1
|
Artamonov MY, Sokov EL. Intraosseous Delivery of Mesenchymal Stem Cells for the Treatment of Bone and Hematological Diseases. Curr Issues Mol Biol 2024; 46:12672-12693. [PMID: 39590346 PMCID: PMC11592824 DOI: 10.3390/cimb46110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Mesenchymal stem cells are used most in regenerative medicine due to their capacities in differentiation and immune modulation. The intraosseous injection of MSC into the bone has been recommended because of expected outcomes for retention, bioavailability, and enhanced therapeutic efficacy, particularly in conditions involving the bone, such as osteoporosis and osteonecrosis. A review of the intraosseous delivery of mesenchymal stem cells in comparison with intravenous and intra-arterial delivery methods will be subjected to critical examination. This delivery mode fares better regarding paracrine signaling and immunomodulation attributes, which are the cornerstone of tissue regeneration and inflammation reduction. The local complications and technical challenges still apply with this method. This study was more focused on further research soon to be conducted to further elucidate long-term safety and efficacy of intraosseous mesenchymal stem cell therapy. Though much has been achieved with very impressive progress in this field, it is worth noting that more studies need to be put into place so that this technique can be established as a routine approach, especially with further research in biomaterials, gene therapy, and personalized medicine.
Collapse
Affiliation(s)
| | - Evgeniy L. Sokov
- Department of Algology and Rehabilitation, Peoples’ Friendship University, Moscow 117198, Russia;
| |
Collapse
|
2
|
Kim JH, Jeong M, Kim H, Kim JH, Ahn JW, Son B, Choi KH, Chung S, Yoon J. Focused magnetic stimulation for motor recovery after stroke. Brain Stimul 2024; 17:1048-1059. [PMID: 39214184 DOI: 10.1016/j.brs.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The effects of noninvasive focused magnetothermal brain stimulation using magnetic nanoparticles (MNPs) on post-stroke motor deficits and metabolic dormancy in subacute ischemic injury are not well-established. This study examined if magnetothermal brain stimulation using magnetic nanoparticles (Nano-MS) enhances motor recovery after stroke. METHODS We randomly distributed rats into Sham, Control, MNP injection only, and Nano-MS groups. We administered focused magnetic stimulation for 30 min daily following an MNP injection (15 mg/mL) into the targeted motor cortex via the carotid artery three weeks after the transient (90 min) middle cerebral artery occlusion. We assessed motor functionality via behavioral tests and conducted positron emission tomography (PET) imaging to verify cerebral metabolic activity. We assessed neuronal excitability, neuroinflammation, blood-brain barrier (BBB) integrity, and neurogenesis four weeks post-stroke. RESULTS The Nano-MS group exhibited significantly improved motor deficits and cerebral metabolic activity compared to the Control and MNP groups (p < 0.05). Focused Nano-MS modulated neuronal excitability, evident by a depolarized action potential threshold for spike initiation and reduced firing frequency post-stroke. The Nano-MS group demonstrated markedly decreased inflammatory markers, such as IL-1β, IL-6, TNF-α, MCP-1, and ICAM-1, compared to the Control and MNP groups. BBB integrity and immunofluorescence for neurogenesis markers were substantially improved in the Nano-MS group. CONCLUSIONS Focused Nano-MS facilitates the recovery of motor deficits and metabolic inactivity in the brain by effectively modulating excitability, reducing neuroinflammation, enhancing BBB stability, and promoting neurogenesis. Nano-MS is a potential novel, noninvasive therapy for stroke rehabilitation. Further investigation is warranted.
Collapse
Affiliation(s)
- Ja-Hae Kim
- Department of Nuclear Medicine, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Minhee Jeong
- Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Hohyeon Kim
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Ji-Hye Kim
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Ji Woong Ahn
- BnH Research Co., LTD., Goyang-si, Gyeonggi-do, South Korea
| | - Boyoung Son
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Kang-Ho Choi
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, South Korea.
| | - Seungsoo Chung
- Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea; BnH Research Co., LTD., Goyang-si, Gyeonggi-do, South Korea.
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, South Korea.
| |
Collapse
|
3
|
Chen W, Ren Q, Zhou J, Liu W. Mesenchymal Stem Cell-Induced Neuroprotection in Pediatric Neurological Diseases: Recent Update of Underlying Mechanisms and Clinical Utility. Appl Biochem Biotechnol 2024; 196:5843-5858. [PMID: 38261236 DOI: 10.1007/s12010-023-04752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 01/24/2024]
Abstract
Pediatric neurological diseases refer to a group of disorders that affect the nervous system in children. These conditions can have a significant impact on a child's development, cognitive function, motor skills, and overall quality of life. Stem cell therapy is a new and innovative approach to treat various neurological conditions by repairing damaged neurons and replacing those that have been lost. Mesenchymal stem cells (MSCs) have gained significant recognition in this regard due to their ability to differentiate into different cell types. MSCs are multipotent self-replicating stem cells known to render promising results in the treatment of stroke and spinal cord injury in adults. When delivered to the foci of damage in the central nervous system, stem cells begin to differentiate into neural cells under the stimulation of paracrine factors and secrete various neurotrophic factors (NTFs) like nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) that expedite the repair process in injured neurons. In the present review, we will focus on the therapeutic benefits of the MSC-based therapies in salient pediatric neurological disorders including cerebral palsy, stroke, and autism.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, People's Liberation Army, Southern Theater, Naval First Hospital, Zhanjiang, 524002, China
| | - Qiaoling Ren
- Department of Neurology, People's Liberation Army, Southern Theater, Naval First Hospital, Zhanjiang, 524002, China
| | - Junchen Zhou
- Department of Acupuncture and Moxibustion, Rehabilitation Medical Center, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, China
| | - Wenchun Liu
- Department of Neurology, People's Liberation Army, Southern Theater, Naval First Hospital, Zhanjiang, 524002, China.
| |
Collapse
|
4
|
Ulger O, Eş I, Proctor CM, Algin O. Stroke studies in large animals: Prospects of mitochondrial transplantation and enhancing efficiency using hydrogels and nanoparticle-assisted delivery. Ageing Res Rev 2024; 100:102469. [PMID: 39191353 DOI: 10.1016/j.arr.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
One of the most frequent reasons for mortality and disability today is acute ischemic stroke, which occurs by an abrupt disruption of cerebral circulation. The intricate damage mechanism involves several factors, such as inflammatory response, disturbance of ion balance, loss of energy production, excessive reactive oxygen species and glutamate release, and finally, neuronal death. Stroke research is now carried out using several experimental models and potential therapeutics. Furthermore, studies are being conducted to address the shortcomings of clinical care. A great deal of research is being done on novel pharmacological drugs, mitochondria targeting compounds, and different approaches including brain cooling and new technologies. Still, there are many unanswered questions about disease modeling and treatment strategies. Before these new approaches may be used in therapeutic settings, they must first be tested on large animals, as most of them have been done on rodents. However, there are several limitations to large animal stroke models used for research. In this review, the damage mechanisms in acute ischemic stroke and experimental acute ischemic stroke models are addressed. The current treatment approaches and promising experimental methods such as mitochondrial transplantation, hydrogel-based interventions, and strategies like mitochondria encapsulation and chemical modification, are also examined in this work.
Collapse
Affiliation(s)
- Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara 06010, Turkiye; Gulhane Training and Research Hospital, University of Health Sciences, Ankara 06010, Turkiye.
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Oktay Algin
- Interventional MR Clinical R&D Institute, Ankara University, Ankara 06100, Turkiye; Department of Radiology, Medical Faculty, Ankara University, Ankara 06100, Turkiye; National MR Research Center (UMRAM), Bilkent University, Ankara 06800, Turkiye
| |
Collapse
|
5
|
Lin SL, Lee W, Liu SP, Chang YW, Jeng LB, Shyu WC. Novel Programmed Death Ligand 1-AKT-engineered Mesenchymal Stem Cells Promote Neuroplasticity to Target Stroke Therapy. Mol Neurobiol 2024; 61:3819-3835. [PMID: 38030932 DOI: 10.1007/s12035-023-03779-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Although tissue plasminogen activator (t-PA) and endovascular thrombectomy are well-established treatments for acute ischemic stroke, over half of patients with stroke remain disabled for a long time. Thus, a significant unmet need exists to develop an effective strategy for treating acute stroke. We developed a combination of programmed cell death-ligand 1 (PD-L1) and AKT-modified umbilical cord mesenchymal stem cells (UMSC-PD-L1-AKT) implanted through intravenous (IV) and intracarotid (IA) routes to enhance therapeutic efficacy in a murine stroke model for overcoming the hypoxic environment of the ischemic brain, to prolong stem cell survival, and to attenuate systemic inflammation to protect neuroglial cells from ischemic injury. Higher cellular proliferation and survival upon exposure to toxic agents were observed in UMSC-PD-L1-AKT cells than in UMSCs in vitro. Moreover, increased attenuation of CFSE+ cell proliferation and increased survival of primary cortical cells were verified by the interaction with UMSC-PD-L1-AKT. Consistently, dual-route administration (IV + IA) of UMSC-PD-L1-AKT resulted in a significant reduction in infarction volume and improvement of neurological dysfunction in a stroke model. Furthermore, enhancing CD8+CD122+IL-10+ T-regulatory (Treg) cells and reducing CD11b+CD80+ microglial/macrophages and CD3+CD8+TNF-α+ and CD3+CD8+ IFN-α+ cytotoxic T cells induced an anti-inflammatory microenvironment to protect neuroglial cells in the ischemic brain. Collectively, therapeutic intervention using UMSC-PD-L1-AKT could provide a niche for inducing neuroplastic regeneration in brains after stroke.
Collapse
Affiliation(s)
- Syuan-Ling Lin
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Wei Lee
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Ping Liu
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Yi-Wen Chang
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
| | - Long-Bin Jeng
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan.
| | - Woei-Cherng Shyu
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.
- Neuroscience and Brain Disease Center and New Drug Development Center, China Medical University, Taichung, Taiwan.
- Department of Occupational Therapy, Asia University, Taichung, Taiwan.
| |
Collapse
|
6
|
Buchlak QD, Esmaili N, Moore J. Opportunities for developing neural stem cell treatments for acute ischemic stroke: A systematic review and gap analysis. J Clin Neurosci 2024; 120:64-75. [PMID: 38199150 DOI: 10.1016/j.jocn.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Ischemic stroke is a leading cause of disability and death. Current treatments are limited. Stem cell therapy has been highlighted as a potentially effective treatment to mitigate damage and restore function, but efficacy results are mixed. This study aimed to systematically review the literature on stem cell therapies for early acute ischemic stroke; and identify opportunities for future research to facilitate the development of an effective stem cell-based treatment. Original research published within the last 10 years that focused on the evaluation of a stem cell-based treatment for acute ischemic stroke in adult patients or subjects was included. Risk of bias was assessed using the SYRCLE and Cochrane risk of bias tools for animal and human studies, respectively. 3,396 articles were screened, 58 full-text articles were reviewed and 33 met inclusion criteria. Many studies appeared to be at risk of bias. Study designs and results were heterogeneous. Most studies were preclinical and involved stem cell administration within 24 hours. Seven studies tested the effects of multiple administration timepoints and one investigated repeat dosing. Six studies were conducted in humans and stem cell administration ranged from 24 hours to 90 days post stroke. Most studies employed the use of mesenchymal stem cells. The most appropriate cell delivery method appeared to be intra-arterial. Evidence suggests that stem cell therapy may be associated with beneficial effects. A literature gap analysis identified numerous opportunities for treatment development.
Collapse
Affiliation(s)
- Quinlan D Buchlak
- Department of Neurosurgery, Monash Health, Melbourne, VIC, Australia; School of Medicine, University of Notre Dame Australia, Sydney, NSW, Australia.
| | - Nazanin Esmaili
- School of Medicine, University of Notre Dame Australia, Sydney, NSW, Australia; Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Justin Moore
- Department of Neurosurgery, Monash Health, Melbourne, VIC, Australia; Department of Surgery, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Wong R, Smith CJ, Allan SM, Pinteaux E. Preconditioning with interleukin-1 alpha is required for the neuroprotective properties of mesenchymal stem cells after ischemic stroke in mice. J Cereb Blood Flow Metab 2023; 43:2040-2048. [PMID: 37602422 PMCID: PMC10925871 DOI: 10.1177/0271678x231197109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Mesenchymal stem cell (MSC) pre-conditioning with interleukin-1 alpha (IL-1ɑ) drives MSCs toward a potent anti-inflammatory phenotype. The aim of this study was to assess the therapeutic potential of intra-arterially administered IL-1ɑ preconditioned MSCs, after experimental cerebral ischaemia in mice. After 3 h from the start of middle cerebral artery occlusion, animals were treated with vehicle, 9.1 × 104 non-conditioned or IL-1ɑ preconditioned MSCs by intra-arterial administration. Animals were allowed to recover for 1.5 h after treatment to measure cerebral blood flow (CBF), and 3 days or 14 days post-stroke to evaluate lesion volume and functional outcomes. At 3-days post-stroke preconditioned MSCs reduced (by 67%) lesion volume and increased CBF (by 32%) compared to vehicle, while non-conditioned MSCs had no effect. A separate cohort of animals recovered to 14 days post-stroke also showed reduced infarct volume (by 51%) at 48 h (assessed by MRI) and better functional recovery at 14 days when treated with preconditioned MSCs when compared to vehicle. Preconditioning MSCs with IL-1α increases their neuroprotective capability and improves functional recovery after delayed intra-arterial administration. With increasing use of thrombectomy, the adjunct use of preconditioned MSCs therefore represents a highly relevant therapy to improve outcomes in ischemic stroke.
Collapse
Affiliation(s)
- Raymond Wong
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Craig J Smith
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Greater Manchester Comprehensive Stroke Centre, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Emmanuel Pinteaux
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Cherkashova E, Namestnikova D, Leonov G, Gubskiy I, Sukhinich K, Melnikov P, Chekhonin V, Yarygin K, Goldshtein D, Salikhova D. Comparative study of the efficacy of intra-arterial and intravenous transplantation of human induced pluripotent stem cells-derived neural progenitor cells in experimental stroke. PeerJ 2023; 11:e16358. [PMID: 38025691 PMCID: PMC10640846 DOI: 10.7717/peerj.16358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Background Cell therapy using neural progenitor cells (NPCs) is a promising approach for ischemic stroke treatment according to the results of multiple preclinical studies in animal stroke models. In the vast majority of conducted animal studies, the therapeutic efficacy of NPCs was estimated after intracerebral transplantation, while the information of the effectiveness of systemic administration is limited. Nowadays, several clinical trials aimed to estimate the safety and efficacy of NPCs transplantation in stroke patients were also conducted. In these studies, NPCs were transplanted intracerebrally in the subacute/chronic phase of stroke. The results of clinical trials confirmed the safety of the approach, however, the degree of functional improvement (the primary efficacy endpoint) was not sufficient in the majority of the studies. Therefore, more studies are needed in order to investigate the optimal transplantation parameters, especially the timing of cell transplantation after the stroke onset. This study aimed to evaluate the therapeutic effects of intra-arterial (IA) and intravenous (IV) administration of NPCs derived from induced pluripotent stem cells (iNPCs) in the acute phase of experimental stroke in rats. Induced pluripotent stem cells were chosen as the source of NPCs as this technology is perspective, has no ethical concerns and provides the access to personalized medicine. Methods Human iNPCs were transplanted IA or IV into male Wistar rats 24 h after the middle cerebral artery occlusion stroke modeling. Therapeutic efficacy was monitored for 14 days and evaluated in comparison with the cell transplantation-free control group. Additionally, cell distribution in the brain was assessed. Results The obtained results show that both routes of systemic transplantation (IV and IA) significantly reduced the mortality and improved the neurological deficit of experimental animals compared to the control group. At the same time, according to the MRI data, only IA administration led to faster and prominent reduction of the stroke volume. After IA administration, iNPCs transiently trapped in the brain and were not detected on day 7 after the transplantation. In case of IV injection, transplanted cells were not visualized in the brain. The obtained data demonstrated that the systemic transplantation of human iNPCs in the acute phase of ischemic stroke can be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Elvira Cherkashova
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russian Federation
| | - Daria Namestnikova
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russian Federation
| | - Georgiy Leonov
- Orekhovich Research Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Ilya Gubskiy
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russian Federation
| | - Kirill Sukhinich
- Orekhovich Research Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel Melnikov
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Konstantin Yarygin
- Orekhovich Research Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | | | - Diana Salikhova
- Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russian Federation
| |
Collapse
|
9
|
Zhou J, Gao T, Tang W, Qian T, Wang Z, Xu P, Wang L. Progress in the treatment of neonatal hypoxic-ischemic encephalopathy with umbilical cord blood mononuclear cells. Brain Dev 2023; 45:533-546. [PMID: 37806836 DOI: 10.1016/j.braindev.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a common disease among newborns, which is a leading cause of neonatal death and permanent neurological sequelae. Therapeutic hypothermia (TH) is the only method for the treatment of HIE that has been recognized effective clinically at home and abroad, but the efficacy is limited. Recent research suggests that the cord blood-derived mononuclear cells (CB-MNCs), which the refer to blood cells containing one nucleus in the cord blood, exert anti-oxidative, anti-inflammatory, anti-apoptotic effects and play a neuroprotective role in HIE. This review focuses on safety and efficacy, the route of administration, dose, timing and combination treatment of CB-MNCs in HIE.
Collapse
Affiliation(s)
- Jiayu Zhou
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ting Gao
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Wan Tang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Tianyang Qian
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ziming Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Pu Xu
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Laishuan Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China.
| |
Collapse
|
10
|
Yang X, Zhang X, Cao J, Wu M, Chen S, Chen L. Routes and methods of neural stem cells injection in cerebral ischemia. IBRAIN 2023; 9:326-339. [PMID: 37786754 PMCID: PMC10527797 DOI: 10.1002/ibra.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 10/04/2023]
Abstract
Cerebral ischemia is a serious cerebrovascular disease with the characteristics of high morbidity, disability, and mortality. Currently, stem cell therapy has been extensively applied to a wide range of diseases, including neurological disorders, autoimmune deficits, and other diseases. Transplantation therapy with neural stem cells (NSCs) is a very promising treatment method, which not only has anti-inflammatory, antiapoptotic, promoting angiogenesis, and neurogenesis effects, but also can improve some side effects related to thrombolytic therapy. NSCs treatment could exert protective effects in alleviating cerebral ischemia-induced brain damage and neurological dysfunctions. However, the different injection routes and doses of NSCs determine diverse therapeutic efficacy. This review mainly summarizes the various injection methods and injection effects of NSCs in cerebral ischemia, as well as proposes the existing problems and prospects of NSCs transplantation.
Collapse
Affiliation(s)
- Xing‐Yu Yang
- School of Clinic MedicineChengdu Medical CollegeChengduSichuanChina
| | - Xiao Zhang
- School of Basic MedicineChengdu Medical CollegeChengduSichuanChina
| | - Jun‐Feng Cao
- School of Clinic MedicineChengdu Medical CollegeChengduSichuanChina
| | - Mei Wu
- School of Clinic MedicineChengdu Medical CollegeChengduSichuanChina
| | - Sheng‐Yan Chen
- School of Clinic MedicineChengdu Medical CollegeChengduSichuanChina
| | - Li Chen
- Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
11
|
Namestnikova DD, Gubskiy IL, Cherkashova EA, Sukhinich KK, Melnikov PA, Gabashvili AN, Kurilo VV, Chekhonin VP, Gubsky LV, Yarygin KN. Therapeutic Efficacy and Migration of Mesenchymal Stem Cells after Intracerebral Transplantation in Rats with Experimental Ischemic Stroke. Bull Exp Biol Med 2023:10.1007/s10517-023-05822-1. [PMID: 37336809 DOI: 10.1007/s10517-023-05822-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 06/21/2023]
Abstract
We studied therapeutic efficacy and migration characteristics of mesenchymal stem cells isolated from the human placenta after their intracerebral (stereotactic) administration to rats with the experimental ischemic stroke. It was shown that cell therapy significantly improved animal survival rate and reduced the severity of neurological deficit. New data on the migration pathways of transplanted cells in the brain were obtained.
Collapse
Affiliation(s)
- D D Namestnikova
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I L Gubskiy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia.
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - E A Cherkashova
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K K Sukhinich
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - P A Melnikov
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A N Gabashvili
- National Research Technology University "MISiS", Moscow, Russia
| | - V V Kurilo
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Chekhonin
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L V Gubsky
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
12
|
Karimi-Haghighi S, Pandamooz S, Jurek B, Fattahi S, Safari A, Azarpira N, Dianatpour M, Hooshmandi E, Bayat M, Owjfard M, Zafarmand SS, Mostaghel M, Mousavi SM, Jashire Nezhad N, Eraghi V, Fadakar N, Rahimi Jaberi A, Garcia-Esperon C, Spratt N, Levi C, Salehi MS, Borhani-Haghighi A. From Hair to the Brain: The Short-Term Therapeutic Potential of Human Hair Follicle-Derived Stem Cells and Their Conditioned Medium in a Rat Model of Stroke. Mol Neurobiol 2023; 60:2587-2601. [PMID: 36694047 DOI: 10.1007/s12035-023-03223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
The short-term therapeutic impacts of stem cells and their derivatives were frequently reported in preclinical investigations of ischemic stroke (IS); however, several drawbacks including accessibility, abundancy, and ethical concerns limited their clinical application. We describe here for the first time the therapeutic potential of human hair follicle-derived stem cells (hHFSCs) and their conditioned medium (CM) in a rat model of IS. Furthermore, we hypothesized that a combination of cell therapy with repeated CM administration might enhance the restorative efficiency of this approach compared to each treatment alone. Middle cerebral artery occlusion was performed for 30 min to induce IS. Immediately after reperfusion, hHFSCs were transplanted through the intra-arterial route and/or hHFSC-CM administered intranasally. The neurological outcomes, short-term spatial working memory, and infarct size were evaluated. Furthermore, relative expression of seven target genes in three categories of neuronal markers, synaptic markers, and angiogenic markers was assessed. The hHFSCs and hHFSC-CM treatments improved neurological impairments and reduced infarct size in the IS rats. Moreover, molecular data elucidated that IS was accompanied by attenuation in the expression of neuronal and synaptic markers in the evaluated brain regions and the interventions rescued these expression changes. Although there was no considerable difference between hHFSCs and hHFSC-CM treatments in the improvement of neurological function and decrement of infarct size, combination therapy was more effective to reduce infarction and elevation of target gene expression especially in the hippocampus. These findings highlight the curative potential of hHFSCs and their CM in a rat model of IS.
Collapse
Affiliation(s)
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benjamin Jurek
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | | | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mandana Mostaghel
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nahid Jashire Nezhad
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vida Eraghi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Fadakar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Carlos Garcia-Esperon
- Department of Neurology, John Hunter Hospital, Newcastle, Australia
- Hunter Medical Research Institute and the University of Newcastle, Newcastle, Australia
| | - Neil Spratt
- Department of Neurology, John Hunter Hospital, Newcastle, Australia
- Hunter Medical Research Institute and the University of Newcastle, Newcastle, Australia
| | - Christopher Levi
- Department of Neurology, John Hunter Hospital, Newcastle, Australia
- Hunter Medical Research Institute and the University of Newcastle, Newcastle, Australia
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Afshin Borhani-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Neurology, John Hunter Hospital, Newcastle, Australia.
- Hunter Medical Research Institute and the University of Newcastle, Newcastle, Australia.
| |
Collapse
|
13
|
Dynamic MRI of the Mesenchymal Stem Cells Distribution during Intravenous Transplantation in a Rat Model of Ischemic Stroke. Life (Basel) 2023; 13:life13020288. [PMID: 36836645 PMCID: PMC9962901 DOI: 10.3390/life13020288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Systemic transplantation of mesenchymal stem cells (MSCs) is a promising approach for the treatment of ischemia-associated disorders, including stroke. However, exact mechanisms underlying its beneficial effects are still debated. In this respect, studies of the transplanted cells distribution and homing are indispensable. We proposed an MRI protocol which allowed us to estimate the dynamic distribution of single superparamagnetic iron oxide labeled MSCs in live ischemic rat brain during intravenous transplantation after the transient middle cerebral artery occlusion. Additionally, we evaluated therapeutic efficacy of cell therapy in this rat stroke model. According to the dynamic MRI data, limited numbers of MSCs accumulated diffusely in the brain vessels starting at the 7th minute from the onset of infusion, reached its maximum by 29 min, and gradually eliminated from cerebral circulation during 24 h. Despite low numbers of cells entering brain blood flow and their short-term engraftment, MSCs transplantation induced long lasting improvement of the neurological deficit, but without acceleration of the stroke volume reduction compared to the control animals during 14 post-transplantation days. Taken together, these findings indicate that MSCs convey their positive action by triggering certain paracrine mechanisms or cell-cell interactions or invoking direct long-lasting effects on brain vessels.
Collapse
|
14
|
Valeri A, Mazzon E. State of the Art and Future of Stem Cell Therapy in Ischemic Stroke: Why Don't We Focus on Their Administration? BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010118. [PMID: 36671691 PMCID: PMC9854993 DOI: 10.3390/bioengineering10010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
Stroke is one of the leading causes of death and disability worldwide, so there is an urgent need to find a therapy for the tragic outcomes of this cerebrovascular disease. Stem cells appeared to be a good solution for many conditions, so different experiments were made to establish stem cells as a feasible therapy for stroke. The aim of this review is to analyze the state of the art of stem cell therapy for stroke and if the route of administration could represent a valid adjusting point for ameliorating the therapy's outcome. To obtain this, we searched the scientific literature of the last 10 years for relevant in vitro and in vivo evidence regarding stem cells' potential in stroke therapy. In vitro evidence points to hypoxia, among the preconditioning strategies, as the most used and probably efficient method to enhance cells qualities, while in vivo results raise the question if it is the type of cells or how they are administrated which can make the difference in terms of efficiency. Unfortunately, despite the number of clinical trials, only a few were successfully concluded, demonstrating how urgent the necessity is to translate pre-clinical results into clinics. Since any type of stem cell seems suitable for therapy, the chosen route of administration corresponds to different engraftment rates, distribution and efficiency in terms of the beneficial effects of stem cells. Intravenous administration was widely used for delivering stem cells into the human body, but recently intranasal administration has given promising results in vivo. It allows stem cells to efficiently reach the brain that was precluded to intravenous administration, so it is worth further investigation.
Collapse
|
15
|
Zhou L, Wang J, Huang J, Song X, Wu Y, Chen X, Tan Y, Yang Q. The role of mesenchymal stem cell transplantation for ischemic stroke and recent research developments. Front Neurol 2022; 13:1000777. [PMID: 36468067 PMCID: PMC9708730 DOI: 10.3389/fneur.2022.1000777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 09/08/2023] Open
Abstract
Ischemic stroke is a common cerebrovascular disease that seriously affects human health. However, most patients do not practice self-care and cannot rely on the current clinical treatment for guaranteed functional recovery. Stem cell transplantation is an emerging treatment studied in various central nervous system diseases. More importantly, animal studies show that transplantation of mesenchymal stem cells (MSCs) can alleviate neurological deficits and bring hope to patients suffering from ischemic stroke. This paper reviews the biological characteristics of MSCs and discusses the mechanism and progression of MSC transplantation to provide new therapeutic directions for ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Zhao T, Zhu T, Xie L, Li Y, Xie R, Xu F, Tang H, Zhu J. Neural Stem Cells Therapy for Ischemic Stroke: Progress and Challenges. Transl Stroke Res 2022; 13:665-675. [PMID: 35032307 DOI: 10.1007/s12975-022-00984-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Ischemic stroke, with its high morbidity and mortality, is the most common cerebrovascular accident and results in severe neurological deficits. Despite advances in medical and surgical intervention, post-stroke therapies remain scarce, which seriously affects the quality of life of patients. Over the past decades, stem cell transplantation has been recognized as very promising therapy for neurological diseases. Neural stem cell (NSC) transplantation is the optimal choice for ischemic stroke as NSCs inherently reside in the brain and can potentially differentiate into a variety of cell types within the central nervous system. Recent research has demonstrated that NSC transplantation can facilitate neural recovery after ischemic stroke, but the mechanisms still remain unclear, and basic/clinical studies of NSC transplantation for ischemic stroke have not yet been thoroughly elucidated. We thus, in this review, provide a futher understanding of the therapeutic role of NSCs for ischemic stroke, and evaluate their prospects for future application in clinical patients of ischemic stroke.
Collapse
Affiliation(s)
- Tong Zhao
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Tongming Zhu
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Liqian Xie
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Yao Li
- Med-X Research Institute, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Rong Xie
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Feng Xu
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China.
| | - Hailiang Tang
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China.
| | - Jianhong Zhu
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China.
| |
Collapse
|
17
|
Mousavi SM, Akbarpour B, Karimi-Haghighi S, Pandamooz S, Belém-Filho IJA, Masís-Calvo M, Salimi H, Lashanizadegan R, Pouramini A, Owjfard M, Hooshmandi E, Bayat M, Zafarmand SS, Dianatpour M, Salehi MS, Borhani-Haghighi A. Therapeutic potential of hair follicle-derived stem cell intranasal transplantation in a rat model of ischemic stroke. BMC Neurosci 2022; 23:47. [PMID: 35879657 PMCID: PMC9316709 DOI: 10.1186/s12868-022-00732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stem cell-based therapy has received considerable attention as a potential candidate in the treatment of ischemic stroke; however, employing an appropriate type of stem cells and an effective delivery route are still challenging. In the present study, we investigated the therapeutic effect of safe, noninvasive, and brain-targeted intranasal administration of hair follicle-derived stem cells (HFSCs) in a rat model of ischemic stroke. METHODS Stem cells were obtained from the adult rat hair follicles. In experiment 1, stroke was induced by 30 min middle cerebral artery occlusion (MCAO) and stem cells were intranasally transplanted immediately after ischemia. In experiment 2, stroke was induced by 120 min MCAO and stem cells were administered 24 h after cerebral ischemia. In all experimental groups, neurological performance, short-term spatial working memory and infarct volume were assessed. Moreover, relative expression of major trophic factors in the striatum and cortex was evaluated by the quantitative PCR technique. The end point of experiment 1 was day 3 and the end point of experiment 2 was day 15. RESULTS In both experiments, intranasal administration of HFSCs improved functional performance and decreased infarct volume compared to the MCAO rats. Furthermore, NeuN and VEGF expression were higher in the transplanted group and stem cell therapy partially prevented BDNF and neurotrophin-3 over-expression induced by cerebral ischemia. CONCLUSIONS These findings highlight the curative potential of HFSCs following intranasal transplantation in a rat model of ischemic stroke.
Collapse
Affiliation(s)
- Seyedeh Maryam Mousavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bijan Akbarpour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran.
| | | | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Haniye Salimi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Lashanizadegan
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Pouramini
- Department of Basic Sciences, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
18
|
Ladeira BMF, Gomes MC, Custódio CA, Mano JF. High-Throughput Production of Microsponges from Platelet Lysate for Tissue Engineering Applications. Tissue Eng Part C Methods 2022; 28:325-334. [PMID: 35343236 DOI: 10.1089/ten.tec.2022.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell-based therapies require a large number of cells, as well as appropriate methods to deliver the cells to damaged tissue. Microcarriers provide an optimal platform for large-scale cell culture while also improving cell retention during cell delivery. However, this technology still presents significant challenges due to low-throughput fabrication methods and an inability of the microcarriers to recreate the properties of human tissue. This work proposes, for the first time, the use of methacryloyl platelet lysates (PLMA), a photocrosslinkable material derived from human platelet lysates, to produce porous microcarriers. Initially, high quantities of PLMA/alginate core-shell microcapsules are produced using coaxial electrospray. Subsequently, the microcapsules are collected, irradiated with ultraviolet light, washed, and freeze dried yielding PLMA microsponges. These microsponges are able to support the adhesion and proliferation of human adipose-derived stem cells, while also displaying potential in the assembly of autologous microtissues. Cell-laden microsponges were shown to self-organize into aggregates, suggesting possible applications in bottom-up tissue engineering applications. Impact Statement Microcarriers have increasingly been used as delivery platforms in cell therapy. Herein, the encapsulation of human-derived proteins in alginate microcapsules is proposed as a method to produce microcarriers from photopolymerizable materials. The capsules function as a template structure, which is then processed into spherical microparticles, which can be used in cell culture, cell delivery, and bottom-up assembly. As a proof of concept, this method was combined with lyophilization to process methacryloyl platelet lysates into injectable microsponges for cell delivery.
Collapse
Affiliation(s)
- Bruno M F Ladeira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Maria C Gomes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Catarina A Custódio
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
19
|
Brooks B, Ebedes D, Usmani A, Gonzales-Portillo JV, Gonzales-Portillo D, Borlongan CV. Mesenchymal Stromal Cells in Ischemic Brain Injury. Cells 2022; 11:cells11061013. [PMID: 35326464 PMCID: PMC8947674 DOI: 10.3390/cells11061013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/07/2023] Open
Abstract
Ischemic brain injury represents a major cause of death worldwide with limited treatment options with a narrow therapeutic window. Accordingly, novel treatments that extend the treatment from the early neuroprotective stage to the late regenerative phase may accommodate a much larger number of stroke patients. To this end, stem cell-based regenerative therapies may address this unmet clinical need. Several stem cell therapies have been tested as potentially exhibiting the capacity to regenerate the stroke brain. Based on the long track record and safety profile of transplantable stem cells for hematologic diseases, bone marrow-derived mesenchymal stromal cells or mesenchymal stromal cells have been widely tested in stroke animal models and have reached clinical trials. However, despite the translational promise of MSCs, probing cell function remains to be fully elucidated. Recognizing the multi-pronged cell death and survival processes that accompany stroke, here we review the literature on MSC definition, characterization, and mechanism of action in an effort to gain a better understanding towards optimizing its applications and functional outcomes in stroke.
Collapse
Affiliation(s)
- Beverly Brooks
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (D.E.); (A.U.)
| | - Dominique Ebedes
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (D.E.); (A.U.)
| | - Ahsan Usmani
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (D.E.); (A.U.)
| | | | | | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (D.E.); (A.U.)
- Correspondence: ; Tel.: +1-8139743988
| |
Collapse
|
20
|
Araszkiewicz AM, Oliveira EP, Svendsen T, Drela K, Rogujski P, Malysz-Cymborska I, Fiedorowicz M, Reis RL, Oliveira JM, Walczak P, Janowski M, Lukomska B, Stanaszek L. Manganese-Labeled Alginate Hydrogels for Image-Guided Cell Transplantation. Int J Mol Sci 2022; 23:ijms23052465. [PMID: 35269609 PMCID: PMC8910205 DOI: 10.3390/ijms23052465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Cell transplantation has been studied extensively as a therapeutic strategy for neurological disorders. However, to date, its effectiveness remains unsatisfactory due to low precision and efficacy of cell delivery; poor survival of transplanted cells; and inadequate monitoring of their fate in vivo. Fortunately, different bio-scaffolds have been proposed as cell carriers to improve the accuracy of cell delivery, survival, differentiation, and controlled release of embedded stem cells. The goal of our study was to establish hydrogel scaffolds suitable for stem cell delivery that also allow non-invasive magnetic resonance imaging (MRI). We focused on alginate-based hydrogels due to their natural origin, biocompatibility, resemblance to the extracellular matrix, and easy manipulation of gelation processes. We optimized the properties of alginate-based hydrogels, turning them into suitable carriers for transplanted cells. Human adipose-derived stem cells embedded in these hydrogels survived for at least 14 days in vitro. Alginate-based hydrogels were also modified successfully to allow their injectability via a needle. Finally, supplementing alginate hydrogels with Mn ions or Mn nanoparticles allowed for their visualization in vivo using manganese-enhanced MRI. We demonstrated that modified alginate-based hydrogels can support therapeutic cells as MRI-detectable matrices.
Collapse
Affiliation(s)
- Antonina M. Araszkiewicz
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.A.); (P.R.); (B.L.)
| | - Eduarda P. Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (E.P.O.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | | | | | - Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.A.); (P.R.); (B.L.)
| | - Izabela Malysz-Cymborska
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Michal Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (E.P.O.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (E.P.O.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Piotr Walczak
- Program for Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, Center for Advanced Imaging Research, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA; (P.W.); (M.J.)
| | - Miroslaw Janowski
- Program for Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, Center for Advanced Imaging Research, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA; (P.W.); (M.J.)
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.A.); (P.R.); (B.L.)
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.A.); (P.R.); (B.L.)
- Correspondence: ; Tel.: +48-226-086-529
| |
Collapse
|
21
|
Sarmah D, Datta A, Kaur H, Kalia K, Borah A, Rodriguez AM, Yavagal DR, Bhattacharya P. Sirtuin-1 - Mediated NF-κB Pathway Modulation to Mitigate Inflammasome Signaling and Cellular Apoptosis is One of the Neuroprotective Effects of Intra-arterial Mesenchymal Stem Cell Therapy Following Ischemic Stroke. Stem Cell Rev Rep 2022; 18:821-838. [PMID: 35112234 DOI: 10.1007/s12015-021-10315-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/14/2022]
Abstract
AIM Stroke results in long term serious disability that affect millions across the globe. Several clinical and preclinical studies have reinforced the therapeutic use of stem cells in stroke patients to enhance their quality of life. Previous studies from our lab have demonstrated that 1*105 allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) when given intraarterially (IA) render neuroprotection by modulating the expression of inflammasomes. Sirtuins are a class of important deacylases having a significant role in cellular functioning. Sirtuin-1 (SIRT-1) is an important enzyme essential for regulating cellular metabolism, which is reduced following an ischemic episode. The present study aims to unviel the role of MSCs in regulating the brain SIRT-1 levels following stroke and the involvement of SIRT-1 in regulating inflammasome signaling to reduce cellular apoptosis towards rendering neuroprotection. MATERIALS AND METHODS 6 h post-reversible middle cerebral artery occlusion (MCAo), ovariectomized Sprague Dawley (SD) rats were infused intraarterially with 1*105 MSCs. 24 h after MCAo animals were examined for functional and behavioral outcomes. Brains were collected for assessing size of infarct and neuronal morphology. Molecular and immunofluroscence studies were also performed for assessing changes in gene and protein expressions. Extent of apoptosis was also determined in different groups. Inhibition study with SIRT-1 specific inhibitor EX-527 was also performed. RESULTS A reduction in infarct size and improvement in motor functional and behavioral outcomes following infusion of MSCs IA at 6 h post-stroke was observed. Increase in average neuronal density and neuronal length was also seen. Increased expression of SIRT-1, BDNF and concomitant reduction in the expression of different inflammatory and apoptotic markers in the brain cortical regions were observed following MSCs treatment. CONCLUSION Our study provides a preliminary evidence that post-stroke IA MSCs therapy regulates SIRT-1 to modulate NF-κB pathway to mitigate inflammasome signaling and cellular apoptosis. This study using IA approach for administering MSCs is highly relevant clinically. Our study is the first to report that neuroprotective effects of IA MSCs in rodent focal ischemia is mediated by SIRT-1 regulation of inflammasome signaling.
Collapse
Affiliation(s)
- Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | | | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
22
|
The Impact of Cerebral Perfusion on Mesenchymal Stem Cells Distribution after Intra-Arterial Transplantation: A Quantitative MR Study. Biomedicines 2022; 10:biomedicines10020353. [PMID: 35203560 PMCID: PMC8962387 DOI: 10.3390/biomedicines10020353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Intra-arterial (IA) mesenchymal stem cells (MSCs) transplantation providing targeted cell delivery to brain tissue is a promising approach to the treatment of neurological disorders, including stroke. Factors determining cell distribution after IA administration have not been fully elucidated. Their decoding may contribute to the improvement of a transplantation technique and facilitate translation of stroke cell therapy into clinical practice. The goal of this work was to quantitatively assess the impact of brain tissue perfusion on the distribution of IA transplanted MSCs in rat brains. We performed a selective MR-perfusion study with bolus IA injection of gadolinium-based contrast agent and subsequent IA transplantation of MSCs in intact rats and rats with experimental stroke and evaluated the correlation between different perfusion parameters and cell distribution estimated by susceptibility weighted imaging (SWI) immediately after cell transplantation. The obtained results revealed a certain correlation between the distribution of IA transplanted MSCs and brain perfusion in both intact rats and rats with experimental stroke with the coefficient of determination up to 30%. It can be concluded that the distribution of MSCs after IA injection can be partially predicted based on cerebral perfusion data, but other factors requiring further investigation also have a significant impact on the fate of transplanted cells.
Collapse
|
23
|
Grayston A, Zhang Y, Garcia-Gabilondo M, Arrúe M, Martin A, Kopcansky P, Timko M, Kovac J, Strbak O, Castellote L, Belloli S, Moresco RM, Picchio M, Roig A, Rosell A. Endovascular administration of magnetized nanocarriers targeting brain delivery after stroke. J Cereb Blood Flow Metab 2022; 42:237-252. [PMID: 34229512 PMCID: PMC9122522 DOI: 10.1177/0271678x211028816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The increasing use of mechanical thrombectomy in stroke management has opened the window to local intraarterial brain delivery of therapeutic agents. In this context, the use of nanomedicine could further improve the delivery of new treatments for specific brain targeting, tracking and guidance. In this study we take advantage of this new endovascular approach to deliver biocompatible poly(D-L-lactic-co-glycolic acid) (PLGA) nanocapsules functionalized with superparamagnetic iron oxide nanoparticles and Cy7.5 for magnetic targeting, magnetic resonance and fluorescent molecular imaging. A complete biodistribution study in naïve (n = 59) and ischemic (n = 51) mice receiving intravenous or intraarterial nanocapsules, with two different magnet devices and imaged from 30 min to 48 h, showed an extraordinary advantage of the intraarterial route for brain delivery with a specific improvement in cortical targeting when using a magnetic device in both control and ischemic conditions. Safety was evaluated in ischemic mice (n = 69) showing no signs of systemic toxicity nor increasing mortality, infarct lesions or hemorrhages. In conclusion, the challenging brain delivery of therapeutic nanomaterials could be efficiently and safely overcome with a controlled endovascular administration and magnetic targeting, which could be considered in the context of endovascular interventions for the delivery of multiple treatments for stroke.
Collapse
Affiliation(s)
- Alba Grayston
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Yajie Zhang
- Nanoparticles and Nanocomposites Group, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, Spain
| | - Miguel Garcia-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Mercedes Arrúe
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Abraham Martin
- Achucarro Basque Center for Neuroscience, Laboratory of Neuroimaging and Biomarkers of Inflammation, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Peter Kopcansky
- Department of Magnetism, Institute of Experimental Physics, SAS, Kosice, Slovakia
| | - Milan Timko
- Department of Magnetism, Institute of Experimental Physics, SAS, Kosice, Slovakia
| | - Jozef Kovac
- Department of Magnetism, Institute of Experimental Physics, SAS, Kosice, Slovakia
| | - Oliver Strbak
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Laura Castellote
- Department of Clinical Biochemistry, Clinical Laboratories, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sara Belloli
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy
| | - Rosa M Moresco
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Medicine and Surgery, University of Milano - Bicocca, Monza (MB), Italy
| | - Maria Picchio
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Roig
- Nanoparticles and Nanocomposites Group, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| |
Collapse
|
24
|
Jordan S, Zielinski M, Kortylewski M, Kuhn T, Bystritsky A. Noninvasive Delivery of Biologicals to the Brain. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:64-70. [PMID: 35746928 PMCID: PMC9063603 DOI: 10.1176/appi.focus.20210028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the past, psychotherapy and neuropharmacological approaches have been the most common treatments for disordered thoughts, moods, and behaviors. One new path of brain therapeutics is in the deployment of noninvasive approaches designed to reprogram brain function at the cellular level. Treatment at the cellular level may be considered for a wide array of disorders, ranging from mood disorders to neurodegenerative disorders. Brain-targeted biological therapy may provide minimally invasive and accurate delivery of treatment. The present article discusses the hurdles and advances that characterize the pathway to this goal.
Collapse
|
25
|
Chu C, Jablonska A, Gao Y, Lan X, Lesniak WG, Liang Y, Liu G, Li S, Magnus T, Pearl M, Janowski M, Walczak P. Hyperosmolar blood-brain barrier opening using intra-arterial injection of hyperosmotic mannitol in mice under real-time MRI guidance. Nat Protoc 2022; 17:76-94. [PMID: 34903870 PMCID: PMC9844550 DOI: 10.1038/s41596-021-00634-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/14/2021] [Indexed: 01/19/2023]
Abstract
The blood-brain barrier (BBB) is the main obstacle to the effective delivery of therapeutic agents to the brain, compromising treatment efficacy for a variety of neurological disorders. Intra-arterial (IA) injection of hyperosmotic mannitol has been used to permeabilize the BBB and improve parenchymal entry of therapeutic agents following IA delivery in preclinical and clinical studies. However, the reproducibility of IA BBB manipulation is low and therapeutic outcomes are variable. We demonstrated that this variability could be highly reduced or eliminated when the procedure of osmotic BBB opening is performed under the guidance of interventional MRI. Studies have reported the utility and applicability of this technique in several species. Here we describe a protocol to open the BBB by IA injection of hyperosmotic mannitol under the guidance of MRI in mice. The procedures (from preoperative preparation to postoperative care) can be completed within ~1.5 h, and the skill level required is on par with the induction of middle cerebral artery occlusion in small animals. This MRI-guided BBB opening technique in mice can be utilized to study the biology of the BBB and improve the delivery of various therapeutic agents to the brain.
Collapse
Affiliation(s)
- Chengyan Chu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, China
| | - Anna Jablonska
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yue Gao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaoyan Lan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wojciech G. Lesniak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shen Li
- Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, China
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Monica Pearl
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Neurointerventional Radiology, Children’s National Medical Center, Washington, DC, USA
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Satani N, Parsha K, Savitz SI. Enhancing Stroke Recovery With Cellular Therapies. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Bagno LL, Salerno AG, Balkan W, Hare JM. Mechanism of Action of Mesenchymal Stem Cells (MSCs): impact of delivery method. Expert Opin Biol Ther 2021; 22:449-463. [PMID: 34882517 DOI: 10.1080/14712598.2022.2016695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs; AKA mesenchymal stem cells) stimulate healing and reduce inflammation. Promising therapeutic responses are seen in many late-phase clinical trials, but others have not satisfied their primary endpoints, making translation of MSCs into clinical practice difficult. These inconsistencies may be related to the route of MSC delivery, lack of product optimization, or varying background therapies received in clinical trials over time. AREAS COVERED Here we discuss the different routes of MSC delivery, highlighting the proposed mechanism(s) of therapeutic action as well as potential safety concerns. PubMed search criteria used: MSC plus: local administration; routes of administration; delivery methods; mechanism of action; therapy in different diseases. EXPERT OPINION Direct injection of MSCs using a controlled local delivery approach appears to have benefits in certain disease states, but further studies are required to make definitive conclusions regarding the superiority of one delivery method over another.
Collapse
Affiliation(s)
- Luiza L Bagno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alessandro G Salerno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami
| |
Collapse
|
28
|
Jurcau A, Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int J Mol Sci 2021; 23:14. [PMID: 35008440 PMCID: PMC8744548 DOI: 10.3390/ijms23010014] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Its increasing incidence has led stroke to be the second leading cause of death worldwide. Despite significant advances in recanalization strategies, patients are still at risk for ischemia/reperfusion injuries in this pathophysiology, in which neuroinflammation is significantly involved. Research has shown that in the acute phase, neuroinflammatory cascades lead to apoptosis, disruption of the blood-brain barrier, cerebral edema, and hemorrhagic transformation, while in later stages, these pathways support tissue repair and functional recovery. The present review discusses the various cell types and the mechanisms through which neuroinflammation contributes to parenchymal injury and tissue repair, as well as therapeutic attempts made in vitro, in animal experiments, and in clinical trials which target neuroinflammation, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| | - Aurel Simion
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurorehabilitation Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
29
|
Pelizzo G, Silvestro S, Avanzini MA, Zuccotti G, Mazzon E, Calcaterra V. Mesenchymal Stromal Cells for the Treatment of Interstitial Lung Disease in Children: A Look from Pediatric and Pediatric Surgeon Viewpoints. Cells 2021; 10:3270. [PMID: 34943779 PMCID: PMC8699409 DOI: 10.3390/cells10123270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been proposed as a potential therapy to treat congenital and acquired lung diseases. Due to their tissue-regenerative, anti-fibrotic, and immunomodulatory properties, MSCs combined with other therapy or alone could be considered as a new approach for repair and regeneration of the lung during disease progression and/or after post- surgical injury. Children interstitial lung disease (chILD) represent highly heterogeneous rare respiratory diseases, with a wild range of age of onset and disease expression. The chILD is characterized by inflammatory and fibrotic changes of the pulmonary parenchyma, leading to gas exchange impairment and chronic respiratory failure associated with high morbidity and mortality. The therapeutic strategy is mainly based on the use of corticosteroids, hydroxychloroquine, azithromycin, and supportive care; however, the efficacy is variable, and their long-term use is associated with severe toxicity. The role of MSCs as treatment has been proposed in clinical and pre-clinical studies. In this narrative review, we report on the currently available on MSCs treatment as therapeutical strategy in chILD. The progress into the therapy of respiratory disease in children is mandatory to ameliorate the prognosis and to prevent the progression in adult age. Cell therapy may be a future therapy from both a pediatric and pediatric surgeon's point of view.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy;
| | - Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (E.M.)
| | - Maria Antonietta Avanzini
- Cell Factory, Pediatric Hematology Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy;
- Department of Pediatrics, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy;
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (E.M.)
| | - Valeria Calcaterra
- Department of Pediatrics, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy;
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
30
|
Cell Therapy of Stroke: Do the Intra-Arterially Transplanted Mesenchymal Stem Cells Cross the Blood-Brain Barrier? Cells 2021; 10:cells10112997. [PMID: 34831220 PMCID: PMC8616541 DOI: 10.3390/cells10112997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023] Open
Abstract
Animal model studies and first clinical trials have demonstrated the safety and efficacy of the mesenchymal stem cells' (MSCs) transplantation in stroke. Intra-arterial (IA) administration looks especially promising, since it provides targeted cell delivery to the ischemic brain, is highly effective, and can be safe as long as the infusion is conducted appropriately. However, wider clinical application of the IA MSCs transplantation will only be possible after a better understanding of the mechanism of their therapeutic action is achieved. On the way to achieve this goal, the study of transplanted cells' fate and their interactions with the blood-brain barrier (BBB) structures could be one of the key factors. In this review, we analyze the available data concerning one of the most important aspects of the transplanted MSCs' action-the ability of cells to cross the blood-brain barrier (BBB) in vitro and in vivo after IA administration into animals with experimental stroke. The collected data show that some of the transplanted MSCs temporarily attach to the walls of the cerebral vessels and then return to the bloodstream or penetrate the BBB and either undergo homing in the perivascular space or penetrate deeper into the parenchyma. Transmigration across the BBB is not necessary for the induction of therapeutic effects, which can be incited through a paracrine mechanism even by cells located inside the blood vessels.
Collapse
|
31
|
Kaur H, Sarmah D, Veeresh P, Datta A, Kalia K, Borah A, Yavagal DR, Bhattacharya P. Endovascular Stem Cell Therapy Post Stroke Rescues Neurons from Endoplasmic Reticulum Stress-Induced Apoptosis by Modulating Brain-Derived Neurotrophic Factor/Tropomyosin Receptor Kinase B Signaling. ACS Chem Neurosci 2021; 12:3745-3759. [PMID: 34553602 DOI: 10.1021/acschemneuro.1c00506] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ischemic stroke is devastating, with serious long-term disabilities affecting millions of people worldwide. Growing evidence has shown that mesenchymal stem cells (MSCs) administration after stroke provides neuroprotection and enhances the quality of life in stroke patients. Previous studies from our lab have shown that 1 × 105 MSCs administered intra-arterially (IA) at 6 h post stroke provide neuroprotection through the modulation of inflammasome and calcineurin signaling. Ischemic stroke induces endoplasmic reticulum (ER) stress, which exacerbates the pathology. The current study intends to understand the involvement of brain-derived neurotrophic factor/tropomyosin receptor kinase B (BDNF/TrkB) signaling in preventing apoptosis induced by ER stress post stroke following IA MSCs administration. Ischemic stroke was induced in ovariectomized female Sprague Dawley rats. The MSCs were administered IA, and animals were sacrificed at 24 h post stroke. Infarct area, neurological deficit score, motor coordination, and biochemical parameters were evaluated. The expression of various genes and proteins was assessed. An inhibition study was also carried out to confirm the involvement of BDNF/TrkB signaling in ER stress-induced apoptosis. IA-administered MSCs improved functional outcomes, reduced infarct area, increased neuronal survival, and normalized biochemical parameters. mRNA and protein expression of ER stress markers were reduced, while those of BDNF and TrkB were increased. Reduction in ER stress-mediated apoptosis was also observed. The present study shows that IA MSCs administration post stroke provides neuroprotection and can modulate ER stress-mediated apoptosis via the BDNF/TrkB signaling pathway.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| | - Pabbala Veeresh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| |
Collapse
|
32
|
Nowak B, Rogujski P, Janowski M, Lukomska B, Andrzejewska A. Mesenchymal stem cells in glioblastoma therapy and progression: How one cell does it all. Biochim Biophys Acta Rev Cancer 2021; 1876:188582. [PMID: 34144129 DOI: 10.1016/j.bbcan.2021.188582] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are among the most investigated and applied somatic stem cells in experimental therapies for the regeneration of damaged tissues. Moreover, as it was recently postulated, MSCs may demonstrate anti-tumor properties. Glioblastoma (GBM) is a grade IV central nervous system tumor with no available effective therapy and an inevitably fatal prognosis. Experimental studies utilizing MSCs in GBM treatment resulted in numerous controversies. Native MSCs were shown to exert anti-GBM activity by controlling angiogenesis, regulating cell cycle, and inducing apoptosis. They also were used as sensitizing factors and vehicles delivering various anti-cancer compounds. On the other hand, some experiments revealed significant risks related to MSC-based therapies for GBM, such as enhancement of tumor cell proliferation, invasion, and aggressiveness. The following review elaborates on all mentioned contradictory data and provides a realistic, current clinical perspective on MSCs' potential in GBM treatment.
Collapse
Affiliation(s)
- Blazej Nowak
- Department of Neurosurgery, Central Clinical Hospital of Ministry of the Interior and Administration, Warsaw, Poland; Neurosurgery Department, John Paul II Western Hospital, Grodzisk Mazowiecki, Poland
| | - Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA; Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
33
|
Law ZK, Tan HJ, Chin SP, Wong CY, Wan Yahya WNN, Muda AS, Zakaria R, Ariff MI, Ismail NA, Cheong SK, S Abdul Wahid SF, Mohamed Ibrahim N. The effects of intravenous infusion of autologous mesenchymal stromal cells in patients with subacute middle cerebral artery infarct: a phase 2 randomized controlled trial on safety, tolerability and efficacy. Cytotherapy 2021; 23:833-840. [PMID: 33992536 DOI: 10.1016/j.jcyt.2021.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are characterized by paracrine and immunomodulatory functions capable of changing the microenvironment of damaged brain tissue toward a more regenerative and less inflammatory milieu. The authors conducted a phase 2, single-center, assessor-blinded randomized controlled trial to investigate the safety and efficacy of intravenous autologous bone marrow-derived MSCs (BMMSCs) in patients with subacute middle cerebral artery (MCA) infarct. METHODS Patients aged 30-75 years who had severe ischemic stroke (National Institutes of Health Stroke Scale [NIHSS] score of 10-35) involving the MCA territory were recruited within 2 months of stroke onset. Using permuted block randomization, patients were assigned to receive 2 million BMMSCs per kilogram of body weight (treatment group) or standard medical care (control group). The primary outcomes were the NIHSS, modified Rankin Scale (mRS), Barthel Index (BI) and total infarct volume on brain magnetic resonance imaging (MRI) at 12 months. All outcome assessments were performed by blinded assessors. Per protocol, analyses were performed for between-group comparisons. RESULTS Seventeen patients were recruited. Nine were assigned to the treatment group, and eight were controls. All patients were severely disabled following their MCA infarct (median mRS = 4.0 [4.0-5.0], BI = 5.0 [5.0-25.0], NIHSS = 16.0 [11.5-21.0]). The baseline infarct volume on the MRI was larger in the treatment group (median, 71.7 [30.5-101.7] mL versus 26.7 [12.9-75.3] mL, P = 0.10). There were no between-group differences in median NIHSS score (7.0 versus 6.0, P = 0.96), mRS (2.0 versus 3.0, P = 0.38) or BI (95.0 versus 67.5, P = 0.33) at 12 months. At 12 months, there was significant improvement in absolute change in median infarct volume, but not in total infarct volume, from baseline in the treatment group (P = 0.027). No treatment-related adverse effects occurred in the BMMSC group. CONCLUSIONS Intravenous infusion of BMMSCs in patients with subacute MCA infarct was safe and well tolerated. Although there was no neurological recovery or functional outcome improvement at 12 months, there was improvement in absolute change in median infarct volume in the treatment group. Larger, well-designed studies are warranted to confirm this and the efficacy of BMMSCs in ischemic stroke.
Collapse
Affiliation(s)
- Zhe Kang Law
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Hui Jan Tan
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | | | - Wan Nur Nafisah Wan Yahya
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ahmad Sobri Muda
- Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia; Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Rozman Zakaria
- Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohd Izhar Ariff
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nor Azimah Ismail
- Cell Therapy Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Soon Keng Cheong
- Cytopeutics Sdn Bhd, Selangor, Malaysia; Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - S Fadilah S Abdul Wahid
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia; Cell Therapy Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.
| |
Collapse
|
34
|
Salikhova D, Bukharova T, Cherkashova E, Namestnikova D, Leonov G, Nikitina M, Gubskiy I, Akopyan G, Elchaninov A, Midiber K, Bulatenco N, Mokrousova V, Makarov A, Yarygin K, Chekhonin V, Mikhaleva L, Fatkhudinov T, Goldshtein D. Therapeutic Effects of hiPSC-Derived Glial and Neuronal Progenitor Cells-Conditioned Medium in Experimental Ischemic Stroke in Rats. Int J Mol Sci 2021; 22:ijms22094694. [PMID: 33946667 PMCID: PMC8125106 DOI: 10.3390/ijms22094694] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Transplantation of various types of stem cells as a possible therapy for stroke has been tested for years, and the results are promising. Recent investigations have shown that the administration of the conditioned media obtained after stem cell cultivation can also be effective in the therapy of the central nervous system pathology (hypothesis of their paracrine action). The aim of this study was to evaluate the therapeutic effects of the conditioned medium of hiPSC-derived glial and neuronal progenitor cells in the rat middle cerebral artery occlusion model of the ischemic stroke. Secretory activity of the cultured neuronal and glial progenitor cells was evaluated by proteomic and immunosorbent-based approaches. Therapeutic effects were assessed by overall survival, neurologic deficit and infarct volume dynamics, as well as by the end-point values of the apoptosis- and inflammation-related gene expression levels, the extent of microglia/macrophage infiltration and the numbers of formed blood vessels in the affected area of the brain. As a result, 31% of the protein species discovered in glial progenitor cells-conditioned medium and 45% in neuronal progenitor cells-conditioned medium were cell type specific. The glial progenitor cell-conditioned media showed a higher content of neurotrophins (BDNF, GDNF, CNTF and NGF). We showed that intra-arterial administration of glial progenitor cells-conditioned medium promoted a faster decrease in neurological deficit compared to the control group, reduced microglia/macrophage infiltration, reduced expression of pro-apoptotic gene Bax and pro-inflammatory cytokine gene Tnf, increased expression of anti-inflammatory cytokine genes (Il4, Il10, Il13) and promoted the formation of blood vessels within the damaged area. None of these effects were exerted by the neuronal progenitor cell-conditioned media. The results indicate pronounced cytoprotective, anti-inflammatory and angiogenic properties of soluble factors secreted by glial progenitor cells.
Collapse
Affiliation(s)
- Diana Salikhova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
- Correspondence:
| | - Tatiana Bukharova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
| | - Elvira Cherkashova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
- Radiology and Clinical Physiology Scientific Research Center, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency”, 117997 Moscow, Russia;
| | - Daria Namestnikova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
- Radiology and Clinical Physiology Scientific Research Center, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency”, 117997 Moscow, Russia;
| | - Georgy Leonov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
| | - Maria Nikitina
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Ilya Gubskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
- Radiology and Clinical Physiology Scientific Research Center, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency”, 117997 Moscow, Russia;
| | - Gevorg Akopyan
- Radiology and Clinical Physiology Scientific Research Center, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency”, 117997 Moscow, Russia;
| | - Andrey Elchaninov
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Konstantin Midiber
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Natalia Bulatenco
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
| | - Victoria Mokrousova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
| | - Andrey Makarov
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
| | - Konstantin Yarygin
- Institute of Biomedical Chemistry, 119121 Moscow, Russia;
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Vladimir Chekhonin
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
| | - Liudmila Mikhaleva
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Timur Fatkhudinov
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
35
|
Kumar A, Rawat D, Prasad K. Stem Cell Therapy in Ischemic Stroke: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Ann Indian Acad Neurol 2021; 24:164-172. [PMID: 34220058 PMCID: PMC8232485 DOI: 10.4103/aian.aian_384_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 11/08/2022] Open
Abstract
Background and Objective: Stem cell therapy has emerged as a potential therapy for the treatment of stroke. We performed a systematic review and meta-analysis of published randomized controlled studies using various types of stem cell therapies in patients with ischemic stroke (IS). Method: Literature search was carried out using PubMed, Google Scholar, Cochrane library, and clinicaltrial.gov to identify studies on stem cell therapy in IS from its inception till January 2020. Data were extracted independently by two reviewers. STATA version 13 was used for carrying out meta- analysis. We included only randomized controlled trials (RCTs) if any of the stem cell therapy was used to treat patients with IS in any phase after the index stroke. Results: We included a total of eight randomized controlled studies involving 459 subjects (217 intervention and 242 controls) in the meta-analysis. We did not observe statistically significant reduction in mean NIHSS score in the intervention group (SMD - 0.34, 95% CI - 0.76 to 0.08) in patients with acute or sub-acute stroke. However, a statistically significant reduction (SMD - 1.57, 95% CI -2.22 to -0.92) was observed in patients with chronic ischemic stroke. Statistically non-significant reduction in mean mRS in the intervention group (SMD 0.04, 95% CI -0.20 to 0.28) in patients with acute or sub-acute ischemic stroke was observed, however a statistically significant reduction (SMD - 1.07, 95% CI - 1.94 to -0.19) was noted in patients with chronic stroke. We did not observe statistically significant reduction in mean Barthel index score (SMD 0.24, 95%CI -1.69 to 2.17) in chronic stroke. Statistically non-significant lower mortality rate was observed in intervention group compared to controls (Risk Ratio 0.84, 95% CI 0.43 to 1.66) among acute or sub-acute, as well as in the chronic stroke group (Risk Ratio 0.47, 95% CI 0.20 to 1.09). Conclusion: Our meta-analysis provides no clinically important evidence for efficacy of stem cells in reducing neurological deficit compared to control group. Well-designed large randomized controlled trials are required to provide more information on the efficacy of stem cell therapy in patients with IS.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Dimple Rawat
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Kameshwar Prasad
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
36
|
Trotman-Lucas M, Gibson CL. A review of experimental models of focal cerebral ischemia focusing on the middle cerebral artery occlusion model. F1000Res 2021; 10:242. [PMID: 34046164 PMCID: PMC8127011 DOI: 10.12688/f1000research.51752.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Cerebral ischemic stroke is a leading cause of death and disability, but current pharmacological therapies are limited in their utility and effectiveness.
In vitro and
in vivo models of ischemic stroke have been developed which allow us to further elucidate the pathophysiological mechanisms of injury and investigate potential drug targets.
In vitro models permit mechanistic investigation of the biochemical and molecular mechanisms of injury but are reductionist and do not mimic the complexity of clinical stroke.
In vivo models of ischemic stroke directly replicate the reduction in blood flow and the resulting impact on nervous tissue. The most frequently used
in vivo model of ischemic stroke is the intraluminal suture middle cerebral artery occlusion (iMCAO) model, which has been fundamental in revealing various aspects of stroke pathology. However, the iMCAO model produces lesion volumes with large standard deviations even though rigid surgical and data collection protocols are followed. There is a need to refine the MCAO model to reduce variability in the standard outcome measure of lesion volume. The typical approach to produce vessel occlusion is to induce an obstruction at the origin of the middle cerebral artery and reperfusion is reliant on the Circle of Willis (CoW). However, in rodents the CoW is anatomically highly variable which could account for variations in lesion volume. Thus, we developed a refined approach whereby reliance on the CoW for reperfusion was removed. This approach improved reperfusion to the ischemic hemisphere, reduced variability in lesion volume by 30%, and reduced group sizes required to determine an effective treatment response by almost 40%. This refinement involves a methodological adaptation of the original surgical approach which we have shared with the scientific community via publication of a visualised methods article and providing hands-on training to other experimental stroke researchers.
Collapse
Affiliation(s)
| | - Claire L Gibson
- School of Psychology, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
37
|
Intra-arterial transplantation of stem cells in large animals as a minimally-invasive strategy for the treatment of disseminated neurodegeneration. Sci Rep 2021; 11:6581. [PMID: 33753789 PMCID: PMC7985204 DOI: 10.1038/s41598-021-85820-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Stem cell transplantation proved promising in animal models of neurological diseases; however, in conditions with disseminated pathology such as ALS, delivery of cells and their broad distribution is challenging. To address this problem, we explored intra-arterial (IA) delivery route, of stem cells. The goal of this study was to investigate the feasibility and safety of MRI-guided transplantation of glial restricted precursors (GRPs) and mesenchymal stem cells (MSCs) in dogs suffering from ALS-like disease, degenerative myelopathy (DM). Canine GRP transplantation in dogs resulted in rather poor retention in the brain, so MSCs were used in subsequent experiments. To evaluate the safety of MSC intraarterial transplantation, naïve pigs (n = 3) were used as a pre-treatment control before transplantation in dogs. Cells were labeled with iron oxide nanoparticles. For IA transplantation a 1.2-French microcatheter was advanced into the middle cerebral artery under roadmap guidance. Then, the cells were transplanted under real-time MRI with the acquisition of dynamic T2*-weighted images. The procedure in pigs has proven to be safe and histopathology has demonstrated the successful and predictable placement of transplanted porcine MSCs. Transplantation of canine MSCs in DM dogs resulted in their accumulation in the brain. Interventional and follow-up MRI proved the procedure was feasible and safe. Analysis of gene expression after transplantation revealed a reduction of inflammatory factors, which may indicate a promising therapeutic strategy in the treatment of neurodegenerative diseases.
Collapse
|
38
|
Namestnikova DD, Gubskiy IL, Revkova VA, Sukhinich KK, Melnikov PA, Gabashvili AN, Cherkashova EA, Vishnevskiy DA, Kurilo VV, Burunova VV, Semkina AS, Abakumov MA, Gubsky LV, Chekhonin VP, Ahlfors JE, Baklaushev VP, Yarygin KN. Intra-Arterial Stem Cell Transplantation in Experimental Stroke in Rats: Real-Time MR Visualization of Transplanted Cells Starting With Their First Pass Through the Brain With Regard to the Therapeutic Action. Front Neurosci 2021; 15:641970. [PMID: 33737862 PMCID: PMC7960930 DOI: 10.3389/fnins.2021.641970] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cell therapy is an emerging approach to stroke treatment with a potential to limit brain damage and enhance its restoration after the acute phase of the disease. In this study we tested directly reprogrammed neural precursor cells (drNPC) derived from adult human bone marrow cells in the rat middle cerebral artery occlusion (MCAO) model of acute ischemic stroke using human placenta mesenchymal stem cells (pMSC) as a positive control with previously confirmed efficacy. Cells were infused into the ipsilateral (right) internal carotid artery of male Wistar rats 24 h after MCAO. The main goal of this work was to evaluate real-time distribution and subsequent homing of transplanted cells in the brain. This was achieved by performing intra-arterial infusion directly inside the MRI scanner and allowed transplanted cells tracing starting from their first pass through the brain vessels. Immediately after transplantation, cells were observed in the periphery of the infarct zone and in the brain stem, 15 min later small numbers of cells could be discovered deep in the infarct core and in the contralateral hemisphere, where drNPC were seen earlier and in greater numbers than pMSC. Transplanted cells in both groups could no longer be detected in the rat brain 48-72 h after infusion. Histological and histochemical analysis demonstrated that both the drNPC and pMSC were localized inside blood vessels in close contact with the vascular wall. No passage of labeled cells through the blood brain barrier was observed. Additionally, the therapeutic effects of drNPC and pMSC were compared. Both drNPC and pMSC induced substantial attenuation of neurological deficits evaluated at the 7th and 14th day after transplantation using the modified neurological severity score (mNSS). Some of the effects of drNPC and pMSC, such as the influence on the infarct volume and the survival rate of animals, differed. The results suggest a paracrine mechanism of the positive therapeutic effects of IA drNPC and pMSC infusion, potentially enhanced by the cell-cell interactions. Our data also indicate that the long-term homing of transplanted cells in the brain is not necessary for the brain's functional recovery.
Collapse
Affiliation(s)
- Daria D. Namestnikova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Ilya L. Gubskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Veronica A. Revkova
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Kirill K. Sukhinich
- Laboratory of Problems of Regeneration, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Pavel A. Melnikov
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Anna N. Gabashvili
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Elvira A. Cherkashova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Daniil A. Vishnevskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Victoria V. Kurilo
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Veronica V. Burunova
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Alevtina S. Semkina
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Maxim A. Abakumov
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Leonid V. Gubsky
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | | | - Vladimir P. Baklaushev
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
39
|
Gao Y, Chu C, Jablonska A, Bulte JWM, Walczak P, Janowski M. Imaging as a tool to accelerate the translation of extracellular vesicle-based therapies for central nervous system diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1688. [PMID: 33336512 DOI: 10.1002/wnan.1688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/19/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are natural and diverse lipid bilayer-enclosed particles originating from various cellular components and containing an abundance of cargoes. Due to their unique properties, EVs have gained considerable interest as therapeutic agents for a variety of diseases, including central nervous system (CNS) disorders. Their therapeutic value depends on cell origin but can be further enhanced by enrichment of cargo when used as drug carriers. Therefore, there has been significant effort directed toward introducing them to clinical practice. However, it is essential to avoid the failures we have seen with whole-cell therapy, in particular for the treatment of the CNS. Successful launching of clinical studies is contingent upon the understanding of the biodistribution of EVs, including their uptake and clearance from organs and specific homing into the region of interest. A multitude of noninvasive imaging methods has been explored in vitro to investigate the spatio-temporal dynamics of EVs administered in vivo. However, only a few studies have been performed to track the delivery of EVs, especially delivery to the brain, which is the most therapeutically challenging organ. We focus here on the use of advanced imaging techniques as an essential tool to facilitate the acceleration of clinical translation of EV-based therapeutics, especially in the CNS arena. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Yue Gao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chengyan Chu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anna Jablonska
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Pesaresi M, Bonilla-Pons SA, Sebastian-Perez R, Di Vicino U, Alcoverro-Bertran M, Michael R, Cosma MP. The Chemokine Receptors Ccr5 and Cxcr6 Enhance Migration of Mesenchymal Stem Cells into the Degenerating Retina. Mol Ther 2020; 29:804-821. [PMID: 33264643 DOI: 10.1016/j.ymthe.2020.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cell therapy approaches hold great potential for treating retinopathies, which are currently incurable. This study addresses the problem of inadequate migration and integration of transplanted cells into the host retina. To this end, we have identified the chemokines that were most upregulated during retinal degeneration and that could chemoattract mesenchymal stem cells (MSCs). The results were observed using a pharmacological model of ganglion/amacrine cell degeneration and a genetic model of retinitis pigmentosa, from both mice and human retinae. Remarkably, MSCs overexpressing Ccr5 and Cxcr6, which are receptors bound by a subset of the identified chemokines, displayed improved migration after transplantation in the degenerating retina. They also led to enhanced rescue of cell death and to preservation of electrophysiological function. Overall, we show that chemokines released from the degenerating retinae can drive migration of transplanted stem cells, and that overexpression of chemokine receptors can improve cell therapy-based regenerative approaches.
Collapse
Affiliation(s)
- Martina Pesaresi
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Sergi A Bonilla-Pons
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Ruben Sebastian-Perez
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Umberto Di Vicino
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Marc Alcoverro-Bertran
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ralph Michael
- Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona 08021, Spain; Centro de Oftalmología Barraquer, Barcelona 08021, Spain
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; ICREA, Passeig de Lluis Companys 23, Barcelona 08010, Spain; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| |
Collapse
|
41
|
Endovascular model of ischemic stroke in swine guided by real-time MRI. Sci Rep 2020; 10:17318. [PMID: 33057149 PMCID: PMC7560864 DOI: 10.1038/s41598-020-74411-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/28/2020] [Indexed: 01/07/2023] Open
Abstract
Modeling stroke in animals is essential for testing efficacy of new treatments; however, previous neuroprotective therapies, based on systemic delivery in rodents failed, exposing the need for model with improved clinical relevance. The purpose of this study was to develop endovascular approach for inducing ischemia in swine. To achieve that goal, we used intra-arterial administration of thrombin mixed with gadolinium and visualized the occlusion with real-time MRI. Placement of the microcatheter proximally to rete allowed trans-catheter perfusion of the ipsilateral hemisphere as visualized by contrast-enhanced perfusion MR scans. Dynamic T2*w MRI facilitated visualization of thrombin + Gd solution transiting through cerebral vasculature and persistent hyperintensities indicated occlusion. Area of trans-catheter perfusion dynamically quantified on representative slice before and after thrombin administration (22.20 ± 6.31 cm2 vs. 13.28 ± 4.71 cm2 respectively) indicated significantly reduced perfusion. ADC mapping showed evidence of ischemia as early as 27 min and follow-up T2w scans confirmed ischemic lesion (3.14 ± 1.41 cm2). Animals developed contralateral neurological deficits but were ambulatory. Our study has overcome long lasting challenge of inducing endovascular stroke model in pig. We were able to induce stroke using minimally invasive endovascular approach and observe in real-time formation of the thrombus, blockage of cerebral perfusion and eventually stroke lesion.
Collapse
|
42
|
Camstra KM, Srinivasan VM, Collins D, Chen S, Kan P, Johnson J. Canine Model for Selective and Superselective Cerebral Intra-Arterial Therapy Testing. Neurointervention 2020; 15:107-116. [PMID: 32777874 PMCID: PMC7608496 DOI: 10.5469/neuroint.2020.00150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
PURPOSE With advancing endovascular technology and increasing interest in minimally invasive intra-arterial therapies such as stem cell and chemotherapy for cerebral disease, the establishment of a translational model with cerebral circulation accessible to microcatheters is needed. We report our experience catheterizing canine cerebral circulation with microcatheters, present high-resolution angiographic images of the canine vascular anatomy, describe arterial branch flow patterns and provide measurements of canine arterial conduits. MATERIALS AND METHODS Angiograms were performed on 10 intact purpose-bred hounds. Angiography, measurements of arterial conduits and catheterization information for intracranial arterial branches were obtained. RESULTS Selective and superselective cerebral angiography was successful in all subjects. Relevant arterial mean diameters include the femoral (4.64 mm), aorta (9.38 mm), external carotid (3.65 mm), internal carotid arteries (1.6 mm), vertebrobasilar system and Circle of Willis branches. Catheterization of the Circle of Willis was achieved via the posterior circulation in all subjects tested (n=3) and the use of flow directed microcatheters resulted in reduced arterial tree deformation and improved superselection of intracranial vessels. Catheterization of the intracranial circulation was attempted but not achieved via the internal carotid artery (n=7) due to its tortuosity and subsequent catheter related vasospasm. CONCLUSION The canine cerebral vasculature is posterior circulation dominant. Anterior circulation angiography is achievable via the internal carotid artery, but direct cerebral arterial access is best achieved via the posterior circulation using flow-directed microcatheters. It is feasible to deliver intra-arterial therapies to selective vascular territories within the canine cerebral circulation, thus making it a viable animal model for testing novel intra-arterial cerebral treatments.
Collapse
Affiliation(s)
- Kevin M Camstra
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Dalis Collins
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA.,Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Stephen Chen
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Peter Kan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Jeremiah Johnson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
43
|
Diminished expression of major histocompatibility complex facilitates the use of human induced pluripotent stem cells in monkey. Stem Cell Res Ther 2020; 11:334. [PMID: 32746912 PMCID: PMC7397609 DOI: 10.1186/s13287-020-01847-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/03/2020] [Accepted: 07/22/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Stem cells, including induced pluripotent stem cells (iPSCs), have tremendous potential in health care, though with several significant limitations. Each of the limitations, including immunogenicity, may block most of the therapeutic potentials. Beta2 microglobulin (B2M) and MHC II transactivator (CIITA) are critical for MHC I and II, respectively. MHCs are responsible for immunogenic recognition. METHODS B2M and CIITA were knocked out from human iPSCs, either separately or simultaneously. The effects of single or dual knockout of B2M and CIITA on iPSC properties were evaluated in a xenogeneic model of human-to-monkey transplantation. RESULTS B2M or CIITA knockout in human induced pluripotent stem cells (iPSCs) diminishes the expression of MHC I or II alleles, respectively, without changing iPSC pluripotency. Dual knockout was better than either single knockout in preserving the ability of human iPSCs to reduce infiltration of T and B lymphocytes, survive, and promote wound healing in monkey wound lesions. The knockouts did not affect the xenogeneic iPSC-induced infiltration of macrophages and natural killer cells. They, however, decreased the iPSC-promoted proliferation of allogeneic peripheral blood mononuclear cells and T lymphocytes in vitro, although not so for B lymphocytes isolated from healthy human donors. Although the dual knockout cells survived long enough for suiting therapeutic needs, the cells eventually died, possibly due to innate immune response against them, thereby eliminating long-term risks. CONCLUSIONS Having these iPSCs with diminished immunogenicity-recognizable to allogeneic recipient may provide unlimited reproducible, universal, standardized "ready-to-use" iPSCs and relevant derivatives for clinical applications.
Collapse
|
44
|
Piejko M, Walczak P, Li X, Bulte JWM, Janowski M. In Vitro Assessment of Fluorine Nanoemulsion-Labeled Hyaluronan-Based Hydrogels for Precise Intrathecal Transplantation of Glial-Restricted Precursors. Mol Imaging Biol 2020; 21:1071-1078. [PMID: 30850968 DOI: 10.1007/s11307-019-01341-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE We studied the feasibility of labeling hydrogel scaffolds with a fluorine nanoemulsion for 19F- magnetic resonance imaging (MRI) to enable non-invasive visualization of their precise placement and potential degradation. PROCEDURE Hyaluronan-based hydrogels (activated hyaluronan, HA) with increasing concentrations of fluorine nanoemulsion (V-sense) were prepared to measure the gelation time and oscillatory stress at 1 h and 7 days after the beginning of gelation. All biomechanical measurements were conducted with an ARES 2 rheometer. Diffusion of fluorine from the hydrogel: Three hydrogels in various Vs to HA volumetric ratios (1:50, 1:10, and 1:5) were prepared in duplicate. Hydrogels were incubated at 37 °C. To induce diffusion, three hydrogels were agitated at 1000 rpm. 1H and 19F MRI scans were acquired at 1, 3, 7 days and 2 months after gel preparation on a Bruker Ascend 750 scanner. To quantify fluorine content, scans were analyzed using Voxel Tracker 2.0. Assessment of cell viability in vitro and in vivo: Luciferase-positive mouse glial-restricted progenitors (GRPs) were embedded in 0:1, 1:50, 1:10, and 1:5 Vs:HA mixtures (final cell concentration =1 × 107/ml). For the in vitro assay, mixtures were placed in 96-wells plate in triplicate and bioluminescence was measured after 1, 3, 7, 14, 21, and 28 days. For in vivo experiments, Vs/HA mixtures containing GRPs were injected subcutaneously in SCID mice and BLI was acquired at 1, 3, 7, and 14 days post-injection. RESULTS Mixing of V-sense at increasing ratios of 1:50, 1:10, and 1:5 v/v of fluorine/activated hyaluronan (HA) hydrogel gradually elongated the gelation time from 194 s for non-fluorinated controls to 304 s for 1:5 V-sense:HA hydrogels, while their elastic properties slightly decreased. There was no release of V-sense from hydrogels maintained in stationary conditions over 2 months. The addition of V-sense positively affected in vitro survival of scaffolded GRPs in a dose-dependent manner. CONCLUSIONS These results show that hydrogel fluorination does not impair its beneficial properties for scaffolded cells, which may be used to visualize scaffolded GRP transplants with 19F MRI.
Collapse
Affiliation(s)
- Marcin Piejko
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,3rd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Walczak
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology and Neurosurgery, University of Warmia and Mazury, Olsztyn, Poland
| | - Xiaowei Li
- Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Mary and Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, The University of Nebraska Medical Center, Omaha, NE, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miroslaw Janowski
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
45
|
Andrzejewska A, Dabrowska S, Nowak B, Walczak P, Lukomska B, Janowski M. Mesenchymal stem cells injected into carotid artery to target focal brain injury home to perivascular space. Am J Cancer Res 2020; 10:6615-6628. [PMID: 32550893 PMCID: PMC7295043 DOI: 10.7150/thno.43169] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: The groundbreaking discovery of mesenchymal stem cells (MSCs) with their multifaceted benefits led to their widespread application in experimental medicine, including neurology. Efficient delivery of MSCs to damaged regions of the central nervous system may be a critical factor in determining outcome. Integrin VLA-4 (α4β1) coded by ITGA4 and ITGB1 genes is an adhesion molecule expressed by leukocytes, which is responsible for initiation of their diapedesis through cell docking to the inflamed vessel wall expressing VCAM1 receptor. This function of VLA-4 has been recapitulated in neural stem cells and glial progenitors. Thus, it was prudent to investigate this tool as a vehicle driving extravasation of MSCs. Since MSCs naturally express ITGB1 subunit, we decided to supplement them with ITGA4 only. The purpose of our current study is to investigate the eventual fate of IA delivered ITGA4 engineered and naive MSCs. Methods: mRNA-ITGA4 transfected and naive MSCs were injected to right internal carotid artery of rats with focal brain injury. Through next three days MSC presence in animals' brain was navigated by magnetic resonance imaging. Transplanted cell location relative to the brain blood vessels and host immunological reaction were analyzed post-mortem by immunohistochemistry. The chemotaxis of modified and naive MSCs was additionally examined in in vitro transwell migration assay. Results: Both naïve and ITGA4-overexpressing cells remained inside the vascular lumen over the first two days after IA infusion. On the third day, 39% of mRNA-ITGA4 modified and 51% naïve MSCs homed to perivascular space in the injury region (p=NS). The gradual decrease of both naive and mRNA-ITGA4 transfected hBM-MSCs in the rat brain was observed. mRNA-ITGA4 transfected MSCs appeared to be more vulnerable to phagocytosis than naïve cells. Moreover, in vitro study revealed that homogenate from the injured brain repels migration of MSCs, corroborating the incomplete extravasation observed in vivo. Conclusions: In summary, IA transplanted MSCs are capable of homing to the perivascular space, an integral part of neurovascular unit, which might contribute to the replacement of injured pericytes, a critical element facilitating restoration of CNS function. The mRNA-ITGA4 transfection improves cell docking to vessel but this net benefit vanishes over the next two days due to fast clearance from cerebral vessels of the majority of transplanted cells, regardless of their engineering status. The drawbacks of mRNA-ITGA4 transfection become apparent on day 3 post transplantation due to the lower survival and higher vulnerability to host immune attack.
Collapse
|
46
|
Boltze J, Abe K, Clarkson AN, Detante O, Pimentel-Coelho PM, Rosado-de-Castro PH, Janowski M. Editorial: Cell-based Therapies for Stroke: Promising Solution or Dead End? Front Neurol 2020; 11:171. [PMID: 32308639 PMCID: PMC7145965 DOI: 10.3389/fneur.2020.00171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Oliver Detante
- Stroke Unit, Neurology Department, Grenoble Hospital, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, Université Grenoble Alpes, Grenoble, France
| | - Pedro M Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Paulo H Rosado-de-Castro
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
47
|
Minassian A, Green C, Diedenhofen M, Vogel S, Hess S, Stoeber M, Radmilovic MD, Wiedermann D, Kloppenburg P, Hoehn M. Human Neural Stem Cell Induced Functional Network Stabilization After Cortical Stroke: A Longitudinal Resting-State fMRI Study in Mice. Front Cell Neurosci 2020; 14:86. [PMID: 32317940 PMCID: PMC7155295 DOI: 10.3389/fncel.2020.00086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Most stroke studies dealing with functional deficits and assessing stem cell therapy produce extensive hemispheric damage and can be seen as a model for severe clinical strokes. However, mild strokes have a better prospect for functional recovery. Recently, anatomic and behavioral changes have been reported for distal occlusion of the middle cerebral artery (MCA), generating a well-circumscribed and small cortical lesion, which can thus be proposed as mild to moderate cortical stroke. Using this cortical stroke model of moderate severity in the nude mouse, we have studied the functional networks with resting-state functional magnetic resonance imaging (fMRI) for 12 weeks following stroke induction. Further, human neural stem cells (hNSCs) were implanted adjacent to the ischemic lesion, and the stable graft vitality was monitored with bioluminescence imaging (BLI). Differentiation of the grafted neural stem cells was analyzed by immunohistochemistry and by patch-clamp electrophysiology. Following stroke induction, we found a pronounced and continuously rising hypersynchronicity of the sensorimotor networks including both hemispheres, in contrast to the severe stroke filament model where profound reduction of the functional connectivity had been reported by us earlier. The vitality of grafted neural stem cells remained stable throughout the whole 12 weeks observation period. In the stem cell treated animals, functional connectivity did not show hypersynchronicity but was globally slightly reduced below baseline at 2 weeks post-stroke, normalizing thereafter completely. Our resting-state fMRI (rsfMRI) studies on cortical stroke reveal for the first time a hypersynchronicity of the functional brain networks. This hypersynchronicity appears as a hallmark of mild cortical strokes, in contrast to severe strokes with striatal involvement where exclusively hyposynchronicity has been reported. The effect of the stem cell graft was an early and persistent normalization of the functional sensorimotor networks across the whole brain. These novel functional results may help interpret future outcome investigations after stroke and demonstrate the highly promising potential of stem cell treatment for functional outcome improvement after stroke.
Collapse
Affiliation(s)
- Anuka Minassian
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Claudia Green
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Michael Diedenhofen
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Stefanie Vogel
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Simon Hess
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Maren Stoeber
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Marina Dobrivojevic Radmilovic
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany.,Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dirk Wiedermann
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Mathias Hoehn
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany.,Department of Radiology, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| |
Collapse
|
48
|
Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Transl Stroke Res 2020; 11:1185-1202. [PMID: 32219729 DOI: 10.1007/s12975-020-00806-z] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is one of the significant causes of morbidity and mortality, affecting millions of people across the globe. Cell injury in the infarct region is an inevitable consequence of focal cerebral ischemia. Subsequent reperfusion exacerbates the harmful effect and increases the infarct volume. These cellular injuries follow either a regulated pathway involving tightly structured signaling cascades and molecularly defined effector mechanisms or a non-regulated pathway, also known as accidental cell death, where the process is biologically uncontrolled. Classical cell death pathways are long established and well reported in several articles that majorly define apoptotic cell death. A recent focus on cell death study also considers investigation on non-classical pathways that are tightly regulated, may or may not involve caspases, but non-apoptotic. Pathological cell death is a cardinal feature of different neurodegenerative diseases. Although ischemia cannot be classified as a neurodegenerative disease, it is a cerebrovascular event where the infarct region exhibits aberrant cell death. Over the past few decades, several therapeutic options have been implicated for ischemic stroke. However, their use has been hampered owing to the number of limitations that they possess. Ischemic penumbral neurons undergo apoptosis and become dysfunctional; however, they are salvageable. Thus, understanding the role of different cell death pathways is crucial to aid in the modern treatment of protecting apoptotic neurons.
Collapse
|
49
|
Cherkashova EA, Leonov GE, Namestnikova DD, Solov'eva AA, Gubskii IL, Bukharova TB, Gubskii LV, Goldstein DV, Yarygin KN. Methods of Generation of Induced Pluripotent Stem Cells and Their Application for the Therapy of Central Nervous System Diseases. Bull Exp Biol Med 2020; 168:566-573. [PMID: 32157511 DOI: 10.1007/s10517-020-04754-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Indexed: 12/12/2022]
Abstract
The use of induced pluripotent stem cells (IPSC) is a promising approach to the therapy of CNS diseases. The undeniable advantage of IPSC technology is the possibility of obtaining practically all types of somatic cells for autologous transplantation bypassing bioethical problems. The review presents integrative and non-integrative methods for obtaining IPSC and the ways of their in vitro and in vivo application for the study and treatment of neurological diseases.
Collapse
Affiliation(s)
- E A Cherkashova
- Federal Center for Cerebrovascular Pathology and Stroke, Ministry of Health of Russian Federation, Moscow, Russia
| | - G E Leonov
- N. P. Bochkov Research Center for Medical Genetics, Moscow, Russia.
| | - D D Namestnikova
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia
| | - A A Solov'eva
- Federal Center for Cerebrovascular Pathology and Stroke, Ministry of Health of Russian Federation, Moscow, Russia
| | - I L Gubskii
- Federal Center for Cerebrovascular Pathology and Stroke, Ministry of Health of Russian Federation, Moscow, Russia
| | - T B Bukharova
- N. P. Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - L V Gubskii
- Federal Center for Cerebrovascular Pathology and Stroke, Ministry of Health of Russian Federation, Moscow, Russia.,N. I. Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia
| | - D V Goldstein
- N. P. Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia.,Russian Medical Academy for Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
50
|
Ryu B, Sekine H, Homma J, Kobayashi T, Kobayashi E, Kawamata T, Shimizu T. Allogeneic adipose-derived mesenchymal stem cell sheet that produces neurological improvement with angiogenesis and neurogenesis in a rat stroke model. J Neurosurg 2020; 132:442-455. [PMID: 30797215 DOI: 10.3171/2018.11.jns182331] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Stem cell therapy is a promising strategy for the treatment of severe cerebral ischemia. However, targeting sufficient grafted cells to the affected area remains challenging. Choosing an adequate transplantation method for the CNS appears crucial for this therapy to become a clinical reality. The authors used a scaffold-free cell sheet as a translational intervention. This method involves the use of cell sheet layers and allows the transplantation of a large number of cells, locally and noninvasively. The authors evaluated the effectiveness of allogeneic adipose tissue-derived mesenchymal stem cell sheets in a rat model of stroke. METHODS The animals, subjected to middle cerebral artery occlusion, were randomly divided in two groups: one in which a cell sheet was transplanted and the other in which a vehicle was used (n = 10/group). Over a period of 14 days after transplantation, the animals' behavior was evaluated, after which brain tissue samples were removed and fixed, and the extent of angiogenesis and infarct areas was evaluated histologically. RESULTS Compared to the vehicle group, in the cell sheet group functional angiogenesis and neurogenesis were significantly increased, which resulted in behavioral improvement. Transplanted cells were identified within newly formed perivascular walls as pericytes, a proportion of which were functional. Newly formed blood vessels were found within the cell sheet that had anastomosed to the cerebral blood vessels in the host. CONCLUSIONS The transplantation approach described here is expected to provide not only a paracrine effect but also a direct cell effect resulting in cell replacement that protects the damaged neurovascular unit. The behavioral improvement seen with this transplantation approach provides the basis for further research on cell sheet-based regenerative treatment as a translational treatment for patients with stroke.
Collapse
Affiliation(s)
- Bikei Ryu
- 1Institute of Advanced Biomedical Engineering and Science and
- 2Department of Neurosurgery, Tokyo Women's Medical University; and
| | - Hidekazu Sekine
- 1Institute of Advanced Biomedical Engineering and Science and
| | - Jun Homma
- 1Institute of Advanced Biomedical Engineering and Science and
| | | | - Eiji Kobayashi
- 3Department of Organ Fabrication, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | - Tatsuya Shimizu
- 1Institute of Advanced Biomedical Engineering and Science and
| |
Collapse
|