 and its subscale scores were strongly negatively related to biological ageing. Encouraging optimal CVH levels may be advantageous in preventing and slowing down ageing.
Collapse
Affiliation(s)
- Ronghuai Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Min Wu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Wei Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Xuna Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jie Pu
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Tao Wei
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
- Department of Cardiovascular Surgery, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Zhanfang Zhu
- Xi'an Jiaotong University Hospital, Xi'an, People's Republic of China
| | - Zhiguo Tang
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Na Wei
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Bo Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Qianwei Cui
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Junkui Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Fuqiang Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China
| | - Ying Lv
- Department of Cardiology, Shaanxi Provincial People's Hospital, No. 256, Youyixi Road, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
29
|
Sumner JA, Gao X, Gambazza S, Dye CK, Colich NL, Baccarelli AA, Uddin M, McLaughlin KA. Stressful life events and accelerated biological aging over time in youths. Psychoneuroendocrinology 2023; 151:106058. [PMID: 36827906 PMCID: PMC10364461 DOI: 10.1016/j.psyneuen.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/20/2023]
Abstract
Experiencing adversity in childhood and adolescence, including stressful life events (SLEs), may accelerate the pace of development, leading to adverse mental and physical health. However, most research on adverse early experiences and biological aging (BA) in youths relies on cross-sectional designs. In 171 youths followed for approximately 2 years, we examined if SLEs over follow-up predicted rate of change in two BA metrics: epigenetic age and Tanner stage. We also investigated if rate of change in BA was associated with changes in depressive symptoms over time. Youths aged 8-16 years at baseline self-reported Tanner stage and depressive symptoms at baseline and follow-up and provided saliva samples for DNA at both assessments. Horvath epigenetic age estimates were derived from DNA methylation data measured with the Illumina EPIC array. At follow-up, contextual threat interviews were administered to youths and caregivers to assess youths' experiences of past-year SLEs. Interviews were objectively coded by an independent rating team to generate a SLE impact score, reflecting the severity of all SLEs occurring over the prior year. Rate of change in BA metrics was operationalized as change in epigenetic age or Tanner stage as a function of time between assessments. Higher objective SLE impact scores over follow-up were related to a greater rate of change in epigenetic age (β = 0.21, p = .043). Additionally, among youths with lower-but not higher-Tanner stage at baseline, there was a positive association of SLE impact scores with rate of change in Tanner stage (Baseline Tanner Stage × SLE Impact Score interaction: β = - 0.21, p = .011). A greater rate of change in epigenetic age was also associated with higher depressive symptom levels at follow-up, adjusting for baseline symptoms (β = 0.15, p = .043). Associations with epigenetic age were similar, although slightly attenuated, when adjusting for epithelial (buccal) cell proportions. Whereas much research in youths has focused on severe experiences of early adversity, we demonstrate that more commonly experienced SLEs during adolescence may also contribute to accelerated BA. Further research is needed to understand the long-term consequences of changes in BA metrics for health.
Collapse
Affiliation(s)
- Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Psychology Building 1285, Box 951563, Los Angeles, CA 90095, USA.
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, Peking University, Xueyuan Rd. 38, Haidian District, Beijing, China; Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 W. 168th Street, New York, NY 10032, USA
| | - Simone Gambazza
- Department of Clinical Sciences and Community Health, University of Milan, via Celoria 22, 20133 Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Healthcare Professions Department, via Francesco Sforza, 35, 20122 Milan, Italy
| | - Christian K Dye
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 W. 168th Street, New York, NY 10032, USA
| | - Natalie L Colich
- Department of Psychology, Harvard University, William James Hall, 1270, 33 Kirkland Street, Cambridge, MA 02138, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 W. 168th Street, New York, NY 10032, USA
| | - Monica Uddin
- Genomics Program, University of South Florida, College of Public Health, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - Katie A McLaughlin
- Department of Psychology, Harvard University, William James Hall, 1270, 33 Kirkland Street, Cambridge, MA 02138, USA
| |
Collapse
|
30
|
Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet 2023; 24:332-344. [PMID: 36717624 PMCID: PMC10562207 DOI: 10.1038/s41576-022-00569-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/01/2023]
Abstract
A substantial proportion of disease risk for common complex disorders is attributable to environmental exposures and pollutants. An appreciation of how environmental pollutants act on our cells to produce deleterious health effects has led to advances in our understanding of the molecular mechanisms underlying the pathogenesis of chronic diseases, including cancer and cardiovascular, neurodegenerative and respiratory diseases. Here, we discuss emerging research on the interplay of environmental pollutants with the human genome and epigenome. We review evidence showing the environmental impact on gene expression through epigenetic modifications, including DNA methylation, histone modification and non-coding RNAs. We also highlight recent studies that evaluate recently discovered molecular processes through which the environment can exert its effects, including extracellular vesicles, the epitranscriptome and the mitochondrial genome. Finally, we discuss current challenges when studying the exposome - the cumulative measure of environmental influences over the lifespan - and its integration into future environmental health research.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Christina M Eckhardt
- Department of Pulmonary, Allergy and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
31
|
Mavromatis LA, Rosoff DB, Bell AS, Jung J, Wagner J, Lohoff FW. Multi-omic underpinnings of epigenetic aging and human longevity. Nat Commun 2023; 14:2236. [PMID: 37076473 PMCID: PMC10115892 DOI: 10.1038/s41467-023-37729-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/28/2023] [Indexed: 04/21/2023] Open
Abstract
Biological aging is accompanied by increasing morbidity, mortality, and healthcare costs; however, its molecular mechanisms are poorly understood. Here, we use multi-omic methods to integrate genomic, transcriptomic, and metabolomic data and identify biological associations with four measures of epigenetic age acceleration and a human longevity phenotype comprising healthspan, lifespan, and exceptional longevity (multivariate longevity). Using transcriptomic imputation, fine-mapping, and conditional analysis, we identify 22 high confidence associations with epigenetic age acceleration and seven with multivariate longevity. FLOT1, KPNA4, and TMX2 are novel, high confidence genes associated with epigenetic age acceleration. In parallel, cis-instrument Mendelian randomization of the druggable genome associates TPMT and NHLRC1 with epigenetic aging, supporting transcriptomic imputation findings. Metabolomics Mendelian randomization identifies a negative effect of non-high-density lipoprotein cholesterol and associated lipoproteins on multivariate longevity, but not epigenetic age acceleration. Finally, cell-type enrichment analysis implicates immune cells and precursors in epigenetic age acceleration and, more modestly, multivariate longevity. Follow-up Mendelian randomization of immune cell traits suggests lymphocyte subpopulations and lymphocytic surface molecules affect multivariate longevity and epigenetic age acceleration. Our results highlight druggable targets and biological pathways involved in aging and facilitate multi-omic comparisons of epigenetic clocks and human longevity.
Collapse
Affiliation(s)
- Lucas A Mavromatis
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Daniel B Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- NIH-Oxford-Cambridge Scholars Program, University of Oxford, Oxford, UK
| | - Andrew S Bell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Mohanraj L, Wolf H, Silvey S, Liu J, Toor A, Swift-Scanlan T. DNA Methylation Changes in Autologous Hematopoietic Stem Cell Transplant Patients. Biol Res Nurs 2023; 25:310-325. [PMID: 36321693 PMCID: PMC10236442 DOI: 10.1177/10998004221135628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Blood cancers may be potentially cured with hematopoietic stem cell transplantation (HCT); however, standard pre-assessments for transplant eligibility do not capture all contributing factors for transplant outcomes. Epigenetic biomarkers predict outcomes in various diseases. This pilot study aims to explore epigenetic changes (epigenetic age and differentially methylated genes) in patients before and after autologous HCT, that can serve as potential biomarkers to better predict HCT outcomes. METHODS This study used a prospective longitudinal study design to compare genome wide DNA methylation changes in 36 autologous HCT eligible patients recruited from the Cellular Immunotherapies and Transplant clinic at a designated National Cancer Center. RESULTS Genome-wide DNA methylation, measured by the Illumina Infinium Human Methylation 850K BeadChip, showed a significant difference in DNA methylation patterns post-HCT compared to pre-HCT. Compared to baseline levels of DNA methylation pre-HCT, 3358 CpG sites were hypo-methylated and 3687 were hyper-methylated. Identified differentially methylated positions overlapped with genes involved in hematopoiesis, blood cancers, inflammation and immune responses. Enrichment analyses showed significant alterations in biological processes such as immune response and cell structure organization, however no significant pathways were noted. Though participants had an advanced epigenetic age compared to chronologic age before and after HCT, both epigenetic age and accelerated age decreased post-HCT. CONCLUSION Epigenetic changes, both in epigenetic age and differentially methylated genes were observed in autologous HCT recipients, and should be explored as biomarkers to predict transplant outcomes after autologous HCT in larger, longitudinal studies.
Collapse
Affiliation(s)
- Lathika Mohanraj
- Department of Adult Health and Nursing
Systems, VCU School of Nursing, Richmond, VA, USA
| | - Hope Wolf
- Department of Human and Molecular Genetics, VCU School of Medicine, Richmond, VA, USA
| | - Scott Silvey
- Department of Biostatistics, VCU School of Medicine, Richmond, VA, USA
| | - Jinze Liu
- Department of Biostatistics, VCU School of Medicine, Richmond, VA, USA
| | - Amir Toor
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA, USA
| | - Theresa Swift-Scanlan
- Endowed Professor and Director,
Biobehavioral Research Lab, VCU School of Nursing, Richmond, VA, USA
| |
Collapse
|
33
|
Krolevets M, Cate VT, Prochaska JH, Schulz A, Rapp S, Tenzer S, Andrade-Navarro MA, Horvath S, Niehrs C, Wild PS. DNA methylation and cardiovascular disease in humans: a systematic review and database of known CpG methylation sites. Clin Epigenetics 2023; 15:56. [PMID: 36991458 PMCID: PMC10061871 DOI: 10.1186/s13148-023-01468-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/19/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death worldwide and considered one of the most environmentally driven diseases. The role of DNA methylation in response to the individual exposure for the development and progression of CVD is still poorly understood and a synthesis of the evidence is lacking. RESULTS A systematic review of articles examining measurements of DNA cytosine methylation in CVD was conducted in accordance with PRISMA (preferred reporting items for systematic reviews and meta-analyses) guidelines. The search yielded 5,563 articles from PubMed and CENTRAL databases. From 99 studies with a total of 87,827 individuals eligible for analysis, a database was created combining all CpG-, gene- and study-related information. It contains 74,580 unique CpG sites, of which 1452 CpG sites were mentioned in ≥ 2, and 441 CpG sites in ≥ 3 publications. Two sites were referenced in ≥ 6 publications: cg01656216 (near ZNF438) related to vascular disease and epigenetic age, and cg03636183 (near F2RL3) related to coronary heart disease, myocardial infarction, smoking and air pollution. Of 19,127 mapped genes, 5,807 were reported in ≥ 2 studies. Most frequently reported were TEAD1 (TEA Domain Transcription Factor 1) and PTPRN2 (Protein Tyrosine Phosphatase Receptor Type N2) in association with outcomes ranging from vascular to cardiac disease. Gene set enrichment analysis of 4,532 overlapping genes revealed enrichment for Gene Ontology molecular function "DNA-binding transcription activator activity" (q = 1.65 × 10-11) and biological processes "skeletal system development" (q = 1.89 × 10-23). Gene enrichment demonstrated that general CVD-related terms are shared, while "heart" and "vasculature" specific genes have more disease-specific terms as PR interval for "heart" or platelet distribution width for "vasculature." STRING analysis revealed significant protein-protein interactions between the products of the differentially methylated genes (p = 0.003) suggesting that dysregulation of the protein interaction network could contribute to CVD. Overlaps with curated gene sets from the Molecular Signatures Database showed enrichment of genes in hemostasis (p = 2.9 × 10-6) and atherosclerosis (p = 4.9 × 10-4). CONCLUSION This review highlights the current state of knowledge on significant relationship between DNA methylation and CVD in humans. An open-access database has been compiled of reported CpG methylation sites, genes and pathways that may play an important role in this relationship.
Collapse
Affiliation(s)
- Mykhailo Krolevets
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Systems Medicine, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Vincent Ten Cate
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jürgen H Prochaska
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Steffen Rapp
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
| | - Stefan Tenzer
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
- Systems Medicine, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
34
|
Kalla R, Adams AT, Nowak JK, Bergemalm D, Vatn S, Ventham NT, Kennedy NA, Ricanek P, Lindstrom J, Söderholm J, Pierik M, D’Amato M, Gomollón F, Olbjørn C, Richmond R, Relton C, Jahnsen J, Vatn MH, Halfvarson J, Satsangi J. Analysis of Systemic Epigenetic Alterations in Inflammatory Bowel Disease: Defining Geographical, Genetic and Immune-Inflammatory influences on the Circulating Methylome. J Crohns Colitis 2023; 17:170-184. [PMID: 36029471 PMCID: PMC10024547 DOI: 10.1093/ecco-jcc/jjac127] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Epigenetic alterations may provide valuable insights into gene-environment interactions in the pathogenesis of inflammatory bowel disease [IBD]. METHODS Genome-wide methylation was measured from peripheral blood using the Illumina 450k platform in a case-control study in an inception cohort (295 controls, 154 Crohn's disease [CD], 161 ulcerative colitis [UC], 28 IBD unclassified [IBD-U)] with covariates of age, sex and cell counts, deconvoluted by the Houseman method. Genotyping was performed using Illumina HumanOmniExpressExome-8 BeadChips and gene expression using the Ion AmpliSeq Human Gene Expression Core Panel. Treatment escalation was characterized by the need for biological agents or surgery after initial disease remission. RESULTS A total of 137 differentially methylated positions [DMPs] were identified in IBD, including VMP1/MIR21 [p = 9.11 × 10-15] and RPS6KA2 [6.43 × 10-13], with consistency seen across Scandinavia and the UK. Dysregulated loci demonstrate strong genetic influence, notably VMP1 [p = 1.53 × 10-15]. Age acceleration is seen in IBD [coefficient 0.94, p < 2.2 × 10-16]. Several immuno-active genes demonstrated highly significant correlations between methylation and gene expression in IBD, in particular OSM: IBD r = -0.32, p = 3.64 × 10-7 vs non-IBD r = -0.14, p = 0.77]. Multi-omic integration of the methylome, genome and transcriptome also implicated specific pathways that associate with immune activation, response and regulation at disease inception. At follow-up, a signature of three DMPs [TAP1, TESPA1, RPTOR] were associated with treatment escalation to biological agents or surgery (hazard ratio of 5.19 [CI: 2.14-12.56], logrank p = 9.70 × 10-4). CONCLUSION These data demonstrate consistent epigenetic alterations at diagnosis in European patients with IBD, providing insights into the pathogenetic importance and translational potential of epigenetic mapping in complex disease.
Collapse
Affiliation(s)
- Rahul Kalla
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Alex T Adams
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jan K Nowak
- Department of Paediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Simen Vatn
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Nicholas T Ventham
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Nicholas A Kennedy
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Exeter IBD and Pharmacogenetics group, University of Exeter, Exeter, UK
| | - Petr Ricanek
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Jonas Lindstrom
- Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Johan Söderholm
- Department of Surgery and Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Marie Pierik
- Maastricht University Medical Centre (MUMC), Department of Gastroenterology and Hepatology, Maastricht, Netherlands
| | - Mauro D’Amato
- CIC bioGUNE – BRTA, Derio, SpainIKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Christine Olbjørn
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Rebecca Richmond
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Caroline Relton
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Jørgen Jahnsen
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Morten H Vatn
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jack Satsangi
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
35
|
Campisi M, Mastrangelo G, Mielżyńska-Švach D, Hoxha M, Bollati V, Baccarelli AA, Carta A, Porru S, Pavanello S. The effect of high polycyclic aromatic hydrocarbon exposure on biological aging indicators. Environ Health 2023; 22:27. [PMID: 36927494 PMCID: PMC10022060 DOI: 10.1186/s12940-023-00975-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Aging represents a serious health and socioeconomic concern for our society. However, not all people age in the same way and air pollution has been shown to largely impact this process. We explored whether polycyclic aromatic hydrocarbons (PAHs), excellent fossil and wood burning tracers, accelerate biological aging detected by lymphocytes DNA methylation age (DNAmAge) and telomere length (TL), early nuclear DNA (nDNA) hallmarks of non-mitotic and mitotic cellular aging, and mitochondrial DNA copy number (mtDNAcn). METHODS The study population consisted of 49 male noncurrent-smoking coke-oven workers and 44 matched controls. Occupational and environmental sources of PAH exposures were evaluated by structured questionnaire and internal dose (urinary 1-pyrenol). We estimated Occup_PAHs, the product of 1-pyrenol and years of employment as coke-oven workers, and Environ_PAHs, from multiple items (diet, indoor and outdoor). Biological aging was determined by DNAmAge, via pyrosequencing, and by TL and mtDNAcn, via quantitative polymerase chain reaction. Genomic instability markers in lymphocytes as target dose [anti-benzo[a]pyrene diolepoxide (anti-BPDE)-DNA adduct], genetic instability (micronuclei), gene-specific (p53, IL6 and HIC1) and global (Alu and LINE-1 repeats) DNA methylation, and genetic polymorphisms (GSTM1) were also evaluated in the latent variable nDNA_changes. Structural equation modelling (SEM) analysis evaluated these multifaceted relationships. RESULTS In univariate analysis, biological aging was higher in coke-oven workers than controls as detected by higher percentage of subjects with biological age older than chronological age (AgeAcc ≥ 0, p = 0.007) and TL (p = 0.038), mtDNAcn was instead similar. Genomic instability, i.e., genotoxic and epigenetic alterations (LINE-1, p53 and Alu) and latent variable nDNA_changes were higher in workers (p < 0.001). In SEM analysis, DNAmAge and TL were positively correlated with Occup_PAHs (p < 0.0001). Instead, mtDNAcn is positively correlated with the latent variable nDNA_changes (p < 0.0001) which is in turn triggered by Occup_PAHs and Environ_PAHs. CONCLUSIONS Occupational PAHs exposure influences DNAmAge and TL, suggesting that PAHs target both non-mitotic and mitotic mechanisms and made coke-oven workers biologically older. Also, differences in mtDNAcn, which is modified through nDNA alterations, triggered by environmental and occupational PAH exposure, suggested a nuclear-mitochondrial core-axis of aging. By decreasing this risky gerontogenic exposure, biological aging and the consequent age-related diseases could be prevented.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Giuseppe Mastrangelo
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | | | - Mirjam Hoxha
- Epidemiology, Epigenetics and Toxicology Lab, Dipartimento Di Scienze Cliniche E Di Comunità, Università Degli Studi Di Milano, Milan, Italia
| | - Valentina Bollati
- Epidemiology, Epigenetics and Toxicology Lab, Dipartimento Di Scienze Cliniche E Di Comunità, Università Degli Studi Di Milano, Milan, Italia
- UO Epidemiologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italia
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Angela Carta
- Department of Diagnostics and Public Health, University of Verona and Clinical Unit of Occupational Medicine, University Hospital of Verona, 37134, Verona, Italy
| | - Stefano Porru
- Department of Diagnostics and Public Health, University of Verona and Clinical Unit of Occupational Medicine, University Hospital of Verona, 37134, Verona, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy.
- Padua Hospital, Occupational Medicine Unit, Padua, Italy.
- University Center for Space Studies and Activities "Giuseppe Colombo" - CISAS. University of Padua, Padua, Italy.
| |
Collapse
|
36
|
Michaud DS, Chung M, Zhao N, Koestler DC, Lu J, Platz EA, Kelsey KT. Epigenetic age and lung cancer risk in the CLUE II prospective cohort study. Aging (Albany NY) 2023; 15:617-629. [PMID: 36750177 PMCID: PMC9970317 DOI: 10.18632/aging.204501] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Epigenetic age, a robust marker of biological aging, has been associated with obesity, low-grade inflammation and metabolic diseases. However, few studies have examined associations between different epigenetic age measures and risk of lung cancer, despite great interest in finding biomarkers to assist in risk stratification for lung cancer screening. METHODS A nested case-control study of lung cancer from the CLUE II cohort study was conducted using incidence density sampling with 1:1 matching of controls to lung cancer cases (n = 208 matched pairs). Prediagnostic blood samples were collected in 1989 (CLUE II study baseline) and stored at -70°C. DNA was extracted from buffy coat and DNA methylation levels were measured using Illumina MethylationEPIC BeadChip Arrays. Three epigenetic age acceleration (i.e., biological age is greater than chronological age) measurements (Horvath, Hannum and PhenoAge) were examined in relation to lung cancer risk using conditional logistic regression. RESULTS We did not observe associations between the three epigenetic age acceleration measurements and risk of lung cancer overall; however, inverse associations for the two Hannum age acceleration measures (intrinsic and extrinsic) were observed in men and among younger participants, but not in women or older participants. We did not observe effect modification by time from blood draw to diagnosis. CONCLUSION Findings from this study do not support a positive association between three different biological age acceleration measures and risk of lung cancer. Additional studies are needed to address whether epigenetic age is associated with lung cancer in never smokers.
Collapse
Affiliation(s)
- Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Mei Chung
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA 02111, USA,Division of Nutrition Epidemiology and Data Science, Friedman School of Nutrition, Tufts University, Boston, MA 02111, USA
| | - Naisi Zhao
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Devin C. Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS 66160, USA,University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA,The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University, Providence, RI 02903, USA,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02903, USA
| |
Collapse
|
37
|
Fernández-Pérez I, Jiménez-Balado J, Lazcano U, Giralt-Steinhauer E, Rey Álvarez L, Cuadrado-Godia E, Rodríguez-Campello A, Macias-Gómez A, Suárez-Pérez A, Revert-Barberá A, Estragués-Gázquez I, Soriano-Tarraga C, Roquer J, Ois A, Jiménez-Conde J. Machine Learning Approximations to Predict Epigenetic Age Acceleration in Stroke Patients. Int J Mol Sci 2023; 24:ijms24032759. [PMID: 36769083 PMCID: PMC9917369 DOI: 10.3390/ijms24032759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Age acceleration (Age-A) is a useful tool that is able to predict a broad range of health outcomes. It is necessary to determine DNA methylation levels to estimate it, and it is known that Age-A is influenced by environmental, lifestyle, and vascular risk factors (VRF). The aim of this study is to estimate the contribution of these easily measurable factors to Age-A in patients with cerebrovascular disease (CVD), using different machine learning (ML) approximations, and try to find a more accessible model able to predict Age-A. We studied a CVD cohort of 952 patients with information about VRF, lifestyle habits, and target organ damage. We estimated Age-A using Hannum's epigenetic clock, and trained six different models to predict Age-A: a conventional linear regression model, four ML models (elastic net regression (EN), K-Nearest neighbors, random forest, and support vector machine models), and one deep learning approximation (multilayer perceptron (MLP) model). The best-performing models were EN and MLP; although, the predictive capability was modest (R2 0.358 and 0.378, respectively). In conclusion, our results support the influence of these factors on Age-A; although, they were not enough to explain most of its variability.
Collapse
Affiliation(s)
- Isabel Fernández-Pérez
- Neurovascular Research Group, Department of Neurology, IMIM-Hospital del Mar (Institut Hospital del Mar d’Investigacions Mèdiques), 08003 Barcelona, Spain
| | - Joan Jiménez-Balado
- Neurovascular Research Group, Department of Neurology, IMIM-Hospital del Mar (Institut Hospital del Mar d’Investigacions Mèdiques), 08003 Barcelona, Spain
- Correspondence: (J.J.-B.); (J.J.-C.)
| | - Uxue Lazcano
- Unidad de Investigación AP-OSIs Guipúzcoa, 20014 Donostia, Spain
| | - Eva Giralt-Steinhauer
- Neurovascular Research Group, Department of Neurology, IMIM-Hospital del Mar (Institut Hospital del Mar d’Investigacions Mèdiques), 08003 Barcelona, Spain
| | - Lucía Rey Álvarez
- Neurovascular Research Group, Department of Neurology, IMIM-Hospital del Mar (Institut Hospital del Mar d’Investigacions Mèdiques), 08003 Barcelona, Spain
| | - Elisa Cuadrado-Godia
- Neurovascular Research Group, Department of Neurology, IMIM-Hospital del Mar (Institut Hospital del Mar d’Investigacions Mèdiques), 08003 Barcelona, Spain
- Medicine Department, DCEXS-Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Ana Rodríguez-Campello
- Neurovascular Research Group, Department of Neurology, IMIM-Hospital del Mar (Institut Hospital del Mar d’Investigacions Mèdiques), 08003 Barcelona, Spain
- Medicine Department, DCEXS-Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Adrià Macias-Gómez
- Neurovascular Research Group, Department of Neurology, IMIM-Hospital del Mar (Institut Hospital del Mar d’Investigacions Mèdiques), 08003 Barcelona, Spain
| | - Antoni Suárez-Pérez
- Neurovascular Research Group, Department of Neurology, IMIM-Hospital del Mar (Institut Hospital del Mar d’Investigacions Mèdiques), 08003 Barcelona, Spain
| | - Anna Revert-Barberá
- Neurovascular Research Group, Department of Neurology, IMIM-Hospital del Mar (Institut Hospital del Mar d’Investigacions Mèdiques), 08003 Barcelona, Spain
| | - Isabel Estragués-Gázquez
- Neurovascular Research Group, Department of Neurology, IMIM-Hospital del Mar (Institut Hospital del Mar d’Investigacions Mèdiques), 08003 Barcelona, Spain
| | - Carolina Soriano-Tarraga
- Department of Psychiatry, NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jaume Roquer
- Neurovascular Research Group, Department of Neurology, IMIM-Hospital del Mar (Institut Hospital del Mar d’Investigacions Mèdiques), 08003 Barcelona, Spain
- Medicine Department, DCEXS-Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Angel Ois
- Neurovascular Research Group, Department of Neurology, IMIM-Hospital del Mar (Institut Hospital del Mar d’Investigacions Mèdiques), 08003 Barcelona, Spain
- Medicine Department, DCEXS-Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Jordi Jiménez-Conde
- Neurovascular Research Group, Department of Neurology, IMIM-Hospital del Mar (Institut Hospital del Mar d’Investigacions Mèdiques), 08003 Barcelona, Spain
- Medicine Department, DCEXS-Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- Correspondence: (J.J.-B.); (J.J.-C.)
| |
Collapse
|
38
|
Spartano NL, Wang R, Yang Q, Chernofsky A, Murabito JM, Vasan RS, Levy D, Beiser AS, Seshadri S. Association of Accelerometer-Measured Physical Activity and Sedentary Time with Epigenetic Markers of Aging. Med Sci Sports Exerc 2023; 55:264-272. [PMID: 36107108 PMCID: PMC9840651 DOI: 10.1249/mss.0000000000003041] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION/PURPOSE Physical activity may influence chronic disease risk, in part, through epigenetic mechanisms. Previous studies have demonstrated that an acute bout of physical activity can influence DNA methylation status. Few studies have explored the relationship between habitual, accelerometer-measured physical activity or sedentary time with epigenetic markers of aging. METHODS We used linear regression to examine cross-sectional associations of accelerometer-measured physical activity and sedentary time with extrinsic and intrinsic epigenetic age acceleration (EEAA and IEAA) models and GrimAge measured from blood samples from Framingham Heart Study participants with accelerometry and DNA methylation data ( n = 2435; mean age, 54.9 ± 14.3; 46.0% men). Residuals of Hannum-, Horvath-, and GrimAge-predicted epigenetic age were calculated by regressing epigenetic age on chronological age. We took into account blood cell composition for EEAA, IEAA, and AdjGrimAge. Moderate to vigorous physical activity was log-transformed to normalize its distribution. Adjustment models accounted for family structure, age, sex, smoking status, cohort-laboratory indicator, and accelerometer wear time. We additionally explored adjustment for body mass index (BMI). RESULTS Walking 1500 more steps per day or spending 3 fewer hours sedentary was associated with >10 months lower GrimAge biological age (or ~1 month lower AdjGrimAge, after adjusting for blood cells, P < 0.05). Every 5 min·d -1 more moderate to vigorous physical activity was associated with 19-79 d of lower GrimAge (4-23 d lower using EEAA or AdjGrimAge, P < 0.01). Adjusting for BMI attenuated these results, but all statistically significant associations with AdjGrimAge remained. CONCLUSIONS Greater habitual physical activity and lower sedentary time were associated with lower epigenetic age, which was partially explained by BMI. Further research should explore whether changes in physical activity influence methylation status and whether those modifications influence chronic disease risk.
Collapse
Affiliation(s)
| | - Ruiqi Wang
- Department of Biostatistics, Boston University School of Public Health (BUSPH), Boston, MA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health (BUSPH), Boston, MA
| | - Ariel Chernofsky
- Department of Biostatistics, Boston University School of Public Health (BUSPH), Boston, MA
| | | | | | | | | | | |
Collapse
|
39
|
Banszerus VL, König M, Landmesser U, Vetter VM, Demuth I. Epigenetic aging in patients diagnosed with coronary artery disease: results of the LipidCardio study. Clin Epigenetics 2023; 15:16. [PMID: 36721243 PMCID: PMC9887837 DOI: 10.1186/s13148-023-01434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION People age biologically at different rates. Epigenetic clock-derived DNA methylation age acceleration (DNAmAA) is among the most promising markers proposed to assess the interindividual differences in biological age. Further research is needed to evaluate the characteristics of the different epigenetic clock biomarkers available with respect to the health domains they reflect best. METHODS In this study, we have analyzed 779 participants of the LipidCardio study (mean chronological age 69.9 ± 11.0 years, 30.6% women) who underwent diagnostic angiography at the Charité University Hospital in Berlin, Germany. DNA methylation age (DNAm age) was measured by methylation-sensitive single nucleotide primer extension (MS-SNuPE) and calculated with the 7-CpG clock. We compared the biological age as assessed as DNAmAA of participants with an angiographically confirmed coronary artery disease (CAD, n = 554) with participants with lumen reduction of 50% or less (n = 90) and patients with a normal angiogram (n = 135). RESULTS Participants with a confirmed CAD had on average a 2.5-year higher DNAmAA than patients with a normal angiogram. This association did not persist after adjustment for sex in a logistic regression analysis. High-density lipoprotein, low-density lipoprotein, triglycerides, lipoprotein (a), estimated glomerular filtration rate, physical activity, BMI, alcohol consumption, and smoking were not associated with DNAmAA. CONCLUSION The association between higher DNAmAA and angiographically confirmed CAD seems to be mainly driven by sex.
Collapse
Affiliation(s)
- Verena Laura Banszerus
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Maximilian König
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin, Germany
- Berlin Institute of Health (BIH), Deutsches Zentrum Für Herzkreislaufforschung (DZHK), Partner Site Berlin, Berlin, Germany
| | - Valentin Max Vetter
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- BCRT - Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
40
|
Sumner JA, Cleveland S, Chen T, Gradus JL. Psychological and biological mechanisms linking trauma with cardiovascular disease risk. Transl Psychiatry 2023; 13:25. [PMID: 36707505 PMCID: PMC9883529 DOI: 10.1038/s41398-023-02330-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and experiences of psychological trauma have been associated with subsequent CVD onset. Identifying key pathways connecting trauma with CVD has the potential to inform more targeted screening and intervention efforts to offset elevated cardiovascular risk. In this narrative review, we summarize the evidence for key psychological and biological mechanisms linking experiences of trauma with CVD risk. Additionally, we describe various methodologies for measuring these mechanisms in an effort to inform future research related to potential pathways. With regard to mechanisms involving posttraumatic psychopathology, the vast majority of research on psychological distress after trauma and CVD has focused on posttraumatic stress disorder (PTSD), even though posttraumatic psychopathology can manifest in other ways as well. Substantial evidence suggests that PTSD predicts the onset of a range of cardiovascular outcomes in trauma-exposed men and women, yet more research is needed to better understand posttraumatic psychopathology more comprehensively and how it may relate to CVD. Further, dysregulation of numerous biological systems may occur after trauma and in the presence of posttraumatic psychopathology; these processes of immune system dysregulation and elevated inflammation, oxidative stress, mitochondrial dysfunction, renin-angiotensin system dysregulation, and accelerated biological aging may all contribute to subsequent cardiovascular risk, although more research on these pathways in the context of traumatic stress is needed. Given that many of these mechanisms are closely intertwined, future research using a systems biology approach may prove fruitful for elucidating how processes unfold to contribute to CVD after trauma.
Collapse
Affiliation(s)
- Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Shiloh Cleveland
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tiffany Chen
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jaimie L Gradus
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
41
|
Hirota N, Suzuki S, Motogi J, Nakai H, Matsuzawa W, Takayanagi T, Umemoto T, Hyodo A, Satoh K, Arita T, Yagi N, Otsuka T, Yamashita T. Cardiovascular events and artificial intelligence-predicted age using 12-lead electrocardiograms. IJC HEART & VASCULATURE 2023; 44:101172. [PMID: 36654885 PMCID: PMC9841236 DOI: 10.1016/j.ijcha.2023.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Background There is increasing evidence that 12-lead electrocardiograms (ECG) can be used to predict biological age, which is associated with cardiovascular events. However, the utility of artificial intelligence (AI)-predicted age using ECGs remains unclear. Methods Using a single-center database, we developed an AI-enabled ECG using 17 042 sinus rhythm ECGs (SR-ECG) to predict chronological age (CA) with a convolutional neural network that yields AI-predicted age. Using the 5-fold cross validation method, AI-predicted age deriving from the test dataset was yielded for all ECGs. The incidence by AgeDiff and the areas under the curve by receiver operating characteristic curve with AI-predicted age for cardiovascular events were analyzed. Results During the mean follow-up period of 460.1 days, there were 543 cardiovascular events. The annualized incidence of cardiovascular events was 2.24 %, 2.44 %, and 3.01 %/year for patients with AgeDiff < -6, -6 to ≤6, and >6 years, respectively. The areas under the curve for cardiovascular events with CA and AI-predicted age, respectively, were 0.673 and 0.679 (Delong's test, P = 0.388) for all patients; 0.642 and 0.700 (P = 0.003) for younger patients (CA < 60 years); and 0.584 and 0.570 (P = 0.268) for older patients (CA ≥ 60 years). Conclusions AI-predicted age using 12-lead ECGs showed superiority in predicting cardiovascular events compared with CA in younger patients, but not in older patients.
Collapse
Affiliation(s)
- Naomi Hirota
- Department of Cardiovascular Medicine, The Cardiovascular Institute, Tokyo, Japan,Corresponding author at: The Cardiovascular Department of Cardiovascular MedicineInstitute, 3-2-19 Nishiazabu, Minato-Ku, Tokyo 106-0031, Japan.
| | - Shinya Suzuki
- Department of Cardiovascular Medicine, The Cardiovascular Institute, Tokyo, Japan
| | | | - Hiroshi Nakai
- Information System Division, The Cardiovascular Institute, Tokyo, Japan
| | | | | | | | | | | | - Takuto Arita
- Department of Cardiovascular Medicine, The Cardiovascular Institute, Tokyo, Japan
| | - Naoharu Yagi
- Department of Cardiovascular Medicine, The Cardiovascular Institute, Tokyo, Japan
| | - Takayuki Otsuka
- Department of Cardiovascular Medicine, The Cardiovascular Institute, Tokyo, Japan
| | - Takeshi Yamashita
- Department of Cardiovascular Medicine, The Cardiovascular Institute, Tokyo, Japan
| |
Collapse
|
42
|
Evaluation of Epigenetic Age Acceleration Scores and Their Associations with CVD-Related Phenotypes in a Population Cohort. BIOLOGY 2022; 12:biology12010068. [PMID: 36671760 PMCID: PMC9855929 DOI: 10.3390/biology12010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
We evaluated associations between nine epigenetic age acceleration (EAA) scores and 18 cardiometabolic phenotypes using an Eastern European ageing population cohort richly annotated for a diverse set of phenotypes (subsample, n = 306; aged 45-69 years). This was implemented by splitting the data into groups with positive and negative EAAs. We observed strong association between all EAA scores and sex, suggesting that any analysis of EAAs should be adjusted by sex. We found that some sex-adjusted EAA scores were significantly associated with several phenotypes such as blood levels of gamma-glutamyl transferase and low-density lipoprotein, smoking status, annual alcohol consumption, multiple carotid plaques, and incident coronary heart disease status (not necessarily the same phenotypes for different EAAs). We demonstrated that even after adjusting EAAs for sex, EAA-phenotype associations remain sex-specific, which should be taken into account in any downstream analysis involving EAAs. The obtained results suggest that in some EAA-phenotype associations, negative EAA scores (i.e., epigenetic age below chronological age) indicated more harmful phenotype values, which is counterintuitive. Among all considered epigenetic clocks, GrimAge was significantly associated with more phenotypes than any other EA scores in this Russian sample.
Collapse
|
43
|
Jiang R, Hauser ER, Kwee LC, Shah SH, Regan JA, Huebner JL, Kraus VB, Kraus WE, Ward-Caviness CK. The association of accelerated epigenetic age with all-cause mortality in cardiac catheterization patients as mediated by vascular and cardiometabolic outcomes. Clin Epigenetics 2022; 14:165. [PMID: 36461124 PMCID: PMC9719253 DOI: 10.1186/s13148-022-01380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Epigenetic age is a DNA methylation-based biomarker of aging that is accurate across the lifespan and a range of cell types. The difference between epigenetic age and chronological age, termed age acceleration (AA), is a strong predictor of lifespan and healthspan. The predictive capabilities of AA for all-cause mortality have been evaluated in the general population; however, its utility is less well evaluated in those with chronic conditions. Additionally, the pathophysiologic pathways whereby AA predicts mortality are unclear. We hypothesized that AA predicts mortality in individuals with underlying cardiovascular disease; and the association between AA and mortality is mediated, in part, by vascular and cardiometabolic measures. METHODS We evaluated 562 participants in an urban, three-county area of central North Carolina from the CATHGEN cohort, all of whom received a cardiac catheterization procedure. We analyzed three AA biomarkers, Horvath epigenetic age acceleration (HAA), phenotypic age acceleration (PhenoAA), and Grim age acceleration (GrimAA), by Cox regression models, to assess whether AAs were associated with all-cause mortality. We also evaluated if these associations were mediated by vascular and cardiometabolic outcomes, including left ventricular ejection fraction (LVEF), blood cholesterol concentrations, angiopoietin-2 (ANG2) protein concentration, peripheral artery disease, coronary artery disease, diabetes, and hypertension. The total effect, direct effect, indirect effect, and percentage mediated were estimated using pathway mediation tests with a regression adjustment approach. RESULTS PhenoAA (HR = 1.05, P < 0.0001), GrimAA (HR = 1.10, P < 0.0001) and HAA (HR = 1.03, P = 0.01) were all associated with all-cause mortality. The association of mortality and PhenoAA was partially mediated by ANG2, a marker of vascular function (19.8%, P = 0.016), and by diabetes (8.2%, P = 0.043). The GrimAA-mortality association was mediated by ANG2 (12.3%, P = 0.014), and showed weaker evidence for mediation by LVEF (5.3%, P = 0.065). CONCLUSIONS Epigenetic age acceleration remains strongly predictive of mortality even in individuals already burdened with cardiovascular disease. Mortality associations were mediated by ANG2, which regulates endothelial permeability and angiogenic functions, suggesting that specific vascular pathophysiology may link accelerated epigenetic aging with increased mortality risks.
Collapse
Affiliation(s)
- Rong Jiang
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC USA
| | - Elizabeth R. Hauser
- grid.26009.3d0000 0004 1936 7961Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC USA
| | - Lydia Coulter Kwee
- grid.26009.3d0000 0004 1936 7961Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA
| | - Svati H. Shah
- grid.26009.3d0000 0004 1936 7961Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Division of Cardiology, Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC USA
| | - Jessica A. Regan
- grid.26009.3d0000 0004 1936 7961Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Division of Cardiology, Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC USA
| | - Janet L. Huebner
- grid.26009.3d0000 0004 1936 7961Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA
| | - Virginia B. Kraus
- grid.26009.3d0000 0004 1936 7961Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, NC USA
| | - William E. Kraus
- grid.26009.3d0000 0004 1936 7961Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Division of Cardiology, Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC USA
| | - Cavin K. Ward-Caviness
- grid.418698.a0000 0001 2146 2763Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC USA
| |
Collapse
|
44
|
Hu Y, Wang X, Huan J, Zhang L, Lin L, Li Y, Li Y. Effect of dietary inflammatory potential on the aging acceleration for cardiometabolic disease: A population-based study. Front Nutr 2022; 9:1048448. [PMID: 36532557 PMCID: PMC9755741 DOI: 10.3389/fnut.2022.1048448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/18/2022] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND/AIM Optimized dietary patterns have been considered an important determinant of delaying aging in cardiometabolic disease (CMD). Dietary pattern with high-level dietary inflammatory potential is a key risk factor for cardiometabolic disease, and has drawn increasing attention. The aim of this study was to investigate whether dietary pattern with high dietary inflammatory potential was associated with aging acceleration in cardiometabolic disease. MATERIALS AND METHODS We analyzed the cross-sectional data from six survey cycles (1999-2000, 2001-2002, 2003-2004, 2005-2006, 2007-2008, and 2009-2010) of the National Health and Nutritional Examination Surveys (NHANES). A total of 16,681 non-institutionalized adults and non-pregnant females with CMD were included in this study. Dietary inflammatory index (DII) was used to assess the dietary inflammatory potential. The two age acceleration biomarkers were calculated by the residuals from regressing chronologic age on Klemera-Doubal method biological age (KDM BioAge) or Phenotypic Age (PhenoAge), termed "KDMAccel" and "PhenoAgeAccel." A multivariable linear regression accounting for multistage survey design and sampling weights was used in different models to investigate the association between DII and aging acceleration. Four sensitivity analyses were used to ensure the robustness of our results. Besides, we also analyzed the anti-aging effects of DASH-type dietary pattern and "Life's Simple 7". RESULTS For 16,681 participants with CMD, compared with the first tertile of DII after adjusting for all potential confounders, the patients with second tertile of DII showed a 1.02-years increase in KDMAccel and 0.63-years increase in PhenoAgeAccel (KDMAccel, β = 1.02, 95% CI = 0.64 to 1.41, P < 0.001; PhenoAgeAccel, β = 0.63, 95% CI = 0.44 to 0.82, P < 0.001), while the patients with the third tertile of DII showed a 1.48-years increase in KDMAccel and 1.22-years increase in PhenoAgeAccel (KDMAccel, β = 1.48, 95% CI = 1.02 to 1.94, P < 0.001; PhenoAgeAccel, β = 1.22, 95% CI = 1.01 to 1.43, P < 0.001). In addition, DASH-type dietary pattern was associated with a 0.57-years reduction in KDMAccel (β = -0.57, 95% CI = -1.08 to -0.06, P = 0.031) and a 0.54-years reduction in PhenoAgeAccel (β = -0.54, 95% CI = -0.80 to -0.28, P < 0.001). The each one-unit increase in CVH score was associated with a 1.58-years decrease in KDMAccel (β = -1.58, 95% CI = -1.68 to -1.49, P < 0.001) and a 0.36-years in PhenoAgeAccel (β = -0.36, 95% CI = -0.41 to -0.31, P < 0.001). CONCLUSION Among CMD, the dietary pattern with high dietary inflammatory potential was association with aging acceleration, and the anti-aging potential of DASH-type dietary pattern and "Life's Simple 7" should also be given attention, but these observations require future prospective validation.
Collapse
Affiliation(s)
- Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Province Engineering Laboratory of Traditional Chinese Medicine Precise Diagnosis and Treatment of Cardiovascular Disease, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaojie Wang
- Shandong Province Engineering Laboratory of Traditional Chinese Medicine Precise Diagnosis and Treatment of Cardiovascular Disease, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jiaming Huan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- Shandong Province Engineering Laboratory of Traditional Chinese Medicine Precise Diagnosis and Treatment of Cardiovascular Disease, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Shandong Province Engineering Laboratory of Traditional Chinese Medicine Precise Diagnosis and Treatment of Cardiovascular Disease, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yunlun Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Province Engineering Laboratory of Traditional Chinese Medicine Precise Diagnosis and Treatment of Cardiovascular Disease, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
45
|
Liu C, Wang Z, Hui Q, Goldberg J, Smith NL, Shah AJ, Murrah N, Shallenberger L, Diggers E, Bremner JD, Sun YV, Vaccarino V. Association between depression and epigenetic age acceleration: A co-twin control study. Depress Anxiety 2022; 39:741-750. [PMID: 35758529 PMCID: PMC9729366 DOI: 10.1002/da.23279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/26/2022] [Accepted: 06/18/2022] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Prior studies have shown inconsistent findings of an association between depression and epigenetic aging. DNA methylation (DNAm) age acceleration can measure biological aging. We adopted a robust co-twin control study design to examine whether depression is associated with DNAm age acceleration after accounting for the potential confounding influences of genetics and family environment. METHODS We analyzed data on a sub-cohort of the Vietnam Era Twin Registry. A total of 291 twins participated at baseline and 177 at follow-up visit after a mean of 11.7 years, with 111 participants having DNA samples for both time points. Depression was measured using the Beck Depression Inventory II (BDI-II). Six measures of DNAm age acceleration were computed at each time point, including Horvath's DNAm age acceleration (HorvathAA), intrinsic epigenetic age acceleration (IEAA), Hannum's DNAm age acceleration (HannumAA), extrinsic epigenetic age acceleration (EEAA), GrimAge acceleration (GrimAA), and PhenoAge acceleration (PhenoAA). Mixed-effects modeling was used to assess the within-pair association between depression and DNAm age acceleration. RESULTS At baseline, a 10-unit higher BDI-II total score was associated with HannumAA (0.73 years, 95% confidence interval [CI] 0.13-1.33, p = .019) and EEAA (0.94 years, 95% CI 0.22-1.66, p = .012). At follow-up, 10-unit higher BDI-II score was associated with PhenoAA (1.32 years, 95% CI 0.18-2.47, p = .027). CONCLUSION We identified that depression is associated with higher levels of DNAm age acceleration. Further investigation is warranted to better understand the underlying mechanisms for the potential causal relationship between depression and accelerated aging.
Collapse
Affiliation(s)
- Chang Liu
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Zeyuan Wang
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Qin Hui
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Jack Goldberg
- Vietnam Era Twin Registry, Seattle Epidemiologic Research and Information Center, Cooperative Studies Program, Office of Research and Development, Department of Veterans Affairs, Seattle, WA, USA
| | - Nicholas L. Smith
- Vietnam Era Twin Registry, Seattle Epidemiologic Research and Information Center, Cooperative Studies Program, Office of Research and Development, Department of Veterans Affairs, Seattle, WA, USA
| | - Amit J. Shah
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
- Atlanta VA Health Care System, 1670 Clairmont Road, Decatur, GA 30033, USA
| | - Nancy Murrah
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Lucy Shallenberger
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - Emily Diggers
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
| | - J. Douglas Bremner
- Atlanta VA Health Care System, 1670 Clairmont Road, Decatur, GA 30033, USA
- Departments of Psychiatry and Behavioral Sciences and Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Yan V. Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
- Atlanta VA Health Care System, 1670 Clairmont Road, Decatur, GA 30033, USA
| | - Viola Vaccarino
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
46
|
Song AY, Bakulski K, Feinberg JI, Newschaffer C, Croen LA, Hertz-Picciotto I, Schmidt RJ, Farzadegan H, Lyall K, Fallin MD, Volk HE, Ladd-Acosta C. Associations between accelerated parental biologic age, autism spectrum disorder, social traits, and developmental and cognitive outcomes in their children. Autism Res 2022; 15:2359-2370. [PMID: 36189953 PMCID: PMC9722613 DOI: 10.1002/aur.2822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
Parental age is a known risk factor for autism spectrum disorder (ASD), however, studies to identify the biologic changes underpinning this association are limited. In recent years, "epigenetic clock" algorithms have been developed to estimate biologic age and to evaluate how the epigenetic aging impacts health and disease. In this study, we examined the relationship between parental epigenetic aging and their child's prospective risk of ASD and autism related quantitative traits in the Early Autism Risk Longitudinal Investigation study. Estimates of epigenetic age were computed using three robust clock algorithms and DNA methylation measures from the Infinium HumanMethylation450k platform for maternal blood and paternal blood specimens collected during pregnancy. Epigenetic age acceleration was defined as the residual of regressing chronological age on epigenetic age while accounting for cell type proportions. Multinomial logistic regression and linear regression models were completed adjusting for potential confounders for both maternal epigenetic age acceleration (n = 163) and paternal epigenetic age acceleration (n = 80). We found accelerated epigenetic aging in mothers estimated by Hannum's clock was significantly associated with lower cognitive ability and function in offspring at 12 months, as measured by Mullen Scales of Early Learning scores (β = -1.66, 95% CI: -3.28, -0.04 for a one-unit increase). We also observed a marginal association between accelerated maternal epigenetic aging by Horvath's clock and increased odds of ASD in offspring at 36 months of age (aOR = 1.12, 95% CI: 0.99, 1.26). By contrast, fathers accelerated aging was marginally associated with decreased ASD risk in their offspring (aOR = 0.83, 95% CI: 0.68, 1.01). Our findings suggest epigenetic aging could play a role in parental age risks on child brain development.
Collapse
Affiliation(s)
- Ashley Y. Song
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- Wendy Klag Center for Autism and Developmental
Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann
Arbor, MI
| | - Jason I. Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- Wendy Klag Center for Autism and Developmental
Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Craig Newschaffer
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- College of Health and Human Development, Pennsylvania State
University, State College, PA
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente, Oakland, CA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and The MIND
Institute, School of Medicine, University of California-Davis, Davis, CA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences and The MIND
Institute, School of Medicine, University of California-Davis, Davis, CA
| | - Homayoon Farzadegan
- Department of Epidemiology, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University,
Philadelphia, PA
| | - M. Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta,
Georgia, USA
| | - Heather E. Volk
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- Wendy Klag Center for Autism and Developmental
Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Christine Ladd-Acosta
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- Wendy Klag Center for Autism and Developmental
Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
| |
Collapse
|
47
|
Engelbrecht HR, Merrill SM, Gladish N, MacIsaac JL, Lin DTS, Ecker S, Chrysohoou CA, Pes GM, Kobor MS, Rehkopf DH. Sex differences in epigenetic age in Mediterranean high longevity regions. FRONTIERS IN AGING 2022; 3:1007098. [PMID: 36506464 PMCID: PMC9726738 DOI: 10.3389/fragi.2022.1007098] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
Abstract
Sex differences in aging manifest in disparities in disease prevalence, physical health, and lifespan, where women tend to have greater longevity relative to men. However, in the Mediterranean Blue Zones of Sardinia (Italy) and Ikaria (Greece) are regions of centenarian abundance, male-female centenarian ratios are approximately one, diverging from the typical trend and making these useful regions in which to study sex differences of the oldest old. Additionally, these regions can be investigated as examples of healthy aging relative to other populations. DNA methylation (DNAm)-based predictors have been developed to assess various health biomarkers, including biological age, Pace of Aging, serum interleukin-6 (IL-6), and telomere length. Epigenetic clocks are biological age predictors whose deviation from chronological age has been indicative of relative health differences between individuals, making these useful tools for interrogating these differences in aging. We assessed sex differences between the Horvath, Hannum, GrimAge, PhenoAge, Skin and Blood, and Pace of Aging predictors from individuals in two Mediterranean Blue Zones and found that men displayed positive epigenetic age acceleration (EAA) compared to women according to all clocks, with significantly greater rates according to GrimAge (β = 3.55; p = 1.22 × 10-12), Horvath (β = 1.07; p = 0.00378) and the Pace of Aging (β = 0.0344; p = 1.77 × 10-08). Other DNAm-based biomarkers findings indicated that men had lower DNAm-predicted serum IL-6 scores (β = -0.00301, p = 2.84 × 10-12), while women displayed higher DNAm-predicted proportions of regulatory T cells than men from the Blue Zone (p = 0.0150, 95% Confidence Interval [0.00131, 0.0117], Cohen's d = 0.517). All clocks showed better correlations with chronological age in women from the Blue Zones than men, but all clocks showed large mean absolute errors (MAE >30 years) in both sexes, except for PhenoAge (MAE <5 years). Thus, despite their equal survival to older ages in these Mediterranean Blue Zones, men in these regions remain biologically older by most measured DNAm-derived metrics than women, with the exception of the IL-6 score and proportion of regulatory T cells.
Collapse
Affiliation(s)
- Hannah-Ruth Engelbrecht
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Sarah M. Merrill
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Gladish
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Julie L. MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - David T. S. Lin
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Simone Ecker
- UCL Cancer Institute, University College London, London, United Kingdom
| | | | - Giovanni M. Pes
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Michael S. Kobor
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Michael S. Kobor, ; David H. Rehkopf,
| | - David H. Rehkopf
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Palo Alto, CA, United States,*Correspondence: Michael S. Kobor, ; David H. Rehkopf,
| |
Collapse
|
48
|
Piacenza F, Di Rosa M, Fedecostante M, Madotto F, Montesanto A, Corsonello A, Cherubini A, Provinciali M, Soraci L, Lisa R, Bustacchini S, Bonfigli AR, Lattanzio F. Improving the prognostic value of multimorbidity through the integration of selected biomarkers to the comprehensive geriatric assessment: An observational retrospective monocentric study. Front Med (Lausanne) 2022; 9:999767. [PMID: 36388885 PMCID: PMC9659967 DOI: 10.3389/fmed.2022.999767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022] Open
Abstract
Background Multimorbidity (MM) burdens individuals and healthcare systems, since it increases polypharmacy, dependency, hospital admissions, healthcare costs, and mortality. Several attempts have been made to determine an operational definition of MM and to quantify its severity. However, the lack of knowledge regarding its pathophysiology prevented the estimation of its severity in terms of outcomes. Polypharmacy and functional impairment are associated with MM. However, it is unclear how inappropriate drug decision-making could affect both conditions. In this context, promising circulating biomarkers and DNA methylation tools have been proposed as potential mortality predictors for multiple age-related diseases. We hypothesize that a comprehensive characterization of patients with MM that includes the measure of epigenetic and selected circulating biomarkers in the medical history, in addition to the functional capacity, could improve the prognosis of their long-term mortality. Methods This monocentric retrospective observational study was conducted as part of a project funded by the Italian Ministry of Health titled “imProving the pROgnostic value of MultimOrbidity through the inTegration of selected biomarkErs to the comprehensive geRiatric Assessment (PROMOTERA).” This study will examine the methylation levels of thousands of CpG sites and the levels of selected circulating biomarkers in the blood and plasma samples of older hospitalized patients with MM (n = 1,070, age ≥ 65 years) recruited by the Reportage Project between 2011 and 2019. Multiple statistical approaches will be utilized to integrate newly measured biomarkers into clinical, demographic, and functional data, thus improving the prediction of mortality for up to 10 years. Discussion This study's results are expected to: (i) identify the clinical, biological, demographic, and functional factors associated with distinct patterns of MM; (ii) improve the prognostic accuracy of MM patterns in relation to death, hospitalization-related outcomes, and onset of new comorbidities; (iii) define the epigenetic signatures of MM; (iv) construct multidimensional algorithms to predict negative health outcomes in both the overall population and specific disease and functional patterns; and (v) expand our understanding of the mechanisms underlying the pathophysiology of MM.
Collapse
Affiliation(s)
- Francesco Piacenza
- Unit of Advanced Technology of Aging Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale di Ricovero e Cura per Anziani (INRCA), Ancona, Italy
| | - Mirko Di Rosa
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale di Ricovero e Cura per Anziani (INRCA), Cosenza, Italy
| | - Massimiliano Fedecostante
- Geriatria, Accettazione geriatrica e Centro di ricerca per l'invecchiamento, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale di Ricovero e Cura per Anziani (INRCA), Ancona, Italy
- *Correspondence: Massimiliano Fedecostante
| | - Fabiana Madotto
- Value-Based Healthcare Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Andrea Corsonello
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale di Ricovero e Cura per Anziani (INRCA), Cosenza, Italy
| | - Antonio Cherubini
- Geriatria, Accettazione geriatrica e Centro di ricerca per l'invecchiamento, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale di Ricovero e Cura per Anziani (INRCA), Ancona, Italy
| | - Mauro Provinciali
- Unit of Advanced Technology of Aging Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale di Ricovero e Cura per Anziani (INRCA), Ancona, Italy
| | - Luca Soraci
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale di Ricovero e Cura per Anziani (INRCA), Cosenza, Italy
| | - Rosamaria Lisa
- Scientific Direction, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale di Ricovero e Cura per Anziani (INRCA), Ancona, Italy
| | - Silvia Bustacchini
- Scientific Direction, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale di Ricovero e Cura per Anziani (INRCA), Ancona, Italy
| | - Anna Rita Bonfigli
- Scientific Direction, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale di Ricovero e Cura per Anziani (INRCA), Ancona, Italy
| | - Fabrizia Lattanzio
- Scientific Direction, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale di Ricovero e Cura per Anziani (INRCA), Ancona, Italy
| |
Collapse
|
49
|
Rampersaud R, Protsenko E, Yang R, Reus V, Hammamieh R, Wu GWY, Epel E, Jett M, Gautam A, Mellon SH, Wolkowitz OM. Dimensions of childhood adversity differentially affect biological aging in major depression. Transl Psychiatry 2022; 12:431. [PMID: 36195591 PMCID: PMC9532396 DOI: 10.1038/s41398-022-02198-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022] Open
Abstract
Adverse childhood experiences have been consistently linked with physical and mental health disorders in adulthood that may be mediated, in part, via the effects of such exposures on biological aging. Using recently developed "epigenetic clocks", which provide an estimate of biological age, several studies have demonstrated a link between the cumulative exposure to childhood adversities and accelerated epigenetic aging. However, not all childhood adversities are equivalent and less is known about how distinct dimensions of childhood adversity relate to epigenetic aging metrics. Using two measures of childhood adversity exposure, we assess how the dimensions of Maltreatment and Household Dysfunction relate to epigenetic aging using two "second-generation" clocks, GrimAge and PhenoAge, in a cohort of unmedicated somatically healthy adults with moderate to severe major depression (n = 82). Our results demonstrate that the dimension of Maltreatment is associated with epigenetic age acceleration (EAA) using the PhenoAge but not the GrimAge clock. This association was observed using both the Childhood Trauma questionnaire (CTQ; β = 0.272, p = 0.013) and the Adverse Childhood Experiences (ACEs) questionnaire (β = 0.307, p = 0.005) and remained significant when adjusting for exposure to the dimension of Household Dysfunction (β = 0.322, p = 0.009). In contrast, the dimension of Household Dysfunction is associated with epigenetic age deceleration (β = -0.194, p = 0.083) which achieved significance after adjusting for exposure to the dimension of Maltreatment (β = -0.304, p = 0.022). This study is the first to investigate these effects among individuals with Major Depressive Disorder and suggests that these dimensions of adversity may be associated with disease via distinct biological mechanisms.
Collapse
Affiliation(s)
- Ryan Rampersaud
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA.
| | - Ekaterina Protsenko
- University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Ruoting Yang
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Victor Reus
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gwyneth W Y Wu
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Elissa Epel
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Marti Jett
- Headquarters, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Synthia H Mellon
- Department of OB-GYN and Reproductive Sciences, UCSF School of Medicine, San Francisco, CA, USA
| | - Owen M Wolkowitz
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| |
Collapse
|
50
|
Zhang Y, Jia Z, Zhou Q, Zhang Y, Li D, Qi Y, Xu F. A bibliometric analysis of DNA methylation in cardiovascular diseases from 2001 to 2021. Medicine (Baltimore) 2022; 101:e30029. [PMID: 35984203 PMCID: PMC9388003 DOI: 10.1097/md.0000000000030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND DNA methylation is a dynamically reversible form of epigenetics. Dynamic regulation plays an important role in cardiovascular diseases (CVDs). However, there have been few bibliometric studies in this field. We aimed to visualize the research results and hotspots of DNA methylation in CVDs using a bibliometric analysis to provide a scientific direction for future research. METHODS Publications related to DNA methylation in CVDs from January 1, 2001, to September 15, 2021, were searched and confirmed from the Web of Science Core Collection. CiteSpace 5.7 and VOSviewer 1.6.15 were used for bibliometric and knowledge-map analyses. RESULTS A total of 2617 publications were included in 912 academic journals by 15,584 authors from 963 institutions from 85 countries/regions. Among them, the United States of America, China, and England were the top 3 countries contributing to the field of DNA methylation. Harvard University, Columbia University, and University of Cambridge were the top 3 contributing institutions in terms of publications and were closely linked. PLoS One was the most published and co-cited journal. Baccarelli Andrea A published the most content, while Barker DJP had the highest frequency of co-citations. The keyword cluster focused on the mechanism, methyl-containing substance, exposure/risk factor, and biomarker. In terms of research hotspots, references with strong bursts, which are still ongoing, recently included "epigenetic clock" (2017-2021), "obesity, smoking, aging, and DNA methylation" (2017-2021), and "biomarker and epigenome-wide association study" (2019-2021). CONCLUSIONS We used bibliometric and visual methods to identify research hotspots and trends in DNA methylation in CVDs. Epigenetic clocks, biomarkers, environmental exposure, and lifestyle may become the focus and frontier of future research.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zijun Jia
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qingbing Zhou
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dandan Li
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Qi
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengqin Xu, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China (e-mail: )
| |
Collapse
|