1
|
Dushianthan A, Bracegirdle L, Cusack R, Cumpstey AF, Postle AD, Grocott MPW. Alveolar Hyperoxia and Exacerbation of Lung Injury in Critically Ill SARS-CoV-2 Pneumonia. Med Sci (Basel) 2023; 11:70. [PMID: 37987325 PMCID: PMC10660857 DOI: 10.3390/medsci11040070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Acute hypoxic respiratory failure (AHRF) is a prominent feature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) critical illness. The severity of gas exchange impairment correlates with worse prognosis, and AHRF requiring mechanical ventilation is associated with substantial mortality. Persistent impaired gas exchange leading to hypoxemia often warrants the prolonged administration of a high fraction of inspired oxygen (FiO2). In SARS-CoV-2 AHRF, systemic vasculopathy with lung microthrombosis and microangiopathy further exacerbates poor gas exchange due to alveolar inflammation and oedema. Capillary congestion with microthrombosis is a common autopsy finding in the lungs of patients who die with coronavirus disease 2019 (COVID-19)-associated acute respiratory distress syndrome. The need for a high FiO2 to normalise arterial hypoxemia and tissue hypoxia can result in alveolar hyperoxia. This in turn can lead to local alveolar oxidative stress with associated inflammation, alveolar epithelial cell apoptosis, surfactant dysfunction, pulmonary vascular abnormalities, resorption atelectasis, and impairment of innate immunity predisposing to secondary bacterial infections. While oxygen is a life-saving treatment, alveolar hyperoxia may exacerbate pre-existing lung injury. In this review, we provide a summary of oxygen toxicity mechanisms, evaluating the consequences of alveolar hyperoxia in COVID-19 and propose established and potential exploratory treatment pathways to minimise alveolar hyperoxia.
Collapse
Affiliation(s)
- Ahilanandan Dushianthan
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Luke Bracegirdle
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Rebecca Cusack
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Andrew F. Cumpstey
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anthony D. Postle
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Michael P. W. Grocott
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
2
|
Harijith A, Basa P, Ha A, Thomas J, Jafri A, Fu P, MacFarlane PM, Raffay TM, Natarajan V, Sudhadevi T. NOX4 Mediates Epithelial Cell Death in Hyperoxic Acute Lung Injury Through Mitochondrial Reactive Oxygen Species. Front Pharmacol 2022; 13:880878. [PMID: 35662702 PMCID: PMC9160661 DOI: 10.3389/fphar.2022.880878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Management of acute respiratory distress involves O2 supplementation, which is lifesaving, but causes severe hyperoxic acute lung injury (HALI). NADPH oxidase (NOX) could be a major source of reactive oxygen species (ROS) in hyperoxia (HO). Epithelial cell death is a crucial step in the development of many lung diseases. Alveolar type II (AT2) cells are the metabolically active epithelial cells of alveoli that serve as a source of AT1 cells following lung injury. The aim of this study was to determine the possible role of AT2 epithelial cell NOX4 in epithelial cell death from HALI. Wild type (WT), Nox4 fl/fl (control), and Nox4 -/- Spc-Cre mice were exposed to room air (NO) or 95% O2 (HO) to investigate the structural and functional changes in the lung. C57BL/6J WT animals subjected to HO showed increased expression of lung NOX4 compared to NO. Significant HALI, increased bronchoalveolar lavage cell counts, increased protein levels, elevated proinflammatory cytokines and increased AT2 cell death seen in hyperoxic Nox4 fl/fl control mice were attenuated in HO-exposed Nox4 -/- Spc-Cre mice. HO-induced expression of NOX4 in MLE cells resulted in increased mitochondrial (mt) superoxide production and cell apoptosis, which was reduced in NOX4 siRNA silenced cells. This study demonstrates a novel role for epithelial cell NOX4 in accelerating lung epithelial cell apoptosis from HALI. Deletion of the Nox4 gene in AT2 cells or silencing NOX4 in lung epithelial cells protected the lungs from severe HALI with reduced apoptosis and decreased mt ROS production in HO. These results suggest NOX4 as a potential target for the treatment of HALI.
Collapse
Affiliation(s)
- Anantha Harijith
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Prathima Basa
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Alison Ha
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jaya Thomas
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Anjum Jafri
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Panfeng Fu
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Peter M. MacFarlane
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas M. Raffay
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Internal Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Tara Sudhadevi
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
Poff AM, Kernagis D, D'Agostino DP. Hyperbaric Environment: Oxygen and Cellular Damage versus Protection. Compr Physiol 2016; 7:213-234. [PMID: 28135004 DOI: 10.1002/cphy.c150032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The elevation of tissue pO2 induced by hyperbaric oxygen (HBO) is a physiological stimulus that elicits a variety of cellular responses. These effects are largely mediated by, or in response to, an increase in the production of reactive oxygen and nitrogen species (RONS). The major consequences of elevated RONS include increased oxidative stress and enhanced antioxidant capacity, and modulation of redox-sensitive cell signaling pathways. Interestingly, these phenomena underlie both the therapeutic and potentially toxic effects of HBO. Emerging evidence indicates that supporting mitochondrial health is a potential method of enhancing the therapeutic efficacy of, and preventing oxygen toxicity during, HBO. This review will focus on the cellular consequences of HBO, and explore how these processes mediate a delicate balance of cellular protection versus damage. © 2017 American Physiological Society. Compr Physiol 7:213-234, 2017.
Collapse
Affiliation(s)
- Angela M Poff
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Dawn Kernagis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Institute for Human and Machine Cognition, Pensacola, Florida, USA
| |
Collapse
|
4
|
Borkar SD, Naik R, Shukla VJ, Acharya R. Evaluation of phytochemical content, nutritional value and antioxidant activity of Phanji - Rivea hypocrateriformis (Desr.) Choisy leaf. Ayu 2016; 36:298-302. [PMID: 27313417 PMCID: PMC4895757 DOI: 10.4103/0974-8520.182755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: Rivea hypocrateriformis (Desr.) Choisy is known to be the source plant of Phanji, a classically delineated leafy vegetable which is till date used by some hill dwelling Kandha tribes of Odisha. Though it is in use since a long time, it is not yet evaluated for its nutritive value. Aim: The leaves of R. hypocrateriformis were evaluated for its nutritive value and antioxidant potential. Materials and Methods: The in vitro antioxidant properties of the leaf of R. hypocrateriformis were screened through 1,1-diphenyl-2-picrylhydrazyl (DPPH) and total antioxidant capacity. Phytochemicals, crude protein, fat, carbohydrate, energy value, and mineral content of the leaves of the plant were evaluated with standard procedures. Results: In phytochemical analysis, tannin, alkaloids, flavonoids, and carbohydrates were present in leaf powder of R. hypocrateriformis. Energy content was found to be highest (331.54 kcals/100 g). Carbohydrate, fat, protein, calcium, magnesium, phosphorous, and zinc were present in 57.63%, 2.66%, 19.27%, 0.99%, 0.34%, 0.32%, and 0.011%, respectively. The IC50 values of the extract and ascorbic acid were found to be 254 ± 5.29 μg/ml and 11.67 ± 0.58 μg/ml, respectively. Percentage scavenging of DPPH radical was found to rise with increasing concentration of the crude extract. Total antioxidant capacity of the extract was found to be 111.30 ± 0.003 mcg. Conclusion: The results of this study indicate that the leaves of R. hypocrateriformis contain secondary metabolites such as tannin and possess mild antioxidant properties. Nutritional analysis indicates the presence of energy in highest amount, carbohydrates, proteins, fats, calcium, phosphorous, zinc, and magnesium.
Collapse
Affiliation(s)
- Sneha D Borkar
- Department of Agada Tantra, Mahatma Jyotiba Fule Medical College of Ayurveda, Chomu, Rajasthan, India
| | - Raghavendra Naik
- Department of Dravyaguna, Institute for Post Graduate Teaching and Research in Ayurveda, Gujarat Ayurved University, Jamnagar, Gujarat, India
| | - Vinay J Shukla
- Pharmaceutical Chemistry Laboratory, Institute for Post Graduate Teaching and Research in Ayurveda, Gujarat Ayurved University, Jamnagar, Gujarat, India
| | - Rabinarayan Acharya
- Department of Dravyaguna, Institute for Post Graduate Teaching and Research in Ayurveda, Gujarat Ayurved University, Jamnagar, Gujarat, India
| |
Collapse
|
5
|
Bhowmick R, Gappa-Fahlenkamp H. Cells and Culture Systems Used to Model the Small Airway Epithelium. Lung 2016; 194:419-28. [PMID: 27071933 DOI: 10.1007/s00408-016-9875-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/01/2016] [Indexed: 01/28/2023]
Abstract
The pulmonary epithelium is divided into upper, lower, and alveolar (or small) airway epithelia and acts as the mechanical and immunological barrier between the external environment and the underlying submucosa. Of these, the small airway epithelium is the principal area of gas exchange and has high immunological activity, making it a major area of cell biology, immunology, and pharmaceutical research. As animal models do not faithfully represent the human pulmonary system and ex vivo human lung samples have reliability and availability issues, cell lines, and primary cells are widely used as small airway epithelial models. In vitro, these cells are mostly cultured as monolayers (2-dimensional cultures), either media submerged or at air-liquid interface. However, these 2-dimensional cultures lack a three dimension-a scaffolding extracellular matrix, which establishes the intercellular network in the in vivo airway epithelium. Therefore, 3-dimensional cell culture is currently a major area of development, where cells are cultured in a matrix or are cultured in a manner that they develop ECM-like scaffolds between them, thus mimicking the in vivo phenotype more faithfully. This review focuses on the commonly used small airway epithelial cells, their 2-dimensional and 3-dimensional culture techniques, and their comparative phenotype when cultured under these systems.
Collapse
Affiliation(s)
- Rudra Bhowmick
- Department of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Heather Gappa-Fahlenkamp
- Department of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA.
| |
Collapse
|
6
|
Al-Shmgani HS, Moate RM, Macnaughton PD, Sneyd JR, Moody AJ. Effects of hyperoxia on the permeability of 16HBE14o- cell monolayers--the protective role of antioxidant vitamins E and C. FEBS J 2013; 280:4512-21. [PMID: 23809212 DOI: 10.1111/febs.12413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/05/2013] [Accepted: 06/13/2013] [Indexed: 12/29/2022]
Abstract
The use of hyperoxia for critically ill patients is associated with adverse impacts resulting in lung injury accompanied by inflammation. The aim of this study was to evaluate aspects of mechanisms that contribute to hyperoxia-induced disruption of the epithelial permeability barrier, and also the protective effects of the antioxidants α-tocopherol and ascorbate. 16HBE14o- cells were cultured as monolayers at an air-liquid interface for 6 days, after which transepithelial electrical resistance reached 251.2 ± 4.1 Ω.cm(2) (mean ± standard error of the mean). They were then exposed for 24 h to normoxia (21% O2, 5% CO2), hyperoxia (95% O2, 5% CO2), hyperoxia with 10(-7) M α-tocopherol, hyperoxia with 10(-7) M ascorbate, hyperoxia with 10(-6) M ascorbate, and hyperoxia with a combination of α-tocopherol and ascorbate (10(-7) M and 10(-6) M, respectively). Significant reductions (P < 0.05) in transepithelial electrical resistance seen after hyperoxia (with or without antioxidants) were associated with reductions in the levels of zona occludens-1 (ZO-1) observed by immunohistochemistry, and downregulation of ZO-1 expression (P < 0.01) as compared with normoxia. In contrast, the expression levels of interleukin (IL)-8, IL-6 and tumour necrosis factor-α (TNF-α) were increased after hyperoxia (P < 0.01), and marked increases in the levels of these cytokines (ELISA) were seen in the medium (P < 0.001) as compared with normoxia. The antioxidant vitamins E and C had a partial protective effect against the hyperoxia-induced reduction in ZO-1 levels and the increase in levels of the proinflammatory cytokines IL-8, IL-6, and TNF-α. In conclusion, hyperoxia-induced epithelial disruption is associated with tight junction weakening, and induction of a proinflammatory environment.
Collapse
|
7
|
Al-Shmgani HS, Moate RM, Sneyd JR, Macnaughton PD, Moody AJ. Hyperoxia-induced ciliary loss and oxidative damage in an in vitro bovine model: the protective role of antioxidant vitamins E and C. Biochem Biophys Res Commun 2012; 429:191-6. [PMID: 23142230 DOI: 10.1016/j.bbrc.2012.10.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/27/2012] [Indexed: 12/01/2022]
Abstract
Although elevated oxygen fraction is used in intensive care units around the world, pathological changes in pulmonary tissue have been shown to occur with prolonged exposure to hyperoxia. In this work a bovine bronchus culture model has been successfully used to evaluate the effects of hyperoxia on ciliated epithelium in vitro. Samples were cultured using an air interface method and exposed to normoxia, 21% O(2) or hyperoxia, 95% O(2). Cilial coverage was assessed using scanning electron microscopy (SEM). Tissue damage (lactate dehydrogenase, LDH, in the medium), lipid peroxidation (thiobarbituric acid reactive substances, TBARS), DNA damage (comet assay), protein oxidation (OxyBlot kit) and antioxidant status (total glutathione) were used to assess whether the hyperoxia caused significant oxidative stress. Hyperoxia caused a time-dependent decline (t(½)=3.4d compared to 37.1d under normoxia) in cilial coverage (P<0.0001). This was associated with a significant increase in the number of cells (2.80 ± 0.27 × 10(6) compared to 1.97 ± 0.23 × 10(6)ml(-1) after 6d), many apparently intact, in the medium (P<0.05); LDH release (1.06 ± 0.29 compared to 0.83 ± 0.36 μmol min(-1)g(-1) after 6d; P<0.001); lipid peroxidation (352 ± 16 versus 247 ± 11 μmol MDA g(-1) for hyperoxia and normoxia, respectively); % tail DNA (18.7 ± 2.2 versus 11.1 ± 1.5); protein carbonyls (P<0.05); and total glutathione (229 ± 20 μmol g(-1) versus 189 ± 15 μmol g(-1)). Vitamins E (10(-7)M) and C (10(-6) or 10(-7)M) alone or in combination (10(-7)M and 10(-6)M, respectively) had a significant protective effect on the hyperoxia-induced reduction in percentage cilial coverage (P<0.05). In conclusion, hyperoxia caused damage to cultured bovine bronchial epithelium and denudation of cilia. The antioxidant vitamins E and C significantly protected against hyperoxia-induced cilia loss.
Collapse
|
8
|
Assessing the in vitro toxicity of the lunar dust environment using respiratory cells exposed to Al(2)O(3) or SiO(2) fine dust particles. In Vitro Cell Dev Biol Anim 2011; 45:602-13. [PMID: 19688407 DOI: 10.1007/s11626-009-9222-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
Prior chemical and physical analysis of lunar soil suggests a composition of dust particles that may contribute to the development of acute and chronic respiratory disorders. In this study, fine Al(2)O(3) (0.7 μm) and fine SiO(2) (mean 1.6 μm) were used to assess the cellular uptake and cellular toxicity of lunar dust particle analogs. Respiratory cells, murine alveolar macrophages (RAW 264.7) and human type II epithelial (A549), were cultured as the in vitro model system. The phagocytic activity of both cell types using ultrafine (0.1 μm) and fine (0.5 μm) fluorescent polystyrene beads was determined. Following a 6-h exposure, RAW 264.7 cells had extended pseudopods with beads localized in the cytoplasmic region of cells. After 24 h, the macrophage cells were rounded and clumped and lacked pseudopods, which suggest impairment of phagocytosis. A549 cells did not contain beads, and after 24 h, the majority of the beads appeared to primarily coat the surface of the cells. Next, we investigated the cellular response to fine SiO(2) and Al(2)O(3) (up to 5 mg/ml). RAW 264.7 cells exposed to 1.0 mg/ml of fine SiO(2) for 6 h demonstrated pseudopods, cellular damage, apoptosis, and necrosis. A549 cells showed slight toxicity when exposed to fine SiO(2) for the same time and dose. A549 cells had particles clustered on the surface of the cells. Only a higher dose (5.0 mg/ml) of fine SiO(2) resulted in a significant cytotoxicity to A549 cells. Most importantly, both cell types showed minimal cytotoxicity following exposure to fine Al(2)O(3). Overall, this study suggests differential cellular toxicity associated with exposure to fine mineral dust particles.
Collapse
|
9
|
Zemans RL, Colgan SP, Downey GP. Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol 2009; 40:519-35. [PMID: 18978300 PMCID: PMC2677434 DOI: 10.1165/rcmb.2008-0348tr] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Indexed: 12/20/2022] Open
Abstract
The primary function of neutrophils in host defense is to contain and eradicate invading microbial pathogens. This is achieved through a series of swift and highly coordinated responses culminating in ingestion (phagocytosis) and killing of invading microbes. While these tasks are usually performed without injury to host tissues, in pathologic circumstances such as sepsis, potent antimicrobial compounds can be released extracellularly, inducing a spectrum of responses in host cells ranging from activation to injury and death. In the lung, such inflammatory damage is believed to contribute to the pathogenesis of diverse lung diseases, including acute lung injury and the acute respiratory distress syndrome, chronic obstructive lung disease, and cystic fibrosis. In these disorders, epithelial cells are targets of leukocyte-derived antimicrobial products, including proteinases and oxidants. Herein, we review the mechanisms involved in the physiologic process of neutrophil transepithelial migration, including the role of specific adhesion molecules on the leukocyte and epithelial cells. We examine the responses of the epithelial cells to the itinerant leukocytes and their cytotoxic products and the consequences of this for lung injury and repair. This paradigm has important clinical implications because of the potential for selective blockade of these pathways to prevent or attenuate lung injury.
Collapse
Affiliation(s)
- Rachel L Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | | |
Collapse
|
10
|
Satomi Y, Sakaguchi K, Kasahara Y, Akahori F. Novel and extensive aspects of paraquat-induced pulmonary fibrogenesis: comparative and time-course microarray analyses in fibrogenic and non-fibrogenic rats. J Toxicol Sci 2008; 32:529-53. [PMID: 18198484 DOI: 10.2131/jts.32.529] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although paraquat (PQ) is widely known to induce pulmonary fibrosis, the molecular mechanisms are poorly understood. Therefore, to bring a new dimension to the elucidation of the mechanisms, we conducted microarray experiments to investigate the expression profiles of 1,090 genes in the lungs during the progressive phase of PQ-induced pulmonary fibrosis in rats. After several s.c. injections of PQ, rats were divided into a fibrogenic group and a non-fibrogenic group. Time-course gene expression analysis of the fibrogenic group showed altered gene regulation throughout the experimental period. The expression levels of many cell membrane channel, transporter, and receptor genes were substantially altered. These genes were classified into two categories: polyamine transporter- and electrolyte/fluid balance-related genes. Moreover, comparative analysis of the fibrogenic and the non-fibrogenic group revealed 36 genes with significantly different patterns of expression, including the pro-apoptotic gene Bad. This indicates that Bad is a key factor in apoptosis and that apoptosis provides a major turning point in PQ-induced pulmonary fibrosis. Notably, subtypes of transforming growth factor (TGF)-beta genes that are considered to play a pivotal role in fibrogenesis showed no differences in expression between the two groups, though TGF-beta3 was markedly induced in both groups. These results provide novel and extensive insights into the molecular mechanisms that lead to pulmonary fibrosis after exposure to PQ.
Collapse
Affiliation(s)
- Yoshihide Satomi
- Pharmacology & Safety Research Department, Pharmaceutical Development Research Laboratories, Teijin Pharma Ltd., Japan.
| | | | | | | |
Collapse
|
11
|
Abstract
Most cultured cells and intact animals die under hyperoxic conditions. However, a strain of HeLa cells that proliferates under 80% O(2), termed "HeLa-80," has been derived from wildtype HeLa cells ("HeLa-20") by selection for resistance to stepwise increases of oxygen partial pressure. The tolerance of HeLa-80 cells to hyperoxia is not associated with changes in antioxidant defenses or susceptibility to oxidant-mediated killing. Rather, under both 20 and 80% O(2), mitochondrial reactive oxygen species (ROS) production is approximately 2-fold less in HeLa-80 cells, likely related to a significantly higher cytochrome c oxidase (COX) activity ( approximately 2-fold), which may act to deplete upstream electron-rich intermediates responsible for ROS generation. We now report that in HeLa-80 cells elevated COX activity is associated with a >2-fold increase in the regulatory subunit COX Vb, whereas expression levels of other subunits are very close to wild type. Small interfering RNA against Vb selectively lowers COX Vb expression in HeLa-80 cells, increases mitochondrial ROS generation, decreases COX activity 60-80%, and diminishes viability under 80% (but not 20%) O(2). In addition, overexpression of subunit Vb increases COX activity and decreases ROS production in wild-type HeLa-20 cells, along with some increase in tolerance to hyperoxia. Overall, our results indicate that it is possible to make cells tolerant of hyperoxia by manipulation of mitochondrial electron transport. These observations may suggest new pharmaceutical strategies to diminish oxygen-mediated cellular damage.
Collapse
Affiliation(s)
- Jian Li Campian
- Molecular Targets Group, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
12
|
Zaher TE, Miller EJ, Morrow DMP, Javdan M, Mantell LL. Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells. Free Radic Biol Med 2007; 42:897-908. [PMID: 17349918 PMCID: PMC1876680 DOI: 10.1016/j.freeradbiomed.2007.01.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 01/05/2007] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
Mechanical ventilation with hyperoxia is necessary to treat critically ill patients. However, prolonged exposure to hyperoxia leads to the generation of excessive reactive oxygen species (ROS), which can cause acute inflammatory lung injury. One of the major effects of hyperoxia is the injury and death of pulmonary epithelium, which is accompanied by increased levels of pulmonary proinflammatory cytokines and excessive leukocyte infiltration. A thorough understanding of the signaling pathways leading to pulmonary epithelial cell injury/death may provide some insights into the pathogenesis of hyperoxia-induced acute inflammatory lung injury. This review focuses on epithelial responses to hyperoxia and some of the major factors regulating pathways to epithelial cell injury/death, and proinflammatory responses on exposure to hyperoxia. We discuss in detail some of the most interesting players, such as NF-kappaB, that can modulate both proinflammatory responses and cell injury/death of lung epithelial cells. A better appreciation for the functions of these factors will no doubt help us to delineate the pathways to hyperoxic cell death and proinflammatory responses.
Collapse
Affiliation(s)
- Tahereh E. Zaher
- Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, Queens, NY 11439
- Cardiopulmonary Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Edmund J. Miller
- Surgercal Immunology, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Dympna M. P. Morrow
- Cardiopulmonary Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Mohammad Javdan
- Cardiopulmonary Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, Queens, NY 11439
- Cardiopulmonary Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
- *Correspondence author: Lin L. Mantell, Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, 108/SB28 St. Albert Hall, 8000 Utopia Parkway, Queens, New York 11439, Tel: 718-990-5933, Fax: 718-990-1877,
| |
Collapse
|
13
|
Huang L, Estrada R, Yappert MC, Borchman D. Oxidation-induced changes in human lens epithelial cells. 1. Phospholipids. Free Radic Biol Med 2006; 41:1425-32. [PMID: 17023269 DOI: 10.1016/j.freeradbiomed.2006.07.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 06/22/2006] [Accepted: 07/31/2006] [Indexed: 11/17/2022]
Abstract
Lipid compositional changes in lens epithelial cells (HLE B-3) grown in a hyperoxic atmosphere were studied to determine if oxidation could cause changes in the amount and type of phospholipid similar to those found in vivo with age and cataract. The phosphatidylcholines in HLE B-3 cells were 8 times more unsaturated than the sphingomyelins. Cell viability was the same for cells grown for up to 48 h in a normoxic or hyperoxic atmosphere. Lipid oxidation was about three times higher after growth in a hyperoxic atmosphere compared with cells grown in a normoxic atmosphere. The lack of change in the relative amount of sphingomyelin and the decrease in phosphatidylcholine coupled with the increase in lysophosphatidylcholine support the idea that similar mechanisms may be responsible for the lipid compositional changes in both lens epithelial and fiber cells. It is postulated that lipases eliminate oxidized unsaturated glycerolipids, leaving a membrane increasingly composed of more ordered and more saturated sphingolipids. Oxidative stress leads to changes in membrane composition that are consistent with those seen with age in human epithelial cells. Oxidation-induced epithelial phospholipid change is an area of research that has gone virtually unexplored in the human lens and could be relevant to all cell types and may be important to lens clarity.
Collapse
Affiliation(s)
- Li Huang
- Department of Ophthalmology and Visual Science, University of Louisville, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
14
|
Huang L, Tang D, Yappert MC, Borchman D. Oxidation-induced changes in human lens epithelial cells 2. Mitochondria and the generation of reactive oxygen species. Free Radic Biol Med 2006; 41:926-36. [PMID: 16934675 DOI: 10.1016/j.freeradbiomed.2006.05.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 05/12/2006] [Accepted: 05/19/2006] [Indexed: 01/08/2023]
Abstract
The relationships among reactive oxygen species (ROS) generation, lipid compositional changes, antioxidant power, and mitochondrial membrane potential were determined in a human lens epithelial cell line, HLE-B3. Cells grown in a hyperoxic atmosphere grew linearly for about 3 days, and then progressively died. Total antioxidant power and ROS generation increased by 50 and 43%, respectively, in cells grown in a hyperoxic atmosphere compared to those cultured in a normoxic atmosphere. By specifically uncoupling the mitochondrial proton gradient, we determined that the mitochondria are most likely the major source of ROS generation. ROS generation correlated inversely with mitochondrial membrane potential and the amount of cardiolipin, factors likely to contribute to loss of cell viability. Our results support the idea that hyperoxic damage to HLE-B3 cells derives from enhanced generation of ROS from the mitochondrial electron transport chain resulting in the oxidation of cardiolipin. With extended hyperoxic insult, the oxidants overwhelm the antioxidant defense system and eventually cell death ensues.
Collapse
Affiliation(s)
- Li Huang
- Department of Ophthalmology and Visual Science, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
15
|
Tesfaigzi Y. Roles of apoptosis in airway epithelia. Am J Respir Cell Mol Biol 2006; 34:537-47. [PMID: 16439804 PMCID: PMC2644219 DOI: 10.1165/rcmb.2006-0014oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 01/29/2006] [Indexed: 12/12/2022] Open
Abstract
The airway epithelium functions primarily as a barrier to foreign particles and as a modulator of inflammation. Apoptosis is induced in airway epithelial cells (AECs) by viral and bacterial infections, destruction of the cytoskeleton, or by exposure to toxins such as high oxygen and polycyclic hydrocarbons. Various growth factors and cytokines including TGF-beta, IFN-gamma, or the activators of the death receptors, TNF-alpha and FasL, also induce apoptosis in AECs. However, cell death is observed in maximally 15% of AECs after 24 h of treatment. Preincubation with IFN-gamma or a zinc deficiency increases the percentage of apoptotic AECs in response to TNF-alpha or FasL, suggesting that AECs have mechanisms to protect them from cell death. Apoptosis of AECs is a major mechanism in reducing cell numbers after hyperplastic changes in airway epithelia that may arise due to major injuries in response to LPS or allergen exposures. Resolution of hyperplastic changes or changes during prolonged exposure to an allergen is primarily regulated by the Bcl-2 family of proteins. Fas and FasL are both expressed in AECs, and their main function may be to control inflammation by inducing Fas-induced death in inflammatory cells without inducing apoptosis in neighboring cells. Furthermore, AECs engulf dying eosinophils to clear them by phagocytosis. Therefore, in the airway epithelium apoptosis serves three main roles: (1) to eliminate damaged cells; (2) to restore homeostasis following hyperplastic changes; and (3) to control inflammation, and thereby support the barrier and anti-inflammatory functions.
Collapse
Affiliation(s)
- Yohannes Tesfaigzi
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive, SE, Albuquerque, NM 87108, USA.
| |
Collapse
|
16
|
Ahmad A, Ahmad S, Chang LY, Schaack J, White CW. Endothelial Akt activation by hyperoxia: role in cell survival. Free Radic Biol Med 2006; 40:1108-18. [PMID: 16545678 DOI: 10.1016/j.freeradbiomed.2005.10.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 10/14/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
High oxygen concentrations (hyperoxia), often required in the treatment of preterm infants and critically ill patients, cause lung injury, targeting especially the endothelium. Exposure of primary human lung microvascular endothelial cells (HLMVEC) to hyperoxia caused transient Akt activation after 60 min, as determined by Western blot analysis of phosphorylated Ser 473 of Akt. Akt phosphorylation was also increased after 24 h of hyperoxic exposure, which declined at 48 h. Adenoviral (Ad)-mediated expression of constitutively active myrAkt protected HLMVEC against hyperoxic injury. Cell death due to hyperoxia (95% O2, 8 days), which was primarily necrotic, was substantial in control and Ad-LacZ-transduced cells, but was diminished by almost half in myrAkt-transduced cells. Hyperoxia caused increased cellular glucose consumption, an effect that was amplified in cells transduced with myrAkt compared to the LacZ-transduced or the nontransduced controls. Increased glucose consumption in myrAkt-expressing cells was accompanied by increased phosphorylation of mTOR and p70 S6-kinase. Rapamycin treatment decreased glucose consumption in myrAkt-transduced cells to levels comparable to those in control and LacZ-transduced cells exposed to hyperoxia. Ultrastructural morphometric analyses demonstrated that mitochondria and endoplasmic reticulum were less swollen in myrAkt cells relative to controls exposed to hyperoxia. These studies demonstrate that early activation of Akt occurs in hyperoxia in HLMVEC. That this event is a beneficial response is suggested by the finding that constitutive activation of Akt protects against hyperoxic stress, at least in part, by maintaining mitochondrial integrity.
Collapse
Affiliation(s)
- Aftab Ahmad
- Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
17
|
Barker GF, Manzo ND, Cotich KL, Shone RK, Waxman AB. DNA damage induced by hyperoxia: quantitation and correlation with lung injury. Am J Respir Cell Mol Biol 2006; 35:277-88. [PMID: 16574945 PMCID: PMC2643280 DOI: 10.1165/rcmb.2005-0340oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Inspired oxygen, an essential therapy for cardiorespiratory disorders, has the potential to generate reactive oxygen species that damage cellular DNA. Although DNA damage is implicated in diverse pulmonary disorders, including neoplasia and acute lung injury, the type and magnitude of DNA lesion caused by oxygen in vivo is unclear. We used single-cell gel electrophoresis (SCGE) to quantitate two distinct forms of DNA damage, base adduction and disruption of the phosphodiester backbone, in the lungs of mice. Both lesions were induced by oxygen, but a marked difference between the two was found. With 40 h of oxygen exposure, oxidized base adducts increased 3- to 4-fold in the entire population of lung cells. This lesion displayed temporal characteristics (a progressive increase over the first 24 h) consistent with a direct effect of reactive oxygen species attack upon DNA. DNA strand breaks, on the other hand, occurred in < 10% of pulmonary cells, which acquired severe levels of the lesion; dividing cells were preferentially affected. Characteristics of these cells suggested that DNA strand breakage was secondary to cell death, rather than a primary effect of reactive oxygen species attack on DNA. By analysis of IL-6- and IL-11-overexpressing transgenic animals, which are resistant to hyperoxia, we found that DNA strand breaks, but not base damage, correlated with acute lung injury. Analysis of purified alveolar type 2 preparations from hyperoxic mice indicated that strand breaks preferentially affected this cell type.
Collapse
Affiliation(s)
- George F Barker
- Pulmonary and Critical Care Unit, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Bulfinch 148, 55 Fruit St., Boston, Massachusetts 02114, USA.
| | | | | | | | | |
Collapse
|
18
|
McAdams RM, Mustafa SB, Shenberger JS, Dixon PS, Henson BM, DiGeronimo RJ. Cyclic stretch attenuates effects of hyperoxia on cell proliferation and viability in human alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 291:L166-74. [PMID: 16461433 PMCID: PMC2683386 DOI: 10.1152/ajplung.00160.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The treatment of severe lung disease often requires the use of high concentrations of oxygen coupled with the need for assisted ventilation, potentially exposing the pulmonary epithelium to both reactive oxygen species and nonphysiological cyclic stretch. Whereas prolonged hyperoxia is known to cause increased cell injury, cyclic stretch may result in either cell proliferation or injury depending on the pattern and degree of exposure to mechanical deformation. How hyperoxia and cyclic stretch interact to affect the pulmonary epithelium in vitro has not been previously investigated. This study was performed using human alveolar epithelial A549 cells to explore the combined effects of cyclic stretch and hyperoxia on cell proliferation and viability. Under room air conditions, cyclic stretch did not alter cell viability at any time point and increased cell number after 48 h compared with unstretched controls. After exposure to prolonged hyperoxia, cell number and [(3)H]thymidine incorporation markedly decreased, whereas evidence of oxidative stress and nonapoptotic cell death increased. The combination of cyclic stretch with hyperoxia significantly mitigated the negative effects of prolonged hyperoxia alone on measures of cell proliferation and viability. In addition, cyclic stretch resulted in decreased levels of oxidative stress over time in hyperoxia-exposed cells. Our results suggest that cyclic stretch, as applied in this study, can minimize the detrimental effects of hyperoxia on alveolar epithelial A549 cells.
Collapse
Affiliation(s)
- Ryan M McAdams
- Department of Pediatrics, Wilford Hall United States Air Force Medical Center, Lackland Air Force Base, San Antonio, TX 78236, USA
| | | | | | | | | | | |
Collapse
|
19
|
Akashi T, Minami J, Ishige Y, Eishi Y, Takizawa T, Koike M, Yanagishita M. Basement membrane matrix modifies cytokine interactions between lung cancer cells and fibroblasts. Pathobiology 2006; 72:250-9. [PMID: 16374069 DOI: 10.1159/000089419] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2005] [Accepted: 06/06/2005] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Proliferation of fibroblasts (desmoplastic reaction) in the lung adenocarcinomas is an important phenomenon that correlates with metastases and poor prognosis. Because basement membranes are often involved in the desmoplastic areas and many cytokines have binding capacity to basement membrane molecules, we hypothesized that basement membrane modify the paracrine effects between cancer cells and fibroblasts via the fibrogenic cytokines and this hypothesis was experimentally investigated. METHODS The effects of conditioned media derived from ten lung carcinoma cell lines and normal airway epithelial cells on DNA synthesis of fetal lung fibroblasts were determined. We focused on fibroblast growth factor 2 (FGF-2) as the candidate paracrine cytokines and examined their diffusion through an experimental basement membrane matrix model, Matrigel. RESULTS All the conditioned media promoted DNA synthesis of fetal lung fibroblasts. Detection by ELISA methods and the neutralizing antibodies suggested that FGF-2 was one of the responsible factors for the growth promotion. Diffusion of FGF-2 across the polycarbonate membrane was suppressed by coating with Matrigel. When FGF-2-secreting A549 cells were covered with Matrigel, FGF-2 was stored in Matrigel and its diffusion into the culture media was significantly reduced. Binding of FGF-2 to Matrigel was completely blocked by a basic protein, protamine sulfate. In the presence of protamine sulfate in Matrigel overlaid on A549 cells, diffusion of FGF-2 increased 7-fold as much as that without overlaid Matrigel. CONCLUSION These results suggest that the basement membrane acts as a barrier to the diffusion and a reservoir of cytokines secreted by cancer cells, and that the subsequent degradation of the basement membrane by cancer cells could release the stored cytokines and promote growth of fibroblasts.
Collapse
Affiliation(s)
- Takumi Akashi
- Department of Pathology, Tokyo Medical and Dental University, Yushima, Bunkyou-ku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Panayiotidis MI, Stabler SP, Ahmad A, Pappa A, Legros LH, Hernandez-Saavedra D, Schneider BK, Allen RH, Vasiliou V, McCord JM, Kotb M, White CW. Activation of a novel isoform of methionine adenosyl transferase 2A and increased S-adenosylmethionine turnover in lung epithelial cells exposed to hyperoxia. Free Radic Biol Med 2006; 40:348-58. [PMID: 16413417 DOI: 10.1016/j.freeradbiomed.2005.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 06/01/2005] [Accepted: 09/09/2005] [Indexed: 11/20/2022]
Abstract
S-Adenosylmethionine (SAM, AdoMet) is the most important methyl donor used for synthesis of nucleic acids, phospholipids, creatine, and polyamines and for methylation of many bioactive molecules. The metabolic response of the lung to oxidative stress of hyperoxia requires increased RNA and protein synthesis for energy metabolism, growth arrest, and antioxidant defense. We studied the production of SAM and other aspects of methionine metabolism in lung epithelial cells exposed to hyperoxia. Human lung epithelial-like (A549) and primary small airway epithelial (SAE) cells were exposed to normoxia (21% O(2)) or hyperoxia (95% O(2)). Cell methionine and S-adenosylmethionine content increased in response to hyperoxia in SAE and A549 cells. Because methionine adenosyl transferase (MAT) is the rate-limiting enzyme of the pathway, we examined the expression of a lung epithelial isoform of MAT 2A in hyperoxia. Western blots revealed a novel MAT 2A isoform expressed in both cell types, with a lower molecular mass than that described in Jurkat cells. Cloning and sequencing of the MAT 2A cDNA revealed one silent nucleotide substitution compared to that expressed in Jurkat. The lower mass of MAT 2A in both lung epithelial cells indicated that the absence of the major posttranslational modification of MAT 2A found in Jurkat. MAT 2A protein progressively increased during hyperoxic exposure in both transformed and primary lung epithelium. Increased flux of (13)C-labeled methionine to S-adenosylhomocysteine (SAH) in A549 demonstrated that SAM's methyl group was utilized, and increased formation of cystathionine indicated that at least part of SAM generated was directed toward cysteine/GSH in the transsulfuration pathway. These results indicate activation of MAT 2A and the transmethylation pathway in the metabolic response to hyperoxia in lung epithelium.
Collapse
Affiliation(s)
- Mihalis I Panayiotidis
- Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bromberg Z, Deutschman CS, Weiss YG. Heat shock protein 70 and the acute respiratory distress syndrome. J Anesth 2005; 19:236-42. [PMID: 16032452 PMCID: PMC7102071 DOI: 10.1007/s00540-005-0308-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 02/01/2005] [Indexed: 12/20/2022]
Affiliation(s)
- Zohar Bromberg
- Department of Anesthesia, University of Pennsylvania School of Medicine, Dulles 781A/HUP, 3400 Spruce Street, Philadelphia, PA 19104-4283, USA
| | | | | |
Collapse
|
22
|
Li AP, Bode C, Sakai Y. A novel in vitro system, the integrated discrete multiple organ cell culture (IdMOC) system, for the evaluation of human drug toxicity: comparative cytotoxicity of tamoxifen towards normal human cells from five major organs and MCF-7 adenocarcinoma breast cancer cells. Chem Biol Interact 2005; 150:129-36. [PMID: 15522266 DOI: 10.1016/j.cbi.2004.09.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In vitro assays involving primary cells are used routinely to evaluate organ-specific toxic effects, for instance, the use of primary hepatocytes to evaluate hepatotoxicity. A major drawback of an in vitro system is the lack of multiple organ interactions as observed in a whole organism. A novel cell culture system, the integrated discrete multiorgan cell culture system (IdMOC), is described here. The IdMOC is based on the "wells within a well" concept, consisting of a cell culture plate with larger, containing wells, within each of which are multiple smaller wells. Cells from multiple organs can be cultured initially in the small wells (one organ per well, each in its specialized medium). On the day of toxicity testing, a volume of drug-containing medium is added to the containing well to flood all inner wells, thereby interconnecting all the small wells. After testing, the overlying medium is removed and each cell type is evaluated for toxicity using appropriate endpoints. We report here the application of IdMOC in the evaluation of the cytotoxicity of tamoxifen, an anticancer agent with known human toxicity, on primary cells from multiple human organs: liver (hepatocytes), kidney (kidney cortical cells), lung (small airway epithelial cells), central nervous system (astrocytes), blood vessels (aortic endothelial cells) as well as the MCF-7 human breast adenocarcinoma cells. IdMOC produced results that can be used for the quantitative evaluation of its anticancer effects (i.e., cytotoxicity towards MCF-7 cells) versus its toxicity toward normal organs (i.e., liver, kidney, lung, CNS, blood vessels).
Collapse
Affiliation(s)
- Albert P Li
- Advanced Pharmaceutical Sciences Inc., PMB 146, 6400 Baltimore National Pike, Baltimore, MD 21228, USA.
| | | | | |
Collapse
|
23
|
Franek WR, Morrow DMP, Zhu H, Vancurova I, Miskolci V, Darley-Usmar K, Simms HH, Mantell LL. NF-kappaB protects lung epithelium against hyperoxia-induced nonapoptotic cell death-oncosis. Free Radic Biol Med 2004; 37:1670-9. [PMID: 15477018 DOI: 10.1016/j.freeradbiomed.2004.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 08/12/2004] [Indexed: 01/26/2023]
Abstract
Prolonged exposure to hyperoxia induces pulmonary epithelial cell death and acute lung injury. Although both apoptotic and nonapoptotic morphologies are observed in hyperoxic animal lungs, nonapoptotic cell death had only been recorded in transformed lung epithelium cultured in hyperoxia. To test whether the nonapoptotic characteristics in hyperoxic animal lungs are direct effects of hyperoxia, the mode of cell death was determined both morphologically and biochemically in human primary lung epithelium exposed to 95% O(2). In contrast to characteristics observed in apoptotic cells, hyperoxia induced swelling of nuclei and an increase in cell size, with no evidence for any augmentation in the levels of either caspase-3 activity or annexin V incorporation. These data suggest that hyperoxia can directly induce nonapoptotic cell death in primary lung epithelium. Although hyperoxia-induced nonapoptotic cell death was associated with NF-kappaB activation, it is unknown whether NF-kappaB activation plays any causal role in nonapoptotic cell death. This study shows that inhibition of NF-kappaB activation can accelerate hyperoxia-induced epithelial cell death in both primary and transformed lung epithelium. Corresponding to the reduced cell survival in hyperoxia, the levels of MnSOD were also low in NF-kappaB-deficient cells. These results demonstrate that NF-kappaB protects lung epithelial cells from hyperoxia-induced nonapoptotic cell death.
Collapse
Affiliation(s)
- William R Franek
- Department of Surgery, North Shore University Hospital, New York University School of Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Campian JL, Qian M, Gao X, Eaton JW. Oxygen Tolerance and Coupling of Mitochondrial Electron Transport. J Biol Chem 2004; 279:46580-7. [PMID: 15328348 DOI: 10.1074/jbc.m406685200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxygen is critical to aerobic metabolism, but excessive oxygen (hyperoxia) causes cell injury and death. An oxygen-tolerant strain of HeLa cells, which proliferates even under 80% O2, termed "HeLa-80," was derived from wild-type HeLa cells ("HeLa-20") by selection for resistance to stepwise increases of oxygen partial pressure. Surprisingly, antioxidant defenses and susceptibility to oxidant-mediated killing do not differ between these two strains of HeLa cells. However, under both 20 and 80% O2, intracellular reactive oxygen species (ROS) production is significantly (approximately 2-fold) less in HeLa-80 cells. In both cell lines the source of ROS is evidently mitochondrial. Although HeLa-80 cells consume oxygen at the same rate as HeLa-20 cells, they consume less glucose and produce less lactic acid. Most importantly, the oxygen-tolerant HeLa-80 cells have significantly higher cytochrome c oxidase activity (approximately 2-fold), which may act to deplete upstream electron-rich intermediates responsible for ROS generation. Indeed, preferential inhibition of cytochrome c oxidase by treatment with n-methyl protoporphyrin (which selectively diminishes synthesis of heme a in cytochrome c oxidase) enhances ROS production and abrogates the oxygen tolerance of the HeLa-80 cells. Thus, it appears that the remarkable oxygen tolerance of these cells derives from tighter coupling of the electron transport chain.
Collapse
Affiliation(s)
- Jian Li Campian
- Molecular Targets Group, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Exposure to high oxygen concentration causes direct oxidative cell damage through increased production of reactive oxygen species. In vivo oxygen-induced lung injury is well characterized in rodents and has been used as a valuable model of human respiratory distress syndrome. Hyperoxia-induced lung injury can be considered as a bimodal process resulting (1) from direct oxygen toxicity and (2) from the accumulation of inflammatory mediators within the lungs. Both apoptosis and necrosis have been described in alveolar cells (mainly epithelial and endothelial) during hyperoxia. While the in vitro response to oxygen seems to be cell type-dependent in tissue cultures, it is still unclear which are the death mechanisms and pathways implicated in vivo. Even though it is not yet possible to distinguish unequivocally between apo-ptosis, necrosis, or other intermediate form(s) of cell death, a great variety of strategies has been shown to prevent alveolar damage and to increase animal survival during hyperoxia. In this review, we summarize the different cell death pathways leading to alveolar damage during hyperoxia, with particular attention to the pivotal role of mitochondria. In addition, we discuss the different protective mechanisms potentially interfering with alveolar cell death.
Collapse
Affiliation(s)
- Alessandra Pagano
- Departments of Pediatrics and Pathology, University of Geneva Medical School, Geneva, Switzerland
| | | |
Collapse
|
26
|
Li J, Gao X, Qian M, Eaton JW. Mitochondrial metabolism underlies hyperoxic cell damage. Free Radic Biol Med 2004; 36:1460-70. [PMID: 15135183 DOI: 10.1016/j.freeradbiomed.2004.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 03/05/2004] [Indexed: 11/20/2022]
Abstract
Exposure of mammals to hyperoxia causes pulmonary and ocular pathology. Hyperoxic damage and cell death may derive from enhanced intracellular formation of reactive oxygen species (ROS), probably of mitochondrial origin. There is, however, controversy on this point. When wild-type and respiration-deficient (rho(o)) HeLa cells were cultured in 80% O2, wild-type cells stopped growing after 5 days and died thereafter whereas rho(o) cells survived and grew to confluence. This tolerance of rho(o) cells for hyperoxia was not associated with greater resistance to oxidants such as hydrogen peroxide and t-butyl hydroperoxide. Under both 20% and 80% O2, rho(o) cells exhibited substantially decreased ROS production, and, under 80% O2, rho(o) cells showed no suppression of aconitase activity or mitochondrial protein carbonyl formation. Replacement of normal mitochondria in rho(o) cells restored ROS production and susceptibility to hyperoxia. Two other approaches that diminished mitochondrial ROS generation also increased tolerance for hyperoxia. HeLa cells constantly exposed to the protonophoric uncoupler carbonyl cyanide m-chlorophenylhydrazone, which enhances respiration but decreases ROS production, showed preferential survival under 80% O2, as did HeLa cells treated with chloramphenicol, which suppresses both respiration and mitochondrial ROS production. We conclude that interactions between respiring mitochondria and O2 are primarily responsible for hyperoxic cell damage.
Collapse
Affiliation(s)
- Jian Li
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | | | | | | |
Collapse
|
27
|
Romashko J, Horowitz S, Franek WR, Palaia T, Miller EJ, Lin A, Birrer MJ, Scott W, Mantell LL. MAPK pathways mediate hyperoxia-induced oncotic cell death in lung epithelial cells. Free Radic Biol Med 2003; 35:978-93. [PMID: 14556862 DOI: 10.1016/s0891-5849(03)00494-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cell injury and cell death of pulmonary epithelium plays an important role in the pathogenesis of acute lung injury in animals exposed to prolonged hyperoxia. The aim of this study was to decipher the molecular mechanisms modulating cell death induced by hyperoxia in lung epithelium. Cell death is thought to be either apoptotic, with shrinking phenotypes and activated caspases, or oncotic, with swelling organelles. Exposure to 95% O2 (hyperoxia) induced cell death of MLE-12 cells with cellular as well as nuclear swelling, cytosolic vacuolation, and loss of mitochondrial structure and enzyme function. Neither elevated caspase-3 activity nor phosphatidylserine translocation were detected, suggesting that in hyperoxia, MLE-12 cells die via oncosis rather than apoptosis. In addition, hyperoxia triggered a sustained activation of the transcription factor AP-1, as well as mitogen-activated protein kinase (MAPK) family members p38 and JNK. Importantly, survival of MLE-12 cells in hyperoxia was significantly enhanced when either AP-1, p38, or JNK activation was inhibited by either specific inhibitors or dominant negative DNA constructs, indicating that in lung epithelial cells hyperoxia induces a program-driven oncosis, involving AP-1, JNK, and p38 MAPK. Interestingly, hydrogen peroxide-induced oxidative apoptosis of MLE-12 cells, with a shrinking nuclear morphology and activated caspase-3 activity, is also mediated by AP-1, JNK, and p38. Therefore, our data indicate that although they have divergent downstream events, oxidative oncosis and apoptosis share upstream JNK/p38 and AP-1 pathways, which could be used as potential targets for reducing hyperoxic inflammatory lung injury.
Collapse
Affiliation(s)
- John Romashko
- Department of Surgery, North Shore University Hospital, New York University School of Medicine, Manhasset, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Administration of high concentrations of oxygen (hyperoxia) is a mainstay of supportive treatment for patients suffering from severe respiratory failure. However, hyperoxia, by generating excess systemic reactive oxygen species (ROS), can exacerbate organ failure by causing cellular injury. Therefore, a better understanding of the signal transduction pathways in hyperoxia may provide the basis for effective therapeutic interventions. The major biological effects of hyperoxia include cell death, induction of stress responses, inflammation, and modulation of cell growth. Major signaling pathways that appear to be involved include the mitogen-activated protein kinases (MAPKs), AP-1, and NF-kappa B, which converge, ultimately, to the expression of a range of stress response genes, cytokines, and growth factors.
Collapse
Affiliation(s)
- Patty J Lee
- Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
29
|
Ray P, Devaux Y, Stolz DB, Yarlagadda M, Watkins SC, Lu Y, Chen L, Yang XF, Ray A. Inducible expression of keratinocyte growth factor (KGF) in mice inhibits lung epithelial cell death induced by hyperoxia. Proc Natl Acad Sci U S A 2003; 100:6098-103. [PMID: 12732722 PMCID: PMC156332 DOI: 10.1073/pnas.1031851100] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxidant-induced injury to the lung is associated with extensive damage to the lung epithelium. Instillation of keratinocyte growth factor (KGF) in the lungs of animals protects animals from oxidant-induced injury but the mechanism of protection is not well understood. An inherent problem in studying KGF function in vivo has been that constitutive overexpression of KGF in the lung causes embryonic lethality with extensive pulmonary malformation. Here we report the development of a stringently regulated, tetracycline-inducible, lung-specific transgenic system that allows regulated expression of KGF in the lung without causing developmental abnormalities from leaky KGF expression. By using this system, we show that exposure of KGF-expressing mice to hyperoxia protects the lung epithelium but not the endothelium from cell death in accordance with the selective expression of KGF receptor on epithelial and not on endothelial cells. Investigations of KGF-induced cell survival pathways revealed KGF-induced activation of the multifunctional pro-survival Akt signaling axis both in vitro and in vivo. Inhibition of KGF-induced Akt activation by a dominant-negative mutant of Akt blocked the KGF-mediated protection of epithelial cells exposed to hyperoxia. KGF-induced Akt activation may play an important role in inhibiting lung alveolar cell death thereby preserving the lung architecture and function during oxidative stress.
Collapse
Affiliation(s)
- Prabir Ray
- Department of Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, PA 15213, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ahmad S, Ahmad A, Gerasimovskaya E, Stenmark KR, Allen CB, White CW. Hypoxia protects human lung microvascular endothelial and epithelial-like cells against oxygen toxicity: role of phosphatidylinositol 3-kinase. Am J Respir Cell Mol Biol 2003; 28:179-87. [PMID: 12540485 DOI: 10.1165/rcmb.2002-0004oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hypoxic preconditioning is protective against oxidant-related damage in various organs, such as the heart. We previously showed that rats exposed to hypoxia also exhibit resistance to lethal pulmonary oxygen toxicity. The underlying mechanism and whether similar preconditioning is applicable to cellular models is unknown. In the present study, it was found that hypoxic pre-exposure induces a significant protective effect against hyperoxia-induced cell death in human lung microvascular endothelial cells (HLMVECs) and epithelial type II-like A549 cells. This effect of hypoxia is mediated by the phosphatidylinositol 3-kinase (PI3-K) signaling pathway because the presence of the PI3-K inhibitors, LY294002 and wortmannin, during pre-exposure to hypoxia completely blocks subsequent protection. Further, the hypoxia-dependent protection from hyperoxia was found to be associated with a 2-fold increase in PI3-K activity in hypoxia. Transient overexpression of a catalytically active class IA PI3-K p110alpha isoform also enhanced survival of A549 cells 2-fold compared with the empty vector control. These results indicate that hypoxia-induced activation of PI3-K is an important event in the acquisition of resistance against subsequent hyperoxic toxicity.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Pediatrics, National Jewish Medical and Research Center, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | | | |
Collapse
|
31
|
Gavino R, Johnson L, Bhandari V. Release of cytokines and apoptosis in fetal rat Type II pneumocytes exposed to hyperoxia and nitric oxide: modulatory effects of dexamethasone and pentoxifylline. Cytokine 2002; 20:247-55. [PMID: 12633566 DOI: 10.1006/cyto.2002.1976] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The response of the fetal rat Type II pneumocyte (FTIIP), the stem cell of the alveolar epithelium, to hyperoxia would be helpful to understand the effects of oxygen-induced injury to the immature lung. In such a scenario, the presence of nitric oxide (NO) may have a protective or detrimental effect. Our goals were to evaluate the release of cytokines and apoptotic cell death in freshly isolated FTIIP (19-day) in the presence of 95% O(2) and/or NO. The effects of dexamethasone and pentoxifylline on the FTIIP cytokine response were also studied. There was no significant difference in the levels of IL-1beta and IL-10 from FTIIP, in room air, hyperoxia and/or NO at 2, 6 and 24 h. However, IL-6 release was significantly higher, when measured over time, after 2, 6 and 24 h of exposure to hyperoxia and NO. Dexamethasone in the presence of hyperoxia and/or NO increased the release of IL-10 at 24 h. There was increased apoptosis in FTIIP exposed to hyperoxia alone and in combination with NO; this was significantly attenuated in the presence of dexamethasone and pentoxifylline. We speculate that the cytoprotective effects of dexamethasone in the immature lung may, in part, be mediated via IL-10.
Collapse
Affiliation(s)
- R Gavino
- Department of Pediatrics, Albert Einstein Medical Center, Philadelphia, PA, USA
| | | | | |
Collapse
|
32
|
Sznajder JI, Factor P, Ingbar DH. Invited review: lung edema clearance: role of Na(+)-K(+)-ATPase. J Appl Physiol (1985) 2002; 93:1860-6. [PMID: 12381775 DOI: 10.1152/japplphysiol.00022.2002] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute hypoxemic respiratory failure is a consequence of edema accumulation due to elevation of pulmonary capillary pressures and/or increases in permeability of the alveolocapillary barrier. It has been recognized that lung edema clearance is distinct from edema accumulation and is largely effected by active Na(+) transport out of the alveoli rather than reversal of the Starling forces, which control liquid flux from the pulmonary circulation into the alveolus. The alveolar epithelial Na(+)-K(+)-ATPase has an important role in regulating cell integrity and homeostasis. In the last 15 yr, Na(+)-K(+)-ATPase has been localized to the alveolar epithelium and its contribution to lung edema clearance has been appreciated. The importance of the alveolar epithelial Na(+)-K(+)-ATPase function is reflected in the changes in the lung's ability to clear edema when the Na(+)-K(+)-ATPase is inhibited or increased. An important focus of the ongoing research is the study of the mechanisms of Na(+)-K(+)-ATPase regulation in the alveolar epithelium during lung injury and how to accelerate lung edema clearance by modulating Na(+)-K(+)-ATPase activity.
Collapse
Affiliation(s)
- J I Sznajder
- Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
33
|
Rancourt RC, Hayes DD, Chess PR, Keng PC, O'Reilly MA. Growth arrest in G1 protects against oxygen-induced DNA damage and cell death. J Cell Physiol 2002; 193:26-36. [PMID: 12209877 DOI: 10.1002/jcp.10146] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although oxygen is required for normal aerobic respiration, hyperoxia (95% O(2)/5% CO(2)) damages DNA, inhibits proliferation in G1, S and G2 phases of the cell cycle, and induces necrosis. The current study examines whether growth arrest in G1 protects pulmonary epithelial cells from oxidative DNA damage and cell death. Mv1Lu pulmonary adenocarcinoma cells were chosen for studies because hyperoxia inhibits their proliferation in S and G2 phase, while they can be induced to arrest in G1 by altering culture conditions. Hyperoxia inhibited proliferation, increased intracellular redox, and rapidly reduced clonogenic survival. In contrast, Mv1Lu cells treated with transforming growth factor (TGF)-beta1, deprived of serum or grown to confluency, arrested and remained predominantly in G1 even during exposure. Growth arrest in G1 significantly enhanced clonogenic survival by 10-50-fold. Enhanced survival was not due to reduction in the intracellular redox-state of the cells, but instead was associated with reduced DNA strand breaks and p53 expression. Our findings suggest that the protective effects of G1 is mediated not simply by a reduction in intracellular ROS, but rather through an enhanced ability to limit or rapidly recognize and repair damaged DNA.
Collapse
Affiliation(s)
- Raymond C Rancourt
- Department of Environmental Medicine, The University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
34
|
Wu M, He YH, Kobune M, Xu Y, Kelley MR, Martin WJ. Protection of human lung cells against hyperoxia using the DNA base excision repair genes hOgg1 and Fpg. Am J Respir Crit Care Med 2002; 166:192-9. [PMID: 12119232 DOI: 10.1164/rccm.200112-130oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hyperoxia causes pulmonary toxicity in part by injuring alveolar epithelial cells. Previous studies have shown that toxic oxygen-derived species damage DNA and this damage is recognized and repaired by either human enzyme 8-oxoguanine DNA glycosylase (hOgg1) or Escherichia coli enzyme formamidopyrimidine DNA glycosylase (Fpg). To determine whether these DNA repair proteins can reduce O(2)-mediated DNA damage in lung cells, A549 lung epithelial cells were transduced with either hOgg1 or Fpg using a retroviral vector containing enhanced green fluorescent protein. Expression of each gene in the transduced cells was confirmed by fluorescent microscopy, Northern blotting, Western blotting, and an enzymatic oligonucleotide cleavage assay. A549 cells expressing either hOgg1 or Fpg were protected from hyperoxia as evidenced by a decrease in DNA damage and a corresponding increase in cell survival. Further, we determined that overexpression of hOgg1 or Fpg partially mitigated the toxic effects of hydrogen peroxide in lung cells. Our data suggest that increased expression of DNA base excision repair genes might represent a new approach for protecting critical lung cells from the toxic effects of hyperoxia.
Collapse
Affiliation(s)
- Min Wu
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, 46202, USA
| | | | | | | | | | | |
Collapse
|
35
|
McGrath-Morrow SA, Stahl J. Inhibition of glutamine synthetase in a549 cells during hyperoxia. Am J Respir Cell Mol Biol 2002; 27:99-106. [PMID: 12091252 DOI: 10.1165/ajrcmb.27.1.4664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
High oxygen concentrations are used in the treatment of acute respiratory distress syndrome and hyaline membrane disease. Hyperoxia, however, can damage alveolar epithelial cells through the release of free oxygen radicals. Supplemental glutamine (Gln) has recently been shown to increase survival of A549 cells, a distal epithelial cell line, during hyperoxia (). We found that supplemental Gln (Gln+) is essential for cell growth in A549 cells. In room air, cells without supplemental Gln (Gln-) survived with BCL-2 levels similar to those of Gln+ cells, but cell growth was minimal. We also evaluated the role of glutamine synthetase (GS) in A549 cells during hyperoxia. L-methionine sulfoximine (MSO), an irreversible inhibitor of GS, was added to Gln+ and Gln- cells. In hyperoxia, Gln- cells had greater survival then Gln- cells treated with MSO. Supplemental Gln could rescue cells in hyperoxia from the effect of MSO, suggesting that GS, through the endogenous synthesis of Gln, could attenuate hyperoxic cell injury. In hyperoxia, cells treated with 10-mM concentrations of Gln had increased survival compared with cells receiving 2-mM concentrations. The higher concentration of Gln, however, did not decrease the percentage of cells undergoing necrosis.
Collapse
Affiliation(s)
- Sharon A McGrath-Morrow
- Department of Pediatrics, Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.
| | | |
Collapse
|
36
|
Aljandali A, Pollack H, Yeldandi A, Li Y, Weitzman SA, Kamp DW. Asbestos causes apoptosis in alveolar epithelial cells: role of iron-induced free radicals. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2001; 137:330-9. [PMID: 11329530 DOI: 10.1067/mlc.2001.114826] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Asbestos causes asbestosis and malignancies by mechanisms that are not fully understood. Alveolar epithelial cell (AEC) injury by iron-induced reactive oxygen species (ROS) is one important mechanism. To determine whether asbestos causes apoptosis in AECs, we exposed WI-26 (human type I-like cells), A549 (human type II-like cells), and rat alveolar type II cells to amosite asbestos and assessed apoptosis by terminal deoxynucleotidyl transferase-mediated deoxyuridine-5'-triphosphate-biotin nick end labeling (TUNEL) staining, nuclear morphology, annexin V staining, DNA nucleosome formation, and caspase 3 activation. In contrast to control medium and TiO2, amosite asbestos and H2O2 each caused AEC apoptosis. A role for iron-catalyzed ROS was suggested by the finding that asbestos-induced AEC apoptosis and caspase 3 activation were each attenuated by either an iron chelator (phytic acid and deferoxamine) or a.OH scavenger (dimethyl-thiourea, salicylate, and sodium benzoate) but not by iron-loaded phytic acid. To determine whether asbestos causes apoptosis in vivo, rats received a single intratracheal instillation of amosite (5 mg) or normal saline solution, and apoptosis in epithelial cells in the bronchoalveolar duct regions was assessed by TUNEL staining. One week after exposure, amosite asbestos caused a 3-fold increase in the percentage of apoptotic cells in the bronchoalveolar duct regions as compared with control (control, 2.1% +/- 0.35%; asbestos, 7.61% +/- 0.15%; n = 3). However, by 4 weeks the number of apoptotic cells was similar to control. We conclude that asbestos-induced pulmonary toxicity may partly be caused by apoptosis in the lung epithelium that is mediated by iron-catalyzed ROS and caspase 3 activation.
Collapse
Affiliation(s)
- A Aljandali
- Department of Medicine, Divisions of Pulmonary and Critical Care Medicine and Hematology-Oncology, Northwestern University Medical School and Veterans Administration Chicago Health Care System, Lakeside Division, IL, USA
| | | | | | | | | | | |
Collapse
|
37
|
Akashi T, Ito E, Eishi Y, Koike M, Nakamura K, Burgeson RE. Reduced expression of laminin alpha 3 and alpha 5 chains in non-small cell lung cancers. Jpn J Cancer Res 2001; 92:293-301. [PMID: 11267939 PMCID: PMC5926703 DOI: 10.1111/j.1349-7006.2001.tb01094.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The basement membrane is considered to act as a barrier which hinders cancer cells from invading the surrounding stroma. In order to assess changes in essential components during neoplasia in the lung, we immunohistochemically studied distribution patterns of laminins alpha 3 and alpha 5 in 40 adenocarcinomas and 8 squamous cell carcinomas. The a 5 chain was generally preserved at the periphery, frequently disrupted in foci with alveolar collapse and absent in foci of fibroblastic proliferation within adenocarcinomas. Fragmentation and absence of laminin alpha 3 chain were more prominent than for alpha 5 chain. Laminin alpha 3 chain was partially fragmented or absent in peripheral areas of adenocarcinomas, being significantly different from alpha 5 chain. Non-small cell lung cancers with reduced alpha 5 chain showed a tendency for greater lymph node metastasis. In cultured normal air way epithelial cells, both laminin alpha 3 and alpha 5 chains were found to be expressed by northern analysis. Eleven of the twelve cultured lung cancer cell lines did not express alpha 3 chain and expression of alpha 5 chain was reduced in three. Quantitative RT-PCR analysis also demonstrated expression of laminin alpha 3 chain in adenocarcinoma tissues to be significantly lower than in normal lung tissues. These results suggest that expression of laminin alpha chains is often reduced in lung cancer cells and this might contribute to basement membrane fragmentation and subsequent proliferation of stromal elements, as well as play some role in the process of cancer cell invasion.
Collapse
Affiliation(s)
- T Akashi
- The Department of Pathology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Franek WR, Horowitz S, Stansberry L, Kazzaz JA, Koo HC, Li Y, Arita Y, Davis JM, Mantell AS, Scott W, Mantell LL. Hyperoxia inhibits oxidant-induced apoptosis in lung epithelial cells. J Biol Chem 2001; 276:569-75. [PMID: 11034997 DOI: 10.1074/jbc.m004716200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has previously been shown that hyperoxia induces nonapoptotic cell death in cultured lung epithelial cells, whereas hydrogen peroxide (H(2)O(2)) and paraquat cause apoptosis. To test whether pathways leading to oxidative apoptosis in epithelial cells are sensitive to molecular O(2), A549 cells were exposed to 95% O(2) prior to exposure to lethal concentrations of H(2)O(2). The extent of H(2)O(2)-induced apoptosis was significantly reduced in cells preexposed to hyperoxia compared with room-air controls. Preexposure of the hyperoxia-resistant HeLa-80 cell line to 80% O(2) also inhibited oxidant-induced apoptosis, suggesting that this inhibition is not due to O(2) toxicity. Because hyperoxia generates reactive oxygen species and activates the redox-sensitive transcription factor nuclear factor kappa B (NF-kappa B), the role of antioxidant enzymes and NF-kappa B were examined in this inhibitory process. The onset of inhibition appeared to be directly related to the degradation of I kappa B and subsequent activation of NF-kappa B (either by hyperoxia or TNF-alpha), whereas no significant up-regulation of endogenous antioxidant enzyme activities was found. In addition, suppression of NF-kappa B activities by transfecting A549 cells with a dominant-negative mutant construct of I kappa B significantly augmented the extent of H(2)O(2)-induced apoptosis. These data suggest that hyperoxia inhibits oxidant-induced apoptosis and that this inhibition is mediated by NF-kappa B.
Collapse
Affiliation(s)
- W R Franek
- CardioPulmonary Research Institute, Winthrop University Hospital, SUNY-Stony Brook School of Medicine, Mineola, New York 11501, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Acute lung injury is an unfortunate consequence of oxygen therapy. Increasing evidence suggests that pulmonary dysfunction resulting from acute oxygen toxicity is at least in part due to the injury and death of lung cells. Studies using morphological and biochemical analyses revealed that hyperoxia-induced pulmonary cell death is multimodal, involving not only necrosis, but also apoptosis. A correlative relationship between the severity of hyperoxic acute lung injury and increased apoptosis has been supported by numerous studies in a variety of animal models, although future experiments are necessary to determine whether it is an actual causal relationship. Altered expression of several apoptotic regulatory proteins, such as p53 and Bcl-2, and DNA damage-induced proteins is associated with hyperoxic cell death and lung injury. Stress-responsive proteins, such as heme oxygenase (HO)-1, have been shown to protect animals against hyperoxic cell injury and death. Redox-sensitive transcription factors and mitogen-activated protein kinase signal transduction pathways may play important roles in regulating the expression of stress-responsive and apoptotic regulatory genes. A better understanding of signal transduction pathways leading to hyperoxic cell death may provide new approaches to the treatment of hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- L L Mantell
- Departments of Thoracic Cardiovascular Surgery, Winthrop-University Hospital, Mineola, New York 11501, USA.
| | | |
Collapse
|
40
|
Kazzaz JA, Horowitz S, Li Y, Mantell LL. Hyperoxia in cell culture. A non-apoptotic programmed cell death. Ann N Y Acad Sci 2000; 887:164-70. [PMID: 10668472 DOI: 10.1111/j.1749-6632.1999.tb07930.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we discuss the morphological features and our current understanding of the pathways involved in non-apoptotic cell death from O2 toxicity. Preliminary data on hyperoxic signaling indicate that NF-kappa B translocation (and presumptive activation) is not a result of the p42/p44 MAPK pathway, but a likely downstream consequence of activation of the JNK pathway. Our observations suggest the existence of multiple signal transduction pathways in hyperoxia-induced cell death: one involved in the stress response which appears to be NF-kappa B-dependent and another in cell death.
Collapse
Affiliation(s)
- J A Kazzaz
- CardioPulmonary Research Institute, Winthrop-University Hospital, SUNY Stony Brook School of Medicine, Mineola 11501, USA.
| | | | | | | |
Collapse
|
41
|
Segura-Valdez L, Pardo A, Gaxiola M, Uhal BD, Becerril C, Selman M. Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest 2000; 117:684-94. [PMID: 10712992 DOI: 10.1378/chest.117.3.684] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND A central feature in the pathogenesis of COPD is the inflammation coexisting with an abnormal protease/antiprotease balance. However, the possible role of different serine and metalloproteinases remains controversial. PATIENTS AND MEASUREMENTS We examined the expression of gelatinases A and B (matrix metalloproteinase [MMP]-2 and MMP-9); collagenases 1, 2, and 3 (MMP-1, MMP-8, and MMP-13); as well as the presence of apoptosis in lung tissues of 10 COPD patients and 5 control subjects. In addition, gelatinase-A and gelatinase-B activities were assessed in BAL obtained from eight COPD patients, and from six healthy nonsmokers and six healthy smoker control subjects. SETTING Tertiary referral center and university laboratories of biochemistry, and lung cell kinetics. RESULTS Immunohistochemical analysis of COPD lungs showed a markedly increased expression of collagenases 1 and 2, and gelatinases A and B, while collagenase 3 was not found. Neutrophils exhibited a positive signal for collagenase 2 and gelatinase B, whereas collagenase 1 and gelatinase A were revealed mainly in macrophages and epithelial cells. BAL gelatin zymography showed a moderate increase of progelatinase-A activity and intense bands corresponding to progelatinase B. In situ end labeling of fragmented DNA displayed foci of positive endothelial cells, although some alveolar epithelial, interstitial, and inflammatory cells also revealed intranuclear staining. CONCLUSION These findings suggest that there is an upregulation of collagenase 1 and 2 and gelatinases A and B, and an increase in endothelial and epithelial cell death, which may contribute to the pathogenesis of COPD through the remodeling of airways and alveolar structures.
Collapse
Affiliation(s)
- L Segura-Valdez
- Instituto Nacional de Enfermedades Respiratorias (Drs. Segura-Valdez, Gaxiola, Selman, and Ms. Becerril), Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
42
|
Kim YH, Takahashi M, Noguchi N, Suzuki E, Suzuki K, Taniguchi N, Niki E. Inhibition of c-Jun expression induces antioxidant enzymes under serum deprivation. Arch Biochem Biophys 2000; 374:339-46. [PMID: 10666316 DOI: 10.1006/abbi.1999.1604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that antisense c-jun suppressed apoptosis induced by serum deprivation in F-MEL cells. To elucidate the molecular mechanisms responsible for this suppression of apoptosis we investigated the activities and protein expression of antioxidant materials in the cell under serum deprivation. In the parental F-MEL cells enzyme activities of catalase, glutathione S-transferase (GST), and glutathione peroxidase (GPx) increased to reach the maximum at 24-72 h after removal of serum and then decreased to initial levels or a little less. Superoxide dismutase (SOD) maintained the initial level for 72 h and increased 1.5- to 2-fold at 96 h. Glutathione (GSH) levels increased at 24 h and then dropped significantly to one-third the initial level. On the other hand, in c-junAS (+) cells, in which antisense c-jun was expressed and c-Jun protein expression was reduced to undetectable level. We found 1.9-, 2.7-, 4.8-, and 15. 8-fold increase in the activities of catalase, GST, SOD, and GPx, respectively, at 96 h. GSH maintained almost the same level as the initial. Enhancement of these enzyme activities in c-junAS (+) cells was induced under serum deprivation. Western blottings for catalase, GST, and SOD also showed enhanced increase in protein expression, supporting the increase in enzyme activities. Cellular peroxide level under serum deprivation was monitored by flow cytometry using DCFH-DA as a probe. We found that the peroxide level increased at 24 h and then decreased at 72 and 96 h in c-junAS (+) cells, and reduction of the peroxide level coincided with an increase in antioxidant enzyme activities. These results indicate that antioxidant materials such as catalase, GST, SOD, GPx, and GSH are induced by serum deprivation when c-jun expression is inhibited in F-MEL cells. The link between inhibition of c-jun expression and enhancement of cellular antioxidant defense is discussed.
Collapse
Affiliation(s)
- Y H Kim
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Rancourt RC, Staversky RJ, Keng PC, O'Reilly MA. Hyperoxia inhibits proliferation of Mv1Lu epithelial cells independent of TGF-beta signaling. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L1172-8. [PMID: 10600888 DOI: 10.1152/ajplung.1999.277.6.l1172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
High concentrations of O(2) inhibit epithelial cell proliferation that resumes on recovery in room air. To determine whether growth arrest is mediated by transforming growth factor-beta (TGF-beta), changes in cell proliferation during exposure to hyperoxia were assessed in the mink lung epithelial cell line Mv1Lu and the clonal variant R1B, which is deficient for the type I TGF-beta receptor. Mv1Lu cells treated with TGF-beta accumulated in the G(1) phase of the cell cycle as determined by propidium iodide staining, whereas proliferation of R1B cells was unaffected by TGF-beta. In contrast, hyperoxia inhibited proliferation of both cell lines within 24 h of exposure through an accumulation in the S phase. Mv1Lu cells treated with TGF-beta and exposed to hyperoxia accumulated in the G(1) phase, suggesting that TGF-beta can inhibit the S phase accumulation observed with hyperoxia alone. Cyclin A was detected in cultures exposed to room air or growth arrested by hyperoxia while decreasing in cells growth arrested in the G(1) phase by TGF-beta. Finally, hyperoxia failed to activate a TGF-beta-dependent transcriptional reporter in both Mv1Lu and R1B cells. These findings reveal that simple growth arrest by hyperoxia involves a defect in S phase progression that is independent of TGF-beta signaling.
Collapse
Affiliation(s)
- R C Rancourt
- Department of Environmental Medicine, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Eosinophils, which are prominent cells in asthmatic inflammation, undergo apoptosis and are recognized and engulfed by phagocytic macrophages in vitro. We have examined the ability of human small airway epithelial cells (SAEC) to recognize and ingest apoptotic human eosinophils. Cultured SAEC ingested apoptotic eosinophils but not freshly isolated eosinophils or opsonized erythrocytes. The ability of SAEC to ingest apoptotic eosinophils was enhanced by interleukin-1 (IL-1) or tumor necrosis factor (TNF) in a time- and concentration-dependent fashion. IL-1 was found to be more potent than TNF and each was optimal at 10−10 mol/L, with a significant (P < .05) effect observed at 1 hour postcytokine incubation that was maximal at 5 hours. IL-1 stimulation not only increased the number of SAEC engulfing apoptotic eosinophils, but also enhanced their capacity for ingestion. The amino sugars glucosamine, n-acetyl glucosamine, and galactosamine significantly inhibited uptake of apoptotic eosinophils by both resting and IL-1–stimulated SAEC, in contrast to the parent sugars glucose, galactose, mannose, and fucose. Incubation of apoptotic eosinophils with the tetrapeptide RGDS, but not RGES, significantly inhibited their uptake by both resting and IL-1–stimulated SAEC, as did monoclonal antibody against vβ3 and CD36. Thus, SAEC recognize apoptotic eosinophils via lectin- and integrin-dependent mechanisms. These data demonstrate a novel function for human bronchial epithelial cells that might represent an important mechanism in the resolution of eosinophil-induced asthmatic inflammation.
Collapse
|
45
|
Raghuram N, Fortenberry JD, Owens ML, Brown LA. Effects of exogenous nitric oxide and hyperoxia on lung fibroblast viability and DNA fragmentation. Biochem Biophys Res Commun 1999; 262:685-91. [PMID: 10471386 DOI: 10.1006/bbrc.1999.1216] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effective lung repair after acute injury requires elimination of proliferating mesenchymal and inflammatory cells without inducing an acute inflammatory response or disturbing concomitant repair of lung microvasculature. Previous studies have shown that endogenous NO regulates programmed cell death in fibroblasts and can modulate wound fibroblast synthetic function. We hypothesized that exposure of human lung fibroblasts to NO gas would decrease viability and induce apoptotic cell death. Primary cultures of normal human lung fibroblasts were exposed for 4 h to room air (RA), 80% oxygen, NO (at either 20 or 50 ppm) blended with RA, or NO blended with 80% O(2), then incubated for 24 to 72 h. Cell viability was determined by fluorescence viability/cytotoxicity assay and DNA fragmentation by TUNEL assay. Peroxynitrite formation was assessed using immunoblotting for S-nitrosotyrosine. NO plus O(2) induced significant cell death at 20 and 50 ppm NO when compared to either RA or O(2) alone at both 24 and 72 h (p < 0.05). Incubation with superoxide dismutase (SOD), catalase (CAT) or SOD + CAT significantly decreased cell death in fibroblasts treated with NO(20)/O(2) and NO(50)/O(2) compared with controls (p < 0.05). NO(20)/O(2) and NO(50)/O(2) exposure significantly increased TUNEL mean fluorescence intensity (MFI), consistent with increased DNA fragmentation, compared to RA at 24 and 72 h (p < 0.05). Antioxidants decreased MFI in cells exposed to NO(20)/O(2) (CAT and SOD + CAT) compared to controls at 24 h (p < 0.05). Western blot analysis for S-nitrosotyrosine showed increased signal intensity in fibroblasts exposed to NO at 20 and 50 ppm plus O(2) compared to RA or O(2) alone. Incubation with SOD + CAT reduced signal intensity for peroxynitrite in cells exposed to NO(20)/O(2). We conclude that NO in hyperoxic conditions induces fibroblast cell death and DNA fragmentation, which could be partially mediated by peroxynitrite synthesis.
Collapse
Affiliation(s)
- N Raghuram
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
46
|
Petrache I, Choi ME, Otterbein LE, Chin BY, Mantell LL, Horowitz S, Choi AM. Mitogen-activated protein kinase pathway mediates hyperoxia-induced apoptosis in cultured macrophage cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L589-95. [PMID: 10484467 DOI: 10.1152/ajplung.1999.277.3.l589] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that the lungs of mice can exhibit increased programmed cell death or apoptosis after hyperoxic exposure in vivo. In this report, we show that hyperoxic exposure in vitro can also induce apoptosis in cultured murine macrophage cells (RAW 264.7) as assessed by DNA-laddering, terminal deoxynucleotidyltransferase dUTP nick end-labeling, and nucleosomal assays. To further delineate the signaling pathway of hyperoxia-induced apoptosis in RAW 264.7 macrophages, we first show that hyperoxia can activate the mitogen-activated protein kinase (MAPK) pathway, the extracellular signal-regulated kinases (ERKs) p42/p44, in a time-dependent manner as assessed by increased phosphorylation of ERK1/ERK2 by Western blot analyses. Neither the c-Jun NH(2)-terminal kinase/stress-activated protein kinase nor the p38 MAPK was activated by hyperoxia in these cells. Chemical or genetic inhibition of the ERK p42/p44 MAPK pathway by PD-98059, a selective inhibitor of MAPK kinase, and dominant negative mutants of ERK, respectively, attenuated hyperoxia-induced apoptosis as assessed by DNA laddering and nucleosomal ELISAs. Taken together, our data suggest that hyperoxia can induce apoptosis in cultured murine macrophages and that the MAPK pathway mediates hyperoxia-induced apoptosis.
Collapse
Affiliation(s)
- I Petrache
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Jyonouchi H, Sun S, Iijima K, Wang M, Hecht SS. Effects of anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene on human small airway epithelial cells and the protective effects of myo-inositol. Carcinogenesis 1999; 20:139-45. [PMID: 9934861 DOI: 10.1093/carcin/20.1.139] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Benzo[a]pyrene (B[a]P), a tobacco-derived carcinogen, induces lung tumors in rodents through its carcinogenic metabolite, anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (B[a]PDE). Tumorigenesis is inhibited by dietary myo-inositol in the post-initiation phase. However, little is known about how B[a]PDE and myo-inositol affect normal human lung cells. We addressed this question using untransformed human small airway epithelial (SAE) cells. SAE cell viability decreased <50% in parallel to an increase of apoptotic cells (>20%) 2 days after the cells were treated for 1 h with B[a]PDE (>100 nM). In contrast, the cell number and viability were not altered in A549 human lung cancer cells by B[a]PDE treatment up to 10 microM with <5% apoptotic cells and <10 U/l LDH in the medium. SAE cells retain the features of basal cells in serum-free, low Ca2+ (4 nM) medium up to 4-5 passages, but in serum-supplemented or serum-free, high Ca2+ (1 mM) cultures, they differentiate into non-ciliated epithelial cells expressing Clara cell secretory protein (CCSP). A non-toxic, physiologically relevant dose of B[a]PDE (1 nM) partially inhibited serum and Ca2+-induced SAE cell differentiation. This effect was abolished by wortmannin, a phosphatidylinositol-3 kinase (PI-3K) inhibitor, and PD98059, a mitogen activated protein kinase (MAPK) kinase-1 (MEK1) inhibitor, but not by SB202190, a p38 MAPK inhibitor, or melittin, a protein kinase C inhibitor. Myo-inositol (10-100 microM) did not alter growth or differentiation of untreated SAE or A549 cells, but reversed the inhibitory effect of B[a]PDE on serum and Ca2+-induced SAE cell differentiation when supplemented to the culture after B[a]PDE treatment. This myo-inositol action was not altered by PD98059, wortmannin or melittin, but was partially suppressed by SB202190. Collectively, these results indicate that B[a]PDE inhibits serum-induced SAE cell differentiation, possibly involving activating signals through a PI-3K/MEK1 mediated MAPK pathway, whereas myo-inositol protects SAE cells against this inhibitory effect of B[a]PDE perhaps through both PI-3K/MEK1 and p38 MAPK pathways.
Collapse
Affiliation(s)
- H Jyonouchi
- Department of Pediatrics, University of Minnesota, School of Medicine, UMHC, Minneapolis 55455, USA.
| | | | | | | | | |
Collapse
|