1
|
Akita K, Maurer MS, Tower-Rader A, Fifer MA, Shimada YJ. Comprehensive Proteomics Profiling Identifies Circulating Biomarkers to Distinguish Hypertrophic Cardiomyopathy From Other Cardiomyopathies With Left Ventricular Hypertrophy. Circ Heart Fail 2025; 18:e012434. [PMID: 39523983 PMCID: PMC11753946 DOI: 10.1161/circheartfailure.124.012434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Distinguishing hypertrophic cardiomyopathy (HCM) from other cardiomyopathies with left ventricular hypertrophy (LVH), such as hypertensive LVH, transthyretin amyloid cardiomyopathy, and aortic stenosis, is sometimes challenging. Using plasma proteomics profiling, we aimed to identify circulating biomarkers and dysregulated signaling pathways specific to HCM. METHODS In this multicenter case-control study, plasma proteomics profiling was performed in cases with HCM and controls with hypertensive LVH, transthyretin amyloid cardiomyopathy, and aortic stenosis. Two-thirds of patients enrolled earlier in each disease group were defined as the training set and the remaining one-third as the test set. Protein concentrations in HCM were compared with those in hypertensive LVH (comparison 1), transthyretin amyloid cardiomyopathy (comparison 2), and aortic stenosis (comparison 3). Candidate proteins that meet the following 2 criteria were selected: (1) higher abundance in HCM throughout all 3 comparisons or lower abundance in HCM throughout all 3 comparisons with univariable P<0.05 and |log2(fold change)| >0.5 in both the training and test sets and (2) independently associated with HCM with multivariable P<0.05 after adjusting for clinical parameters significantly different between HCM and controls. Using the selected candidate proteins, a logistic regression model to distinguish HCM from controls was developed in the training set and applied to the test set. Finally, pathway analysis was performed in each comparison using proteins with different abundance. RESULTS Overall, 4979 proteins in 1415 patients (HCM, n=879; hypertensive LVH, n=331; transthyretin amyloid cardiomyopathy, n=169; aortic stenosis, n=36) were analyzed. Of those, 5 proteins were selected as candidate proteins. The logistic regression model with these 5 proteins had an area under the receiver operating characteristic curve of 0.86 (95% CI, 0.82-0.89) in the test set. The MAPK (mitogen-activated protein kinase) and HIF-1 (hypoxia-inducible factor 1) pathways were dysregulated in HCM throughout the 3 comparisons. CONCLUSIONS This study identified circulating biomarkers that distinguish HCM from other cardiomyopathies with LVH independently from confounders and revealed signaling pathways associated with HCM.
Collapse
Affiliation(s)
- Keitaro Akita
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Mathew S. Maurer
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Albree Tower-Rader
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A. Fifer
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuichi J. Shimada
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
2
|
Shlyakhovenko V, Samoylenko O, Verbinenko A, Ganusevich I. ROLE OF RIBONUCLEASES IN THE REGULATION OF IMMUNE RESPONSE. Exp Oncol 2024; 46:192-201. [PMID: 39704462 DOI: 10.15407/exp-oncology.2024.03.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Indexed: 12/21/2024]
Abstract
Ribonucleases (RNases) perform many different functions in living systems. They are responsible for the formation and processing of various ribonucleic acids (RNAs), including the messenger RNA and all types of microRNAs, and determine the duration of the existence of different RNAs in the cell and extracellular environment. RNases are ubiquitously expressed in many tissue types. This short review discusses the major types and main functions of RNases, their homeostatic functions, influence of transcription, immunomodulation, and the role of extracellular RNases in the immune defense mechanisms.
Collapse
Affiliation(s)
- V Shlyakhovenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - O Samoylenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - A Verbinenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - I Ganusevich
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
3
|
Zhang X, Chen Y, Zhou S, Liu Y, Zhu S, Jia X, Lu Z, Zhang Y, Zhang W, Ye Z, Cai B, Kong L, Liu F. RNA Coating Promotes Peri-Implant Osseointegration. ACS Biomater Sci Eng 2024; 10:7030-7042. [PMID: 38943625 PMCID: PMC11558559 DOI: 10.1021/acsbiomaterials.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
In addition to transmitting and carrying genetic information, RNA plays an important abiotic role in the world of nanomaterials. RNA is a natural polyanionic biomacromolecule, and its ability to promote osteogenesis by binding with other inorganic materials as an osteogenic induction agent was discovered only recently. However, whether it can promote osseointegration on implants has not been reported. Here, we investigated the effect of the RNA-containing coating materials on peri-implant osseointegration. Total RNA extracted from rat muscle tissue was used as an osteogenic induction agent, and hyaluronic acid (HA) was used to maintain its negative charge. In simulated body fluids (SBF), in vitro studies demonstrated that the resulting material encouraged calcium salt deposition. Cytological experiments showed that the RNA-containing coating induced greater cell adhesion and osteogenic differentiation in comparison to the control. The results of animal experiments showed that the RNA-containing coating had osteoinductive and bone conduction activities, which are beneficial for bone formation and osseointegration. Therefore, the RNA-containing coatings are useful for the surface modification of titanium implants to promote osseointegration.
Collapse
Affiliation(s)
- Xiao Zhang
- College
of Life Sciences, Northwest University, Xi’an 710069, China
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Yicheng Chen
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Shanluo Zhou
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Ya Liu
- College
of Life Sciences, Northwest University, Xi’an 710069, China
| | - Simin Zhu
- College
of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xuelian Jia
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Zihan Lu
- College
of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yufan Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Wenhui Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Zhou Ye
- Applied
Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, S.A.R., China
| | - Bolei Cai
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Liang Kong
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Fuwei Liu
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| |
Collapse
|
4
|
Chen X, Zhang Z, Qiao G, Sun Z, Lu W. Immune and inflammatory insights in atherosclerosis: development of a risk prediction model through single-cell and bulk transcriptomic analyses. Front Immunol 2024; 15:1448662. [PMID: 39364414 PMCID: PMC11446800 DOI: 10.3389/fimmu.2024.1448662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024] Open
Abstract
Background Investigation into the immune heterogeneity linked with atherosclerosis remains understudied. This knowledge gap hinders the creation of a robust theoretical framework essential for devising personalized immunotherapies aimed at combating this disease. Methods Single-cell RNA sequencing (scRNA-seq) analysis was employed to delineate the immune cell-type landscape within atherosclerotic plaques, followed by assessments of cell-cell interactions and phenotype characteristics using scRNA-seq datasets. Subsequently, pseudotime trajectory analysis was utilized to elucidate the heterogeneity in cell fate and differentiation among macrophages. Through integrated approaches, including single-cell sequencing, Weighted Gene Co-expression Network Analysis (WGCNA), and machine learning techniques, we identified hallmark genes. A risk score model and a corresponding nomogram were developed and validated using these genes, confirmed through Receiver Operating Characteristic (ROC) curve analysis. Additionally, enrichment and immune characteristic analyses were conducted based on the risk score model. The model's applicability was further corroborated by in vitro and in vivo validation of specific genes implicated in atherosclerosis. Result This comprehensive scRNA-seq analysis has shed new light on the intricate immune landscape and the role of macrophages in atherosclerotic plaques. The presence of diverse immune cell populations, with a particularly enriched macrophage population, was highlighted by the results. Macrophage heterogeneity was intricately characterized, revealing four distinct subtypes with varying functional attributes that underscore their complex roles in atherosclerotic pathology. Intercellular communication analysis revealed robust macrophage interactions with multiple cell types and detailed pathways differing between proximal adjacent and atherosclerotic core groups. Furthermore, pseudotime trajectories charted the developmental course of macrophage subpopulations, offering insights into their differentiation fates within the plaque microenvironment. The use of machine learning identified potential diagnostic markers, culminating in the identification of RNASE1 and CD14. The risk score model based on these biomarkers exhibited high accuracy in diagnosing atherosclerosis. Immune characteristic analysis validated the risk score model's efficacy in defining patient profiles, distinguishing high-risk individuals with pronounced immune cell activities. Finally, experimental validation affirmed RNASE1's involvement in atherosclerotic progression, suggesting its potential as a therapeutic target. Conclusion Our findings have advanced our understanding of atherosclerosis immunopathology and paved the way for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xiaosan Chen
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai
Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | | | | | | |
Collapse
|
5
|
Najem MY, Rys RN, Laurance S, Bertin FR, Gourdou-Latyszenok V, Gourhant L, Le Gall L, Le Corre R, Couturaud F, Blostein MD, Lemarié CA. Extracellular RNA Induces Neutrophil Recruitment Via Toll-Like Receptor 3 During Venous Thrombosis After Vascular Injury. J Am Heart Assoc 2024; 13:e034492. [PMID: 39028040 DOI: 10.1161/jaha.124.034492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/24/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Venous thromboembolism is associated with endothelial cell activation that contributes to the inflammation-dependent activation of the coagulation system. Cellular damage is associated with the release of different species of extracellular RNA (eRNA) involved in inflammation and coagulation. TLR3 (toll-like receptor 3), which recognizes (viral) single-stranded or double-stranded RNAs and self-RNA fragments, might be the receptor of these species of eRNA during venous thromboembolism. Here, we investigate how the TLR3/eRNA axis contributes to venous thromboembolism. METHODS AND RESULTS Thrombus formation and size in wild-type and TLR3 deficient (-/-) mice were monitored by ultrasonography after venous thrombosis induction using the ferric chloride and stasis models. Mice were treated with RNase I, with polyinosinic-polycytidylic acid, a TLR3 agonist, or with RNA extracted from murine endothelial cells. Gene expression and signaling pathway activation were analyzed in HEK293T cells overexpressing TLR3 in response to eRNA or in human umbilical vein endothelial cells transfected with a small interference RNA against TLR3. Plasma clot formation on treated human umbilical vein endothelial cells was analyzed. Thrombosis exacerbated eRNA release in vivo and increased eRNA content within the thrombus. RNase I treatment reduced thrombus size compared with vehicle-treated mice (P<0.05). Polyinosinic-polycytidylic acid and eRNA treatments increased thrombus size in wild-type mice (P<0.01 and P<0.05), but not in TLR3-/- mice, by reinforcing neutrophil recruitment (P<0.05). Mechanistically, TLR3 activation in endothelial cells promotes CXCL5 (C-X-C motif chemokine 5) secretion (P<0.001) and NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation (P<0.05). Finally, eRNA triggered plasma clot formation in vitro (P<0.01). CONCLUSIONS We show that eRNA and TLR3 activation enhance venous thromboembolism through neutrophil recruitment possibly through secretion of CXCL5, a potent neutrophil chemoattractant.
Collapse
Affiliation(s)
| | - Ryan N Rys
- Lady Davis Institute for Medical Research Montréal Québec Canada
| | - Sandrine Laurance
- Lady Davis Institute for Medical Research Montréal Québec Canada
- INSERM, BIGR, Université de Paris and Université des Antilles Paris France
| | - François-René Bertin
- Lady Davis Institute for Medical Research Montréal Québec Canada
- School of Veterinary Science The University of Queensland Gatton Queensland Australia
| | | | | | | | | | - Francis Couturaud
- Univ Brest, Inserm, UMR 1304, GETBO Brest France
- Département de Pneumologie et de Médecine Interne CHU Brest Brest France
| | - Mark D Blostein
- Lady Davis Institute for Medical Research Montréal Québec Canada
- Department of Medicine Sir Mortimer B. Davis-Jewish General Hospital, McGill University Montréal Québec Canada
| | - Catherine A Lemarié
- Univ Brest, Inserm, UMR 1304, GETBO Brest France
- Département de Pneumologie et de Médecine Interne CHU Brest Brest France
- Lady Davis Institute for Medical Research Montréal Québec Canada
| |
Collapse
|
6
|
Wang Z, Weng Z, Lin L, Wu X, Liu W, Zhuang Y, Jian J, Zhuo C. Characterize molecular signatures and establish a prognostic signature of gastric cancer by integrating single-cell RNA sequencing and bulk RNA sequencing. Discov Oncol 2024; 15:301. [PMID: 39044041 PMCID: PMC11266334 DOI: 10.1007/s12672-024-01168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Gastric cancer is a significant global health concern with complex molecular underpinnings influencing disease progression and patient outcomes. Various molecular drivers were reported, and these studies offered potential avenues for targeted therapies, biomarker discovery, and the development of precision medicine strategies. However, it was posed that the heterogeneity of the disease and the complexity of the molecular interactions are still challenging. By seamlessly integrating data from single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (bulk RNA-seq), we embarked on characterizing molecular signatures and establishing a prognostic signature for this complex malignancy. We offered a holistic view of gene expression landscapes in gastric cancer, identified 226 candidate marker genes from 3 different dimensions, and unraveled key players' risk stratification and treatment decision-making. The convergence of molecular insights in gastric cancer progression occurs at multiple biological scales simultaneously. The focal point of this study lies in developing a prognostic model, and we amalgamated four molecular signatures (COL4A1, FKBP10, RNASE1, SNCG) and three clinical parameters using advanced machine-learning techniques. The model showed high predictive accuracy, with the potential to revolutionize patient care by using clinical variables. This will strengthen the reliability of the model and enable personalized therapeutic strategies based on each patient's unique molecular profile. In summary, our research sheds light on the molecular underpinnings of gastric cancer, culminating in a powerful prognostic tool for gastric cancer. With a firm foundation in biological insights and clinical implications, our study paves the way for future validations and underscores the potential of integrated molecular analysis in advancing precision oncology.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, China
| | - Zhiyan Weng
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Endocrinology, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Luping Lin
- Department of Abdominal Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, China
| | - Xianyi Wu
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, China
| | - Wenju Liu
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, China
| | - Yong Zhuang
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, China
| | - Jinliang Jian
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, China
| | - Changhua Zhuo
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, China.
- Fujian Key Laboratory of Translational Cancer Medicine, Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, 350011, China.
| |
Collapse
|
7
|
Bivona G, Sammataro S, Ghersi G. Nucleic Acids-Based Biomarkers for Alzheimer's Disease Diagnosis and Novel Molecules to Treat the Disease. Int J Mol Sci 2024; 25:7893. [PMID: 39063135 PMCID: PMC11277093 DOI: 10.3390/ijms25147893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) represents the most common form of dementia and affects million people worldwide, with a high social burden and considerable economic costs. AD diagnosis benefits from a well-established panel of laboratory tests that allow ruling-in patients, along with FDG and amyloid PET imaging tools. The main laboratory tests used to identify AD patients are Aβ40, Aβ42, the Aβ42/Aβ40 ratio, phosphorylated Tau 181 (pTau181) and total Tau (tTau). Although they are measured preferentially in the cerebrospinal fluid (CSF), some evidence about the possibility for blood-based determination to enter clinical practice is growing up. Unfortunately, CSF biomarkers for AD and, even more, the blood-based ones, present a few flaws, and twenty years of research in this field did not overcome these pitfalls. The tale even worsens when the issue of treating AD is addressed due to the lack of effective strategies despite the many decades of attempts by pharmaceutic industries and scientists. Amyloid-based drugs failed to stop the disease, and no neuroinflammation-based drugs have been demonstrated to work so far. Hence, only symptomatic therapy is available, with no disease-modifying treatment on hand. Such a desolate situation fully justifies the active search for novel biomarkers to be used as reliable tests for AD diagnosis and molecular targets for treating patients. Recently, a novel group of molecules has been identified to be used for AD diagnosis and follow-up, the nuclei acid-based biomarkers. Nucleic acid-based biomarkers are a composite group of extracellular molecules consisting of DNA and RNA alone or in combination with other molecules, including proteins. This review article reports the main findings from the studies carried out on these biomarkers during AD, and highlights their advantages and limitations.
Collapse
Affiliation(s)
- Giulia Bivona
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Selene Sammataro
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy;
| |
Collapse
|
8
|
Bork F, Greve CL, Youn C, Chen S, N C Leal V, Wang Y, Fischer B, Nasri M, Focken J, Scheurer J, Engels P, Dubbelaar M, Hipp K, Zalat B, Szolek A, Wu MJ, Schittek B, Bugl S, Kufer TA, Löffler MW, Chamaillard M, Skokowa J, Kramer D, Archer NK, Weber ANR. naRNA-LL37 composite DAMPs define sterile NETs as self-propagating drivers of inflammation. EMBO Rep 2024; 25:2914-2949. [PMID: 38783164 PMCID: PMC11239898 DOI: 10.1038/s44319-024-00150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are a key antimicrobial feature of cellular innate immunity mediated by polymorphonuclear neutrophils (PMNs). NETs counteract microbes but are also linked to inflammation in atherosclerosis, arthritis, or psoriasis by unknown mechanisms. Here, we report that NET-associated RNA (naRNA) stimulates further NET formation in naive PMNs via a unique TLR8-NLRP3 inflammasome-dependent pathway. Keratinocytes respond to naRNA with expression of psoriasis-related genes (e.g., IL17, IL36) via atypical NOD2-RIPK signaling. In vivo, naRNA drives temporary skin inflammation, which is drastically ameliorated by genetic ablation of RNA sensing. Unexpectedly, the naRNA-LL37 'composite damage-associated molecular pattern (DAMP)' is pre-stored in resting neutrophil granules, defining sterile NETs as inflammatory webs that amplify neutrophil activation. However, the activity of the naRNA-LL37 DAMP is transient and hence supposedly self-limiting under physiological conditions. Collectively, upon dysregulated NET release like in psoriasis, naRNA sensing may represent both a potential cause of disease and a new intervention target.
Collapse
Affiliation(s)
- Francesca Bork
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Carsten L Greve
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Christine Youn
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Sirui Chen
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Vinicius N C Leal
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Science, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Berenice Fischer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Masoud Nasri
- Division of Translational Oncology, Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Otfried-Müller Str. 10, 72076, Tübingen, Germany
| | - Jule Focken
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
| | - Jasmin Scheurer
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
| | - Pujan Engels
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Marissa Dubbelaar
- Institute of Immunology, Department of Peptide-based Immunotherapy, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Baher Zalat
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Andras Szolek
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Meng-Jen Wu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Birgit Schittek
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- CMFI - Cluster of Excellence (EXC 2124) "Controlling microbes to fight infection", University of Tübingen, Tübingen, Germany
| | - Stefanie Bugl
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany
| | - Markus W Löffler
- Institute of Immunology, Department of Peptide-based Immunotherapy, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty, University of Tübingen, Otfried-Müller-Str. 4/1, 72076, Tübingen, Germany
| | - Mathias Chamaillard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Julia Skokowa
- Division of Translational Oncology, Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Otfried-Müller Str. 10, 72076, Tübingen, Germany
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Alexander N R Weber
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- CMFI - Cluster of Excellence (EXC 2124) "Controlling microbes to fight infection", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
9
|
Hannemann A, Ameling S, Lehnert K, Dörr M, Felix SB, Nauck M, Al-Noubi MN, Schmidt F, Haas J, Meder B, Völker U, Friedrich N, Hammer E. Integrative Analyses of Circulating Proteins and Metabolites Reveal Sex Differences in the Associations with Cardiac Function among DCM Patients. Int J Mol Sci 2024; 25:6827. [PMID: 38999939 PMCID: PMC11241450 DOI: 10.3390/ijms25136827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by reduced left ventricular ejection fraction (LVEF) and left or biventricular dilatation. We evaluated sex-specific associations of circulating proteins and metabolites with structural and functional heart parameters in DCM. Plasma samples (297 men, 71 women) were analyzed for proteins using Olink assays (targeted analysis) or LC-MS/MS (untargeted analysis), and for metabolites using LC MS/MS (Biocrates AbsoluteIDQ p180 Kit). Associations of proteins (n = 571) or metabolites (n = 163) with LVEF, measured left ventricular end diastolic diameter (LVEDDmeasured), and the dilation percentage of LVEDD from the norm (LVEDDacc. to HENRY) were examined in combined and sex-specific regression models. To disclose protein-metabolite relations, correlation analyses were performed. Associations between proteins, metabolites and LVEF were restricted to men, while associations with LVEDD were absent in both sexes. Significant metabolites were validated in a second independent DCM cohort (93 men). Integrative analyses demonstrated close relations between altered proteins and metabolites involved in lipid metabolism, inflammation, and endothelial dysfunction with declining LVEF, with kynurenine as the most prominent finding. In DCM, the loss of cardiac function was reflected by circulating proteins and metabolites with sex-specific differences. Our integrative approach demonstrated that concurrently assessing specific proteins and metabolites might help us to gain insights into the alterations associated with DCM.
Collapse
Affiliation(s)
- Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, D-17475 Greifswald, Germany; (M.N.); (N.F.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, D-17475 Greifswald, Germany; (S.A.); (K.L.); (M.D.); (S.B.F.); (U.V.); (E.H.)
| | - Sabine Ameling
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, D-17475 Greifswald, Germany; (S.A.); (K.L.); (M.D.); (S.B.F.); (U.V.); (E.H.)
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Strasse 8, D-17475 Greifswald, Germany
| | - Kristin Lehnert
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, D-17475 Greifswald, Germany; (S.A.); (K.L.); (M.D.); (S.B.F.); (U.V.); (E.H.)
- Department of Internal Medicine B, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Marcus Dörr
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, D-17475 Greifswald, Germany; (S.A.); (K.L.); (M.D.); (S.B.F.); (U.V.); (E.H.)
- Department of Internal Medicine B, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Stephan B. Felix
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, D-17475 Greifswald, Germany; (S.A.); (K.L.); (M.D.); (S.B.F.); (U.V.); (E.H.)
- Department of Internal Medicine B, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, D-17475 Greifswald, Germany; (M.N.); (N.F.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, D-17475 Greifswald, Germany; (S.A.); (K.L.); (M.D.); (S.B.F.); (U.V.); (E.H.)
| | - Muna N. Al-Noubi
- Proteomics Core, Weill Cornell Medicine-Qatar, Doha 24144, Qatar; (M.N.A.-N.); (F.S.)
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine-Qatar, Doha 24144, Qatar; (M.N.A.-N.); (F.S.)
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Centre Heidelberg, University of Heidelberg, D-69121 Heidelberg, Germany; (J.H.); (B.M.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, D-69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, D-69120 Heidelberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Centre Heidelberg, University of Heidelberg, D-69121 Heidelberg, Germany; (J.H.); (B.M.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, D-69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, D-69120 Heidelberg, Germany
| | - Uwe Völker
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, D-17475 Greifswald, Germany; (S.A.); (K.L.); (M.D.); (S.B.F.); (U.V.); (E.H.)
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Strasse 8, D-17475 Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, D-17475 Greifswald, Germany; (M.N.); (N.F.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, D-17475 Greifswald, Germany; (S.A.); (K.L.); (M.D.); (S.B.F.); (U.V.); (E.H.)
| | - Elke Hammer
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, D-17475 Greifswald, Germany; (S.A.); (K.L.); (M.D.); (S.B.F.); (U.V.); (E.H.)
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Strasse 8, D-17475 Greifswald, Germany
| |
Collapse
|
10
|
Han X, Gao C, Lu W, Yan J, Xu H, Guo Z, Qin W, Lu N, Gao J, Zhu W, Fu Y, Jiao K. Macrophage-Derived Extracellular DNA Initiates Heterotopic Ossification. Inflammation 2023; 46:2225-2240. [PMID: 37458919 DOI: 10.1007/s10753-023-01873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/17/2023] [Accepted: 07/04/2023] [Indexed: 11/25/2023]
Abstract
Heterotopic ossification (HO) severely affects people's lives; however, its pathological mechanism remains poorly understood. Although extracellular DNA (ecDNA) has been shown to play important roles in pathological calcification, its effects in HO development and progression remain unknown. The in vivo rat Achilles tendon injury model and in vitro collagen I calcification model were used to evaluate the effects of ecDNA in the ectopic calcifications and the main cell types involved in those pathological process. Histology, immunofluorescent staining, reverse transcriptase-polymerase chain reaction analysis and micro-computed tomography were used to identify the distribution of macrophage-derived ecDNA and elucidate their roles in HO. The results showed that the amount of ecDNA and ectopic calcification increased significantly and exhibited a strong correlation in the injured tendons of HO model compared with those of the controls, which was accompanied by a significantly increased number of M2 macrophages in the injured tendon. During in vitro co-culture experiments, M2 macrophages calcified the reconstituted type I collagen and ectopic bone collected from the injured tendons of HO rats, while those effects were inhibited by deoxyribonuclease. More importantly, deoxyribonuclease reversed the pathological calcification in the injured rat tendon HO model. The present study showed that ecDNA from M2 macrophages initiates pathological calcification in HO, and the elimination of ecDNA might be developed into a clinical strategy to prevent ectopic mineralization diseases. The use of deoxyribonuclease for the targeted degradation of ecDNA at affected tissue sites provides a potential solution to treat diseases associated with ectopic mineralization.
Collapse
Affiliation(s)
- Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- The College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Changhe Gao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Weicheng Lu
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianfei Yan
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haoqing Xu
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- The College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Zhenxing Guo
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Naining Lu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jialu Gao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weiwei Zhu
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- The College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Yutong Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- The College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Böning A, Flicker L, Rodriguez-Montesinos J, Cabrera-Fuentes H, Preissner KT, Niemann B, Taghiyev ZT. Remote ischemic preconditioning in patients undergoing cardiac surgery with six ischemic cycles. Perfusion 2023; 38:1418-1427. [PMID: 35849687 DOI: 10.1177/02676591221115260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND We have previously shown that remote ischemic preconditioning (RIP), which utilizes in part the extracellular RNA (eRNA)/RNase1 pathway, can induce ischemic tolerance in humans. Because RIP has thus far been tested only with four cycles of extremity ischemia/reperfusion, we investigated the influence of six cycles of ischemia on the eRNA/RNase1 pathway in cardiac patients. METHODS Six cycles of RIP were carried out in 14 patients undergoing cardiac surgery. Blood samples were taken at 13 timepoints during surgery and at three timepoints after surgery for determining serum levels of RNase1, eRNA, and TNF-α. Trans-cardiac gradients between the myocardial blood inflow and outflow were calculated. RESULTS Between the fourth and the sixth RIP cycles, a noticeable increase in the levels of eRNA (fourth: 151.6 (SD: 44.2) ng/ml vs sixth: 181.8 (SD: 87.5) ng/ml, p = .071), and a significant increase in RNase1 (fourth: 151.1 (SD: 42.6) U/ml vs sixth: 175.3 (SD: 41.2) U/ml, p = .001), were noted. The trans-cardiac gradients of RNase1 and eRNA before and after ischemia were not significantly different (p = .158 and p = .221; p = .397 and p = .683, respectively). Likewise, the trans-cardiac gradient of TNF-α was similar before and after ischemia. During the first 48 h after the surgery, RNase1 activity rose significantly and exceeded baseline values (135.7 (SD: 40.6) U/ml before and 279.2 (SD: 85.6) U/ml after surgery, p = .001) as did eRNA levels (148,6 (SD: 35.4) ng/ml before and 396.5 (SD: 154.5) ng/ml after surgery, p = .005), whereas TNF-α levels decreased significantly (91.7 (SD: 47.7) pg/ml before and 35.7 (SD: 36.9) pg/ml after surgery, p = .001). CONCLUSION Six RIP cycles increased the RNase1 levels significantly above those observed with four cycles. More clinical data are required to show whether this translates into a benefit for patients.
Collapse
Affiliation(s)
- Andreas Böning
- Department of Cardiovascular Surgery, University Hospital Giessen, Giessen, Germany
| | - Luisa Flicker
- Department of Cardiovascular Surgery, University Hospital Giessen, Giessen, Germany
| | | | | | - Klaus T Preissner
- Department of Cardiology, Medical Faculty, Kerckhoff Heart Research Institute, Justus Liebig University, Giessen, Germany
| | - Bernd Niemann
- Department of Cardiovascular Surgery, University Hospital Giessen, Giessen, Germany
| | - Zulfugar T Taghiyev
- Department of Cardiovascular Surgery, University Hospital Giessen, Giessen, Germany
| |
Collapse
|
12
|
Kunze R, Fischer S, Marti HH, Preissner KT. Brain alarm by self-extracellular nucleic acids: from neuroinflammation to neurodegeneration. J Biomed Sci 2023; 30:64. [PMID: 37550658 PMCID: PMC10405513 DOI: 10.1186/s12929-023-00954-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Neurological disorders such as stroke, multiple sclerosis, as well as the neurodegenerative diseases Parkinson's or Alzheimer's disease are accompanied or even powered by danger associated molecular patterns (DAMPs), defined as endogenous molecules released from stressed or damaged tissue. Besides protein-related DAMPs or "alarmins", numerous nucleic acid DAMPs exist in body fluids, such as cell-free nuclear and mitochondrial DNA as well as different species of extracellular RNA, collectively termed as self-extracellular nucleic acids (SENAs). Among these, microRNA, long non-coding RNAs, circular RNAs and extracellular ribosomal RNA constitute the majority of RNA-based DAMPs. Upon tissue injury, necrosis or apoptosis, such SENAs are released from neuronal, immune and other cells predominantly in association with extracellular vesicles and may be translocated to target cells where they can induce intracellular regulatory pathways in gene transcription and translation. The majority of SENA-induced signaling reactions in the brain appear to be related to neuroinflammatory processes, often causally associated with the onset or progression of the respective disease. In this review, the impact of the diverse types of SENAs on neuroinflammatory and neurodegenerative diseases will be discussed. Based on the accumulating knowledge in this field, several specific antagonistic approaches are presented that could serve as therapeutic interventions to lower the pathological outcome of the indicated brain disorders.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
13
|
Sharma H, Yadav V, D'Souza-Schorey C, Go DB, Senapati S, Chang HC. A Scalable High-Throughput Isoelectric Fractionation Platform for Extracellular Nanocarriers: Comprehensive and Bias-Free Isolation of Ribonucleoproteins from Plasma, Urine, and Saliva. ACS NANO 2023; 17:9388-9404. [PMID: 37071723 PMCID: PMC10756736 DOI: 10.1021/acsnano.3c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Extracellular nanocarriers (extracellular vesicles (EVs), lipoproteins, and ribonucleoproteins) of protein and nucleic acids mediate intercellular communication and are clinically adaptable as distinct circulating biomarkers. However, the overlapping size and density of the nanocarriers have so far prevented their efficient physical fractionation, thus impeding independent downstream molecular assays. Here, we report a bias-free high-throughput and high-yield continuous isoelectric fractionation nanocarrier fractionation technique based on their distinct isoelectric points. This nanocarrier fractionation platform is enabled by a robust and tunable linear pH profile provided by water-splitting at a bipolar membrane and stabilized by flow without ampholytes. The linear pH profile that allows easy tuning is a result of rapid equilibration of the water dissociation reaction and stabilization by flow. The platform is automated with a machine learning procedure to allow recalibration for different physiological fluids and nanocarriers. The optimized technique has a resolution of 0.3 ΔpI, sufficient to separate all nanocarriers and even subclasses of nanocarriers. Its performance is then evaluated with several biofluids, including plasma, urine, and saliva samples. Comprehensive, high-purity (plasma: >93%, urine: >95% and saliva: >97%), high-yield (plasma: >78%, urine: >87% and saliva: >96%), and probe-free isolation of ribonucleoproteins in 0.75 mL samples of various biofluids in 30 min is demonstrated, significantly outperforming affinity-based and highly biased gold standards having low yield and day-long protocols. Binary fractionation of EVs and different lipoproteins is also achieved with similar performance.
Collapse
Affiliation(s)
- Himani Sharma
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Vivek Yadav
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Crislyn D'Souza-Schorey
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David B Go
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
14
|
Laakmann K, Eckersberg JM, Hapke M, Wiegand M, Bierwagen J, Beinborn I, Preußer C, Pogge von Strandmann E, Heimerl T, Schmeck B, Jung AL. Bacterial extracellular vesicles repress the vascular protective factor RNase1 in human lung endothelial cells. Cell Commun Signal 2023; 21:111. [PMID: 37189117 DOI: 10.1186/s12964-023-01131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Sepsis is one of the leading causes of death worldwide and characterized by blood stream infections associated with a dysregulated host response and endothelial cell (EC) dysfunction. Ribonuclease 1 (RNase1) acts as a protective factor of vascular homeostasis and is known to be repressed by massive and persistent inflammation, associated to the development of vascular pathologies. Bacterial extracellular vesicles (bEVs) are released upon infection and may interact with ECs to mediate EC barrier dysfunction. Here, we investigated the impact of bEVs of sepsis-related pathogens on human EC RNase1 regulation. METHODS bEVs from sepsis-associated bacteria were isolated via ultrafiltration and size exclusion chromatography and used for stimulation of human lung microvascular ECs combined with and without signaling pathway inhibitor treatments. RESULTS bEVs from Escherichia coli, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium significantly reduced RNase1 mRNA and protein expression and activated ECs, while TLR2-inducing bEVs from Streptococcus pneumoniae did not. These effects were mediated via LPS-dependent TLR4 signaling cascades as they could be blocked by Polymyxin B. Additionally, LPS-free ClearColi™ had no impact on RNase1. Further characterization of TLR4 downstream pathways involving NF-кB and p38, as well as JAK1/STAT1 signaling, revealed that RNase1 mRNA regulation is mediated via a p38-dependent mechanism. CONCLUSION Blood stream bEVs from gram-negative, sepsis-associated bacteria reduce the vascular protective factor RNase1, opening new avenues for therapeutical intervention of EC dysfunction via promotion of RNase1 integrity. Video Abstract.
Collapse
Affiliation(s)
- Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Jorina Mona Eckersberg
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Moritz Hapke
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Marie Wiegand
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Jeff Bierwagen
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Christian Preußer
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Department of Pulmonary and Critical Care Medicine, Philipps-University Marburg, Marburg, Germany
- Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany.
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
15
|
Functions and cellular signaling by ribosomal extracellular RNA (rexRNA): Facts and hypotheses on a non-typical DAMP. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119408. [PMID: 36503009 DOI: 10.1016/j.bbamcr.2022.119408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Upon microbial infections with the subsequent host response of innate immunity, a variety of fragmented RNA- and DNA-based "Pathogen-associated molecular patterns" (PAMPs) are recognized mainly by endosomal or cytoplasmic host cell "Pattern recognition receptors" (PRRs), particularly "Toll-like receptors" (TLRs). Concomitantly, various self-extracellular RNA species (exRNAs) are present in extracellular body fluids where they contribute to diverse physiological and homeostatic processes. In principle, such exRNAs, including the most abundant one, ribosomal exRNA (rexRNA), are designated as "Danger-associated molecular patterns" (DAMPs) and are prevented by e.g. natural modifications from uncontrolled signaling via TLRs to avoid hyper-inflammatory responses or autoimmunity. Upon cellular stress or tissue damage/necrosis, the levels and composition of released self-exRNA species, either in free form, in complex with proteins or in association with extracellular vesicles (EVs), can change considerably. Among the self-exRNAs, rexRNA is considered as a non-typical DAMP, since it may induce inflammatory responses by cell membrane receptors, both in the absence or presence of PAMPs. Yet, its mode of receptor activation to mount inflammatory responses remains obscure. RexRNA also serves as a universal damaging factor in cardiovascular and other diseases independent of PRRs. In general, RNase1 provides a profound antagonist in these pathologies and in rexRNA-mediated inflammatory cell responses. Based on the extrapolation of the here described aspects of rexRNA-biology, further activities of this molecular entity are hypothesized that may stimulate additional research in this area.
Collapse
|
16
|
Abstract
The ribonuclease A (RNase A) family is one of the best-characterized vertebrate-specific proteins. In humans, eight catalytically active RNases (numbered 1–8) have been identified and have unique tissue distributions. Apart from the digestion of dietary RNA, a broad range of biological actions, including the regulation of intra- or extra-cellular RNA metabolism as well as antiviral, antibacterial, and antifungal activities, neurotoxicity, promotion of cell proliferation, anti-apoptosis, and immunomodulatory abilities, have been recently reported for the members of this family. Based on multiple biological roles, RNases are found to participate in the pathogenic processes of many diseases, such as infection, immune dysfunction, neurodegeneration, cancer, and cardiovascular disorders. This review summarizes the available data on the human RNase A family and illustrates the significant roles of the eight canonical RNases in health and disease, for stimulating further basic research and development of ideas on the potential solutions for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Desen Sun
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Han
- Institute of Environmental Medicine and Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China,Undergraduate Program in Public Health, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinghao Sheng
- Institute of Environmental Medicine and Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China,Corresponding author
| |
Collapse
|
17
|
Bo Z, Huang S, Li L, Chen L, Chen P, Luo X, Shi F, Zhu B, Shen L. EGR2 is a hub-gene in myocardial infarction and aggravates inflammation and apoptosis in hypoxia-induced cardiomyocytes. BMC Cardiovasc Disord 2022; 22:373. [PMID: 35971091 PMCID: PMC9377070 DOI: 10.1186/s12872-022-02814-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background Myocardial infarction (MI) is characterized by coronary artery occlusion, ischemia and hypoxia of myocardial cells, leading to irreversible myocardial damage. Therefore, it is urgent to explore the potential mechanism of myocardial injury during the MI process to develop effective therapies for myocardial cell rescue. Methods We downloaded the GSE71906 dataset from GEO DataSets, and the R software was used to identify the differentially expressed genes (DEGs) in mouse heart tissues of MI and sham controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed to understand the significantly activated signaling pathways in MI. Protein–protein interaction (PPI) network was constructed to highlight the hub genes in DEGs. The Western Blot, qRT-PCR and TUNEL staining were used to explore the function of hub gene in hypoxia-induced cardiomyocytes in vitro. Results A total of 235 DEGs were identified in GSE71906 dataset. Functional enrichment analysis revealed that the upregulated genes were primarily associated with the inflammatory response and apoptosis. 20 hub genes were identified in PPI network, and the early growth response 2 (EGR2) was highlighted. In vitro. We confirmed the EGR2 was upregulated induced by hypoxia and revealed the upregulated EGR2 aggravates pro-inflammation and pro-apoptotic genes expression. In addition, EGR2 knockout mitigates hypoxia-induced inflammation and apoptosis in cardiomyocytes. Conclusion The present study identified the EGR2 was a hub gene in myocardial damage during MI process, the excessive EGR2 aggravates hypoxia-induced myocardial damage by accelerating inflammation and apoptosis in vitro. Therefore, targeting EGR2 offers a potential pharmacological strategy for myocardial cell rescue in MI. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02814-3.
Collapse
Affiliation(s)
- Zhixiang Bo
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Shuwen Huang
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Li Li
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lin Chen
- Department of Surgery, Wushan County Hospital of Traditional Chinese Medicine, Chongqing, 400010, China
| | - Ping Chen
- Department of Gastroenterology, The Fifth People's Hospital of Chongqing, Chongqing, 400010, China
| | - Xiaoyi Luo
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Fang Shi
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Bing Zhu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lin Shen
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, #76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
18
|
Grote K, Nicolai M, Schubert U, Schieffer B, Troidl C, Preissner KT, Bauer S, Fischer S. Extracellular Ribosomal RNA Acts Synergistically with Toll-like Receptor 2 Agonists to Promote Inflammation. Cells 2022; 11:cells11091440. [PMID: 35563745 PMCID: PMC9103112 DOI: 10.3390/cells11091440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Self-extracellular RNA (eRNA), which is released under pathological conditions from damaged tissue, has recently been identified as a new alarmin and synergistic agent together with toll-like receptor (TLR)2 ligands to induce proinflammatory activities of immune cells. In this study, a detailed investigation of these interactions is reported. The macrophage cell line J774 A.1 or C57 BL/6 J wild-type mice were treated with 18S rRNA and different TLR2 agonists. Gene and protein expression of tumor necrosis factor (Tnf)-α; interleukin (Il)-1β, Il-6; or monocyte chemoattractant protein (Mcp)-1 were analyzed and furthermore in vitro binding studies to TLR2 were performed. The TLR2/TLR6-agonist Pam2 CSK4 (Pam2) together with 18S rRNA significantly increased the mRNA expression of inflammatory genes and the release of TNF-α from macrophages in a TLR2- and nuclear factor kappa B (NF-κB)-dependent manner. The injection of 18S rRNA/Pam2 into mice increased the cytokine levels of TNF-α, IL-6, and MCP-1 in the peritoneal lavage. Mechanistically, 18S rRNA built complexes with Pam2 and thus enhanced the affinity of Pam2 to TLR2. These results indicate that the alarmin eRNA, mainly consisting of rRNA, sensitizes TLR2 to enhance the innate immune response under pathological conditions. Thus, rRNA might serve as a new target for the treatments of bacterial and viral infections.
Collapse
Affiliation(s)
- Karsten Grote
- Cardiology & Angiology, Medical School, Philipps-University, 35043 Marburg, Germany; (K.G.); (B.S.)
| | - Marina Nicolai
- Institute of Immunology, Medical School, Philipps-University, 35043 Marburg, Germany; (M.N.); (S.B.)
| | - Uwe Schubert
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
| | - Bernhard Schieffer
- Cardiology & Angiology, Medical School, Philipps-University, 35043 Marburg, Germany; (K.G.); (B.S.)
| | - Christian Troidl
- Medical Clinic I, Cardiology/Angiology, Campus Kerckhoff, Justus-Liebig-University, 61231 Bad Nauheim, Germany;
- Department Cardiology, Kerckhoff-Heart Research Institute, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
| | - Klaus T. Preissner
- Department Cardiology, Kerckhoff-Heart Research Institute, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
| | - Stefan Bauer
- Institute of Immunology, Medical School, Philipps-University, 35043 Marburg, Germany; (M.N.); (S.B.)
| | - Silvia Fischer
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
- Department Cardiology, Kerckhoff-Heart Research Institute, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
- Correspondence:
| |
Collapse
|
19
|
Pilard M, Ollivier EL, Gourdou-Latyszenok V, Couturaud F, Lemarié CA. Endothelial Cell Phenotype, a Major Determinant of Venous Thrombo-Inflammation. Front Cardiovasc Med 2022; 9:864735. [PMID: 35528838 PMCID: PMC9068971 DOI: 10.3389/fcvm.2022.864735] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
Reduced blood flow velocity in the vein triggers inflammation and is associated with the release into the extracellular space of alarmins or damage-associated molecular patterns (DAMPs). These molecules include extracellular nucleic acids, extracellular purinergic nucleotides (ATP, ADP), cytokines and extracellular HMGB1. They are recognized as a danger signal by immune cells, platelets and endothelial cells. Hence, endothelial cells are capable of sensing environmental cues through a wide variety of receptors expressed at the plasma membrane. The endothelium is then responding by expressing pro-coagulant proteins, including tissue factor, and inflammatory molecules such as cytokines and chemokines involved in the recruitment and activation of platelets and leukocytes. This ultimately leads to thrombosis, which is an active pro-inflammatory process, tightly regulated, that needs to be properly resolved to avoid further vascular damages. These mechanisms are often dysregulated, which promote fibrinolysis defects, activation of the immune system and irreversible vascular damages further contributing to thrombotic and inflammatory processes. The concept of thrombo-inflammation is now widely used to describe the complex interactions between the coagulation and inflammation in various cardiovascular diseases. In endothelial cells, activating signals converge to multiple intracellular pathways leading to phenotypical changes turning them into inflammatory-like cells. Accumulating evidence suggest that endothelial to mesenchymal transition (EndMT) may be a major mechanism of endothelial dysfunction induced during inflammation and thrombosis. EndMT is a biological process where endothelial cells lose their endothelial characteristics and acquire mesenchymal markers and functions. Endothelial dysfunction might play a central role in orchestrating and amplifying thrombo-inflammation thought induction of EndMT processes. Mechanisms regulating endothelial dysfunction have been only partially uncovered in the context of thrombotic diseases. In the present review, we focus on the importance of the endothelial phenotype and discuss how endothelial plasticity may regulate the interplay between thrombosis and inflammation. We discuss how the endothelial cells are sensing and responding to environmental cues and contribute to thrombo-inflammation with a particular focus on venous thromboembolism (VTE). A better understanding of the precise mechanisms involved and the specific role of endothelial cells is needed to characterize VTE incidence and address the risk of recurrent VTE and its sequelae.
Collapse
|
20
|
Cui Y, Zhou Y, Gan N, Xiang Q, Xia M, Liao W, Zheng XL, Peng J, Tang Z. The Role of Extracellular Non-coding RNAs in Atherosclerosis. J Cardiovasc Transl Res 2022; 15:477-491. [PMID: 35233720 DOI: 10.1007/s12265-022-10218-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
Atherosclerosis (AS) is a complex chronic inflammatory disease that leads to myocardial infarction, stroke, and disabling peripheral artery disease. Non-coding RNAs (ncRNAs) directly participate in various physiological processes and exhibit a wide range of biological functions. The present review discusses how different ncRNAs participate in the process of AS in various carrier forms. We focused on the role and potential mechanisms of extracellular ncRNAs in AS and examined their potential implications for clinical treatment.
Collapse
Affiliation(s)
- Yuting Cui
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Yating Zhou
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Ni Gan
- Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qiong Xiang
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Mengdie Xia
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Wei Liao
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Juan Peng
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhihan Tang
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
21
|
Shen M, Jiao K, Wang C, Ehrlich H, Wan M, Hao D, Li J, Wan Q, Tonggu L, Yan J, Wang K, Ma Y, Chen J, Tay FR, Niu L. Extracellular DNA: A Missing Link in the Pathogenesis of Ectopic Mineralization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103693. [PMID: 34939364 PMCID: PMC8844461 DOI: 10.1002/advs.202103693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Indexed: 05/12/2023]
Abstract
Although deoxyribonucleic acid (DNA) is the genetic coding for the very essence of life, these macromolecules or components thereof are not necessarily lost after a cell dies. There appears to be a link between extracellular DNA and biomineralization. Here the authors demonstrate that extracellular DNA functions as an initiator of collagen intrafibrillar mineralization. This is confirmed with in vitro and in vivo biological mineralization models. Because of their polyanionic property, extracellular DNA molecules are capable of stabilizing supersaturated calcium phosphate solution and mineralizing 2D and 3D collagen matrices completely as early as 24 h. The effectiveness of extracellular DNA in biomineralization of collagen is attributed to the relatively stable formation of amorphous liquid droplets triggered by attraction of DNA to the collagen fibrils via hydrogen bonding. These findings suggest that extracellular DNA is biomimetically significant for fabricating inorganic-organic hybrid materials for tissue engineering. DNA-induced collagen intrafibrillar mineralization provides a clue to the pathogenesis of ectopic mineralization in different body tissues. The use of DNase for targeting extracellular DNA at destined tissue sites provides a potential solution for treatment of diseases associated with ectopic mineralization.
Collapse
Affiliation(s)
- Min‐juan Shen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Kai Jiao
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Chen‐yu Wang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Hermann Ehrlich
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
- Center for Advanced TechnologyAdam Mickiewicz UniversityPoznan61‐614Poland
| | - Mei‐chen Wan
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Dong‐xiao Hao
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- Department of Applied PhysicsXi'an Jiaotong UniversityXi'anShaanxi710049P. R. China
| | - Jing Li
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Qian‐qian Wan
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Lige Tonggu
- School of MedicineUniversity of WashingtonSeattleWA98195USA
| | - Jian‐fei Yan
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Kai‐yan Wang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Yu‐xuan Ma
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Ji‐hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Franklin R. Tay
- The Dental College of GeorgiaAugusta UniversityAugustaGA30912USA
| | - Li‐na Niu
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| |
Collapse
|
22
|
Bhagat S, Biswas I, Alam MI, Khan M, Khan GA. Key role of Extracellular RNA in hypoxic stress induced myocardial injury. PLoS One 2021; 16:e0260835. [PMID: 34882718 PMCID: PMC8659422 DOI: 10.1371/journal.pone.0260835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023] Open
Abstract
Myocardial infarction (MI), atherosclerosis and other inflammatory and ischemic cardiovascular diseases (CVDs) have a very high mortality rate and limited therapeutic options. Although the diagnosis is based on markers such as cardiac Troponin-T (cTrop-T), the mechanism of cTrop-T upregulation and release is relatively obscure. In the present study, we have investigated the mechanism of cTrop-T release during acute hypoxia (AH) in a mice model by ELISA & immunohistochemistry. Our study showed that AH exposure significantly induces the expression and release of sterile inflammatory as well as MI markers in a time-dependent manner. We further demonstrated that activation of TLR3 (mediated by eRNA) by AH exposure in mice induced cTrop-T release and Poly I:C (TLR3 agonist) also induced cTrop-T release, but the pre-treatment of TLR3 immuno-neutralizing antibody or silencing of Tlr3 gene or RNaseA treatment two hrs before AH exposure, significantly abrogated AH-induced Caspase 3 activity as well as cTrop-T release. Our immunohistochemistry and Masson Trichrome (MT) staining studies further established the progression of myocardial injury by collagen accumulation, endothelial cell and leukocyte activation and adhesion in myocardial tissue which was abrogated significantly by pre-treatment of RNaseA 2 hrs before AH exposure. These data indicate that AH induced cTrop-T release is mediated via the eRNA-TLR3-Caspase 3 pathway.
Collapse
Affiliation(s)
- Saumya Bhagat
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Timarpur, New Delhi, India
| | - Indranil Biswas
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Timarpur, New Delhi, India
| | - Md Iqbal Alam
- Department of Physiology, HIMSAR, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | | | - Gausal A. Khan
- Department of Physiology & Physiotherapy, College of Medicine, Nursing & Health Sciences, Fiji National University, Suva, Fiji Islands
| |
Collapse
|
23
|
Hernández-Huerta MT, Pérez-Santiago AD, Pérez-Campos Mayoral L, Sánchez Navarro LM, Rodal Canales FJ, Majluf-Cruz A, Matias-Cervantes CA, Pérez-Campos Mayoral E, Romero Díaz C, Mayoral-Andrade G, Martínez Cruz M, Luna Ángel J, Pérez-Campos E. Mechanisms of Immunothrombosis by SARS-CoV-2. Biomolecules 2021; 11:1550. [PMID: 34827548 PMCID: PMC8615366 DOI: 10.3390/biom11111550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 contains certain molecules that are related to the presence of immunothrombosis. Here, we review the pathogen and damage-associated molecular patterns. We also study the imbalance of different molecules participating in immunothrombosis, such as tissue factor, factors of the contact system, histones, and the role of cells, such as endothelial cells, platelets, and neutrophil extracellular traps. Regarding the pathogenetic mechanism, we discuss clinical trials, case-control studies, comparative and translational studies, and observational studies of regulatory or inhibitory molecules, more specifically, extracellular DNA and RNA, histones, sensors for RNA and DNA, as well as heparin and heparinoids. Overall, it appears that a network of cells and molecules identified in this axis is simultaneously but differentially affecting patients at different stages of COVID-19, and this is characterized by endothelial damage, microthrombosis, and inflammation.
Collapse
Affiliation(s)
- María Teresa Hernández-Huerta
- CONACyT, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.T.H.-H.); (C.A.M.-C.)
- Grupo de Investigación Biomedicina y Salud, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (E.P.-C.M.); (C.R.D.); (G.M.-A.)
| | | | - Laura Pérez-Campos Mayoral
- Grupo de Investigación Biomedicina y Salud, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (E.P.-C.M.); (C.R.D.); (G.M.-A.)
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico;
| | | | - Francisco Javier Rodal Canales
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico;
| | | | - Carlos Alberto Matias-Cervantes
- CONACyT, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.T.H.-H.); (C.A.M.-C.)
- Grupo de Investigación Biomedicina y Salud, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (E.P.-C.M.); (C.R.D.); (G.M.-A.)
| | - Eduardo Pérez-Campos Mayoral
- Grupo de Investigación Biomedicina y Salud, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (E.P.-C.M.); (C.R.D.); (G.M.-A.)
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico;
| | - Carlos Romero Díaz
- Grupo de Investigación Biomedicina y Salud, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (E.P.-C.M.); (C.R.D.); (G.M.-A.)
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico;
| | - Gabriel Mayoral-Andrade
- Grupo de Investigación Biomedicina y Salud, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (E.P.-C.M.); (C.R.D.); (G.M.-A.)
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico;
| | - Margarito Martínez Cruz
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (A.D.P.-S.); (M.M.C.)
| | - Judith Luna Ángel
- Hospital General Dr. Aurelio Valdivieso, Oaxaca de Juárez, Oaxaca 68000, Mexico;
| | - Eduardo Pérez-Campos
- Grupo de Investigación Biomedicina y Salud, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (E.P.-C.M.); (C.R.D.); (G.M.-A.)
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (A.D.P.-S.); (M.M.C.)
- Laboratorio de Patología Clinica “Eduardo Pérez Ortega”, Oaxaca de Juárez, Oaxaca 68000, Mexico
| |
Collapse
|
24
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
25
|
Human ribonuclease 1 serves as a secretory ligand of ephrin A4 receptor and induces breast tumor initiation. Nat Commun 2021; 12:2788. [PMID: 33986289 PMCID: PMC8119676 DOI: 10.1038/s41467-021-23075-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Human ribonuclease 1 (hRNase 1) is critical to extracellular RNA clearance and innate immunity to achieve homeostasis and host defense; however, whether it plays a role in cancer remains elusive. Here, we demonstrate that hRNase 1, independently of its ribonucleolytic activity, enriches the stem-like cell population and enhances the tumor-initiating ability of breast cancer cells. Specifically, secretory hRNase 1 binds to and activates the tyrosine kinase receptor ephrin A4 (EphA4) signaling to promote breast tumor initiation in an autocrine/paracrine manner, which is distinct from the classical EphA4-ephrin juxtacrine signaling through contact-dependent cell-cell communication. In addition, analysis of human breast tumor tissue microarrays reveals a positive correlation between hRNase 1, EphA4 activation, and stem cell marker CD133. Notably, high hRNase 1 level in plasma samples is positively associated with EphA4 activation in tumor tissues from breast cancer patients, highlighting the pathological relevance of the hRNase 1-EphA4 axis in breast cancer. The discovery of hRNase 1 as a secretory ligand of EphA4 that enhances breast cancer stemness suggests a potential treatment strategy by inactivating the hRNase 1-EphA4 axis.
Collapse
|
26
|
Preissner KT, Fischer S, Deindl E. Extracellular RNA as a Versatile DAMP and Alarm Signal That Influences Leukocyte Recruitment in Inflammation and Infection. Front Cell Dev Biol 2020; 8:619221. [PMID: 33392206 PMCID: PMC7775424 DOI: 10.3389/fcell.2020.619221] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Upon vascular injury, tissue damage, ischemia, or microbial infection, intracellular material such as nucleic acids and histones is liberated and comes into contact with the vessel wall and circulating blood cells. Such "Danger-associated molecular patterns" (DAMPs) may thus have an enduring influence on the inflammatory defense process that involves leukocyte recruitment and wound healing reactions. While different species of extracellular RNA (exRNA), including microRNAs and long non-coding RNAs, have been implicated to influence inflammatory processes at different levels, recent in vitro and in vivo work has demonstrated a major impact of ribosomal exRNA as a prominent DAMP on various steps of leukocyte recruitment within the innate immune response. This includes the induction of vascular hyper-permeability and vasogenic edema by exRNA via the activation of the "vascular endothelial growth factor" (VEGF) receptor-2 system, as well as the recruitment of leukocytes to the inflamed endothelium, the M1-type polarization of inflammatory macrophages, or the role of exRNA as a pro-thrombotic cofactor to promote thrombosis. Beyond sterile inflammation, exRNA also augments the docking of bacteria to host cells and the subsequent microbial invasion. Moreover, upon vessel occlusion and ischemia, the shear stress-induced release of exRNA initiates arteriogenesis (i.e., formation of natural vessel bypasses) in a multistep process that resembles leukocyte recruitment. Although exRNA can be counteracted for by natural circulating RNase1, under the conditions mentioned, only the administration of exogenous, thermostable, non-toxic RNase1 provides an effective and safe therapeutic regimen for treating the damaging activities of exRNA. It remains to be investigated whether exRNA may also influence viral infections (including COVID-19), e.g., by supporting the interaction of host cells with viral particles and their subsequent invasion. In fact, as a consequence of the viral infection cycle, massive amounts of exRNA are liberated, which can provoke further tissue damage and enhance virus dissemination. Whether the application of RNase1 in this scenario may help to limit the extent of viral infections like COVID-19 and impact on leukocyte recruitment and emigration steps in immune defense in order to limit the extent of associated cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, LMU Munich, Munich, Germany
| |
Collapse
|
27
|
Bedenbender K, Beinborn I, Vollmeister E, Schmeck B. p38 and Casein Kinase 2 Mediate Ribonuclease 1 Repression in Inflamed Human Endothelial Cells via Promoter Remodeling Through Nucleosome Remodeling and Deacetylase Complex. Front Cell Dev Biol 2020; 8:563604. [PMID: 33178683 PMCID: PMC7593526 DOI: 10.3389/fcell.2020.563604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Vascular pathologies, such as thrombosis or atherosclerosis, are leading causes of death worldwide and are strongly associated with the dysfunction of vascular endothelial cells. In this context, the extracellular endonuclease Ribonuclease 1 (RNase1) acts as an essential protective factor in regulation and maintenance of vascular homeostasis. However, long-term inflammation causes strong repression of RNase1 expression, thereby promoting endothelial cell dysfunction. This inflammation-mediated downregulation of RNase1 in human endothelial cells is facilitated via histone deacetylase (HDAC) 2, although the underlying molecular mechanisms are still unknown. Here, we report that inhibition of c-Jun N-terminal kinase by small chemical compounds in primary human endothelial cells decreased physiological RNase1 mRNA abundance, while p38 kinase inhibition restored repressed RNase1 expression upon proinflammatory stimulation with tumor necrosis factor alpha (TNF-α) and poly I:C. Moreover, blocking of the p38 kinase- and HDAC2-associated kinase casein kinase 2 (CK2) by inhibitor as well as small interfering RNA (siRNA)-knockdown restored RNase1 expression upon inflammation of human endothelial cells. Further downstream, siRNA-knockdown of chromodomain helicase DNA binding protein (CHD) 3 and 4 of the nucleosome remodeling and deacetylase (NuRD) complex restored RNase1 repression in TNF-α treated endothelial cells implicating its role in the HDAC2-containing repressor complex involved in RNase1 repression. Finally, chromatin immunoprecipitation in primary human endothelial cells confirmed recruitment of the CHD4-containing NuRD complex and subsequent promoter remodeling via histone deacetylation at the RNASE1 promoter in a p38-dependent manner upon human endothelial cell inflammation. Altogether, our results suggest that endothelial RNase1 repression in chronic vascular inflammation is regulated by a p38 kinase-, CK2-, and NuRD complex-dependent pathway resulting in complex recruitment to the RNASE1 promoter and subsequent promoter remodeling.
Collapse
Affiliation(s)
- Katrin Bedenbender
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany.,Department of Pulmonary and Critical Care Medicine, Department of Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Marburg, Germany.,Member of the German Center for Lung Research, Member of the German Center for Infectious Disease Research, Marburg, Germany.,Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
28
|
Tavora B, Mederer T, Wessel KJ, Ruffing S, Sadjadi M, Missmahl M, Ostendorf BN, Liu X, Kim JY, Olsen O, Welm AL, Goodarzi H, Tavazoie SF. Tumoural activation of TLR3-SLIT2 axis in endothelium drives metastasis. Nature 2020; 586:299-304. [PMID: 32999457 PMCID: PMC8088828 DOI: 10.1038/s41586-020-2774-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Blood vessels support tumours by providing nutrients and oxygen, while also acting as conduits for the dissemination of cancer1. Here we use mouse models of breast and lung cancer to investigate whether endothelial cells also have active 'instructive' roles in the dissemination of cancer. We purified genetically tagged endothelial ribosomes and their associated transcripts from highly and poorly metastatic tumours. Deep sequencing revealed that metastatic tumours induced expression of the axon-guidance gene Slit2 in endothelium, establishing differential expression between the endothelial (high Slit2 expression) and tumoural (low Slit2 expression) compartments. Endothelial-derived SLIT2 protein and its receptor ROBO1 promoted the migration of cancer cells towards endothelial cells and intravasation. Deleting endothelial Slit2 suppressed metastatic dissemination in mouse models of breast and lung cancer. Conversely, deletion of tumoural Slit2 enhanced metastatic progression. We identified double-stranded RNA derived from tumour cells as an upstream signal that induces expression of endothelial SLIT2 by acting on the RNA-sensing receptor TLR3. Accordingly, a set of endogenous retroviral element RNAs were upregulated in metastatic cells and detected extracellularly. Thus, cancer cells co-opt innate RNA sensing to induce a chemotactic signalling pathway in endothelium that drives intravasation and metastasis. These findings reveal that endothelial cells have a direct instructive role in driving metastatic dissemination, and demonstrate that a single gene (Slit2) can promote or suppress cancer progression depending on its cellular source.
Collapse
Affiliation(s)
- Bernardo Tavora
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Tobias Mederer
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Kai J Wessel
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Simon Ruffing
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Mahan Sadjadi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Marc Missmahl
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Benjamin N Ostendorf
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Xuhang Liu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Ji-Young Kim
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Olav Olsen
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, NY, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
29
|
Bedenbender K, Schmeck BT. Endothelial Ribonuclease 1 in Cardiovascular and Systemic Inflammation. Front Cell Dev Biol 2020; 8:576491. [PMID: 33015070 PMCID: PMC7500176 DOI: 10.3389/fcell.2020.576491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
The vascular endothelial cell layer forms the inner lining of all blood vessels to maintain proper functioning of the vascular system. However, dysfunction of the endothelium depicts a major issue in context of vascular pathologies, such as atherosclerosis or thrombosis that cause several million deaths per year worldwide. In recent years, the endothelial extracellular endonuclease Ribonuclease 1 (RNase1) was described as a key player in regulation of vascular homeostasis by protecting endothelial cells from detrimental effects of the damage-associated molecular pattern extracellular RNA upon acute inflammation. Despite this protective function, massive dysregulation of RNase1 was observed during prolonged endothelial cell inflammation resulting in progression of several vascular diseases. For the first time, this review article outlines the current knowledge on endothelial RNase1 and its role in function and dysfunction of the endothelium, thereby focusing on the intensive research from recent years: Uncovering the underlying mechanisms of RNase1 function and regulation in response to acute as well as long-term inflammation, the role of RNase1 in context of vascular, inflammatory and infectious diseases and the potential to develop novel therapeutic options to treat these pathologies against the background of RNase1 function in endothelial cells.
Collapse
Affiliation(s)
- Katrin Bedenbender
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Marburg, Germany
| | - Bernd T. Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Marburg, Germany
- Department of Pulmonary and Critical Care Medicine, Department of Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Marburg, Germany
- Member of the German Center for Lung Research, Member of the German Center for Infectious Disease Research, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
30
|
Wu L, Xu Y, Zhao H, Li Y. RNase T2 in Inflammation and Cancer: Immunological and Biological Views. Front Immunol 2020; 11:1554. [PMID: 32903619 PMCID: PMC7438567 DOI: 10.3389/fimmu.2020.01554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/12/2020] [Indexed: 01/13/2023] Open
Abstract
The RNase T2 family consists of evolutionarily conserved endonucleases that express in many different species, including animals, plants, protozoans, bacteria, and viruses. The main biological roles of these ribonucleases are cleaving or degrading RNA substrates. They preferentially cleave single-stranded RNA molecules between purine and uridine residues to generate two nucleotide fragments with 2'3'-cyclic phosphate adenosine/guanosine terminus and uridine residue, respectively. Accumulating studies have revealed that RNase T2 is critical for the pathophysiology of inflammation and cancer. In this review, we introduce the distribution, structure, and functions of RNase T2, its differential roles in inflammation and cancer, and the perspective for its research and related applications in medicine.
Collapse
Affiliation(s)
- Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yanquan Xu
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
31
|
Ribonuclease alleviates hepatic ischemia-reperfusion injury by suppressing excessive cytokine release and TLR3-mediated apoptosis in mice. Cytokine 2020; 133:155178. [PMID: 32615412 DOI: 10.1016/j.cyto.2020.155178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 06/13/2020] [Indexed: 02/05/2023]
|
32
|
Sawashita Y, Hirata N, Yoshikawa Y, Terada H, Tokinaga Y, Yamakage M. Remote ischemic preconditioning reduces myocardial ischemia-reperfusion injury through unacylated ghrelin-induced activation of the JAK/STAT pathway. Basic Res Cardiol 2020; 115:50. [PMID: 32607622 DOI: 10.1007/s00395-020-0809-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/24/2020] [Indexed: 01/06/2023]
Abstract
Remote ischemic preconditioning (RIPC) offers cardioprotection against myocardial ischemia-reperfusion injury. The humoral factors involved in RIPC that are released from parasympathetically innervated organs have not been identified. Previous studies showed that ghrelin, a hormone released from the stomach, is associated with cardioprotection. However, it is unknown whether or not ghrelin is involved in the mechanism of RIPC. This study aimed to determine whether ghrelin serves as one of the humoral factors in RIPC. RIPC group rats were subjected to three cycles of ischemia and reperfusion for 5 min in two limbs before left anterior descending (LAD) coronary artery ligation. Unacylated ghrelin (UAG) group rats were given 0.5 mcg/kg UAG intravenously 30 min before LAD ligation. Plasma levels of UAG in all groups were measured before and after RIPC procedures and UAG administration. Additionally, JAK2/STAT3 pathway inhibitor (AG490) was injected in RIPC and UAG groups to investigate abolishment of the cardioprotection of RIPC and UAG. Plasma levels of UAG, infarct size and phosphorylation of STAT3 were compared in all groups. Infarct size was significantly reduced in RIPC and UAG groups, compared to the other groups. Plasma levels of UAG in RIPC and UAG groups were significantly increased after RIPC and UAG administration, respectively. The cardioprotective effects of RIPC and UAG were accompanied by an increase in phosphorylation of STAT3 and abolished by AG490. This study indicated that RIPC reduces myocardial ischemia and reperfusion injury through UAG-induced activation of JAK/STAT pathway. UAG may be one of the humoral factors involved in the cardioprotective effects of RIPC.
Collapse
Affiliation(s)
- Yasuaki Sawashita
- Department of Anesthesiology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.
| | - Naoyuki Hirata
- Department of Anesthesiology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Yusuke Yoshikawa
- Department of Anesthesiology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Hirofumi Terada
- Department of Anesthesiology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Yasuyuki Tokinaga
- Department of Anesthesiology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Michiaki Yamakage
- Department of Anesthesiology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| |
Collapse
|
33
|
La CC, Takeuchi LE, Abbina S, Vappala S, Abbasi U, Kizhakkedathu JN. Targeting Biological Polyanions in Blood: Strategies toward the Design of Therapeutics. Biomacromolecules 2020; 21:2595-2621. [DOI: 10.1021/acs.biomac.0c00654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Kosgey JC, Jia L, Nyamao RM, Zhao Y, Xue T, Yang J, Fang Y, Zhang F. RNase 1, 2, 5 & 8 role in innate immunity: Strain specific antimicrobial activity. Int J Biol Macromol 2020; 160:1042-1049. [PMID: 32504708 DOI: 10.1016/j.ijbiomac.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 01/26/2023]
Abstract
The increase in microbial resistance to conventional antimicrobial agents is driving research for the discovery of new antibiotics and antifungal agents. The greatest challenge in this endeavor is to find antimicrobial agents with broad antimicrobial activity and low toxicity. Antimicrobial peptides, for example, RNases, are one of the promising areas. The production of RNases increases during infection, but their role is still being explored. Whereas the enzymatic activity of RNases is well documented, their physiological function is still being investigated. This study aimed to evaluate the antimicrobial activity of RNase 1, 2, 5, and 8 against E. coli strains, S. aureus, Streptococcus thermophilus, P. aeruginosa, Candida albicans, and Candida glabrata. The results demonstrated that RNases have a strain-specific antimicrobial activity. RNase 1 had the highest antimicrobial activity compared to other RNases. All the microorganisms screened had varying levels of susceptibility to RNases, except P. aeruginosa and E. coli DR115. RNase 1 showed dose-dependent activity against C. albicans. The RNase killed Candida albicans by lowering the mitochondrial membrane potential but did not damage the cell membrane. We concluded that strain-specific antimicrobial activity is one of the physiological roles of RNases.
Collapse
Affiliation(s)
- Janet Cheruiyot Kosgey
- School of Biological and Life Sciences, The Technical University of Kenya, 52428-00200, Kenya; Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China
| | - Lina Jia
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China
| | - Rose Magoma Nyamao
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China; School of Medicine, Kenyatta University, 43844, 00100, Kenya
| | - Yi Zhao
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China
| | - Teng Xue
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China
| | - Jianxun Yang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China; Department of Dermatology, The 2nd Hospital of Harbin Medical University, Harbin 150086, China
| | - Yong Fang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China
| | - Fengmin Zhang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
35
|
Zechendorf E, O'Riordan CE, Stiehler L, Wischmeyer N, Chiazza F, Collotta D, Denecke B, Ernst S, Müller-Newen G, Coldewey SM, Wissuwa B, Collino M, Simon TP, Schuerholz T, Stoppe C, Marx G, Thiemermann C, Martin L. Ribonuclease 1 attenuates septic cardiomyopathy and cardiac apoptosis in a murine model of polymicrobial sepsis. JCI Insight 2020; 5:131571. [PMID: 32213712 DOI: 10.1172/jci.insight.131571] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Septic cardiomyopathy is a life-threatening organ dysfunction caused by sepsis. Ribonuclease 1 (RNase 1) belongs to a group of host-defense peptides that specifically cleave extracellular RNA (eRNA). The activity of RNase 1 is inhibited by ribonuclease-inhibitor 1 (RNH1). However, the role of RNase 1 in septic cardiomyopathy and associated cardiac apoptosis is completely unknown. Here, we show that sepsis resulted in a significant increase in RNH1 and eRNA serum levels compared with those of healthy subjects. Treatment with RNase 1 resulted in a significant decrease of apoptosis, induced by the intrinsic pathway, and TNF expression in murine cardiomyocytes exposed to either necrotic cardiomyocytes or serum of septic patients for 16 hours. Additionally, treatment of septic mice with RNase 1 resulted in a reduction in cardiac apoptosis, TNF expression, and septic cardiomyopathy. These data demonstrate that eRNA plays a crucial role in the pathophysiology of the organ (cardiac) dysfunction in sepsis and that RNase and RNH1 may be new therapeutic targets and/or strategies to reduce the cardiac injury and dysfunction caused by sepsis.
Collapse
Affiliation(s)
- Elisabeth Zechendorf
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Caroline E O'Riordan
- William Harvey Research Institute, Queen Mary University London, London, United Kingdom
| | - Lara Stiehler
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Natalie Wischmeyer
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Fausto Chiazza
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Debora Collotta
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Bernd Denecke
- Interdisciplinary Centre for Clinical Research Aachen and
| | - Sabrina Ernst
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Sina M Coldewey
- Department of Anesthesiology and Intensive Care Medicine and.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Bianka Wissuwa
- Department of Anesthesiology and Intensive Care Medicine and.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Tim-Philipp Simon
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Tobias Schuerholz
- Department of Anesthesia and Intensive Care, University Hospital Rostock, Rostock, Germany
| | - Christian Stoppe
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Thiemermann
- William Harvey Research Institute, Queen Mary University London, London, United Kingdom
| | - Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
36
|
Gronda E, Sacchi S, Benincasa G, Vanoli E, Napoli C. Unresolved issues in left ventricular postischemic remodeling and progression to heart failure. J Cardiovasc Med (Hagerstown) 2019; 20:640-649. [DOI: 10.2459/jcm.0000000000000834] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Mironova N, Vlassov V. Surveillance of Tumour Development: The Relationship Between Tumour-Associated RNAs and Ribonucleases. Front Pharmacol 2019; 10:1019. [PMID: 31572192 PMCID: PMC6753386 DOI: 10.3389/fphar.2019.01019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Tumour progression is accompanied by rapid cell proliferation, loss of differentiation, the reprogramming of energy metabolism, loss of adhesion, escape of immune surveillance, induction of angiogenesis, and metastasis. Both coding and regulatory RNAs expressed by tumour cells and circulating in the blood are involved in all stages of tumour progression. Among the important tumour-associated RNAs are intracellular coding RNAs that determine the routes of metabolic pathways, cell cycle control, angiogenesis, adhesion, apoptosis and pathways responsible for transformation, and intracellular and extracellular non-coding RNAs involved in regulation of the expression of their proto-oncogenic and oncosuppressing mRNAs. Considering the diversity/variability of biological functions of RNAs, it becomes evident that extracellular RNAs represent important regulators of cell-to-cell communication and intracellular cascades that maintain cell proliferation and differentiation. In connection with the elucidation of such an important role for RNA, a surge in interest in RNA-degrading enzymes has increased. Natural ribonucleases (RNases) participate in various cellular processes including miRNA biogenesis, RNA decay and degradation that has determined their principal role in the sustention of RNA homeostasis in cells. Findings were obtained on the contribution of some endogenous ribonucleases in the maintenance of normal cell RNA homeostasis, which thus prevents cell transformation. These findings directed attention to exogenous ribonucleases as tools to compensate for the malfunction of endogenous ones. Recently a number of proteins with ribonuclease activity were discovered whose intracellular function remains unknown. Thus, the comprehensive investigation of physiological roles of RNases is still required. In this review we focused on the control mechanisms of cell transformation by endogenous ribonucleases, and the possibility of replacing malfunctioning enzymes with exogenous ones.
Collapse
Affiliation(s)
- Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
38
|
Wang L, Shen C, Wang Y, Zou T, Zhu H, Lu X, Li L, Yang B, Chen J, Chen S, Lu X, Gu D. Identification of circular RNA Hsa_circ_0001879 and Hsa_circ_0004104 as novel biomarkers for coronary artery disease. Atherosclerosis 2019; 286:88-96. [DOI: 10.1016/j.atherosclerosis.2019.05.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/04/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
|
39
|
Bedenbender K, Scheller N, Fischer S, Leiting S, Preissner KT, Schmeck BT, Vollmeister E. Inflammation-mediated deacetylation of the ribonuclease 1 promoter via histone deacetylase 2 in endothelial cells. FASEB J 2019; 33:9017-9029. [PMID: 31039328 DOI: 10.1096/fj.201900451r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ribonuclease 1 (RNase1) is a circulating extracellular endonuclease that regulates the vascular homeostasis of extracellular RNA and acts as a vessel- and tissue-protective enzyme. Upon long-term inflammation, high amounts of proinflammatory cytokines affect endothelial cell (EC) function by down-regulation of RNase1. Here, we investigated the transcriptional regulation of RNase1 upon inflammation in HUVECs. TNF-α or IL-1β stimulation reduced the expression of RNase1 relative to the acetylation state of histone 3 at lysine 27 and histone 4 of the RNASE1 promoter. Inhibition of histone deacetylase (HDAC) 1, 2, and 3 by the specific class I HDAC inhibitor MS275 abolished the TNF-α- or IL-1β-mediated effect on the mRNA and chromatin levels of RNase1. Moreover, chromatin immunoprecipitation kinetics revealed that HDAC2 accumulates at the RNASE1 promoter upon TNF-α stimulation, indicating an essential role for HDAC2 in regulating RNase1 expression. Thus, proinflammatory stimulation induced recruitment of HDAC2 to attenuate histone acetylation at the RNASE1 promoter site. Consequently, treatment with HDAC inhibitors may provide a new therapeutic strategy to stabilize vascular homeostasis in the context of inflammation by preventing RNase1 down-regulation in ECs.-Bedenbender, K., Scheller, N., Fischer, S., Leiting, S., Preissner, K. T., Schmeck, B. T., Vollmeister, E. Inflammation-mediated deacetylation of the ribonuclease 1 promoter via histone deacetylase 2 in endothelial cells.
Collapse
Affiliation(s)
- Katrin Bedenbender
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Nicoletta Scheller
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Silvia Fischer
- Department of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Silke Leiting
- Department of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Klaus T Preissner
- Department of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Bernd T Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany.,Department of Pulmonary and Critical Care Medicine, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
40
|
Lee HH, Wang YN, Hung MC. Functional roles of the human ribonuclease A superfamily in RNA metabolism and membrane receptor biology. Mol Aspects Med 2019; 70:106-116. [PMID: 30902663 DOI: 10.1016/j.mam.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/17/2019] [Indexed: 02/08/2023]
Abstract
The human ribonuclease A (hRNase A) superfamily is comprised of 13 members of secretory RNases, most of which are recognized as catabolic enzymes for their ribonucleolytic activity to degrade ribonucleic acids (RNAs) in the extracellular space, where they play a role in innate host defense and physiological homeostasis. Interestingly, human RNases 9-13, which belong to a non-canonical subgroup of the hRNase A superfamily, are ribonucleolytic activity-deficient proteins with unclear biological functions. Moreover, accumulating evidence indicates that secretory RNases, such as human RNase 5, can be internalized into cells facilitated by membrane receptors like the epidermal growth factor receptor to regulate intracellular RNA species, in particular non-coding RNAs, and signaling pathways by either a ribonucleolytic activity-dependent or -independent manner. In this review, we summarize the classical role of hRNase A superfamily in the metabolism of extracellular and intracellular RNAs and update its non-classical function as a cognate ligand of membrane receptors. We further discuss the biological significance and translational potential of using secretory RNases as predictive biomarkers or therapeutic agents in certain human diseases and the pathological settings for future investigations.
Collapse
Affiliation(s)
- Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
41
|
Elsemüller AK, Tomalla V, Gärtner U, Troidl K, Jeratsch S, Graumann J, Baal N, Hackstein H, Lasch M, Deindl E, Preissner KT, Fischer S. Characterization of mast cell-derived rRNA-containing microvesicles and their inflammatory impact on endothelial cells. FASEB J 2019; 33:5457-5467. [PMID: 30702929 DOI: 10.1096/fj.201801853rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tissue-resident mast cells (MCs) are well known for their role in inflammatory responses and allergic and anaphylactic reactions, but they also contribute to processes of arterial remodeling. Although ribosomes and cytosolic RNAs are located around secretory granules in mature MCs, their functional role in MC responses remains unexplored. Previous studies by our group characterized extracellular RNA (eRNA) as an inflammatory and pathogenetic factor in vitro and in vivo. In the present study, RNA-containing MCs and eRNA were located in close proximity to growing collateral arteries in vivo. In vitro, various agonists were found to induce the degranulation of MCs and the concomitant release of eRNA in association with microvesicles (MVs). The liberation of eRNA from MCs was abolished by MC stabilizers or by preventing the increase of intracellular Ca2+ in MCs. eRNA was found to be mainly contained inside MVs, as demonstrated by electron microscopy and immunocytochemistry. The exposure to and the uptake of MC-released MVs by cultured endothelial cells increased their expression of cytokines, such as monocyte chemoattractant protein or IL-6, in a dose- and time-dependent manner. These results indicate that RNA-containing MC-derived MVs are likely to be involved in inflammatory responses, relevant, for example, to processes of vascular remodeling.-Elsemüller, A.-K., Tomalla, V., Gärtner, U., Troidl, K., Jeratsch, S., Graumann, J., Baal, N., Hackstein, H., Lasch, M., Deindl, E., Preissner, K. T., Fischer, S. Characterization of mast cell-derived rRNA-containing microvesicles and their inflammatory impact on endothelial cells.
Collapse
Affiliation(s)
| | - Vanessa Tomalla
- Department of Biochemistry, Medical Faculty, Justus Liebig University, Giessen, Germany
| | - Ulrich Gärtner
- Department of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Kerstin Troidl
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Vascular and Endovascular Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Sylvia Jeratsch
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johannes Graumann
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nelli Baal
- Department of Clinical Immunology and Transfusion Medicine, Medical Faculty, Justus Liebig University, Giessen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Haemostaseology, University Hospital Erlangen-Friedrich Alexander University, Erlangen, Germany
| | - Manuel Lasch
- Walter Brendel Centre of Experimental Medicine, Medical Center of the University of Munich-Ludwig Maximilian University, Munich, Germany; and.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Elisabeth Deindl
- Walter Brendel Centre of Experimental Medicine, Medical Center of the University of Munich-Ludwig Maximilian University, Munich, Germany; and
| | - Klaus T Preissner
- Department of Biochemistry, Medical Faculty, Justus Liebig University, Giessen, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical Faculty, Justus Liebig University, Giessen, Germany
| |
Collapse
|
42
|
The Immunomodulatory and Antimicrobial Properties of the Vertebrate Ribonuclease A Superfamily. Vaccines (Basel) 2018; 6:vaccines6040076. [PMID: 30463297 PMCID: PMC6313885 DOI: 10.3390/vaccines6040076] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 02/08/2023] Open
Abstract
The Ribonuclease A Superfamily is composed of cationic peptides that are secreted by immune cells and epithelial tissues. Although their physiological roles are unclear, several members of the vertebrate Ribonuclease A Superfamily demonstrate antimicrobial and immune modulation activities. The objective of this review is to provide an overview of the published literature on the Ribonuclease A Superfamily with an emphasis on each peptide’s regulation, antimicrobial properties, and immunomodulatory functions. As additional insights emerge regarding the mechanisms in which these ribonucleases eradicate invading pathogens and modulate immune function, these ribonucleases may have the potential to be developed as a novel class of therapeutics for some human diseases.
Collapse
|
43
|
Wang YN, Lee HH, Hung MC. A novel ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases. J Biomed Sci 2018; 25:83. [PMID: 30449278 PMCID: PMC6241042 DOI: 10.1186/s12929-018-0484-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ribonuclease is known to participate in host defense system against pathogens, such as parasites, bacteria, and virus, which results in innate immune response. Nevertheless, its potential impact to host cells remains unclear. Of interest, several ribonucleases do not act as catalytically competent enzymes, suggesting that ribonucleases may be associated with certain intrinsic functions other than their ribonucleolytic activities. Most recently, human pancreatic ribonuclease 5 (hRNase5; also named angiogenin; hereinafter referred to as hRNase5/ANG), which belongs to the human ribonuclease A superfamily, has been demonstrated to function as a ligand of epidermal growth factor receptor (EGFR), a member of the receptor tyrosine kinase family. As a newly identified EGFR ligand, hRNase5/ANG associates with EGFR and stimulates EGFR and the downstream signaling in a catalytic-independent manner. Notably, hRNase5/ANG, whose level in sera of pancreatic cancer patients, serves as a non-invasive serum biomarker to stratify patients for predicting the sensitivity to EGFR-targeted therapy. Here, we describe the hRNase5/ANG-EGFR pair as an example to highlight a ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases, which are thought as two unrelated protein families associated with distinct biological functions. The notion of serum biomarker-guided EGFR-targeted therapies will also be discussed. Furthering our understanding of this novel ligand-receptor interaction will shed new light on the search of ligands for their cognate receptors, especially those orphan receptors without known ligands, and deepen our knowledge of the fundamental research in membrane receptor biology and the translational application toward the development of precision medicine.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030 USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404 Taiwan
| |
Collapse
|
44
|
Elia E, Montecucco F, Portincasa P, Sahebkar A, Mollazadeh H, Carbone F. Update on pathological platelet activation in coronary thrombosis. J Cell Physiol 2018; 234:2121-2133. [PMID: 30317596 DOI: 10.1002/jcp.27575] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/17/2018] [Indexed: 12/19/2022]
Abstract
Although coronary thrombosis (CT) is integral to cardiovascular outcomes, the underlying pathophysiological mechanisms remain unclear. CT may occur in case of atherosclerotic plaque erosion/rupture, or even after stenting implantation. Platelets (PLT) activation is the keystone of atherothrombosis and depends on many dysregulated elements, including endothelial dysfunction, oxidized lipoproteins, and immune response. Besides the classical view of PLT as an effector of hemostatic response, a new repertoire of PLT activities is emerging. PLT lipidome oxidation is a self-maintaining process which promotes PLT reactivity, coagulation cascade, and inflammatory cell activation. PLT-innate immune cell interaction is also sustained by neutrophil extracellular traps and NLRP3 inflammasome pathways. Other noteworthy emerging mechanisms are implicated in the crosstalk between PLT and surrounding cells. Especially, microvesicles (MVs) released from PLT may extend their signaling network far beyond the classical cell-cell interactions. Moreover, the recognition of noncoding RNA in PLT MVs introduce another layer of complexity in terms of intercellular signaling by a direct regulation of messenger RNA profile and gene expression in the recipient cells. The aim of this narrative review is to update the recent advance in CT and intracoronary stent thrombosis, including causal factors and potential translation of experimental evidence into the clinical setting.
Collapse
Affiliation(s)
- Edoardo Elia
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy.,Department of Internal Medicine, First Clinic of Internal Medicine, Ospedale Policlinico San Martino, 10 Largo Benzi, Genoa, Italy.,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri," University of Bari Medical School, Bari, Italy
| | - Amirhossein Sahebkar
- Department of Pharmaceutical Biotechnology, Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Federico Carbone
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
45
|
Allen RM, Zhao S, Ramirez Solano MA, Zhu W, Michell DL, Wang Y, Shyr Y, Sethupathy P, Linton MF, Graf GA, Sheng Q, Vickers KC. Bioinformatic analysis of endogenous and exogenous small RNAs on lipoproteins. J Extracell Vesicles 2018; 7:1506198. [PMID: 30128086 PMCID: PMC6095027 DOI: 10.1080/20013078.2018.1506198] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/03/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
To comprehensively study extracellular small RNAs (sRNA) by sequencing (sRNA-seq), we developed a novel pipeline to overcome current limitations in analysis entitled, "Tools for Integrative Genome analysis of Extracellular sRNAs (TIGER)". To demonstrate the power of this tool, sRNA-seq was performed on mouse lipoproteins, bile, urine and livers. A key advance for the TIGER pipeline is the ability to analyse both host and non-host sRNAs at genomic, parent RNA and individual fragment levels. TIGER was able to identify approximately 60% of sRNAs on lipoproteins and >85% of sRNAs in liver, bile and urine, a significant advance compared to existing software. Moreover, TIGER facilitated the comparison of lipoprotein sRNA signatures to disparate sample types at each level using hierarchical clustering, correlations, beta-dispersions, principal coordinate analysis and permutational multivariate analysis of variance. TIGER analysis was also used to quantify distinct features of exRNAs, including 5' miRNA variants, 3' miRNA non-templated additions and parent RNA positional coverage. Results suggest that the majority of sRNAs on lipoproteins are non-host sRNAs derived from bacterial sources in the microbiome and environment, specifically rRNA-derived sRNAs from Proteobacteria. Collectively, TIGER facilitated novel discoveries of lipoprotein and biofluid sRNAs and has tremendous applicability for the field of extracellular RNA.
Collapse
Affiliation(s)
- Ryan M. Allen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Wanying Zhu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danielle L. Michell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuhuan Wang
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - MacRae F. Linton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gregory A. Graf
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kasey C. Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
46
|
Lu L, Li J, Moussaoui M, Boix E. Immune Modulation by Human Secreted RNases at the Extracellular Space. Front Immunol 2018; 9:1012. [PMID: 29867984 PMCID: PMC5964141 DOI: 10.3389/fimmu.2018.01012] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
The ribonuclease A superfamily is a vertebrate-specific family of proteins that encompasses eight functional members in humans. The proteins are secreted by diverse innate immune cells, from blood cells to epithelial cells and their levels in our body fluids correlate with infection and inflammation processes. Recent studies ascribe a prominent role to secretory RNases in the extracellular space. Extracellular RNases endowed with immuno-modulatory and antimicrobial properties can participate in a wide variety of host defense tasks, from performing cellular housekeeping to maintaining body fluid sterility. Their expression and secretion are induced in response to a variety of injury stimuli. The secreted proteins can target damaged cells and facilitate their removal from the focus of infection or inflammation. Following tissue damage, RNases can participate in clearing RNA from cellular debris or work as signaling molecules to regulate the host response and contribute to tissue remodeling and repair. We provide here an overall perspective on the current knowledge of human RNases’ biological properties and their role in health and disease. The review also includes a brief description of other vertebrate family members and unrelated extracellular RNases that share common mechanisms of action. A better knowledge of RNase mechanism of actions and an understanding of their physiological roles should facilitate the development of novel therapeutics.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
47
|
Hausenloy DJ, Garcia-Dorado D, Bøtker HE, Davidson SM, Downey J, Engel FB, Jennings R, Lecour S, Leor J, Madonna R, Ovize M, Perrino C, Prunier F, Schulz R, Sluijter JPG, Van Laake LW, Vinten-Johansen J, Yellon DM, Ytrehus K, Heusch G, Ferdinandy P. Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res 2018; 113:564-585. [PMID: 28453734 DOI: 10.1093/cvr/cvx049] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Ischaemic heart disease and the heart failure that often results, remain the leading causes of death and disability in Europe and worldwide. As such, in order to prevent heart failure and improve clinical outcomes in patients presenting with an acute ST-segment elevation myocardial infarction and patients undergoing coronary artery bypass graft surgery, novel therapies are required to protect the heart against the detrimental effects of acute ischaemia/reperfusion injury (IRI). During the last three decades, a wide variety of ischaemic conditioning strategies and pharmacological treatments have been tested in the clinic-however, their translation from experimental to clinical studies for improving patient outcomes has been both challenging and disappointing. Therefore, in this Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart, we critically analyse the current state of ischaemic conditioning in both the experimental and clinical settings, provide recommendations for improving its translation into the clinical setting, and highlight novel therapeutic targets and new treatment strategies for reducing acute myocardial IRI.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK; The National Institute of Health Research University College London Hospitals Biomedical Research Centre, 149 Tottenham Court Road London, W1T 7DN, UK; Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore 169857; National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Dr, Singapore 169609, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - David Garcia-Dorado
- Department of Cardiology, Vall d Hebron University Hospital and Research Institute. Universitat Autònoma, Passeig de la Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital Skejby, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - James Downey
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, 5851 USA Dr. N., MSB 3074, Mobile, AL 36688, USA
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nßrnberg, Schloßplatz 4, 91054 Erlangen, Germany
| | - Robert Jennings
- Department of Cardiology, Duke University, Durham, NC 27708, USA
| | - Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Faculty of Health Sciences, University of Cape Town, Chris Barnard Building, Anzio Road, Observatory, 7925, Cape Town, Western Cape, South Africa
| | - Jonathan Leor
- Tamman Cardiovascular Research Institute, Sheba Medical Center, Tel Hashomer, Israel; Neufeld Cardiac Research Institute, Tel-Aviv University, Sheba Medical Center, Tel Hashomer, 5265601, Israel; Sheba Center for Regenerative Medicine, Stem Cell, and Tissue Engineering, Tel Hashomer, 5265601, Israel
| | - Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy; Institute of Cardiology, Department of Neurosciences, Imaging, and Clinical Sciences, "G. d'Annunzio University, Chieti, Italy; Texas Heart Institute and University of Texas Medical School in Houston, Department of Internal Medicine, 6770 Bertner Avenue, Houston, Texas 77030 USA
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, 28 Avenue du Doyen Jean Lépine, 69500 Bron, France; UMR 1060 (CarMeN), Université Claude Bernard Lyon, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Division of Cardiology, Federico II University Corso Umberto I, 40, 80138 Napoli, Italy
| | - Fabrice Prunier
- Department of Cardiology, University of Angers, University Hospital of Angers, 4 Rue Larrey, 49100 Angers, France
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig, University of Giessen, Ludwigstraße 23, 35390 Gießen, Germany
| | - Joost P G Sluijter
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Linda W Van Laake
- Division Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Jakob Vinten-Johansen
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University, 201 Dowman Dr, Atlanta, GA 30322, USA
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK; The National Institute of Health Research University College London Hospitals Biomedical Research Centre, 149 Tottenham Court Road London, W1T 7DN, UK
| | - Kirsti Ytrehus
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway
| | - Gerd Heusch
- Institute for Pathophysiology, West-German Heart and Vascular Center, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Nagyvárad tér 4, 1089 Hungary; Pharmahungary Group, Graphisoft Park, 7 Záhony street, Budapest, H-1031, Hungary
| |
Collapse
|
48
|
Chen B, Frangogiannis NG. Immune cells in repair of the infarcted myocardium. Microcirculation 2018; 24. [PMID: 27542099 DOI: 10.1111/micc.12305] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/17/2016] [Indexed: 12/14/2022]
Abstract
The immune system plays a critical role in both repair and remodeling of the infarcted myocardium. Danger signals released by dying cardiomyocytes mobilize, recruit, and activate immune cells, triggering an inflammatory reaction. CXC chemokines containing the ELR motif attract neutrophils, while CC chemokines mediate recruitment of mononuclear cell subpopulations, contributing to clearance of the infarct from dead cells and matrix debris. Immune cell subsets also participate in suppression and containment of the postinfarction inflammatory response by secreting anti-inflammatory mediators, such as IL-10 and TGF-β. As proinflammatory signaling is suppressed, macrophage subpopulations, mast cells and lymphocytes, activate fibrogenic and angiogenic responses, contributing to scar formation. In the viable remodeling myocardium, chronic activation of immune cells may promote fibrosis and hypertrophy. This review discusses the role of immune cells in repair and remodeling of the infarcted myocardium. Understanding the role of immune cells in myocardial infarction is critical for the development of therapeutic strategies aimed at protecting the infarcted heart from adverse remodeling. Moreover, modulation of immune cell phenotype may be required in order to achieve the visionary goal of myocardial regeneration.
Collapse
Affiliation(s)
- Bijun Chen
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
49
|
Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther 2018; 186:73-87. [PMID: 29330085 PMCID: PMC5981007 DOI: 10.1016/j.pharmthera.2018.01.001] [Citation(s) in RCA: 557] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute myocardial infarction (AMI) and the heart failure that often follows, are major causes of death and disability worldwide. As such, new therapies are required to limit myocardial infarct (MI) size, prevent adverse left ventricular (LV) remodeling, and reduce the onset of heart failure following AMI. The inflammatory response to AMI, plays a critical role in determining MI size, and a persistent pro-inflammatory reaction can contribute to adverse post-MI LV remodeling, making inflammation an important therapeutic target for improving outcomes following AMI. In this article, we provide an overview of the multiple players (and their dynamic roles) involved in the complex inflammatory response to AMI and subsequent LV remodeling, and highlight future opportunities for targeting inflammation as a therapeutic strategy for limiting MI size, preventing adverse LV remodeling, and reducing heart failure in AMI patients.
Collapse
|
50
|
Noll F, Behnke J, Leiting S, Troidl K, Alves GT, Müller-Redetzky H, Preissner KT, Fischer S. Self-extracellular RNA acts in synergy with exogenous danger signals to promote inflammation. PLoS One 2017; 12:e0190002. [PMID: 29261777 PMCID: PMC5738100 DOI: 10.1371/journal.pone.0190002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023] Open
Abstract
Self-extracellular RNA (eRNA), released from stressed or injured cells upon various pathological situations such as ischemia-reperfusion-injury, has been shown to act as an alarmin by inducing procoagulatory and proinflammatory responses. In particular, M1-polarization of macrophages by eRNA resulted in the expression and release of a variety of cytokines, including tumor necrosis factor (TNF)-α or interleukin-6 (IL-6). The present study now investigates in which way self-eRNA may influence the response of macrophages towards various Toll-like receptor (TLR)-agonists. Isolated agonists of TLR2 (Pam2CSK4), TLR3 (PolyIC), TLR4 (LPS), or TLR7 (R848) induced the release of TNF-α in a concentration-dependent manner in murine macrophages, differentiated from bone marrow-derived stem cells by mouse colony stimulating factor. Here, the presence of eRNA shifted the dose-response curve for Pam2CSK4 (Pam) considerably to the left, indicating that eRNA synergistically enhanced the cytokine liberation from macrophages even at very low Pam-levels. The synergistic activation of TLR2 by eRNA/Pam was duplicated by other TLR2-agonists such as FSL-1 or Pam3CSK4. In contrast, for TLR4-agonists such as LPS a synergistic effect of eRNA was much weaker, and was not existent for TLR3-, or TLR7-agonists. The synergistic eRNA/Pam action was dependent on the NFκB-signaling pathway as well as on p38MAP- and MEK1/ERK-kinases and was prevented by predigestion of eRNA with RNase1 or by antibodies against TLR2. Thus, the presence of self-eRNA as alarming molecule sensitizes innate immune responses towards pathogen-associated molecular patterns (PAMPs) in a synergistic way and may thereby contribute to the differentiated outcome of inflammatory responses.
Collapse
Affiliation(s)
- Frederik Noll
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Jonas Behnke
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Silke Leiting
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Kerstin Troidl
- Max-Planck-Instiute for Heart and Lung research, Bad Nauheim, Germany
- Department of Vascular and Endovascular Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Gustavo Teixeira Alves
- Department of Infectious Diseases and Pulmonary Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Holger Müller-Redetzky
- Department of Infectious Diseases and Pulmonary Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus T. Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Silvia Fischer
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|