1
|
Liu Q, Pan L, He H, Hu Y, Tu J, Zhang L, Sun Z, Cui Z, Han X, Huang H, Lin B, Fan Y, Ji Y, Shan G. Effects of long-term exposure to air pollutant mixture on blood pressure in typical areas of North China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:116987. [PMID: 39299210 DOI: 10.1016/j.ecoenv.2024.116987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Studies about the combined effects of gaseous air pollutants and particulate matters are still rare. OBJECTIVES This study was performed based on baseline survey of the Diverse Life-Course Cohort in the Beijing-Tianjin-Hebei (BTH) Region of North China to evaluate the association of long-term air pollutants with blood pressure and the combined effect of the air pollutants mixture among 32821 natural han population aged 20 years or above. METHODS Three-year average exposure to air pollutants (PM10, PM2.5, PM1, O3, SO2, NO2, and CO) and PM2.5 components [black carbon (BC), ammonium (NH4+), nitrate (NO3-), sulfate (SO42-), and organic matter (OM)] of residential areas were calculated based on well-validated models. Generalized linear mixed models (GLMMs) were used to estimate the associations of air pollutants exposure with the systolic blood pressure (SBP), diastolic blood pressure (DBP), Mean arterial pressure (MAP), pulse pressure (PP) and prevalent hypertension. Quantile g-Computation and Bayesian Kernel Machine Regression (BKMR) were employed to assess the combined effect of the air pollutant mixture. RESULTS We found that long-term exposures of O3, PM2.5, and PM2.5 components were stably and strongly associated with elevated SBP, DBP, and MAP and prevalent hypertension. O3 increased SBP, DBP, and MAP at a similar extent, but with greater effects; while, PM2.5 and PM2.5 components had a greater impact on SBP than DBP, which increased PP simultaneously. In multi-pollutant models, the combined effects of the air pollutant mixture on blood pressure and prevalent hypertension was predominantly influenced by O3, PM2.5, and O3, OM in different models, respectively. For example, O3, PM2.5 contributed 57.25 %, 39.22 % of the positive combined effect of the air pollutant mixture on SBP; and O3, OM positively contributed 70.00 %, 30.00 % on prevalent hypertension, respectively. There were interactions between O3, CO, SO2 and PM2.5 components on hbp, SBP and PP. CONCLUSIONS The results showed positive associations of air pollutant mixtures with blood pressure, where O3 and PM2.5 (especially OM) might be primary contributors. There were interactions between gaseous air pollutants and PM2.5 components on blood pressure and prevalent hypertension.
Collapse
Affiliation(s)
- Qihang Liu
- Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Li Pan
- Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Huijing He
- Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Yaoda Hu
- Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Ji Tu
- Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Ze Cui
- Hebei Provicel Center for diseases prevention and control, Shijiazhuang, Hebei, China
| | - Xiaoyan Han
- Chaoyang District Center for Disease Control and Prevention, Beijing, China
| | - Haibo Huang
- Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Binbin Lin
- Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Yajiao Fan
- Department of Preventive Medicine, School of Public Health, Hebei University, Baoding, Hebei, China
| | - Yanxin Ji
- Baoding Center for Disease Control and Prevention, Hebei, China
| | - Guangliang Shan
- Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China.
| |
Collapse
|
2
|
Buwaniwal A, Sharma V, Gupta G, Rohj S, Kansal S. Long term analysis of air quality parameters for Ludhiana, India: sources, trends and health impact. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:432. [PMID: 39316208 DOI: 10.1007/s10653-024-02200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Ludhiana, a pollution hot spot in North India, has seen a rapid deterioration in air quality over the years due to urbanization and industrialization. This study interprets the variations of particulate matter (PM) and gaseous pollutants (Nitrogen oxide, Nitrogen dioxide, NOX, Sulphur dioxide, Carbon monoxide, Benzene, Toluene, Ozone, and Ammonia) for the data observed from 2017 to 2023 in Ludhiana. This also covers the analysis focused on capturing the changes that occurred at the times of lockdown imposed during the Coronavirus Disease (COVID-19). The maximum 24-h averaged mass concentration values exceeded the National Ambient Air Quality Standards (NAAQS) of 100 µg/m3 for PM10 concentration and 60 µg/m3 for PM2.5 concentration in 2018 by the factor of 5 and 8. With the onset of the COVID-19 lockdown in 2020 year, PM10 and PM2.5 reached the minimum level while CO, T, O3, and NO2 increased by the factor of 3.9, 1.9, 1.4, and 1.3 from their previous year. This NO2 is a precursor of ozone formation, a higher NO2 to NO ratio observed during the lockdown, confirms the role of nitrogen compounds in the higher ozone formation rate. Based on the NO2/NO ratio, the probability rate of ozone formation determined using survival analysis is observed to be 94% from 2017 to 2023. The local sources' contribution to these air pollutants during Pre-Lockdown, Lockdown, and Post-Lockdown are analyzed using principal component analysis. The impact of the lockdown on ozone concentration sources has been observed. During the Pre- and Post-Lockdown phases, three sources (PC1, PC2, and PC3) were positively identified. Ozone levels are linked to PC3 in these phases, but during the lockdown, a negative loading in PC3 and positive loadings in PC1 and PC2 indicate a decrease in ozone from reduced emissions and an increase from secondary reactions involving nitrogen compounds. Moreover, the Toluene to Benzene concentration ratio is > 2, indicating the source of their origin from industrial emission or other non-traffic sources. Health assessment for the years 2017-2019 reveals a significant decrease in the number of cases of all-cause mortality, ischemic heart disease, stroke, and chronic obstructive pulmonary disease associated with reducing PM2.5 concentrations to national and international standards.
Collapse
Affiliation(s)
- Ankita Buwaniwal
- Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Veena Sharma
- Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Gagan Gupta
- Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India.
| | - Sumit Rohj
- Indian Institute of Management, Uttar Pradesh, Lucknow, 226013, India
| | - Sandeep Kansal
- Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| |
Collapse
|
3
|
Wang W, Wen H, Zhao C, Ma X, Liao J, Ma L. Green space modified the association between air pollutants and hypertension in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3232-3244. [PMID: 38171020 DOI: 10.1080/09603123.2023.2300047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Evidence regarding the combined effects of green space and air pollutants on hypertension remains limited and complex. This study aims to investigate the varying effects of greenness under different air pollution levels in China, using data from the wave 2018 China Health and Retirement Longitudinal Study (CHARLS) involving 17 468 adults (aged ≥ 45 years). As a result, the prevalence rate of hypertension was 42.04%. Logistic regression analyses revealed the positive associations between air pollution concentrations at the city level and prevalent hypertension and the negative associations between NDVI and prevalent hypertension, all of which were more prominent in the populations of the eastern and rural regions. Notably, the negative effect of green space was greater at the lowest quartiles of each air pollutant (OR for PM2.5 quartiles = 0.724, 0.792, 0.740, and 0.931) . Improving air quality and greenness could potentially reduce hypertension risk, and minimizing air pollution might optimize the protective effects of greenness.
Collapse
Affiliation(s)
- Wanyue Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, PR China
| | - Haoxuan Wen
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, PR China
| | - Chuanyu Zhao
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, PR China
| | - Xuxi Ma
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, PR China
| | - Jingling Liao
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, PR China
| | - Lu Ma
- Department of Biostatistics, School of Public Health, Wuhan University, Wuhan, PR China
| |
Collapse
|
4
|
Abulikemu A, Zhang X, Su X, Meng T, Su W, Shi Q, Yu T, Niu Y, Yu H, Yuan H, Zhou C, Yang H, Zhang Y, Wang Y, Dai Y, Duan H. Particulate matter, polycyclic aromatic hydrocarbons and metals, platelet parameters and blood pressure alteration: Multi-pollutants study among population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173657. [PMID: 38838997 DOI: 10.1016/j.scitotenv.2024.173657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Epidemiological findings have determined the linkage of fine particulate matter (PM2.5) and the morbidity of hypertension. However, the mode of action and specific contribution of PM2.5 component in the blood pressure elevation remain unclear. Platelets are critical for vascular homeostasis and thrombosis, which may be involved in the increase of blood pressure. Among 240 high-PM2.5 exposed, 318 low-PM2.5 exposed workers in a coking plant and 210 workers in the oxygen plant and cold-rolling mill enrolled in present study, both internal and external exposure characteristics were obtained, and we performed linear regression, adaptive elastic net regression, quantile g-computation and mediation analyses to analyze the relationship between urine metabolites of polycyclic aromatic hydrocarbons (PAHs) and metals fractions with platelets indices and blood pressure indicators. We found that PM2.5 exposure leads to increased systolic blood pressure (SBP) and pulse pressure (PP). Specifically, for every 10 μg/m3 increase in PM2.5, there was a 0.09 mmHg rise in PP. Additionally, one IQR increase in urinary 1-hydroxypyrene (1.06 μmol/mol creatinine) was associated with a 3.43 % elevation in PP. Similarly, an IQR increment of urine cobalt (2.31 μmol/mol creatinine) was associated with a separate 1.77 % and 4.71 % elevation of SBP and PP. Notably, platelet-to-lymphocyte ratio (PLR) played a mediating role in the elevation of SBP and PP induced by cobalt. Our multi-pollutants results showed that PAHs and cobalt were deleterious contributors to the elevated blood pressure. These findings deepen our understanding of the cardiovascular effects associated with PM2.5 constituents, highlighting the importance of increased vigilance in monitoring and controlling the harmful components in PM2.5.
Collapse
Affiliation(s)
- Alimire Abulikemu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuewei Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xizi Su
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Meng
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Wenge Su
- Laigang Hospital Affiliated to Taishan Medical University, Jinan, China
| | - Qiwei Shi
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Tao Yu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haitao Yu
- Laigang Hospital Affiliated to Taishan Medical University, Jinan, China
| | - Huige Yuan
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cailan Zhou
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haoying Yang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yanhua Wang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yufei Dai
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huawei Duan
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
5
|
Zhu G, Wen Y, Liang J, Wang T. Effect modification of diet and vitamins on the association between air pollution particles of different diameters and hypertension: A 12-year longitudinal cohort study in densely populated areas of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172222. [PMID: 38588735 DOI: 10.1016/j.scitotenv.2024.172222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Particulate matter (PM) is identified as one of the exacerbating and triggering factors for hypertension. Diet intake and the consumption of vitamins may potentially moderate the impact of PM on hypertension. METHODS A 12-year longitudinal cohort study was conducted on a population in densely populated areas of China. Residual balancing with weighted methods was employed to control for time-varying and no time-varying confounding factors. Stratified Cox proportional hazards models were conducted to examine the moderating effects of diet and vitamins on the risk of hypertension with PM. RESULTS There was a significant positive association between long-term exposure to different diameter PM and the risk of developing hypertension. The hazard ratios (HRs) for hypertension were 1.0200 (95 % CIs: 1.0147, 1.0253) for PM1, 1.0120 (95 % CIs: 1.0085, 1.0155) for PM2.5, and 1.0074 (95 % CIs, 1.0056, 1.0092) for PM10. The diet and vitamins moderated these associations, the intake of healthy foods and vitamins exhibited a significant positive moderating effect on the relationship between PM exposure and hypertension risk. Among all participants, the high intake of fruit (PM1 (HRs: 1.0102, 95 % CIs: 1.0024, 1.0179), PM2.5 (HRs: 1.0060, 95 % CIs: 1.0011, 1.0109), and PM10 (HRs: 1.0044, 95 % CIs: 1.0018, 1.0070)) and vitamin E (PM1 (HRs: 1.0143, 95 % CIs: 1.0063, 1.0223), PM2.5 (HRs:1.0179, 95 % CIs: 1.0003, 1.0166), and PM10 (HRs: 1.0042, 95 % CIs: 1.0008, 1.0075)) with lower risk of hypertension than the overall level and low intake of related foods and vitamins, exhibited a strong positive moderating effect on the relationship between PM and hypertension. Similar trends were observed for the intake of fish, root food, whole grains, eggs, fungus food, vitamin B2, B3. However, Na, meat, sugary and alcoholic exhibited opposite trends. The moderating effect of vitamin E intake was stronger than vitamin B and C. CONCLUSIONS Diet and vitamins intake may moderate the association between PM exposure and the risk of hypertension in adults.
Collapse
Affiliation(s)
- Guiming Zhu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Yanchao Wen
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Jie Liang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China.
| |
Collapse
|
6
|
Wu R, Kang N, Zhang C, Song Y, Liao W, Hong Y, Hou J, Zhang K, Tian H, Lin H, Wang C. Long-term exposure to PM 2.5 and its components is associated with elevated blood pressure and hypertension prevalence: Evidence from rural adults. J Adv Res 2024; 60:173-181. [PMID: 37517519 PMCID: PMC11156605 DOI: 10.1016/j.jare.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023] Open
Abstract
INTRODUCTION The toxicity of fine particulate matter (PM2.5) is determined by its components, while the evidence regarding associations of PM2.5 components with blood pressure (BP) is limited, especially in rural areas. OBJECTIVES This study aimed to explore the associations of PM2.5 and its chemical components with systolic BP (SBP), diastolic BP (DBP), pulse pressure (PP), mean artery pressure (MAP) levels and hypertension prevalence, and to identify key components in Chinese rural areas. METHODS 39,211 adults from the Henan Rural Cohort were included during 2015-2017. Different periods of PM2.5 and chemical components were estimated by hybrid satellite model. The single-pollutant, component-PM2.5 model, component-residual model and component-proportion model were applied to explore the associations of pollutants with BP levels and hypertension prevalence. Exposure-response (E-R) relationships, stratified analyses and sensitivity analyses were used to explore these associations further. RESULTS 12,826 (32.71%) were identified with hypertension. For each 1 μg/m3 increase of pollutants, the adjusted odds ratio (OR) for hypertension prevalence was 1.03 for PM2.5 mass, 1.40 for BC, 1.16 for NH4+, 1.08 for NO3-, 1.17 for OM, 1.12 for SO42- and 1.25 for SOIL in the single-pollutant model. BC and SOIL were statistically significant in the component-PM2.5 model, component-residual model and component-proportion model. Similarly, associations of these pollutants with elevated BP levels were also found in aforementioned four models. These pollutants produced a stronger association with SBP than DBP, PP and MAP. Most of associations were non-linear in E-R relationships. The groups of older, the men, with lower per capita monthly income, lower educational level and higher BMI were more vulnerable to these pollutants in stratified analyses. The results remained stable in sensitivity analyses. CONCLUSION Long-term exposure to PM2.5 and its components, especially BC and SOIL, was associated with elevated BP and hypertension prevalence in rural adults, and decreasing pollutants may provide additional benefits.
Collapse
Affiliation(s)
- Ruiyu Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Caiyun Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu Song
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yueling Hong
- Department of Zhengzhou Center for Disease Control and Prevention, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY, USA
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing, PR China
| | - Hualiang Lin
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
7
|
Oshidari Y, Salehi M, Kermani M, Jonidi Jafari A. Associations between long-term exposure to air pollution, diabetes, and hypertension in metropolitan Iran: an ecologic study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2476-2490. [PMID: 37674318 DOI: 10.1080/09603123.2023.2254713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Epidemiological studies on air pollution, diabetes, and hypertension conflict. This study examined air pollution, diabetes, and hypertension in adults in 11 metropolitan areas of Iran (2012-2016). Local environment departments and the Tehran Air Quality Control Company provided air quality data. The VIZIT website and Stepwise Approach to Chronic Disease Risk Factor Surveillance study delivered chronic disease data. Multiple logistic regression and generalized estimating equations evaluated air pollution-related diabetes and hypertension. In Isfahan, Ahvaz, and Tehran, PM2.5 was linked to diabetes. In all cities except Urmia, Yasuj, and Yazd, PM2.5 was statistically related to hypertension. O3 was connected to hypertension in Ahvaz, Tehran, and Shiraz, whereas NO2 was not. BMI and gender predict hypertension and diabetes. Diabetes, SBP, and total cholesterol were correlated. Iran's largest cities' poor air quality may promote diabetes and hypertension. PM2.5 impacts many cities' outcomes. Therefore, politicians and specialists have to control air pollution.
Collapse
Affiliation(s)
- Yasaman Oshidari
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Salehi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Dosh L, Ghazi M, Haddad K, El Masri J, Hawi J, Leone A, Basset C, Geagea AG, Jurjus R, Jurjus A. Probiotics, gut microbiome, and cardiovascular diseases: An update. Transpl Immunol 2024; 83:102000. [PMID: 38262540 DOI: 10.1016/j.trim.2024.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Cardiovascular diseases (CVD) are one of the most challenging diseases and many factors have been demonstrated to affect their pathogenesis. One of the major factors that affect CVDs, especially atherosclerosis, is the gut microbiota (GM). Genetics play a key role in linking CVDs with GM, in addition to some environmental factors which can be either beneficial or harmful. The interplay between GM and CVDs is complex due to the numerous mechanisms through which microbial components and their metabolites can influence CVDs. Within this interplay, the immune system plays a major role, mainly based on the immunomodulatory effects of microbial dysbiosis and its resulting metabolites. The resulting modulation of chronic inflammatory processes was found to reduce the severity of CVDs and to maintain cardiovascular health. To better understand the specific roles of GM-related metabolites in this interplay, this review presents an updated perspective on gut metabolites related effects on the cardiovascular system, highlighting the possible benefits of probiotics in therapeutic strategies.
Collapse
Affiliation(s)
- Laura Dosh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Maya Ghazi
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Karim Haddad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| | - Jihad Hawi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, Lebanon.
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Charbel Basset
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Alice Gerges Geagea
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
9
|
Liu CX, Liu YB, Peng Y, Peng J, Ma QL. Causal effect of air pollution on the risk of cardiovascular and metabolic diseases and potential mediation by gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169418. [PMID: 38104813 DOI: 10.1016/j.scitotenv.2023.169418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Epidemiological studies have explored the relationship between air pollution and cardiovascular and metabolic diseases (CVMDs). Accumulating evidence has indicated that gut microbiota deeply affects the risk of CVMDs. However, the findings are controversial and the causality remains uncertain. To evaluate whether there is the causal association of four air pollutants with 19 CVMDs and the potential effect of gut microbiota on these relationships. METHODS Genetic instruments for particulate matter (PM) with aerodynamic diameter < 2.5 μm (PM2.5), <10 μm (PM10), PM2.5 absorbance, nitrogen oxides (NOx) and 211 gut microbiomes were screened. Univariable Mendelian randomization (UVMR) was used to estimate the causal effect of air pollutants on CVMDs in multiple MR methods. Additionally, to account for the phenotypic correlation among pollutant, the adjusted model was constructed using multivariable Mendelian randomization (MVMR) analysis to strength the reliability of the predicted associations. Finally, gut microbiome was assessed for the mediated effect on the associations of identified pollutants with CVMDs. RESULTS Causal relationships between NOx and angina, heart failure and hypercholesterolemia were observed in UVMR. After adjustment for air pollutants in MVMR models, the genetic correlations between PM2.5 and hypertension, type 2 diabetes mellitus (T2DM) and obesity remained significant and robust. In addition, genus-ruminococcaceae-UCG003 mediated 7.8 % of PM2.5-effect on T2DM. CONCLUSIONS This study firstly provided the genetic evidence linking air pollution to CVMDs and gut microbiota may mediate the association of PM2.5 with T2DM. Our findings highlight the significance of air quality in CVMDs risks and suggest the potential of modulating intestinal microbiota as novel therapeutic targets between air pollution and CVMDs.
Collapse
Affiliation(s)
- Chen-Xi Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, Hunan 410008, China
| | - Yu-Bo Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, Hunan 410008, China
| | - Yi Peng
- Department of Rheumatology and Immunology (T.X.), Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, Hunan 410008, China
| | - Jia Peng
- Department of Cardiovascular Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, Hunan 410008, China.
| | - Qi-Lin Ma
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, Hunan 410008, China.
| |
Collapse
|
10
|
Xia Z, Liu Y, Liu C, Dai Z, Liang X, Zhang N, Wu W, Wen J, Zhang H. The causal effect of air pollution on the risk of essential hypertension: a Mendelian randomization study. Front Public Health 2024; 12:1247149. [PMID: 38425468 PMCID: PMC10903282 DOI: 10.3389/fpubh.2024.1247149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Background Air pollution poses a major threat to human health by causing various illnesses, such as cardiovascular diseases. While plenty of research indicates a correlation between air pollution and hypertension, a definitive answer has yet to be found. Methods Our analyses were performed using the Genome-wide association study (GWAS) of exposure to air pollutants from UKB (PM2.5, PM10, NO2, and NOX; n = 423,796 to 456,380), essential hypertension from FinnGen (42,857 cases and 162,837 controls) and from UKB (54,358 cases and 408,652 controls) as a validated cohort. Univariable and multivariable Mendelian randomization (MR) were conducted to investigate the causal relationship between air pollutants and essential hypertension. Body mass index (BMI), alcohol intake frequency, and the number of cigarettes previously smoked daily were included in multivariable MRs (MVMRs) as potential mediators/confounders. Results Our findings suggested that higher levels of both PM2.5 (OR [95%CI] per 1 SD increase in predicted exposure = 1.24 [1.02-1.53], p = 3.46E-02 from Finn; OR [95%CI] = 1.04 [1.02-1.06], p = 7.58E-05 from UKB) and PM10 (OR [95%CI] = 1.24 [1.02-1.53], p = 3.46E-02 from Finn; OR [95%CI] = 1.04 [1.02-1.06], p = 7.58E-05 from UKB) were linked to an increased risk for essential hypertension. Even though we used MVMR to adjust for the impacts of smoking and drinking on the relationship between PM2.5 exposure and essential hypertension risks, our findings suggested that although there was a direct positive connection between them, it is not present after adjusting BMI (OR [95%CI] = 1.05 [0.87-1.27], p = 6.17E-01). Based on the study, higher exposure to PM2.5 and PM10 increases the chances of developing essential hypertension, and this influence could occur through mediation by BMI. Conclusion Exposure to both PM2.5 and PM10 is thought to have a causal relationship with essential hypertension. Those impacted by substantial levels of air pollution require more significant consideration for their cardiovascular health.
Collapse
Affiliation(s)
- Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Changsha, Hunan Province, China
| | - Yinjiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan Province, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jie Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Li H, Zhao Y, Wang L, Liu H, Shi Y, Liu J, Chen H, Yang B, Shan H, Yuan S, Gao W, Wang G, Han C. Association between PM 2.5 and hypertension among the floating population in China: a cross-sectional study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:943-955. [PMID: 36919640 DOI: 10.1080/09603123.2023.2190959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Few studies have investigated the association between PM2.5 and hypertension among floating populations. We therefore examined the relationship using binary logistic regression. Each grade of increment in the annual average PM2.5 (grade one: ≤15 µg/m3; grade two: 15-25 µg/m3; grade three: 25-35 µg/m3 [Excluding 25]; grade four: ≥35 µg/m3) was associated with an increased risk of hypertension (odds ratio [OR] = 1.081, 95% confidence interval (CI): 1.034-1.129). Among the female floating population (OR = 1.114, 95% CI: 1.030-1.204), those with education level of primary school and below (OR = 1.140, 95% CI: 1.058-1.229), construction workers (OR = 1.228, 95% CI: 1.058-1.426), and those living in the eastern region of China (OR = 1.241, 95% CI: 1.145-1.346) were more vulnerable to PM2.5. These results indicate that PM2.5 is positively associated with hypertension in floating populations. Floating populations who are female, less educated, construction workers, and living in the eastern region of China are more vulnerable to the adverse impacts of PM2.5.
Collapse
Affiliation(s)
- Hongyu Li
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Yang Zhao
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- Digital Health and Stroke Program, The George Institute for Global Health, Beijing, China
| | - Luyang Wang
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Haiyun Liu
- Department of Medicine, Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Yukun Shi
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Junyan Liu
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Haotian Chen
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Baoshun Yang
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Haifeng Shan
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
- Science and Education Department, Zibo Mental Health Center, Zibo, Shandong, China
| | - Shijia Yuan
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Wenhui Gao
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Guangcheng Wang
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Chunlei Han
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
12
|
Fu L, Guo Y, Zhu Q, Chen Z, Yu S, Xu J, Tang W, Wu C, He G, Hu J, Zeng F, Dong X, Yang P, Lin Z, Wu F, Liu T, Ma W. Effects of long-term exposure to ambient fine particulate matter and its specific components on blood pressure and hypertension incidence. ENVIRONMENT INTERNATIONAL 2024; 184:108464. [PMID: 38324927 DOI: 10.1016/j.envint.2024.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Epidemiological evidence on the association of PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) and its specific components with hypertension and blood pressure is limited. METHODS We applied information of participants from the World Health Organization's (WHO) Study on Global Ageing and Adult Health (SAGE) to estimate the associations of long-term PM2.5 mass and its chemical components exposure with blood pressure (BP) and hypertension incidence in Chinese adults ≥ 50 years during 2007-2018. Generalized linear mixed model and Cox proportional hazard model were applied to investigate the effects of PM2.5 mass and its chemical components on the incidence of hypertension and BP, respectively. RESULTS Each interquartile range (IQR = 16.80 μg/m3) increase in the one-year average of PM2.5 mass concentration was associated with a 17 % increase in the risk of hypertension (HR = 1.17, 95 % CI: 1.10, 1.24), and the population attributable fraction (PAF) was 23.44 % (95 % CI: 14.69 %, 31.55 %). Each IQR μg/m3 increase in PM2.5 exposure was also related to increases of systolic blood pressure (SBP) by 2.54 mmHg (95 % CI:1.99, 3.10), and of diastolic blood pressure (DBP) by 1.36 mmHg (95 % CI: 1.04, 1.68). Additionally, the chemical components of SO42-, NO3-, NH4+, OM, and BC were also positively associated with an increased risk of hypertension incidence and elevated blood pressure. CONCLUSIONS These results indicate that long-term exposure to PM2.5 mass and its specific components may be major drivers of escalation in hypertension diseases.
Collapse
Affiliation(s)
- Li Fu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Tianhe District Center for Disease Control and Prevention, Guangzhou 510655, China
| | - Yanfei Guo
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai 200336, China; General Practice/Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Qijiong Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhiqing Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Siwen Yu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jiahong Xu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Weiling Tang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Cuiling Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jianxiong Hu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ziqiang Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Fan Wu
- Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Huang K, Jia J, Liang F, Li J, Niu X, Yang X, Chen S, Cao J, Shen C, Liu X, Yu L, Lu F, Wu X, Zhao L, Li Y, Hu D, Huang J, Liu Y, Gu D, Liu F, Lu X. Fine Particulate Matter Exposure, Genetic Susceptibility, and the Risk of Incident Stroke: A Prospective Cohort Study. Stroke 2024; 55:92-100. [PMID: 38018834 DOI: 10.1161/strokeaha.123.043812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Both genetic factors and environmental air pollution contribute to the risk of stroke. However, it is unknown whether the association between air pollution and stroke risk is influenced by the genetic susceptibilities of stroke and its risk factors. METHODS This prospective cohort study included 40 827 Chinese adults without stroke history. Satellite-based monthly fine particulate matter (PM2.5) estimation at 1-km resolution was used for exposure assessment. Based on 534 identified genetic variants from genome-wide association studies in East Asians, we constructed 6 polygenic risk scores for stroke and its risk factors, including atrial fibrillation, blood pressure, type 2 diabetes, body mass index, and triglyceride. The Cox proportional hazards model was applied to evaluate the hazard ratios and 95% CIs for the associations of PM2.5 and polygenic risk score with incident stroke and the potential effect modifications. RESULTS Over a median follow-up of 12.06 years, 3147 incident stroke cases were documented. Compared with the lowest quartile of PM2.5 exposure, the hazard ratio (95% CI) for stroke in the highest quartile group was 2.72 (2.42-3.06). Among individuals at high genetic risk, the relative risk of stroke was 57% (1.57; 1.40-1.76) higher than those at low genetic risk. Although no statistically significant interaction was found, participants with both the highest PM2.5 and high genetic risk showed the highest risk of stroke, with ≈4× that of the lowest PM2.5 and low genetic risk group (hazard ratio, 3.55 [95% CI, 2.84-4.44]). Similar upward gradients were observed in the risk of stroke when assessing the joint effects of PM2.5 and genetic risks of blood pressure, type 2 diabetes, body mass index, atrial fibrillation, and triglyceride. CONCLUSIONS Long-term exposure to PM2.5 was associated with a higher risk of incident stroke across different genetic susceptibilities. Our findings highlighted the great importance of comprehensive assessment of air pollution and genetic risk in the prevention of stroke.
Collapse
Affiliation(s)
- Keyong Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (K.H., J.J., J.L., X.N., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu)
- Key Laboratory of Cardiovascular Epidemiology (K.H., J.J., J.L., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu), Chinese Academy of Medical Sciences, Beijing, China
| | - Jiajing Jia
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (K.H., J.J., J.L., X.N., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu)
- Key Laboratory of Cardiovascular Epidemiology (K.H., J.J., J.L., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu), Chinese Academy of Medical Sciences, Beijing, China
| | - Fengchao Liang
- School of Public Health and Emergency Management (F. Liang), Southern University of Science and Technology, Shenzhen, China
| | - Jianxin Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (K.H., J.J., J.L., X.N., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu)
- Key Laboratory of Cardiovascular Epidemiology (K.H., J.J., J.L., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu), Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoge Niu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (K.H., J.J., J.L., X.N., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu)
- Key Laboratory of Cardiovascular Epidemiology (K.H., J.J., J.L., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu), Chinese Academy of Medical Sciences, Beijing, China
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, China (X.N.)
| | - Xueli Yang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, China (X.Y.)
| | - Shufeng Chen
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (K.H., J.J., J.L., X.N., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu)
- Key Laboratory of Cardiovascular Epidemiology (K.H., J.J., J.L., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu), Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Cao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (K.H., J.J., J.L., X.N., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu)
- Key Laboratory of Cardiovascular Epidemiology (K.H., J.J., J.L., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu), Chinese Academy of Medical Sciences, Beijing, China
| | - Chong Shen
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers (C.S.), Chinese Academy of Medical Sciences, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, China (C.S.)
| | - Xiaoqing Liu
- Division of Epidemiology, Guangdong Provincial People's Hospital and Cardiovascular Institute, Guangzhou, China (X. Liu)
| | - Ling Yu
- Department of Cardiology, Fujian Provincial People's Hospital, Fuzhou, China (L.Y.)
| | - Fanghong Lu
- Cardio-Cerebrovascular Control and Research Center, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China (F. Lu)
| | - Xianping Wu
- Sichuan Center for Disease Control and Prevention, Chengdu, China (X.W.)
| | - Liancheng Zhao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (K.H., J.J., J.L., X.N., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu)
- Key Laboratory of Cardiovascular Epidemiology (K.H., J.J., J.L., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu), Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (K.H., J.J., J.L., X.N., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu)
- Key Laboratory of Cardiovascular Epidemiology (K.H., J.J., J.L., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu), Chinese Academy of Medical Sciences, Beijing, China
| | - Dongsheng Hu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (K.H., J.J., J.L., X.N., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu)
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, China (D.H.)
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, China (D.H.)
| | - Jianfeng Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (K.H., J.J., J.L., X.N., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu)
- Key Laboratory of Cardiovascular Epidemiology (K.H., J.J., J.L., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu), Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA (Y. Liu)
| | - Dongfeng Gu
- Key Laboratory of Cardiovascular Epidemiology (K.H., J.J., J.L., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu), Chinese Academy of Medical Sciences, Beijing, China
- School of Medicine (D.G), Southern University of Science and Technology, Shenzhen, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (K.H., J.J., J.L., X.N., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu)
- Key Laboratory of Cardiovascular Epidemiology (K.H., J.J., J.L., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu), Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (K.H., J.J., J.L., X.N., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu)
- Key Laboratory of Cardiovascular Epidemiology (K.H., J.J., J.L., S.C., J.C., L.Z., Y. Li, J.H., D.G., F. Liu, X. Lu), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Na S, Park JT, Kim S, Han J, Jung S, Kwak K. Association between ambient particulate matter levels and hypertension: results from the Korean Genome and Epidemiology Study. Ann Occup Environ Med 2023; 35:e51. [PMID: 38274360 PMCID: PMC10808086 DOI: 10.35371/aoem.2023.35.e51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 11/15/2023] [Indexed: 01/27/2024] Open
Abstract
Background Recently, there has been increasing worldwide concern about outdoor air pollution, especially particulate matter (PM), which has been extensively researched for its harmful effects on the respiratory system. However, sufficient research on its effects on cardiovascular diseases, such as hypertension, remains lacking. In this study, we examine the associations between PM levels and hypertension and hypothesize that higher PM concentrations are associated with elevated blood pressure. Methods A total of 133,935 adults aged ≥ 40 years who participated in the Korean Genome and Epidemiology Study were analyzed. Multiple linear regression analyses were conducted to investigate the short- (1-14 days), medium- (1 and 3 months), and long-term (1 and 2 years) impacts of PM on blood pressure. Logistic regression analyses were conducted to evaluate the medium- and long-term effects of PM on blood pressure elevation after adjusting for sex, age, body mass index, health-related lifestyle behaviors, and geographic areas. Results Using multiple linear regression analyses, both crude and adjusted models generated positive estimates, indicating an association with increased blood pressure, with all results being statistically significant, with the exception of PM levels over the long-term period (1 and 2 years) in non-hypertensive participants. In the logistic regression analyses on non-hypertensive participants, moderate PM10 (particulate matter with diameters < 10 μm) and PM2.5 (particulate matter with diameters < 2.5 μm) levels over the long-term period and all high PM10 and PM2.5 levels were statistically significant after adjusting for various covariates. Notably, high PM2.5 levels of the 1 year exhibited the highest odds ratio of 1.23 (95% confidence interval: 1.19-1.28) after adjustment. Conclusions These findings suggest that both short- and long-term exposure to PM is associated with blood pressure elevation.
Collapse
Affiliation(s)
- Sewhan Na
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
- Department of Environmental Health Sciences, Seoul National University Graduate School of Public Health, Seoul, Korea
| | - Jong-Tae Park
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
- Department of Occupational and Environmental Medicine, Korea University College of Medicine, Seoul, Korea
- Department of Environmental and Occupational Health, Korea University Graduate School of Public Health, Seoul, Korea
| | - Seungbeom Kim
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Jinwoo Han
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Saemi Jung
- Department of Occupational and Environmental Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Kyeongmin Kwak
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
- Department of Occupational and Environmental Medicine, Korea University College of Medicine, Seoul, Korea
- Department of Environmental and Occupational Health, Korea University Graduate School of Public Health, Seoul, Korea
| |
Collapse
|
15
|
Oliveira Ferreira CKD, Campolim CM, Zordão OP, Simabuco FM, Anaruma CP, Pereira RM, Boico VF, Salvino LG, Costa MM, Ruiz NQ, de Moura LP, Saad MJA, Costa SKP, Kim YB, Prada PO. Subchronic exposure to 1,2-naphthoquinone induces adipose tissue inflammation and changes the energy homeostasis of mice, partially due to TNFR1 and TLR4. Toxicol Rep 2023; 11:10-22. [PMID: 37383489 PMCID: PMC10293596 DOI: 10.1016/j.toxrep.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 05/16/2023] [Accepted: 06/03/2023] [Indexed: 06/30/2023] Open
Abstract
Air pollution affects energy homeostasis detrimentally. Yet, knowledge of how each isolated pollutant can impact energy metabolism remains incomplete. The present study was designed to investigate the distinct effects of 1,2-naphthoquinone (1,2-NQ) on energy metabolism since this pollutant increases at the same rate as diesel combustion. In particular, we aimed to determine in vivo effects of subchronic exposure to 1,2-NQ on metabolic and inflammatory parameters of wild-type mice (WT) and to explore the involvement of tumor necrosis factor receptor 1 (TNFR1) and toll-like receptor 4 (TLR4) in this process. Males WT, TNFR1KO, and TLR4KO mice at eight weeks of age received 1,2-NQ or vehicle via nebulization five days a week for 17 weeks. In WT mice, 1,2-NQ slightly decreased the body mass compared to vehicle-WT. This effect was likely due to a mild food intake reduction and increased energy expenditure (EE) observed after six weeks of exposure. After nine weeks of exposure, we observed higher fasting blood glucose and impaired glucose tolerance, whereas insulin sensitivity was slightly improved compared to vehicle-WT. After 17 weeks of 1,2-NQ exposure, WT mice displayed an increased percentage of M1 and a decreased (p = 0.057) percentage of M2 macrophages in adipose tissue. The deletion of TNFR1 and TLR4 abolished most of the metabolic impacts caused by 1,2-NQ exposure, except for the EE and insulin sensitivity, which remained high in these mice under 1,2-NQ exposure. Our study demonstrates for the first time that subchronic exposure to 1,2-NQ affects energy metabolism in vivo. Although 1,2-NQ increased EE and slightly reduced feeding and body mass, the WT mice displayed higher inflammation in adipose tissue and impaired fasting blood glucose and glucose tolerance. Thus, in vivo subchronic exposure to 1,2-NQ is harmful, and TNFR1 and TLR4 are partially involved in these outcomes.
Collapse
Affiliation(s)
| | - Clara Machado Campolim
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Olívia Pizetta Zordão
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | | | - Chadi Pellegrini Anaruma
- Department of Physical Education, Institute of Biosciences - São Paulo State University, Rio Claro, SP, Brazil
| | | | | | | | - Maíra Maftoum Costa
- Faculty of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
| | | | - Leandro Pereira de Moura
- Faculty of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
- Department of Physical Education, Institute of Biosciences - São Paulo State University, Rio Claro, SP, Brazil
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Young-Bum Kim
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Patricia Oliveira Prada
- Faculty of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
- Max-Planck Institute for Metabolism Research, Köln, Germany
| |
Collapse
|
16
|
Hu S, Xu X, Li C, Zhang L, Xing X, He J, Guo P, Zhang J, Niu Y, Chen S, Zhang R, Liu F, Ma S, Zhang M, Guo F, Zhang M. Long-term exposure to ambient ozone at workplace is positively and non-linearly associated with incident hypertension and blood pressure: longitudinal evidence from the Beijing-Tianjin-Hebei medical examination cohort. BMC Public Health 2023; 23:2011. [PMID: 37845647 PMCID: PMC10577958 DOI: 10.1186/s12889-023-16932-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND There is limited longitudinal evidence on the hypertensive effects of long-term exposure to ambient O3. We investigated the association between long-term O3 exposure at workplace and incident hypertension, diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), and mean arterial pressure (MAP) in general working adults. METHODS We conducted a cohort study by recruiting over 30,000 medical examination attendees through multistage stratified cluster sampling. Participants completed a standard questionnaire and comprehensive medical examination. Three-year ambient O3 concentrations at each employed participant's workplace were estimated using a two-stage machine learning model. Mixed-effects Cox proportional hazards models and linear mixed-effects models were used to examine the effect of O3 concentrations on incident hypertension and blood pressure parameters, respectively. Generalized additive mixed models were used to explore non-linear concentration-response relationships. RESULTS A total of 16,630 hypertension-free working participants at baseline finished the follow-up. The mean (SD) O3 exposure was 45.26 (2.70) ppb. The cumulative incidence of hypertension was 7.11 (95% CI: 6.76, 7.47) per 100 person-years. Long-term O3 exposure was independently, positively and non-linearly associated with incident hypertension (Hazard ratios (95% CI) for Q2, Q3, and Q4 were 1.77 (1.34, 2.36), 2.06 (1.42, 3.00) and 3.43 (2.46, 4.79), respectively, as compared with the first quartile (Q1)), DBP (β (95% CI) was 0.65 (0.01, 1.30) for Q2, as compared to Q1), SBP (β (95% CI) was 2.88 (2.00, 3.77), 2.49 (1.36, 3.61) and 2.61 (1.64, 3.58) for Q2, Q3, and Q4, respectively), PP (β (95% CI) was 2.12 (1.36, 2.87), 2.03 (1.18, 2.87) and 2.14 (1.38, 2.90) for Q2, Q3, and Q4, respectively), and MAP (β (95% CI) was 1.39 (0.76, 2.02), 1.04 (0.24, 1.84) and 1.12 (0.43, 1.82) for Q2, Q3, and Q4, respectively). The associations were robust across sex, age, BMI, and when considering PM2.5 and NO2. CONCLUSIONS To our knowledge, this is the first cohort study in the general population that demonstrates the non-linear hypertensive effects of long-term O3 exposure. The findings are particularly relevant for policymakers and researchers involved in ambient pollution and public health, supporting the integration of reduction of ambient O3 into public health interventions.
Collapse
Affiliation(s)
- Songhua Hu
- School of Statistics and Data Science, Nankai University, Tianjin, China
- Big Data Center for Children's Medical Care, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Ximing Xu
- Big Data Center for Children's Medical Care, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Chunjun Li
- Tianjin Union Medical Center, Tianjin, China
| | - Li Zhang
- Tianjin First Central Hospital, Tianjin, China
| | - Xiaolong Xing
- School of Medicine, Nankai University, Tianjin, China
| | - Jiangshan He
- School of Medicine, Nankai University, Tianjin, China
| | - Pei Guo
- School of Medicine, Nankai University, Tianjin, China
| | - Jingbo Zhang
- Beijing Physical Examination Center, Beijing, China
| | - Yujie Niu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, China
| | - Shuo Chen
- Beijing Physical Examination Center, Beijing, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, China
| | - Feng Liu
- Beijing Physical Examination Center, Beijing, China
| | - Shitao Ma
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, China
| | - Mianzhi Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Fenghua Guo
- School of Medicine, Nankai University, Tianjin, China
| | - Minying Zhang
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
17
|
Duan L, Zhang M, Cao Y, Du Y, Chen M, Xue R, Shen M, Luo D, Xiao S, Duan Y. Exposure to ambient air pollutants is associated with an increased incidence of hyperuricemia: A longitudinal cohort study among Chinese government employees. ENVIRONMENTAL RESEARCH 2023; 235:116631. [PMID: 37442260 DOI: 10.1016/j.envres.2023.116631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND It is widely recognized that ambient air pollution can induce various detrimental health outcomes. However, evidence linking ambient air pollutants and hyperuricemia incidence is scarce. OBJECTIVES To assess the association between long-term air pollution exposure and the risk of hyperuricemia. METHODS In this study, a total of 5854 government employees without hyperuricemia were recruited and followed up from January 2018 to June 2021 in Hunan Province, China. Hyperuricemia was defined as serum uric acid (SUA) level of >420 μmol/L for men and >360 μmol/L for women or use of SUA-lowering medication or diagnosed as hyperuricemia during follow-up. Data from local air quality monitoring stations were used to calculate individual exposure levels of PM10, PM2.5, SO2 and NO2 by inverse distance weightingn (IDW) method. Cox proportional hazard model was applied to evaluate the causal relationships between air pollutant exposures and the risk of hyperuricemia occurrence after adjustment for potential confounders and meanwhile, restricted cubic spline was used to explore the dose-response relationships. RESULTS The results indicated that exposures to PM10 (hazard ratio, HR = 1.042, 95% conficence interal, 95% CI: 1.028, 1.057), PM2.5 (HR = 1.204, 95% CI: 1.141, 1.271) and NO2 (HR = 1.178, 95% CI: 1.125,1.233) were associated with an increased HR of hyperuricemia. In addition, a nonlinear dose-response relationship was found between PM10 exposure level and the HR of hyperuricemia (p for nonlinearity = 0.158) with a potential threshold of 50.11 μg/m3. Subgroup analysis demonstrated that participants usually waking up at night and using natural ventilation were more vulnerable to the exposures of PM10, PM2.5, NO2, and SO2. CONCLUSION Long-term exposures to ambient PM10, PM2.5 and NO2 are associated with an increased incidence of hyperuricemia among Chinese government employees.
Collapse
Affiliation(s)
- Lidan Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Muyang Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yuhan Cao
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yuwei Du
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Meiling Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Rumeng Xue
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Minxue Shen
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Dan Luo
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Shuiyuan Xiao
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
18
|
Xue Y, Li J, Xu YN, Cui JS, Li Y, Lu YQ, Luo XZ, Liu DZ, Huang F, Zeng ZY, Huang RJ. Mediating effect of body fat percentage in the association between ambient particulate matter exposure and hypertension: a subset analysis of China hypertension survey. BMC Public Health 2023; 23:1897. [PMID: 37784103 PMCID: PMC10544618 DOI: 10.1186/s12889-023-16815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Hypertension caused by air pollution exposure is a growing concern in China. The association between air pollutant exposure and hypertension has been found to be potentiated by obesity, however, little is known about the processes mediating this association. This study investigated the association between fine particulate matter (aerodynamic equivalent diameter ≤ 2.5 microns, PM2.5) exposure and the prevalence of hypertension in a representative population in southern China and tested whether obesity mediated this association. METHODS A total of 14,308 adults from 48 communities/villages in southern China were selected from January 2015 to December 2015 using a stratified multistage random sampling method. Hourly PM2.5 measurements were collected from the China National Environmental Monitoring Centre. Restricted cubic splines were used to analyze the nonlinear dose-response relationship between PM2.5 exposure and hypertension risk. The mediating effect mechanism of obesity on PM2.5-associated hypertension was tested in a causal inference framework following the approach proposed by Imai and Keele. RESULTS A total of 20.7% (2966/14,308) of participants in the present study were diagnosed with hypertension. Nonlinear exposure-response analysis revealed that exposure to an annual mean PM2.5 concentration above 41.8 µg/m3 was associated with increased hypertension risk at an incremental gradient. 9.1% of the hypertension burden could be attributed to exposure to elevated annual average concentrations of PM2.5. It is noteworthy that an increased body fat percentage positively mediated 59.3% of the association between PM2.5 exposure and hypertension risk, whereas body mass index mediated 34.3% of this association. CONCLUSIONS This study suggests that a significant portion of the estimated effect of exposure to PM2.5 on the risk of hypertension appears to be attributed to its effect on alterations in body composition and the development of obesity. These findings could inform intersectoral actions in future studies to protect populations with excessive fine particle exposure from developing hypertension.
Collapse
Affiliation(s)
- Yan Xue
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Jin Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Yu-Nan Xu
- Department of Medical Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia-Sheng Cui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Yao-Qiong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Xiao-Zhi Luo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - De-Zhao Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.
| | - Zhi-Yu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.
| | - Rong-Jie Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.
| |
Collapse
|
19
|
Münzel T, Sørensen M, Hahad O, Nieuwenhuijsen M, Daiber A. The contribution of the exposome to the burden of cardiovascular disease. Nat Rev Cardiol 2023; 20:651-669. [PMID: 37165157 DOI: 10.1038/s41569-023-00873-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/12/2023]
Abstract
Large epidemiological and health impact assessment studies at the global scale, such as the Global Burden of Disease project, indicate that chronic non-communicable diseases, such as atherosclerosis and diabetes mellitus, caused almost two-thirds of the annual global deaths in 2020. By 2030, 77% of all deaths are expected to be caused by non-communicable diseases. Although this increase is mainly due to the ageing of the general population in Western societies, other reasons include the increasing effects of soil, water, air and noise pollution on health, together with the effects of other environmental risk factors such as climate change, unhealthy city designs (including lack of green spaces), unhealthy lifestyle habits and psychosocial stress. The exposome concept was established in 2005 as a new strategy to study the effect of the environment on health. The exposome describes the harmful biochemical and metabolic changes that occur in our body owing to the totality of different environmental exposures throughout the life course, which ultimately lead to adverse health effects and premature deaths. In this Review, we describe the exposome concept with a focus on environmental physical and chemical exposures and their effects on the burden of cardiovascular disease. We discuss selected exposome studies and highlight the relevance of the exposome concept for future health research as well as preventive medicine. We also discuss the challenges and limitations of exposome studies.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Mette Sørensen
- Danish Cancer Society, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), PRBB building (Mar Campus), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
20
|
Huang K, Yu D, Fang H, Ju L, Piao W, Guo Q, Xu X, Wei X, Yang Y, Zhao L. Association of fine particulate matter and its constituents with hypertension: the modifying effect of dietary patterns. Environ Health 2023; 22:55. [PMID: 37553681 PMCID: PMC10411005 DOI: 10.1186/s12940-023-01000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Studies have shown that nutritional supplements could reduce the adverse effects induced by air pollution. However, whether dietary patterns can modify the association of long-term exposure to fine particulate matter (PM2.5) and its constituents with hypertension defined by the 2017 ACC/AHA guideline has not been evaluated. METHODS We included 47,501 Chinese adults from a nationwide cross-sectional study. PM2.5 and five constituents were estimated by satellite-based random forest models. Dietary approaches to stop hypertension (DASH) and alternative Mediterranean diet (AMED) scores were calculated for each participant. Interactions between dietary patterns and air pollution were examined by adding a multiplicative interaction term to logistic models. RESULTS Long-term exposure to PM2.5 and its constituents was associated with an increased risk of hypertension and stage 1-2 hypertension. The DASH and AMED scores significantly modified these associations, as individuals with higher scores had a significantly lower risk of air pollution-related hypertension and stage 1-2 hypertension (P-interaction < 0.05), except for interaction between PM2.5, sulfate, nitrate, ammonium, and AMED score on stage 1 hypertension. For each IQR increase in PM2.5, participants with the lowest DASH and AMED quintiles had hypertension risk with ORs (95%CI) of 1.20 (1.10, 1.30) and 1.19 (1.09, 1.29), whereas those with the highest DASH and AMED quintiles had lower risks with 0.98 (0.91, 1.05) and 1.04 (0.97, 1.11). The stratified analysis found modification effect was more prominent in the < 65 years age group. Consuming more fresh vegetables, fruits, whole grains, and dairy would reduce the risk of hypertension caused by PM2.5 and its constituents. CONCLUSIONS Dietary patterns rich in antioxidants can reduce long-term exposure to PM2.5 and its constituents-induced hypertension defined by the 2017 ACC/AHA guideline, especially in young and middle-aged individuals. Compared to the Mediterranean diet, the DASH diet offers superior dietary guidance to prevent stage 1 hypertension caused by air pollution.
Collapse
Affiliation(s)
- Kun Huang
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Dongmei Yu
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
- NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Hongyun Fang
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
- NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Lahong Ju
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Wei Piao
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
- NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Qiya Guo
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Xiaoli Xu
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Xiaoqi Wei
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Yuxiang Yang
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Liyun Zhao
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
- NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|
21
|
Jiang H, Zhang S, Yao X, Meng L, Lin Y, Guo F, Yang D, Jin M, Wang J, Tang M, Chen K. Does physical activity attenuate the association between ambient PM 2.5 and physical function? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162501. [PMID: 36863583 DOI: 10.1016/j.scitotenv.2023.162501] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Physical function (PF), such as muscle strength, performing daily activities, has gradually declined with the increase of age, causing the occurrence of disability and diseases burden. Air pollution exposure and physical activity (PA) were both linked to PF. We aimed to explore the individual and joint effects of particulate matter <2.5 μm (PM2.5) and PA on PF. METHODS A total of 4537 participants and 12,011 observations aged ≥45 years old from the China Health and Retirement Longitudinal Study (CHARLS) cohort from 2011 to 2015 were included into the study. PF was assessed by a combined score of four tests, including grip strength, walking speed, sense of balance, and chair standing tests. Air pollution exposure data was from The ChinaHighAirPollutants (CHAP) dataset. The annual PM2.5 exposure for each individual was estimated based on county-level resident addresses. We estimated the volume of moderate-to-vigorous physical activity (MVPA) by quoting metabolic equivalent (MET). Multivariate linear model was conducted for baseline analysis, and linear mixed model with random participant intercepts was constructed for cohort longitudinal analysis. RESULTS PM2.5 was negatively associated with PF, while PA was positively associated with PF in baseline analysis. In cohort longitudinal analysis, a 10 μg/m3 increase in PM2.5 was associated to a 0.025 point (95 % CI: -0.047, -0.003) decrease in PF score, and a 10-MET-h/week increase in PA was related to a 0.004 point (95 % CI: 0.001, 0.008) increase in PF score. The association between PM2.5 and PF decreased by increased PA intensity, and PA reversed the detrimental effects between PM2.5 and PF. CONCLUSION PA attenuated the association of air pollution with PF at both high and low levels of air pollution, implying that PA may be an effective behavior to reduce the adverse effects of poor air quality on PF.
Collapse
Affiliation(s)
- Haiyan Jiang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Simei Zhang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuecheng Yao
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lin Meng
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yaoyao Lin
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fanjia Guo
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dandan Yang
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingjuan Jin
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jianbing Wang
- Department of Public Health, National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengling Tang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Kun Chen
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
22
|
Guo M, Li B, Peng Q, Yao R, Wu Y, Ma P, Du C, Liu H, Shu Z, Qin S, Yang X, Yu W. Co-exposure to particulate matter and humidity increases blood pressure in hypertensive mice via the TRPV4-cPLA 2-COX2 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114800. [PMID: 36933481 DOI: 10.1016/j.ecoenv.2023.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/16/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Epidemiological studies have demonstrated that particulate matter (PM) can induce or exacerbate hypertension. High relative humidity has been associated with elevated blood pressure in certain regions. However, the coupling effect of humidity and PM on elevated blood pressure and the underlying mechanisms remain unknown. Herein, we aimed to explore the effects of exposure to PM and/or high relative humidity on hypertension, as well as elucidate underlying mechanisms. Male C57/BL6 mice were intraperitoneally administered NG-nitro-L-arginine methyl ester (L-NAME) to establish a hypertensive mouse model. The hypertensive mice were exposed to PM (0.15 mg/kg/day) and/or different relative humidities (45/90%) for eight weeks. Histopathological changes, systolic blood pressure (SBP), endothelial-derived contracting factors (thromboxane B2 [TXB2], Prostaglandin F2α [PGF2α], endothelin-1 [ET-1], and angiotensin II [Ang II]), and relaxing factors (prostaglandin I2 [PGI2] and nitric oxide [NO]) were measured to assess the effects of PM exposure and humidity on hypertension in mice. Levels of transient receptor potential vanilloid 4 (TRPV4), cytosolic phospholipase A2 (cPLA2), and cyclooxygenase 2 (COX2) were measured to explore their potential mechanisms. Herein, exposure to 90% relative humidity or PM alone had a slight but insignificant effect on hypertension. However, pathological changes and elevated blood pressure were markedly exacerbated following exposure to PM and 90% relative humidity. Levels of PGF2α, TXB2, and ET-1 were significantly increased, whereas the PGI2 level was substantially decreased. HC-067047-mediated blockade of TRPV4 suppressed TRPV4, cPLA2, and COX2 expression and effectively alleviated the increased blood pressure induced by exposure to PM and 90% relative humidity. These results indicate that 90% relative humidity and PM can activate the TRPV4-cPLA2-COX2 ion channel in the aorta, altering the endothelial-derived contracting and relaxing factors and enhancing blood pressure in hypertensive mice.
Collapse
Affiliation(s)
- Miao Guo
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing 400045, China
| | - Baizhan Li
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing 400045, China
| | - Qi Peng
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Runming Yao
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing 400045, China
| | - Yang Wu
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Ping Ma
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Chenqiu Du
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing 400045, China
| | - Hong Liu
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing 400045, China
| | - Ziyu Shu
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing 400045, China
| | - Shuo Qin
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing 400045, China
| | - Xu Yang
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Wei Yu
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing 400045, China.
| |
Collapse
|
23
|
Zhou W, Wang Q, Li R, Kadier A, Wang W, Zhou F, Ling L. Combined effects of heatwaves and air pollution, green space and blue space on the incidence of hypertension: A national cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161560. [PMID: 36640878 DOI: 10.1016/j.scitotenv.2023.161560] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Extreme heat exposure has been associated with hypertension. However, its interactive influences with air pollution, green and blue spaces are unclear. This study aimed to explore the interaction between heatwaves, air pollution, green and blue spaces on hypertension. Cohort data enrolled 6448 Chinese older adults aged 65 years and over were derived from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) between 2008 and 2018. Nine heatwave definitions, combining three heat thresholds (92.5th, 95th, and 97.5th percentiles of daily maximum temperature) and three durations (≥2, 3 and 4 days) were used as time-varying variables in the analysis and were the one-year exposure before survival events. Fine particulate matter (PM ≤2.5 μm in aerodynamic diameter (PM2.5)), the Normalized Difference Vegetation Index (NDVI) and the average proportion of open water bodies were used to reflect the air pollution, green and blue space exposures, respectively. PM2.5, green and blue space exposures were time-varying indicators and contemporaneous with heatwaves. Mixed Cox models with time-varying variables were fitted to assess the multiplicative and additive interaction of heatwaves, PM2.5, and green and blue spaces on hypertension, measured by a traditional product term with the ratio of hazard ratio (HR) and relative risk due to interaction (RERI), respectively. A positive multiplicative (HRs >1) and additive interaction (RERIs >0) between heatwaves and higher PM2.5 levels was observed. There was a synergistic effect between heatwaves and decreasing greenness levels on hypertension incidence on additive and multiplicative scales. No significant interaction between heatwaves and blue space was observed in the analysis. The combined effects of heatwaves, air pollution, green and blue space exposures on the risk of hypertension varied with age, gender, and educational attainment. This study's findings complemented the existing evidence and revealed synergistic harmful impacts for heatwaves with air pollution and lack of green space on hypertension incidence.
Collapse
Affiliation(s)
- Wensu Zhou
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiong Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Li
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Aimulaguli Kadier
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjuan Wang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fenfen Zhou
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Ling
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Clinical research design division, Clinical research center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
24
|
Guo J, Chai G, Song X, Hui X, Li Z, Feng X, Yang K. Long-term exposure to particulate matter on cardiovascular and respiratory diseases in low- and middle-income countries: A systematic review and meta-analysis. Front Public Health 2023; 11:1134341. [PMID: 37056647 PMCID: PMC10089304 DOI: 10.3389/fpubh.2023.1134341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundLong-term exposure to particulate matter (PM) has essential and profound effects on human health, but most current studies focus on high-income countries. Evidence of the correlations between PM and health effects in low- and middle-income countries (LMICs), especially the risk factor PM1 (particles < 1 μm in size), remains unclear.ObjectiveTo explore the effects of long-term exposure to particulate matter on the morbidity and mortality of cardiovascular and respiratory diseases in LMICs.MethodsA systematic search was conducted in the PubMed, Web of Science, and Embase databases from inception to May 1, 2022. Cohort studies and case-control studies that examine the effects of PM1, PM2.5, and PM10 on the morbidity and mortality of cardiovascular and respiratory diseases in LMICs were included. Two reviewers independently selected the studies, extracted the data, and assessed the risk of bias. Outcomes were analyzed via a random effects model and are reported as the relative risk (RR) with 95% CI.ResultsOf the 1,978 studies that were identified, 38 met all the eligibility criteria. The studies indicated that long-term exposure to PM2.5, PM10, and PM1 was associated with cardiovascular and respiratory diseases: (1) Long-term exposure to PM2.5 was associated with an increased risk of cardiovascular morbidity (RR per 1.11 μg/m3, 95% CI: 1.05, 1.17) and mortality (RR per 1.10 μg/m3, 95% CI: 1.06, 1.14) and was significantly associated with respiratory mortality (RR 1.31, 95% CI: 1.25, 1.38) and morbidity (RR 1.08, 95% CI: 1.02, 1.04); (2) An increased risk of respiratory mortality was observed in the elderly (65+ years) (RR 1.21, 95% CI: 1.00, 1.47) with long-term exposure to PM2.5; (3) Long-term exposure to PM10 was associated with cardiovascular morbidity (RR 1.07, 95% CI 1.01, 1.13), respiratory morbidity (RR 1.43, 95% CI: 1.21, 1.69) and respiratory mortality (RR 1.28, 95% CI 1.10, 1.49); (4) A significant association between long-term exposure to PM1 and cardiovascular disease was also observed.ConclusionsLong-term exposure to PM2.5, PM10 and PM1 was all related to cardiovascular and respiratory disease events. PM2.5 had a greater effect than PM10, especially on respiratory diseases, and the risk of respiratory mortality was significantly higher for LMICs than high-income countries. More studies are needed to confirm the effect of PM1 on cardiovascular and respiratory diseases.
Collapse
Affiliation(s)
- Juanmei Guo
- School of Management, Lanzhou University, Lanzhou, China
| | - Guorong Chai
- School of Management, Lanzhou University, Lanzhou, China
- *Correspondence: Guorong Chai
| | - Xuping Song
- Evidence-based Social Sciences Research Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- Xuping Song
| | - Xu Hui
- Evidence-based Social Sciences Research Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Zhihong Li
- Evidence-based Social Sciences Research Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Xiaowen Feng
- Evidence-based Social Sciences Research Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Kehu Yang
- Evidence-based Social Sciences Research Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| |
Collapse
|
25
|
Niu Z, Duan Z, Yu H, Xue L, Liu F, Yu D, Zhang K, Han D, Wen W, Xiang H, Qin W. Association between long-term exposure to ambient particulate matter and blood pressure, hypertension: an updated systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:268-283. [PMID: 34983264 DOI: 10.1080/09603123.2021.2022106] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Evidence of more recent studies should be updated to evaluate the effect of long-term exposure to particulate matter (PM) on blood pressure and hypertension. Studies of long-term effects of PM1, PM2.5 and PM10 on blood pressure (SBP, DBP, MAP), hypertension were searched in Pubmed, Web of Science and Embase before May, 2021. Meta-analysis of 41 studies showed that exposure to PM1, PM2.5 was associated with SBP (1.76 mmHg (95%CI:0.71, 2.80) and 0.63 mmHg (95%CI:0.40, 0.85), per 10 μg/m3 increase in PM), all three air pollutants (PM1, PM2.5, PM10) was associated with DBP (1.16 mmHg (95%CI:0.34, 1.99), 0.31 mmHg (95%CI:0.16, 0.47), 1.17 mmHg (95%CI:0.24, 2.09), respectively. As for hypertension, PM1, PM2.5 and PM10 were all significantly associated with higher risk of hypertension (OR=1.27 (95%CI:1.06, 1.52), 1.15 (95%CI:1.10, 1.20) and 1.11 (95%CI:1.07, 1.16). In conclusion, our study indicated a positive association between long-term exposure to particulate matter and increased blood pressure, hypertension.
Collapse
Affiliation(s)
- Zhiping Niu
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Zhizhou Duan
- Preventive Health Service, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Jiangxi, China
| | - Hongmei Yu
- Pukou District Center for Disease Control and Prevention, Nanjing, China
| | - Lina Xue
- Department of Medical Affairs, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Dong Yu
- Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
26
|
Lin Z, Chen S, Liu F, Li J, Cao J, Huang K, Liang F, Chen J, Li H, Huang J, Hu D, Shen C, Zhao Y, Liu X, Yu L, Lu X, Gu D. The association of long-term ambient fine particulate matter exposure with blood pressure among Chinese adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120598. [PMID: 36343854 DOI: 10.1016/j.envpol.2022.120598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Previous studies indicated that long-term exposure to high level of fine particulate matter (PM2.5) was associated with elevated blood pressure (BP) and hypertension, but most of them were conducted in high-income countries with low PM2.5 level. Therefore, we aimed to evaluate the adverse impacts of long-term exposure to PM2.5 on BP and hypertension in China with high concentration. A total of 99,084 adults aged ≥18 years old were included from three cohorts among the project of Prediction for Atherosclerotic Cardiovascular Disease Risk in China. PM2.5 concentrations during 2000-2015 at 1 × 1 km spatial resolution were evaluated using satellite-based spatiotemporal models. Generalized estimating equation was applied to assess the impact of three-year average PM2.5 concentrations on BP level and hypertension. We also examined whether health status and lifestyles modified the effects of PM2.5 on BP and hypertension. Generally, high concentration of PM2.5 was associated with increased BP level and higher risk of hypertension. With each 10 μg/m3 increment in PM2.5 concentration, systolic BP (SBP) and diastolic BP (DBP) increased by 1.67 [95% confidence interval (CI): 1.48, 1.86] mmHg and 0.45 (95% CI: 0.35, 0.56) mmHg, and the prevalence of hypertension increased by 29% [odds ratio (OR): 1.29, 95% CI: 1.26, 1.32]. In comparison with the first quartile of PM2.5 concentration, SBP, DBP and prevalence of hypertension in the fourth quartile were increased by 8.26 (95% CI: 7.73, 8.80) mmHg, 2.85 (95% CI: 2.55, 3.15) mmHg, and 133% (OR: 2.33, 95% CI: 2.21, 2.47), respectively, in the fully adjusted model. However, the relationships of PM2.5 with BP might be non-linear, as BP level started to decline when PM2.5 exceeded 75 μg/m3. In conclusion, long-term PM2.5 exposure could elevate BP level and prevalence of hypertension. People living in high-polluted areas should strengthen their awareness of prevention.
Collapse
Affiliation(s)
- Zhennan Lin
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Shufeng Chen
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China.
| | - Fangchao Liu
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Jianxin Li
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Jie Cao
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Keyong Huang
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jichun Chen
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Hongfan Li
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Jianfeng Huang
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Dongsheng Hu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China; School of Public Health, Shenzhen University, Shenzhen, 518060, China
| | - Chong Shen
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yingxin Zhao
- Shandong First Medical University (Shandong Academy of Medicine Sciences), Jinan, 271099, China
| | - Xiaoqing Liu
- Division of Epidemiology, Guangdong Provincial People's Hospital and Cardiovascular Institute, Guangzhou, 510080, China
| | - Ling Yu
- Department of Cardiology, Fujian Provincial Hospital, Fuzhou, 350014, China
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Dongfeng Gu
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
| |
Collapse
|
27
|
Ma X, Zhu Z, Wang Y, Shen B, Jiang X, Liu W, Wu Y, Zou C, Luan Y, Gao H, Huang H. Quantifying carotid stiffness in a pre-hypertensive population with ultrafast ultrasound imaging. Ultrasonography 2023; 42:89-99. [PMID: 36588181 PMCID: PMC9816694 DOI: 10.14366/usg.22039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 01/13/2023] Open
Abstract
PURPOSE The aim of this study was to assess carotid stiffening in a pre-hypertensive (PHT) population using ultrafast pulse wave velocity (ufPWV). METHODS This study retrospectively enrolled 626 individuals who underwent clinical interviews, serum tests, and assessments of the systolic blood pressure (SBP), diastolic blood pressure (DBP), carotid intima-media thickness (cIMT), pulse wave velocity-beginning of systole (PWV-BS), and pulse wave velocity-end of systole (PWV-ES) between January 2017 and December 2021. The patients were divided into three groups according to their blood pressure (BP)-normal BP (NBP): SBP <130 mmHg and DBP <80 mmHg (n=215); PHT: 130 mmHg≤SBP<140 mmHg and/or 80 mmHg≤DBP<90 mmHg (n=119); hypertensive (HT): SBP ≥140 mmHg and/or DBP ≥90 mmHg (n=292). Correlation analyses and comparisons were performed among the groups and in the cIMT subgroups (cIMT ≥0.050 cm and <0.050 cm). RESULTS cIMT and PWV-ES significantly differed among the BP groups (P<0.05). The BP groups had similar PWV-BS when cIMT <0.050 cm or cIMT ≥0.050 cm (all P>0.05). However, the NBP group had a notably lower PWV-ES than the PHT (P<0.001 and P=0.024) and HT (all P<0.001) groups in both cIMT categories, while the PWV-ES in the PHT group were not significantly lower than in the HT group (all P>0.05). CONCLUSION Carotid morphological and biomechanical properties in the PHT group differed from those in the NBP group. ufPWV could be used for an early evaluation of carotid stiffening linked to pre-hypertension.
Collapse
Affiliation(s)
- Xuehui Ma
- Department of Ultrasound, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Zhengqiu Zhu
- Department of Ultrasound, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yinping Wang
- Department of Ultrasound, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Bixiao Shen
- Department of Ultrasound, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xuezhong Jiang
- Department of Ultrasound, Jiangsu Province Geriatric Hospital, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjun Liu
- School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yiyun Wu
- Department of Ultrasound, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Chong Zou
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Center of Good Clinical Practice, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yun Luan
- Department of Ultrasound, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Hui Gao
- Department of Ultrasound, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Hui Huang
- Department of Ultrasound, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
28
|
Luo H, Zhang Q, Niu Y, Kan H, Chen R. Fine particulate matter and cardiorespiratory health in China: A systematic review and meta-analysis of epidemiological studies. J Environ Sci (China) 2023; 123:306-316. [PMID: 36521994 DOI: 10.1016/j.jes.2022.04.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/17/2023]
Abstract
This review aimed to systematically summarize the epidemiological literature on the cardiorespiratory effects of PM2.5 published during the 13th Five-Year Plan period (2016-2020) in China. Original articles published between January 1, 2016 and June 30, 2021 were searched in PubMed, Web of Science, the China National Knowledge Internet Database and Wanfang Database. Random- or fixed-effects models were used to pool effect estimates where appropriate. Of 8558 records identified, 145 met the full eligibility criteria. A 10 µg/m³ increase in short-term PM2.5 exposure was significantly associated with increases of 0.70%, 0.86%, 0.38% and 0.96% in cardiovascular mortality, respiratory mortality, cardiovascular morbidity, and respiratory morbidity, respectively. The specific diseases with significant associations included stroke, ischemic heart disease, heart failure, arrhythmia, chronic obstructive pulmonary disease, pneumonia and allergic rhinitis. The pooled estimates per 10 µg/m³ increase in long-term PM2.5 exposure were 15.1%, 11.9% and 21.0% increases in cardiovascular, stroke and lung cancer mortality, and 17.4%, 11.0% and 4.88% increases in cardiovascular, hypertension and lung cancer incidence respectively. Adverse changes in blood pressure, heart rate variability, systemic inflammation, blood lipids, lung function and airway inflammation were observed for either short-term or long-term PM2.5 exposure, or both. Collectively, we summarized representative exposure-response relationships between short- and long-term PM2.5 exposure and a wide range of cardiorespiratory outcomes applicable to China. The magnitudes of estimates were generally smaller in short-term associations and comparable in long-term associations compared with those in developed countries. Our findings are helpful for future standard revisions and policy formulation. There are still some notable gaps that merit further investigation in China.
Collapse
Affiliation(s)
- Huihuan Luo
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| |
Collapse
|
29
|
Khaltaev N, Axelrod S. Countrywide cardiovascular disease prevention and control in 49 countries with different socio-economic status. Chronic Dis Transl Med 2022; 8:296-304. [PMID: 36420179 PMCID: PMC9676122 DOI: 10.1002/cdt3.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Background Cardiovascular disease (CVD) is the major noncommunicable disease (NCD) accounting for 17.9 million deaths. If current trends continue, the annual number of deaths from CVD will rise to 22.2 million by 2030. The United Nations General Assembly adopted a sustainable development goal (SDG) by 2030 to reduce NCD mortality by one-third. The purpose of this study was to analyze the CVD mortality trends in different countries implementing World Health Organization (WHO) NCD Action Plan and emphasize effective ways to achieve SDG. Methods WHO statistics, based on the Member-States unified mortality and causes-of-death reports were used for analyzing trends and different interventions. Results Reduction of CVD mortality from 2000 to 2016 in 49 countries was achieved for stroke at 43% and ischemic heart disease at 30%. Smoking prevalence and raised blood pressure (RBP) decreased in 84% and 55% of the countries. Eighty-nine percent of high-income countries (HIC) demonstrated a decline in tobacco smoking against 67% in middle-income countries (MIC). Sixty-nine percent of HIC demonstrated a decline in RBP against 15% in MIC. CVD management, tobacco, and unhealthy diet reduction measures are significantly better in HIC. The air pollution level was higher in MIC. Conclusion Building partnerships between countries could enhance their efforts for CVD prevention and successful achievement of SDG.
Collapse
Affiliation(s)
- Nikolai Khaltaev
- Global Alliance against Chronic Respiratory Diseases (GARD)GenevaSwitzerland
| | - Svetlana Axelrod
- Institute for Leadership and Health ManagementI.M. Sechenov First Moscow State University (Sechenov University)MoscowRussia
| |
Collapse
|
30
|
Yan M, Hou F, Xu J, Liu H, Liu H, Zhang Y, Liu H, Lu C, Yu P, Wei J, Tang NJ. The impact of prolonged exposure to air pollution on the incidence of chronic non-communicable disease based on a cohort in Tianjin. ENVIRONMENTAL RESEARCH 2022; 215:114251. [PMID: 36063911 DOI: 10.1016/j.envres.2022.114251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Evidence on the associations of prolonged ambient pollutants exposure with chronic non-communicable diseases among middle-aged and elderly residents is still limited. This prospective cohort study intends to investigate the long-term effects of ambient pollution on hypertension and diabetes incidence among relatively older residents in China. Individual particulate matter exposure levels were estimated by satellite-based model. Individual gaseous pollutants exposure levels were estimated by Inverse Distance Weighted model. A Cox regression model was employed to assess the risks of hypertension and diabetes morbidity linked to air pollutants exposures. The cross-product term of ambient pollutants exposure and covariates was further added into the regression model to test whether covariates would modify these air pollution-morbidity associations. During the period from 2014 to 2018, a total of 97,982 subjects completed follow-up. 12,371 incidents of hypertension and 2034 of diabetes occurred. In the multi-covariates model, the hazard ratios (HR) and 95% confidence interval (CI) were 1.49 (1.45-1.52), 1.28 (1.26-1.30), 1.17 (1.15-1.18), 1.21 (1.17-1.25) and 1.33 (1.31-1.35) for hypertension morbidity per 10 μg/m3 increment in PM1, PM2.5, PM10, NO2 and SO2, respectively. For diabetes onsets, the HR (95% CI) were 1.17 (1.11-1.23), 1.09 (1.04-1.13), 1.06 (1.02-1.09), 1.02 (0.95-1.10), and 1.24 (1.19-1.29), respectively. In addition, for hypertension analyses, the effect estimates were more pronounced in the participants with age <60 years old, BMI ≥24 kg/m2, and frequent alcohol drinking. These findings provided the evidence on elevated risks of morbidity of hypertension and diabetes associated with prolonged ambient pollutants exposure at relatively high levels.
Collapse
Affiliation(s)
- Mengfan Yan
- Department of Occupational and Environmental Health Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Fang Hou
- Community Health Service Center, Jiefang Road, Tanggu Street, Binhai New District, Tianjin, China
| | - Jiahui Xu
- Department of Occupational and Environmental Health Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Huanyu Liu
- Department of Occupational and Environmental Health Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Hongyan Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yourui Zhang
- Community Health Service Center, Jiefang Road, Tanggu Street, Binhai New District, Tianjin, China
| | - Hao Liu
- Community Health Service Center, Jiefang Road, Tanggu Street, Binhai New District, Tianjin, China
| | - Chunlan Lu
- Community Health Service Center, Jiefang Road, Tanggu Street, Binhai New District, Tianjin, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, United States.
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
31
|
Zhang Q, Meng X, Shi S, Kan L, Chen R, Kan H. Overview of particulate air pollution and human health in China: Evidence, challenges, and opportunities. Innovation (N Y) 2022; 3:100312. [PMID: 36160941 PMCID: PMC9490194 DOI: 10.1016/j.xinn.2022.100312] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Ambient particulate matter (PM) pollution in China continues to be a major public health challenge. With the release of the new WHO air quality guidelines in 2021, there is an urgent need for China to contemplate a revision of air quality standards (AQS). In the recent decade, there has been an increase in epidemiological studies on PM in China. A comprehensive evaluation of such epidemiological evidence among the Chinese population is central for revision of the AQS in China and in other developing countries with similar air pollution problems. We thus conducted a systematic review on the epidemiological literature of PM published in the recent decade. In summary, we identified the following: (1) short-term and long-term PM exposure increase mortality and morbidity risk without a discernible threshold, suggesting the necessity for continuous improvement in air quality; (2) the magnitude of long-term associations with mortality observed in China are comparable with those in developed countries, whereas the magnitude of short-term associations are appreciably smaller; (3) governmental clean air policies and personalized mitigation measures are potentially effective in protecting public and individual health, but need to be validated using mortality or morbidity outcomes; (4) particles of smaller size range and those originating from fossil fuel combustion appear to show larger relative health risks; and (5) molecular epidemiological studies provide evidence for the biological plausibility and mechanisms underlying the hazardous effects of PM. This updated review may serve as an epidemiological basis for China’s AQS revision and proposes several perspectives in designing future health studies. Acute effects of PM are smaller in China compared with developed countries Health effects caused by PM depend on particle composition, source, and size There are no thresholds for the health effects of PM Mechanistic studies support the biological plausibility of PM’s health effects
Collapse
Affiliation(s)
- Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lena Kan
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, MD 21205, USA
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.,Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| |
Collapse
|
32
|
Liu Q, Huang K, Liang F, Yang X, Li J, Chen J, Liu X, Cao J, Shen C, Yu L, Zhao Y, Deng Y, Li Y, Hu D, Lu X, Liu Y, Gu D, Liu F, Huang J. Long-term exposure to fine particulate matter modifies the association between physical activity and hypertension incidence. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:708-715. [PMID: 35065296 PMCID: PMC9729921 DOI: 10.1016/j.jshs.2022.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/25/2021] [Accepted: 12/17/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND The trade-off between the benefits of regular physical activity (PA) and the potentially detrimental effects of augmented exposure to air pollution in highly polluted regions remains unclear. This study aimed to examine whether ambient fine particulate matter (PM2.5) exposure modified the impacts of PA volume and intensity on hypertension risk. METHODS We included 54,797 participants without hypertension at baseline in a nationwide cohort of the Prediction for Atherosclerotic Cardiovascular Disease Risk in China (China-PAR) project. PA volume and intensity were assessed by questionnaire, and high-resolution (1 km ×1 km) PM2.5 estimates were generated using a satellite-based model. RESULTS During 413,516 person-years of follow-up, 12,100 incident hypertension cases were identified. PM2.5 significantly modified the relationship between PA and hypertension incidence (pinteraction < 0.001). Increased PA volume was negatively associated with incident hypertension in the low PM2.5 stratum (<59.8 μg/m3, ptrend < 0.001), with a hazard ratio of 0.81 (95% confidence interval (95%CI): 0.74-0.88) when comparing the fourth with the first quartile of PA volume. However, the health benefits were not observed in the high PM2.5 stratum (≥59.8 μg/m3, ptrend = 0.370). Moreover, compared with light PA intensity, vigorous intensity was related to a 20% (95%CI: 9%-29%) decreased risk of hypertension for participants exposed to low PM2.5, but a 17% (95%CI: 4%-33%) increased risk for those with high PM2.5 levels. CONCLUSION PA was associated with a reduced risk of hypertension only among participants with low PM2.5 exposure. Our findings recommended regular PA to prevent hypertension in less polluted regions and reinforced the importance of air quality improvement.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Keyong Huang
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Fengchao Liang
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xueli Yang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jianxin Li
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jichun Chen
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xiaoqing Liu
- Division of Epidemiology, Guangdong Provincial People's Hospital and Cardiovascular Institute, Guangzhou 510080, China
| | - Jie Cao
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chong Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Yu
- Department of Cardiology, Fujian Provincial Hospital, Fuzhou 350014, China
| | - Yingxin Zhao
- Cardio-Cerebrovascular Control and Research Center, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Ying Deng
- Center for Chronic and Noncommunicable Disease Control and Prevention, Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Ying Li
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Dongsheng Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen 518071, China
| | - Xiangfeng Lu
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Dongfeng Gu
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fangchao Liu
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| | - Jianfeng Huang
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| |
Collapse
|
33
|
Chen Z, Liu P, Xia X, Wang L, Li X. The underlying mechanism of PM2.5-induced ischemic stroke. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119827. [PMID: 35917837 DOI: 10.1016/j.envpol.2022.119827] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Under the background of global industrialization, PM2.5 has become the fourth-leading risk factor for ischemic stroke worldwide, according to the 2019 GBD estimates. This highlights the hazards of PM2.5 for ischemic stroke, but unfortunately, PM2.5 has not received the attention that matches its harmfulness. This article is the first to systematically describe the molecular biological mechanism of PM2.5-induced ischemic stroke, and also propose potential therapeutic and intervention strategies. We highlight the effect of PM2.5 on traditional cerebrovascular risk factors (hypertension, hyperglycemia, dyslipidemia, atrial fibrillation), which were easily overlooked in previous studies. Additionally, the effects of PM2.5 on platelet parameters, megakaryocytes activation, platelet methylation, and PM2.5-induced oxidative stress, local RAS activation, and miRNA alterations in endothelial cells have also been described. Finally, PM2.5-induced ischemic brain pathological injury and microglia-dominated neuroinflammation are discussed. Our ultimate goal is to raise the public awareness of the harm of PM2.5 to ischemic stroke, and to provide a certain level of health guidance for stroke-susceptible populations, as well as point out some interesting ideas and directions for future clinical and basic research.
Collapse
Affiliation(s)
- Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peilin Liu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China.
| |
Collapse
|
34
|
Li B, Cao H, Liu K, Xia J, Sun Y, Peng W, Xie Y, Guo C, Liu X, Wen F, Zhang F, Shan G, Zhang L. Associations of long-term ambient air pollution and traffic-related pollution with blood pressure and hypertension defined by the different guidelines worldwide: the CHCN-BTH study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63057-63070. [PMID: 35449329 DOI: 10.1007/s11356-022-20227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
The assessment of the generalization of the strict hypertension definition in the 2017 ACC/AHA Hypertension Guideline from environmental condition remains sparse. The aims of this study are to investigate and compare the associations of ambient air pollution and traffic-related pollution (TRP) with hypertension defined by the different criteria. A total of 32,135 participants were recruited from the baseline survey of the CHCN-BTH in 2017. We defined hypertension as SBP/DBP ≥ 140/90 mmHg according to the hypertension guidelines in China, Japan, Europe and ISH (traditional criteria) and defined as SBP/DBP ≥ 130/80 mmHg according to the 2017 ACC/AHA Hypertension Guideline (strict criteria). A two-level generalized linear mixed models were applied to investigate the associations of air pollutants (i.e. PM2.5, SO2, NO2) and TRP with blood pressure (BP) measures and hypertension. Stratified analyses and two-pollutant models were also performed. The stronger associations of air pollutants were found in the hypertension defined by the strict criteria than that defined by the traditional criteria. The ORs per an IQR increase in PM2.5 were 1.17 (95% CI: 1.09, 1.25) for the strict criteria and 1.14 (95% CI: 1.06, 1.23) for the traditional criteria. The similar conditions were also observed for TRP. The above results were robust in both stratified analyses and two-pollutant models. Our study assessed the significance of the hypertension defined by the strict criteria from environmental aspect and called attention to the more adverse effects of air pollution and TRP on the earlier stage of hypertension.
Collapse
Affiliation(s)
- Bingxiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Han Cao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
- Department of Biostatistics, Peking University First Hospital, Beijing, China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Juan Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yanyan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Wenjuan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yunyi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Chunyue Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xiaohui Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Fuyuan Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Fengxu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Guangliang Shan
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| |
Collapse
|
35
|
Chen H, Oliver BG, Pant A, Olivera A, Poronnik P, Pollock CA, Saad S. Effects of air pollution on human health - Mechanistic evidence suggested by in vitro and in vivo modelling. ENVIRONMENTAL RESEARCH 2022; 212:113378. [PMID: 35525290 DOI: 10.1016/j.envres.2022.113378] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Airborne particulate matter (PM) comprises both solid and liquid particles, including carbon, sulphates, nitrate, and toxic heavy metals, which can induce oxidative stress and inflammation after inhalation. These changes occur both in the lung and systemically, due to the ability of the small-sized PM (i.e. diameters ≤2.5 μm, PM2.5) to enter and circulate in the bloodstream. As such, in 2016, airborne PM caused ∼4.2 million premature deaths worldwide. Acute exposure to high levels of airborne PM (eg. during wildfires) can exacerbate pre-existing illnesses leading to hospitalisation, such as in those with asthma and coronary heart disease. Prolonged exposure to PM can increase the risk of non-communicable chronic diseases affecting the brain, lung, heart, liver, and kidney, although the latter is less well studied. Given the breadth of potential disease, it is critical to understand the mechanisms underlying airborne PM exposure-induced disorders. Establishing aetiology in humans is difficult, therefore, in-vitro and in-vivo studies can provide mechanistic insights. We describe acute health effects (e.g. exacerbations of asthma) and long term health effects such as the induction of chronic inflammatory lung disease, and effects outside the lung (e.g. liver and renal change). We will focus on oxidative stress and inflammation as this is the common mechanism of PM-induced disease, which may be used to develop effective treatments to mitigate the adverse health effect of PM exposure.
Collapse
Affiliation(s)
- Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia
| | - Anushriya Pant
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Annabel Olivera
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Philip Poronnik
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Carol A Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia.
| |
Collapse
|
36
|
Pan Q, Zha S, Li J, Guan H, Xia J, Yu J, Cui C, Liu Y, Xu J, Liu J, Chen G, Jiang M, Zhang J, Ding X, Zhao X. Identification of the susceptible subpopulations for wide pulse pressure under long-term exposure to ambient particulate matters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155311. [PMID: 35439510 DOI: 10.1016/j.scitotenv.2022.155311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Wide pulse pressure (WPP) is a preclinical indicator for arterial stiffness and cardiovascular diseases. Long-term exposure to ambient particulate matters (PMs) would increase the risk of WPP. Although reducing pollutants emissions and avoiding outdoor activity during a polluted period are effective ways to blunt the adverse effects. Identifying and protecting the susceptible subpopulation is another crucial way to reduce the disease burdens. Therefore, we aimed to identify the susceptible subpopulations of WPP under long-term exposure to PMs. The WPP was defined as pulse pressure over 60 mmHg. Three-year averages of PMs were estimated using random forest approaches. Associations between WPP and PMs exposure were estimated using generalized propensity score weighted logistic regressions. Demographic, socioeconomic characteristics, health-related behaviors, and hematological biomarkers were collected to detect the modification effects on the WPP-PMs associations. Susceptible subpopulations were defined as those with significantly higher risks of WPP under PMs exposures. The PMs-WPP associations were significant with ORs (95%CI) of 1.126 (1.094, 1.159) for PM1, 1.174 (1.140, 1.210) for PM2.5, and 1.111 (1.088, 1.135) for PM10. There were 17 subpopulations more sensitive to WPP under long-term exposure to PMs. The susceptibility was higher in subpopulations with high BMI (Q3-Q4 quartiles), high-intensive physical activity (Q3 or Q4 quartile), insufficient or excessive fruit intake (Q1 or Q5 quartile), insufficient or too long sleep length (<7 or >8 h). Subpopulations with elevated inflammation markers (WBC, LYM, BAS, EOS: Q3-Q4 quartiles) and glucose metabolism indicators (HbA1c, GLU: Q3-Q4 quartiles) were more susceptible. Besides, elder, urban living, low socioeconomic level, and excessive red meat and sodium salt intake were also related to higher susceptibility. Our findings on the susceptibility characteristics would help to develop more targeted disease prevention and therapy strategies. Health resources can be allocated more effectively by putting more consideration to subpopulations with higher susceptibility.
Collapse
Affiliation(s)
- Qing Pan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shun Zha
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Jingzhong Li
- Tibet Center for Disease Control and Prevention, Tibet, China
| | - Han Guan
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jingjie Xia
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Jianhong Yu
- Pidu District Center for Disease Control and Prevention, Chengdu, China
| | | | - Yuanyuan Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiayue Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangdong, China
| | - Min Jiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Xianbin Ding
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Weng Z, Liu Q, Yan Q, Liang J, Zhang X, Xu J, Li W, Xu C, Gu A. Associations of genetic risk factors and air pollution with incident hypertension among participants in the UK Biobank study. CHEMOSPHERE 2022; 299:134398. [PMID: 35339527 DOI: 10.1016/j.chemosphere.2022.134398] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The purposes of this study were to quantify the association of the combination of air pollution and genetic risk factors with hypertension and explore the interactions between air pollution and genetic risk. This study included 391,366 participants of European ancestry initially free from pre-existing hypertension in the UK Biobank. Exposure to ambient air pollutants, including particulate matter (PM2.5 PM2.5-10, and PM10), nitrogen dioxide (NO2) and nitrogen oxides (NOX), was estimated through land use regression modelling, and the associations between air pollutants and the incidence of hypertension were investigated using a Cox proportional hazards model adjusted for covariates. Furthermore, we established a polygenic risk score for hypertension and assessed the combined effect of genetic susceptibility and air pollution on incident hypertension. The results showed significant associations between the risk of hypertension and exposure to PM2.5 (hazard ratio [HR]: 1.41, 95% confidence interval [CI]: 1.29-1.53; per 10 μg/m3), PM10 (1.05, 1.00-1.09; per 10 μg/m3), and NOX (1.01, 1.01-1.02 per 10 μg/m3). Additive effects of PM2.5 and NOX exposure and genetic risk were observed. Compared to individuals with a low genetic risk and low air pollution exposure, participants with high air pollution exposure and a high genetic risk had a significantly increased risk of hypertension (PM2.5: 71% (66%-76%), PM10: 59% (55%-64%), NOX: 65% (60%-70%)). Our results indicate that long-term exposure to air pollution is associated with an increased risk of hypertension, especially in individuals with a high genetic risk.
Collapse
Affiliation(s)
- Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenxiang Li
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
38
|
Yang L, Zhang Y, Qi W, Zhao T, Zhang L, Zhou L, Ye L. Adverse effects of PM 2.5 on cardiovascular diseases. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:71-80. [PMID: 33793141 DOI: 10.1515/reveh-2020-0155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
As an air pollutant, fine particulate matter with a diameter ≤ 2.5 μm (PM2.5) can enter the body through the respiratory tract and cause adverse cardiovascular effects. Here, the effects of PM2.5 on atherosclerosis, hypertension, arrhythmia, myocardial infarction are summarized from the perspective researches of human epidemiology, animal, cell and molecule. The results of this review should be proved useful as a scientific basis for the prevention and treatment of cardiovascular disease caused by PM2.5.
Collapse
Affiliation(s)
- Liwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lele Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
39
|
Ye Z, Li X, Han Y, Wu Y, Fang Y. Association of long-term exposure to PM 2.5 with hypertension and diabetes among the middle-aged and elderly people in Chinese mainland: a spatial study. BMC Public Health 2022; 22:569. [PMID: 35317761 PMCID: PMC8941772 DOI: 10.1186/s12889-022-12984-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Epidemiological evidence has shown an association between long-term exposure to fine particulate matter (PM2.5) and hypertension and diabetes, but few studies have considered the spatial properties of the samples. This study aimed to investigate the long-term effect of PM2.5 exposure on hypertension and diabetes among middle-aged and elderly people in China based on a spatial study. Methods We conducted a national cross-sectional study of the most recently launched wave 4 2018 data of the China Health and Retirement Longitudinal Study (CHARLS) to calculate the prevalence of hypertension and diabetes. The exposure data of annual average PM2.5 concentrations were estimated combined with satellite observations, chemical transport modeling, and ground-based monitoring. A shared component model (SCM) was used to explore the association of PM2.5 with hypertension and diabetes, in which these two diseases borrowed information on spatial variations from each other. Then, we evaluated the effect variations in PM2.5 in different periods and smoking status on changes in outcomes. Results The prevalence of hypertension and diabetes was 44.27% and 18.44%, respectively, among 19,529 participants. The annual average PM2.5 concentration in 31 provinces ranged from 4.4 μg/m3 to 51.3 μg/m3 with an average of 27.86 μg/m3 in 2018. Spatial auto-correlations of the prevalence of hypertension and diabetes and PM2.5 concentrations were seen (Moran’s I = 0.336, p = 0.01; Moran’s I = 0.288, p = 0.03; Moran’s I = 0.490, p = 0.01). An interquartile range (IQR: 16.2 μg/m3) increase in PM2.5 concentrations was significantly associated with a higher prevalence of hypertension and diabetes with odds ratios (ORs) of 1.070 [95% credible interval (95% CrI): 1.034, 1.108] and 1.149 (95% CrI: 1.100, 1.200), respectively. Notably, the effect of PM2.5 on both hypertension and diabetes was relatively stronger among non-smokers than smokers. Conclusion Our nationwide study demonstrated that long-term exposure to PM2.5 might increase the risk of hypertension and diabetes, and could provide guidance to public policymakers to prevent and control hypertension and diabetes according to the spatial distribution patterns of the above effects in China. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-12984-6.
Collapse
Affiliation(s)
- Zirong Ye
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Xueru Li
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Yaofeng Han
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Yafei Wu
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Ya Fang
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China. .,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China. .,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
40
|
Health Effects of Long-Term Exposure to Ambient PM 2.5 in Asia-Pacific: a Systematic Review of Cohort Studies. Curr Environ Health Rep 2022; 9:130-151. [PMID: 35292927 PMCID: PMC9090712 DOI: 10.1007/s40572-022-00344-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
Abstract
Abstract Purpose of Review Health effects of long-term exposure to ambient PM2.5 vary with regions, and 75% of the deaths attributable to PM2.5 were estimated in Asia-Pacific in 2017. This systematic review aims to summarize the existing evidence from cohort studies on health effects of long-term exposure to ambient PM2.5 in Asia-Pacific. Recent Findings In Asia-Pacific, 60 cohort studies were conducted in Australia, Mainland China, Hong Kong, Taiwan, and South Korea. They consistently supported associations of long-term exposure to PM2.5 with increased all-cause/non-accidental and cardiovascular mortality as well as with incidence of cardiovascular diseases, type 2 diabetes mellitus, kidney diseases, and chronic obstructive pulmonary disease. Evidence for other health effects was limited. Inequalities were identified in PM2.5-health associations. Summary To optimize air pollution control and public health prevention, further studies need to assess the health effects of long-term PM2.5 exposure in understudied regions, the health effects of long-term PM2.5 exposure on mortality and risk of type 2 diabetes mellitus, renal diseases, dementia and lung cancer, and inequalities in PM2.5-health associations. Study design, especially exposure assessment methods, should be improved. Supplementary Information The online version contains supplementary material available at 10.1007/s40572-022-00344-w.
Collapse
|
41
|
Chen L, Xie J, Ma T, Chen M, Gao D, Li Y, Ma Y, Wen B, Jiang J, Wang X, Zhang J, Chen S, Wu L, Li W, Liu X, Dong B, Wei J, Guo X, Huang S, Song Y, Dong Y, Ma J. Greenness alleviates the effects of ambient particulate matter on the risks of high blood pressure in children and adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152431. [PMID: 34942264 DOI: 10.1016/j.scitotenv.2021.152431] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Both ambient particulate matter (PM) and decrease of greenness have been suggested as risk factors for high blood pressure (HBP) in children and adolescents. But most evidence were from cross-sectional studies with limited data from prospective cohorts. In this cohort study, we included 588,004 children and adolescents aged 7 to 18 years without HBP from 2005 to 2018 in Beijing (240,081) and Zhongshan (347,923) city of China. The cumulative incidence of HBP was 32.04%, and incidence rate was 14.86 per 100 person-year. After adjustment for confounders, the ten-unit increase in PM1, PM2.5, and PM10 exposure was significantly associated with 43%, 70%, and 43%- higher risks of HBP, respectively, but the 0.1-unit increase in NDVI exposure was significantly associated with a 25% lower risk of HBP. The HRs of PM1 on the HBP risk were 1.486 and 1.150 in the low and the high-level of greenness, and they were 2.635 and 2.507 for PM2.5, and for PM10 1.367 and 1.702 in the two groups. The attributable fraction (AFs) of PM1, PM2.5, and PM10 on HBP incidents were 13.74%, 40.08%, and 15.47% in the low-level of greenness, which simultaneously was higher than those in the high-level of greenness (AF = 4.62%, 17.28%, and 9.96%). The exposure to higher ambient PM air pollution and lower greenness around schools were associated with a higher risk of HBP in children and adolescents, but higher greenness alleviated the adverse effects of ambient PM1 and PM2.5 on the HBP risks. Our findings highlighted a synergic strategy in preventing childhood HBP by decreasing air pollution reduction and improving greenness concurrently.
Collapse
Affiliation(s)
- Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Junqing Xie
- Centre for Statistics in Medicine, NDORMS, University of Oxford, Oxford, UK
| | - Tao Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Di Gao
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yanhui Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Ying Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Bo Wen
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Jun Jiang
- Department of Plant Science and Landscape Architecture, University of Maryland, USA
| | - Xijie Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China; Wanke School of Public Health, Tsinghua University, Beijing, China
| | - Jingbo Zhang
- Beijing Health Center for Physical Examination, Beijing 100191, China
| | - Shuo Chen
- Beijing Health Center for Physical Examination, Beijing 100191, China
| | - Lijuan Wu
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Weiming Li
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiangtong Liu
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Bin Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Sizhe Huang
- Zhongshan Health Care Centers for Primary and Secondary School, Zhongshan 528403, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China.
| |
Collapse
|
42
|
Zhao M, Xu Z, Guo Q, Gan Y, Wang Q, Liu JA. Association between long-term exposure to PM 2.5 and hypertension: A systematic review and meta-analysis of observational studies. ENVIRONMENTAL RESEARCH 2022; 204:112352. [PMID: 34762927 DOI: 10.1016/j.envres.2021.112352] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Numerous studies have examined the association between long-term exposure to particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) and hypertension. However, the results are inconsistent. OBJECTIVES Considering the limitations of previous meta-analyses and the publication of many new studies in recent years, we conducted this meta-analysis to assess the relationship between long-term PM2.5 exposure and the incidence and prevalence of hypertension in a healthy population. METHODS We searched PubMed, Web of Science, Embase, and Scopus for relevant studies published until April 2, 2021 and reviewed the reference lists of previous reviews. A total of 28 observational studies reporting RR or OR with 95% CI for the association between long-term PM2.5 exposure and the risk of hypertension were included. RESULTS After the sensitivity analysis, we excluded one study with a high degree of heterogeneity, resulting in 27 studies and 28 independent reports. Approximately 42 million participants were involved, and the cases of hypertension in cohort and cross-sectional studies were 508,749 and 1,793,003, respectively. The meta-analysis showed that each 10 μg/m3 increment in PM2.5 was significantly associated with the risks of hypertension incidence (RR = 1.21, 95% CI: 1.07, 1.35) and prevalence (OR = 1.06, 95% CI: 1.03, 1.09). Subgroup analyses showed that occupational exposure had a significant effect on the association of PM2.5 and hypertension incidence (p for interaction = 0.042) and that the PM2.5 concentration level and physical activity had a noticeable effect on the association of PM2.5 and hypertension prevalence (p for interaction = 0.005; p for interaction = 0.022). CONCLUSIONS A significantly positive correlation was observed between long-term PM2.5 exposure and risks of hypertension incidence and prevalence, and a high PM2.5 concentration resulted in an increased risk of hypertension.
Collapse
Affiliation(s)
- Mingqing Zhao
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ziyuan Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qianqian Guo
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong Gan
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun-An Liu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
43
|
Habeeb E, Aldosari S, Saghir SA, Cheema M, Momenah T, Husain K, Omidi Y, Rizvi SA, Akram M, Ansari RA. Role of Environmental Toxicants in the Development of Hypertensive and Cardiovascular Diseases. Toxicol Rep 2022; 9:521-533. [PMID: 35371924 PMCID: PMC8971584 DOI: 10.1016/j.toxrep.2022.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of hypertension with diabetes mellitus (DM) as a co-morbid condition is on the rise worldwide. In 2000, an estimated 972 million adults had hypertension, which is predicted to grow to 1.56 billion by 2025. Hypertension often leads to diabetes mellitus that strongly puts the patients at an increased risk of cardiovascular, kidney, and/or atherosclerotic diseases. Hypertension has been identified as a major risk factor for the development of diabetes; patients with hypertension are at two-to-three-fold higher risk of developing diabetes than patients with normal blood pressure (BP). Causes for the increase in hypertension and diabetes are not well understood, environmental factors (e.g., exposure to environmental toxicants like heavy metals, organic solvents, pesticides, alcohol, and urban lifestyle) have been postulated as one of the reasons contributing to hypertension and cardiovascular diseases (CVD). The mechanism of action(s) of these toxicants in developing hypertension and CVDs is not well defined. Research studies have linked hypertension with the chronic consumption of alcohol and exposure to metals like lead, mercury, and arsenic have also been linked to hypertension and CVD. Workers chronically exposed to styrene have a higher incidence of CVD. Recent studies have demonstrated that exposure to particulate matter (PM) in diesel exhaust and urban air contributes to increased CVD and mortality. In this review, we have imparted the role of environmental toxicants such as heavy metals, organic pollutants, PM, alcohol, and some drugs in hypertension and CVD along with possible mechanisms and limitations in extrapolating animal data to humans. Rising incidence of hypertension may be linked to chronic exposure with environmental toxicants. Urban lifestyle and alcohol intake may be responsible for increased incidence of hypertension among urbanites. Exposure with organic solvent, heavy metals and pesticides could also be contributing to the rise in blood pressure.
Collapse
Affiliation(s)
- Ehsan Habeeb
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Saad Aldosari
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Shakil A. Saghir
- The Scotts Company LLC, Marysville, OH 43041, USA
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Mariam Cheema
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Tahani Momenah
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Kazim Husain
- Department of Gastrointestinal Oncology (FOB-2), Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Syed A.A. Rizvi
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, VA 23668, USA
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rais A. Ansari
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
- Corresponding author.
| |
Collapse
|
44
|
Hu L, Yu M, Li Y, Liu L, Li X, Song L, Wang Y, Mei S. Association of exposure to organophosphate esters with increased blood pressure in children and adolescents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118685. [PMID: 34923060 DOI: 10.1016/j.envpol.2021.118685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Organophosphate esters (OPEs) are widely added to various industrial and consumer products, and are mainly used as flame retardants and plasticizers. Existing epidemiological studies suggest that OPE exposure may be linked to increased blood pressure (BP) and hypertension risk in adults. However, it remains unclear whether OPE exposure is associated with increased BP in children and adolescents. Here, we investigated the associations between OPE exposure and BP levels in 6-18-year-old children and adolescents from a cross-sectional study in Liuzhou, China. OPE metabolites were determined in spot urine samples (n = 1194) collected between April and May 2018. Three measurements of systolic and diastolic BP for each participant were averaged as study outcomes. Associations of OPE exposure with age-, sex- and height-standardized BP were assessed using linear regression models. We found that each natural log unit increment of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) was associated with a 0.06 standard deviation unit (95% confidant interval (CI): 0.01, 0.11) increase in systolic BP z-score. When conducting stratified analysis based on sex, age, and BMI category, BDCIPP was shown to be positively associated with systolic/diastolic BP z-score in females, but not in males. The associations between bis(2-butoxyethyl) phosphate (BBOEP) and systolic/diastolic BP z-score were pronounced in adolescents, but not in children. Moreover, a significant positive association between 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP) and diastolic BP z-score was observed in obese subjects. The present study provides the first evidence that OPE exposure was related to increased BP in children and adolescents. Given the scarcity of high-quality evidence supporting these results, the health effects of OPEs are warrant investigation in well-designed prospective studies.
Collapse
Affiliation(s)
- Liqin Hu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Ling Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Lulu Song
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
45
|
Liu Q, Li G, Zhang L, Liu J, Du J, Shao B, Li Z. Effects of household cooking with clean energy on the risk for hypertension among women in Beijing. CHEMOSPHERE 2022; 289:133151. [PMID: 34871615 DOI: 10.1016/j.chemosphere.2021.133151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/09/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Outdoor air pollution and indoor burning of biomass fuel can cause high blood pressure. However, little is known about the effects of cooking with clean energy on hypertension. We thus explored whether cooking with clean energy is associated with the risk for hypertension. The study used baseline data from 12,349 women from a large population-based cohort study in Beijing, China. Information on cooking habits, health status, and other characteristics was collected by questionnaire and physical examination. Fasting blood samples were collected to measure total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and homocysteine (HCY). An index of cooking exposure was constructed. Log-binomial regression models were used to estimate the association between cooking exposure and risk for hypertension. The prevalence of hypertension was 26.7%. Any cooking exposure at all was associated with an increased risk for hypertension with an adjusted prevalence ratio (aPR) of 2.27 (95% confidence interval [CI]: 2.01, 2.57). The risk for hypertension increased with increases in cooking frequency, time spent cooking, and the cooking index, all showing a dose-effect relationship (P < 0.001). An increased risk for hypertension was associated with both cooking using mainly electricity (aPR: 1.75, 95% CI: 1.41, 2.17) and cooking using mainly natural gas (aPR: 2.30, 95% CI: 2.03, 2.60). The cooking index was positively correlated with plasma concentrations of TC, TG, LDL-C, and HCY and negatively correlated with HDL-C. Abnormal levels of all these biomarkers were associated with an increased prevalence of hypertension after adjustment for confounding factors. Cooking with clean energy, mainly cooking habit, may contribute to an increased risk for hypertension among female residents of Beijing. Abnormal metabolism of lipids or HCY may be an important mechanism involved in the development of cooking-related hypertension.
Collapse
Affiliation(s)
- Qingping Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Center for Disease Prevention and Control, Beijing, 100013, PR China.
| | - Gang Li
- Beijing Center for Disease Prevention and Control, Beijing, 100013, PR China.
| | - Le Zhang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China.
| | - Jufen Liu
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China.
| | - Jing Du
- Beijing Center for Disease Prevention and Control, Beijing, 100013, PR China.
| | - Bing Shao
- Beijing Center for Disease Prevention and Control, Beijing, 100013, PR China.
| | - Zhiwen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China; Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China.
| |
Collapse
|
46
|
Wensu Z, Wen C, Fenfen Z, Wenjuan W, Li L. The Association Between Long-Term Exposure to Particulate Matter and Incidence of Hypertension Among Chinese Elderly: A Retrospective Cohort Study. Front Cardiovasc Med 2022; 8:784800. [PMID: 35087881 PMCID: PMC8788195 DOI: 10.3389/fcvm.2021.784800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
Background and Objectives: Studies that investigate the links between particulate matter ≤2. 5 μm (PM2.5) and hypertension among the elderly population, especially those including aged over 80 years, are limited. Therefore, we aimed to examine the association between PM2.5 exposure and the risk of hypertension incidence among Chinese elderly. Methods: This prospective cohort study used 2008, 2011, 2014, and 2018 wave data from a public database, the Chinese Longitudinal Healthy Longevity Survey, a national survey investigating the health of those aged over 65 years in China. We enrolled cohort participants who were free of hypertension at baseline (2008) from 706 counties (districts) and followed up in the 2011, 2014, and 2018 survey waves. The annual PM2.5 concentration of 706 counties (districts) units was derived from the Atmospheric Composition Analysis Group database as the exposure variable, and exposure to PM2.5 was defined as 1-year average of PM2.5 concentration before hypertension event occurrence or last interview (only for censoring). A Cox proportional hazards model with penalized spline was used to examine the non-linear association between PM2.5 concentration and hypertension risk. A random-effects Cox proportional hazards model was built to explore the relationship between each 1 μg/m3, 10 μg/m3 and quartile increment in PM2.5 concentration and hypertension incidence after adjusting for confounding variables. The modification effects of the different characteristics of the respondents were also explored. Results: A total of 7,432 participants aged 65-116 years were enrolled at baseline. The median of PM2.5 exposure concentration of all the participants was 52.7 (inter-quartile range, IQR = 29.1) μg/m3. Overall, the non-linear association between PM2.5 and hypertension incidence risk indicated that there was no safe threshold for PM2.5 exposure. The higher PM2.5 exposure, the greater risk for hypertension incidence. Each 1 μg/m3 [adjusted hazard ratio (AHR): 1.01; 95% CI: 1.01-1.02] and 10 μg/m3 (AHR: 1.12; 95% CI: 1.09-1.16) increments in PM2.5, were associated with the incidence of hypertension after adjusting for potential confounding variables. Compared to first quartile (Q1) exposure, the adjusted HRs of hypertension incidence for the Q2, Q3 and Q4 exposure of PM2.5 were 1.31 (95% CI: 1.13-1.51), 1.35 (95% CI: 1.15-1.60), and 1.83 (95% CI: 1.53-2.17), respectively. The effects appear to be stronger among those without a pension, living in a rural setting, and located in central/western regions. Conclusion: We found no safe threshold for PM2.5 exposure related to hypertension risk, and more rigorous approaches for PM2.5 control were needed. The elderly without a pension, living in rural and setting in the central/western regions may be more vulnerable to the effects of PM2.5 exposure.
Collapse
Affiliation(s)
- Zhou Wensu
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chen Wen
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhou Fenfen
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wang Wenjuan
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ling Li
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
47
|
Konduracka E, Rostoff P. Links between chronic exposure to outdoor air pollution and cardiovascular diseases: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2971-2988. [PMID: 35496466 PMCID: PMC9036845 DOI: 10.1007/s10311-022-01450-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/04/2022] [Indexed: 05/10/2023]
Abstract
Acute exposure to air pollution is associated with an increasing risk of death and cardiovascular disorders. Nonetheless, the impact of chronic exposure to air pollution on the circulatory system is still debated. Here, we review the links of chronic exposure to outdoor air pollution with mortality and most common cardiovascular diseases, in particular during the coronavirus disease 2019 event (COVID-19). We found that recent studies provide robust evidence for a causal effect of chronic exposure to air pollution and cardiovascular mortality. In terms of mortality, the strongest relationship was noted for fine particulate matter, nitrogen dioxide, and ozone. There is also increasing evidence showing that exposure to air pollution, mainly fine particulate matter and nitrogen dioxide, is associated with the development of atherosclerosis, hypertension, stroke, and heart failure. However, available scientific evidence is not strong enough to support associations with cardiac arrhythmias and coagulation disturbances. Noteworthy, for some pollutants, the risk of negative health effects is high for concentrations lower than the limit values recommended by the European Union and Word Health Organization. Efforts to diminish exposure to air pollution and to design optimal methods of air pollution reduction should be urgently intensified and supported by effective legislation and interdisciplinary cooperation.
Collapse
Affiliation(s)
- Ewa Konduracka
- Department of Coronary Disease and Heart Failure, Jagiellonian University Medical College, John Paul II Hospital, Prądnicka 80, 31-202 Kraków, Poland
| | - Paweł Rostoff
- Department of Coronary Disease and Heart Failure, Jagiellonian University Medical College, John Paul II Hospital, Prądnicka 80, 31-202 Kraków, Poland
| |
Collapse
|
48
|
Lin J, Zheng H, Xia P, Cheng X, Wu W, Li Y, Ma C, Zhu G, Xu T, Zheng Y, Qiu L, Chen L. Long-term ambient PM 2.5 exposure associated with cardiovascular risk factors in Chinese less educated population. BMC Public Health 2021; 21:2241. [PMID: 34893063 PMCID: PMC8662859 DOI: 10.1186/s12889-021-12163-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Long-term exposure to ambient air pollution is related to major cardiovascular risk factors including diabetes, hypertension, hyperlipidemia and overweight, but with few studies in high-concentration nations like China so far. We aimed to investigate the association between long-term exposure to ambient fine particulate matter (particles with an aerodynamic diameter ≤ 2.5 μm, PM2.5) and major cardiovascular risk factors in China. METHODS Adult participants with selected biochemical tests were recruited from the Chinese Physiological Constant and Health Condition (CPCHC) survey conducted from 2007 to 2011. Gridded PM2.5 data used were derived from satellite-observed data with adjustment of ground-observed data. District-level PM2.5 data were generated to estimate the association using multivariate logistic regression model and generalized additive model. RESULTS A total of 19,236 participants from the CPCHC survey were included with an average age of 42.8 ± 16.1 years, of which nearly half were male (47.0%). The annual average PM2.5 exposure before the CPCHC survey was 33.4 (14.8-53.4) μg/m3, ranging from 8.0 μg/m3 (Xiwuqi) to 94.7 μg/m3 (Chengdu). Elevated PM2.5 was associated with increased prevalence of hypertension (odds ratio (OR) =1.022, 95% confidence interval (95%CI): 1.001, 1.043) and decreased prevalence of overweight (OR = 0.926, 95%CI: 0.910, 0.942). Education significantly interacted with PM2.5 in association with all the interesting risk factors. Each 10 μg/m3 increment of PM2.5 was associated with increased prevalence of diabetes (OR = 1.118, 95%CI: 1.037, 1.206), hypertension (OR = 1.101, 95%CI: 1.056, 1.147), overweight (OR = 1.071, 95%CI: 1.030, 1.114) in participants with poor education, but not in well-educated population. PM2.5 exposure was negatively associated with hyperlipidemia in all participants (OR = 0.939, 95%CI: 0.921, 0.957). The results were robust in all the sensitivity analyses. CONCLUSION Association between long-term PM2.5 exposure and cardiovascular risk factors might be modified by education. PM2.5 was associated with a higher prevalence of diabetes, hypertension, and overweight in a less-educated population with time-expose dependency. Long-term exposure to PM2.5 might be associated with a lower prevalence of hyperlipidemia.
Collapse
Affiliation(s)
- Jianfeng Lin
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hua Zheng
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Peng Xia
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xinqi Cheng
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Wu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yang Li
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chaochao Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guangjin Zhu
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yali Zheng
- Department of Nephrology, Affiliated Ningxia People's Hospital of Ningxia Medical University, Yinchuan, China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Limeng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
49
|
Song J, Gao Y, Hu S, Medda E, Tang G, Zhang D, Zhang W, Li X, Li J, Renzi M, Stazi MA, Zheng X. Association of long-term exposure to PM 2.5 with hypertension prevalence and blood pressure in China: a cross-sectional study. BMJ Open 2021; 11:e050159. [PMID: 34887274 PMCID: PMC8663071 DOI: 10.1136/bmjopen-2021-050159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Evidence of the effects of long-term fine particulate matter (PM2.5) exposure on hypertension and blood pressure is limited for populations exposed to high levels of PM2.5. We aim to assess associations of long-term exposure to PM2.5 with hypertension prevalence and blood pressure, and further explore the subpopulation differences and effect modification by participant characteristics in these associations in China. METHODS We analysed cross-sectional data from 883 827 participants aged 35-75 years in the China Patient-Centred Evaluative Assessment of Cardiac Events Million Persons Project. Data from the monitoring station were used to estimate the 1-year average concentration of PM2.5. The associations of PM2.5 exposure with hypertension prevalence and blood pressure were investigated by generalised linear models, with PM2.5 included as either linear or spline functions. RESULTS The 1-year PM2.5 exposure of the study population ranged from 8.8 to 93.8 µg/m3 (mean 49.2 µg/m3). The adjusted OR of hypertension prevalence related to a 10 μg/m3 increase in 1-year PM2.5 exposure was 1.04 (95% CI, 1.02 to 1.05). Each 10 μg/m3 increment in PM2.5 exposure was associated with increases of 0.19 mm Hg (95% CI, 0.10 to 0.28) and 0.13 mm Hg (95% CI, 0.08 to 0.18) in systolic blood pressure and diastolic blood pressure, respectively. The concentration-response curves for hypertension prevalence and systolic blood pressure showed steeper slopes at higher PM2.5 levels; while the curve for diastolic blood pressure was U-shaped. The elderly, men, non-current smokers and obese participants were more susceptible to the exposure of PM2.5. CONCLUSIONS Long-term exposure to PM2.5 is associated with higher blood pressure and increased risk of hypertension prevalence. The effects of PM2.5 on hypertension prevalence become more pronounced at higher PM2.5 levels. These findings emphasise the need to reduce air pollution, especially in areas with severe air pollution.
Collapse
Affiliation(s)
- Jiali Song
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| | - Yan Gao
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| | - Shuang Hu
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| | - Emanuela Medda
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Guigang Tang
- China National Environmental Monitoring Centre, State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, Ministry of Ecology and Environment of the People's Republic of China, Beijing, China
| | - Di Zhang
- China National Environmental Monitoring Centre, State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, Ministry of Ecology and Environment of the People's Republic of China, Beijing, China
| | - Wenbo Zhang
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| | - Xi Li
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| | - Jing Li
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| | - Matteo Renzi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Maria Antonietta Stazi
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Xin Zheng
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| |
Collapse
|
50
|
Zheng H, Yi W, Ding Z, Xu Z, Ho HC, Cheng J, Hossain MZ, Song J, Fan Y, Ni J, Wang Q, Xu Y, Wei J, Su H. Evaluation of life expectancy loss associated with submicron and fine particulate matter (PM 1 and PM 2.5) air pollution in Nanjing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68134-68143. [PMID: 34268691 DOI: 10.1007/s11356-021-15244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Particulate matters with an aerodynamic diameter ≤1 μm (PM1) significantly increased mortality risk, and the effect of PM1 was even greater than that of PM2.5 (aerodynamic diameter ≤2.5 μm). But the quantitative impact of PM1 on life expectancy was unknown. We aim to examine the extent to which that people's life expectancy was shortened by PM1 and PM2.5. We obtained daily data on deaths, PM1 and PM2.5 records, and weather variables during 2016-2017 in Nanjing, China. Years of life lost (YLLs) were calculated by matching each decedent's age and sex to the Chinese life table. The fitted nonlinear dose-response associations of YLLs with PM1 and PM2.5 were estimated by utilizing a generalized additive model with a Gaussian link that controlled for confounding factors including meteorological variables, day of week, and long-term trend and seasonality. The effect estimates were presented as the YLLs when PM1 and PM2.5 concentrations fell in different ranges. Life expectancy losses attributable to PM1 and PM2.5 were calculated. Stratified analyses were also performed by age, sex, and death causes. Significant PM-YLL associations were observed, with greater increases in YLLs associated with PM1 (68.9 thousand). PM1 was estimated to reduce life expectancy, which was greater than PM2.5 (PM1: 1.67 years; PM2.5: 1.55 years). For PM1, greater years of loss in PM-related life expectancy were found in the female group, ≥65 years group, and cardiovascular disease group. Exposure to PM1 had a greater impact on life expectancy loss than did PM2.5. Constant efforts are urgently needed to control PM1 air pollution to improve people's longevity.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Zhen Ding
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Hung Chak Ho
- Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Mohammad Zahid Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Yinguang Fan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Jing Ni
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Qingqing Wang
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Yan Xu
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Jing Wei
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, The University of Iowa, Iowa City, IA, USA.
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.
| |
Collapse
|