1
|
Noubiap JJ, Dewland TA, Olgin JE, Tang JJ, Lee C, Marcus GM. Atrial Flutter and Sick Sinus Syndrome. Heart Rhythm 2024:S1547-5271(24)03459-3. [PMID: 39447811 DOI: 10.1016/j.hrthm.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Sick sinus syndrome (SSS) is a common condition resulting in reduced quality of life, syncope, and pacemaker (PPM) implantation, but predictors have not been elucidated. While atrial arrhythmias are frequently associated with SSS, we hypothesized that atrial flutter (AFL) would strongly predict SSS given shared relationships with right atrial, and particularly crista terminalis, fibrosis. OBJECTIVE To assess the impact of AFL on the occurrence of SSS and associated syncope and PPM implantation. METHODS Healthcare databases were used to identify adults aged ≥ 18 years receiving hospital-based care in California in 2005-2019. ICD codes were used to identify diagnoses and procedures. Patients were classified based on the presence of AFL and atrial fibrillation (AF). Cox proportional hazard models adjusting for demographics and co-morbidities were employed. RESULTS We included 29,357,609 individuals (54% females, mean age 46 years), 101,243 with AFL alone, 1,674,680 with AF alone, and 284,547 with AF and AFL. After adjustment for age, sex, race and ethnicity, and co-morbidities, AF, AFL, and both arrhythmias were each associated with increased risk of SSS and associated syncope and PPM implantation (all p<0.001). In the population with AF, an additional AFL diagnosis conferred a higher risk of developing SSS (hazard ratio [HR]1.62, 95% confidence interval [CI] 1.59-1.64), syncope (HR 1.63, 1.54-1.72) and PPM implantation (HR 1.74, 1.70-1.79). CONCLUSION AFL is associated with an increased risk of incident SSS and its adverse consequences, especially in patients with co-existing AF. AFL may be useful for risk stratification strategies to predict, prevent, and treat SSS.
Collapse
Affiliation(s)
- Jean Jacques Noubiap
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Thomas A Dewland
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Jeffrey E Olgin
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Janet J Tang
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Catherine Lee
- Department of Epidemiology and Biostatistics, University of California-San Francisco, San Francisco, California, USA
| | - Gregory M Marcus
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, California, USA.
| |
Collapse
|
2
|
Moghtadaei M, Tagirova S, Ahmet I, Moen J, Lakatta EG, Rose RA. Lifelong longitudinal assessment of the contribution of multi-fractal fluctuations to heart rate and heart rate variability in aging mice: role of the sinoatrial node and autonomic nervous system. GeroScience 2024; 46:5085-5101. [PMID: 38967697 PMCID: PMC11336143 DOI: 10.1007/s11357-024-01267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Aging is a major risk factor for sinoatrial node (SAN) dysfunction, which can impair heart rate (HR) control and heart rate variability (HRV). HR and HRV are determined by intrinsic SAN function and its regulation by the autonomic nervous system (ANS). The purpose of this study was to use multi-scale multi-fractal detrended fluctuation analysis (MSMFDFA; a complexity-based approach to analyze multi-fractal dynamics) to longitudinally assess changes in multi-fractal HRV properties and SAN function in ECG time series recorded repeatedly across the full adult lifespan in mice. ECGs were recorded in anesthetized mice in baseline conditions and after autonomic nervous system blockade every three months beginning at 6 months of age until the end of life. MSMFDFA was used to assess HRV and SAN function every three months between 6 and 27 months of age. Intrinsic HR (i.e. HR during ANS blockade) remained relatively stable until 15 months of age, and then progressively declined until study endpoint at 27 months of age. MSMFDFA revealed sudden and rapid changes in multi-fractal properties of the ECG RR interval time series in aging mice. In particular, multi-fractal spectrum width (MFSW, a measure of multi-fractality) was relatively stable between 6 months and 15 months of age and then progressively increased at 27 months of age. These changes in MFSW were evident in baseline conditions and during ANS blockade. Thus, intrinsic SAN function declines progressively during aging and is manifested by age-associated changes in multi-fractal HRV across the lifespan in mice, which can be accurately quantified by MSMFDFA.
Collapse
Affiliation(s)
- Motahareh Moghtadaei
- Department of Cardiac Sciences, Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, GAC66, Health Research Innovation Centre, 3280 Hospital Drive N.W., Calgary, Alberta, T2N 4Z6, Canada
| | - Syevda Tagirova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jack Moen
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Robert A Rose
- Department of Cardiac Sciences, Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, GAC66, Health Research Innovation Centre, 3280 Hospital Drive N.W., Calgary, Alberta, T2N 4Z6, Canada.
| |
Collapse
|
3
|
Lin Z, Lin B, Hang C, Lu R, Xiong H, Liu J, Wang S, Gong Z, Zhang M, Li D, Fang G, Ding J, Su X, Guo H, Shi D, Xie D, Liu Y, Liang D, Yang J, Chen YH. A new paradigm for generating high-quality cardiac pacemaker cells from mouse pluripotent stem cells. Signal Transduct Target Ther 2024; 9:230. [PMID: 39237509 PMCID: PMC11377569 DOI: 10.1038/s41392-024-01942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Cardiac biological pacing (BP) is one of the future directions for bradyarrhythmias intervention. Currently, cardiac pacemaker cells (PCs) used for cardiac BP are mainly derived from pluripotent stem cells (PSCs). However, the production of high-quality cardiac PCs from PSCs remains a challenge. Here, we developed a cardiac PC differentiation strategy by adopting dual PC markers and simulating the developmental route of PCs. First, two PC markers, Shox2 and Hcn4, were selected to establish Shox2:EGFP; Hcn4:mCherry mouse PSC reporter line. Then, by stepwise guiding naïve PSCs to cardiac PCs following naïve to formative pluripotency transition and manipulating signaling pathways during cardiac PCs differentiation, we designed the FSK method that increased the yield of SHOX2+; HCN4+ cells with typical PC characteristics, which was 12 and 42 folds higher than that of the embryoid body (EB) and the monolayer M10 methods respectively. In addition, the in vitro cardiac PCs differentiation trajectory was mapped by single-cell RNA sequencing (scRNA-seq), which resembled in vivo PCs development, and ZFP503 was verified as a key regulator of cardiac PCs differentiation. These PSC-derived cardiac PCs have the potential to drive advances in cardiac BP technology, help with the understanding of PCs (patho)physiology, and benefit drug discovery for PC-related diseases as well.
Collapse
Affiliation(s)
- Zheyi Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Bowen Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Chengwen Hang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Hui Xiong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Siyu Wang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zheng Gong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Desheng Li
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Guojian Fang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Jie Ding
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Xuling Su
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Dan Shi
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Duanyang Xie
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Jian Yang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China.
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Yi-Han Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| |
Collapse
|
4
|
Kahnert K, Soattin L, Mills RW, Wilson C, Maurya S, Sorrentino A, Al-Othman S, Tikhomirov R, van de Vegte YJ, Hansen FB, Achter J, Hu W, Zi M, Smith M, van der Harst P, Olesen MS, Boisen Olsen K, Banner J, Jensen THL, Zhang H, Boyett MR, D’Souza A, Lundby A. Proteomics couples electrical remodelling to inflammation in a murine model of heart failure with sinus node dysfunction. Cardiovasc Res 2024; 120:927-942. [PMID: 38661182 PMCID: PMC11218694 DOI: 10.1093/cvr/cvae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 04/26/2024] Open
Abstract
AIMS In patients with heart failure (HF), concomitant sinus node dysfunction (SND) is an important predictor of mortality, yet its molecular underpinnings are poorly understood. Using proteomics, this study aimed to dissect the protein and phosphorylation remodelling within the sinus node in an animal model of HF with concurrent SND. METHODS AND RESULTS We acquired deep sinus node proteomes and phosphoproteomes in mice with heart failure and SND and report extensive remodelling. Intersecting the measured (phospho)proteome changes with human genomics pharmacovigilance data, highlighted downregulated proteins involved in electrical activity such as the pacemaker ion channel, Hcn4. We confirmed the importance of ion channel downregulation for sinus node physiology using computer modelling. Guided by the proteomics data, we hypothesized that an inflammatory response may drive the electrophysiological remodeling underlying SND in heart failure. In support of this, experimentally induced inflammation downregulated Hcn4 and slowed pacemaking in the isolated sinus node. From the proteomics data we identified proinflammatory cytokine-like protein galectin-3 as a potential target to mitigate the effect. Indeed, in vivo suppression of galectin-3 in the animal model of heart failure prevented SND. CONCLUSION Collectively, we outline the protein and phosphorylation remodeling of SND in heart failure, we highlight a role for inflammation in electrophysiological remodelling of the sinus node, and we present galectin-3 signalling as a target to ameliorate SND in heart failure.
Collapse
Affiliation(s)
- Konstantin Kahnert
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Luca Soattin
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Robert W Mills
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Svetlana Maurya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Andrea Sorrentino
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Sami Al-Othman
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Roman Tikhomirov
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), 72 Du Cane Road, London W12 0NN, UK
| | - Yordi J van de Vegte
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Finn B Hansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Jonathan Achter
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Wei Hu
- Department of Physics & Astronomy, Biological Physics Group, University of Manchester, Manchester, UK
| | - Min Zi
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Matthew Smith
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), 72 Du Cane Road, London W12 0NN, UK
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Durrer Center for Cardiogenetic Research, Netherlands Heart Institute, Utrecht, the Netherlands
| | - Morten S Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Kristine Boisen Olsen
- Department of Forensic Medicine, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jytte Banner
- Department of Forensic Medicine, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | | | - Henggui Zhang
- Department of Physics & Astronomy, Biological Physics Group, University of Manchester, Manchester, UK
| | - Mark R Boyett
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Alicia D’Souza
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), 72 Du Cane Road, London W12 0NN, UK
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| |
Collapse
|
5
|
Wu Q, Chang X, Wang Y, Liu J, Guan X, Liu Z, Liu R. The electrophysiological effects of Tongyang Huoxue granules on the ignition phase during hypoxia/reoxygenation injury in sinoatrial node cells. Front Physiol 2024; 15:1402478. [PMID: 38911325 PMCID: PMC11190314 DOI: 10.3389/fphys.2024.1402478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction This study was undertaken to explore the potential therapeutic effects of Tongyang Huoxue Granules (TYHX) on sinoatrial node (SAN) dysfunction, a cardiac disorder characterized by impaired impulse generation or conduction. The research question addressed whether TYHX could positively influence SAN ion channel function, specifically targeting the sodium-calcium exchanger (I NCX) and L-type calcium channel (I CaL) of the SAN. Methods Sinoatrial node cells (SANCs) were isolated and cultured from neonatal Japanese big-eared white rabbits within 24 h of birth. The study encompassed five groups: Control, H/R (hypoxia/reoxygenation), H/R+100 μg/mL TYHX, H/R+200 μg/mL TYHX, and H/R+400 μg/mL TYHX. The H/R model, simulating hypoxia/reoxygenation stress, was induced within 5 days of culture. Whole-cell patch clamp technique was employed to record currents following a 3-min perfusion and stabilization period with TYHX. Results TYHX administration demonstrated improvements in the ignition phase of impaired SANCs. The half-maximal effective dose of TYHX, as determined by SANC beating frequency, was found to be 323.63 μg/mL. Inward current density of I NCX increased in response to TYHX (200 and 400 μg/mL), while TYHX enhanced I CaL current density in H/R SANCs, with 400 μg/mL exhibiting greater efficacy. Additionally, TYHX regulated the gating mechanisms of I CaL by right-shifting the steady-state inactivation curve and accelerating recovery from inactivation. Notably, TYHX increased the activation time constant under 200 and 400 μg/mL, prolonged the fast inactivation time constant τ1 with 400 μg/mL, and extended the slow inactivation time constant τ2 with 100 and 400 μg/mL. Discussion and conclusion The findings suggest that TYHX may hold promise as a therapeutic intervention for sinus node dysfunction, offering potential avenues for drug development aimed at safeguarding SAN function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ruxiu Liu
- Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Fu H, Li D, Shuai W, Kong B, Wang X, Tang Y, Huang H, Huang C. Effects of Phenylacetylglutamine on the Susceptibility of Atrial Fibrillation in Overpressure-Induced HF Mice. Mol Cell Biol 2024; 44:149-163. [PMID: 38725392 PMCID: PMC11110696 DOI: 10.1080/10985549.2024.2345363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Phenylacetylglutamine (PAGln), a gut metabolite is substantially elevated in heart failure (HF). The increase of PAGln in plasma is associated with atrial fibrillation (AF), and contributes to AF pathogenesis. However, the role of PAGln in AF with HF remains uncertain. Therefore, this study aimed to determine the effect of PAGln on AF after HF. Thoracic aortic coarctation (TAC) created overpressure-induced HF mice for 4 weeks. Histopathology, biochemical, echocardiographic for assessment of cardiac function, and electrophysiological examination of several electrophysiological indexes (ERP, SNRT, and the occurrence rate of AF) were performed at the end of the HF mice model. We found that plasma PAGln levels were significantly elevated in PAGln-treated HF mice and that PAGln aggravated maladaptive structural remodeling and electrical remodeling, which aggravated the vulnerability of AF, shortened the ERP duration, prolonged the SNRT, increased the occurrence rate of AF in HF mice. Mechanistically, PAGln exacerbated ROS accumulation and increased the levels of phosphorylated PLB and CAMK II. Overall, PAGln played a vital role in promoting the occurrence of AF in HF mice by activating the CAMK II signaling pathway.
Collapse
Affiliation(s)
- Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Dengke Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Hennis K, Piantoni C, Biel M, Fenske S, Wahl-Schott C. Pacemaker Channels and the Chronotropic Response in Health and Disease. Circ Res 2024; 134:1348-1378. [PMID: 38723033 PMCID: PMC11081487 DOI: 10.1161/circresaha.123.323250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Loss or dysregulation of the normally precise control of heart rate via the autonomic nervous system plays a critical role during the development and progression of cardiovascular disease-including ischemic heart disease, heart failure, and arrhythmias. While the clinical significance of regulating changes in heart rate, known as the chronotropic effect, is undeniable, the mechanisms controlling these changes remain not fully understood. Heart rate acceleration and deceleration are mediated by increasing or decreasing the spontaneous firing rate of pacemaker cells in the sinoatrial node. During the transition from rest to activity, sympathetic neurons stimulate these cells by activating β-adrenergic receptors and increasing intracellular cyclic adenosine monophosphate. The same signal transduction pathway is targeted by positive chronotropic drugs such as norepinephrine and dobutamine, which are used in the treatment of cardiogenic shock and severe heart failure. The cyclic adenosine monophosphate-sensitive hyperpolarization-activated current (If) in pacemaker cells is passed by hyperpolarization-activated cyclic nucleotide-gated cation channels and is critical for generating the autonomous heartbeat. In addition, this current has been suggested to play a central role in the chronotropic effect. Recent studies demonstrate that cyclic adenosine monophosphate-dependent regulation of HCN4 (hyperpolarization-activated cyclic nucleotide-gated cation channel isoform 4) acts to stabilize the heart rate, particularly during rapid rate transitions induced by the autonomic nervous system. The mechanism is based on creating a balance between firing and recently discovered nonfiring pacemaker cells in the sinoatrial node. In this way, hyperpolarization-activated cyclic nucleotide-gated cation channels may protect the heart from sinoatrial node dysfunction, secondary arrhythmia of the atria, and potentially fatal tachyarrhythmia of the ventricles. Here, we review the latest findings on sinoatrial node automaticity and discuss the physiological and pathophysiological role of HCN pacemaker channels in the chronotropic response and beyond.
Collapse
Affiliation(s)
- Konstantin Hennis
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Chiara Piantoni
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Stefanie Fenske
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Christian Wahl-Schott
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
8
|
Khan SM. Married to the Pacemaker: An Autobiographical Case Report of Sick Sinus Syndrome. Cureus 2024; 16:e58017. [PMID: 38738068 PMCID: PMC11087878 DOI: 10.7759/cureus.58017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
I, the author of this case report, was on beta blockers, initially atenolol and later on nebivolol, for my "systemic hypertension" illness. After attending the National Pulmonary Conference, I fell during the return journey on the express highway, became unconscious, and reached the tertiary care hospital of the medical college at the end of the day. The electrocardiogram was suggestive of a "complete heart block.". They immediately implanted a temporary pacemaker and transferred me to the cardiac care unit. I was discharged after five days of stay in the hospital, as the Holter study concluded to be normal. After about two weeks, I felt lightheadedness and giddiness for a fraction of a second. An eminent senior cardiologist in my hometown advised Holter's study; this time, it was suggestive of long pauses. A permanent pacemaker was implanted with the diagnosis of sick sinus syndrome. This autobiographical case report hopes to shed light on more advanced cardiac screening in the search for the etiology of clinical symptoms.
Collapse
Affiliation(s)
- Shafee M Khan
- Respiratory Medicine, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research, Deemed to be University, Nagpur, IND
| |
Collapse
|
9
|
Lei M, Salvage SC, Jackson AP, Huang CLH. Cardiac arrhythmogenesis: roles of ion channels and their functional modification. Front Physiol 2024; 15:1342761. [PMID: 38505707 PMCID: PMC10949183 DOI: 10.3389/fphys.2024.1342761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 03/21/2024] Open
Abstract
Cardiac arrhythmias cause significant morbidity and mortality and pose a major public health problem. They arise from disruptions in the normally orderly propagation of cardiac electrophysiological activation and recovery through successive cardiomyocytes in the heart. They reflect abnormalities in automaticity, initiation, conduction, or recovery in cardiomyocyte excitation. The latter properties are dependent on surface membrane electrophysiological mechanisms underlying the cardiac action potential. Their disruption results from spatial or temporal instabilities and heterogeneities in the generation and propagation of cellular excitation. These arise from abnormal function in their underlying surface membrane, ion channels, and transporters, as well as the interactions between them. The latter, in turn, form common regulatory targets for the hierarchical network of diverse signaling mechanisms reviewed here. In addition to direct molecular-level pharmacological or physiological actions on these surface membrane biomolecules, accessory, adhesion, signal transduction, and cytoskeletal anchoring proteins modify both their properties and localization. At the cellular level of excitation-contraction coupling processes, Ca2+ homeostatic and phosphorylation processes affect channel activity and membrane excitability directly or through intermediate signaling. Systems-level autonomic cellular signaling exerts both acute channel and longer-term actions on channel expression. Further upstream intermediaries from metabolic changes modulate the channels both themselves and through modifying Ca2+ homeostasis. Finally, longer-term organ-level inflammatory and structural changes, such as fibrotic and hypertrophic remodeling, similarly can influence all these physiological processes with potential pro-arrhythmic consequences. These normal physiological processes may target either individual or groups of ionic channel species and alter with particular pathological conditions. They are also potentially alterable by direct pharmacological action, or effects on longer-term targets modifying protein or cofactor structure, expression, or localization. Their participating specific biomolecules, often clarified in experimental genetically modified models, thus constitute potential therapeutic targets. The insights clarified by the physiological and pharmacological framework outlined here provide a basis for a recent modernized drug classification. Together, they offer a translational framework for current drug understanding. This would facilitate future mechanistically directed therapeutic advances, for which a number of examples are considered here. The latter are potentially useful for treating cardiac, in particular arrhythmic, disease.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Padda I, Sebastian SA, Khehra N, Mahtani A, Sethi Y, Panthangi V, Fulton M, Bandyopadhyay D, Johal G. Tachy-brady syndrome: Electrophysiology and evolving principles of management. Dis Mon 2024; 70:101637. [PMID: 37690863 DOI: 10.1016/j.disamonth.2023.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Sudden alterations in the heart rate may be associated with diverse symptoms. Sinus node dysfunction (SND), also known as sick sinus syndrome, is a sinoatrial (SA) node disorder. SND is primarily caused by the dysfunction of the pacemaker, as well as impaired impulse transmission resulting in a multitude of abnormalities in the heart rhythms, such as bradycardia-tachycardia, atrial bradyarrhythmias, and atrial tachyarrhythmias. The transition from bradycardia to tachycardia is generally referred to as "tachy-brady syndrome" (TBS). Although TBS is etiologically variable, the manifestations remain consistent throughout. Abnormal heart rhythms have the propensity to limit tissue perfusion resulting in palpitations, fatigue, lightheadedness, presyncope, and syncope. In this review, we examine the physiology of tachy-brady syndrome, the practical approach to its diagnosis and management, and the role of adenosine in treating SND.
Collapse
Affiliation(s)
- Inderbir Padda
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA.
| | | | - Nimrat Khehra
- Saint James School of Medicine, Arnos Vale, Saint Vincent and the Grenadines
| | - Arun Mahtani
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| | - Yashendra Sethi
- Department of Internal Medicine, Government Doon Medical College, Dehradun, India
| | | | - Matthew Fulton
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| | | | - Gurpreet Johal
- Department of Cardiology, University of Washington, Valley Medical Center, Seattle, WA, USA
| |
Collapse
|
11
|
Shah Syed AR, Akram A, Azam MS, Ansari AI, Muzammil MA, Ahad Syed A, Ahmed S, Zakir SJ. Dual-chamber versus single chamber pacemakers, a systemic review and meta-analysis on sick sinus syndrome and atrioventricular block patients. Heliyon 2024; 10:e23877. [PMID: 38234924 PMCID: PMC10792191 DOI: 10.1016/j.heliyon.2023.e23877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024] Open
Abstract
Aims The atrioventricular block (AVB) is a conduction system problem that results from the impairment in the transmission of an impulse from the atria to the ventricle, the disease has many etiologies. This article aimed to evaluate the efficacy and safety of dual and single-chamber pacemakers in patients with SSS and AVB. Methods An electronic search of PubMed (Medline), EMBASE, and Google Scholar was performed from 2000 till August 15th, 2022. Retrieved articles were exported to Endnote Reference Library Software, where duplicate studies were removed from the list, and only articles meeting the eligibility criteria of this study were selected. RevMan 5.4 and STATA 16 software were used for the analysis. The modified Cochrane Collaboration's risk of bias and New-castle Ottawa scale were used for quality assessment of RCTs and observational studies respectively. Results This study is composed of 8953 patients with sick-sinus syndrome and atrioventricular block. A total of thirteen outcomes are included in this meta-analysis, out of which atrial fibrillation significantly favored dual chamber [OR = 1.29; 95 % CI = 1.05-1.59; P = 0.01 I2 = 29 %] and overall complications [OR = 0.48; 95 % CI = 0.29-0.77; p = 0.03 I2 = 0 %] and pneumothorax [OR = 0.31; 95 % CI = 0.10-0.93; p = 0.04, I2 = 0 %] were satisfied by single-chamber pacing. Conclusion This study concluded that neither single-chamber nor dual-chamber pacemakers are superior to each other, but they are unique in their own ways as the results of this study manifest remarkable reduction in atrial fibrillation rates and pneumothorax using dual-chamber and single-chamber pacemakers respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shaheer Ahmed
- Dow University of Health Science (Medicine), Pakistan
| | | |
Collapse
|
12
|
Weiser-Bitoun I, Mori H, Nabeshima T, Tanaka N, Kudo D, Sasaki W, Narita M, Matsumoto K, Ikeda Y, Arai T, Nakano S, Sumitomo N, Senbonmatsu TA, Matsumoto K, Kato R, Morrell CH, Tsutsui K, Yaniv Y. Age-dependent contribution of intrinsic mechanisms to sinoatrial node function in humans. Sci Rep 2023; 13:18875. [PMID: 37914708 PMCID: PMC10620402 DOI: 10.1038/s41598-023-45101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Average beat interval (BI) and beat interval variability (BIV) are primarily determined by mutual entrainment between the autonomic-nervous system (ANS) and intrinsic mechanisms that govern sinoatrial node (SAN) cell function. While basal heart rate is not affected by age in humans, age-dependent reductions in intrinsic heart rate have been documented even in so-called healthy individuals. The relative contributions of the ANS and intrinsic mechanisms to age-dependent deterioration of SAN function in humans are not clear. We recorded ECG on patients (n = 16 < 21 years and n = 23 41-78 years) in the basal state and after ANS blockade (propranolol and atropine) in the presence of propofol and dexmedetomidine anesthesia. Average BI and BIV were analyzed. A set of BIV features were tested to designated the "signatures" of the ANS and intrinsic mechanisms and also the anesthesia "signature". In young patients, the intrinsic mechanisms and ANS mainly contributed to long- and short-term BIV, respectively. In adults, both ANS and intrinsic mechanisms contributed to short-term BIV, while the latter also contributed to long-term BIV. Furthermore, anesthesia affected ANS function in young patients and both mechanisms in adult. The work also showed that intrinsic mechanism features can be calculated from BIs, without intervention.
Collapse
Affiliation(s)
- Ido Weiser-Bitoun
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hitoshi Mori
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Taisuke Nabeshima
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Naomichi Tanaka
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Daisuke Kudo
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Wataru Sasaki
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Masataka Narita
- Saitama Medical University International Medical Center, Saitama, Japan
| | | | - Yoshifumi Ikeda
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Takahide Arai
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Shintaro Nakano
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Naokata Sumitomo
- Saitama Medical University International Medical Center, Saitama, Japan
| | | | - Kazuo Matsumoto
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Ritsushi Kato
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Christopher H Morrell
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kenta Tsutsui
- Saitama Medical University International Medical Center, Saitama, Japan.
- Department of Cardiovascular Medicine, Saitama Medical University International Medical Center, Saitama, Japan.
| | - Yael Yaniv
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
- Laboratory of Bioenergetic and Bioelectric Systems, The Faculty of Biomedical Engineering Technion-IIT, Haifa, Israel.
| |
Collapse
|
13
|
Veron G, Maltsev VA, Stern MD, Maltsev AV. Elementary intracellular Ca signals approximated as a transition of release channel system from a metastable state. JOURNAL OF APPLIED PHYSICS 2023; 134:124701. [PMID: 37744735 PMCID: PMC10517864 DOI: 10.1063/5.0151255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Cardiac muscle contraction is initiated by an elementary Ca signal (called Ca spark) which is achieved by collective action of Ca release channels in a cluster. The mechanism of this synchronization remains uncertain. We approached Ca spark activation as an emergent phenomenon of an interactive system of release channels. We constructed a weakly lumped Markov chain that applies an Ising model formalism to such release channel clusters and probable open channel configurations and demonstrated that spark activation is described as a system transition from a metastable to an absorbing state, analogous to the pressure required to overcome surface tension in bubble formation. This yielded quantitative estimates of the spark generation probability as a function of various system parameters. We performed numerical simulations to find spark probabilities as a function of sarcoplasmic reticulum Ca concentration, obtaining similar values for spark activation threshold as our analytic model, as well as those reported in experimental studies. Our parametric sensitivity analyses also showed that the spark activation threshold decreased as Ca sensitivity of RyR activation and RyR cluster size increased.
Collapse
Affiliation(s)
- Guillermo Veron
- Cellular Biophysics Section, Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Victor A. Maltsev
- Cellular Biophysics Section, Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Michael D. Stern
- Cellular Biophysics Section, Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Anna V. Maltsev
- School of Mathematical Sciences, Queen Mary University of London, London E14NS, United Kingdom
| |
Collapse
|
14
|
Verkerk AO, Wilders R. The Action Potential Clamp Technique as a Tool for Risk Stratification of Sinus Bradycardia Due to Loss-of-Function Mutations in HCN4: An In Silico Exploration Based on In Vitro and In Vivo Data. Biomedicines 2023; 11:2447. [PMID: 37760888 PMCID: PMC10525944 DOI: 10.3390/biomedicines11092447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
These days, in vitro functional analysis of gene variants is becoming increasingly important for risk stratification of cardiac ion channelopathies. So far, such risk stratification has been applied to SCN5A, KCNQ1, and KCNH2 gene variants associated with Brugada syndrome and long QT syndrome types 1 and 2, respectively, but risk stratification of HCN4 gene variants related to sick sinus syndrome has not yet been performed. HCN4 is the gene responsible for the hyperpolarization-activated 'funny' current If, which is an important modulator of the spontaneous diastolic depolarization underlying the sinus node pacemaker activity. In the present study, we carried out a risk classification assay on those loss-of-function mutations in HCN4 for which in vivo as well as in vitro data have been published. We used the in vitro data to compute the charge carried by If (Qf) during the diastolic depolarization phase of a prerecorded human sinus node action potential waveform and assessed the extent to which this Qf predicts (1) the beating rate of the comprehensive Fabbri-Severi model of a human sinus node cell with mutation-induced changes in If and (2) the heart rate observed in patients carrying the associated mutation in HCN4. The beating rate of the model cell showed a very strong correlation with Qf from the simulated action potential clamp experiments (R2 = 0.95 under vagal tone). The clinically observed minimum or resting heart rates showed a strong correlation with Qf (R2 = 0.73 and R2 = 0.71, respectively). While a translational perspective remains to be seen, we conclude that action potential clamp on transfected cells, without the need for further voltage clamp experiments and data analysis to determine individual biophysical parameters of If, is a promising tool for risk stratification of sinus bradycardia due to loss-of-function mutations in HCN4. In combination with an If blocker, this tool may also prove useful when applied to human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) obtained from mutation carriers and non-carriers.
Collapse
Affiliation(s)
- Arie O. Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
15
|
Sathnur N, Ebin E, Benditt DG. Sinus Node Dysfunction. Cardiol Clin 2023; 41:349-367. [PMID: 37321686 DOI: 10.1016/j.ccl.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sinus node dysfunction (SND) is a multifaceted disorder most prevalent in older individuals, but may also occur at an earlier age. In most cases, the SND diagnosis is ultimately established by documenting its ECG manifestations. EPS has limited utility. The treatment strategy is largely dictated by symptoms and ECG manifestations. Not infrequently, both bradycardia and tachycardia coexist in the same patients, along with other diseases common in the elderly (e.g., hypertension, coronary artery disease), thereby complicating treatment strategy. Prevention of the adverse consequences of both bradyarrhythmia and tachyarrhythmia is important to reduce susceptibility to syncope, falls, and thromboembolic complications.
Collapse
Affiliation(s)
- Neeraj Sathnur
- Cardiac Arrhythmia Service, Cardiovascular Division, University of Minnesota Medical School, Minneapolis, MN, USA; Cardiovascular Medicine, University of Minnesota Medical School, Mail Code 508, 420 Delaware St SE, Minneapolis, MN 55455, USA; Cardiac Electrophysiology, Park-Nicollet Medical Center, St Louis Park, Minneapolis, MN, USA
| | - Emanuel Ebin
- Cardiac Arrhythmia Service, Cardiovascular Division, University of Minnesota Medical School, Minneapolis, MN, USA; Cardiovascular Medicine, University of Minnesota Medical School, Mail Code 508, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - David G Benditt
- Cardiac Arrhythmia Service, Cardiovascular Division, University of Minnesota Medical School, Minneapolis, MN, USA; Cardiovascular Medicine, University of Minnesota Medical School, Mail Code 508, 420 Delaware St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
16
|
Segal S, Shemla O, Shapira R, Peretz NK, Lukyanenko Y, Brosh I, Behar J, Lakatta EG, Tsutsui K, Yaniv Y. cAMP signaling affects age-associated deterioration of pacemaker beating interval dynamics. GeroScience 2023; 45:2589-2600. [PMID: 37084120 PMCID: PMC10651572 DOI: 10.1007/s11357-023-00787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Sinoatrial node (SAN) beating interval variability (BIV) and the average beating interval (BI) are regulated by a coupled-clock system, driven by Ca2+-calmodulin activated adenylyl cyclase, cAMP, and downstream PKA signaling. Reduced responsiveness of the BI and BIV to submaximal, [X]50, β-adrenergic receptor (β-AR) stimulation, and phosphodiesterase inhibition (PDEI) have been documented in aged SAN tissue, whereas the maximal responses, [X]max, do not differ by age. To determine whether age-associated dysfunction in cAMP signaling leads to altered responsiveness of BI and BIV, we measured cAMP levels and BI in adult (2-4 months n = 27) and aged (22-26 months n = 25) C57/BL6 mouse SAN tissue in control and in response to β-AR or PDEI at X50 and [X]max. Both cAMP and average BI in adult SAN were reduced at X50, whereas cAMP and BI at Xmax did not differ by age. cAMP levels and average BI were correlated both within and between adult and aged SAN. BIV parameters in long- and short-range terms were correlated with cAMP levels for adult SAN. However, due to reduced cAMP within aged tissues at [X]50, these correlations were diminished in advanced age. Thus, cAMP level generated by the coupled clock mechanisms is tightly linked to average BI. Reduced cAMP level at X50 in aged SAN explains the reduced responsiveness of the BI and BIV to β-AR stimulation and PDEI.
Collapse
Affiliation(s)
- Sofia Segal
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Ori Shemla
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Rotem Shapira
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Noa Kirschner Peretz
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | | | - Inbar Brosh
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Joachim Behar
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Edward G Lakatta
- Intramural Research Program, National Institute On Aging, Baltimore, MD, USA
| | - Kenta Tsutsui
- Intramural Research Program, National Institute On Aging, Baltimore, MD, USA.
- Department of Cardiovascular Medicine, Saitama Medical University International Medical Center, Saitama, Japan.
| | - Yael Yaniv
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel.
| |
Collapse
|
17
|
Zheng M, Erhardt S, Cao Y, Wang J. Emerging Signaling Regulation of Sinoatrial Node Dysfunction. Curr Cardiol Rep 2023; 25:621-630. [PMID: 37227579 PMCID: PMC11418806 DOI: 10.1007/s11886-023-01885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE OF REVIEW The sinoatrial node (SAN), the natural pacemaker of the heart, is responsible for generating electrical impulses and initiating each heartbeat. Sinoatrial node dysfunction (SND) causes various arrhythmias such as sinus arrest, SAN block, and tachycardia/bradycardia syndrome. Unraveling the underlying mechanisms of SND is of paramount importance in the pursuit of developing effective therapeutic strategies for patients with SND. This review provides a concise summary of the most recent progress in the signaling regulation of SND. RECENT FINDINGS Recent studies indicate that SND can be caused by abnormal intercellular and intracellular signaling, various forms of heart failure (HF), and diabetes. These discoveries provide novel insights into the underlying mechanisms SND, advancing our understanding of its pathogenesis. SND can cause severe cardiac arrhythmias associated with syncope and an increased risk of sudden death. In addition to ion channels, the SAN is susceptible to the influence of various signalings including Hippo, AMP-activated protein kinase (AMPK), mechanical force, and natriuretic peptide receptors. New cellular and molecular mechanisms related to SND are also deciphered in systemic diseases such as HF and diabetes. Progress in these studies contributes to the development of potential therapeutics for SND.
Collapse
Affiliation(s)
- Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, 77030, USA
| | - Yuhan Cao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Chen M, Wu Q. Roles and mechanisms of natural drugs on sinus node dysfunction. Biomed Pharmacother 2023; 164:114777. [PMID: 37229801 DOI: 10.1016/j.biopha.2023.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
Sinus node dysfunction is a common arrhythmia disorder with a high incidence and significant social and economic burden. Currently, there are no effective drugs for treating chronic sinus node dysfunction. The disease is associated with ion channel disturbances caused by aging, fibrosis, inflammation, oxidative stress, and autonomic dysfunction. Natural active substances and Chinese herbal medicines have been widely used and extensively studied in the medical community for the treatment of arrhythmias. Multiple studies have demonstrated that various active ingredients and Chinese herbal medicines, such as astragaloside IV, quercetin, and ginsenosides, exhibit antioxidant effects, reduce fibrosis, and maintain ion channel stability, providing promising drugs for treating sinus node dysfunction. This article summarizes the research progress on natural active ingredients and Chinese herbal formulas that regulate sick sinoatrial node function, providing valuable references for the treatment of sinus node dysfunction.
Collapse
Affiliation(s)
- Meilian Chen
- Quanzhou Hospital of Traditional Chinese Medicine, Fujian 362000, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
19
|
Karimi T, Pan Z, Potaman VN, Alt EU. Conversion of Unmodified Stem Cells to Pacemaker Cells by Overexpression of Key Developmental Genes. Cells 2023; 12:1381. [PMID: 37408215 PMCID: PMC10216671 DOI: 10.3390/cells12101381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Arrhythmias of the heart are currently treated by implanting electronic pacemakers and defibrillators. Unmodified adipose tissue-derived stem cells (ASCs) have the potential to differentiate into all three germ layers but have not yet been tested for the generation of pacemaker and Purkinje cells. We investigated if-based on overexpression of dominant conduction cell-specific genes in ASCs-biological pacemaker cells could be induced. Here we show that by overexpression of certain genes that are active during the natural development of the conduction system, the differentiation of ASCs to pacemaker and Purkinje-like cells is feasible. Our study revealed that the most effective procedure consisted of short-term upregulation of gene combinations SHOX2-TBX5-HCN2, and to a lesser extent SHOX2-TBX3-HCN2. Single-gene expression protocols were ineffective. Future clinical implantation of such pacemaker and Purkinje cells, derived from unmodified ASCs of the same patient, could open up new horizons for the treatment of arrythmias.
Collapse
Affiliation(s)
- Tahereh Karimi
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA;
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
| | - Zhizhong Pan
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vladimir N. Potaman
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
- InGeneron Inc., 8205 El Rio Street, Houston, TX 77054, USA
| | - Eckhard U. Alt
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA;
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
- InGeneron Inc., 8205 El Rio Street, Houston, TX 77054, USA
- Sanford Health, University of South Dakota, Sioux Falls, SD 57104, USA
- Isar Klinikum Munich, Sonnenstr 24-26, 80331 Munich, Germany
| |
Collapse
|
20
|
Zhang H, Graham V, Nepliouev I, Stiber JA, Rosenberg P. STIM1 interacts with HCN4 channels to coordinate diastolic depolarization in the mouse Sinoatrial node. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539287. [PMID: 37205552 PMCID: PMC10187156 DOI: 10.1101/2023.05.03.539287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cardiomyocytes in the sinoatrial node (SAN) are specialized to undergo spontaneous diastolic depolarization (DD) to create action potentials (AP) that serve as the origin of the heartbeat. Two cellular clocks govern DD: the membrane clock where ion channels contribute ionic conductance to create DD and the Ca 2+ clock where rhythmic Ca 2+ release from sarcoplasmic reticulum (SR) during diastole contributes pacemaking. How the membrane and Ca 2+ clocks interact to synchronize and drive DD is not well understood. Here, we identified stromal interaction molecule 1 (STIM1), the activator of store operated Ca 2+ entry (SOCE), in the P-cell cardiomyocytes of the SAN. Functional studies from STIM1 KO mice reveal dramatic changes in properties of AP and DD. Mechanistically, we show that STIM1 regulates the funny currents and HCN4 channels that are required to initiate DD and maintain sinus rhythm in mice. Taken together, our studies suggest that STIM1 acts as a sensor for both the Ca 2+ and membrane clocks for mouse SAN for cardiac pacemaking.
Collapse
|
21
|
Verkerk AO, Wilders R. Human Sinoatrial Node Pacemaker Activity: Role of the Slow Component of the Delayed Rectifier K + Current, I Ks. Int J Mol Sci 2023; 24:7264. [PMID: 37108427 PMCID: PMC10138838 DOI: 10.3390/ijms24087264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The pacemaker activity of the sinoatrial node (SAN) has been studied extensively in animal species but is virtually unexplored in humans. Here we assess the role of the slowly activating component of the delayed rectifier K+ current (IKs) in human SAN pacemaker activity and its dependence on heart rate and β-adrenergic stimulation. HEK-293 cells were transiently transfected with wild-type KCNQ1 and KCNE1 cDNA, encoding the α- and β-subunits of the IKs channel, respectively. KCNQ1/KCNE1 currents were recorded both during a traditional voltage clamp and during an action potential (AP) clamp with human SAN-like APs. Forskolin (10 µmol/L) was used to increase the intracellular cAMP level, thus mimicking β-adrenergic stimulation. The experimentally observed effects were evaluated in the Fabbri-Severi computer model of an isolated human SAN cell. Transfected HEK-293 cells displayed large IKs-like outward currents in response to depolarizing voltage clamp steps. Forskolin significantly increased the current density and significantly shifted the half-maximal activation voltage towards more negative potentials. Furthermore, forskolin significantly accelerated activation without affecting the rate of deactivation. During an AP clamp, the KCNQ1/KCNE1 current was substantial during the AP phase, but relatively small during diastolic depolarization. In the presence of forskolin, the KCNQ1/KCNE1 current during both the AP phase and diastolic depolarization increased, resulting in a clearly active KCNQ1/KCNE1 current during diastolic depolarization, particularly at shorter cycle lengths. Computer simulations demonstrated that IKs reduces the intrinsic beating rate through its slowing effect on diastolic depolarization at all levels of autonomic tone and that gain-of-function mutations in KCNQ1 may exert a marked bradycardic effect during vagal tone. In conclusion, IKs is active during human SAN pacemaker activity and has a strong dependence on heart rate and cAMP level, with a prominent role at all levels of autonomic tone.
Collapse
Affiliation(s)
- Arie O. Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
22
|
Sinus node dysfunction and atrial fibrillation-Relationships, clinical phenotypes, new mechanisms, and treatment approaches. Ageing Res Rev 2023; 86:101890. [PMID: 36813137 DOI: 10.1016/j.arr.2023.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Although the anatomical basis of the pathogenesis of sinus node dysfunction (SND) and atrial fibrillation (AF) is located primarily in the left and right atria, increasing evidence suggests a strong correlation between SND and AF, in terms of both clinical presentation and formation mechanisms. However, the exact mechanisms underlying this association are unclear. The relationship between SND and AF may not be causal, but is likely to involve common factors and mechanisms, including ion channel remodeling, gap junction abnormalities, structural remodeling, genetic mutations, neuromodulation abnormalities, the effects of adenosine on cardiomyocytes, oxidative stress, and viral infections. Ion channel remodeling manifests primarily as alterations in the "funny" current (If) and Ca2+ clock associated with cardiomyocyte autoregulation, and gap junction abnormalities are manifested primarily as decreased expression of connexins (Cxs) mediating electrical impulse propagation in cardiomyocytes. Structural remodeling refers primarily to fibrosis and cardiac amyloidosis (CA). Some genetic mutations can also cause arrhythmias, such as SCN5A, HCN4, EMD, and PITX2. The intrinsic cardiac autonomic nervous system (ICANS), a regulator of the heart's physiological functions, triggers arrhythmias.In addition, we discuss arrhythmias caused by viral infections, notably Coronavirus Disease 2019 (COVID-19). Similarly to upstream treatments for atrial cardiomyopathy such as alleviating CA, ganglionated plexus (GP) ablation acts on the common mechanisms between SND and AF, thus achieving a dual therapeutic effect.
Collapse
|
23
|
Wang Y, Long S, Wei C, Wang X. Rare Compound Heterozygous Missense Mutation of the SCN5A Gene with Childhood-Onset Sick Sinus Syndrome in Two Chinese Sisters. Int Heart J 2023; 64:299-305. [PMID: 36927930 DOI: 10.1536/ihj.22-515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Sick sinus syndrome (SSS) is a group of syndromes characterized by pathological changes in the sinoatrial node and its adjacent tissues. Although several mutations in the SCN5A gene have been associated with early-onset SSS, pediatric patients are still less common. Here, we report a rare compound missense mutation in the SCN5A gene [c.2893C>T (p. R965C) and c.2431C>T (p. R811C) ] in two sisters with childhood-onset SSS in Chinese population. The proband (5 years and 5 months old) was the second child of a clinically normal and nonconsanguineous couple. Her elder sister was 12 years old and had been implanted with a pacemaker because of the diagnosis of SSS at another hospital one year ago. The proband was presented to the hospital with a slowed heart rate and reduced endurance exercise capacity for more than three months. After a comprehensive clinical examination, she was diagnosed with SSS and underwent pacemaker implantation. Exome and Sanger sequencing were used to determine the compound heterozygous missense mutation of [c.2893C>T (p. R965C) and c.2431C>T (p. R811C) ] in the SCN5A in the patient and her elder sister. Each healthy parent carried a different heterozygous missense mutation. The compound heterozygous mutation of c.2893C>T (p. R965C) and c.2431C>T (p. R811C) rather than the single mutation might be the primary cause of familial early-onset SSS in Chinese population. Our current findings expanded the current understanding of the SCN5A gene mutations. We further confirmed the essential role of the SCN5A gene on the diagnosis, family cascade screening, early intervention, and prognostic evaluation of SSS.
Collapse
Affiliation(s)
- Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
- NHC Key Laboratory of Chronobiology (Sichuan University), West China Second University Hospital, Sichuan University
| | - Siyu Long
- Department of Immunology, West China School of Basic Medical Science and Forensic Medicine, Sichuan University
| | - Chenxi Wei
- Wu Yuzhang Honors College, Sichuan University
| | - Xiaoqin Wang
- NHC Key Laboratory of Chronobiology (Sichuan University), West China Second University Hospital, Sichuan University
- Department of Pediatric Cardiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| |
Collapse
|
24
|
Knight AD, Medina-Morales K, Ozair S, Gomez S. Tachy-Brady Syndrome in a Schizophrenic Patient: A Case Report. Cureus 2023; 15:e35557. [PMID: 37007363 PMCID: PMC10063162 DOI: 10.7759/cureus.35557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/02/2023] Open
Abstract
Tachy-brady syndrome is the result of sinus node dysfunction (SND), an electrocardiographic phenomenon caused by defective pacemaker functioning that leads to alternating arrhythmias. We present a case of a 73-year-old male with multiple mental health and medical comorbidities who was admitted to the inpatient floor for catatonia, paranoid delusions, refusal to eat, inability to cooperate with activities of daily life, and generalized weakness. Upon admission, a 12-lead electrocardiogram (ECG) showed an episode of atrial fibrillation with a ventricular rate of 64 beats per minute (bpm). During hospitalization, telemetry recorded a variety of arrhythmias such as ventricular bigeminy, atrial fibrillation, supraventricular tachycardia (SVT), multifocal atrial contractions, and sinus bradycardia. Each episode spontaneously reverted and the patient remained asymptomatic throughout these arrhythmic changes. These frequently fluctuating arrhythmias on resting ECG confirmed the diagnosis of tachycardia-bradycardia syndrome, also known as tachy-brady syndrome. Medical intervention, especially for cardiac arrhythmias, in patients with paranoid and catatonic schizophrenia can be challenging, as they might not share their symptoms. Additionally, certain psychotropic medications can also cause cardiac arrhythmias and must be carefully evaluated. The decision was made to start the patient on a beta-blocker and direct oral anticoagulation for reducing the risk of thromboembolic events. Due to an unsatisfactory response to drug therapy alone, the patient qualified as a candidate for definitive treatment with an implantable dual-chamber pacemaker. Our patient had a dual-chamber pacemaker implanted to prevent bradyarrhythmias and continued oral beta-blockers to prevent tachyarrhythmias.
Collapse
|
25
|
Rathore A, Gupta N, Wu E, Suryanarayana P, Catanzaro JN. A Case of Sick Sinus Syndrome With Prolonged Asystole Masquerading as a Transient Ischemic Attack. Cureus 2023; 15:e35465. [PMID: 36999106 PMCID: PMC10043347 DOI: 10.7759/cureus.35465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/25/2023] [Indexed: 02/27/2023] Open
Abstract
Sick sinus syndrome (SSS) is a term used to describe dysfunction of the sinoatrial (SA) node that can lead to various cardiac arrhythmias that predominately manifest in the elderly. Commonly implicated arrhythmias vary from inappropriate bradycardia, tachycardia, sinus pauses, and rarely sinus arrest. Despite being a common reason for permanent pacemaker implantation, little is known regarding the incidence of SSS and there is even less reporting on SSS complicated by prolonged asystole. We present a case highlighting an infrequently observed manifestation of SSS with recurrent, prolonged ventricular asystolic episodes that were causing previously unexplained episodes of confusion and agonal breathing. Our patient was a 75-year-old male with a past medical history of hypertension, dyslipidemia, and prior transient ischemic attacks (TIAs) that presented after an acute mental status change. The initial leading differential diagnosis was believed to be a TIA and he was admitted to neurology service for further evaluation. The patient had recurring episodes of confusion associated with agonal breathing that upon closer review of the cardiac telemetry revealed sinus bradycardia to the 40s interrupted by several prolonged episodes of asystole, the longest lasting 20 seconds. Due to his symptoms and to avoid potential deterioration resulting in hemodynamic instability, the electrophysiology service urgently placed a temporary transvenous pacemaker and then later implanted a leadless pacemaker. On outpatient follow-up, he no longer had episodes of confusion, and no further asystolic episodes were noted on his device check.
Collapse
|
26
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 1530] [Impact Index Per Article: 1530.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
27
|
Cai S, Zheng L, Yao Y. Selection of patients with symptomatic vagal-induced sinus node dysfunction: Who will be the best candidate for cardioneuroablation? Front Physiol 2023; 14:1088881. [PMID: 36824466 PMCID: PMC9942778 DOI: 10.3389/fphys.2023.1088881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Sinus node dysfunction is a multifaceted disorder with variable manifestations, the prevalence of which increases with age. In a specific group of patients, excessive vagal activity may be the sole cause for this condition. These patients are characterized as having recurrent daytime symptoms attributed to bradyarrhythmia, no evidence of organic sinus node lesions, cardiac vagal overactivation, and are non-elderly. For sinus node dysfunction patients, a permanent pacemaker implantation appears to be the ultimate solution, although it is not an etiological treatment. Cardioneuroablation is a promising emerging therapy that can fundamentally eliminate symptoms in a highly selective sub-set of sinus node dysfunction patients by cardiac vagal nerve denervation. Denervation with ablation for vagal-induced sinus node dysfunction can effectively improve sinus bradycardia and reduce syncope. To date, guidelines for selection of suitable candidates for cardioneuroablation remain lacking. The primary objective of this study was to distinguish the nature of abnormal sinus node function and to find methods for quantifying vagal tone. Clear selection criteria could help physicians in identification of patients with autonomic imbalance, thereby maximizing patient benefits and the success rate of cardioneuroablations.
Collapse
Affiliation(s)
- Simin Cai
- Cardiac Arrhythmia Center, Heart Center, The People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Huazhong Fuwai Hospital, Zhengzhou, Henan, China
| | - Lihui Zheng
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China,*Correspondence: Lihui Zheng, ; Yan Yao,
| | - Yan Yao
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China,*Correspondence: Lihui Zheng, ; Yan Yao,
| |
Collapse
|
28
|
Teixeira RA, Fagundes AA, Baggio Junior JM, Oliveira JCD, Medeiros PDTJ, Valdigem BP, Teno LAC, Silva RT, Melo CSD, Elias Neto J, Moraes Júnior AV, Pedrosa AAA, Porto FM, Brito Júnior HLD, Souza TGSE, Mateos JCP, Moraes LGBD, Forno ARJD, D'Avila ALB, Cavaco DADM, Kuniyoshi RR, Pimentel M, Camanho LEM, Saad EB, Zimerman LI, Oliveira EB, Scanavacca MI, Martinelli Filho M, Lima CEBD, Peixoto GDL, Darrieux FCDC, Duarte JDOP, Galvão Filho SDS, Costa ERB, Mateo EIP, Melo SLD, Rodrigues TDR, Rocha EA, Hachul DT, Lorga Filho AM, Nishioka SAD, Gadelha EB, Costa R, Andrade VSD, Torres GG, Oliveira Neto NRD, Lucchese FA, Murad H, Wanderley Neto J, Brofman PRS, Almeida RMS, Leal JCF. Brazilian Guidelines for Cardiac Implantable Electronic Devices - 2023. Arq Bras Cardiol 2023; 120:e20220892. [PMID: 36700596 PMCID: PMC10389103 DOI: 10.36660/abc.20220892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
| | | | | | | | | | | | | | - Rodrigo Tavares Silva
- Universidade de Franca (UNIFRAN), Franca, SP - Brasil
- Centro Universitário Municipal de Franca (Uni-FACEF), Franca, SP - Brasil
| | | | - Jorge Elias Neto
- Universidade Federal do Espírito Santo (UFES), Vitória, ES - Brasil
| | - Antonio Vitor Moraes Júnior
- Santa Casa de Ribeirão Preto, Ribeirão Preto, SP - Brasil
- Unimed de Ribeirão Preto, Ribeirão Preto, SP - Brasil
| | - Anisio Alexandre Andrade Pedrosa
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | | | | | | | - Luis Gustavo Belo de Moraes
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brasil
| | | | | | | | | | - Mauricio Pimentel
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brasil
| | | | - Eduardo Benchimol Saad
- Hospital Pró-Cardíaco, Rio de Janeiro, RJ - Brasil
- Hospital Samaritano, Rio de Janeiro, RJ - Brasil
| | | | | | - Mauricio Ibrahim Scanavacca
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | - Martino Martinelli Filho
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | - Carlos Eduardo Batista de Lima
- Hospital Universitário da Universidade Federal do Piauí (UFPI), Teresina, PI - Brasil
- Empresa Brasileira de Serviços Hospitalares (EBSERH), Brasília, DF - Brasil
| | | | - Francisco Carlos da Costa Darrieux
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | | | | | | | - Sissy Lara De Melo
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | - Eduardo Arrais Rocha
- Hospital Universitário Walter Cantídio, Universidade Federal do Ceará (UFC), Fortaleza, CE - Brasil
| | - Denise Tessariol Hachul
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | - Silvana Angelina D'Orio Nishioka
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | - Roberto Costa
- Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | - Gustavo Gomes Torres
- Hospital Universitário Onofre Lopes, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN - Brasil
| | | | | | - Henrique Murad
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brasil
| | | | | | - Rui M S Almeida
- Centro Universitário Fundação Assis Gurgacz, Cascavel, PR - Brasil
| | | |
Collapse
|
29
|
Depressed HCN4 function in the type 2 diabetic sinoatrial node. Mol Cell Biochem 2022. [DOI: 10.1007/s11010-022-04635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
The Effect of the Tongyang Huoxue Recipe (TYHX) on the I to/ I Kur in Ischemia/Reperfusion Sinoatrial Node Cells. Cardiovasc Ther 2022; 2022:4114817. [PMID: 36605374 PMCID: PMC9794430 DOI: 10.1155/2022/4114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/26/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Background The transient outward potassium current (I to) and the ultrarapid delayed rectifier potassium current (I Kur) are major potassium currents involved in the repolarization process of sinoatrial node cells (SNCs). Methods and Results The SNCs of neonatal rats were divided into control, ischemia/reperfusion (I/R), I/R+blank serum, and Tongyang Huoxue recipe (TYHX) serum groups. I to and I Kur were recorded using the whole cell patch-clamp technique, and the current-voltage (I-V), steady-state activation (SSA), steady-state inactivation (SSI), and recovery from inactivation (RFI) curves were plotted, respectively. Compared to the control group, both the peak current density and the current density at the voltage of I to and I Kur decreased obviously in SNCs after simulated I/R, the SSA curves moved right, and the SSI curves moved left. After TYHX was added to the extracellular solution of SNCs, both the peak current density and the current density at the voltage of I to and I Kur increased significantly, the SSA curves moved left, and the SSI curves moved right with a significant difference of V 1/2. The recovery from the I Kur RFI curves was slightly restored, and the I to curves did not change. Conclusions TYHX increases the peak current density, accelerates the activation, and decreases the inactivation of the I to and I Kur. This may be the mechanism of TYHX in shortening the action potential duration of repolarization, which accelerates spontaneous pulsation.
Collapse
|
31
|
Moen JM, Morrell CH, Matt MG, Ahmet I, Tagirova S, Davoodi M, Petr M, Charles S, de Cabo R, Yaniv Y, Lakatta EG. Emergence of heartbeat frailty in advanced age I: perspectives from life-long EKG recordings in adult mice. GeroScience 2022; 44:2801-2830. [PMID: 35759167 PMCID: PMC9768068 DOI: 10.1007/s11357-022-00605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/06/2022] [Indexed: 01/07/2023] Open
Abstract
The combined influences of sinoatrial nodal (SAN) pacemaker cell automaticity and its response to autonomic input determine the heart's beating interval variability and mean beating rate. To determine the intrinsic SAN and autonomic signatures buried within EKG RR interval time series change in advanced age, we measured RR interval variability before and during double autonomic blockade at 3-month intervals from 6 months of age until the end of life in long-lived (those that achieved the total cohort median life span of 24 months and beyond) C57/BL6 mice. Prior to 21 months of age, time-dependent changes in intrinsic RR interval variability and mean RR interval were relatively minor. Between 21 and 30 months of age, however, marked changes emerged in intrinsic SAN RR interval variability signatures, pointing to a reduction in the kinetics of pacemaker clock mechanisms, leading to reduced synchronization of molecular functions within and among SAN cells. This loss of high-frequency signal processing within intrinsic SAN signatures resulted in a marked increase in the mean intrinsic RR interval. The impact of autonomic signatures on RR interval variability were net sympathetic and partially compensated for the reduced kinetics of the intrinsic SAN RR interval variability signatures, and partially, but not completely, shifted the EKG RR time series intervals to a more youthful pattern. Cross-sectional analyses of other subsets of C57/BL6 ages indicated that at or beyond the median life span of our longitudinal cohort, noncardiac, constitutional, whole-body frailty was increased, energetic efficiency was reduced, and the respiratory exchange ratio increased. We interpret the progressive reduction in kinetics in intrinsic SAN RR interval variability signatures in this context of whole-body frailty beyond 21 months of age to be a manifestation of "heartbeat frailty."
Collapse
Affiliation(s)
- Jack M Moen
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Christopher H Morrell
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michael G Matt
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
- Pediatric Residency Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Syevda Tagirova
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Moran Davoodi
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Michael Petr
- Laboratory of Experimental Gerontology Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Shaquille Charles
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
32
|
Ren L, Thai PN, Gopireddy RR, Timofeyev V, Ledford HA, Woltz RL, Park S, Puglisi JL, Moreno CM, Santana LF, Conti AC, Kotlikoff MI, Xiang YK, Yarov-Yarovoy V, Zaccolo M, Zhang XD, Yamoah EN, Navedo MF, Chiamvimonvat N. Adenylyl cyclase isoform 1 contributes to sinoatrial node automaticity via functional microdomains. JCI Insight 2022; 7:e162602. [PMID: 36509290 PMCID: PMC9746826 DOI: 10.1172/jci.insight.162602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Sinoatrial node (SAN) cells are the heart's primary pacemaker. Their activity is tightly regulated by β-adrenergic receptor (β-AR) signaling. Adenylyl cyclase (AC) is a key enzyme in the β-AR pathway that catalyzes the production of cAMP. There are current gaps in our knowledge regarding the dominant AC isoforms and the specific roles of Ca2+-activated ACs in the SAN. The current study tests the hypothesis that distinct AC isoforms are preferentially expressed in the SAN and compartmentalize within microdomains to orchestrate heart rate regulation during β-AR signaling. In contrast to atrial and ventricular myocytes, SAN cells express a diverse repertoire of ACs, with ACI as the predominant Ca2+-activated isoform. Although ACI-KO (ACI-/-) mice exhibit normal cardiac systolic or diastolic function, they experience SAN dysfunction. Similarly, SAN-specific CRISPR/Cas9-mediated gene silencing of ACI results in sinus node dysfunction. Mechanistically, hyperpolarization-activated cyclic nucleotide-gated 4 (HCN4) channels form functional microdomains almost exclusively with ACI, while ryanodine receptor and L-type Ca2+ channels likely compartmentalize with ACI and other AC isoforms. In contrast, there were no significant differences in T-type Ca2+ and Na+ currents at baseline or after β-AR stimulation between WT and ACI-/- SAN cells. Due to its central characteristic feature as a Ca2+-activated isoform, ACI plays a unique role in sustaining the rise of local cAMP and heart rates during β-AR stimulation. The findings provide insights into the critical roles of the Ca2+-activated isoform of AC in sustaining SAN automaticity that is distinct from contractile cardiomyocytes.
Collapse
Affiliation(s)
- Lu Ren
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Phung N. Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
- Department of Veteran Affairs, Northern California Health Care System, Sacramento, California, USA
| | | | - Valeriy Timofeyev
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
| | - Hannah A. Ledford
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
| | - Ryan L. Woltz
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
- Department of Veteran Affairs, Northern California Health Care System, Sacramento, California, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, Nevada, USA
- Prestige Biopharma Korea, Myongjigukje 7-ro, Gangseo-gu, Busan, South Korea
| | - Jose L. Puglisi
- College of Medicine. California North State University, Sacramento, California, USA
| | - Claudia M. Moreno
- Department of Physiology and Membrane Biology, UCD, Davis, California, USA
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Alana C. Conti
- Research & Development Service, John D. Dingell VA Medical Center, and
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | - Yang Kevin Xiang
- Department of Veteran Affairs, Northern California Health Care System, Sacramento, California, USA
- Department of Pharmacology, UCD, Davis, California, USA
| | | | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Xiao-Dong Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
- Department of Veteran Affairs, Northern California Health Care System, Sacramento, California, USA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, Nevada, USA
| | | | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
- Department of Veteran Affairs, Northern California Health Care System, Sacramento, California, USA
- Department of Pharmacology, UCD, Davis, California, USA
| |
Collapse
|
33
|
Ding Y, Lang D, Yan J, Bu H, Li H, Jiao K, Yang J, Ni H, Morotti S, Le T, Clark KJ, Port J, Ekker SC, Cao H, Zhang Y, Wang J, Grandi E, Li Z, Shi Y, Li Y, Glukhov AV, Xu X. A phenotype-based forward genetic screen identifies Dnajb6 as a sick sinus syndrome gene. eLife 2022; 11:e77327. [PMID: 36255053 PMCID: PMC9642998 DOI: 10.7554/elife.77327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Previously we showed the generation of a protein trap library made with the gene-break transposon (GBT) in zebrafish (Danio rerio) that could be used to facilitate novel functional genome annotation towards understanding molecular underpinnings of human diseases (Ichino et al, 2020). Here, we report a significant application of this library for discovering essential genes for heart rhythm disorders such as sick sinus syndrome (SSS). SSS is a group of heart rhythm disorders caused by malfunction of the sinus node, the heart's primary pacemaker. Partially owing to its aging-associated phenotypic manifestation and low expressivity, molecular mechanisms of SSS remain difficult to decipher. From 609 GBT lines screened, we generated a collection of 35 zebrafish insertional cardiac (ZIC) mutants in which each mutant traps a gene with cardiac expression. We further employed electrocardiographic measurements to screen these 35 ZIC lines and identified three GBT mutants with SSS-like phenotypes. More detailed functional studies on one of the arrhythmogenic mutants, GBT411, in both zebrafish and mouse models unveiled Dnajb6 as a novel SSS causative gene with a unique expression pattern within the subpopulation of sinus node pacemaker cells that partially overlaps with the expression of hyperpolarization activated cyclic nucleotide gated channel 4 (HCN4), supporting heterogeneity of the cardiac pacemaker cells.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao UniversityQingdaoChina
| | - Di Lang
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Jianhua Yan
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Division of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of MedicineShanghaiChina
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South UniversityChangshaChina
| | - Hongsong Li
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Cardiovascular Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health ScienceShanghaiChina
| | - Kunli Jiao
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Division of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of MedicineShanghaiChina
| | - Jingchun Yang
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| | - Haibo Ni
- Department of Pharmacology, University of California, DavisDavisUnited States
| | - Stefano Morotti
- Department of Pharmacology, University of California, DavisDavisUnited States
| | - Tai Le
- Department of Biomedical Engineering, University of California, IrvineIrvineUnited States
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| | - Jenna Port
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| | - Hung Cao
- Department of Biomedical Engineering, University of California, IrvineIrvineUnited States
- Department of Electrical Engineering and Computer Science, University of California, IrvineIrvineUnited States
| | - Yuji Zhang
- Department of Epidemiology and Public Health, University of Maryland School of MedicineBaltimoreUnited States
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at HoustonHoustonUnited States
| | - Eleonora Grandi
- Department of Pharmacology, University of California, DavisDavisUnited States
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao UniversityQingdaoChina
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao UniversityQingdaoChina
| | - Yigang Li
- Division of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of MedicineShanghaiChina
| | - Alexey V Glukhov
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| |
Collapse
|
34
|
NRF-2/HO-1 Pathway-Mediated SHOX2 Activation Is a Key Switch for Heart Rate Acceleration by Yixin-Fumai Granules. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8488269. [PMID: 36199421 PMCID: PMC9529460 DOI: 10.1155/2022/8488269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Population aging has led to increased sick sinus syndrome (SSS) incidence; however, no effective and safe medical therapy has been reported thus far. Yixin-Fumai granules (YXFMs), a Chinese medicine granule designed for bradyarrhythmia treatment, can effectively increase SSS patients' heart rate. Senescence-induced sinoatrial node (SAN) degeneration is an important part of SSS pathogenesis, and older people often show high levels of oxidative stress; reactive oxygen species (ROS) accumulation in the SAN causes abnormal SAN pacing or conduction functions. The current study observed the protective effects of YXFMs on senescent SAN and explored the relationship between the NRF-2/HO-1 pathway, SHOX2, and T-type calcium channels. We selected naturally senescent C57BL/6 mice with bradycardia to simulate SSS; electrocardiography, Masson's trichrome staining, and DHE staining were used to assess SAN function and tissue damage. Immunofluorescence staining and Western blotting were used to assay related proteins. In vitro, we treated human-induced pluripotent stem cell-derived atrial myocytes (hiPSC-AMs) and mouse atrial myocyte-derived cell line HL-1 with D-galactose to simulate senescent SAN-pacemaker cells. CardioExcyte96 was used to evaluate the pulsatile function of the hiPSC-AMs, and the mechanism was verified by DCFH-DA, immunofluorescence staining, RT-qPCR, and Western blotting. The results demonstrated that YXFMs effectively inhibited senescence-induced SAN hypofunction, and this effect possibly originated from scavenging of ROS and promotion of NRF-2, SHOX2, and T-type calcium channel expression. In vitro experiment results indicated that ML385, si-SHOX2, LDN193189, and Mibefradil reversed YXFMs' effects. Moreover, we, for the first time, found that ROS accumulation may hinder SHOX2 expression; YXFMs can activate SHOX2 through the NRF-2/HO-1 pathway-mediated ROS scavenging and then regulate CACNA1G through the SHOX2/BMP4/GATA4/NKX2-5 axis, improve T-type calcium channel function, and ameliorate the SAN dysfunction. Finally, through network pharmacology and molecular docking, we screened for the most stable YXFMs compound that docks to NRF-2, laying the foundation for future studies.
Collapse
|
35
|
Xue JB, Val-Blasco A, Davoodi M, Gómez S, Yaniv Y, Benitah JP, Gómez AM. Heart failure in mice induces a dysfunction of the sinus node associated with reduced CaMKII signaling. J Gen Physiol 2022; 154:213178. [PMID: 35452507 PMCID: PMC9040062 DOI: 10.1085/jgp.202112895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Dysfunction of the sinoatrial node (SAN), the natural heart pacemaker, is common in heart failure (HF) patients. SAN spontaneous activity relies on various ion currents in the plasma membrane (voltage clock), but intracellular Ca2+ ([Ca2+]i) release via ryanodine receptor 2 (RYR2; Ca2+ clock) plays an important synergetic role. Whereas remodeling of voltage-clock components has been revealed in HF, less is known about possible alterations to the Ca2+ clock. Here, we analyzed [Ca2+]i handling in SAN from a mouse HF model after transverse aortic constriction (TAC) and compared it with sham-operated animals. ECG data from awake animals showed slower heart rate in HF mice upon autonomic nervous system blockade, indicating intrinsic sinus node dysfunction. Confocal microscopy analyses of SAN cells within whole tissue showed slower and less frequent [Ca2+]i transients in HF. This correlated with fewer and smaller spontaneous Ca2+ sparks in HF SAN cells, which associated with lower RYR2 protein expression level and reduced phosphorylation at the CaMKII site. Moreover, PLB phosphorylation at the CaMKII site was also decreased in HF, which could lead to reduced sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) function and lower sarcoplasmic reticulum Ca2+ content, further depressing the Ca2+ clock. The inhibition of CaMKII with KN93 slowed [Ca2+]i transient rate in both groups, but this effect was smaller in HF SAN, consistent with less CaMKII activation. In conclusion, our data uncover that the mechanism of intrinsic pacemaker dysfunction in HF involves reduced CaMKII activation.
Collapse
Affiliation(s)
- Jian-Bin Xue
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Almudena Val-Blasco
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Moran Davoodi
- Biomedical Engineering, Technion Institute, Haifa, Israel
| | - Susana Gómez
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Yael Yaniv
- Biomedical Engineering, Technion Institute, Haifa, Israel
| | - Jean-Pierre Benitah
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Ana María Gómez
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| |
Collapse
|
36
|
Yin L, Wang FY, Zhang W, Wang X, Tang YH, Wang T, Chen YT, Huang CX. RA signaling pathway combined with Wnt signaling pathway regulates human-induced pluripotent stem cells (hiPSCs) differentiation to sinus node-like cells. Stem Cell Res Ther 2022; 13:324. [PMID: 35851424 PMCID: PMC9290266 DOI: 10.1186/s13287-022-03006-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The source of SAN is debated among researchers. Many studies have shown that RA and Wnt signaling are involved in heart development. In this study, we investigated the role of retinoic acid (RA) and Wnt signaling in the induction of sinus node-like cells. METHODS The experimental samples were divided into four groups: control group (CHIR = 0), CHIR = 3, RA + CHIR = 0 andRA + CHIR = 3. After 20 days of differentiation, Western blot, RT-qPCR, immunofluorescence and flow cytometry were performed to identify sinus node-like cells. Finally, whole-cell patch clamp technique was used to record pacing funny current and action potential (AP) in four groups. RESULTS The best intervention method used in our experiment was RA = 0.25 µmol/L D5-D9 + CHIR = 3 µmol/L D5-D7. Results showed that CHIR can increase the expression of ISL-1 and TBX3, while RA mainly elevated Shox2. Immunofluorescence assay and flow cytometry further illustrated that combining RA with CHIR can induce sinus node-like cells (CTNT+Shox2+Nkx2.5-). Moreover, CHIR might reduce the frequency of cell beats, but in conjunction with RA could partly compensate for this side effect. Whole cell patch clamps were able to record funny current and the typical sinus node AP in the experimental group, which did not appear in the control group. CONCLUSIONS Combining RA with Wnt signaling within a specific period can induce sinus node-like cells.
Collapse
Affiliation(s)
- Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Feng-yuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Yan-hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Yu-ting Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Cong-xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| |
Collapse
|
37
|
Glutamate drives 'local Ca 2+ release' in cardiac pacemaker cells. Cell Res 2022; 32:843-854. [PMID: 35840807 PMCID: PMC9437105 DOI: 10.1038/s41422-022-00693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
The sinoatrial node (SAN) is the origin of the electrical signals for rhythmic heartbeats in mammals. The spontaneous firing of SAN pacemaker cells (SANPCs) triggers cardiac contraction. ‘Local Ca2+ release’ (LCR), a unique cellular activity, acts as the ‘engine’ of the spontaneous firing of SANPCs. However, the mechanism of LCR initiation remains unclear. Here, we report that endogenous glutamate drives LCRs in SANPCs. Using a glutamate sensor, we unraveled a tight correlation between glutamate accumulation and LCR occurrence, indicating a potential relationship between glutamate and LCRs. Intracellular application of glutamate significantly enhanced the LCRs in both intact and permeabilized SANPCs. Mechanistically, we revealed that mitochondrial excitatory amino acid transporter 1 (EAAT1)-dependent mitochondrial glutamate import promoted ROS generation, which in turn led to the oxidation of Ca2+-handling proteins, ultimately resulting in enhanced LCRs. Importantly, EAAT1 depletion reduced both the spontaneous firing rates of isolated SANPCs and the heart rate in vitro and in vivo, suggesting the central role of EAAT1 as a glutamate transporter in the regulation of cardiac autonomic rhythm. In conclusion, our results indicate that glutamate serves as an LCR igniter in SANPCs, adding a potentially important element to the coupled-clock theory that explains the origin of spontaneous firing. These findings shed new light on the future prevention and treatment of cardiac pacemaker cell-related arrhythmias.
Collapse
|
38
|
Chou PC, Liu CM, Weng CH, Yang KC, Cheng ML, Lin YC, Yang RB, Shyu BC, Shyue SK, Liu JD, Chen SP, Hsiao M, Hu YF. Fibroblasts Drive Metabolic Reprogramming in Pacemaker Cardiomyocytes. Circ Res 2022; 131:6-20. [PMID: 35611699 DOI: 10.1161/circresaha.121.320301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The sinoatrial node (SAN) is characterized by the microenvironment of pacemaker cardiomyocytes (PCs) encased with fibroblasts. An altered microenvironment leads to rhythm failure. Operable cell or tissue models are either generally lacking or difficult to handle. The biological process behind the milieu of SANs to evoke pacemaker rhythm is unknown. We explored how fibroblasts interact with PCs and regulate metabolic reprogramming and rhythmic activity in the SAN. METHODS Tbx18 (T-box transcription factor 18)-induced PCs and fibroblasts were used for cocultures and engineered tissues, which were used as the in vitro models to explore how fibroblasts regulate the functional integrity of SANs. RNA-sequencing, metabolomics, and cellular and molecular techniques were applied to characterize the molecular signals underlying metabolic reprogramming and identify its critical regulators. These pathways were further validated in vivo in rodents and induced human pluripotent stem cell-derived cardiomyocytes. RESULTS We observed that rhythmicity in Tbx18-induced PCs was regulated by aerobic glycolysis. Fibroblasts critically activated metabolic reprogramming and aerobic glycolysis within PCs, and, therefore, regulated pacemaker activity in PCs. The metabolic reprogramming was attributed to the exclusive induction of Aldoc (aldolase c) within PCs after fibroblast-PC integration. Fibroblasts activated the integrin-dependent mitogen-activated protein kinase-E2F1 signal through cell-cell contact and turned on Aldoc expression in PCs. Interruption of fibroblast-PC interaction or Aldoc knockdown nullified electrical activity. Engineered Tbx18-PC tissue sheets were generated to recapitulate the microenvironment within SANs. Aldoc-driven rhythmic machinery could be replicated within tissue sheets. Similar machinery was faithfully validated in de novo PCs of adult mice and rats, and in human PCs derived from induced pluripotent stem cells. CONCLUSIONS Fibroblasts drive Aldoc-mediated metabolic reprogramming and rhythmic regulation in SANs. This work details the cellular machinery behind the complex milieu of vertebrate SANs and opens a new direction for future therapy.
Collapse
Affiliation(s)
- Pei-Chun Chou
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Chih-Min Liu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (C.-M.L., Y.-F.H.)
| | - Ching-Hui Weng
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Kai-Chien Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.).,Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei (K.-C.Y.)
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan (M.-L.C.)
| | - Yuh-Charn Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.).,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan (Y.-C.L.)
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Bai-Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Jin-Dian Liu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taiwan. (S.-P.C.)
| | - Michael Hsiao
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan (M.H.)
| | - Yu-Feng Hu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.).,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (C.-M.L., Y.-F.H.)
| |
Collapse
|
39
|
Butt MU, Okumus N, Jabri A, Thomas C, Tarabichi Y, Karim S. Early versus late Catheter Ablation of Atrial Fibrillation and Risk of Permanent Pacemaker Implantation in patients with underlying Sinus Node Dysfunction. J Am Heart Assoc 2022; 11:e023333. [PMID: 35535620 PMCID: PMC9496447 DOI: 10.1161/jaha.121.023333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Atrial fibrillation (AF) is associated with anatomical and electrical remodeling. Some patients with AF have concomitant sick sinus syndrome and may need permanent pacemaker (PPM) implantation. Association between catheter ablation of AF timing and need for PPM in sick sinus syndrome has not been assessed. Methods and Results We used pooled electronic health data to perform retrospective cross‐sectional analysis of 66, 595 patients with AF and sick sinus syndrome to assess the need of PPM implantation temporally, with AF performed divided into earlier within 5 years (group 1), 5 to 10 years (group 2), or beyond 10 years (group 3) of diagnosis. PPM implantation was lowest among those who had catheter ablation within 5 years of sick sinus syndrome diagnosis: group 1 versus group 2 (18.15% versus 27.21%) and group 1 versus group 3 (18.15% versus 27.22%). Interestingly, there was no difference in risk of PPM between group 2 and group 3 (27.21% versus 27.22%; odds ratio [OR], 1.00 [95% CI, 0.85–1.20]). Conclusions Even after controlling known risk factors that increase the need for pacemaker implantation, timing of AF ablation was the strongest predictor for need for PPM. Patients adjusted OR of PPM was lower if patients had catheter ablation within 5 years of diagnosis compared with later than 5 years (adjusted OR, 0.64 [95% CI, 0.59–0.70]).
Collapse
Affiliation(s)
| | - Nazli Okumus
- Heart and Vascular InstituteMetroHealth Medical Center/Case Western Reserve UniversityClevelandOH
| | - Ahmad Jabri
- Heart and Vascular InstituteMetroHealth Medical Center/Case Western Reserve UniversityClevelandOH
| | - Charles Thomas
- Health Education CampusCase Western Reserve UniversityClevelandOH
| | - Yasir Tarabichi
- Division of PulmonaryCritical Care, and Sleep MedicineMetroHealth Medical Center/Case Western Reserve UniversityClevelandOH
| | - Saima Karim
- Department of CardiologyNew York University Langone HealthNew YorkNY
| |
Collapse
|
40
|
Maltsev AV, Stern MD, Lakatta EG, Maltsev VA. Functional Heterogeneity of Cell Populations Increases Robustness of Pacemaker Function in a Numerical Model of the Sinoatrial Node Tissue. Front Physiol 2022; 13:845634. [PMID: 35574456 PMCID: PMC9091312 DOI: 10.3389/fphys.2022.845634] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
Abstract
Each heartbeat is initiated by specialized pacemaker cells operating within the sinoatrial node (SAN). While individual cells within SAN tissue exhibit substantial heterogeneity of their electrophysiological parameters and Ca cycling, the role of this heterogeneity for cardiac pacemaker function remains mainly unknown. Here we investigated the problem numerically in a 25 × 25 square grid of connected coupled-clock Maltsev-Lakatta cell models. The tissue models were populated by cells with different degree of heterogeneity of the two key model parameters, maximum L-type Ca current conductance (gCaL) and sarcoplasmic reticulum Ca pumping rate (Pup). Our simulations showed that in the areas of Pup-gCaL parametric space at the edge of the system stability, where action potential (AP) firing is absent or dysrhythmic in SAN tissue models populated with identical cells, rhythmic AP firing can be rescued by populating the tissues with heterogeneous cells. This robust SAN function is synergistic with respect to heterogeneity in gCaL and Pup and can be further strengthened by clustering of cells with similar properties. The effect of cell heterogeneity is not due to a simple summation of activity of intrinsically firing cells naturally present in heterogeneous SAN; rather AP firing cells locally and critically interact with non-firing/dormant cells. When firing cells prevail, they recruit many dormant cells to fire, strongly enhancing overall SAN function; and vice versa, prevailing dormant cells suppress AP firing in cells with intrinsic automaticity and halt SAN function. The transitions between firing and non-firing states of the system are sharp, resembling phase transitions in statistical physics. Furthermore, robust function of heterogeneous SAN tissue requires weak cell coupling, a known property of the central area of SAN where cardiac impulse emerges; stronger cell coupling reduces AP firing rate and ultimately halts SAN automaticity at the edge of stability.
Collapse
|
41
|
Left Atrial Appendage Depth and Tachycardia Bradycardia Syndrome as Important Predictors of Left Atrial Appendage Thrombus in Patients with Nonvalvular Atrial Fibrillation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4632823. [PMID: 35401785 PMCID: PMC8986422 DOI: 10.1155/2022/4632823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022]
Abstract
Background Atrial fibrillation (AF) is the most common heart rhythm disorder that has been shown to be associated with a significant increase in stroke and systemic embolism risk. The left atrial appendage (LAA) is a finger-like extension originating from the left atrium; the formation of thrombus in LAA is the main reason of stroke and systemic embolism in patients with nonvalvular atrial fibrillation (NVAF). This study is aimed at finding out the risk of left atrial appendage thrombus (LAAT) in patients with nonvalvular atrial fibrillation (NVAF). Method We retrospectively examined the clinic and left atrial computer tomography angiography (CTA) features of patients assessed in Zhengzhou No. 7 People's Hospital between January 2020 and January 2021 derivation. Student's t-test, chi-square test, receiver operating characteristics (ROC) curves, and logistic regression analysis were used to identify predictors of LAAT. Result Of 480 patients included in the analysis, LAAT was found in approximately 9.2% of all patients. Univariate demographic predictors of LAAT included left atrium top and bottom diameter (LTD), left atrial appendage depth (LAAD), CHA2DS2-VASc, tachycardia bradycardia syndrome (TBS), and nonparoxysmal atrial fibrillation (PAF). In a multiple logistic regression analysis, the independent predictors of thrombus were LAAD > 23.45 mm (odds ratio: 4.216, 95% CI: 1.869-9.510, P = 0.001), TBS (odds ratio: 4.076, 95% CI: 1.655-10.038, P = 0.002), and non-PAF (odds ratio: 2.896, 95% CI: 1.183-7.094, P = 0.02). Conclusion In NVAF patients with LAAT, evidence suggested that larger LAAD, non-PAF, and TBS present a high risk of LAAT. This is the first report demonstrating that the LAAD and TBS are associated with LAAT in patients with NVAF.
Collapse
|
42
|
Sun C, Li N, Wang QQ, Yan LY, Ba SK, Zhang SS, He QX, Chen XQ, Gong WL, Zhu Q, Liu KC. Whole-genome sequencing identifies a deletion mutation in the unknown-functional KCNG2 from familial sick sinus syndrome. Physiol Genomics 2022; 54:141-152. [DOI: 10.1152/physiolgenomics.00132.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sick sinus syndrome (SSS) is a term used for a variety of disorders defined by abnormal cardiac impulse formation and by abnormal propagation from the heart's sinoatrial node. In this study, we present a case from a Chinese family in which two closely related individuals had the symptoms and electrocardiographic evidence of SSS. We hypothesized that multiple individuals affected by the disease in the family was an indication of its genetic predisposition, and thus performed high-throughput sequencing for the participants from the family to detect potential disease-associated variants. One of the potential variants that was identified was a KCNG2 gene variant (NC_000018.9: g.77624068_77624079del). Further bioinformatic analysis showed that the observed variant may be a pathogenic mutation. The results of protein-protein docking and whole-cell patch clamp measurements implied that the deletion variant in KCNG2 could affect its binding the Kv2.1 protein, and finally affect the function of Kv channel, which is an important determinant in regulation of heartbeat. Therefore, we inferred that the variable KCNG2 gene may affect the function of Kv channel by changing the binding conformation of KCNG2 and Kv2.1 proteins and then adversely affect propagation from the sinoatrial node and cardiac impulse formation by changing the action potential repolarization of heart cells. In summary, our findings suggested that the dominant KCNG2 deletion variant in the examined Chinese family with SSS may be a potential disease-associated variant.
Collapse
Affiliation(s)
- Chen Sun
- Key Laboratory for Drug Screening Technology, Qilu University of Technology, Jinan, China
| | - Ning Li
- Key Laboratory for Drug Screening Technology, Qilu University of Technology, Jinan, China
| | - Qian-Qian Wang
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lu Yi Yan
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuai Kang Ba
- Key Laboratory for Drug Screening Technology, Qilu University of Technology, Jinan, China
| | - Shan-Shan Zhang
- Key Laboratory for Drug Screening Technology, Qilu University of Technology, Jinan, China
| | - Qiu Xia He
- Key Laboratory for Drug Screening Technology, Qilu University of Technology, Jinan, China
| | - Xi Qiang Chen
- Key Laboratory for Drug Screening Technology, Qilu University of Technology, Jinan, China
| | - Wei Li Gong
- Key Laboratory for Biosensors of Shandong Province, Qilu University of Technology, Jinan, China
| | - Qing Zhu
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ke Chun Liu
- Key Laboratory for Drug Screening Technology, Qilu University of Technology, Jinan, China
| |
Collapse
|
43
|
Chloe Li KY, Cook AC, Lovering RC. GOing Forward With the Cardiac Conduction System Using Gene Ontology. Front Genet 2022; 13:802393. [PMID: 35309148 PMCID: PMC8924464 DOI: 10.3389/fgene.2022.802393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/09/2022] [Indexed: 02/03/2023] Open
Abstract
The cardiac conduction system (CCS) comprises critical components responsible for the initiation, propagation, and coordination of the action potential. Aberrant CCS development can cause conduction abnormalities, including sick sinus syndrome, accessory pathways, and atrioventricular and bundle branch blocks. Gene Ontology (GO; http://geneontology.org/) is an invaluable global bioinformatics resource which provides structured, computable knowledge describing the functions of gene products. Many gene products are known to be involved in CCS development; however, this information is not comprehensively captured by GO. To address the needs of the heart development research community, this study aimed to describe the specific roles of proteins reported in the literature to be involved with CCS development and/or function. 14 proteins were prioritized for GO annotation which led to the curation of 15 peer-reviewed primary experimental articles using carefully selected GO terms. 152 descriptive GO annotations, including those describing sinoatrial node and atrioventricular node development were created and submitted to the GO Consortium database. A functional enrichment analysis of 35 key CCS development proteins confirmed that this work has improved the in-silico interpretation of this CCS dataset. This work may improve future investigations of the CCS with application of high-throughput methods such as genome-wide association studies analysis, proteomics, and transcriptomics.
Collapse
Affiliation(s)
- Kan Yan Chloe Li
- Department of Preclinical and Fundamental Science, Institute of Cardiovascular Science, Functional Gene Annotation, University College London, London, United Kingdom,Department of Children’s Cardiovascular Disease, Centre for Morphology and Structural Heart Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom,*Correspondence: Kan Yan Chloe Li,
| | - Andrew C Cook
- Department of Children’s Cardiovascular Disease, Centre for Morphology and Structural Heart Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Ruth C Lovering
- Department of Preclinical and Fundamental Science, Institute of Cardiovascular Science, Functional Gene Annotation, University College London, London, United Kingdom
| |
Collapse
|
44
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 2684] [Impact Index Per Article: 1342.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
45
|
Aminu AJ, Chen W, Yin Z, Kuniewicz M, Walocha J, Perde F, Molenaar P, Iaizzo PA, Dobrzynski H, Atkinson AJ. Novel micro-computed tomography contrast agents to visualise the human cardiac conduction system and surrounding structures in hearts from normal, aged, and obese individuals. TRANSLATIONAL RESEARCH IN ANATOMY 2022. [DOI: 10.1016/j.tria.2022.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
46
|
Role of ranolazine in heart failure: From cellular to clinic perspective. Eur J Pharmacol 2022; 919:174787. [PMID: 35114190 DOI: 10.1016/j.ejphar.2022.174787] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Ranolazine was approved by the US Food and Drug Administration as an antianginal drug in 2006, and has been used since in certain groups of patients with stable angina. The therapeutic action of ranolazine was initially attributed to inhibitory effects on fatty acids metabolism. As investigations went on, however, it developed that the main beneficial effects of ranolazine arise from its action on the late sodium current in the heart. Since late sodium currents were discovered to be involved in various heart pathologies such as ischemia, arrhythmias, systolic and diastolic dysfunctions, and all these conditions are associated with heart failure, ranolazine has in some way been tested either directly or indirectly on heart failure in numerous experimental and clinical studies. As the heart continuously remodels following any sort of severe injury, the inhibition by ranolazine of the underlying mechanisms of cardiac remodeling including ion disturbances, oxidative stress, inflammation, apoptosis, fibrosis, metabolic dysregulation, and neurohormonal impairment are discussed, along with unresolved issues. A projection of pathologies targeted by ranolazine from cellular level to clinical is provided in this review.
Collapse
|
47
|
Al Kury LT, Chacar S, Alefishat E, Khraibi AA, Nader M. Structural and Electrical Remodeling of the Sinoatrial Node in Diabetes: New Dimensions and Perspectives. Front Endocrinol (Lausanne) 2022; 13:946313. [PMID: 35872997 PMCID: PMC9302195 DOI: 10.3389/fendo.2022.946313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
The sinoatrial node (SAN) is composed of highly specialized cells that mandate the spontaneous beating of the heart through self-generation of an action potential (AP). Despite this automaticity, the SAN is under the modulation of the autonomic nervous system (ANS). In diabetes mellitus (DM), heart rate variability (HRV) manifests as a hallmark of diabetic cardiomyopathy. This is paralleled by an impaired regulation of the ANS, and by a pathological remodeling of the pacemaker structure and function. The direct effect of diabetes on the molecular signatures underscoring this pathology remains ill-defined. The recent focus on the electrical currents of the SAN in diabetes revealed a repressed firing rate of the AP and an elongation of its tracing, along with conduction abnormalities and contractile failure. These changes are blamed on the decreased expression of ion transporters and cell-cell communication ports at the SAN (i.e., HCN4, calcium and potassium channels, connexins 40, 45, and 46) which further promotes arrhythmias. Molecular analysis crystallized the RGS4 (regulator of potassium currents), mitochondrial thioredoxin-2 (reactive oxygen species; ROS scavenger), and the calcium-dependent calmodulin kinase II (CaMKII) as metabolic culprits of relaying the pathological remodeling of the SAN cells (SANCs) structure and function. A special attention is given to the oxidation of CaMKII and the generation of ROS that induce cell damage and apoptosis of diabetic SANCs. Consequently, the diabetic SAN contains a reduced number of cells with significant infiltration of fibrotic tissues that further delay the conduction of the AP between the SANCs. Failure of a genuine generation of AP and conduction of their derivative waves to the neighboring atrial myocardium may also occur as a result of the anti-diabetic regiment (both acute and/or chronic treatments). All together, these changes pose a challenge in the field of cardiology and call for further investigations to understand the etiology of the structural/functional remodeling of the SANCs in diabetes. Such an understanding may lead to more adequate therapies that can optimize glycemic control and improve health-related outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| | - Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| |
Collapse
|
48
|
Machida N, Hirakawa A. The Anatomical Substrate for Sick Sinus Syndrome in Dogs. J Comp Pathol 2021; 189:125-134. [PMID: 34886980 DOI: 10.1016/j.jcpa.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/20/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022]
Abstract
The hearts of 28 dogs, clinically diagnosed as having symptomatic sick sinus syndrome (SSS), were examined post mortem, with a particular focus on the sinus node (SN) region. The affected dogs were divided into two groups according to the findings of ambulatory electrocardiography: 16 dogs with severe sinoatrial (SA) block and/or sinus arrest (group A) and 12 dogs with long sinus or atrial pauses due to SA block and/or sinus arrest accompanied by atrial tachyarrhythmias (group B). The most significant histopathological changes found in both SSS groups were extensive destruction of the SN characterized by depletion of nodal cells with fatty or fibrofatty replacement and interruption of contiguity between the SN and the surrounding atrial myocardium. Furthermore, in group B, the SN lesions were combined with fibrosis of the atrial myocardium. The results of this investigation improve our understanding of the close relationship between the electrocardiogram findings and pathological alterations in each group. Because most human cases of SSS are due to degenerative fibrosis of the SN, the loss and disappearance of nodal cells with a corresponding increase in fatty or fibrofatty tissue, may be specific to canine cases of SSS.
Collapse
Affiliation(s)
- Noboru Machida
- Laboratory of Veterinary Clinical Oncology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.
| | | |
Collapse
|
49
|
Jansen HJ, Moghtadaei M, Rafferty SA, Rose RA. Loss of natriuretic peptide receptor C enhances sinoatrial node dysfunction in aging and frail mice. J Gerontol A Biol Sci Med Sci 2021; 77:902-908. [PMID: 34865023 DOI: 10.1093/gerona/glab357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
Heart rate is controlled by the sinoatrial node (SAN). SAN dysfunction is highly prevalent in aging; however, not all individuals age at the same rate. Rather, health status during aging is affected by frailty. Natriuretic peptides regulate SAN function in part by activating natriuretic peptide receptor C (NPR-C). The impacts of NPR-C on HR and SAN function in aging and as a function of frailty are unknown. Frailty was measured in aging wildtype (WT) and NPR-C knockout (NPR-C -/-) mice using a mouse clinical frailty index (FI). HR and SAN structure and function were investigated using intracardiac electrophysiology in anesthetized mice, high-resolution optical mapping in intact atrial preparations, histology and molecular biology. NPR-C -/- mice rapidly became frail leading to shortened lifespan. HR and SAN recovery time were increased in older vs. younger mice and this was exacerbated in NPR-C -/- mice; however, there was substantial variability among age groups and genotypes. HR and SAN recovery time were correlated with FI score and fell along a continuum regardless of age or genotype. Optical mapping demonstrates impairments in SAN function that were also strongly correlated with FI score. SAN fibrosis was increased in aged and NPR-C -/- mice and was graded by FI score. Loss of NPR-C results in accelerated aging due to a rapid decline in health status in association with impairments in HR and SAN function. Frailty assessment was effective and often better able to distinguish aging-dependent changes in SAN function in the setting of shorted lifespan due to loss of NPR-C.
Collapse
Affiliation(s)
- Hailey J Jansen
- Libin Cardiovascular Institute, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine , University of Calgary, Calgary, Alberta, Canada
| | - Motahareh Moghtadaei
- Libin Cardiovascular Institute, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine , University of Calgary, Calgary, Alberta, Canada
| | - Sara A Rafferty
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert A Rose
- Libin Cardiovascular Institute, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine , University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
50
|
Estes NAM, Saba S. Atrial resynchronization therapy: An emerging potential to advance physiologic pacing? Heart Rhythm 2021; 19:495-496. [PMID: 34839045 DOI: 10.1016/j.hrthm.2021.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/01/2022]
Affiliation(s)
- N A Mark Estes
- The Heart and Vascular Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Samir Saba
- The Heart and Vascular Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|