1
|
Gattu AK, Tanzer M, Yaron-Barir TM, Johnson JL, Jayavelu AK, Pan H, Dreyfuss JM, Cantley LC, Mann M, Kahn CR. Cell-intrinsic insulin signaling defects in human iPS cell-derived hepatocytes in type 2 diabetes. J Clin Invest 2025; 135:e183513. [PMID: 40231468 DOI: 10.1172/jci183513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/07/2025] [Indexed: 04/16/2025] Open
Abstract
Hepatic insulin resistance is central to type 2 diabetes (T2D) and metabolic syndrome, but defining the molecular basis of this defect in humans is challenging because of limited tissue access. Utilizing inducible pluripotent stem cells differentiated into hepatocytes from control individuals and patients with T2D and liquid chromatography with tandem mass spectrometry-based (LC-MS/MS-based) phosphoproteomics analysis, we identified a large network of cell-intrinsic alterations in signaling in T2D. Over 300 phosphosites showed impaired or reduced insulin signaling, including losses in the classical insulin-stimulated PI3K/AKT cascade and their downstream targets. In addition, we identified over 500 phosphosites of emergent, i.e., new or enhanced, signaling. These occurred on proteins involved in the Rho-GTPase pathway, RNA metabolism, vesicle trafficking, and chromatin modification. Kinome analysis indicated that the impaired phosphorylation sites represented reduced actions of AKT2/3, PKCθ, CHK2, PHKG2, and/or STK32C kinases. By contrast, the emergent phosphorylation sites were predicted to be mediated by increased action of the Rho-associated kinases 1 and 2 (ROCK1/2), mammalian STE20-like protein kinase 4 (MST4), and/or branched-chain α-ketoacid dehydrogenase kinase (BCKDK). Inhibiting ROCK1/2 activity in T2D induced pluripotent stem cell-derived hepatocytes restored some of the alterations in insulin action. Thus, insulin resistance in the liver in T2D did not simply involve a loss of canonical insulin signaling but the also appearance of new phosphorylations representing a change in the balance of multiple kinases. Together, these led to altered insulin action in the liver and identified important targets for the therapy of hepatic insulin resistance.
Collapse
Affiliation(s)
- Arijeet K Gattu
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, and
- Metabolism Unit and Division of Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Tanzer
- Department of Proteomics and Signal Transduction, Max Plank Institute of Biochemistry, Martinsried, Germany
- Advanced Technology and Biology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Tomer M Yaron-Barir
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | - Ashok Kumar Jayavelu
- Department of Proteomics and Signal Transduction, Max Plank Institute of Biochemistry, Martinsried, Germany
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Plank Institute of Biochemistry, Martinsried, Germany
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, and
| |
Collapse
|
2
|
Hoseini Z, Behpour N, Hoseini R. Aerobic training and vitamin D supplementation effects on diabetes-related parameters in a rat model of type 2 diabetes. BMC Sports Sci Med Rehabil 2025; 17:79. [PMID: 40217474 PMCID: PMC11987209 DOI: 10.1186/s13102-025-01125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Diabetes mellitus (DM) is characterized by disturbances in glucose, lipid, and energy metabolism, including dyslipidemia and dysregulation of metabolic peptides like spexin; however, the effects of combined interventions, such as aerobic training and nutritional intervention, on these parameters are not fully elucidated. The objective of this study was to investigate the influences of aerobic training (AT) and vitamin D (Vit D) supplementation on the lipid profile and spexin levels in a model of rats with type 2 diabetes (T2D). METHODS A total of 56 male Wistar rats were divided into two groups: SHAM (non-diabetic control; n = 8) and diabetic (n = 48). The diabetic rats were further divided into six groups: AT with high doses of vitamin D (D + AT + HD; 10,000 IU/kg/week), AT with moderate doses of vitamin D (D + AT + MD; 5,000 IU/kg/week), high doses of vitamin D (D + HD; 10,000 IU/kg/week), moderate doses of vitamin D (D + MD; 5,000 IU/kg/week), AT receiving vehicle (sesame oil; D + AT + oil), and control (oil-receiving; D + C). To induce type 2 diabetes, rats were first fed a high-fat diet (HFD) for 2 weeks to induce obesity, followed by an intraperitoneal injection of 110 mg/kg nicotinamide and 55 mg/kg streptozotocin (STZ) dissolved in 0.1 M citrate buffer (pH 4.5). Blood samples were collected 48 h after the last training session under anesthesia for measuring spexin levels, and lipid profile parameters. Statistical analyses were performed using the paired t-test, one-way analysis of variance (ANOVA), and Tukey post hoc test. RESULTS Compared to the SHAM rats, there were significant increases in body weight, BMI, FI, and WC in the diabetic rats (p < 0.001). Also, there was a significant decrease in body weight, BMI, FI, and WC of the diabetic groups who received interventions, especially in D + AT + HD (body weight: -11.07%, BMI: -10.25%, FI: -19.16%, WC: -16.54%). The lipid profiles were significantly improved, with the lowest total cholesterol (TC), triglycerides (TG), and low-density lipoprotein (LDL) levels and the highest high-density lipoprotein (HDL) levels being found in the D + AT + HD group compared with the D + C group (p < 0.05). Moreover, the D + AT + HD group had elevated spexin levels compared with the other diabetic groups, which may play a metabolic role. CONCLUSION AT and Vit D supplementation effectively normalized serum lipids and increased spexin levels in T2D rats. These findings suggest that AT and Vit D supplementation may serve as potential therapeutic strategies for managing T2D and its associated complications. Further studies are needed to elucidate the underlying mechanisms and to evaluate the long-term effects of these interventions in humans.
Collapse
Affiliation(s)
- Zahra Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Nasser Behpour
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
| | - Rastegar Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
3
|
Quagliariello V, Berretta M, Bisceglia I, Giacobbe I, Iovine M, Barbato M, Maurea C, Canale ML, Paccone A, Inno A, Scherillo M, Oliva S, Cadeddu Dessalvi C, Mauriello A, Fonderico C, Maratea AC, Gabrielli D, Maurea N. In the Era of Cardiovascular-Kidney-Metabolic Syndrome in Cardio-Oncology: From Pathogenesis to Prevention and Therapy. Cancers (Basel) 2025; 17:1169. [PMID: 40227756 DOI: 10.3390/cancers17071169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
Cardiovascular-kidney-metabolic (CKM) syndrome represents a complex interplay between cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders, significantly impacting cancer patients. The presence of CKM syndrome in cancer patients not only worsens their prognosis but also increases the risk of major adverse cardiovascular events (MACE), reduces quality of life (QoL), and affects overall survival (OS). Furthermore, several anticancer therapies, including anthracyclines, tyrosine kinase inhibitors, immune checkpoint inhibitors, and hormonal treatments, can exacerbate CKM syndrome by inducing cardiotoxicity, nephrotoxicity, and metabolic dysregulation. This review explores the pathophysiology of CKM syndrome in cancer patients and highlights emerging therapeutic strategies to mitigate its impact. We discuss the role of novel pharmacological interventions, including sodium-glucose cotransporter-2 inhibitors (SGLT2i), proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i), and soluble guanylate cyclase (sGC) activators, as well as dietary and lifestyle interventions. Optimizing the management of CKM syndrome in cancer patients is crucial to improving OS, enhancing QoL, and reducing MACE. By integrating cardiometabolic therapies into oncologic care, we can create a more comprehensive treatment approach that reduces the burden of cardiovascular and renal complications in this vulnerable population. Further research is needed to establish personalized strategies for CKM syndrome prevention and treatment in cancer patients.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Irma Bisceglia
- Servizi Cardiologici Integrati, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00148 Rome, Italy
| | - Ilaria Giacobbe
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy
| | - Martina Iovine
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy
| | - Matteo Barbato
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy
| | - Carlo Maurea
- ASL NA1, UOC Neurology and Stroke Unit, Ospedale del Mare, 23807 Naples, Italy
| | | | - Andrea Paccone
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy
| | - Alessandro Inno
- Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar di Valpolicella, Italy
| | - Marino Scherillo
- Cardiologia Interventistica e UTIC, A.O. San Pio, Presidio Ospedaliero Gaetano Rummo, 82100 Benevento, Italy
| | - Stefano Oliva
- Cardio-Oncology Unit, IRCCS Istituto Tumori, "Giovanni Paolo II", 70124 Bari, Italy
| | | | - Alfredo Mauriello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy
| | - Celeste Fonderico
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy
| | - Anna Chiara Maratea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy
| | - Domenico Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00152 Rome, Italy
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy
| |
Collapse
|
4
|
Li Y, Du X, Shi S, Chen M, Wang S, Huang Y, Zhong VW. Trends in prevalence and multimorbidity of metabolic, cardiovascular, and chronic kidney diseases among US adults with depression from 2005 to 2020. J Affect Disord 2025; 372:262-268. [PMID: 39638061 DOI: 10.1016/j.jad.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Comorbid depression and cardiometabolic diseases are prevalent and increase risk of mortality. However, trends in the prevalence and multimorbidity of cardiometabolic diseases in depression are unclear. METHODS Data of adults aged ≥20 years with depression from the National Health and Nutrition Examination Survey 2005-2020 were analyzed. Joinpoint regression analysis was used to estimate trends in the prevalence of dyslipidemia, hypertension, diabetes, chronic kidney disease, non-alcoholic fatty liver disease, and cardiovascular disease as well as having ≥3 of these diseases. Differences in the prevalence of these diseases in depression vs no depression were assessed using Poisson regressions after applying propensity score weighting. RESULTS A total of 3412 adults with depression were included. The prevalence of cardiometabolic diseases as well as having ≥3 diseases remained high and stable in the overall sample from 2005 to 2020 (P for trend >0.05). In 2017-2020, the prevalence ranged from 17.1 % (95 % CI, 12.7 %-21.5 %) for cardiovascular disease to 58.4 % (95 % CI, 50.4 %-66.3 %) for dyslipidemia; 40.7 % (95 % CI, 34.4 %-46.9 %) had ≥3 diseases. The prevalence of diabetes, cardiovascular disease, and having≥3 diseases was 23 %-85 % higher in adults with depression than those without. LIMITATIONS The utilization of self-reported data and/or one-time laboratory measurements may misclassify participants. CONCLUSIONS Prevalence of cardiometabolic diseases was high and multimorbidity was common in US adults with depression. Addressing the prevention, treatment, and management of cardiometabolic diseases in depression requires greater public health and clinical attention.
Collapse
Affiliation(s)
- Yiyuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xihao Du
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuxiao Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sujing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Victor W Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Stefanakis K, Mingrone G, George J, Mantzoros CS. Accurate non-invasive detection of MASH with fibrosis F2-F3 using a lightweight machine learning model with minimal clinical and metabolomic variables. Metabolism 2025; 163:156082. [PMID: 39566717 DOI: 10.1016/j.metabol.2024.156082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND There are no known non-invasive tests (NITs) designed for accurately detecting metabolic dysfunction-associated steatohepatitis (MASH) with liver fibrosis stages F2-F3, excluding cirrhosis-the FDA-defined range for prescribing Resmetirom and other drugs in clinical trials. We aimed to validate and re-optimize known NITs, and most importantly to develop new machine learning (ML)-based NITs to accurately detect MASH F2-F3. METHODS Clinical and metabolomic data were collected from 443 patients across three countries and two clinic types (metabolic surgery, gastroenterology/hepatology) covering the entire spectrum of biopsy-proven MASH, including cirrhosis and healthy controls. Three novel types of ML models were developed using a categorical gradient boosting machine pipeline under a classic 4:1 split and a secondary independent validation analysis. These were compared with twenty-three biomarker, imaging, and algorithm-based NITs with both known and re-optimized cutoffs for MASH F2-F3. RESULTS The NAFLD (Non-Alcoholic Fatty Liver Disease) Fibrosis Score (NFS) at a - 1.455 cutoff attained an area under the receiver operating characteristic curve (AUC) of 0.59, the highest sensitivity (90.9 %), and a negative predictive value (NPV) of 87.2 %. FIB-4 risk stratification followed by elastography (8 kPa) had the best specificity (86.9 %) and positive predictive value (PPV) (63.3 %), with an AUC of 0.57. NFS followed by elastography improved the PPV to 65.3 % and AUC to 0.62. Re-optimized FibroScan-AST (FAST) at a 0.22 cutoff had the highest PPV (69.1 %). ML models using aminotransferases, metabolic syndrome components, BMI, and 3-ureidopropionate achieved an AUC of 0.89, which further increased to 0.91 following hyperparameter optimization and the addition of alpha-ketoglutarate. These new ML models outperformed all other NITs and displayed accuracy, sensitivity, specificity, PPV, and NPV up to 91.2 %, 85.3 %, 97.0 %, 92.4 %, and 90.7 % respectively. The models were reproduced and validated in a secondary sensitivity analysis, that used one of the cohorts as feature selection/training, and the rest as independent validation, likewise outperforming all other applicable NITs. CONCLUSIONS We report for the first time the diagnostic characteristics of non-invasive, metabolomics-based biomarker models to detect MASH with fibrosis F2-F3 required for Resmetirom treatment and inclusion in ongoing phase-III trials. These models may be used alone or in combination with other NITs to accurately determine treatment eligibility.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA
| |
Collapse
|
6
|
Kokkorakis M, Folkertsma P, Forte JC, Wolffenbuttel BHR, van Dam S, Mantzoros CS. GDF-15 improves the predictive capacity of steatotic liver disease non-invasive tests for incident morbidity and mortality risk for cardio-renal-metabolic diseases and malignancies. Metabolism 2025; 163:156047. [PMID: 39396641 DOI: 10.1016/j.metabol.2024.156047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND & AIMS Noninvasive tools (NITs) are currently used to stratify the risk of having or developing hepatic steatosis or fibrosis. Their performance and a proteomic-enabled improvement in forecasting long-term cardio-renal-metabolic morbidity, malignancies, as well as cause-specific and all-cause mortality, are lacking. Therefore, the performance of established NITs needs to be investigated in identifying cardio-renal-metabolic morbidity, malignancies, cause-specific and overall mortality and improve their performance with novel, proteomic-enabled NITs, including growth differentiation factor 15 (GDF-15), allowing multipurpose utilization. METHODS 502,359 UK Biobank participants free of the study outcomes at baseline with a 14-year median follow-up were grouped into three categories: a) general population, b) potentially metabolic dysfunction-associated steatotic liver disease (MASLD) population, c) individuals with type 2 diabetes mellitus. The investigated NITs include Aspartate aminotransferase to Platelet Ratio Index (APRI), Fibrosis 4 Index (FIB-4), Fatty Liver Index (FLI), Hepatic Steatosis Index (HSI), Lipid Accumulation Product (LAP), and metabolic dysfunction-associated fibrosis (MAF-5) score. RESULTS Adding GDF-15 to the existing NITs led to significantly increased prognostic performance compared to the traditional NITs in almost all instances, reaching substantially high C-indices, ranging between 0.601 and 0.808, with an overall >0.2 improvement in C-index. Overall, with the GDF-15 enhanced NITs, up to more than seven times fewer individuals need to be screened to identify more incident cases of adverse outcomes compared to the traditional NITs. The cumulative incidence of all outcomes, based on the continuous value percentiles of NITs, is increasing exponentially in the upper quintile of the GDF-15 enhanced NITs. CONCLUSIONS The herein-developed GDF-15 enhanced indices demonstrate higher screening effectiveness and significantly improved prognostic abilities, which are reduced to practice through an easy-to-use web-based calculator tool (https://clinicalpredictor.shinyapps.io/multimorbidity-mortality-risk/).
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Pytrik Folkertsma
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - José Castela Forte
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sipko van Dam
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA
| |
Collapse
|
7
|
Kyhl LK, Nordestgaard BG, Tybjærg-Hansen A, Smith GD, Nielsen SF. VLDL triglycerides and cholesterol in non-alcoholic fatty liver disease and myocardial infarction. Atherosclerosis 2025; 401:119094. [PMID: 39837114 DOI: 10.1016/j.atherosclerosis.2024.119094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND AND AIMS Myocardial infarction is a leading cause of death in individuals with non-alcoholic fatty liver disease (NAFLD). The two diseases share elevated very low-density lipoproteins (VLDL) carrying both triglycerides and cholesterol; however, in NAFLD mainly triglycerides accumulate in liver cells while in myocardial infarction mainly cholesterol accumulates in the atherosclerotic plaque. We hypothesized that VLDL triglycerides preferentially associate with risk of NAFLD, while VLDL cholesterol preferentially associates with risk of myocardial infarction. METHODS We examined 25,428 individuals without clinically diagnosed NAFLD or myocardial infarction at baseline, nested within 109,776 individuals from the prospective Copenhagen General Population Study and followed these individuals for a mean of 10 years. VLDL triglycerides, VLDL cholesterol, and low-density lipoprotein (LDL) cholesterol were determined using nuclear magnetic resonance spectrometry. RESULTS Continuously higher VLDL triglycerides were associated with continuously higher risk of NAFLD; however, this was not the case for VLDL cholesterol, LDL cholesterol, or apolipoprotein B. In contrast, continuously higher VLDL cholesterol, LDL cholesterol, and plasma apolipoprotein B were all associated with continuously higher risk of myocardial infarction. Compared to individuals with both VLDL triglycerides and VLDL cholesterol ≤66th percentile, the hazard ratios for NAFLD in individuals with VLDL triglycerides >66th percentile were 1.61(95 % confidence intervals:1.25-2.06) at high VLDL cholesterol and 1.41(0.90-2.21) at low VLDL cholesterol. Corresponding hazard ratios for myocardial infarction in individuals with VLDL cholesterol >66th percentile were 1.51(1.36-1.67) at high VLDL triglycerides and 1.42(1.18-1.69) at low VLDL triglycerides. CONCLUSIONS VLDL triglycerides predominated in NAFLD while VLDL cholesterol predominated in myocardial infarction; however, VLDL cholesterol was also elevated slightly in NAFLD while VLDL triglycerides was also elevated in myocardial infarction.
Collapse
Affiliation(s)
- Lærke Kristine Kyhl
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, Herlev, Denmark; The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, Herlev, Denmark; The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, United Kingdom; Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Sune Fallgaard Nielsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, Herlev, Denmark; The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Wasuwanich P, So JM, Sadek M, Jarasvaraparn C, Rajborirug S, Quiros-Tejeira RE, Karnsakul W. Pediatric Non-Alcoholic Fatty Liver Disease (NAFLD): Trends, Mortality, and Socioeconomic Disparities in the U.S., 1998-2020. CHILDREN (BASEL, SWITZERLAND) 2025; 12:71. [PMID: 39857902 PMCID: PMC11763524 DOI: 10.3390/children12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND/OBJECTIVES We aim to describe the changing inpatient epidemiology of NAFLD in the U.S. and identify major risk factors associated with mortality in the disease among hospitalized pediatric patients. METHODS Hospitalization data from the 1998-2020 National Inpatient Sample were utilized. ICD-9 and ICD-10 codes were used to identify pediatric patients (age less than 18 years old) with NAFLD, and risk factors for mortality were analyzed by logistic regression. RESULTS We identified 68,869 pediatric hospitalizations involving NAFLD. Among those, 970 (1.4%) died during hospitalization. Hospitalization rates have been rapidly increasing from 1998 to 2020 (incidence rate ratio (IRR): 1.07; 95% CI: 1.06-1.07; p < 0.001). There was a significant difference in mortality based on the type of hospital (rural, non-teaching urban, or teaching urban) in pediatric patients with NAFLD (p < 0.05). Coagulopathy was significantly associated with increased odds of mortality, while age ≥ 12 years, diabetes and obesity were associated with decreased odds of mortality (p < 0.05). Sex, race/ethnicity, hepatitis B, hepatitis C, HIV, and IV drug use were not significantly associated with mortality. CONCLUSIONS Our study has shown ever increasing hospitalization rates for NAFLD in pediatric populations and well as significant risk factors associated with mortality. Further studies should be performed as more data on this patient population are collected.
Collapse
Affiliation(s)
- Paul Wasuwanich
- Department of Internal Medicine, Naples Comprehensive Health, Naples, FL 34102, USA
- Department of Internal Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Joshua M. So
- Department of Internal Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mustafa Sadek
- Department of Internal Medicine, Naples Comprehensive Health, Naples, FL 34102, USA
| | - Chaowapong Jarasvaraparn
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Songyos Rajborirug
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, 550 N. Broadway 10th Floor Suite 1003, Baltimore, MD 21205, USA
| | - Ruben E. Quiros-Tejeira
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wikrom Karnsakul
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, 550 N. Broadway 10th Floor Suite 1003, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Borozan S, Vujosevic S, Mikhailidis DP, Muzurovic E. Metabolic Dysfunction-associated Steatohepatitis and Cardiovascular Disease Prevention - Is Resmetirom Useful? Curr Vasc Pharmacol 2025; 23:4-7. [PMID: 39129278 DOI: 10.2174/0115701611340703240809044916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/01/1970] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Affiliation(s)
- Sanja Borozan
- Department of Internal Medicine, Endocrinology Section, Clinical Centre of Montenegro, Podgorica, Montenegro
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Snezana Vujosevic
- Department of Internal Medicine, Endocrinology Section, Clinical Centre of Montenegro, Podgorica, Montenegro
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Dimitri P Mikhailidis
- Division of Surgery and Interventional Science, University College London Medical School, University College London (UCL) and Department of Clinical Biochemistry, Royal Free Hospital Campus (UCL), London, UK
| | - Emir Muzurovic
- Department of Internal Medicine, Endocrinology Section, Clinical Centre of Montenegro, Podgorica, Montenegro
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| |
Collapse
|
10
|
Lv Q, Zhao H. The association of metabolic dysfunction-associated steatotic liver disease (MASLD) with the risk of myocardial infarction: a systematic review and meta-analysis. Ann Med 2024; 56:2306192. [PMID: 38253023 PMCID: PMC10810647 DOI: 10.1080/07853890.2024.2306192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Objective While studies have documented how metabolic dysfunction-associated steatotic liver disease (MASLD) can contribute to cardiovascular disease (CVD), whether MASLD is associated with myocardial infarction (MI) remains debateable. Herein, we systematically reviewed published articles and performed a meta-analysis to determine the relationship between MASLD and MI risk.Methods PubMed, MEDLINE, Embase, Web of Science, CNKI, CBM, VIP, and WanFang databases were searched, and the DerSimonian Laird method was used to obtain hazard ratios (HRs) for binary variables to assess the correlation between MASLD and MI risk. Subgroup analyses for the study region, MASLD diagnosis, quality score, study design, and follow-up time were conducted simultaneously for the selected studies retrieved from the time of database establishment to March 2022. All study procedures were independently conducted by two investigators.Results The final analysis included seven articles, including eight prospective and two retrospective cohort studies. The MI risk was higher among MASLD patients than among non-MASLD patients (HR = 1.26; 95% CI: 1.08-1.47, p = 0.003). The results of the subgroup analysis of the study region revealed an association of MASLD with MI risk among Americans and Asians, but not in Europeans. Subgroup analyses of MASLD diagnosis showed that ultrasonography and other (fatty liver index[FLI] and computed tomography [CT)]) diagnostic methods, but not international classification of disease (ICD), increased the risk of MI. Subgroup analysis of the study design demonstrated a stronger relationship between MASLD and MI in retrospective studies but not in prospective studies. Subgroup analysis based on the follow-up duration revealed the association of MASLD with MI risk in cases with < 3 years of follow-up but not with ≥3 years of follow-up.Conclusion MASLD increases the risk of MI, independent of traditional risk factors.
Collapse
Affiliation(s)
- Qiong Lv
- Department of Electrocardiogram, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Huashan Zhao
- Department of General Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
11
|
Skudder‐Hill L, Sequeira‐Bisson IR, Ko J, Poppitt SD, Petrov MS. The moderating effect of cardiometabolic factors on the association between hepatic and intrapancreatic fat. Obesity (Silver Spring) 2024; 32:2310-2320. [PMID: 39523209 PMCID: PMC11589540 DOI: 10.1002/oby.24154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Previous studies have investigated the association between hepatic fat and intrapancreatic fat deposition (IPFD); however, results have been inconclusive. The presence of cardiometabolic factors in certain subpopulations could explain this discrepancy. The aim of the present study was to use moderation analyses to determine the conditions under which hepatic fat is associated with IPFD. METHODS All participants underwent 3T abdominal magnetic resonance imaging (MRI) and spectroscopy. Hepatic fat and IPFD were manually quantified by independent raters. Moderation analyses were performed with adjustment for sex and ethnicity. RESULTS There were 367 participants included. Adjusted analyses of the overall cohort revealed that age, glycated hemoglobin (HbA1c), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides were significant moderators (p < 0.05) of the association between hepatic fat and IPFD. Ranges of significance included age < 61 years, HbA1c < 45 mmol/mol, LDL-C < 157 mg/dL, HDL-C > 36 mg/dL, and triglycerides < 203 mg/dL. CONCLUSIONS The association between hepatic fat and IPFD is generally present in young and middle-aged adults with good cardiometabolic health, whereas the link between the two fat depots becomes uncoupled in older adults or individuals with cardiometabolic risk factors.
Collapse
Affiliation(s)
| | - Ivana R. Sequeira‐Bisson
- Human Nutrition Unit, School of Biological SciencesUniversity of AucklandAucklandNew Zealand
- Riddet Centre of Research Excellence (CoRE) for Food and NutritionNew Zealand
| | - Juyeon Ko
- School of MedicineUniversity of AucklandAucklandNew Zealand
| | - Sally D. Poppitt
- School of MedicineUniversity of AucklandAucklandNew Zealand
- Human Nutrition Unit, School of Biological SciencesUniversity of AucklandAucklandNew Zealand
- Riddet Centre of Research Excellence (CoRE) for Food and NutritionNew Zealand
| | | |
Collapse
|
12
|
Orozco-Beltrán D, Brotons-Cuixart C, Banegas JR, Gil-Guillen VF, Cebrián-Cuenca AM, Martín-Rioboó E, Jordá-Baldó A, Vicuña J, Navarro-Pérez J. [Cardiovascular preventive recommendations. PAPPS 2024 thematic updates]. Aten Primaria 2024; 56 Suppl 1:103123. [PMID: 39613355 PMCID: PMC11705607 DOI: 10.1016/j.aprim.2024.103123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 12/01/2024] Open
Abstract
The recommendations of the semFYC's Program for Preventive Activities and Health Promotion (PAPPS) for the prevention of vascular diseases (VD) are presented. New in this edition are new sections such as obesity, chronic kidney disease and metabolic hepatic steatosis, as well as a 'Don't Do' section in the different pathologies treated. The sections have been updated: epidemiological review, where the current morbidity and mortality of CVD in Spain and its evolution as well as the main risk factors are described; vascular risk (VR) and recommendations for the calculation of CV risk; main risk factors such as arterial hypertension, dyslipidemia and diabetes mellitus, describing the method for their diagnosis, therapeutic objectives and recommendations for lifestyle measures and pharmacological treatment; indications for antiplatelet therapy, and recommendations for screening of atrial fibrillation, and recommendations for management of chronic conditions. The quality of testing and the strength of the recommendation are included in the main recommendations.
Collapse
Affiliation(s)
- Domingo Orozco-Beltrán
- Medicina Familiar y Comunitaria, Unidad de Investigación CS Cabo Huertas, Departamento San Juan de Alicante. Departamento de Medicina Clínica. Centro de Investigación en Atención Primaria. Universidad Miguel Hernández, San Juan de Alicante, España.
| | - Carlos Brotons-Cuixart
- Medicina Familiar y Comunitaria. Institut de Recerca Sant Pau (IR SANT PAU). Equipo de Atención Primaria Sardenya, Barcelona, España
| | - José R Banegas
- Medicina Preventiva y Salud Pública, Universidad Autónoma de Madrid y CIBERESP, Madrid, España
| | - Vicente F Gil-Guillen
- Medicina Familiar y Comunitaria. Hospital Universitario de Elda. Departamento de Medicina Clínica. Centro de Investigación en Atención Primaria. Universidad Miguel Hernández, San Juan de Alicante, España
| | - Ana M Cebrián-Cuenca
- Medicina Familiar y Comunitaria, Centro de Salud Cartagena Casco Antiguo, Cartagena, Murcia, España. Instituto de Investigación Biomédica de Murcia (IMIB), Universidad Católica de Murcia, Murcia, España
| | - Enrique Martín-Rioboó
- Medicina Familiar y Comunitaria, Centro de Salud Poniente, Córdoba. Departamento de Medicina. Universidad de Córdoba. Grupo PAPPS, Córdoba, España
| | - Ariana Jordá-Baldó
- Medicina Familiar y Comunitaria. Centro de Salud Plasencia II, Plasencia, Cáceres, España
| | - Johanna Vicuña
- Medicina Preventiva y Salud Pública. Hospital de la Sant Creu i Sant Pau, Barcelona, España
| | - Jorge Navarro-Pérez
- Medicina Familiar y Comunitaria, Centro de Salud Salvador Pau (Valencia). Departamento de Medicina. Universidad de Valencia. Instituto de Investigación INCLIVA, Valencia, España
| |
Collapse
|
13
|
Hung JH, Teng CF, Hung HC, Chen YL, Chen PJ, Ho CL, Chuang CH, Huang W. Genomic instabilities in hepatocellular carcinoma: biomarkers and application in immunotherapies. Ann Hepatol 2024; 29:101546. [PMID: 39147130 DOI: 10.1016/j.aohep.2024.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 06/18/2024] [Indexed: 08/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. For patients with advanced HCC, liver function decompensation often occurs, which leads to poor tolerance to chemotherapies and other aggressive treatments. Therefore, it remains critical to develop effective therapeutic strategies for HCC. Etiological factors for HCC are complex and multifaceted, including hepatitis virus infection, alcohol, drug abuse, chronic metabolic abnormalities, and others. Thus, HCC has been categorized as a "genomically unstable" cancer due to the typical manifestation of chromosome breakage and aneuploidy, and oxidative DNA damage. In recent years, immunotherapy has provided a new option for cancer treatments, and the degree of genomic instability positively correlates with immunotherapy efficacies. This article reviews the endogenous and exogenous causes that affect the genomic stability of liver cells; it also updates the current biomarkers and their detection methods for genomic instabilities and relevant applications in cancer immunotherapies. Including genomic instability biomarkers in consideration of cancer treatment options shall increase the patients' well-being.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Chiao-Feng Teng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan; Program for Cancer Biology and Drug Development, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Hsu-Chin Hung
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Lin Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Pin-Jun Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Liang Ho
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsiang Chuang
- Department of Life Science, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Wenya Huang
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Diseases and Signal Transduction, National Cheng Kung University, Tainan, Taiwan..
| |
Collapse
|
14
|
Zhou XD, Targher G, Byrne CD, Shapiro MD, Chen LL, Zheng MH. Metabolic dysfunction-associated fatty liver disease: bridging cardiology and hepatology. CARDIOLOGY PLUS 2024; 9:275-282. [DOI: 10.1097/cp9.0000000000000106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the leading cause of chronic liver diseases, affecting approximately 30% of the global adult population, with a rise largely attributed to increasing rates of obesity and diabetes worldwide. Historically, the term “NAFLD” did not explicitly link the condition to its most common causes, such as obesity and diabetes, or its principal pathophysiological mechanisms, including insulin resistance and low-grade chronic metabolic inflammation. This semantic laxity has potentially reduced attempts at screening, diagnosis, and management. The shift to using the terms metabolic-associated fatty liver disease (MAFLD) and metabolic dysfunction-associated steatotic liver disease (MASLD) reflects a more accurate understanding of the condition’s metabolic origins and highlights its broader implications, particularly its link to cardiovascular diseases. MAFLD/MASLD represents a convergence point between hepatology and cardiology, with metabolic dysfunction serving as the bridge between liver pathology and increased cardiovascular risk. Growing clinical evidence reveals a strong association between MAFLD/MASLD and cardiovascular morbidity and mortality. Despite this, cardiovascular risks associated with MAFLD/MASLD are often underestimated, especially among cardiologists. This narrative review explores the potential clinical implications of MAFLD/MASLD for cardiology practice, examining diagnostic criteria, cardiovascular risk assessment, adjustments in clinical practice, collaborative care strategies, treatment options, and directions for future research.
Collapse
Affiliation(s)
- Xiao-Dong Zhou
- Department of Cardiovascular Medicine, the Heart Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325030, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona 37024, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella 37024, Italy
| | - Christopher D. Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, and University of Southampton, Southampton General Hospital, Southampton SO17 1BJ, UK
| | - Michael D. Shapiro
- Center for Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27130, USA
| | - Li-Li Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325030, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325030, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou 325030, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou 325030, China
| |
Collapse
|
15
|
Bott S, Lallement J, Marino A, Daskalopoulos EP, Beauloye C, Esfahani H, Dessy C, Leclercq IA. When the liver is in poor condition, so is the heart - cardiac remodelling in MASH mouse models. Clin Sci (Lond) 2024; 138:1151-1171. [PMID: 39206703 PMCID: PMC11405860 DOI: 10.1042/cs20240833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) confers a risk for cardiovascular diseases in patients. Animal models may help exploring the mechanisms linking liver and heart diseases. Hence, we explored the cardiac phenotype in two MASH mouse models: foz/foz mice fed a high-fat diet (HFD) for 24 or 60 weeks and C57BL/6J mice fed a high-fat-, high-cholesterol-, and high-fructose diet for 60 weeks. Angiotensin II (AngII) was used as an additional cardiovascular stressor for 4 weeks in 10 weeks HFD-fed foz/foz mice. Foz/foz mice with fibrosing MASH developed cardiac hypertrophy with adverse cardiac remodelling not seen in WT similarly fed the HFD. AngII caused hypertension and up-regulated the expression of genes contributing to pathological cardiac hypertrophy (Nppa, Myh7) more severely so in foz/foz mice than in controls. After 60 weeks of HFD, while liver disease had progressed to burn-out non steatotic MASH with hepatocellular carcinoma in 50% of the animals, the cardiomyopathy did not. In an independent model (C57BL/6J mice fed a fat-, cholesterol- and fructose-rich diet), moderate fibrosing MASH is associated with cardiac fibrosis and dysregulation of genes involved in pathological remodelling (Col1a1, Col3a1, Vim, Myh6, Slc2a1). Thus, animals with MASH present consistent adverse structural changes in the heart with no patent alteration of cardiac function even when stressed with exogenous AngII. Liver disease, and likely not overfeeding or aging alone, is associated with this cardiac phenotype. Our findings support foz/foz mice as suitable for studying links between MASH and heart structural changes ahead of heart failure.
Collapse
Affiliation(s)
- Sebastian Bott
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Justine Lallement
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Alice Marino
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | | | - Christophe Beauloye
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Hrag Esfahani
- Platform of Integrated Physiology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Chantal Dessy
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle Anne Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels
| |
Collapse
|
16
|
Yuan H, Jung ES, Chae SW, Jung SJ, Daily JW, Park S. Biomarkers for Health Functional Foods in Metabolic Dysfunction-Associated Steatotic Liver Disorder (MASLD) Prevention: An Integrative Analysis of Network Pharmacology, Gut Microbiota, and Multi-Omics. Nutrients 2024; 16:3061. [PMID: 39339660 PMCID: PMC11434757 DOI: 10.3390/nu16183061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disorder (MASLD) is increasingly prevalent globally, highlighting the need for preventive strategies and early interventions. This comprehensive review explores the potential of health functional foods (HFFs) to maintain healthy liver function and prevent MASLD through an integrative analysis of network pharmacology, gut microbiota, and multi-omics approaches. We first examined the biomarkers associated with MASLD, emphasizing the complex interplay of genetic, environmental, and lifestyle factors. We then applied network pharmacology to identify food components with potential beneficial effects on liver health and metabolic function, elucidating their action mechanisms. This review identifies and evaluates strategies for halting or reversing the development of steatotic liver disease in the early stages, as well as biomarkers that can evaluate the success or failure of such strategies. The crucial role of the gut microbiota and its metabolites for MASLD prevention and metabolic homeostasis is discussed. We also cover state-of-the-art omics approaches, including transcriptomics, metabolomics, and integrated multi-omics analyses, in research on preventing MASLD. These advanced technologies provide deeper insights into physiological mechanisms and potential biomarkers for HFF development. The review concludes by proposing an integrated approach for developing HFFs targeting MASLD prevention, considering the Korean regulatory framework. We outline future research directions that bridge the gap between basic science and practical applications in health functional food development. This narrative review provides a foundation for researchers and food industry professionals interested in developing HFFs to support liver health. Emphasis is placed on maintaining metabolic balance and focusing on prevention and early-stage intervention strategies.
Collapse
Affiliation(s)
- Heng Yuan
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea;
| | - Eun-Soo Jung
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - James W. Daily
- Department of R&D, Daily Manufacturing Inc., Rockwell, NC 28138, USA;
| | - Sunmin Park
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea;
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 20 Hoseoro79bungil, Asan 31499, Republic of Korea
| |
Collapse
|
17
|
Janez A, Muzurovic E, Bogdanski P, Czupryniak L, Fabryova L, Fras Z, Guja C, Haluzik M, Kempler P, Lalic N, Mullerova D, Stoian AP, Papanas N, Rahelic D, Silva-Nunes J, Tankova T, Yumuk V, Rizzo M. Modern Management of Cardiometabolic Continuum: From Overweight/Obesity to Prediabetes/Type 2 Diabetes Mellitus. Recommendations from the Eastern and Southern Europe Diabetes and Obesity Expert Group. Diabetes Ther 2024; 15:1865-1892. [PMID: 38990471 PMCID: PMC11330437 DOI: 10.1007/s13300-024-01615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
The increasing global incidence of obesity and type 2 diabetes mellitus (T2D) underscores the urgency of addressing these interconnected health challenges. Obesity enhances genetic and environmental influences on T2D, being not only a primary risk factor but also exacerbating its severity. The complex mechanisms linking obesity and T2D involve adiposity-driven changes in β-cell function, adipose tissue functioning, and multi-organ insulin resistance (IR). Early detection and tailored treatment of T2D and obesity are crucial to mitigate future complications. Moreover, personalized and early intensified therapy considering the presence of comorbidities can delay disease progression and diminish the risk of cardiorenal complications. Employing combination therapies and embracing a disease-modifying strategy are paramount. Clinical trials provide evidence confirming the efficacy and safety of glucagon-like peptide 1 receptor agonists (GLP-1 RAs). Their use is associated with substantial and durable body weight reduction, exceeding 15%, and improved glucose control which further translate into T2D prevention, possible disease remission, and improvement of cardiometabolic risk factors and associated complications. Therefore, on the basis of clinical experience and current evidence, the Eastern and Southern Europe Diabetes and Obesity Expert Group recommends a personalized, polymodal approach (comprising GLP-1 RAs) tailored to individual patient's disease phenotype to optimize diabetes and obesity therapy. We also expect that the increasing availability of dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) agonists will significantly contribute to the modern management of the cardiometabolic continuum.
Collapse
Affiliation(s)
- Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.
| | - Emir Muzurovic
- Department of Internal Medicine, Endocrinology Section, Clinical Centre of Montenegro, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Pawel Bogdanski
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, University of Medical Sciences, Poznan, Poland
| | - Leszek Czupryniak
- Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Lubomira Fabryova
- MetabolKLINIK sro, Department for Diabetes and Metabolic Disorders, Lipid Clinic, MED PED Centre, Biomedical Research Centre of Slovak Academy of Sciences, Slovak Health University, Bratislava, Slovak Republic
| | - Zlatko Fras
- Preventive Cardiology Unit, Division of Medicine, University Medical Centre Ljubljana and Chair of Internal Medicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Cristian Guja
- Clinic of Diabetes, Nutrition and Metabolic Diseases, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21, Prague 4, Czech Republic
| | - Peter Kempler
- Department of Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Nebojsa Lalic
- Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dana Mullerova
- Faculty of Medicine in Pilsen, Department of Public Health and Preventive Medicine and Faculty Hospital in Pilsen, 1st Internal Clinic, Charles University, Pilsen, Czech Republic
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dario Rahelic
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Zagreb, Croatia
- Catholic University of Croatia School of Medicine, Zagreb, Croatia
- Josip Juraj Strossmayer, University of Osijek School of Medicine, Osijek, Croatia
| | - José Silva-Nunes
- NOVA Medical School, New University of Lisbon, Lisbon, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Unidade Local de Saúde São José, Lisbon, Portugal
| | - Tsvetalina Tankova
- Department of Endocrinology, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Volkan Yumuk
- Division of Endocrinology, Metabolism and Diabetes, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
18
|
Yoo J, Jeon J, Baik M, Kim J. Effect of Statins for Primary Prevention of Cardiovascular Disease According to the Fatty Liver Index. J Epidemiol Glob Health 2024; 14:710-719. [PMID: 38393512 PMCID: PMC11442725 DOI: 10.1007/s44197-024-00205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is associated with increased risk of cardiovascular disease (CVD). We investigated the primary preventive effect of statins on CVD according to the level of fatty liver index (FLI), which is a marker of NAFLD. METHODS We conducted a nested case-control study on the basis of a nationwide health screening cohort in Korea. The participants were divided into tertiles (T1, T2, and T3) according to their FLI score. Cases were defined as individuals who developed CVD (composite of myocardial infarction and stroke). Three controls were matched to each case and multivariable conditional logistic regression analysis was performed. RESULTS Within a cohort of 206,263 participants without prior CVD, 7044 individuals suffered the primary outcome. For the nested case-control study, we selected these 7044 cases along with their corresponding 20,641 matched controls. Individuals in the T3 tertiles of FLI had a higher risk of CVD than those in the T1 tertile [adjusted odds ratio (OR) 1.30; 95% confidence interval (CI) 1.20-1.40, P < 0.001]. In sub-analyses based on FLI tertiles, statin therapy was associated with a lower risk of CVD (adjusted OR 0.72; 95% CI 0.61-0.85, P < 0.001) in the T3 tertile but not in the T1 and T2 tertiles. CONCLUSIONS Statin therapy was associated with a reduced risk of CVD in individuals with high FLI but not in those with low FLI. Further research is needed to determine the pathophysiologic mechanism between statin and NAFLD.
Collapse
Affiliation(s)
- Joonsang Yoo
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, 16995, Republic of Korea
| | - Jimin Jeon
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, 16995, Republic of Korea
| | - Minyoul Baik
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, 16995, Republic of Korea
| | - Jinkwon Kim
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, 16995, Republic of Korea.
- Institute for Innovation in Digital Healthcare, Yonsei University Health System, Seoul, Korea.
| |
Collapse
|
19
|
Doustmohammadian A, Amirkalali B, de Courten B, Esfandyari S, Motamed N, Maadi M, Ajdarkosh H, Gholizadeh E, Chaibakhsh S, Zamani F. Path analysis model to identify the effect of poor diet quality on NAFLD among Iranian adults from Amol Cohort Study. Sci Rep 2024; 14:19935. [PMID: 39198491 PMCID: PMC11358441 DOI: 10.1038/s41598-024-70181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is expanding as a global health problem with approximately 25% of the world's population affected by it. Dietary modification is one of the most important strategies for preventing NAFLD. The association between nutrient density and the Healthy Eating Index 2015 (HEI2015) with NAFLD demonstrates that nutrient density is an independent predictor of NAFLD in Iranian adults [fully adjusted model: OR (95% CI)tertile3vs.1: 0.68 (0.54-0.85), P for trend = 0.001]. However, a favorable association between NAFDL and diet quality (HEI 2015) is more pronounced in participants with abdominal obesity [fully adjusted model: OR (95% CI)tertile3vs.1: 0.63 (0.41-0.98), P for trend = 0.03]. Based on the gender-stratified path analysis, diet quality indirectly through Waist-to-Height Ratio (WHtR), C-reactive protein (CRP), and metabolic syndrome in women, and men through WHtR, hemoglobin A1c (HBA1c), CRP, and metabolic syndrome affects NAFLD. Nutrient density directly and indirectly in women through WHtR, CRP, and metabolic syndrome, and in men indirectly through WHtR, hemoglobin A1c, and metabolic syndrome negatively affect NAFLD. Hence, in these subjects; we can provide early dietary intervention and education to prevent progression to NAFLD.
Collapse
Affiliation(s)
- Azam Doustmohammadian
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Amirkalali
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Barbora de Courten
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, 3085, Australia
| | | | - Nima Motamed
- Department of Social Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mansooreh Maadi
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Esmaeel Gholizadeh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Chaibakhsh
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Perdomo CM, Martin-Calvo N, Ezponda A, Mendoza FJ, Bastarrika G, Garcia-Fernandez N, Herrero JI, Colina I, Escalada J, Frühbeck G. Epicardial and liver fat implications in albuminuria: a retrospective study. Cardiovasc Diabetol 2024; 23:308. [PMID: 39175063 PMCID: PMC11342567 DOI: 10.1186/s12933-024-02399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Albuminuria is considered an early and sensitive marker of kidney dysfunction, but also an independent cardiovascular risk factor. Considering the possible relationship among metabolic liver disease, cardiovascular disease and chronic kidney disease, we aimed to evaluate the risk of developing albuminuria regarding the presence of epicardial adipose tissue and the steatotic liver disease status. METHODS A retrospective long-term longitudinal study including 181 patients was carried out. Epicardial adipose tissue and steatotic liver disease were assessed by computed tomography. The presence of albuminuria at follow-up was defined as the outcome. RESULTS After a median follow up of 11.2 years, steatotic liver disease (HR 3.15; 95% CI, 1.20-8.26; p = 0.02) and excess amount of epicardial adipose tissue (HR 6.12; 95% CI, 1.69-22.19; p = 0.006) were associated with an increased risk of albuminuria after adjustment for visceral adipose tissue, sex, age, weight status, type 2 diabetes, prediabetes, hypertriglyceridemia, hypercholesterolemia, arterial hypertension, and cardiovascular prevention treatment at baseline. The presence of both conditions was associated with a higher risk of developing albuminuria compared to having steatotic liver disease alone (HR 5.91; 95% CI 1.15-30.41, p = 0.033). Compared with the first tertile of visceral adipose tissue, the proportion of subjects with liver steatosis and abnormal epicardial adipose tissue was significantly higher in the second and third tertile. We found a significant correlation between epicardial fat and steatotic liver disease (rho = 0.43 [p < 0.001]). CONCLUSIONS Identification and management/decrease of excess adiposity must be a target in the primary and secondary prevention of chronic kidney disease development and progression. Visceral adiposity assessment may be an adequate target in the daily clinical setting. Moreover, epicardial adipose tissue and steatotic liver disease assessment may aid in the primary prevention of renal dysfunction.
Collapse
Affiliation(s)
- Carolina M Perdomo
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Nerea Martin-Calvo
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, Universidad de Navarra, Pamplona, Spain
| | - Ana Ezponda
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Gorka Bastarrika
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Nuria Garcia-Fernandez
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- Department of Nephrology, Clínica Universidad de Navarra, Pamplona, Spain
- Red de Investigación Renal (REDINREN) and RICORS2040, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - José I Herrero
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- Liver Unit, Clínica Universidad de Navarra, Pamplona, Spain
- CIBERehd (CIBER Enfermedades Hepáticas y Digestiva), Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Colina
- Department of Internal Medicine, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Escalada
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain.
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Ergenc I, Kara E, Yilmaz ME, Demirtas CO, Keklikkiran C, Das T, Buyuk Y, Celikel C, Asliyuksek H, Yilmaz Y. Prevalence of metabolic dysfunction-associated steatotic liver disease and steatohepatitis in Türkiye: A forensic autopsy study. Heliyon 2024; 10:e34915. [PMID: 39144976 PMCID: PMC11320207 DOI: 10.1016/j.heliyon.2024.e34915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background and aims Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic in Türkiye and worldwide. The aim of this study was to evaluate the prevalence and predictors of MASLD and steatohepatitis among adults who died of unnatural causes including sudden death and non-burn trauma. Method We conducted a prospective review of all consecutive adult forensic autopsies for natural (sudden unexpected) and non-natural (Suicidal, homicidal and accidental) suspicious deaths carried out at the Istanbul Council of Forensic Medicine from February to May 2022. Four wedge biopsies were extracted from sagittal sectioned liver specimens. A liver pathologist with 20 years of experience examined each case for steatosis, ballooning, inflammation, and fibrosis. Results Among 1797 autopsies, 62 met inclusion criteria. Overall, 43.3 % (n = 26) of autopsies showed evidence of steatotic liver disease, with a distribution of steatosis severity as: Grade I (28.3 %), Grade II (6.6 %), and Grade III (8.3 %). All these cases met at least one cardiometabolic criteria and diagnosed with MASLD. Ballooning was observed in 20.0 % of cases (5 cases grades 1 and 7 cases grade 2), and Inflammation was present in 51.7 % (9 cases with grade 0-1, 12 with 1-2, 7 with 2-3, and 3 with 5-6). Notably, 46.1 % (n = 12) of MASLD cases and 20.0 % (n = 12) of all cases were diagnosed with steatohepatitis, with three cases exhibiting delicate perisinusoidal fibrosis and one case showing portal fibrosis. Conclusion The histopathological findings from this autopsy study confirmed the markedly high prevalence of MASLD and steatohepatitis within the general adult population, highlighting the concerning burden of steatotic liver disease in Türkiye.
Collapse
Affiliation(s)
- Ilkay Ergenc
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Türkiye
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Erdogan Kara
- Ministry of Justice, Council of Forensic Medicine, Istanbul, Türkiye
| | | | - Coskun Ozer Demirtas
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Türkiye
| | - Caglayan Keklikkiran
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
| | - Taner Das
- Ministry of Justice, Council of Forensic Medicine, Istanbul, Türkiye
| | - Yalcin Buyuk
- Ministry of Justice, Council of Forensic Medicine, Istanbul, Türkiye
- Institute of Legal Medicine and Forensic Sciences, Istanbul University- Cerrahpaşa, Istanbul, Türkiye
| | - Cigdem Celikel
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Türkiye
| | - Hizir Asliyuksek
- Ministry of Justice, Council of Forensic Medicine, Istanbul, Türkiye
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Türkiye
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
| |
Collapse
|
22
|
Hao L, Khan MSH, Zu Y, Liu J, Wang S. Thermoneutrality Inhibits Thermogenic Markers and Exacerbates Nonalcoholic Fatty Liver Disease in Mice. Int J Mol Sci 2024; 25:8482. [PMID: 39126051 PMCID: PMC11312964 DOI: 10.3390/ijms25158482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects over a third of the US population and 25% globally, with current treatments proving ineffective. This study investigates whether manipulating brown adipose tissue (BAT) and beige fat activity by housing C57BL/6J mice at thermoneutral (27 °C) or standard temperatures (22 °C) impacts NAFLD development. Male mice were fed either a chow diet (CHD) or a "fast food" diet (FFD) for 10 weeks. Mice at 27 °C had reduced food intake but increased body weight and plasma leptin levels. FFD-fed mice at 27 °C had greater liver weight (2.6 vs. 1.8 g), triglyceride content (7.6 vs. 3.9 mg/g), and hepatic steatosis compared to those at 22 °C. Gene expression of fatty acid synthase, sterol regulatory element-binding protein 1, and fatty acid translocase CD36 was elevated in FFD-fed mice at 27 °C, but not in CHD-fed mice. Thermoneutral housing also reduced expression of thermogenic markers in BAT and inguinal white adipose tissue (WAT) and caused BAT whitening. In conclusion, thermoneutrality inhibits thermogenic markers and exacerbates NAFLD. Activating BAT or promoting WAT browning via cold exposure or other stimuli may offer a strategy for managing NAFLD.
Collapse
Affiliation(s)
- Lei Hao
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.H.K.); (Y.Z.); (J.L.)
- Department of Allied and Public Health, Indiana University of Pennsylvania, Indian, PA 15705, USA
| | - Md Shahjalal Hossain Khan
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.H.K.); (Y.Z.); (J.L.)
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.H.K.); (Y.Z.); (J.L.)
| | - Jie Liu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.H.K.); (Y.Z.); (J.L.)
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.H.K.); (Y.Z.); (J.L.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| |
Collapse
|
23
|
Li M, Shu W, Zou Y, Xiao H, Asihaer Y, Guan M, Khattab N, Thapa B, Sapkota S, Vermund SH, Huang D, Hu Y. Reversing Metabolic Dysfunction-Associated Steatotic Liver Disease Promotes Healthy Pediatric Cardiovascular Structures: The PROC Study. Am J Gastroenterol 2024; 119:1640-1643. [PMID: 38775939 DOI: 10.14309/ajg.0000000000002804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/05/2024] [Indexed: 08/03/2024]
Abstract
INTRODUCTION We investigated the impact of metabolic dysfunction-associated steatotic liver disease (MASLD) on cardiovascular structure development in children. METHODS We followed 1,356 children with the mean age of 6.6 years for 4.5 years in Beijing, China. We assessed the association of MASLD with cardiovascular structure (carotid intima-media thickness and left ventricular mass) outcomes at baseline and follow-up. RESULTS Over follow-up, 59 children had persistent MASLD, 109 had incident MASLD (progression), and 35 had normalization of liver health. Children with MASLD normalization showed a significantly lower mean development in carotid intima-media thickness (0.161 vs 0.188 mm) and left ventricular mass (4.5 vs 12.4 g) than children with persistent MASLD. DISCUSSION The control of MASLD was associated with improved cardiovascular structure development.
Collapse
Affiliation(s)
- Menglong Li
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing, China
| | - Wen Shu
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing, China
| | - Yuchen Zou
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing, China
| | - Huidi Xiao
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing, China
| | - Yeerlin Asihaer
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing, China
| | - Mengying Guan
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing, China
| | - Nourhan Khattab
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing, China
| | - Bipin Thapa
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing, China
| | - Suman Sapkota
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing, China
| | - Sten H Vermund
- Department of Microbiology of Infectious Diseases, Yale School of Public Health, and Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Dayong Huang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yifei Hu
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing, China
- UNESCO Chair on Global Health and Education, Peking University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Li CL, Liu YK, Lan YY, Wang ZS. Association of education with cholelithiasis and mediating effects of cardiometabolic factors: A Mendelian randomization study. World J Clin Cases 2024; 12:4272-4288. [PMID: 39015929 PMCID: PMC11235540 DOI: 10.12998/wjcc.v12.i20.4272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Education, cognition, and intelligence are associated with cholelithiasis occurrence, yet which one has a prominent effect on cholelithiasis and which cardiometabolic risk factors mediate the causal relationship remain unelucidated. AIM To explore the causal associations between education, cognition, and intelligence and cholelithiasis, and the cardiometabolic risk factors that mediate the associations. METHODS Applying genome-wide association study summary statistics of primarily European individuals, we utilized two-sample multivariable Mendelian randomization to estimate the independent effects of education, intelligence, and cognition on cholelithiasis and cholecystitis (FinnGen study, 37041 and 11632 patients, respectively; n = 486484 participants) and performed two-step Mendelian randomization to evaluate 21 potential mediators and their mediating effects on the relationships between each exposure and cholelithiasis. RESULTS Inverse variance weighted Mendelian randomization results from the FinnGen consortium showed that genetically higher education, cognition, or intelligence were not independently associated with cholelithiasis and cholecystitis; when adjusted for cholelithiasis, higher education still presented an inverse effect on cholecystitis [odds ratio: 0.292 (95%CI: 0.171-0.501)], which could not be induced by cognition or intelligence. Five out of 21 cardiometabolic risk factors were perceived as mediators of the association between education and cholelithiasis, including body mass index (20.84%), body fat percentage (40.3%), waist circumference (44.4%), waist-to-hip ratio (32.9%), and time spent watching television (41.6%), while time spent watching television was also a mediator from cognition (20.4%) and intelligence to cholelithiasis (28.4%). All results were robust to sensitivity analyses. CONCLUSION Education, cognition, and intelligence all play crucial roles in the development of cholelithiasis, and several cardiometabolic mediators have been identified for prevention of cholelithiasis due to defects in each exposure.
Collapse
Affiliation(s)
- Chang-Lei Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Yu-Kun Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Ying-Ying Lan
- Department of Oncology Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266002, Shandong Province, China
| | - Zu-Sen Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| |
Collapse
|
25
|
Sandireddy R, Sakthivel S, Gupta P, Behari J, Tripathi M, Singh BK. Systemic impacts of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) on heart, muscle, and kidney related diseases. Front Cell Dev Biol 2024; 12:1433857. [PMID: 39086662 PMCID: PMC11289778 DOI: 10.3389/fcell.2024.1433857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is the most common liver disorder worldwide, with an estimated global prevalence of more than 31%. Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as non-alcoholic steatohepatitis (NASH), is a progressive form of MASLD characterized by hepatic steatosis, inflammation, and fibrosis. This review aims to provide a comprehensive analysis of the extrahepatic manifestations of MASH, focusing on chronic diseases related to the cardiovascular, muscular, and renal systems. A systematic review of published studies and literature was conducted to summarize the findings related to the systemic impacts of MASLD and MASH. The review focused on the association of MASLD and MASH with metabolic comorbidities, cardiovascular mortality, sarcopenia, and chronic kidney disease. Mechanistic insights into the concept of lipotoxic inflammatory "spill over" from the MASH-affected liver were also explored. MASLD and MASH are highly associated (50%-80%) with other metabolic comorbidities such as impaired insulin response, type 2 diabetes, dyslipidemia, hypertriglyceridemia, and hypertension. Furthermore, more than 90% of obese patients with type 2 diabetes have MASH. Data suggest that in middle-aged individuals (especially those aged 45-54), MASLD is an independent risk factor for cardiovascular mortality, sarcopenia, and chronic kidney disease. The concept of lipotoxic inflammatory "spill over" from the MASH-affected liver plays a crucial role in mediating the systemic pathological effects observed. Understanding the multifaceted impact of MASH on the heart, muscle, and kidney is crucial for early detection and risk stratification. This knowledge is also timely for implementing comprehensive disease management strategies addressing multi-organ involvement in MASH pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Madhulika Tripathi
- Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Medical School, Singapore, Singapore
| | - Brijesh Kumar Singh
- Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
26
|
Cooper LL, Prescott BR, Xanthakis V, Benjamin EJ, Vasan RS, Hamburg NM, Long MT, Mitchell GF. Association of Aortic Stiffness and Pressure Pulsatility With Noninvasive Estimates of Hepatic Steatosis and Fibrosis: The Framingham Heart Study. Arterioscler Thromb Vasc Biol 2024; 44:1704-1715. [PMID: 38752348 PMCID: PMC11209780 DOI: 10.1161/atvbaha.123.320553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/29/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Arterial stiffening may contribute to the pathogenesis of metabolic dysfunction-associated steatotic liver disease. We aimed to assess relations of vascular hemodynamic measures with measures of hepatic steatosis and fibrosis in the community. METHODS Our sample was drawn from the Framingham Offspring, New Offspring Spouse, Third Generation, Omni-1, and Omni-2 cohorts (N=3875; mean age, 56 years; 54% women). We used vibration-controlled transient elastography to assess controlled attenuation parameter and liver stiffness measurements as measures of liver steatosis and liver fibrosis, respectively. We assessed noninvasive vascular hemodynamics using arterial tonometry. We assessed cross-sectional relations of vascular hemodynamic measures with continuous and dichotomous measures of hepatic steatosis and fibrosis using multivariable linear and logistic regression. RESULTS In multivariable models adjusting for cardiometabolic risk factors, higher carotid-femoral pulse wave velocity (estimated β per SD, 0.05 [95% CI, 0.01-0.09]; P=0.003), but not forward pressure wave amplitude and central pulse pressure, was associated with more liver steatosis (higher controlled attenuation parameter). Additionally, higher carotid-femoral pulse wave velocity (β=0.11 [95% CI, 0.07-0.15]; P<0.001), forward pressure wave amplitude (β=0.05 [95% CI, 0.01-0.09]; P=0.01), and central pulse pressure (β=0.05 [95% CI, 0.01-0.09]; P=0.01) were associated with more hepatic fibrosis (higher liver stiffness measurement). Associations were more prominent among men and among participants with obesity, diabetes, and metabolic syndrome (interaction P values, <0.001-0.04). Higher carotid-femoral pulse wave velocity, but not forward pressure wave amplitude and central pulse pressure, was associated with higher odds of hepatic steatosis (odds ratio, 1.16 [95% CI, 1.02-1.31]; P=0.02) and fibrosis (odds ratio, 1.40 [95% CI, 1.19-1.64]; P<0.001). CONCLUSIONS Elevated aortic stiffness and pressure pulsatility may contribute to hepatic steatosis and fibrosis.
Collapse
Affiliation(s)
| | - Brenton R. Prescott
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Vanessa Xanthakis
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Boston University and NHLBI’s Framingham Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Heath, Boston, MA, USA
| | - Emelia J. Benjamin
- Boston University and NHLBI’s Framingham Study, Framingham, MA, USA
- Evans Department of Medicine, Boston Medical Center, Boston, MA, USA
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Cardiology and Preventive Medicine Sections, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Ramachandran S. Vasan
- Boston University and NHLBI’s Framingham Study, Framingham, MA, USA
- The University of Texas School of Public Health San Antonio, San Antonio, TX, USA
- The University of Texas Health Science Center, San Antonio, TX, USA
| | - Naomi M. Hamburg
- Evans Department of Medicine, Boston Medical Center, Boston, MA, USA
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Michelle T. Long
- Department of Medicine, Section of Gastroenterology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Novo Nordisk A/S, Søborg, Denmark
| | | |
Collapse
|
27
|
Hu Y, Tang W, Liu Y, Zhang N, Zhu X, Tang D, Zhang Y, Xu H, Zhuoma D, Yang T, Yu Z, Xu C, Xiao X, Zhao X. Temporal relationship between hepatic steatosis and blood pressure elevation and the mediation effect in the development of cardiovascular disease. Hypertens Res 2024; 47:1811-1821. [PMID: 38760520 DOI: 10.1038/s41440-024-01708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 05/19/2024]
Abstract
The temporal relationship between non-alcoholic fatty liver disease (NAFLD) and hypertension remains highly controversial, with ongoing debates on whether NAFLD induces hypertension or vice versa. We employed cross-lagged panel models to investigate the temporal relationship between hepatic steatosis (assessed by Fatty Liver Index [FLI] in the main analysis, and by Proton Density Fat Fraction [PDFF] in the validation study) and blood pressure (systolic and diastolic blood pressure [SBP/ DBP]). Subsequently, we employed causal mediation models to explore the mediation effect in CVD development, including ischemic heart disease and stroke. The main analysis incorporated repeated measurement data of 5,047 participants from the China Multi-Ethnic Cohort (CMEC) and 5,685 participants from the UK Biobank (UKB). In both cohorts, the path coefficients from FLI to blood pressure were significant and greater than the path from blood pressure to FLI, with βFLI→SBP = 0.081, P < 0.001 versus βSBP→FLI = 0.020, P = 0.031; βFLI→DBP = 0.082, P < 0.001 versus βDBP→FLI = -0.006, P = 0.480 for CEMC, and βFLI→SBP = 0.057, P < 0.001 versus βSBP→FLI = -0.001, P = 0.727; βFLI→DBP = 0.061, P < 0.001, versus βDBP→FLI = -0.006, P = 0.263 for UKB. The validation study with 962 UKB participants using PDFF consistently supported these findings. In the mediation analyses encompassing 11,108 UKB participants, SBP and DBP mediated 12.2% and 5.2% of the hepatic steatosis-CVD association, respectively. The proportions were lower for ischemic heart disease (SBP: 6.1%, DBP: non-statistically significant -6.8%), and relatively stronger for stroke (SBP: 19.4%, DBP: 26.1%). In conclusion, hepatic steatosis more strongly contributes to elevated blood pressure than vice versa. Blood pressure elevation positively mediates the hepatic steatosis-CVD association, particularly in stroke compared to ischemic heart disease.
Collapse
Affiliation(s)
- Yifan Hu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wenge Tang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Yujie Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ning Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xingren Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Dan Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Duoji Zhuoma
- High Altitude Health Science Research Center of Tibet University, Lhasa, China
| | - Tingting Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Zhimiao Yu
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Chuanzhi Xu
- School of Public Health, Kunming Medical University, Kunming, China
| | - Xiong Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Linero PL, Castilla-Guerra L. Management of Cardiovascular Risk in the Non-alcoholic Fatty Liver Disease Setting. Eur Cardiol 2024; 19:e02. [PMID: 38807854 PMCID: PMC11131151 DOI: 10.15420/ecr.2023.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/02/2023] [Indexed: 05/30/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an overlooked and undetected pathology, which affects more than 32% of adults worldwide. NAFLD is becoming more common in Western industrialised countries, particularly in patients with central obesity, type 2 diabetes, dyslipidaemia and metabolic syndrome. Although NAFLD has traditionally been interpreted as a liver disease with a high risk of liver-related complications, NAFLD is an underappreciated and independent risk factor for atherosclerotic cardiovascular disease, which is the principal cause of death in patients with NAFLD. Treatment options to counteract both the progression and development of cardiovascular disease and NAFLD include lifestyle interventions, such as weight loss, increased physical activity and dietary modification, and optimal medical therapy of comorbid conditions; nevertheless, further studies are needed to define optimal treatment strategies for the prevention of both hepatic and cardiovascular complications of NAFLD.
Collapse
Affiliation(s)
- Paula Luque Linero
- Vascular Risk Unit, Department of Internal Medicine, Hospital Virgen MacarenaSeville, Spain
| | - Luis Castilla-Guerra
- Vascular Risk Unit, Department of Internal Medicine, Hospital Virgen MacarenaSeville, Spain
- Department of Medicine, University of SevilleSeville, Spain
| |
Collapse
|
29
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
30
|
Kokkorakis M, Boutari C, Hill MA, Kotsis V, Loomba R, Sanyal AJ, Mantzoros CS. Resmetirom, the first approved drug for the management of metabolic dysfunction-associated steatohepatitis: Trials, opportunities, and challenges. Metabolism 2024; 154:155835. [PMID: 38508373 DOI: 10.1016/j.metabol.2024.155835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Chrysoula Boutari
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael A Hill
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Vasilios Kotsis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University Thessaloniki, Greece
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, CA, USA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Sanyal AJ, Husain M, Diab C, Mangla KK, Shoeb A, Lingvay I, Tapper EB. Cardiovascular disease in patients with metabolic dysfunction-associated steatohepatitis compared with metabolic dysfunction-associated steatotic liver disease and other liver diseases: A systematic review. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 41:100386. [PMID: 38623572 PMCID: PMC11016929 DOI: 10.1016/j.ahjo.2024.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
The burden of cardiovascular disease (CVD) in patients with metabolic dysfunction-associated steatohepatitis (MASH) is poorly characterized, particularly vs other liver diseases including metabolic dysfunction-associated steatotic liver disease (MASLD). To identify available evidence, Embase, MEDLINE, and Cochrane database searches (main search: 2011-September 6, 2021; additional ad hoc search [MEDLINE only]: September 7, 2021-February 15, 2023), plus manual searches (2019-September 2021), were performed. Studies reporting CVD outcomes (angina, coronary artery disease [CAD], heart failure, myocardial infarction, peripheral artery disease, stroke, venous thromboembolic disease, and CV mortality) in adults with histologically confirmed MASH and MASLD or other liver diseases were identified, with studies of MASLD without confirmed MASH excluded. Of 8732 studies, 21 were included. An increased incidence or prevalence of CVD in patients with MASH vs other conditions was reported in 12 studies; odds ratios (OR), where reported, ranged from 3.12 (95 % CI: 1.33-5.32) to 4.12 (95 % CI: 1.91-8.90). The risk of CAD was increased in people with MASH in 6 of 7 studies, while the risk of stroke was increased in 6 of 6 studies, and heart failure in 2 of 4 studies. Three of 6 studies provided evidence of increased CVD-related mortality in patients with MASH vs those without. In conclusion, this literature review suggests that CVD is prevalent in patients with MASH and may contribute to increased mortality. Accordingly, cardiovascular risk factors should be aggressively managed in this population. Whether the CVD burden in patients with MASH is a direct consequence of MASH itself requires further study.
Collapse
Affiliation(s)
- Arun J. Sanyal
- Department of Internal Medicine, Medical College of Virginia, Richmond, VA, USA
| | - Mansoor Husain
- Ted Rogers Centre for Heart Research, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | | | - Ildiko Lingvay
- Department of Internal Medicine/Endocrinology and Peter O'Donnel Jr School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elliot B. Tapper
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MA, USA
| |
Collapse
|
32
|
Samanta A, Sen Sarma M. Metabolic dysfunction-associated steatotic liver disease: A silent pandemic. World J Hepatol 2024; 16:511-516. [PMID: 38689742 PMCID: PMC11056897 DOI: 10.4254/wjh.v16.i4.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 04/07/2024] [Indexed: 04/24/2024] Open
Abstract
The worldwide epidemiology of non-alcoholic fatty liver disease (NAFLD) is showing an upward trend, parallel to the rising trend of metabolic syndrome, owing to lifestyle changes. The pathogenesis of NAFLD has not been fully understood yet. Therefore, NAFLD has emerged as a public health concern in the field of hepatology and metabolisms worldwide. Recent changes in the nomenclature from NAFLD to metabolic dysfunction-associated steatotic liver disease have brought a positive outlook changes in the understanding of the disease process and doctor-patient communication. Lifestyle changes are the main treatment modality. Recently, clinical trial using drugs that target 'insulin resistance' which is the driving force behind NAFLD, have shown promising results. Further translational research is needed to better understand the underlying pathophysiological mechanism of NAFLD which may open newer avenues of therapeutic targets. The role of gut dysbiosis in etiopathogenesis and use of fecal microbiota modification in the treatment should be studied extensively. Prevention of this silent epidemic by spreading awareness and early intervention should be our priority.
Collapse
Affiliation(s)
- Arghya Samanta
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Moinak Sen Sarma
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
33
|
Boutari C, Athyros VG. The Association Between Liver Histology and Cardiovascular Risk: Time to Introduce Steatotic Liver Disease Screening in High-Risk Patient Groups? Angiology 2024; 75:205-207. [PMID: 37691291 DOI: 10.1177/00033197231201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Affiliation(s)
- Chrysoula Boutari
- Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Vasilios G Athyros
- Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
34
|
Muzurović E, Maćešić M, Kavarić S. Liver Fibrosis and Atherosclerosis, a Consequence of Metabolic Dysfunction-Do They Share a Similar Pathophysiological Background? Angiology 2024:33197241234076. [PMID: 38358750 DOI: 10.1177/00033197241234076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Affiliation(s)
- Emir Muzurović
- Department of Internal Medicine, Endocrinology Section, Clinical Centre of Montenegro, Podgorica, Montenegro
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Marija Maćešić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sreten Kavarić
- Department of Internal Medicine, Endocrinology Section, Clinical Centre of Montenegro, Podgorica, Montenegro
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| |
Collapse
|
35
|
Chen D, Zhang Y, Zhou Y, Liu Y. Association between circulating biomarkers and non-alcoholic fatty liver disease: An integrative Mendelian randomization study of European ancestry. Nutr Metab Cardiovasc Dis 2024; 34:404-417. [PMID: 37973425 DOI: 10.1016/j.numecd.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND AIM Circulating biomarkers provide potential diagnostic or prognostic information on disease presentation, progression or both. Early detection of circulating risk biomarkers is critical for non-alcoholic fatty liver disease (NAFLD) prevention. We aimed to systematically assess the potential causal relationship of genetically predicted 60 circulatory biomarkers with NAFLD using a two-sample Mendelian randomization (MR) design. METHODS AND RESULTS We extracted instrumental variables for 60 circulating biomarkers, and obtained genome-wide association data for NAFLD from 3 sources [(including Anstee, FinnGen and UK Biobank (N ranges: 19264-377988)] among individuals of European ancestry. Our primary method was inverse-variance weighted (IVW) MR, with a series of additional and sensitivity analyses to test the hypothesis of MR. MR results showed that genetically predicted higher density lipoprotein-cholesterol (odds ratio (OR) = 0.86, 95% confidence interval (CI): 0.77-0.96) and vitamin D (OR = 0.39, 95% CI: 0.19-0.78) levels decreased the risk of NAFLD, whereas genetically predicted higher alanine (OR = 1.68, 95% CI: 1.21-2.33), histidine (OR = 1.21, 95% CI: 1.00-1.46), lactate (OR = 2.64, 95% CI: 1.09-6.39), triglycerides (OR = 1.16, 95% CI: 1.05-1.13), ferritin (OR = 1.17, 95% CI: 1.01-1.37), serum iron (OR = 1.23, 95% CI: 1.07-1.41) and transferrin saturation (OR = 1.16, 95% CI: 1.05-1.29), component 4 (OR = 1.10, 95% CI: 1.01-1.20), interleukin-1 receptor antagonist (OR = 1.12, 95% CI: 1.04-1.21) and interleukin-6 (OR = 1.62, 95% CI: 1.14-2.30) levels increased the risk of NAFLD. CONCLUSIONS The findings might aid in elucidating the underlying processes of these causal relationships and provide strong evidence for focusing on high-risk populations and the therapeutic management of specific biomarkers.
Collapse
Affiliation(s)
- Dongze Chen
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China.
| | - Yi Zhou
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China.
| | - Yuyang Liu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China.
| |
Collapse
|
36
|
Zhao X, Kong X, Cui Z, Zhang Z, Wang M, Liu G, Gao H, Zhang J, Qin W. Communication between nonalcoholic fatty liver disease and atherosclerosis: Focusing on exosomes. Eur J Pharm Sci 2024; 193:106690. [PMID: 38181871 DOI: 10.1016/j.ejps.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disorder on a global scale. Atherosclerosis (AS), a leading cause of cardiovascular diseases, stands as the primary contributor to mortality among patients diagnosed with NAFLD. However, the precise etiology by which NAFLD causes AS remains unclear. Exosomes are nanoscale extracellular vesicles secreted by cells, and are considered to participate in complex biological processes by promoting cell-to-cell and organ-to-organ communications. As vesicles containing protein, mRNA, non-coding RNA and other bioactive molecules, exosomes can participate in the development of NAFLD and AS respectively. Recently, studies have shown that NAFLD can also promote the development of AS via secreting exosomes. Herein, we summarized the recent advantages of exosomes in the pathogenesis of NAFLD and AS, and highlighted the role of exosomes in mediating the information exchange between NAFLD and AS. Further, we discussed how exosomes play a prominent role in enabling information exchange among diverse organs, delving into a novel avenue for investigating the link between diseases and their associated complications. The future directions and emerging challenges are also listed regarding the exosome-based therapeutic strategies for AS under NAFLD conditions.
Collapse
Affiliation(s)
- Xiaona Zhao
- School of Pharmacy, Weifang Medical University, Weifang, China; School of Pharmacy, Jining Medical University, Rizhao, China
| | - Xinxin Kong
- School of Pharmacy, Weifang Medical University, Weifang, China; School of Pharmacy, Jining Medical University, Rizhao, China
| | - Zhoujun Cui
- Department of General Surgery, People's Hospital of Rizhao, Rizhao, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Minghui Wang
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Liu
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, China.
| |
Collapse
|
37
|
Panyod S, Wu WK, Hu MY, Huang HS, Chen RA, Chen YH, Shen TCD, Ho CT, Liu CJ, Chuang HL, Huang CC, Wu MS, Sheen LY. Healthy diet intervention reverses the progression of NASH through gut microbiota modulation. Microbiol Spectr 2024; 12:e0186823. [PMID: 38018983 PMCID: PMC10782987 DOI: 10.1128/spectrum.01868-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE The link between gut microbiota and diet is crucial in the development of non-alcoholic steatohepatitis (NASH). This study underscores the essential role of a healthy diet in preventing and treating NASH by reversing obesity, lipidemia, and gut microbiota dysbiosis. Moreover, the supplementation of functional food or drug to the diet can provide additional advantages by inhibiting hepatic inflammation through the modulation of the hepatic inflammasome signaling pathway and partially mediating the gut microbiota and lipopolysaccharide signaling pathway. This study highlights the importance of adopting healthy dietary habits in treating NASH and proposes that supplementing with ginger essential oil or obeticholic acid may offer additional benefits. Nonetheless, further clinical studies are necessary to validate these findings.
Collapse
Affiliation(s)
- Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan
| | - Wei-Kai Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Yun Hu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Huai-Syuan Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Rou-An Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsun Chen
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Chin David Shen
- Division of Gastroenterology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Chun-Jen Liu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan
- National Taiwan University, National Center for Food Safety Education and Research, Taipei, Taiwan
| |
Collapse
|
38
|
Engin A. Adiponectin Resistance in Obesity: Adiponectin Leptin/Insulin Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:431-462. [PMID: 39287861 DOI: 10.1007/978-3-031-63657-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adiponectin (APN) levels in obesity are negatively correlated with chronic subclinical inflammation markers. The hypertrophic adipocytes cause obesity-linked insulin resistance and metabolic syndrome. Furthermore, macrophage polarization is a key determinant regulating adiponectin receptor (AdipoR1/R2) expression and differential adiponectin-mediated macrophage inflammatory responses in obese individuals. In addition to decrease in adiponectin concentrations, the decline in AdipoR1/R2 messenger ribonucleic acid (mRNA) expression leads to a decrement in adiponectin binding to cell membrane, and this turns into attenuation in the adiponectin effects. This is defined as APN resistance, and it is linked with insulin resistance in high-fat diet-fed subjects. The insulin-resistant group has a significantly higher leptin-to-APN ratio. The leptin-to-APN ratio is more than twofold higher in obese individuals. An increase in expression of AdipoRs restores insulin sensitivity and β-oxidation of fatty acids via triggering intracellular signal cascades. The ratio of high molecular weight to total APN is defined as the APN sensitivity index (ASI). This index is correlated to insulin sensitivity. Homeostasis model of assessment (HOMA)-APN and HOMA-estimated insulin resistance (HOMA-IR) are the most suitable methods to estimate the metabolic risk in metabolic syndrome. While morbidly obese patients display a significantly higher plasma leptin and soluble (s)E-selectin concentrations, leptin-to-APN ratio, there is a significant negative correlation between leptin-to-APN ratio and sP-selectin in obese patients. When comparing the metabolic dysregulated obese group with the metabolically healthy obese group, postprandial triglyceride clearance, insulin resistance, and leptin resistance are significantly delayed following the oral fat tolerance test in the first group. A neuropeptide, Spexin (SPX), is positively correlated with the quantitative insulin sensitivity check index (QUICKI) and APN. APN resistance together with insulin resistance forms a vicious cycle. Despite normal or high APN levels, an impaired post-receptor signaling due to adaptor protein-containing pleckstrin homology domain, phosphotyrosine-binding domain, and leucine zipper motif 1 (APPL1)/APPL2 may alter APN efficiency and activity. However, APPL2 blocks adiponectin signaling through AdipoR1 and AdipoR2 because of the competitive inhibition of APPL1. APPL1, the intracellular binding partner of AdipoRs, is also an important mediator of adiponectin-dependent insulin sensitization. The elevated adiponectin levels with adiponectin resistance are compensatory responses in the condition of an unusual discordance between insulin resistance and APN unresponsiveness. Hypothalamic recombinant adeno-associated virus (rAAV)-leptin (Lep) gene therapy reduces serum APN levels, and it is a more efficient strategy for long-term weight maintenance.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
39
|
Poredoš P, Schernthaner GH, Blinc A, Mikhailidis DP, Jensterle M, Anagnostis P, Antignani PL, Studen KB, Šabović M, Ježovnik MK. Endocrine Disorders and Peripheral Arterial Disease - A Series of Reviews Cushing Syndrome-Cortisol Excess. Curr Vasc Pharmacol 2024; 22:236-241. [PMID: 38038006 DOI: 10.2174/0115701611272145231106053914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023]
Abstract
Cushing syndrome (CS), characterised by endogenous or exogenous glucocorticoid hormone excess, is associated with several systemic complications, including impaired glucose metabolism, which often becomes clinically manifest as diabetes mellitus (DM). In addition, CS can harm the arterial wall because of hyperglycaemia, dyslipidaemia, hepatic steatosis, and central obesity. These metabolic disorders promote atherosclerosis by synthesising adipokines, leptin, and proinflammatory cytokines. Lower limb arterial complications in CS are common and significantly impact morbidity and mortality. Furthermore, CS, in combination with DM, is likely to cause more diffuse vascular disease that predominantly affects distal arterial beds. In conclusion, CS promotes atherosclerosis, including peripheral artery disease, by causing functional and morphological deterioration of the arterial vessel wall and increasing the presence of classical risk factors of atherosclerosis.
Collapse
Affiliation(s)
- P Poredoš
- Department of Vascular Diseases, University Medical Centre, Ljubljana, Slovenia
- Faculty of Medicine, Department of Internal Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - G H Schernthaner
- Department of Medicine 2, Division of Angiology, Medical University of Vienna, Vienna, Austria
| | - A Blinc
- Department of Vascular Diseases, University Medical Centre, Ljubljana, Slovenia
- Faculty of Medicine, Department of Internal Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - D P Mikhailidis
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London Medical School, University College London (UCL) and Department of Clinical Biochemistry, Royal Free Hospital Campus (UCL), London, UK
| | - M Jensterle
- Faculty of Medicine, Department of Internal Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre, Ljubljana, Slovenia
| | - P Anagnostis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - K Bajuk Studen
- Faculty of Medicine, Department of Internal Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Nuclear Medicine, University Medical Centre, Ljubljana, Slovenia
| | - M Šabović
- Department of Vascular Diseases, University Medical Centre, Ljubljana, Slovenia
- Faculty of Medicine, Department of Internal Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - M K Ježovnik
- The University of Texas Health Science Center at Houston, Department of Advanced Cardiopulmonary Therapies and Transplantation, Houston, Texas, USA
| |
Collapse
|
40
|
Arafa A, Kashima R, Matsumoto C, Kokubo Y. Fatty Liver Index as a proxy for non-alcoholic fatty liver disease and the risk of stroke and coronary heart disease: The Suita Study. J Stroke Cerebrovasc Dis 2024; 33:107495. [PMID: 38000108 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in developed countries, but its role in predicting cardiovascular disease (CVD) needs further investigation. Herein, we studied the association between NAFLD and the risk of CVD, stroke, and coronary heart disease (CHD) among Japanese people. METHODS This prospective cohort study analyzed data from 2,517 men and 3,958 women, aged 30-84 years, who were registered in the Suita Study. NAFLD was defined as Fatty Liver Index (FLI) ≥ 60. Cox proportional hazard models were applied to calculate the hazard ratios (HRs) and 95% confidence intervals (95% CIs) of incident CVD, stroke, and CHD events by baseline FLI. The results were adjusted for age, smoking, alcohol consumption, hypertension, diabetes, lipid profile, chronic kidney disease, and cardiac murmur or valvular diseases. RESULTS Within 16.6 years of median follow-up, 590 participants developed CVD (346 stroke events and 244 CHD events). Women with NAFLD (FLI ≥ 60) showed a higher risk of CVD and stroke: HRs (95% CIs) = 1.69 (1.16, 2.46) and 2.06 (1.31, 3.24), respectively. Besides, women in the fourth and fifth (highest) FLI quintiles showed a higher risk of CVD and stroke than those in the third (middle) quintile: HRs (95% CIs) = 1.60 (1.08, 2.36) and 1.67 (1.13, 2.45) for CVD and 1.73 (1.07, 2.79) and 1.90 (1.18, 3.05) for stroke, respectively. No corresponding associations were detected in men. NAFLD was not associated with CHD risk in either sex. CONCLUSIONS NAFLD, diagnosed by FLI, was associated with a higher risk of CVD and stroke in Japanese women. From a preventive perspective, women with NAFLD should be targeted for CVD screenings and interventions.
Collapse
Affiliation(s)
- Ahmed Arafa
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Public Health, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Rena Kashima
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Cardiovascular Pathophysiology and Therapeutics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Chisa Matsumoto
- Department of Cardiology, Center for Health Surveillance and Preventive Medicine, Tokyo Medical University Hospital, Shinjuku, Japan
| | - Yoshihiro Kokubo
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
41
|
Deng YL, Lu TT, Hao H, Liu C, Yuan XQ, Miao Y, Zhang M, Zeng JY, Li YF, Lu WQ, Zeng Q. Association between Urinary Haloacetic Acid Concentrations and Liver Injury among Women: Results from the Tongji Reproductive and Environmental (TREE) Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17006. [PMID: 38261302 PMCID: PMC10805132 DOI: 10.1289/ehp13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Experimental studies have shown that disinfection byproducts (DBPs) including haloacetic acids (HAAs) can cause liver toxicity, but evidence linking this association in humans is sparse. OBJECTIVES We aimed to explore the associations between HAA exposures and liver injury. METHODS We included 922 women between December 2018 and January 2020 from the Tongji Reproductive and Environmental (TREE) cohort study in Wuhan, China. Urinary HAA concentrations including trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) and serum indicators of liver function, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyltransferase (GGT) were measured. Liver injury was defined as if any of serum indicator levels were above the 90th percentile. Multivariate logistic and linear regression models were fitted to assess the associations of urinary HAA concentrations with the risk of liver injury and liver function indicators. Stratified analyses by age, body mass index (BMI), alcohol use, and passive smoking were also applied to evaluate the potential effect modifiers. RESULTS There is little evidence of associations of urinary TCAA concentrations with liver injury risk and liver function indicators. However, urinary DCAA concentrations were associated with a higher risk of liver injury [odds ratios (OR) for 1-interquartile range (IQR) increase in natural log (ln) transformed DCAA concentrations: 1.45; 95% confidence interval (CI): 1.07, 1.98]. This association was observed only among nondrinkers (p interaction = 0.058 ). We also found that a 1-IQR increase in ln-transformed DCAA concentrations was positively associated with ALT levels (percentage change = 6.06 % ; 95% CI: 0.48%, 11.95%) and negatively associated with AST/ALT (percentage change = - 4.48 % ; 95% CI: - 7.80 % , - 1.04 % ). In addition, urinary DCAA concentrations in relation to higher GGT levels was observed only among passive smokers (p interaction = 0.040 ). CONCLUSION Our findings suggest that exposure to DCAA but not TCAA is associated with liver injury among women undergoing assisted reproductive technology. https://doi.org/10.1289/EHP13386.
Collapse
Affiliation(s)
- Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Hao
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Qiong Yuan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
42
|
Castillo MF, Salgado-Canales D, Arrese M, Barrera F, Mikhailidis DP. Effect of Intermittent Fasting on Lipid Profile, Anthropometric and Hepatic Markers in Non-Alcoholic Fatty Liver Disease (NAFLD): A Systematic Review. Curr Vasc Pharmacol 2024; 22:187-202. [PMID: 38321893 DOI: 10.2174/0115701611285401240110074530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND The first-line treatment for non-alcoholic fatty liver disease (NAFLD) is lifestyle modification; this should accompany any pharmacological intervention. Intermittent fasting (IF) has shown benefits over metabolic and cardiovascular parameters. Non-religious IF includes Time-Restricted Feeding (TRF), Alternate-Day Fasting (ADF), and 5:2 IF interventions. OBJECTIVE To evaluate the effects of IF on anthropometric, liver damage, and lipid profile markers in subjects with NAFLD. METHODS A bibliographic search was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using PubMed and Scopus databases. RESULTS Five studies involving 470 patients with NAFLD were included. In relation to anthropometric markers, all the articles reported body weight reduction (2.48-7.63%), but only ADF and 5:2 IF reported a body weight reduction >5%; also, all the articles reported fat mass reduction. Concerning hepatic markers, all the articles reported a reduction in hepatic steatosis and alanine aminotransferase activity, but no changes in fat-free mass and high-density lipoprotein cholesterol levels. There were variable results on fibrosis, other liver enzymes, waist circumference and body mass index, as well as the levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol. CONCLUSION Any form of IF could be potentially beneficial for NAFLD treatment and some associated cardiometabolic parameters. However, it is necessary to evaluate the effects and safety of IF in long-term studies involving a higher number of participants with different stages of NAFLD. The effect of IF on NAFLD-associated vascular risk also needs evaluation.
Collapse
Affiliation(s)
- María Fernanda Castillo
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Daniela Salgado-Canales
- Department of Health Sciences, Faculty of Medicine, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul Santiago, Chile
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago, Chile
| | - Francisco Barrera
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago, Chile
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, Medical School, University College London (UCL), Pond Street, London NW3 2QG, UK
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| |
Collapse
|
43
|
Noureddin M, Khan S, Portell F, Jorkasky D, Dennis J, Khan O, Johansson L, Johansson E, Sanyal AJ. Safety and efficacy of once-daily HU6 versus placebo in people with non-alcoholic fatty liver disease and high BMI: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Gastroenterol Hepatol 2023; 8:1094-1105. [PMID: 37806314 DOI: 10.1016/s2468-1253(23)00198-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND HU6 is a controlled metabolic accelerator that is metabolised in the liver to the mitochondrial uncoupler 2,4-dinitrophenol and increases substrate utilisation so that fat and other carbon sources are oxidised in the body rather than accumulated. We aimed to assess the safety and efficacy of HU6 compared with placebo in people with non-alcoholic fatty liver disease (NAFLD) and high BMI. METHODS This randomised, double-blind, placebo-controlled, phase 2a trial was done at a single community site in the USA. Adults (aged 28-65 years) with a BMI of 28-45 kg/m2, a FibroScan controlled attenuation parameter score of more than 270 decibels per metre, and at least 8% liver fat by MRI-proton density fat fraction (MRI-PDFF) were randomly assigned (1:1:1:1) to receive, under fasting conditions, either once-daily HU6 100 mg, HU6 300 mg, HU6 450 mg, or matching placebo by oral administration for 61 days. Randomisation was blocked (groups of four) and stratified by baseline glycated haemoglobin (<5·7% vs ≥5·7%; 39 mmol/mol). All participants and study personnel involved with outcome assessments were masked to treatment assignment. The primary endpoint was the relative change in liver fat content from baseline to day 61, as assessed by MRI-PDFF, and was analysed in the full analysis set (FAS), which comprised all participants who were randomly assigned, received at least one dose of treatment, and had less than 4·5 kg of weight gain or weight loss from the time of screening to day 1 of treatment. The safety population included all participants who were randomly assigned and received at least one dose of study drug. This study was registered at ClinicalTrials.gov, NCT04874233, and is complete. FINDINGS Between April 28, 2021, and Nov 29, 2021, 506 participants were assessed for eligibility and 80 adults (39 [49%] women and 41 [51%] men) were enrolled and randomly assigned to placebo (n=20), HU6 150 mg (n=20), HU6 300 mg (n=21), or HU6 450 mg (n=19). One participant in the HU6 450 mg group was excluded from the FAS due to weight gain. Relative mean change in liver fat content from baseline to day 61 was -26·8% (SD 17·4) for the HU6 150 mg group, -35·6% (13·8) for the HU6 300 mg group, -33·0% (18·4) for the HU6 450 mg group, and 5·4% (19·8) for the placebo group. Three people treated with HU6 (two treated with 150 mg and one treated with 300 mg) and two people treated with placebo discontinued treatment due to treatment-emergent adverse events (TEAEs). No serious TEAEs were reported. In those treated with HU6, flushing (19 [32%] participants), diarrhoea (15 [25%] participants), and palpitations (seven [12%] participants) were the most frequently reported TEAEs (in the placebo group, two [10%] participants had flushing, none had diarrhoea, and one [5%] had palpitations). There were no deaths. INTERPRETATION HU6 could be a promising pharmacological agent for treating patients with obesity and NAFLD and its metabolic complications. FUNDING Rivus Pharmaceuticals.
Collapse
Affiliation(s)
- Mazen Noureddin
- Houston Research Institute, Houston Methodist Hospital, Houston, TX, USA.
| | | | | | | | | | - Omer Khan
- Rivus Pharmaceuticals, Charlottesville, VA, USA
| | | | | | - Arun J Sanyal
- Stravitz-Sanyal Institute of Liver Disease and Metabolic Health, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, USA
| |
Collapse
|
44
|
Malladi N, Alam MJ, Maulik SK, Banerjee SK. The role of platelets in non-alcoholic fatty liver disease: From pathophysiology to therapeutics. Prostaglandins Other Lipid Mediat 2023; 169:106766. [PMID: 37479133 DOI: 10.1016/j.prostaglandins.2023.106766] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Platelets are one of the key mediators in thrombosis as well as in the progression of many diseases. An increase in platelet activation and a decrease in platelet count is associated with a plethora of liver diseases. In non-alcoholic fatty liver disease (NAFLD), platelets are highly activated and participate in the disease progression by enhancing the pro-thrombotic and pro-inflammatory state. Some altered platelet parameters such as mean platelet volume, plateletcrits, and platelet distribution width, aspartate transaminase to platelet ratio index, liver stiffness to platelet ratio and red cell distribution width to platelet ratio were found to be associated with NAFLD disease. Further, platelet contributes to the progression of cardiovascular complications in NAFLD is gaining the researcher's attention. An elevated mean platelet volume is known to enhance the risk of stroke, atherosclerosis, thrombosis, and myocardial infarction in NAFLD. Evidence also suggested that modulation in platelet function using aspirin, ticlopidine, and cilostazol help in controlling the NAFLD progression. Future research should focus on antiplatelet therapy as a treatment strategy that can control platelet activation in NAFLD as well as its cardiovascular risk. In the present review, we have detailed the role of platelets in NAFLD and its cardiovascular complications. We further aimed to highlight the growing need for antiplatelet therapy in NAFLD.
Collapse
Affiliation(s)
- Navya Malladi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India; Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subir K Maulik
- Indian Council of Medical Research, Ministry of Health, New Delhi 110029, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
45
|
Zamanian MY, Sadeghi Ivraghi M, Khachatryan LG, Vadiyan DE, Bali HY, Golmohammadi M. A review of experimental and clinical studies on the therapeutic effects of pomegranate ( Punica granatum) on non-alcoholic fatty liver disease: Focus on oxidative stress and inflammation. Food Sci Nutr 2023; 11:7485-7503. [PMID: 38107091 PMCID: PMC10724645 DOI: 10.1002/fsn3.3713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 12/19/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is frequently linked to metabolic disorders and is prevalent in obese and diabetic patients. The pathophysiology of NAFLD involves multiple factors, including insulin resistance (IR), oxidative stress (OS), inflammation, and genetic predisposition. Recently, there has been an emphasis on the use of herbal remedies with many people around the world resorting to phytonutrients or nutraceuticals for treatment of numerous health challenges in various national healthcare settings. Pomegranate (Punica granatum) parts, such as juice, peel, seed and flower, have high polyphenol content and is well known for its antioxidant capabilities. Pomegranate polyphenols, such as hydrolyzable tannins, anthocyanins, and flavonoids, have high antioxidant capabilities that can help lower the OS and inflammation associated with NAFLD. The study aimed to investigate whether pomegranate parts could attenuate OS, inflammation, and other risk factors associated with NAFLD, and ultimately prevent the development of the disease. The findings of this study revealed that: 1. pomegranate juice contains hypoglycemic qualities that can assist manage blood sugar levels, which is vital for avoiding and treating NAFLD. 2. Polyphenols from pomegranate flowers increase paraoxonase 1 (PON1) mRNA and protein levels in the liver, which can help protect liver enzymes and prevent NAFLD. 3. Punicalagin (PU) is one of the major ellagitannins found in pomegranate, and PU-enriched pomegranate extract (PE) has been shown to inhibit HFD-induced hyperlipidemia and hepatic lipid deposition in rats. 4. Pomegranate fruit consumption, which is high in antioxidants, can decrease the activity of AST and ALT (markers of liver damage), lower TNF-α (a marker of inflammation), and improve overall antioxidant capacity in NAFLD patients. Overall, the polyphenols in pomegranate extracts have antioxidant, anti-inflammatory, hypoglycemic, and protective effects on liver enzymes, which can help prevent and manage NAFLD effects on liver enzymes, which can help prevent and manage NAFLD.
Collapse
Affiliation(s)
- Mohammad Yassin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's HealthI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Diana E. Vadiyan
- Institute of Dentistry, Department of Pediatric, Preventive Dentistry and OrthodonticsI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | | | | |
Collapse
|
46
|
Lu CW, Yang KC, Chi YC, Wu TY, Chiang CH, Chang HH, Huang KC, Yang WS. Adiponectin-leptin ratio for the early detection of lean non-alcoholic fatty liver disease independent of insulin resistance. Ann Med 2023; 55:634-642. [PMID: 36790383 PMCID: PMC9937001 DOI: 10.1080/07853890.2023.2179106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Lean Non-alcoholic Fatty Liver Disease (NAFLD) shares a similar disease burden to those of their overweight counterparts and should be detected early. We hypothesized that the adiponectin-leptin ratio (AL ratio) could be a good marker for early detection of lean NAFLD independent of insulin resistance. MATERIALS AND METHODS A total of 575 adults without diabetes were enrolled in a community-based study. The subjects were stratified into the lean controls, lean NAFLD, simple overweight/obesity and overweight/obesity NAFLD groups according to body mass index (BMI) and ultrasonographic fatty liver indicators. Serum adiponectin and leptin levels were measured by enzyme-linked immunosorbent assay. Multivariate logistic regression analyses were performed to estimate the odds ratio of having NAFLD in relation to the tertiles of serum AL concentration after adjustment. Receiver operating characteristic (ROC) analyses were applied to evaluate the diagnostic performance of the AL ratio for NAFLD. RESULTS The mean age of the participants was 42.8 ± 11.5 years. Comparing with the lean controls, the odds of having lean NAFLD for the highest versus the lowest tertile of AL ratio was 0.28(95%CI: 0.12-0.69) after adjustment. Putting AL ratio, BMI, triglyceride, AST/ALT ratio to the diagnosis performance of NAFLD, the ROC was 0.85 (95% CI: 0.82-0.88), 0.83 (95% CI 0.78-0.87) and 0.86 (95% CI 081-0.91) for all NAFLD, NAFLD in women and NAFLD in men, respectively. (p < .001). CONCLUSIONS The study revealed that the AL ratio could be a good biomarker to early distinguish lean NAFLD patients from lean controls independent of insulin resistance. [AQ3]Key messagesThe prevalence of non-alcoholic fatty liver disease (NAFLD) increases globally and is related to liver diseases and metabolic dysfunctions. Lean subset of NAFLD shares a similar disease burden to those of their overweight counterparts and should be detected early.Adiponectin-leptin ratio were associated with the severity of steatosis and was a predictor of obese NAFLD better than each single adipokine. To date, there is no investigation that explores specifically for the relationship between lean NAFLD and AL ratio.Our study found that adiponectin-leptin ratio is a sole independent marker regardless of insulin resistance in lean NAFLD. Having lean NAFLD for the highest versus the lowest tertile of adiponectin-leptin ratio was 0.28(95%CI: 0.12-0.69) after adjustment of age, sex, current smoking, exercise habits, HOMA-IR and AST/ALT. ROC for the NAFLD performance is good for the early detection (0.85; 95% CI: 0.82-0.88). Further rigorous investigation is necessary and should be promptly performed.
Collapse
Affiliation(s)
- Chia-Wen Lu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuen-Cheh Yang
- Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chiao Chi
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsan-Yu Wu
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Hsieh Chiang
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hao-Hsiang Chang
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Chin Huang
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Family Medicine, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | - Wei-Shiung Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
47
|
Miyazaki T. Calpain and Cardiometabolic Diseases. Int J Mol Sci 2023; 24:16782. [PMID: 38069105 PMCID: PMC10705917 DOI: 10.3390/ijms242316782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Calpain is defined as a member of the superfamily of cysteine proteases possessing the CysPC motif within the gene. Calpain-1 and -2, which are categorized as conventional isozymes, execute limited proteolysis in a calcium-dependent fashion. Accordingly, the calpain system participates in physiological and pathological phenomena, including cell migration, apoptosis, and synaptic plasticity. Recent investigations have unveiled the contributions of both conventional and unconventional calpains to the pathogenesis of cardiometabolic disorders. In the context of atherosclerosis, overactivation of conventional calpain attenuates the barrier function of vascular endothelial cells and decreases the immunosuppressive effects attributed to lymphatic endothelial cells. In addition, calpain-6 induces aberrant mRNA splicing in macrophages, conferring atheroprone properties. In terms of diabetes, polymorphisms of the calpain-10 gene can modify insulin secretion and glucose disposal. Moreover, conventional calpain reportedly participates in amino acid production from vascular endothelial cells to induce alteration of amino acid composition in the liver microenvironment, thereby facilitating steatohepatitis. Such multifaceted functionality of calpain underscores its potential as a promising candidate for pharmaceutical targets for the treatment of cardiometabolic diseases. Consequently, the present review highlights the pivotal role of calpains in the complications of cardiometabolic diseases and embarks upon a characterization of calpains as molecular targets.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan
| |
Collapse
|
48
|
Huang Y, Wang Y, Xiao Z, Yao S, Tang Y, Zhou L, Wang Q, Xie Y, Zhang L, Zhou Y, Lu Y, Zhu W, Chen M. The association between metabolic dysfunction-associated steatotic liver disease, cardiovascular and cerebrovascular diseases and the thickness of carotid plaque. BMC Cardiovasc Disord 2023; 23:554. [PMID: 37951879 PMCID: PMC10640732 DOI: 10.1186/s12872-023-03580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND The relationship between metabolic dysfunction-associated steatotic liver disease (MASLD) and atherosclerosis has been controversial, which has become a hit of recent research. The study aimed to explore the association between MASLD, cardiovascular and cerebrovascular diseases (CCVD), and the thickness of carotid plaque which was assessed by ultrasound. METHODS From September 2018 to June 2019, 3543 patients were enrolled. We asked participants to complete questionnaires to obtain information. All patients underwent liver ultrasound and bilateral carotid ultrasound to obtain carotid intima-media thickness (IMT) and maximum carotid plaque thickness (CPT). Hepatic steatosis was quantified during examination according to Hamaguchi's ultrasonographic score, from 0 to 6 points. A score < 2 was defined as without fatty liver, and a score ≥ 2 was defined as fatty liver. Information about blood lipids was collected based on the medical records. RESULTS We found common risk factors for CCVD events, MASLD, and atherosclerosis. There was a significant correlation between MASLD and carotid plaque, but not with CPT. No association was found between MASLD and CCVD events. CPT and IMT were thicker in CCVD patients than in non-CCVD patients. No significant difference was found between IMT and CPT in MASLD patients and non-MASLD patients. CCVD was independently and consistently associated with higher IMT, and free fatty acid (FFA). CONCLUSIONS According to our results, we recommend carotid ultrasound examination of the patients when FFA is increased, regardless of the presence of risk factors and MASLD. Due to the distribution of CPT of both CCVD and MASLD patients in the CPT 2-4 mm group, contrast-enhanced ultrasound is necessary to assess the vulnerability of the plaque when CPT ≥ 2 mm. Timely treatment of vulnerable plaques may reduce the incidence of future CCVD events.
Collapse
Affiliation(s)
- Yunqian Huang
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqun Wang
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengguang Xiao
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengqi Yao
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhua Tang
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linjun Zhou
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Wang
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanchun Xie
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixia Zhang
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhou
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Lu
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqian Zhu
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man Chen
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
49
|
Kokkorakis M, Boutari C, Katsiki N, Mantzoros CS. From non-alcoholic fatty liver disease (NAFLD) to steatotic liver disease (SLD): an ongoing journey towards refining the terminology for this prevalent metabolic condition and unmet clinical need. Metabolism 2023; 147:155664. [PMID: 37517792 DOI: 10.1016/j.metabol.2023.155664] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chrysoula Boutari
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
50
|
Biswas S, Shalimar. Editorial: The tip of the non-alcoholic fatty liver disease iceberg-the more we know, the smaller it gets? JGH Open 2023; 7:671-673. [PMID: 37908289 PMCID: PMC10615171 DOI: 10.1002/jgh3.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Affiliation(s)
- Sagnik Biswas
- Department of Gastroenterology and Human NutritionAll India Institute of Medical SciencesNew DelhiIndia
| | - Shalimar
- Department of Gastroenterology and Human NutritionAll India Institute of Medical SciencesNew DelhiIndia
| |
Collapse
|