1
|
Rawnsley DR, Islam M, Zhao C, Kargar Gaz Kooh Y, Mendoza A, Navid H, Kumari M, Guan X, Murphy JT, Nigro J, Kovacs A, Mani K, Huebsch N, Ma X, Diwan A. Mitophagy Facilitates Cytosolic Proteostasis to Preserve Cardiac Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.624947. [PMID: 39651239 PMCID: PMC11623534 DOI: 10.1101/2024.11.24.624947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background Protein quality control (PQC) is critical for maintaining sarcomere structure and function in cardiac myocytes, and mutations in PQC pathway proteins, such as CRYAB (arginine to glycine at position 120, R120G) and BAG3 (proline to lysine at position 209, P209L) induce protein aggregate pathology with cardiomyopathy in humans. Novel observations in yeast and mammalian cells demonstrate mitochondrial uptake of cytosolic protein aggregates. We hypothesized that mitochondrial uptake of cytosolic protein aggregates and their removal by mitophagy, a lysosomal degradative pathway essential for myocardial homeostasis, facilitates cytosolic protein quality control in cardiac myocytes. Methods Mice with inducible cardiac myocyte specific ablation of TRAF2 (TRAF2icKO), which impairs mitophagy, were assessed for protein aggregates with biochemical fractionation and super-resolution imaging in comparison to floxed controls. Induced pluripotent stem cell (iPSC)-derived cardiac myocytes with R120G knock-in to the CRYAB locus were assessed for localization of the CRYAB protein. Transgenic mice expressing R120G CRYAB protein (R120G-TG) were subjected to both TRAF2 gain-of-function (with AAV9-cardiac Troponin T promoter-driven TRAF2 transduction) and TRAF2 loss-of-function (with tamoxifen-inducible ablation of one Traf2 allele) in cardiac myocytes to determine the effect of mitophagy modulation on cardiac structure, function, and protein aggregate pathology. Results Cardiomyocyte-specific ablation of TRAF2 results accumulation of mitochondrial and cytosolic protein aggregates and DESMIN mis-localization to protein aggregates. Isolated mitochondria take up cardiomyopathy-associated aggregate-prone cytosolic chaperone proteins, namely arginine to glycine (R120G) CRYAB mutant and proline to lysine (P209L) BAG3 mutant. R120G-CRYAB mutant protein increasingly localizes to mitochondria in human and mouse cardiomyocytes. R120G-TG mice demonstrate upregulation of TRAF2 in the mitochondrial fraction with increased mitophagy as compared with wild type. Adult-onset inducible haplo-insufficiency of TRAF2 resulted in accelerated mortality, impaired left ventricular systolic function and increased protein aggregates in R120G-TG mice as compared with controls. Conversely, AAV9-mediated TRAF2 transduction in R120G-TG mice reduced mortality and attenuated left ventricular systolic dysfunction, with reduced protein aggregates and restoration of normal localization of DESMIN, a cytosolic scaffolding protein chaperoned by CRYAB, as compared with control AAV9-GFP group. Conclusions TRAF2-mediated mitophagy in cardiac myocytes facilitates removal of cytosolic protein aggregates and can be stimulated to ameliorate proteotoxic cardiomyopathy.
Collapse
|
2
|
Zhao L, Li Z. LncRNA DANCR suppresses acute myocardial infarction in mice via mediating p-RXRA/TRAF2/NIK/IKK/NF-κB signaling pathway. Aging (Albany NY) 2024; 16:13356-13370. [PMID: 39546553 DOI: 10.18632/aging.206150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES This study aimed to investigate the role of LncRNA differentiation antagonizing non-protein coding RNA (DANCR) in acute myocardial infarction (AMI). METHODS A mouse model of AMI was established, and the cardiac contractile function was detected. Next, cardiomyocytes treated with oxygen-glucose deprivation (OGD) were used for gain- and loss-function experiments in vitro. RIP analysis was used to verify the binding of DANCR and Retinoid X receptor alpha (RXRA), and Co-IP assay was used to measure the binding of phosphorylated RXRA to TNF receptor associated factor 2 (TRAF2). RESULTS The expression of DANCR in myocardial tissues of AMI mice were significantly downregulated. Overexpression of DANCR decreased myocardial infarct size and enhanced cardiac contractile function in AMI mice. Moreover, overexpression of DANCR promoted proliferation and inhibited apoptosis in OGD-induced cardiomyocytes. Mechanism studies demonstrated that DANCR interacted with RXRA and promoted glycogen synthase kinase 3beta (GSK3β)-mediated phosphorylation of RXRA, and phosphorylated RXRA interacted with TRAF2 protein to downregulate TRAF2 protein level. Bexarotene (Bex), an activator of RXRA, inhibited TRAF2 protein expression, while RXRA overexpression had no effect on TRAF2 protein expression. Bex treatment or silencing TRAF2 promoted proliferation and inhibited apoptosis in cardiomyocytes. In addition, silencing DANCR inhibited cardiomyocyte proliferation and induced apoptosis by activating the NIK/IKK/NF-κB pathway, while B022, an inhibitor of NIK, counteracted the effects of DANCR silencing on cardiomyocytes. CONCLUSIONS Studies demonstrated that DANCR suppressed AMI in mice by mediating p-RXRA/TRAF2/NIK/IKK/NF-κB pathway.
Collapse
Affiliation(s)
- Li Zhao
- Department of Cardiovascular, Affiliated Hospital of Yanan University, Yanan, China
| | - Zhi Li
- Department of Cardiovascular, Affiliated Hospital of Yanan University, Yanan, China
| |
Collapse
|
3
|
Gu Y, Feng Z, Xu X, Jin L, Jiang G. LINC01929 Is a Prognostic Biomarker for Multiple Tumours and Promotes Cell Proliferation in Breast Cancer Through the TNF/STAT3 Axis. J Cell Mol Med 2024; 28:e70227. [PMID: 39586790 PMCID: PMC11588430 DOI: 10.1111/jcmm.70227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
The aim of this study was to investigate whether long intergenic non-coding RNA 1929 (LINC01929), a novel long non-coding RNA, could serve as a prognostic biomarker for various tumours and explore its function. The expression and prognosis of LINC01929 across 33 different tumour types in patients in the Cancer Genome Atlas (TCGA) database were analysed. Also, the correlation between LINC01929 expression, tumour mutational burden (TMB), microsatellite instability (MSI), immune checkpoint status and immune cell infiltration was examined. Moreover, the function of LINC01929 in the breast cancer cell lines was explored via CCK-8, colony formation and cell cycle assays. In addition, the downstream mechanisms of LINC01929 were analysed via transcriptome sequencing, RT-qPCR, and western blotting. Our analysis revealed that LINC01929 was weakly expressed in 3 tumour types and highly expressed in 14 tumour types, and low expression of LINC01929 was correlated with better clinical outcomes in 15 tumour types. Furthermore, LINC01929 expression was correlated significantly with the TMB, MSI, immune checkpoint and immune cell infiltration across multiple tumour types. The knockdown of LINC01929 inhibited cell cycle progression, cell proliferation, and tumorigenesis and downregulated the TNF pathway and STAT3 expression. The treatment with exogenous TNF-α partially reversed the cell cycle progression and proliferation inhibition caused by LINC01929 knockdown, and these effects were accompanied by changes in STAT3 expression. LINC01929 may serve as an effective biomarker affecting the TMB, MSI, immune cell infiltration and immune checkpoint status. Mechanistically, LINC01929 affects cell cycle progression and cell proliferation through the TNF/STAT3 axis. These findings offer valuable insights into the potential applications of LINC01929 in tumour therapy, which may yield novel targets and strategies for the diagnosis and treatment of patients.
Collapse
Affiliation(s)
- Yanlin Gu
- Department of Thyroid and Breast SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhengyang Feng
- Department of OncologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaoyan Xu
- Department of Operating RoomTraditional Chinese Medicine Hospital of KunshanKunshanChina
| | - Liyan Jin
- Department of Thyroid and Breast SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Guoqin Jiang
- Department of Thyroid and Breast SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
4
|
Wu S, Ding D, Wang D. Regulated Cell Death Pathways in Pathological Cardiac Hypertrophy. Rev Cardiovasc Med 2024; 25:366. [PMID: 39484135 PMCID: PMC11522757 DOI: 10.31083/j.rcm2510366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 11/03/2024] Open
Abstract
Cardiac hypertrophy is characterized by an increased volume of individual cardiomyocytes rather than an increase in their number. Myocardial hypertrophy due to pathological stimuli encountered by the heart, which reduces pressure on the ventricular walls to maintain cardiac function, is known as pathological hypertrophy. This eventually progresses to heart failure. Certain varieties of regulated cell death (RCD) pathways, including apoptosis, pyroptosis, ferroptosis, necroptosis, and autophagy, are crucial in the development of pathological cardiac hypertrophy. This review summarizes the molecular mechanisms and signaling pathways underlying these RCD pathways, focusing on their mechanism of action findings for pathological cardiac hypertrophy. It intends to provide new ideas for developing therapeutic approaches targeted at the cellular level to prevent or reverse pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Shengnan Wu
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| | - Ding Ding
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| | - Deguo Wang
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| |
Collapse
|
5
|
Gao X, Ma C, Liang S, Chen M, He Y, Lei W. PANoptosis: Novel insight into regulated cell death and its potential role in cardiovascular diseases (Review). Int J Mol Med 2024; 54:74. [PMID: 38963054 PMCID: PMC11254103 DOI: 10.3892/ijmm.2024.5398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/08/2024] [Indexed: 07/05/2024] Open
Abstract
PANoptosis, a complex form of proinflammatory programmed cell death, including apoptosis, pyroptosis and necroptosis, has been an emerging concept in recent years that has been widely reported in cancer, infectious diseases and neurological disorders. Cardiovascular diseases (CVDs) are an important global health problem, posing a serious threat to individuals' lives. An increasing body of research shows that inflammation has a pivotal role in CVDs, which provides an important theoretical basis for PANoptosis to promote the progression of CVDs. To date, only sporadic studies on PANoptosis in CVDs have been reported and its role in the field of CVDs has not been fully explored. Elucidating the various modes of cardiomyocyte death, the specific molecular mechanisms and the links among the various modes of death under various stressful stimuli is of notable clinical significance for a deeper understanding of the pathophysiology of CVDs. The present review summarizes the molecular mechanisms of apoptosis, pyroptosis, necroptosis and PANoptosis and their prospects in the field of CVDs.
Collapse
Affiliation(s)
- Xinyu Gao
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Cuixue Ma
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Shan Liang
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Meihong Chen
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yuan He
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
6
|
Xiang Q, Geng ZX, Yi X, Wei X, Zhu XH, Jiang DS. PANoptosis: a novel target for cardiovascular diseases. Trends Pharmacol Sci 2024; 45:739-756. [PMID: 39003157 DOI: 10.1016/j.tips.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024]
Abstract
PANoptosis is a unique innate immune inflammatory lytic cell death pathway initiated by an innate immune sensor and driven by caspases and RIPKs. As a distinct pathway, the execution of PANoptosis cannot be hindered by targeting other cell death pathways, such as pyroptosis, apoptosis, or necroptosis. Instead, targeting key PANoptosome components can serve as a strategy to prevent this form of cell death. Given the physiological relevance in several diseases, PANoptosis is a pivotal therapeutic target. Notably, previous research has primarily focused on the role of PANoptosis in cancer and infectious and inflammatory diseases. By contrast, its role in cardiovascular diseases has not been comprehensively discussed. Here, we review the available evidence on PANoptosis in cardiovascular diseases, including cardiomyopathy, atherosclerosis, myocardial infarction, myocarditis, and aortic aneurysm and dissection, and explore a variety of agents that target PANoptosis, with the overarching goal of providing a novel complementary approach to combatting cardiovascular diseases.
Collapse
Affiliation(s)
- Qi Xiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen-Xi Geng
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xue-Hai Zhu
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Wang W, Li E, Zou J, Qu C, Ayala J, Wen Y, Islam MS, Weintraub NL, Fulton DJ, Liang Q, Zhou J, Liu J, Li J, Sun Y, Su H. Ubiquitin Ligase RBX2/SAG Regulates Mitochondrial Ubiquitination and Mitophagy. Circ Res 2024; 135:e39-e56. [PMID: 38873758 PMCID: PMC11264309 DOI: 10.1161/circresaha.124.324285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. Apart from Parkin, little is known about additional Ub (ubiquitin) ligases that mediate mitochondrial ubiquitination and turnover, particularly in highly metabolically active organs such as the heart. METHODS In this study, we have combined in silico analysis and biochemical assay to identify CRL (cullin-RING ligase) 5 as a mitochondrial Ub ligase. We generated cardiomyocytes and mice lacking RBX2 (RING-box protein 2; also known as SAG [sensitive to apoptosis gene]), a catalytic subunit of CRL5, to understand the effects of RBX2 depletion on mitochondrial ubiquitination, mitophagy, and cardiac function. We also performed proteomics analysis and RNA-sequencing analysis to define the impact of loss of RBX2 on the proteome and transcriptome. RESULTS RBX2 and CUL (cullin) 5, 2 core components of CRL5, localize to mitochondria. Depletion of RBX2 inhibited mitochondrial ubiquitination and turnover, impaired mitochondrial membrane potential and respiration, increased cardiomyocyte cell death, and has a global impact on the mitochondrial proteome. In vivo, deletion of the Rbx2 gene in adult mouse hearts suppressed mitophagic activity, provoked accumulation of damaged mitochondria in the myocardium, and disrupted myocardial metabolism, leading to the rapid development of dilated cardiomyopathy and heart failure. Similarly, ablation of RBX2 in the developing heart resulted in dilated cardiomyopathy and heart failure. The action of RBX2 in mitochondria is not dependent on Parkin, and Parkin gene deletion had no impact on the onset and progression of cardiomyopathy in RBX2-deficient hearts. Furthermore, RBX2 controls the stability of PINK1 (PTEN-induced kinase 1) in mitochondria. CONCLUSIONS These findings identify RBX2-CRL5 as a mitochondrial Ub ligase that regulates mitophagy and cardiac homeostasis in a Parkin-independent, PINK1-dependent manner.
Collapse
Affiliation(s)
- Wenjuan Wang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510510, China
| | - Ermin Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Jianqiu Zou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Chen Qu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Juan Ayala
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Yuan Wen
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Md Sadikul Islam
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Neal L. Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - David J. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Qiangrong Liang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York 11568, United States
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510510, China
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| |
Collapse
|
8
|
Wang W, Li E, Zou J, Qu C, Ayala J, Wen Y, Islam MS, Weintraub NL, Fulton DJ, Liang Q, Zhou J, Liu J, Li J, Sun Y, Su H. The Ubiquitin Ligase RBX2/SAG Regulates Mitochondrial Ubiquitination and Mitophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581168. [PMID: 38464205 PMCID: PMC10925227 DOI: 10.1101/2024.02.24.581168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. While the role of ubiquitin (Ub) ligase PARKIN in mitophagy has been extensively studied, increasing evidence suggests the existence of PARKIN-independent mitophagy in highly metabolically active organs such as the heart. Here, we identify a crucial role for Cullin-RING Ub ligase 5 (CRL5) in basal mitochondrial turnover in cardiomyocytes. CRL5 is a multi-subunit Ub ligase comprised by the catalytic RING box protein RBX2 (also known as SAG), scaffold protein Cullin 5 (CUL5), and a substrate-recognizing receptor. Analysis of the mitochondrial outer membrane-interacting proteome uncovered a robust association of CRLs with mitochondria. Subcellular fractionation, immunostaining, and immunogold electron microscopy established that RBX2 and Cul5, two core components of CRL5, localizes to mitochondria. Depletion of RBX2 inhibited mitochondrial ubiquitination and turnover, impaired mitochondrial membrane potential and respiration, and increased cell death in cardiomyocytes. In vivo , deletion of the Rbx2 gene in adult mouse hearts suppressed mitophagic activity, provoked accumulation of damaged mitochondria in the myocardium, and disrupted myocardial metabolism, leading to rapid development of dilated cardiomyopathy and heart failure. Similarly, ablation of RBX2 in the developing heart resulted in dilated cardiomyopathy and heart failure. Notably, the action of RBX2 in mitochondria is not dependent on PARKIN, and PARKIN gene deletion had no impact on the onset and progression of cardiomyopathy in RBX2-deficient hearts. Furthermore, RBX2 controls the stability of PINK1 in mitochondria. Proteomics and biochemical analyses further revealed a global impact of RBX2 deficiency on the mitochondrial proteome and identified several mitochondrial proteins as its putative substrates. These findings identify RBX2-CRL5 as a mitochondrial Ub ligase that controls mitophagy under physiological conditions in a PARKIN-independent, PINK1-dependent manner, thereby regulating cardiac homeostasis.
Collapse
|
9
|
Zhang J, Sandroni PB, Huang W, Gao X, Oswalt L, Schroder MA, Lee S, Shih YYI, Huang HYS, Swigart PM, Myagmar BE, Simpson PC, Rossi JS, Schisler JC, Jensen BC. Cardiomyocyte Alpha-1A Adrenergic Receptors Mitigate Postinfarct Remodeling and Mortality by Constraining Necroptosis. JACC Basic Transl Sci 2024; 9:78-96. [PMID: 38362342 PMCID: PMC10864988 DOI: 10.1016/j.jacbts.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 02/17/2024]
Abstract
Clinical studies have shown that α1-adrenergic receptor antagonists (α-blockers) are associated with increased heart failure risk. The mechanism underlying that hazard and whether it arises from direct inhibition of cardiomyocyte α1-ARs or from systemic effects remain unclear. To address these issues, we created a mouse with cardiomyocyte-specific deletion of the α1A-AR subtype and found that it experienced 70% mortality within 7 days of myocardial infarction driven, in part, by excessive activation of necroptosis. We also found that patients taking α-blockers at our center were at increased risk of death after myocardial infarction, providing clinical correlation for our translational animal models.
Collapse
Affiliation(s)
- Jiandong Zhang
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Peyton B. Sandroni
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Wei Huang
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Xiaohua Gao
- Department of Epidemiology, University of North Carolina Gillings School of Public Health, Chapel Hill, North Carolina, USA
| | - Leah Oswalt
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Melissa A. Schroder
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - SungHo Lee
- Center for Animal MRI, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yen-Yu I. Shih
- Center for Animal MRI, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hsiao-Ying S. Huang
- Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Philip M. Swigart
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Bat E. Myagmar
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Paul C. Simpson
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Joseph S. Rossi
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jonathan C. Schisler
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brian C. Jensen
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Liu D, Li Y, Zhao Q. Effects of Inflammatory Cell Death Caused by Catheter Ablation on Atrial Fibrillation. J Inflamm Res 2023; 16:3491-3508. [PMID: 37608882 PMCID: PMC10441646 DOI: 10.2147/jir.s422002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Atrial fibrillation (AF) poses a serious healthcare burden on society due to its high morbidity and the resulting serious complications such as thrombosis and heart failure. The principle of catheter ablation is to achieve electrical isolation by linear destruction of cardiac tissue, which makes AF a curable disease. Currently, catheter ablation does not have a high long-term success rate. The current academic consensus is that inflammation and fibrosis are central mechanisms in the progression of AF. However, artificially caused inflammatory cell death by catheter ablation may have a significant impact on structural and electrical remodeling, which may affect the long-term prognosis. This review first focused on the inflammatory response induced by apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis and their interaction with arrhythmia. Then, we compared the differences in cell death induced by radiofrequency ablation, cryoballoon ablation and pulsed-field ablation. Finally, we discussed the structural and electrical remodeling caused by inflammation and the association between inflammation and the recurrence of AF after catheter ablation. Collectively, pulsed-field ablation will be a revolutionary innovation with faster, safer, better tissue selectivity and less inflammatory response induced by apoptosis-dominated cell death.
Collapse
Affiliation(s)
- Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Yajia Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| |
Collapse
|
11
|
Zeng JJ, Shi HQ, Ren FF, Zhao XS, Chen QY, Wang DJ, Wu LP, Chu MP, Lai TF, Li L. Notoginsenoside R1 protects against myocardial ischemia/reperfusion injury in mice via suppressing TAK1-JNK/p38 signaling. Acta Pharmacol Sin 2023; 44:1366-1379. [PMID: 36721009 PMCID: PMC10310839 DOI: 10.1038/s41401-023-01057-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/14/2023] [Indexed: 02/01/2023] Open
Abstract
Previous studies show that notoginsenoside R1 (NG-R1), a novel saponin isolated from Panax notoginseng, protects kidney, intestine, lung, brain and heart from ischemia-reperfusion injury. In this study we investigated the cardioprotective mechanisms of NG-R1 in myocardial ischemia/reperfusion (MI/R) injury in vivo and in vitro. MI/R injury was induced in mice by occluding the left anterior descending coronary artery for 30 min followed by 4 h reperfusion. The mice were treated with NG-R1 (25 mg/kg, i.p.) every 2 h for 3 times starting 30 min prior to ischemic surgery. We showed that NG-R1 administration significantly decreased the myocardial infarction area, alleviated myocardial cell damage and improved cardiac function in MI/R mice. In murine neonatal cardiomyocytes (CMs) subjected to hypoxia/reoxygenation (H/R) in vitro, pretreatment with NG-R1 (25 μM) significantly inhibited apoptosis. We revealed that NG-R1 suppressed the phosphorylation of transforming growth factor β-activated protein kinase 1 (TAK1), JNK and p38 in vivo and in vitro. Pretreatment with JNK agonist anisomycin or p38 agonist P79350 partially abolished the protective effects of NG-R1 in vivo and in vitro. Knockdown of TAK1 greatly ameliorated H/R-induced apoptosis of CMs, and NG-R1 pretreatment did not provide further protection in TAK1-silenced CMs under H/R injury. Overexpression of TAK1 abolished the anti-apoptotic effect of NG-R1 and diminished the inhibition of NG-R1 on JNK/p38 signaling in MI/R mice as well as in H/R-treated CMs. Collectively, NG-R1 alleviates MI/R injury by suppressing the activity of TAK1, subsequently inhibiting JNK/p38 signaling and attenuating cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Jing-Jing Zeng
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Department of Cardiology, Ningbo No. 2 Hospital, Ningbo, 315000, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Han-Qing Shi
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Fang-Fang Ren
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiao-Shan Zhao
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiao-Ying Chen
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Dong-Juan Wang
- Department of Cardiology, Ningbo No. 2 Hospital, Ningbo, 315000, China
| | - Lian-Pin Wu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Mao-Ping Chu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Teng-Fang Lai
- Department of Cardiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Lei Li
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
12
|
Marshall AG, Neikirk K, Vue Z, Beasley HK, Garza-Lopez E, Vang L, Barongan T, Evans Z, Crabtree A, Spencer E, Anudokem J, Parker R, Davis J, Stephens D, Damo S, Pham TT, Gomez JA, Exil V, Dai DF, Murray SA, Entman ML, Taffet GE, Hinton AO, Reddy AK. Cardiovascular hemodynamics in mice with tumor necrosis factor receptor-associated factor 2 mediated cytoprotection in the heart. Front Cardiovasc Med 2023; 10:1064640. [PMID: 37229235 PMCID: PMC10203617 DOI: 10.3389/fcvm.2023.1064640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/03/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Many studies in mice have demonstrated that cardiac-specific innate immune signaling pathways can be reprogrammed to modulate inflammation in response to myocardial injury and improve outcomes. While the echocardiography standard parameters of left ventricular (LV) ejection fraction, fractional shortening, end-diastolic diameter, and others are used to assess cardiac function, their dependency on loading conditions somewhat limits their utility in completely reflecting the contractile function and global cardiovascular efficiency of the heart. A true measure of global cardiovascular efficiency should include the interaction between the ventricle and the aorta (ventricular-vascular coupling, VVC) as well as measures of aortic impedance and pulse wave velocity. Methods We measured cardiac Doppler velocities, blood pressures, along with VVC, aortic impedance, and pulse wave velocity to evaluate global cardiac function in a mouse model of cardiac-restricted low levels of TRAF2 overexpression that conferred cytoprotection in the heart. Results While previous studies reported that response to myocardial infarction and reperfusion was improved in the TRAF2 overexpressed mice, we found that TRAF2 mice had significantly lower cardiac systolic velocities and accelerations, diastolic atrial velocity, aortic pressures, rate-pressure product, LV contractility and relaxation, and stroke work when compared to littermate control mice. Also, we found significantly longer aortic ejection time, isovolumic contraction and relaxation times, and significantly higher mitral early/atrial ratio, myocardial performance index, and ventricular vascular coupling in the TRAF2 overexpression mice compared to their littermate controls. We found no significant differences in the aortic impedance and pulse wave velocity. Discussion While the reported tolerance to ischemic insults in TRAF2 overexpression mice may suggest enhanced cardiac reserve, our results indicate diminished cardiac function in these mice.
Collapse
Affiliation(s)
- Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Taylor Barongan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Zoe Evans
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Elsie Spencer
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Josephs Anudokem
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, United States
| | - Remi Parker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, United States
| | - Jamaine Davis
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, United States
| | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States
| | - Steven Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States
| | - Thuy T. Pham
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Jose A. Gomez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Vernat Exil
- Department of Pediatrics, Div. of Cardiology, St. Louis University School of Medicine, St. Louis, MO, United States
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Dao-fu Dai
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Sandra A. Murray
- Department of Cell Biology, College of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Mark L. Entman
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - George E. Taffet
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Antentor O. Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Anilkumar K. Reddy
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| |
Collapse
|
13
|
Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, Karin M, Kashkar H, Kaufmann T, Kelly GL, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Kluck R, Krysko DV, Kulms D, Kumar S, Lavandero S, Lavrik IN, Lemasters JJ, Liccardi G, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Luedde T, MacFarlane M, Madeo F, Malorni W, Manic G, Mantovani R, Marchi S, Marine JC, Martin SJ, Martinou JC, Mastroberardino PG, Medema JP, Mehlen P, Meier P, Melino G, Melino S, Miao EA, Moll UM, Muñoz-Pinedo C, Murphy DJ, Niklison-Chirou MV, Novelli F, Núñez G, Oberst A, Ofengeim D, Opferman JT, Oren M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pentimalli F, Pereira DM, Pervaiz S, Peter ME, Pinton P, Porta G, Prehn JHM, Puthalakath H, Rabinovich GA, Rajalingam K, Ravichandran KS, Rehm M, Ricci JE, Rizzuto R, Robinson N, Rodrigues CMP, Rotblat B, Rothlin CV, Rubinsztein DC, Rudel T, Rufini A, Ryan KM, Sarosiek KA, Sawa A, Sayan E, Schroder K, Scorrano L, Sesti F, Shao F, Shi Y, Sica GS, Silke J, Simon HU, Sistigu A, Stephanou A, Stockwell BR, Strapazzon F, Strasser A, Sun L, Sun E, Sun Q, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Troy CM, Turk B, Urbano N, Vandenabeele P, Vanden Berghe T, Vander Heiden MG, Vanderluit JL, Verkhratsky A, Villunger A, von Karstedt S, Voss AK, Vousden KH, Vucic D, Vuri D, Wagner EF, Walczak H, Wallach D, Wang R, Wang Y, Weber A, Wood W, Yamazaki T, Yang HT, Zakeri Z, Zawacka-Pankau JE, Zhang L, Zhang H, Zhivotovsky B, Zhou W, Piacentini M, Kroemer G, Galluzzi L. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Cell Death Differ 2023; 30:1097-1154. [PMID: 37100955 PMCID: PMC10130819 DOI: 10.1038/s41418-023-01153-w] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.
Collapse
Affiliation(s)
- Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy.
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institut für Immunologie, Kiel University, Kiel, Germany
| | - Massimiliano Agostini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- BIOGEM, Avellino, Italy
| | - Ivano Amelio
- Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - David W Andrews
- Sunnybrook Research Institute, Toronto, ON, Canada
- Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Rami I Aqeilan
- Hebrew University of Jerusalem, Lautenberg Center for Immunology & Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniele Bano
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nickolai A Barlev
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Mathieu J M Bertrand
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marco E Bianchi
- Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy and Ospedale San Raffaele IRCSS, Milan, Italy
| | | | - J Magarian Blander
- Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Carl D Bortner
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Pierluigi Bove
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patricia Boya
- Centro de Investigaciones Biologicas Margarita Salas, CSIC, Madrid, Spain
| | - Catherine Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques, Villejuif, France
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Thomas Brunner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- UCL Consortium for Mitochondrial Research, London, UK
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Francesco Cecconi
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francis K-M Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Guo-Qiang Chen
- State Key Lab of Oncogene and its related gene, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Youhai H Chen
- Shenzhen Institute of Advanced Technology (SIAT), Shenzhen, Guangdong, China
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Aaron Ciechanover
- The Technion-Integrated Cancer Center, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Marcus Conrad
- Helmholtz Munich, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Mads Daugaard
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ted M Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruggero De Maria
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bart De Strooper
- VIB Centre for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J Deberardinis
- Howard Hughes Medical Institute and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Division of Hematology/Oncology, Brown University and the Lifespan Cancer Institute, Providence, RI, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kurt Engeland
- Molecular Oncology, University of Leipzig, Leipzig, Germany
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Carlo Ganini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
| | - Ana J Garcia-Saez
- CECAD, Institute of Genetics, University of Cologne, Cologne, Germany
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM, UMR, 1231, Dijon, France
- Faculty of Medicine, Université de Bourgogne Franche-Comté, Dijon, France
- Anti-cancer Center Georges-François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler school of Medicine, Tel Aviv university, Tel Aviv, Israel
| | - Sourav Ghosh
- Department of Neurology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hinrich Gronemeyer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Departments of Molecular Microbiology and Immunology, Pharmacology, Oncology and Neurology, Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Ygal Haupt
- VITTAIL Ltd, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sudan He
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, The University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- National Cancer Center Research Institute, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ana Janic
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Philipp J Jost
- Clinical Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Michael Karin
- Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Hamid Kashkar
- CECAD Research Center, Institute for Molecular Immunology, University of Cologne, Cologne, Germany
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Ruth Kluck
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dagmar Kulms
- Department of Dermatology, Experimental Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden, TU-Dresden, Dresden, Germany
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sergio Lavandero
- Universidad de Chile, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - John J Lemasters
- Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Gianmaria Liccardi
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Richard A Lockshin
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
- St. John's University, Jamaica, NY, USA
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Marion MacFarlane
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gwenola Manic
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Jean-Christophe Marine
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Rotterdam, the Netherlands
- IFOM-ETS The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer, and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Ute M Moll
- Department of Pathology and Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Daniel J Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Flavia Novelli
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Dimitry Ofengeim
- Rare and Neuroscience Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine and Howard Hughes Medical Institute, New York, NY, USA
| | - Theocharis Panaretakis
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, YLL School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
- National University Cancer Institute, NUHS, Singapore, Singapore
- ISEP, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Marcus E Peter
- Department of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Porta
- Center of Genomic Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina. Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Cell Clearance, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Barak Rotblat
- Department of Life sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- The NIBN, Beer Sheva, Israel
| | - Carla V Rothlin
- Department of Immunobiology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Thomas Rudel
- Microbiology Biocentre, University of Würzburg, Würzburg, Germany
| | - Alessandro Rufini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- University of Leicester, Leicester Cancer Research Centre, Leicester, UK
| | - Kevin M Ryan
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA
- Department of Systems Biology, Lab of Systems Pharmacology, Harvard Program in Therapeutics Science, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
| | - Akira Sawa
- Johns Hopkins Schizophrenia Center, Johns Hopkins University, Baltimore, MD, USA
| | - Emre Sayan
- Faculty of Medicine, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, NJ, USA
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, PR China
| | - Yufang Shi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Giuseppe S Sica
- Department of Surgical Science, University Tor Vergata, Rome, Italy
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Flavie Strapazzon
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Univ Lyon, Univ Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène CNRS, INSERM, Lyon, France
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Liming Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - Stephen W G Tait
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Daolin Tang
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Carol M Troy
- Departments of Pathology & Cell Biology and Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Nicoletta Urbano
- Department of Oncohaematology, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Methusalem Program, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
- School of Forensic Medicine, China Medical University, Shenyang, China
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences (OeAW), Vienna, Austria
- The Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Daniela Vuri
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Henning Walczak
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Achim Weber
- University of Zurich and University Hospital Zurich, Department of Pathology and Molecular Pathology, Zurich, Switzerland
- University of Zurich, Institute of Molecular Cancer Research, Zurich, Switzerland
| | - Will Wood
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Huang-Tian Yang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Queens College and Graduate Center, City University of New York, Flushing, NY, USA
| | - Joanna E Zawacka-Pankau
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Biochemistry, Laboratory of Biophysics and p53 protein biology, Medical University of Warsaw, Warsaw, Poland
| | - Lin Zhang
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Wenzhao Zhou
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Ye Z, Jiang Y, Wu J. A novel necroptosis-associated miRNA signature predicting prognosis of endometrial cancer and correlated with immune infiltration. Taiwan J Obstet Gynecol 2023; 62:291-298. [PMID: 36965898 DOI: 10.1016/j.tjog.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 03/27/2023] Open
Abstract
OBJECTIVE Necroptosis is a form of programmed cell death identified irrelevant to caspases, which plays an important role in the tumorigenesis and development of cancer. MicroRNAs (miRNAs) are important regulators of both necroptosis and cancer. MATERIALS AND METHODS Expression of sixteen necroptosis-associated miRNAs were analyzed in 546 endometrial cancer (EC) tissues and 33 paracancerous samples from the Cancer Genome Atlas (TCGA). Cox regression analysis was used to evaluate the correlations between miRNAs and overall survival. MiRNAs risk score (Mrs) and nomogram were established to assess the potential value of necroptosis-related miRNAs on prognosis. Expression of miRNA-148a-3p in endometrial cancer cells and endometrial epithelial cells was detected by quantitative real-time PCR (qRT-PCR). The targets genes of miR-148a-3p were predicted using miRDB, miRTarBase and TargetScan and the prognostic-related genes were screened. Immune infiltration analysis was conducted to explore the potential mechanism of these target genes. RESULTS We identified fourteen differentially expressed miRNAs and selected seven miRNAs (miR-15a-5p, miR148a-3p, miR-7-5p, miR-141-3p, miR-200a-5p, miR-223-3p, miR-16-5p) for prognostic-model construction. The area under the curve (AUC) of receiver operating characteristic (ROC) curve for 1-, 2- and 5-year survival were 0.678, 0.652 and 0.656 respectively. Multivariate analysis revealed that the Mrs was an independent prognostic factor considering other risk factors (HR = 1.928, 95% CI = 1.072-3.467, P = 0.028). Among these miRNAs, miRNA-148a-3p was up-regulated in cancer tissues and cells, and Kaplan-Meier analysis showed its significance in overall survival (OS). The target genes, DNAJB4 and PRNP, were associated with poor prognosis and correlated with tumor immune infiltration. CONCLUSIONS Our study constructed a novel necroptosis-associated miRNAs model for prognosis prediction, and DNAJB4 and PRNP may be therapeutic targets for EC.
Collapse
Affiliation(s)
- Zhongxue Ye
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Yafen Jiang
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Junlong Wu
- Department of Orthopedics, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
15
|
Liu Y, Song C, Tian Z, Shen W. Identification of High-Risk Patients for Postoperative Myocardial Injury After CME Using Machine Learning: A 10-Year Multicenter Retrospective Study. Int J Gen Med 2023; 16:1251-1264. [PMID: 37057054 PMCID: PMC10089277 DOI: 10.2147/ijgm.s409363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Purpose The occurrence of myocardial injury, a grave complication post complete mesocolic excision (CME), profoundly impacts the immediate and long-term prognosis of patients. The aim of this inquiry was to conceive a machine learning model that can recognize preoperative, intraoperative and postoperative high-risk factors and predict the onset of myocardial injury following CME. Patients and Methods This study included 1198 colon cancer patients, 133 of whom experienced myocardial injury after surgery. Thirty-six distinct variables were gathered, encompassing patient demographics, medical history, preoperative examination characteristics, surgery type, and intraoperative details. Four machine learning algorithms, namely, extreme gradient boosting (XGBoost), random forest (RF), multilayer perceptron (MLP), and k-nearest neighbor algorithm (KNN), were employed to fabricate the model, and k-fold cross-validation, ROC curve, calibration curve, decision curve analysis (DCA), and external validation were employed to evaluate it. Results Out of the four predictive models employed, the XGBoost algorithm demonstrated the best performance. The ROC curve findings indicated that the XGBoost model exhibited remarkable predictive accuracy, with an area under the curve (AUC) value of 0.997 in the training set and 0.956 in the validation set. For internal validation, the k-fold cross-validation method was utilized, and the XGBoost model was shown to be steady. Furthermore, the calibration curves demonstrated the XGBoost model's high predictive capability. The DCA curve revealed higher benefit rates for patients who underwent interventional treatment under the XGBoost model. The AUC value for the external validation set was 0.74, which indicated that the XGBoost prediction model possessed good extrapolative capacity. Conclusion The myocardial injury prediction model for patients undergoing CME that was developed using the XGBoost machine learning algorithm in this study demonstrates both high predictive accuracy and clinical utility.
Collapse
Affiliation(s)
- Yuan Liu
- Department of General Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Chen Song
- Department of General Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Zhiqiang Tian
- Department of General Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Wei Shen
- Department of General Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
- Correspondence: Wei Shen, Department of General Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214000, People’s Republic of China, Tel +86 13385110723, Email
| |
Collapse
|
16
|
Ma F, Zhu Y, Chang L, Gong J, Luo Y, Dai J, Lu H. Hydrogen sulfide protects against ischemic heart failure by inhibiting RIP1/RIP3/MLKL-mediated necroptosis. Physiol Res 2022. [DOI: 10.33549/physiolres.934905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aim of the present study was to explore whether hydrogen sulfide (H2S) protects against ischemic heart failure (HF) by inhibiting the necroptosis pathway. Mice were randomized into Sham, myocardial infarction (MI), MI + propargylglycine (PAG) and MI + sodium hydrosulfide (NaHS) group, respectively. The MI model was induced by ligating the left anterior descending coronary artery. PAG was intraperitoneally administered at a dose of 50 mg/kg/day for 4 weeks, and NaHS at a dose of 4mg/kg/day for the same period. At 4 weeks after MI, the following were observed: A significant decrease in the cardiac function, as evidenced by a decline in ejection fraction (EF) and fractional shortening (FS); an increase in plasma myocardial injury markers, such as creatine kinase-MB (CK-MB) and cardiac troponin I (cTNI); an increase in myocardial collagen content in the heart tissues; and a decrease of H2S level in plasma and heart tissues. Furthermore, the expression levels of necroptosis-related markers such as receptor interacting protein kinase 1 (RIP1), RIP3 and mixed lineage kinase domain-like protein (MLKL) were upregulated after MI. NaHS treatment increased H2S levels in plasma and heart tissues, preserving the cardiac function by increasing EF and FS, decreasing plasma CK-MB and cTNI and reducing collagen content. Additionally, NaHS treatment significantly downregulated the RIP1/RIP3/MLKL pathway. While, PAG treatment aggravated cardiac function by activated the RIP1/RIP3/MLKL pathway. Overall, the present study concluded that H2S protected against ischemic HF by inhibiting RIP1/RIP3/MLKL-mediated necroptosis which could be a potential target treatment for ischemic HF.
Collapse
Affiliation(s)
| | | | | | | | | | - J Dai
- Department of Clinical Diagnostics, Hebei Medical University, 361 Zhongshan Road, Shijiazhuang, Hebei, China.
| | - H Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, P.R. China.
| |
Collapse
|
17
|
Chaouhan HS, Vinod C, Mahapatra N, Yu SH, Wang IK, Chen KB, Yu TM, Li CY. Necroptosis: A Pathogenic Negotiator in Human Diseases. Int J Mol Sci 2022; 23:12714. [PMID: 36361505 PMCID: PMC9655262 DOI: 10.3390/ijms232112714] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Over the past few decades, mechanisms of programmed cell death have attracted the scientific community because they are involved in diverse human diseases. Initially, apoptosis was considered as a crucial mechanistic pathway for programmed cell death; recently, an alternative regulated mode of cell death was identified, mimicking the features of both apoptosis and necrosis. Several lines of evidence have revealed that dysregulation of necroptosis leads to pathological diseases such as cancer, cardiovascular, lung, renal, hepatic, neurodegenerative, and inflammatory diseases. Regulated forms of necrosis are executed by death receptor ligands through the activation of receptor-interacting protein kinase (RIPK)-1/3 and mixed-lineage kinase domain-like (MLKL), resulting in the formation of a necrosome complex. Many papers based on genetic and pharmacological studies have shown that RIPKs and MLKL are the key regulatory effectors during the progression of multiple pathological diseases. This review focused on illuminating the mechanisms underlying necroptosis, the functions of necroptosis-associated proteins, and their influences on disease progression. We also discuss numerous natural and chemical compounds and novel targeted therapies that elicit beneficial roles of necroptotic cell death in malignant cells to bypass apoptosis and drug resistance and to provide suggestions for further research in this field.
Collapse
Affiliation(s)
- Hitesh Singh Chaouhan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ch Vinod
- Department of Biological Sciences, School of Applied Sciences, KIIT University, Bhubaneshwar 751024, India
| | - Nikita Mahapatra
- Department of Biological Sciences, School of Applied Sciences, KIIT University, Bhubaneshwar 751024, India
| | - Shao-Hua Yu
- Department of Emergency Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - I-Kuan Wang
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Kuen-Bao Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Tung-Min Yu
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40402, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
18
|
MA F, ZHU Y, CHANG L, GONG J, LUO Y, DAI J, LU H. Hydrogen sulfide protects against ischemic heart failure by inhibiting RIP1/RIP3/MLKL-mediated necroptosis. Physiol Res 2022; 71:771-781. [PMID: 36281723 PMCID: PMC9814983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to explore whether hydrogen sulfide (H2S) protects against ischemic heart failure (HF) by inhibiting the necroptosis pathway. Mice were randomized into Sham, myocardial infarction (MI), MI + propargylglycine (PAG) and MI + sodium hydrosulfide (NaHS) group, respectively. The MI model was induced by ligating the left anterior descending coronary artery. PAG was intraperitoneally administered at a dose of 50 mg/kg/day for 4 weeks, and NaHS at a dose of 4 mg/kg/day for the same period. At 4 weeks after MI, the following were observed: A significant decrease in the cardiac function, as evidenced by a decline in ejection fraction (EF) and fractional shortening (FS); an increase in plasma myocardial injury markers, such as creatine kinase-MB (CK-MB) and cardiac troponin I (cTNI); an increase in myocardial collagen content in the heart tissues; and a decrease of H2S level in plasma and heart tissues. Furthermore, the expression levels of necroptosis-related markers such as receptor interacting protein kinase 1 (RIP1), RIP3 and mixed lineage kinase domain-like protein (MLKL) were upregulated after MI. NaHS treatment increased H2S levels in plasma and heart tissues, preserving the cardiac function by increasing EF and FS, decreasing plasma CK-MB and cTNI and reducing collagen content. Additionally, NaHS treatment significantly downregulated the RIP1/RIP3/MLKL pathway. While, PAG treatment aggravated cardiac function by activated the RIP1/RIP3/MLKL pathway. Overall, the present study concluded that H2S protected against ischemic HF by inhibiting RIP1/RIP3/MLKL-mediated necroptosis which could be a potential target treatment for ischemic HF.
Collapse
Affiliation(s)
- Fenfen MA
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Yahong ZHU
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | | | - Jingru GONG
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Ying LUO
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Jing DAI
- Department of Clinical Diagnostics, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huiping LU
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Dhingra R, Rabinovich-Nikitin I, Rothman S, Guberman M, Gang H, Margulets V, Jassal DS, Alagarsamy KN, Dhingra S, Ripoll CV, Billia F, Diwan A, Javaheri A, Kirshenbaum LA. Proteasomal Degradation of TRAF2 Mediates Mitochondrial Dysfunction in Doxorubicin-Cardiomyopathy. Circulation 2022; 146:934-954. [PMID: 35983756 PMCID: PMC10043946 DOI: 10.1161/circulationaha.121.058411] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cytokines such as tumor necrosis factor-α (TNFα) have been implicated in cardiac dysfunction and toxicity associated with doxorubicin (DOX). Although TNFα can elicit different cellular responses, including survival or death, the mechanisms underlying these divergent outcomes in the heart remain cryptic. The E3 ubiquitin ligase TRAF2 (TNF receptor associated factor 2) provides a critical signaling platform for K63-linked polyubiquitination of RIPK1 (receptor interacting protein 1), crucial for nuclear factor-κB (NF-κB) activation by TNFα and survival. Here, we investigate alterations in TNFα-TRAF2-NF-κB signaling in the pathogenesis of DOX cardiotoxicity. METHODS Using a combination of in vivo (4 weekly injections of DOX 5 mg·kg-1·wk-1) in C57/BL6J mice and in vitro approaches (rat, mouse, and human inducible pluripotent stem cell-derived cardiac myocytes), we monitored TNFα levels, lactate dehydrogenase, cardiac ultrastructure and function, mitochondrial bioenergetics, and cardiac cell viability. RESULTS In contrast to vehicle-treated mice, ultrastructural defects, including cytoplasmic swelling, mitochondrial perturbations, and elevated TNFα levels, were observed in the hearts of mice treated with DOX. While investigating the involvement of TNFα in DOX cardiotoxicity, we discovered that NF-κB was readily activated by TNFα. However, TNFα-mediated NF-κB activation was impaired in cardiac myocytes treated with DOX. This coincided with loss of K63- linked polyubiquitination of RIPK1 from the proteasomal degradation of TRAF2. Furthermore, TRAF2 protein abundance was markedly reduced in hearts of patients with cancer treated with DOX. We further established that the reciprocal actions of the ubiquitinating and deubiquitinating enzymes cellular inhibitors of apoptosis 1 and USP19 (ubiquitin-specific peptidase 19), respectively, regulated the proteasomal degradation of TRAF2 in DOX-treated cardiac myocytes. An E3-ligase mutant of cellular inhibitors of apoptosis 1 (H588A) or gain of function of USP19 prevented proteasomal degradation of TRAF2 and DOX-induced cell death. Furthermore, wild-type TRAF2, but not a RING finger mutant defective for K63-linked polyubiquitination of RIPK1, restored NF-κB signaling and suppressed DOX-induced cardiac cell death. Last, cardiomyocyte-restricted expression of TRAF2 (cardiac troponin T-adeno-associated virus 9-TRAF2) in vivo protected against mitochondrial defects and cardiac dysfunction induced by DOX. CONCLUSIONS Our findings reveal a novel signaling axis that functionally connects the cardiotoxic effects of DOX to proteasomal degradation of TRAF2. Disruption of the critical TRAF2 survival pathway by DOX sensitizes cardiac myocytes to TNFα-mediated necrotic cell death and DOX cardiotoxicity.
Collapse
Affiliation(s)
- Rimpy Dhingra
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Sonny Rothman
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Matthew Guberman
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Hongying Gang
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Victoria Margulets
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Davinder S. Jassal
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Keshav N. Alagarsamy
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
- Regenerative Medicine Program, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Sanjiv Dhingra
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
- Regenerative Medicine Program, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| | - Carla Valenzuela Ripoll
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Filio Billia
- Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada, Peter Munk Cardiac Center, University Health Network, Toronto, Ontario, Canada
| | - Abhinav Diwan
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ali Javaheri
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Lorrie A. Kirshenbaum
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
- Department of Pharmacology and Therapeutics, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre
| |
Collapse
|
20
|
Independent Association of Thyroid Dysfunction and Inflammation Predicts Adverse Events in Patients with Heart Failure via Promoting Cell Death. J Cardiovasc Dev Dis 2022; 9:jcdd9090290. [PMID: 36135435 PMCID: PMC9503390 DOI: 10.3390/jcdd9090290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Thyroid dysfunction and inflammation are individually implicated in the increased risk of heart failure. Given the regulatory role of thyroid hormones on immune cells, this study aimed to investigate their joint association in heart failure. Patients with pre-existing heart failure were enrolled when hospitalized between July 2019 and September 2021. Thyroid function and inflammatory markers were measured at the enrollment. The composite of all-cause mortality or rehospitalization for heart failure were studied in the following year. Among 451 participants (mean age 66.1 years, 69.4% male), 141 incident primary endpoints were observed during a median follow-up of 289 days. TT3 and FT3 levels were negatively correlated with BNP levels (r: −0.40, p < 0.001; r: −0.40, p < 0.001, respectively) and NT-proBNP levels (r: −0.39, p < 0.001; r: −0.39, p < 0.001). Multivariate COX regression analysis revealed that FT3 (adjusted HR: 0.677, 95% CI: 0.551−0.832) and NLR (adjusted HR: 1.073, 95% CI: 1.036−1.111) were associated with adverse event, and similar results for TT3 (adjusted HR: 0.320, 95% CI: 0.181−0.565) and NLR (adjusted HR: 1.072, 95% CI: 1.035−1.110). Restricted cubic splines analysis indicated a linear relationship between T3 level and adverse events. Mechanistically, primary cardiomyocytes showed strong resistance to TNF-α induced apoptosis under optimal T3 concentrations, as evidenced by TUNEL staining, flow cytometry analysis, and LDH release assay as well as increased expression of Bcl-2. Thyroid dysfunction and inflammation are independently associated with cardiovascular risk in heart failure patients, which may concurrently contribute to the ongoing cardiomyocyte loss in the disease progression.
Collapse
|
21
|
Qian Y, Mao M, Nian F. The Effect of TNF- α on CHD and the Relationship between TNF- α Antagonist and CHD in Rheumatoid Arthritis: A Systematic Review. Cardiol Res Pract 2022; 2022:6192053. [PMID: 36060429 PMCID: PMC9433296 DOI: 10.1155/2022/6192053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) plays an important role in coronary heart disease (CHD), a chronic inflammatory process. Meanwhile, this pro-inflammatory factor is also involved in the pathogenesis of autoimmune diseases such as rheumatoid arthritis (RA). Patients with RA correspond to a higher risk of CHD. TNF-α antagonist, one of the main treatments for RA, may reduce the risk of CHD in patients with RA. This review summarizes the pathogenesis of TNF-α in CHD and discusses the relationship between TNF-α antagonist and CHD in patients with RA.
Collapse
Affiliation(s)
- Yezhou Qian
- Department of Cardiology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Menghui Mao
- Department of Cardiology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Feige Nian
- Department of Rheumatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
22
|
Gómez-Ochoa SA, Bautista-Niño PK, Rojas LZ, Hunziker L, Muka T, Echeverría LE. Circulating MicroRNAs and myocardial involvement severity in chronic Chagas cardiomyopathy. Front Cell Infect Microbiol 2022; 12:922189. [PMID: 36004323 PMCID: PMC9393411 DOI: 10.3389/fcimb.2022.922189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/18/2022] [Indexed: 12/18/2022] Open
Abstract
Background Chronic Chagas Cardiomyopathy (CCM) is characterized by a unique pathophysiology in which inflammatory, microvascular and neuroendocrine processes coalesce in the development of one of the most severe cardiomyopathies affecting humans. Despite significant advances in understanding the molecular mechanisms involved in this disease, scarce information is available regarding microRNAs and clinical parameters of disease severity. We aimed to evaluate the association between circulating levels of six microRNAs with markers of myocardial injury and prognosis in this population. Methods Patients with CCM and reduced ejection fraction were included in a prospective exploratory cohort study. We assessed the association of natural log-transformed values of six circulating microRNAs (miR-34a-5p, miR-208a-5p, miR-185-5p, miR-223-5p, let-7d-5p, and miR-454-5p) with NT-proBNP levels and echocardiographic variables using linear regression models adjusted for potential confounders. By using Cox Proportional Hazard models, we examined whether levels of microRNAs could predict a composite outcome (CO), including all-cause mortality, cardiac transplantation, and implantation of a left ventricular assist device (LVAD). Finally, for mRNAs showing significant associations, we predicted the target genes and performed pathway analyses using Targetscan and Reactome Pathway Browser. Results Seventy-four patients were included (59% males, median age: 64 years). After adjustment for age, sex, body mass index, and heart failure medications, only increasing miR-223-5p relative expression levels were significantly associated with better myocardial function markers, including left atrium area (Coef. -10.2; 95% CI -16.35; -4.09), end-systolic (Coef. -45.3; 95% CI -74.06; -16.61) and end-diastolic volumes (Coef. -46.1; 95% CI -81.99; -10.26) of the left ventricle. Moreover, we observed that higher miR-223-5p levels were associated with better left-ventricle ejection fraction and lower NT-proBNP levels. No associations were observed between the six microRNAs and the composite outcome. A total of 123 target genes for miR-223-5p were obtained. From these, several target pathways mainly related to signaling by receptor tyrosine kinases were identified. Conclusions The present study found an association between miR-223-5p and clinical parameters of CCM, with signaling pathways related to receptor tyrosine kinases as a potential mechanism linking low levels of miR-223-5p with CCM worsening.
Collapse
Affiliation(s)
| | | | - Lyda Z. Rojas
- Research Group and Development of Nursing Knowledge (GIDCEN-FCV), Research Center, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Lukas Hunziker
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- *Correspondence: Taulant Muka,
| | - Luis E. Echeverría
- Heart Failure and Heart Transplant Clinic, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| |
Collapse
|
23
|
Liu X, Wu W, Fang L, Liu Y, Chen W. TNF-α Inhibitors and Other Biologic Agents for the Treatment of Immune Checkpoint Inhibitor-Induced Myocarditis. Front Immunol 2022; 13:922782. [PMID: 35844550 PMCID: PMC9283712 DOI: 10.3389/fimmu.2022.922782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/08/2022] [Indexed: 01/11/2023] Open
Abstract
With anti-PD-1 antibodies serving as a representative drug, immune checkpoint inhibitors (ICIs) have become the main drugs used to treat many advanced malignant tumors. However, immune-related adverse events (irAEs), which might involve multiple organ disorders, should not be ignored. ICI-induced myocarditis is an uncommon but life-threatening irAE. Glucocorticoids are the first choice of treatment for patients with ICI-induced myocarditis, but high proportions of steroid-refractory and steroid-resistant cases persist. According to present guidelines, tumor necrosis factor alpha (TNF-α) inhibitors are recommended for patients who fail to respond to steroid therapy and suffer from severe cardiac toxicity, although evidence-based studies are lacking. On the other hand, TNF-α inhibitors are contraindicated in patients with moderate-to-severe heart failure. This review summarizes real-world data from TNF-α inhibitors and other biologic agents for ICI-induced myocarditis to provide more evidence of the efficacy and safety of TNF-α inhibitors and other biologic agents.
Collapse
Affiliation(s)
| | | | | | | | - Wei Chen
- *Correspondence: Yingxian Liu, ; Wei Chen,
| |
Collapse
|
24
|
Chen DQ, Guo Y, Li X, Zhang GQ, Li P. Small molecules as modulators of regulated cell death against ischemia/reperfusion injury. Med Res Rev 2022; 42:2067-2101. [PMID: 35730121 DOI: 10.1002/med.21917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 11/11/2021] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion (IR) injury contributes to disability and mortality worldwide. Due to the complicated mechanisms and lack of proper therapeutic targets, few interventions are available that specifically target the pathogenesis of IR injury. Regulated cell death (RCD) of endothelial and parenchymal cells is recognized as the promising intervening target. Recent advances in IR injury suggest that small molecules exhibit beneficial effects on various RCD against IR injury, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, and parthanatos. Here, we describe the mechanisms behind these novel promising therapeutic targets and explain the machinery powering the small molecules. These small molecules exert protection by targeting endothelial or parenchymal cells to alleviate IR injury. Therapies of the ideal combination of small molecules targeting multiple cell types have shown potent synergetic therapeutic effects, laying the foundation for novel strategies to attenuate IR injury.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China.,Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Xin Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Guo-Qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
25
|
Necroptosis in heart disease: Molecular mechanisms and therapeutic implications. J Mol Cell Cardiol 2022; 169:74-83. [PMID: 35597275 DOI: 10.1016/j.yjmcc.2022.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
Abstract
Cell death is a crucial event underlying cardiac ischemic injury, pathological remodeling, and heart failure. Unlike apoptosis, necrosis had long been regarded as a passive and unregulated process. However, recent studies demonstrate that a significant subset of necrotic cell death is actively mediated through regulated pathways - a process known as "regulated necrosis". As a form of regulated necrosis, necroptosis is mediated by death receptors and executed through the activation of receptor interacting protein kinase 3 (RIPK3) and its downstream substrate mixed lineage kinase-like domain (MLKL). Recent studies have provided compelling evidence that necroptosis plays an important role in myocardial homeostasis, ischemic injury, pathological remodeling, and heart failure. Moreover, it has been shown that genetic and pharmacological manipulations of the necroptosis signaling pathway elicit cardioprotective effects. Important progress has also been made regarding the molecular mechanisms that regulate necroptotic cell death in vitro and in vivo. In this review, we discuss molecular and cellular mechanisms of necroptosis, potential crosstalk between necroptosis and other cell death pathways, functional implications of necroptosis in heart disease, and new therapeutic strategies that target necroptosis signaling.
Collapse
|
26
|
Xue H, Shi H, Zhang F, Li H, Li C, Han Q. RIP3 Contributes to Cardiac Hypertrophy by Influencing MLKL-Mediated Calcium Influx. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5490553. [PMID: 35464769 PMCID: PMC9023175 DOI: 10.1155/2022/5490553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/17/2022] [Indexed: 11/27/2022]
Abstract
Receptor-interacting protein 3(RIP3), a RIP family member, has been reported as a critical regulator of necroptosis and involves in the pathogenesis of various heart diseases. However, its role in the development of myocardial hypertrophy after pressure overload is unclear. We aimed to investigate the roles of RIP3 in pathological cardiac hypertrophy. A rat model of myocardial hypertrophy induced by the aortic banding method was used in this study. Neonatal rat cardiomyocytes (NRCMs) were stimulated with angiotensin II (Ang-II) or phenylephrine (PE) to induce neurohumoral stress. Our results showed that RIP3 level was significantly elevated in the hypertrophic myocardium tissues from patients, rats subjected to AB surgery, and NRCMs treated with Ang-II or PE. After downregulation of RIP3 expression in NRCMs, the phenotypes of myocardial hypertrophy were obviously alleviated. In mechanism, we demonstrated that RIP3 interacts with mixed lineage kinase domain-like protein (MLKL) and promotes its cell membrane localization to increase the influx of calcium within cells, thereby mediating the development of myocardial hypertrophy. More interestingly, we found the blockage of calcium influx by 2-aminoethoxydiphenyl borate, and lanthanum chloride efficiently reverses RIP3-induced cardiac remodeling in NRCMs. Taken together, our findings indicate a key role of the RIP3-MLKL signaling pathway in myocardial hypertrophy, which may be a novel promising treatment strategy for myocardial hypertrophy.
Collapse
Affiliation(s)
- Honghong Xue
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Hongtao Shi
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fan Zhang
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Hao Li
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Chao Li
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qinghua Han
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
27
|
Besse S, Nadaud S, Balse E, Pavoine C. Early Protective Role of Inflammation in Cardiac Remodeling and Heart Failure: Focus on TNFα and Resident Macrophages. Cells 2022; 11:1249. [PMID: 35406812 PMCID: PMC8998130 DOI: 10.3390/cells11071249] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/24/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiac hypertrophy, initiated by a variety of physiological or pathological stimuli (hemodynamic or hormonal stimulation or infarction), is a critical early adaptive compensatory response of the heart. The structural basis of the progression from compensated hypertrophy to pathological hypertrophy and heart failure is still largely unknown. In most cases, early activation of an inflammatory program reflects a reparative or protective response to other primary injurious processes. Later on, regardless of the underlying etiology, heart failure is always associated with both local and systemic activation of inflammatory signaling cascades. Cardiac macrophages are nodal regulators of inflammation. Resident macrophages mostly attenuate cardiac injury by secreting cytoprotective factors (cytokines, chemokines, and growth factors), scavenging damaged cells or mitochondrial debris, and regulating cardiac conduction, angiogenesis, lymphangiogenesis, and fibrosis. In contrast, excessive recruitment of monocyte-derived inflammatory macrophages largely contributes to the transition to heart failure. The current review examines the ambivalent role of inflammation (mainly TNFα-related) and cardiac macrophages (Mφ) in pathophysiologies from non-infarction origin, focusing on the protective signaling processes. Our objective is to illustrate how harnessing this knowledge could pave the way for innovative therapeutics in patients with heart failure.
Collapse
Affiliation(s)
| | | | | | - Catherine Pavoine
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (S.B.); (S.N.); (E.B.)
| |
Collapse
|
28
|
Ma X, Rawnsley DR, Kovacs A, Islam M, Murphy JT, Zhao C, Kumari M, Foroughi L, Liu H, Qi K, Diwan A, Hyrc K, Evans S, Satoh T, French BA, Margulies KB, Javaheri A, Razani B, Mann DL, Mani K, Diwan A. TRAF2, an Innate Immune Sensor, Reciprocally Regulates Mitophagy and Inflammation to Maintain Cardiac Myocyte Homeostasis. JACC Basic Transl Sci 2022; 7:223-243. [PMID: 35411325 PMCID: PMC8993766 DOI: 10.1016/j.jacbts.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022]
Abstract
Mitochondria are essential for cardiac myocyte function, but damaged mitochondria trigger cardiac myocyte death. Although mitophagy, a lysosomal degradative pathway to remove damaged mitochondria, is robustly active in cardiac myocytes in the unstressed heart, its mechanisms and physiological role remain poorly defined. We discovered a critical role for TRAF2, an innate immunity effector protein with E3 ubiquitin ligase activity, in facilitating physiological cardiac myocyte mitophagy in the adult heart, to prevent inflammation and cell death, and maintain myocardial homeostasis.
Collapse
Key Words
- AAV9, adeno-associated virus serotype 9
- ER, endoplasmic reticulum
- FS, fractional shortening
- GFP, green fluorescent protein
- IP, intraperitoneal
- LV, left ventricular
- MAM, mitochondria-associated membranes
- MCM, MerCreMer
- MEF, murine embryonic fibroblast
- PINK1, PTEN-induced kinase 1
- RFP, red fluorescent protein
- TLR9, toll-like receptor 9
- TRAF2
- TRAF2, tumor necrosis factor receptor-associated factor-2
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- cTnT, cardiac troponin T
- cell death
- inflammation
- mitophagy
Collapse
Affiliation(s)
- Xiucui Ma
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - David R. Rawnsley
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Attila Kovacs
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Moydul Islam
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John T. Murphy
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Chen Zhao
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Minu Kumari
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Layla Foroughi
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Haiyan Liu
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Kevin Qi
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aaradhya Diwan
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Krzysztof Hyrc
- Alafi Neuroimaging Laboratory, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sarah Evans
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Takashi Satoh
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Brent A. French
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Kenneth B. Margulies
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ali Javaheri
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Babak Razani
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Douglas L. Mann
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kartik Mani
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Abhinav Diwan
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Yin H, Guo X, Chen Y, Zeng Y, Mo X, Hong S, He H, Li J, Steinmetz R, Liu Q. TAB2 deficiency induces dilated cardiomyopathy by promoting RIPK1-dependent apoptosis and necroptosis. J Clin Invest 2022; 132:152297. [PMID: 34990405 PMCID: PMC8843707 DOI: 10.1172/jci152297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
Mutations in TGF-β-activated kinase 1 binding protein 2 (TAB2) have been implicated in the pathogenesis of dilated cardiomyopathy and/or congenital heart disease in humans, but the underlying mechanisms are currently unknown. Here, we identified an indispensable role for TAB2 in regulating myocardial homeostasis and remodeling by suppressing receptor-interacting protein kinase 1 (RIPK1) activation and RIPK1-dependent apoptosis and necroptosis. Cardiomyocyte-specific deletion of Tab2 in mice triggered dilated cardiomyopathy with massive apoptotic and necroptotic cell death. Moreover, Tab2-deficient mice were also predisposed to myocardial injury and adverse remodeling after pathological stress. In cardiomyocytes, deletion of TAB2 but not its close homolog TAB3 promoted TNF-α-induced apoptosis and necroptosis, which was rescued by forced activation of TAK1 or inhibition of RIPK1 kinase activity. Mechanistically, TAB2 critically mediates RIPK1 phosphorylation at Ser321 via a TAK1-dependent mechanism, which prevents RIPK1 kinase activation and the formation of RIPK1-FADD-caspase-8 apoptotic complex or RIPK1-RIPK3 necroptotic complex. Strikingly, genetic inactivation of RIPK1 with Ripk1-K45A knockin effectively rescued cardiac remodeling and dysfunction in Tab2-deficient mice. Together, these data demonstrated that TAB2 is a key regulator of myocardial homeostasis and remodeling by suppressing RIPK1-dependent apoptosis and necroptosis. Our results also suggest that targeting RIPK1-mediated cell death signaling may represent a promising therapeutic strategy for TAB2 deficiency-induced dilated cardiomyopathy.
Collapse
Affiliation(s)
- Haifeng Yin
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Xiaoyun Guo
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Yi Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Yachang Zeng
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Xiaoliang Mo
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Siqi Hong
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Hui He
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Jing Li
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Rachel Steinmetz
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Qinghang Liu
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
30
|
The Role of CD147 in Pathological Cardiac Hypertrophy Is Regulated by Glycosylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6603296. [PMID: 35096272 PMCID: PMC8794662 DOI: 10.1155/2022/6603296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/21/2023]
Abstract
CD147, also known as EMMPRIN or basigin, is a transmembrane glycoprotein receptor that activates matrix metalloproteinases and promotes inflammation. CD147 function is regulated by posttranslational modifications of which glycosylation has attracted the most attention. In this study, we demonstrated that glycosylated CD147 was the dominant form in heart tissue, and its levels were markedly elevated in response to transverse aortic constriction (TAC). Adeno-associated virus 9-mediated, cardiac-specific overexpression of wild-type CD147 in mice significantly promoted pressure overload-induced pathological cardiac remodeling accompanied by augmented oxidative stress and ferroptosis. By contrast, mutations of CD147 glycosylation sites notably weakened these detrimental effects of CD147. Mechanistically, CD147 exacerbated TAC-induced pathological cardiac remodeling via direct binding with the adaptor molecule TRAF2 and subsequent activation of TAK1 signalling, which was dependent on glycosylation of CD147. Collectively, our findings provide the first evidence that CD147 promoted pathological cardiac remodeling and dysfunction in a glycosylation-dependent manner through binding the adaptor protein TRAF2 and activating the downstream TRAF2-TAK1 signalling pathway. Thus, glycosylation of CD147 may be a potent interventional target for heart failure treatment.
Collapse
|
31
|
Leng Y, Zhang Y, Li X, Wang Z, Zhuang Q, Lu Y. Receptor Interacting Protein Kinases 1/3: The Potential Therapeutic Target for Cardiovascular Inflammatory Diseases. Front Pharmacol 2021; 12:762334. [PMID: 34867386 PMCID: PMC8637748 DOI: 10.3389/fphar.2021.762334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
The receptor interacting protein kinases 1/3 (RIPK1/3) have emerged as the key mediators in cell death pathways and inflammatory signaling, whose ubiquitination, phosphorylation, and inhibition could regulate the necroptosis and apoptosis effectually. Recently, more and more studies show great interest in the mechanisms and the regulator of RIPK1/3-mediated inflammatory response and in the physiopathogenesis of cardiovascular diseases. The crosstalk of autophagy and necroptosis in cardiomyocyte death is a nonnegligible conversation of cell death. We elaborated on RIPK1/3-mediated necroptosis, pathways involved, the latest regulatory molecules and therapeutic targets in terms of ischemia reperfusion, myocardial remodeling, myocarditis, atherosclerosis, abdominal aortic aneurysm, and cardiovascular transplantation, etc.
Collapse
Affiliation(s)
- Yiming Leng
- Clinical Research Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xinyu Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zeyu Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Yao Lu
- Clinical Research Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Kirk JA, Cheung JY, Feldman AM. Therapeutic targeting of BAG3: considering its complexity in cancer and heart disease. J Clin Invest 2021; 131:e149415. [PMID: 34396980 DOI: 10.1172/jci149415] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bcl2-associated athanogene-3 (BAG3) is expressed ubiquitously in humans, but its levels are highest in the heart, the skeletal muscle, and the central nervous system; it is also elevated in many cancers. BAG3's diverse functions are supported by its multiple protein-protein binding domains, which couple with small and large heat shock proteins, members of the Bcl2 family, other antiapoptotic proteins, and various sarcomere proteins. In the heart, BAG3 inhibits apoptosis, promotes autophagy, couples the β-adrenergic receptor with the L-type Ca2+ channel, and maintains the structure of the sarcomere. In cancer cells, BAG3 binds to and supports an identical array of prosurvival proteins, and it may represent a therapeutic target. However, the development of strategies to block BAG3 function in cancer cells may be challenging, as they are likely to interfere with the essential roles of BAG3 in the heart. In this Review, we present the current knowledge regarding the biology of this complex protein in the heart and in cancer and suggest several therapeutic options.
Collapse
Affiliation(s)
- Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Joseph Y Cheung
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Arthur M Feldman
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Piamsiri C, Maneechote C, Siri-Angkul N, Chattipakorn SC, Chattipakorn N. Targeting necroptosis as therapeutic potential in chronic myocardial infarction. J Biomed Sci 2021; 28:25. [PMID: 33836761 PMCID: PMC8034148 DOI: 10.1186/s12929-021-00722-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVDs) are considered the predominant cause of morbidity and mortality globally. Of these, myocardial infarction (MI) is the most common cause of CVD mortality. MI is a life-threatening condition which occurs when coronary perfusion is interrupted leading to cardiomyocyte death. Subsequent to MI, consequences include adverse cardiac remodeling and cardiac dysfunction mainly contribute to the development of heart failure (HF). It has been shown that loss of functional cardiomyocytes in MI-induced HF are associated with several cell death pathways, in particular necroptosis. Although the entire mechanism underlying necroptosis in MI progression is still not widely recognized, some recent studies have reported beneficial effects of necroptosis inhibitors on cell viability and cardiac function in chronic MI models. Therefore, extensive investigation into the necroptosis signaling pathway is indicated for further study. This article comprehensively reviews the context of the underlying mechanisms of necroptosis in chronic MI-induced HF in in vitro, in vivo and clinical studies. These findings could inform ways of developing novel therapeutic strategies to improve the clinical outcomes in MI patients from this point forward.
Collapse
Affiliation(s)
- Chanon Piamsiri
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natthaphat Siri-Angkul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
34
|
Ramirez Flores RO, Lanzer JD, Holland CH, Leuschner F, Most P, Schultz J, Levinson RT, Saez‐Rodriguez J. Consensus Transcriptional Landscape of Human End-Stage Heart Failure. J Am Heart Assoc 2021; 10:e019667. [PMID: 33787284 PMCID: PMC8174362 DOI: 10.1161/jaha.120.019667] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Background Transcriptomic studies have contributed to fundamental knowledge of myocardial remodeling in human heart failure (HF). However, the key HF genes reported are often inconsistent between studies, and systematic efforts to integrate evidence from multiple patient cohorts are lacking. Here, we aimed to provide a framework for comprehensive comparison and analysis of publicly available data sets resulting in an unbiased consensus transcriptional signature of human end-stage HF. Methods and Results We curated and uniformly processed 16 public transcriptomic studies of left ventricular samples from 263 healthy and 653 failing human hearts. First, we evaluated the degree of consistency between studies by using linear classifiers and overrepresentation analysis. Then, we meta-analyzed the deregulation of 14 041 genes to extract a consensus signature of HF. Finally, to functionally characterize this signature, we estimated the activities of 343 transcription factors, 14 signaling pathways, and 182 micro RNAs, as well as the enrichment of 5998 biological processes. Machine learning approaches revealed conserved disease patterns across all studies independent of technical differences. These consistent molecular changes were prioritized with a meta-analysis, functionally characterized and validated on external data. We provide all results in a free public resource (https://saezlab.shinyapps.io/reheat/) and exemplified usage by deciphering fetal gene reprogramming and tracing the potential myocardial origin of the plasma proteome markers in patients with HF. Conclusions Even though technical and sampling variability confound the identification of differentially expressed genes in individual studies, we demonstrated that coordinated molecular responses during end-stage HF are conserved. The presented resource is crucial to complement findings in independent studies and decipher fundamental changes in failing myocardium.
Collapse
Affiliation(s)
- Ricardo O. Ramirez Flores
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineBioquantHeidelberg UniversityHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
- Informatics for LifeHeidelbergGermany
| | - Jan D. Lanzer
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineBioquantHeidelberg UniversityHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
- Informatics for LifeHeidelbergGermany
- Department of General Internal Medicine and PsychosomaticsHeidelberg University HospitalHeidelbergGermany
| | - Christian H. Holland
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineBioquantHeidelberg UniversityHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Florian Leuschner
- Department of CardiologyMedical University HospitalHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/MannheimHeidelbergGermany
| | - Patrick Most
- Department of CardiologyMedical University HospitalHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/MannheimHeidelbergGermany
- Center for Translational MedicineJefferson UniversityPhiladelphiaPA
| | - Jobst‐Hendrik Schultz
- Department of General Internal Medicine and PsychosomaticsHeidelberg University HospitalHeidelbergGermany
| | - Rebecca T. Levinson
- Informatics for LifeHeidelbergGermany
- Department of General Internal Medicine and PsychosomaticsHeidelberg University HospitalHeidelbergGermany
| | - Julio Saez‐Rodriguez
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational BiomedicineBioquantHeidelberg UniversityHeidelbergGermany
- Informatics for LifeHeidelbergGermany
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
| |
Collapse
|
35
|
Singh K, Fang H, Davies G, Wright B, Lockstone H, Williams RO, Ciháková D, Knight JC, Bhattacharya S. Transcriptomic Analysis of Inflammatory Cardiomyopathy Identifies Molecular Signatures of Disease and Informs in silico Prediction of a Network-Based Rationale for Therapy. Front Immunol 2021; 12:640837. [PMID: 33746983 PMCID: PMC7973371 DOI: 10.3389/fimmu.2021.640837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Inflammatory cardiomyopathy covers a group of diseases characterized by inflammation and dysfunction of the heart muscle. The immunosuppressive agents such as prednisolone, azathioprine and cyclosporine are modestly effective treatments, but a molecular rationale underpinning such therapy or the development of new therapeutic strategies is lacking. We aimed to develop a network-based approach to identify therapeutic targets for inflammatory cardiomyopathy from the evolving myocardial transcriptome in a mouse model of the disease. We performed bulk RNA sequencing of hearts at early, mid and late time points from mice with experimental autoimmune myocarditis. We identified a cascade of pathway-level events involving early activation of cytokine and chemokine-signaling pathways that precede leucocyte infiltration and are followed by innate immune, antigen-presentation, complement and cell-adhesion pathway activation. We integrated these pathway events into a network-like representation from which we further identified a 50-gene subnetwork that is predominantly induced during the course of autoimmune myocardial inflammation. We developed a combinatorial attack strategy where we quantify network tolerance to combinatorial node removal to determine target-specific therapeutic potential. We find that combinatorial attack of Traf2, Nfkb1, Rac1, and Vav1 disconnects 80% of nodes from the largest network component. Two of these nodes, Nfkb1 and Rac1, are directly targeted by prednisolone and azathioprine respectively, supporting the idea that the methodology developed here can identify valid therapeutic targets. Whereas Nfkb1 and Rac1 removal disconnects 56% of nodes, we show that additional removal of Btk and Pik3cd causes 72% node disconnection. In conclusion, transcriptome profiling, pathway integration, and network identification of autoimmune myocardial inflammation provide a molecular signature applicable to the diagnosis of inflammatory cardiomyopathy. Combinatorial attack provides a rationale for immunosuppressive therapy of inflammatory cardiomyopathy and provides an in silico prediction that the approved therapeutics, ibrutinib and idelalisib targeting Btk and Pik3cd respectively, could potentially be re-purposed as adjuncts to immunosuppression.
Collapse
Affiliation(s)
- Kamayani Singh
- RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Hai Fang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Graham Davies
- RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Benjamin Wright
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Helen Lockstone
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Richard O. Williams
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Daniela Ciháková
- Division of Immunology, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Julian C. Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Shoumo Bhattacharya
- RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Lu LQ, Tian J, Luo XJ, Peng J. Targeting the pathways of regulated necrosis: a potential strategy for alleviation of cardio-cerebrovascular injury. Cell Mol Life Sci 2021; 78:63-78. [PMID: 32596778 PMCID: PMC11072340 DOI: 10.1007/s00018-020-03587-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
Apoptosis, necrosis and autophagy-dependent cell death are the three major types of cell death. Traditionally, necrosis is thought as a passive and unregulated form of cell death. However, certain necrosis can also occur in a highly regulated manner, referring to regulated necrosis. Depending on the signaling pathways, regulated necrosis can be further classified as necroptosis, pyroptosis, ferroptosis, parthanatos and CypD-mediated necrosis. Numerous studies have reported that regulated necrosis contributes to the progression of multiple injury-relevant diseases. For example, necroptosis contributes to the development of myocardial infarction, atherosclerosis, heart failure and stroke; pyroptosis is involved in the progression of myocardial or cerebral infarction, atherosclerosis and diabetic cardiomyopathy; while ferroptosis, parthanatos and CypD-mediated necrosis participate in the pathological process of myocardial and/or cerebral ischemia/reperfusion injury. Thereby, targeting the pathways of regulated necrosis pharmacologically or genetically could be an efficient strategy for reducing cardio-cerebrovascular injury. Further study needs to focus on the crosstalk and interplay among different types of regulated necrosis. Pharmacological intervention of two or more types of regulated necrosis simultaneously may have advantages in clinic to treat injury-relevant diseases.
Collapse
Affiliation(s)
- Li-Qun Lu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jing Tian
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
37
|
Yu S, Yang H, Guo X, Sun Y. Klotho attenuates angiotensin II‑induced cardiotoxicity through suppression of necroptosis and oxidative stress. Mol Med Rep 2020; 23:66. [PMID: 33215215 PMCID: PMC7716407 DOI: 10.3892/mmr.2020.11705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 07/17/2020] [Indexed: 11/05/2022] Open
Abstract
Hyperglycemia is known to lead to cardiac injury and inflammation through the reactive oxygen species (ROS)‑Toll‑like receptor 4 (TLR4)‑necroptosis pathway. Similarly, angiotensin II (Ang II) activates the TLR4‑nuclear factor κB (NF‑κB) p65 pathway, while the protein Klotho is known to inhibit this pathway, protecting cardiac cells from Ang II‑induced injury. However, there is currently a lack of data on whether necroptosis participates in Ang II‑induced cardiac injury and whether the Klotho protein has an effect on this process. The present study aimed to explore whether inhibition of the TLR4/NF‑κB p65 necroptosis pathway is involved in the Klotho protein‑mediated protection against the Ang II‑induced cardiac injury and inflammation. H9c2 cardiac cells were incubated with 0.01 mM Ang II. Western blotting was used to assess the expression of receptor‑interacting protein kinase 3 (RIP3), mixed‑lineage kinase domain‑like protein (MLKL), TLR4 and NF‑κB p65. The present study also assessed injury indexes: Inflammatory cytokine expression, mitochondrial membrane potential (ΔΨm), apoptosis, ROS production and cell viability. The expression of TLR4, phosphorylated (p)‑NF‑κB p65, RIP3 and MLKL were increased by incubation with Ang II in H9c2 cells. The pretreatment of H9c2 cells with necrostatin‑1 (Nec‑1, an inhibitor of necroptosis) or TAK‑242 (a small molecule inhibitor of TLR4) attenuated the upregulation of RIP3 and MLKL caused by Ang II. Klotho protein cotreatment also reversed the Ang II‑induced upregulation of TLR4, p‑NF‑κB p65, RIP3 and MLKL. Furthermore, Ang II decreased cell viability and upregulated the secretion of inflammatory cytokines, ΔΨm loss and ROS generation blocked by pretreatment with Nec‑1 or Klotho protein. Thus, it was determined that Klotho can attenuate the Ang II‑induced necroptosis of cardiomyocytes through the TLR4/NF‑κB p65 pathway, which suggests that Klotho could be a potential therapeutic drug against Ang II‑induced cardiotoxicity.
Collapse
Affiliation(s)
- Shasha Yu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hongmei Yang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaofan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
38
|
Zhou W, Lin D, Zhong Z, Ye Q. Roles of TRAFs in Ischemia-Reperfusion Injury. Front Cell Dev Biol 2020; 8:586487. [PMID: 33224951 PMCID: PMC7674171 DOI: 10.3389/fcell.2020.586487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are a family of signaling molecules that function downstream of multiple receptor signaling pathways, and they play a pivotal role in the regulation of intracellular biological progresses. These TRAF-dependent signaling pathways and physiological functions have been involved in the occurrence and progression of ischemia-reperfusion injury (IRI), which is a common pathophysiological process that occurs in a wide variety of clinical events, including ischemic shock, organ transplantation, and thrombolytic therapy, resulting in a poor prognosis and high mortality. IRI occurs in multiple organs, including liver, kidney, heart, lung, brain, intestine, and retina. In recent years, mounting compelling evidence has confirmed that the genetic alterations of TRAFs can cause subversive phenotype changes during IRI of those organs. In this review, based on current knowledge, we summarized and analyzed the regulatory effect of TRAFs on the IRI of various organs, providing clear direction and a firm theoretical basis for the development of treatment strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in IRI-related diseases.
Collapse
Affiliation(s)
- Wei Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Danni Lin
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| |
Collapse
|
39
|
Li Y, Yu H, Zhao L, Zhu Y, Bai R, Jin Z, Fu Z, Zhang X, Su J, Liu H, Shi X, Han D, Chen Y. Effects of carbon nanotube-mediated Caspase3 gene silencing on cardiomyocyte apoptosis and cardiac function during early acute myocardial infarction. NANOSCALE 2020; 12:21599-21604. [PMID: 33103172 DOI: 10.1039/d0nr05032f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) technology can achieve efficient and specific silencing of Caspase3 gene expression, thus providing new options for anti-apoptosis treatment. However, delivering siRNA to specific cells and tissues in the body is a significant challenge. Therefore, we aim to construct a functionalized single-walled carbon nanotube (F-CNT) bound to siRNA from Caspase3. The obtained gene transfer carrier F-CNT-siCas3 not only demonstrated a good water solubility and biocompatibility, but also had a high transfection efficiency of up to 82%, which significantly downregulated the expression level of the Caspase3 gene miRNA and protein in primary cardiomyocytes. Furthermore, it was verified by in vivo experiments that Caspase3 gene silencing had obvious protective effects on myocardial cell apoptosis, ventricular remodeling, and cardiac function in Sprague-Dawley (SD) rats after coronary artery ligation. This study may provide an important theoretical basis for the application of F-CNT in vivo siRNA gene therapy to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Yi Li
- Department of Cardiology, The Third Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Guo X, Hong S, He H, Zeng Y, Chen Y, Mo X, Li J, Li L, Steinmetz R, Liu Q. NFκB promotes oxidative stress-induced necrosis and ischemia/reperfusion injury by inhibiting Nrf2-ARE pathway. Free Radic Biol Med 2020; 159:125-135. [PMID: 32745764 PMCID: PMC7530060 DOI: 10.1016/j.freeradbiomed.2020.07.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 01/06/2023]
Abstract
In this study, we identified an unexpected pro-cell death role for NFκB in mediating oxidative stress-induced necrosis, and provide new mechanistic evidence that NFκB, in cooperation with HDAC3, negatively regulates Nrf2-ARE anti-oxidative signaling through transcriptional silencing. We showed that genetic inactivation of NFκB-p65 inhibited, whereas activation of NFκB promoted, oxidative stress-induced cell death and HMGB1 release, a biomarker of necrosis. Moreover, NFκB-luciferase activity was elevated in cardiomyocytes after simulated ischemia/reperfusion (sI/R) or doxorubicin (DOX) treatment, and inhibition of NFκB with Ad-p65-shRNA or Ad-IκBαM diminished sI/R- and DOX-induced cell death and HMGB1 release. Importantly, NFκB negatively regulated Nrf2-ARE activity and the expression of antioxidant proteins. Mechanistically, co-immunoprecipitation revealed that p65 was required for Nrf2-HDAC3 interaction and transcriptional silencing of Nrf2-ARE activity. Further, the ability of HDAC3 to repress Nrf2-ARE activity was lost in p65 deficient cells. Pharmacologic inhibition of HADCs or NFκB with trichostatin A (TSA) or BMS-345541, respectively, increased Nrf2-ARE activity and promoted cell survival after sI/R. In vivo, NFκB transcriptional activity in the mouse heart was significantly elevated after ischemia/reperfusion (I/R) injury, which was abolished by cardiomyocyte-specific deletion of p65 using p65fl/flNkx2.5-Cre mice. Moreover, genetic ablation of p65 in the mouse heart attenuated myocardial infarct size after acute I/R injury and improved cardiac remodeling and functional recovery after chronic myocardial infarction. Thus, our results identified NFκB as a key regulator of oxidative stress-induced necrosis by suppressing the Nrf2-ARE antioxidant pathway through an HDAC3-dependent mechanism. This study also revealed a new pathogenic role of NFκB in cardiac ischemic injury and pathological remodeling.
Collapse
Affiliation(s)
- Xiaoyun Guo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Siqi Hong
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Hui He
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Yachang Zeng
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Yi Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Xiaoliang Mo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Jing Li
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Lei Li
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Rachel Steinmetz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Qinghang Liu
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
41
|
Rolski F, Błyszczuk P. Complexity of TNF-α Signaling in Heart Disease. J Clin Med 2020; 9:E3267. [PMID: 33053859 PMCID: PMC7601316 DOI: 10.3390/jcm9103267] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Heart disease is a leading cause of death with unmet clinical needs for targeted treatment options. Tumor necrosis factor alpha (TNF-α) represents a master pro-inflammatory cytokine that plays an important role in many immunopathogenic processes. Anti-TNF-α therapy is widely used in treating autoimmune inflammatory disorders, but in case of patients with heart disease, this treatment was unsuccessful or even harmful. The underlying reasons remain elusive until today. This review summarizes the effects of anti-TNF-α treatment in patients with and without heart disease and describes the involvement of TNF-α signaling in a number of animal models of cardiovascular diseases. We specifically focused on the role of TNF-α in specific cardiovascular conditions and in defined cardiac cell types. Although some mechanisms, mainly in disease development, are quite well known, a comprehensive understanding of TNF-α signaling in the failing heart is still incomplete. Published data identify pathogenic and cardioprotective mechanisms of TNF-α in the affected heart and highlight the differential role of two TNF-α receptors pointing to the complexity of the TNF-α signaling. In the light of these findings, it seems that targeting the TNF-α pathway in heart disease may show therapeutic benefits, but this approach must be more specific and selectively block pathogenic mechanisms. To this aim, more research is needed to better understand the molecular mechanisms of TNF-α signaling in the failing heart.
Collapse
Affiliation(s)
- Filip Rolski
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Cracow, Poland;
| | - Przemysław Błyszczuk
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Cracow, Poland;
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, 8952 Schlieren, Switzerland
| |
Collapse
|
42
|
El Kazzi M, Rayner BS, Chami B, Dennis JM, Thomas SR, Witting PK. Neutrophil-Mediated Cardiac Damage After Acute Myocardial Infarction: Significance of Defining a New Target Cell Type for Developing Cardioprotective Drugs. Antioxid Redox Signal 2020; 33:689-712. [PMID: 32517486 PMCID: PMC7475094 DOI: 10.1089/ars.2019.7928] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Significance: Acute myocardial infarction (AMI) is a leading cause of death worldwide. Post-AMI survival rates have increased with the introduction of angioplasty as a primary coronary intervention. However, reperfusion after angioplasty represents a clinical paradox, restoring blood flow to the ischemic myocardium while simultaneously inducing ion and metabolic imbalances that stimulate immune cell recruitment and activation, mitochondrial dysfunction and damaging oxidant production. Recent Advances: Preclinical data indicate that these metabolic imbalances contribute to subsequent heart failure through sustaining local recruitment of inflammatory leukocytes and oxidative stress, cardiomyocyte death, and coronary microvascular disturbances, which enhance adverse cardiac remodeling. Both left ventricular dysfunction and heart failure are strongly linked to inflammation and immune cell recruitment to the damaged myocardium. Critical Issues: Overall, therapeutic anti-inflammatory and antioxidant agents identified in preclinical trials have failed in clinical trials. Future Directions: The versatile neutrophil-derived heme enzyme, myeloperoxidase (MPO), is gaining attention as an important oxidative mediator of reperfusion injury, vascular dysfunction, adverse ventricular remodeling, and atrial fibrillation. Accordingly, there is interest in therapeutically targeting neutrophils and MPO activity in the setting of heart failure. Herein, we discuss the role of post-AMI inflammation linked to myocardial damage and heart failure, describe previous trials targeting inflammation and oxidative stress post-AMI, highlight the potential adverse impact of neutrophil and MPO, and detail therapeutic options available to target MPO clinically in AMI patients.
Collapse
Affiliation(s)
- Mary El Kazzi
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | | | - Belal Chami
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Joanne Marie Dennis
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Shane Ross Thomas
- Department of Pathology, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Paul Kenneth Witting
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
43
|
Cutruzzolà A, Irace C, Frazzetto M, Sabatino J, Gullace R, De Rosa S, Spaccarotella C, Concolino D, Indolfi C, Gnasso A. Functional and morphological cardiovascular alterations associated with neurofibromatosis 1. Sci Rep 2020; 10:12070. [PMID: 32694667 PMCID: PMC7374589 DOI: 10.1038/s41598-020-68908-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/30/2020] [Indexed: 11/26/2022] Open
Abstract
Subjects with Neurofibromatosis 1 (NF1) develop vascular complications. The protein product of the gene affected in NF1, neurofibromin, physiologically modulates endothelial function and preserves vascular and myocardial structure. Our study aimed to verify whether subjects with NF1 have early, preclinical abnormalities of carotid artery structure, brachial artery function, and cardiac function. We recruited 22 NF1 subjects without previous cardiovascular events and 22 healthy control subjects. All subjects underwent measurement of carotid artery intima-media thickness (IMT), evaluation of brachial artery endothelial function after ischemia and exercise, and cardiac function. Mean IMT was 543 ± 115 μ in NF1 subjects and 487 ± 70 μ in Controls (p < 0.01). Endothelial function was significantly dumped in NF1 subjects. The dilation after ischemia and exercise was respectively 7.5(± 4.8)% and 6.7(± 3.0)% in NF1 versus 10.5(± 1.2)% and 10.5(± 2.1)% in control subjects (p < 0.02; p < 0.002). Left ventricular systolic function assessed by Global Longitudinal Strain was significantly different between NF1 subjects and Controls: − 19.3(± 1.7)% versus − 21.5(± 2.7)% (p < 0.008). These findings demonstrate that NF1 patients have early morphological and functional abnormalities of peripheral arteries and systolic cardiac impairment and suggest the need for a tight cardiovascular risk evaluation and primary prevention in subjects with NF1.
Collapse
Affiliation(s)
- Antonio Cutruzzolà
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, Viale Europa Località Germaneto, 88100, Catanzaro, Italy
| | - Concetta Irace
- Dipartimento di Scienze della Salute, University Magna Græcia, Catanzaro, Italy
| | - Marco Frazzetto
- Dipartimento di Scienze della Salute, University Magna Græcia, Catanzaro, Italy
| | - Jolanda Sabatino
- Dipartimento di Scienze Mediche e Chirurgiche, University Magna Græcia, Catanzaro, Italy.,Center of Cardiovascular Research, University Magna Graecia, Mediterranea Cardio Centro, Catanzaro, Napoli, Italy
| | - Rosa Gullace
- Dipartimento di Scienze della Salute, University Magna Græcia, Catanzaro, Italy
| | - Salvatore De Rosa
- Dipartimento di Scienze Mediche e Chirurgiche, University Magna Græcia, Catanzaro, Italy.,Center of Cardiovascular Research, University Magna Graecia, Mediterranea Cardio Centro, Catanzaro, Napoli, Italy
| | - Carmen Spaccarotella
- Center of Cardiovascular Research, University Magna Graecia, Mediterranea Cardio Centro, Catanzaro, Napoli, Italy
| | - Daniela Concolino
- Dipartimento di Scienze della Salute, University Magna Græcia, Catanzaro, Italy
| | - Ciro Indolfi
- Dipartimento di Scienze Mediche e Chirurgiche, University Magna Græcia, Catanzaro, Italy.,Center of Cardiovascular Research, University Magna Graecia, Mediterranea Cardio Centro, Catanzaro, Napoli, Italy
| | - Agostino Gnasso
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, Viale Europa Località Germaneto, 88100, Catanzaro, Italy.
| |
Collapse
|
44
|
Hu X, Li H, Chen X, Liu H, Zuo W, Zhang Y, Zhang S. Plasma concentration of receptor-interacting protein kinase-3 as a potential biomarker for diagnosis and prognosis in heart failure. Clin Chim Acta 2020; 509:273-279. [PMID: 32598878 DOI: 10.1016/j.cca.2020.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Receptor-interacting serine-threonine kinase 3 (RIP3) is a key mediator of programmed necrosis (necroptosis), and is implicated in cardiac remodeling and heart failure (HF) triggered by ischemia-reperfusion or oxidative stress in animal study. However, its value in the diagnosis and prognosis of human HF remains unclear. METHODS Plasma RIP3 concentrations in 91 HF patients and 95 healthy volunteers were detected by enzyme-linked immunosorbent assay (ELISA). A receiver operating characteristic (ROC) curve was generated to evaluate the diagnostic value of RIP3. Follow-up was conducted, and the composite endpoint was defined as all-cause mortality/readmission due to decompensated HF/worse New York Heart Association (NYHA) functional class. The relationship between RIP3 and patient outcome was examined. RESULTS Plasma concentrations of RIP3 were significantly increased in patients with HF compared to controls (P < 0.001). ROC analysis supported plasma RIP3 as a good diagnostic marker for HF, with an optimal cutoff value of 357 pg/ml (AUC = 0.934, sensitivity = 0.846, specificity = 0.905). Kaplan-Meier survival analysis also supported increased plasma RIP3 as a predictor for a poor prognosis in HF (cutoff value = 622.2 pg/ml, P < 0.05). Additionally, binary logistic regression analysis revealed RIP3 to be an independent risk factor for all-cause mortality (OR = 11.844, P = 0.02), worse NYHA (OR = 9.013, P = 0.009) and a composite endpoint (OR = 5.065, P = 0.013). CONCLUSIONS Plasma concentration of RIP3 is significantly elevated in HF and associated with the prognosis. Plasma RIP3 possibly constitutes a valuable diagnostic and prognostic biomarker for HF.
Collapse
Affiliation(s)
- Xiaomin Hu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730 Beijing, China
| | - Hanyu Li
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730 Beijing, China
| | - Xi Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730 Beijing, China
| | - Honghong Liu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730 Beijing, China
| | - Wei Zuo
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730 Beijing, China
| | - Yan Zhang
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, 100083 Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, 100083 Beijing, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730 Beijing, China.
| |
Collapse
|
45
|
Xiao P, Wang C, Li J, Su H, Yang L, Wu P, Lewno MT, Liu J, Wang X. COP9 Signalosome Suppresses RIPK1-RIPK3-Mediated Cardiomyocyte Necroptosis in Mice. Circ Heart Fail 2020; 13:e006996. [PMID: 32578441 DOI: 10.1161/circheartfailure.120.006996] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mechanisms governing the induction of heart failure by the impairment of autophagy and the ubiquitin-proteasome system and the molecular pathways to cardiomyocyte necrosis remain incompletely understood. COPS8 is an essential subunit of the COP9 (COnstitutive Photomorphogenesis 9) signalosome, a key regulator of ubiquitination. Mice with cardiomyocyte-restricted knockout of Cops8 (Cops8-cko) show autophagic and ubiquitin-proteasome system malfunction and massive cardiomyocyte necrosis followed by acute heart failure and premature death, providing an excellent animal model to address the mechanistic gaps specified above. This study was conducted to determine the nature and underlying mechanisms of the cardiomyocyte necrosis in Cops8-cko mice. METHODS AND RESULTS Compared with littermate control mice, myocardial protein levels of key factors in the necroptotic pathway (RIPK1 [receptor-interacting protein kinase 1], RIPK3, MLKL [mixed lineage kinase-like], the RIPK1-bound RIPK3), protein carbonyls, full-length Casp8 (caspase 8), and BCL2, as well as histochemical staining of superoxide anions were significantly higher but the cleaved Casp8 and the Casp8 activity were significantly lower in Cops8-cko mice. In vivo cardiomyocyte uptake of Evan's blue dye was used as an indicator of necrosis. Cops8-cko mice treated with a RIPK1 kinase inhibitor (Nec-1 [Necrostatin-1]) showed less Evans blue dye uptake (0.005% versus 0.20%; P<0.0001) and longer median lifespan (32.5 versus 27 days; P<0.01) than those treated with vehicle control. RIPK3 haploinsufficiency showed similar rescuing effects on Cops8-cko but Cyclophilin D deficiency did the opposite. CONCLUSIONS Cardiac Cops8/COP9 signalosome malfunction causes RIPK1-RIPK3 dependent, but mitochondrial permeability transition pore independent, cardiomyocyte necroptosis in mice and the COP9 signalosome plays an indispensable role in suppressing cardiomyocyte necroptosis.
Collapse
Affiliation(s)
- Peng Xiao
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD (P.X., C.W., J. Li, H.S., L.Y., P.W., M.T.L., X.W.)
| | - Changhua Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD (P.X., C.W., J. Li, H.S., L.Y., P.W., M.T.L., X.W.)
| | - Jie Li
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD (P.X., C.W., J. Li, H.S., L.Y., P.W., M.T.L., X.W.).,Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA (J. Li, H.S.)
| | - Huabo Su
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD (P.X., C.W., J. Li, H.S., L.Y., P.W., M.T.L., X.W.).,Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA (J. Li, H.S.)
| | - Liuqing Yang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD (P.X., C.W., J. Li, H.S., L.Y., P.W., M.T.L., X.W.)
| | - Penglong Wu
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD (P.X., C.W., J. Li, H.S., L.Y., P.W., M.T.L., X.W.).,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, China (P.W., J. Liu)
| | - Megan T Lewno
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD (P.X., C.W., J. Li, H.S., L.Y., P.W., M.T.L., X.W.)
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, China (P.W., J. Liu)
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD (P.X., C.W., J. Li, H.S., L.Y., P.W., M.T.L., X.W.)
| |
Collapse
|
46
|
Zeng J, Jin Q, Ruan Y, Sun C, Xu G, Chu M, Ji K, Wu L, Li L. Inhibition of TGFβ-activated protein kinase 1 ameliorates myocardial ischaemia/reperfusion injury via endoplasmic reticulum stress suppression. J Cell Mol Med 2020; 24:6846-6859. [PMID: 32378287 PMCID: PMC7299680 DOI: 10.1111/jcmm.15340] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor β-activated protein kinase 1 (TAK1) involves in various biological responses and is a key regulator of cell death. However, the role of TAK1 on acute myocardial ischaemia/reperfusion (MI/R) injury is unknown. We observed that TAK1 activation increased significantly after MI/R and hypoxia/reoxygenation (H/R), and we hypothesized that TAK1 has an important role in MI/R injury. Mice (TAK1 inhibiting by 5Z-7-oxozeaenol or silencing by AAV9 vector) were exposed to MI/R injury. Primary cardiomyocytes (TAK1 silencing by siRNA; and overexpressing TAK1 by adenovirus vector) were used to induce H/R injury model in vitro. Inhibition of TAK1 significantly decreased MI/R-induced myocardial infarction area, reduced cell death and improved cardiac function. Mechanistically, TAK1 silencing suppressed MI/R-induced myocardial oxidative stress and attenuated endoplasmic reticulum (ER) stress both in vitro and in vivo. In addition, the inhibition of ROS by NAC partially reversed the damage of TAK1 in vitro. Our study presents the first direct evidence that inhibition of TAK1 mitigated MI/R injury, and TAK1 mediated ROS/ER stress/apoptosis signal pathway is important for the pathogenesis of MI/R injury.
Collapse
Affiliation(s)
- Jingjing Zeng
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Qike Jin
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yongxue Ruan
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Changzheng Sun
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Guangyu Xu
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Maoping Chu
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Kangting Ji
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Lianpin Wu
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Lei Li
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
47
|
Higher Epoxyeicosatrienoic Acids in Cardiomyocytes-Specific CYP2J2 Transgenic Mice Are Associated with Improved Myocardial Remodeling. Biomedicines 2020; 8:biomedicines8060144. [PMID: 32486275 PMCID: PMC7344501 DOI: 10.3390/biomedicines8060144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 02/02/2023] Open
Abstract
Elevated cis-epoxyeicosatrienoic acids (EETs) are known to be cardioprotective during ischemia-reperfusion injury in cardiomyocyte-specific overexpressing cytochrome P450 2J2 (CYP2J2) transgenic (Tr) mice. Using the same Tr mice, we measured changes in cardiac and erythrocyte membranes EETs following myocardial infarction (MI) to determine if they can serve as reporters for cardiac events. Cardiac function was also assessed in Tr vs. wild-type (WT) mice in correlation with EET changes two weeks following MI. Tr mice (N = 25, 16 female, nine male) had significantly higher cardiac cis- and trans-EETs compared to their WT counterparts (N = 25, 18 female, seven male). Total cardiac cis-EETs in Tr mice were positively correlated with total cis-EETs in erythrocyte membrane, but there was no correlation with trans-EETs or in WT mice. Following MI, cis- and trans-EETs were elevated in the erythrocyte membrane and cardiac tissue in Tr mice, accounting for the improved cardiac outcomes observed. Tr mice showed significantly better myocardial remodeling following MI, evidenced by higher % fractional shortening, smaller infarct size, lower reactive oxygen species (ROS) formation, reduced fibrosis and apoptosis, and lower pulmonary edema. A positive correlation between total cardiac cis-EETs and total erythrocyte membrane cis-EETs in a Tr mouse model suggests that erythrocyte cis-EETs may be used as predictive markers for cardiac events. All cis-EET regioisomers displayed similar trends following acute MI; however, the magnitude of change for each regioisomer was markedly different, warranting measurement of each individually.
Collapse
|
48
|
Implications of the complex biology and micro-environment of cardiac sarcomeres in the use of high affinity troponin antibodies as serum biomarkers for cardiac disorders. J Mol Cell Cardiol 2020; 143:145-158. [PMID: 32442660 PMCID: PMC7235571 DOI: 10.1016/j.yjmcc.2020.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023]
Abstract
Cardiac troponin I (cTnI), the inhibitory-unit, and cardiac troponin T (cTnT), the tropomyosin-binding unit together with the Ca-binding unit (cTnC) of the hetero-trimeric troponin complex signal activation of the sarcomeres of the adult cardiac myocyte. The unique structure and heart myocyte restricted expression of cTnI and cTnT led to their worldwide use as biomarkers for acute myocardial infarction (AMI) beginning more than 30 years ago. Over these years, high sensitivity antibodies (hs-cTnI and hs-cTnT) have been developed. Together with careful determination of history, physical examination, and EKG, determination of serum levels using hs-cTnI and hs-cTnT permits risk stratification of patients presenting in the Emergency Department (ED) with chest pain. With the ability to determine serum levels of these troponins with high sensitivity came the question of whether such measurements may be of diagnostic and prognostic value in conditions beyond AMI. Moreover, the finding of elevated serum troponins in physiological states such as exercise and pathological states where cardiac myocytes may be affected requires understanding of how troponins may be released into the blood and whether such release may be benign. We consider these questions by relating membrane stability to the complex biology of troponin with emphasis on its sensitivity to the chemo-mechanical and micro-environment of the cardiac myocyte. We also consider the role determinations of serum troponins play in the precise phenotyping in personalized and precision medicine approaches to promote cardiac health. Serum levels of cardiac TnI and cardiac TnT permit stratification of patients with chest pain. Release of troponins into blood involves not only frank necrosis but also programmed necroptosis. Genome wide analysis of serum troponin levels in the general population may be prognostic about cardiovascular health. Significant levels of serum troponins with exhaustive exercise may not be benign. Troponin in serum can lead to important data related to personalized and precision medicine.
Collapse
|
49
|
Yang JJ, Zhang XH, Ma XH, Duan WJ, Xu NG, Chen YJ, Liang L. Astragaloside IV enhances GATA-4 mediated myocardial protection effect in hypoxia/reoxygenation injured H9c2 cells. Nutr Metab Cardiovasc Dis 2020; 30:829-842. [PMID: 32278611 DOI: 10.1016/j.numecd.2020.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM The transcription factor GATA-4 plays an important role in myocardial protection. Astragaloside IV (Ast-IV) was reported with the effects on improving cardiac function after ischemia. In this study, we explored how Ast-IV interacts with GATA-4 to protect myocardial cells H9c2 against Hypoxia/Reoxygenation (H/R) stress. METHODS AND RESULTS H9c2 cells were cultured under the H/R condition. Various cell activity and morphology assays were used to assess the rates of apoptosis and autophagy. In these H/R injured H9c2 cells, increased apoptosis (P < 0.01) and autophagosome number (P < 0.01) were observed, and the addition of Ast-IV ameliorated this tendency. Mechanistically, we used the RT-qPCR and Western blot to evaluate the expressions of various molecules. The results showed that Ast-IV treatment upregulated gene expression of GATA-4 (P < 0.01) and the survival factors (Bcl-2, P < 0.05; p62, P < 0.01), but suppressed apoptosis and autophagy related genes (PARP, Caspase-3, Beclin-1, and LC3-II; All P < 0.01). Furthermore, overexpressing of GATA-4 by its agonist phenylephrine can also protect H/R injured H9c2 cells, and the addition of Ast-IV further enhanced this protection of GATA-4. In contrast, silencing GATA-4 expression abolished the H/R protection of Ast-IV, which demonstrated that the myocardial protection of Ast-IV is mediated by GATA-4. Lastly, along with GATA overexpression, enhanced interactions between Bcl-2 and Beclin-1 were detected by Chromatin immunoprecipitation (P < 0.01). CONCLUSION Ast-IV rescued the H/R injury induced apoptosis and autophagy in H9c2 cells. Ast-IV treatment can stimulate the overexpression of GATA-4, and further enhanced the myocardial protection effect of GATA-4.
Collapse
Affiliation(s)
- Jing-Jing Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Pharmacy Department, Huizhou Traditional Chinese Medical Hospital, Huizhou, 516000, China
| | - Xu-Hui Zhang
- Second Department of Oncology, Guangdong Second Provincial General Hospital, 466 Xingangzhong Road, Guangzhou, 510317, China
| | - Xiao-Hui Ma
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Neng-Gui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yong-Jun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lei Liang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
50
|
Yin W, Wang C, Peng Y, Yuan W, Zhang Z, Liu H, Xia Z, Ren C, Qian J. Dexmedetomidine alleviates H 2O 2-induced oxidative stress and cell necroptosis through activating of α2-adrenoceptor in H9C2 cells. Mol Biol Rep 2020; 47:3629-3639. [PMID: 32342432 DOI: 10.1007/s11033-020-05456-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/10/2020] [Indexed: 12/26/2022]
Abstract
Oxidative stress induced necroptosis is important in myocardial ischemia/reperfusion injury. Dexmedetomidine (Dex), an α2-adrenoceptor (α2-AR) agonist, has protective effect on oxidative stress induced cell apoptosis, but effects of Dex and Dex-mediated α2-AR activation on oxidant induced necroptosis was unclear. H9C2 cardiomyocytes were pre-treated with or without Dex and α2-AR antagonist yohimbine hydrochloride (YOH) before being exposed to H2O2 to induce oxidative cellular damage. Cell viability and lactate dehydrogenase (LDH) were detected by ELISA kits, protein expressions of Heme Oxygenase 1(HO-1), receptor interacting protein kinase 1 (RIPK1) and receptor interacting protein kinase 3 (RIPK3) were observed by WB, and TUNEL was used to detected cell apoptosis. H2O2 significantly decreased cell viability and increased LDH release and necroptotic and apoptotic cell deaths (all p < 0.05, H2O2 vs. Control). Dex preconditioning alleviated these injuries induced by H2O2. Dex preconditioning significantly increased expression of protein HO-1 and decreased expressions of proteins RIPK1 and RIPK3 induced by H2O2, while all these protective effects of Dex were reversed by YOH (all p < 0.05, Dex + H2O2 vs. H2O2; and YOH + Dex + H2O2 vs. Dex + H2O2). However, YOH did not prevent this protective effect of Dex against H2O2 induced apoptosis (YOH + Dex + H2O2 vs. Dex + H2O2, p > 0.05). These findings indicated that Dex attenuates H2O2 induced cardiomyocyte necroptotic and apoptotic cell death respectively dependently and independently of α2-AR activation.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Department of Anesthesiology, Sichuan Provincial Orthopedic Hospital, Chengdu, 610041, Sichuan, China
| | - Chunyan Wang
- Department of Anesthesiology, Shenzhen People's Hospital and Shenzhen Anesthesiology Engineering Center, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Yue Peng
- Department of Anesthesiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518034, China
| | - Wenlin Yuan
- Department of Anesthesiology, Shenzhen People's Hospital and Shenzhen Anesthesiology Engineering Center, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Zhongjun Zhang
- Department of Anesthesiology, Shenzhen People's Hospital and Shenzhen Anesthesiology Engineering Center, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Hong Liu
- Department of Anaesthesiology and Pain Medicine, University of California Davis Health System, Sacramento, CA, USA
| | - Zhengyuan Xia
- Department of Anaesthesiology and Pain Medicine, University of California Davis Health System, Sacramento, CA, USA
| | - Congcai Ren
- Department of Anesthesiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518034, China.
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|