1
|
Chang MY, Chan CK, Brune JE, Manicone AM, Bomsztyk K, Frevert CW, Altemeier WA. Regulation of versican expression in macrophages is mediated by canonical type I interferon signaling via ISGF3. Am J Physiol Cell Physiol 2024; 327:C1274-C1288. [PMID: 39400584 PMCID: PMC11559644 DOI: 10.1152/ajpcell.00174.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Growing evidence supports a role for versican as an important component of the inflammatory response, with both pro- and anti-inflammatory roles depending on the specific context of the system or disease under investigation. Our goal is to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. In previous work, we showed that LPS triggers a signaling cascade involving Toll-like receptor (TLR)4, the Trif adaptor, type I interferons, and the type I interferon receptor, leading to increased versican expression by macrophages. In the present study, we used a combination of chromatin immunoprecipitation, siRNA, chemical inhibitors, and mouse model approaches to investigate the regulatory events downstream of the type I interferon receptor to better define the mechanism controlling versican expression. Results indicate that transcriptional regulation by canonical type I interferon signaling via interferon-stimulated gene factor 3 (ISGF3), the heterotrimeric transcription factor complex of Irf9, Stat1, and Stat2, controls versican expression in macrophages exposed to LPS. This pathway is not dependent on MAPK signaling, which has been shown to regulate versican expression in other cell types. The stability of versican mRNA may also contribute to prolonged versican expression in macrophages. These findings strongly support a role for macrophage-derived versican as a type I interferon-stimulated gene and further our understanding of versican's role in regulating inflammation.NEW & NOTEWORTHY We report the novel finding that versican expression is regulated by the interferon-stimulated gene factor 3 (ISGF3) arm of canonical type I Ifn signaling in LPS-stimulated macrophages. This pathway is distinct from mechanisms that control versican expression in other cell types. This suggests that macrophage-derived versican may play a role in limiting a potentially excessive inflammatory response. The detailed understanding of how versican expression is regulated in different cells could lead to unique approaches for enhancing its anti-inflammatory properties.
Collapse
Affiliation(s)
- Mary Y Chang
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Christina K Chan
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Jourdan E Brune
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Anne M Manicone
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Karol Bomsztyk
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - William A Altemeier
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
2
|
Katsuki S, Jha PK, Aikawa E, Aikawa M. The role of proprotein convertase subtilisin/kexin 9 (PCSK9) in macrophage activation: a focus on its LDL receptor-independent mechanisms. Front Cardiovasc Med 2024; 11:1431398. [PMID: 39149582 PMCID: PMC11324467 DOI: 10.3389/fcvm.2024.1431398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Recent clinical trials demonstrated that proprotein convertase subtilisin/kexin 9 (PCSK9) inhibitors reduce cardiovascular events without affecting systemic inflammation in the patients with coronary artery disease, as determined by high sensitivity C-reactive protein (CRP) levels. However, its pro-inflammatory effects in cardiovascular disease in humans and experimental animals beyond the traditional cholesterol receptor-dependent lipid metabolism have also called attention of the scientific community. PCSK9 may target receptors associated with inflammation other than the low-density lipoprotein receptor (LDLR) and members of the LDLR family. Accumulating evidence suggests that PCSK9 promotes macrophage activation not only via lipid-dependent mechanisms, but also lipid-independent and LDLR-dependent or -independent mechanisms. In addition to dyslipidemia, PCSK9 may thus be a potential therapeutic target for various pro-inflammatory diseases.
Collapse
Affiliation(s)
- Shunsuke Katsuki
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Prabhash Kumar Jha
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Channing Division of Network Medicine (MA), Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Hu Z, Cano I, Lei F, Liu J, Ramos RB, Gordon H, Paschalis EI, Saint-Geniez M, Ng YSE, D'Amore PA. Deletion of the endothelial glycocalyx component endomucin leads to impaired glomerular structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603749. [PMID: 39071302 PMCID: PMC11275787 DOI: 10.1101/2024.07.16.603749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Endomucin (EMCN), an endothelial-specific glycocalyx component, was found to be highly expressed by the endothelium of the renal glomerulus. We reported an anti-inflammatory role of EMCN and its involvement in the regulation of vascular endothelial growth factor (VEGF) activity through modulating VEGF receptor 2 (VEGFR2) endocytosis. The goal of this study is to investigate the phenotypic and functional effects of EMCN deficiency using the first global EMCN knockout mouse model. Methods Global EMCN knockout mice were generated by crossing EMCN-floxed mice with ROSA26-Cre mice. Flow cytometry was employed to analyze infiltrating myeloid cells in the kidneys. The ultrastructure of the glomerular filtration barrier was examined by transmission electron microscopy, while urinary albumin, creatinine, and total protein levels were analyzed from freshly collected urine samples. Expression and localization of EMCN, EGFP, CD45, CD31, CD34, podocin, albumin, and α-smooth muscle actin were examined by immunohistochemistry. Mice were weighed regularly, and their systemic blood pressure was measured using a non-invasive tail-cuff system. Glomerular endothelial cells and podocytes were isolated by fluorescence-activated cell sorting for RNA-seq. Transcriptional profiles were analyzed to identify differentially expressed genes in both endothelium and podocytes, followed by gene ontology analysis of up- and down-regulated genes. Protein levels of EMCN, albumin, and podocin were quantified by Western blot. Results EMCN -/- mice were viable with no gross anatomical defects in kidneys. The EMCN -/- mice exhibited increased infiltration of CD45 + cells, with an increased proportion of Ly6G high Ly6C high myeloid cells and higher VCAM-1 expression. EMCN -/- mice displayed albuminuria with increased albumin in the Bowman's space compared to the EMCN +/+ littermates. Glomeruli in EMCN -/- mice revealed fused and effaced podocyte foot processes and disorganized endothelial fenestrations. We found no significant difference in blood pressure between EMCN knockout mice and their wild-type littermates. RNA-seq of glomerular endothelial cells revealed downregulation of cell-cell adhesion and MAPK/ERK pathways, along with glycocalyx and extracellular matrix remodeling. In podocytes, we observed reduced VEGF signaling and alterations in cytoskeletal organization. Notably, there was a significant decrease in both mRNA and protein levels of podocin, a key component of the slit diaphragm. Conclusion Our study demonstrates a critical role of the endothelial marker EMCN in supporting normal glomerular filtration barrier structure and function by maintaining glomerular endothelial tight junction and homeostasis and podocyte function through endothelial-podocyte crosstalk.
Collapse
|
4
|
Ayilam Ramachandran R, Lemoff A, Robertson DM. Extracellular vesicles released by host epithelial cells during Pseudomonas aeruginosa infection function as homing beacons for neutrophils. Cell Commun Signal 2024; 22:341. [PMID: 38907250 PMCID: PMC11191230 DOI: 10.1186/s12964-024-01609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/10/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) is an opportunistic pathogen that can cause sight threatening infections in the eye and fatal infections in the cystic fibrosis airway. Extracellular vesicles (EVs) are released by host cells during infection and by the bacteria themselves; however, there are no studies on the composition and functional role of host-derived EVs during PA infection of the eye or lung. Here we investigated the composition and capacity of EVs released by PA infected epithelial cells to modulate innate immune responses in host cells. METHODS Human telomerase immortalized corneal epithelial cells (hTCEpi) cells and human telomerase immortalized bronchial epithelial cells (HBECs) were treated with a standard invasive test strain of Pseudomonas aeruginosa, PAO1, for 6 h. Host derived EVs were isolated by qEV size exclusion chromatography. EV proteomic profiles during infection were compared using mass spectrometry and functional studies were carried out using hTCEpi cells, HBECs, differentiated neutrophil-like HL-60 cells, and primary human neutrophils isolated from peripheral blood. RESULTS EVs released from PA infected corneal epithelial cells increased pro-inflammatory cytokine production in naïve corneal epithelial cells and induced neutrophil chemotaxis independent of cytokine production. The EVs released from PA infected bronchial epithelial cells were also chemotactic although they failed to induce cytokine secretion from naïve HBECs. At the proteomic level, EVs derived from PA infected corneal epithelial cells exhibited lower complexity compared to bronchial epithelial cells, with the latter having reduced protein expression compared to the non-infected control. CONCLUSIONS This is the first study to comprehensively profile EVs released by corneal and bronchial epithelial cells during Pseudomonas infection. Together, these findings show that EVs released by PA infected corneal and bronchial epithelial cells function as potent mediators of neutrophil migration, contributing to the exuberant neutrophil response that occurs during infection in these tissues.
Collapse
Affiliation(s)
| | - Andrew Lemoff
- The Departments of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Danielle M Robertson
- The Departments of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA.
- The Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, 75390-9057, Dallas, TX, USA.
| |
Collapse
|
5
|
Chang MY, Chan CK, Brune JE, Manicone AM, Bomsztyk K, Frevert CW, Altemeier WA. Regulation of Versican Expression in Macrophages is Mediated by Canonical Type I Interferon Signaling via ISGF3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585097. [PMID: 38559011 PMCID: PMC10980001 DOI: 10.1101/2024.03.14.585097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Growing evidence supports a role for versican as an important component of the inflammatory response, with both pro- and anti-inflammatory roles depending on the specific context of the system or disease under investigation. Our goal is to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. In previous work, we showed that LPS triggers a signaling cascade involving TLR4, the Trif adaptor, type I interferons, and the type I interferon receptor, leading to increased versican expression by macrophages. In the present study, we used a combination of chromatin immunoprecipitation, siRNA, chemical inhibitors, and mouse model approaches to investigate the regulatory events downstream of the type I interferon receptor to better define the mechanism controlling versican expression. Results indicate that transcriptional regulation by canonical type I interferon signaling via the heterotrimeric transcription factor, ISGF3, controls versican expression in macrophages exposed to LPS. This pathway is not dependent on MAPK signaling, which has been shown to regulate versican expression in other cell types. The stability of versican mRNA may also contribute to prolonged versican expression in macrophages. These findings strongly support a role for macrophage-derived versican as a type I interferon-stimulated gene and further our understanding of versican's role in regulating inflammation.
Collapse
Affiliation(s)
- Mary Y. Chang
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
| | - Christina K. Chan
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
| | - Jourdan E. Brune
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
| | - Anne M. Manicone
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Karol Bomsztyk
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA
| | - Charles W. Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - William A. Altemeier
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
6
|
Kunnathattil M, Rahul P, Skaria T. Soluble vascular endothelial glycocalyx proteoglycans as potential therapeutic targets in inflammatory diseases. Immunol Cell Biol 2024; 102:97-116. [PMID: 37982607 DOI: 10.1111/imcb.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.
Collapse
Affiliation(s)
- Maneesha Kunnathattil
- Department of Zoology, Government College Madappally, University of Calicut, Calicut, Kerala, India
| | - Pedapudi Rahul
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
7
|
Tang F, Reeves SR, Brune JE, Chang MY, Chan CK, Waldron P, Drummond SP, Milner CM, Alonge KM, Garantziotis S, Day AJ, Altemeier WA, Frevert CW. Inter-alpha-trypsin inhibitor (IαI) and hyaluronan modifications enhance the innate immune response to influenza virus in the lung. Matrix Biol 2024; 126:25-42. [PMID: 38232913 DOI: 10.1016/j.matbio.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 01/19/2024]
Abstract
The inter-alpha-trypsin inhibitor (IαI) complex is composed of the bikunin core protein with a single chondroitin sulfate (CS) attached and one or two heavy chains (HCs) covalently linked to the CS chain. The HCs from IαI can be transferred to hyaluronan (HA) through a TNFα-stimulated gene-6 (TSG-6) dependent process to form an HC•HA matrix. Previous studies reported increased IαI, HA, and HC•HA complexes in mouse bronchoalveolar lavage fluid (BALF) post-influenza infection. However, the expression and incorporation of HCs into the HA matrix of the lungs during the clinical course of influenza A virus (IAV) infection and the biological significance of the HC•HA matrix are poorly understood. The present study aimed to better understand the composition of HC•HA matrices in mice infected with IAV and how these matrices regulate the host pulmonary immune response. In IAV infected mice bikunin, HC1-3, TSG-6, and HAS1-3 all show increased gene expression at various times during a 12-day clinical course. The increased accumulation of IαI and HA was confirmed in the lungs of infected mice using immunohistochemistry and quantitative digital pathology. Western blots confirmed increases in the IαI components in BALF and lung tissue at 6 days post-infection (dpi). Interestingly, HCs and bikunin recovered from BALF and plasma from mice 6 dpi with IAV, displayed differences in the HC composition by Western blot analysis and differences in bikunin's CS chain sulfation patterns by mass spectrometry analysis. This strongly suggests that the IαI components were synthesized in the lungs rather than translocated from the vascular compartment. HA was significantly increased in BALF at 6 dpi, and the HA recovered in BALF and lung tissues were modified with HCs indicating the presence of an HC•HA matrix. In vitro experiments using polyinosinic-polycytidylic acid (poly(I:C)) treated mouse lung fibroblasts (MLF) showed that modification of HA with HCs increased cell-associated HA, and that this increase was due to the retention of HA in the MLF glycocalyx. In vitro studies of leukocyte adhesion showed differential binding of lymphoid (Hut78), monocyte (U937), and neutrophil (dHL60) cell lines to HA and HC•HA matrices. Hut78 cells adhered to immobilized HA in a size and concentration-dependent manner. In contrast, the binding of dHL60 and U937 cells depended on generating a HC•HA matrix by MLF. Our in vivo findings, using multiple bronchoalveolar lavages, correlated with our in vitro findings in that lymphoid cells bound more tightly to the HA-glycocalyx in the lungs of influenza-infected mice than neutrophils and mononuclear phagocytes (MNPs). The neutrophils and MNPs were associated with a HC•HA matrix and were more readily lavaged from the lungs. In conclusion, this work shows increased IαI and HA accumulation and the formation of a HC•HA matrix in mouse lungs post-IAV infection. The formation of HA and HC•HA matrices could potentially create specific microenvironments in the lungs for immune cell recruitment and activation during IAV infection.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA.
| | - Stephen R Reeves
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA; Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jourdan E Brune
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Mary Y Chang
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Christina K Chan
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Peter Waldron
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Sheona P Drummond
- Welcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK; Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Caroline M Milner
- Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Kimberly M Alonge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Anthony J Day
- Welcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK; Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - William A Altemeier
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Charles W Frevert
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Tanino Y. Roles of extracellular matrix in lung diseases. Fukushima J Med Sci 2024; 70:1-9. [PMID: 38267030 PMCID: PMC10867433 DOI: 10.5387/fms.2023-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024] Open
Abstract
Extracellular matrix (ECM) is a non-cellular constituent found in all tissues and organs. Although ECM was previously recognized as a mere "molecular glue" that supports the tissue structure of organs such as the lungs, it has recently been reported that ECM has important biological activities for tissue morphogenesis, inflammation, wound healing, and tumor progression. Proteoglycans are the main constituent of ECM, with growing evidence that proteoglycans and their associated glycosaminoglycans play important roles in the pathogenesis of several diseases. However, their roles in the lungs are incompletely understood. Leukocyte migration into the lung is one of the main aspects involved in the pathogenesis of several lung diseases. Glycosaminoglycans bind to chemokines and their interaction fine-tunes leukocyte migration into the affected organs. This review focuses on the role chemokine and glycosaminoglycan interactions in neutrophil migration into the lung. Furthermore, this review presents the role of proteoglycans such as syndecan, versican, and hyaluronan in inflammatory and fibrotic lung diseases.
Collapse
Affiliation(s)
- Yoshinori Tanino
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine
| |
Collapse
|
9
|
Sawashita Y, Kazuma S, Tokinaga Y, Kikuchi K, Hirata N, Masuda Y, Yamakage M. Albumin protects the ultrastructure of the endothelial glycocalyx of coronary arteries in myocardial ischemia-reperfusion injury in vivo. Biochem Biophys Res Commun 2023; 666:29-35. [PMID: 37172449 DOI: 10.1016/j.bbrc.2023.04.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Myocardial ischemia-reperfusion (I/R) injury induces endothelial glycocalyx (GCX) degradation. Several candidate GCX-protective factors including albumin have been identified, few have been demonstrated in in vivo studies and most albumins used to date have been heterologous. Albumin is a carrier protein for sphingosine 1-phosphate (S1P), which has protective effects on the cardiovascular system. However, changes inhibited by albumin in the endothelial GCX structure in I/R in vivo via the S1P receptor has not been reported. In this study, we aimed to determine whether albumin prevents the shedding of endothelial GCX in response to I/R in vivo. Rats were divided into four groups: control (CON), I/R, I/R with albumin preload (I/R + ALB), and I/R + ALB with S1P receptor agonist fingolimod (I/R + ALB + FIN). FIN acts as an initial agonist of S1P receptor 1 and downregulates the receptor in an inhibitory manner. The CON and I/R groups received saline and I/R + ALB and I/R + ALB + FIN groups received albumin solution before left anterior descending coronary artery ligation. Our study used rat albumin. Shedding of endothelial GCX was evaluated in the myocardium by electron microscopy, and the concentration of serum syndecan-1 was measured. Thus, albumin administration maintained the structure of endothelial GCX and prevented shedding of endothelial GCX via the S1P receptor in myocardial I/R, and FIN annihilated the protective effect of albumin against I/R injury.
Collapse
Affiliation(s)
- Yasuaki Sawashita
- Department of Anesthesiology, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Satoshi Kazuma
- Department of Intensive Care Medicine, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan.
| | - Yasuyuki Tokinaga
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Kenichiro Kikuchi
- Department of Anesthesiology, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Naoyuki Hirata
- Department of Anesthesiology, Kumamoto University, School of Medicine, Kumamoto, Kumamoto, Japan
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Michiaki Yamakage
- Department of Anesthesiology, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
10
|
Matsuzaki Y, Wang X, Tanino Y, Ikeda K. Insufficient Syndecan-4 is associated with chronic lung disease development in preterm infants. Pediatr Int 2023; 65:e15413. [PMID: 36334036 DOI: 10.1111/ped.15413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/04/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yohei Matsuzaki
- Department of Pediatrics, School of Medicine, Keio University, Tokyo, Japan
- Department of Pediatrics, Yokohama Municipal Citizen's Hospital, Yokohama, Kanagawa, Japan
| | - Xintao Wang
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yoshinori Tanino
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazushige Ikeda
- Department of Pediatrics, School of Medicine, Keio University, Tokyo, Japan
- Division of Neonatology, Department of Pediatrics, Saitama City hospital, Saitama, Japan
| |
Collapse
|
11
|
Abstract
New SARS-CoV-2 variants of concern and waning immunity demonstrate the need for a quick and simple prophylactic agent to prevent infection. Low molecular weight heparins (LMWH) are potent inhibitors of SARS-CoV-2 binding and infection in vitro. The airways are a major route for infection and therefore inhaled LMWH could be a prophylactic treatment against SARS-CoV-2. We investigated the efficacy of in vivo inhalation of LMWH in humans to prevent SARS-CoV-2 attachment to nasal epithelial cells in a single-center, open-label intervention study. Volunteers received enoxaparin in the right and a placebo (NaCl 0.9%) in the left nostril using a nebulizer. After application, nasal epithelial cells were retrieved with a brush for ex-vivo exposure to either SARS-CoV-2 pseudovirus or an authentic SARS-CoV-2 isolate and virus attachment as determined. LMWH inhalation significantly reduced attachment of SARS-CoV-2 pseudovirus as well as authentic SARS-CoV-2 to human nasal cells. Moreover, in vivo inhalation was as efficient as in vitro LMWH application. Cell phenotyping revealed no differences between placebo and treatment groups and no adverse events were observed in the study participants. Our data strongly suggested that inhalation of LMWH was effective to prevent SARS-CoV-2 attachment and subsequent infection. LMWH is ubiquitously available, affordable, and easy to apply, making them suitable candidates for prophylactic treatment against SARS-CoV-2. IMPORTANCE New SARS-CoV-2 variants of concern and waning immunity demonstrate the need for a quick and simple agent to prevent infection. Low molecular weight heparins (LMWH) have been shown to inhibit SARS-CoV-2 in experimental settings. The airways are a major route for SARS-CoV-2 infection and inhaled LMWH could be a prophylactic treatment. We investigated the efficacy of inhalation of the LMWH enoxaparin in humans to prevent SARS-CoV-2 attachment because this is a prerequisite for infection. Volunteers received enoxaparin in the right and a placebo in the left nostril using a nebulizer. Subsequently, nasal epithelial cells were retrieved with a brush and exposed to SARS-CoV-2. LMWH inhalation significantly reduced the binding of SARS-Cov-2 to human nasal cells. Cell phenotyping revealed no differences between placebo and treatment groups and no adverse events were observed in the participants. Our data indicated that LMWH can be used to block SARS-CoV-2 attachment to nasal cells. LMWH was ubiquitously available, affordable, and easily applicable, making them excellent candidates for prophylactic treatment against SARS-CoV-2.
Collapse
|
12
|
Katsuki S, K. Jha P, Lupieri A, Nakano T, Passos LS, Rogers MA, Becker-Greene D, Le TD, Decano JL, Ho Lee L, Guimaraes GC, Abdelhamid I, Halu A, Muscoloni A, V. Cannistraci C, Higashi H, Zhang H, Vromman A, Libby P, Keith Ozaki C, Sharma A, Singh SA, Aikawa E, Aikawa M. Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) Promotes Macrophage Activation via LDL Receptor-Independent Mechanisms. Circ Res 2022; 131:873-889. [PMID: 36263780 PMCID: PMC9973449 DOI: 10.1161/circresaha.121.320056] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Activated macrophages contribute to the pathogenesis of vascular disease. Vein graft failure is a major clinical problem with limited therapeutic options. PCSK9 (proprotein convertase subtilisin/kexin 9) increases low-density lipoprotein (LDL)-cholesterol levels via LDL receptor (LDLR) degradation. The role of PCSK9 in macrophage activation and vein graft failure is largely unknown, especially through LDLR-independent mechanisms. This study aimed to explore a novel mechanism of macrophage activation and vein graft disease induced by circulating PCSK9 in an LDLR-independent fashion. METHODS We used Ldlr-/- mice to examine the LDLR-independent roles of circulating PCSK9 in experimental vein grafts. Adeno-associated virus (AAV) vector encoding a gain-of-function mutant of PCSK9 (rAAV8/D377Y-mPCSK9) induced hepatic PCSK9 overproduction. To explore novel inflammatory targets of PCSK9, we used systems biology in Ldlr-/- mouse macrophages. RESULTS In Ldlr-/- mice, AAV-PCSK9 increased circulating PCSK9, but did not change serum cholesterol and triglyceride levels. AAV-PCSK9 promoted vein graft lesion development when compared with control AAV. In vivo molecular imaging revealed that AAV-PCSK9 increased macrophage accumulation and matrix metalloproteinase activity associated with decreased fibrillar collagen, a molecular determinant of atherosclerotic plaque stability. AAV-PCSK9 induced mRNA expression of the pro-inflammatory mediators IL-1β (interleukin-1 beta), TNFα (tumor necrosis factor alpha), and MCP-1 (monocyte chemoattractant protein-1) in peritoneal macrophages underpinned by an in vitro analysis of Ldlr-/- mouse macrophages stimulated with endotoxin-free recombinant PCSK9. A combination of unbiased global transcriptomics and new network-based hyperedge entanglement prediction analysis identified the NF-κB (nuclear factor-kappa B) signaling molecules, lectin-like oxidized LOX-1 (LDL receptor-1), and SDC4 (syndecan-4) as potential PCSK9 targets mediating pro-inflammatory responses in macrophages. CONCLUSIONS Circulating PCSK9 induces macrophage activation and vein graft lesion development via LDLR-independent mechanisms. PCSK9 may be a potential target for pharmacologic treatment for this unmet medical need.
Collapse
Affiliation(s)
- Shunsuke Katsuki
- The Center for Excellence in Vascular Biology, Cardiovascular Division (S.K., P.K.J., A.L., T.N., L.S.A.P., D.B.-G., T.-D.L., G.C.G., A.V., P.L., E.A., M.A.)
| | - Prabhash K. Jha
- The Center for Excellence in Vascular Biology, Cardiovascular Division (S.K., P.K.J., A.L., T.N., L.S.A.P., D.B.-G., T.-D.L., G.C.G., A.V., P.L., E.A., M.A.)
| | - Adrien Lupieri
- The Center for Excellence in Vascular Biology, Cardiovascular Division (S.K., P.K.J., A.L., T.N., L.S.A.P., D.B.-G., T.-D.L., G.C.G., A.V., P.L., E.A., M.A.)
| | - Toshiaki Nakano
- The Center for Excellence in Vascular Biology, Cardiovascular Division (S.K., P.K.J., A.L., T.N., L.S.A.P., D.B.-G., T.-D.L., G.C.G., A.V., P.L., E.A., M.A.)
| | - Livia S.A. Passos
- The Center for Excellence in Vascular Biology, Cardiovascular Division (S.K., P.K.J., A.L., T.N., L.S.A.P., D.B.-G., T.-D.L., G.C.G., A.V., P.L., E.A., M.A.)
| | - Maximillian A. Rogers
- The Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (M.A.R., J.L.D., L.H.L., I.A., A.H., H.H., H.Z., A.S., S.A.S., E.A., M.A.)
| | - Dakota Becker-Greene
- The Center for Excellence in Vascular Biology, Cardiovascular Division (S.K., P.K.J., A.L., T.N., L.S.A.P., D.B.-G., T.-D.L., G.C.G., A.V., P.L., E.A., M.A.)
| | - Thanh-Dat Le
- The Center for Excellence in Vascular Biology, Cardiovascular Division (S.K., P.K.J., A.L., T.N., L.S.A.P., D.B.-G., T.-D.L., G.C.G., A.V., P.L., E.A., M.A.)
| | - Julius L. Decano
- The Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (M.A.R., J.L.D., L.H.L., I.A., A.H., H.H., H.Z., A.S., S.A.S., E.A., M.A.)
| | - Lang Ho Lee
- The Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (M.A.R., J.L.D., L.H.L., I.A., A.H., H.H., H.Z., A.S., S.A.S., E.A., M.A.)
| | - Gabriel C. Guimaraes
- The Center for Excellence in Vascular Biology, Cardiovascular Division (S.K., P.K.J., A.L., T.N., L.S.A.P., D.B.-G., T.-D.L., G.C.G., A.V., P.L., E.A., M.A.)
| | - Ilyes Abdelhamid
- The Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (M.A.R., J.L.D., L.H.L., I.A., A.H., H.H., H.Z., A.S., S.A.S., E.A., M.A.)
- Channing Division of Network Medicine (I.A., A.H., A.S., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Arda Halu
- The Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (M.A.R., J.L.D., L.H.L., I.A., A.H., H.H., H.Z., A.S., S.A.S., E.A., M.A.)
- Channing Division of Network Medicine (I.A., A.H., A.S., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alessandro Muscoloni
- The Biomedical Cybernetics Group, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Center for Systems Biology Dresden, Cluster of Excellence Physics of Life, Department of Physics, Technical University Dresden, Dresden, Germany (A.M., C.V.C)
- Center for Complex Network Intelligence at the Tsinghua Laboratory of Brain and Intelligence, Department of Bioengineering, Tsinghua University, Beijing, China (A.M., C.V.C.)
| | - Carlo V. Cannistraci
- The Center for Excellence in Vascular Biology, Cardiovascular Division (S.K., P.K.J., A.L., T.N., L.S.A.P., D.B.-G., T.-D.L., G.C.G., A.V., P.L., E.A., M.A.)
- Center for Complex Network Intelligence at the Tsinghua Laboratory of Brain and Intelligence, Department of Bioengineering, Tsinghua University, Beijing, China (A.M., C.V.C.)
| | - Hideyuki Higashi
- The Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (M.A.R., J.L.D., L.H.L., I.A., A.H., H.H., H.Z., A.S., S.A.S., E.A., M.A.)
| | - Hengmin Zhang
- The Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (M.A.R., J.L.D., L.H.L., I.A., A.H., H.H., H.Z., A.S., S.A.S., E.A., M.A.)
| | - Amélie Vromman
- The Center for Excellence in Vascular Biology, Cardiovascular Division (S.K., P.K.J., A.L., T.N., L.S.A.P., D.B.-G., T.-D.L., G.C.G., A.V., P.L., E.A., M.A.)
| | - Peter Libby
- The Center for Excellence in Vascular Biology, Cardiovascular Division (S.K., P.K.J., A.L., T.N., L.S.A.P., D.B.-G., T.-D.L., G.C.G., A.V., P.L., E.A., M.A.)
| | - C. Keith Ozaki
- Center for Complex Network Intelligence at the Tsinghua Laboratory of Brain and Intelligence, Department of Bioengineering, Tsinghua University, Beijing, China (A.M., C.V.C.)
| | - Amitabh Sharma
- The Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (M.A.R., J.L.D., L.H.L., I.A., A.H., H.H., H.Z., A.S., S.A.S., E.A., M.A.)
- Channing Division of Network Medicine (I.A., A.H., A.S., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sasha A. Singh
- The Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (M.A.R., J.L.D., L.H.L., I.A., A.H., H.H., H.Z., A.S., S.A.S., E.A., M.A.)
| | - Elena Aikawa
- The Center for Excellence in Vascular Biology, Cardiovascular Division (S.K., P.K.J., A.L., T.N., L.S.A.P., D.B.-G., T.-D.L., G.C.G., A.V., P.L., E.A., M.A.)
- The Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (M.A.R., J.L.D., L.H.L., I.A., A.H., H.H., H.Z., A.S., S.A.S., E.A., M.A.)
| | - Masanori Aikawa
- The Center for Excellence in Vascular Biology, Cardiovascular Division (S.K., P.K.J., A.L., T.N., L.S.A.P., D.B.-G., T.-D.L., G.C.G., A.V., P.L., E.A., M.A.)
- The Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (M.A.R., J.L.D., L.H.L., I.A., A.H., H.H., H.Z., A.S., S.A.S., E.A., M.A.)
- Channing Division of Network Medicine (I.A., A.H., A.S., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Hu J, Zhang Y, Hu L, Chen H, Wu H, Chen J, Xie J, Xu B, Wei Z. A reduction of Syndecan-4 in macrophages promotes atherosclerosis by aggravating the proinflammatory capacity of macrophages. Lab Invest 2022; 20:319. [PMID: 35842658 PMCID: PMC9287986 DOI: 10.1186/s12967-022-03505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are a significant cause of mortality worldwide and are characterized by severe atherosclerosis (AS) in patients. However, the molecular mechanism of AS formation remains elusive. In the present study, we investigated the role of syndecan-4 (SDC4), a member of the syndecan family, in atherogenesis. METHODS AND RESULTS The expression of SDC4 decreased in mouse severe AS models. Moreover, knockout of SDC4 accelerated high-cholesterol diets (HCD)-induced AS in ApoE-/- mice. Mechanistically, the decrease of SDC4 increased macrophage proinflammatory capacity may be through the PKCα-ABCA1/ABCG1 signaling pathway. CONCLUSION These findings provide evidence that SDC4 reduction links macrophages and inflammation to AS and that SDC4 in macrophages provides a therapeutic target for preventing AS formation.
Collapse
Affiliation(s)
- Jiaxin Hu
- Department of Cardiology, MOE Key Laboratory of Model Animal for Disease Study, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 210061, China
| | - Ying Zhang
- Department of Cardiology, MOE Key Laboratory of Model Animal for Disease Study, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 210061, China
| | - Liaoping Hu
- Department of Cardiology, MOE Key Laboratory of Model Animal for Disease Study, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 210061, China
| | - Haiting Chen
- Department of Cardiology, MOE Key Laboratory of Model Animal for Disease Study, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 210061, China
| | - Han Wu
- Department of Cardiology, MOE Key Laboratory of Model Animal for Disease Study, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 210061, China
| | - Jianzhou Chen
- Department of Cardiology, MOE Key Laboratory of Model Animal for Disease Study, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 210061, China
| | - Jun Xie
- Department of Cardiology, MOE Key Laboratory of Model Animal for Disease Study, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 210061, China
| | - Biao Xu
- Department of Cardiology, MOE Key Laboratory of Model Animal for Disease Study, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 210061, China.
| | - Zhonghai Wei
- Department of Cardiology, MOE Key Laboratory of Model Animal for Disease Study, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 210061, China.
| |
Collapse
|
14
|
Nardo WD, Miotto PM, Bayliss J, Nie S, Keenan SN, Montgomery MK, Watt MJ. Proteomic analysis reveals exercise training induced remodelling of hepatokine secretion and uncovers syndecan-4 as a regulator of hepatic lipid metabolism. Mol Metab 2022; 60:101491. [PMID: 35381388 PMCID: PMC9034320 DOI: 10.1016/j.molmet.2022.101491] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is linked to impaired lipid metabolism and systemic insulin resistance, which is partly mediated by altered secretion of liver proteins known as hepatokines. Regular physical activity can resolve NAFLD and improve its metabolic comorbidities, however, the effects of exercise training on hepatokine secretion and the metabolic impact of exercise-regulated hepatokines in NAFLD remain unresolved. Herein, we examined the effect of endurance exercise training on hepatocyte secreted proteins with the aim of identifying proteins that regulate metabolism and reduce NAFLD severity. Methods C57BL/6 mice were fed a high-fat diet for six weeks to induce NAFLD. Mice were exercise trained for a further six weeks, while the control group remained sedentary. Hepatocytes were isolated two days after the last exercise bout, and intracellular and secreted proteins were detected using label-free mass spectrometry. Hepatocyte secreted factors were applied to skeletal muscle and liver ex vivo and insulin action and fatty acid metabolism were assessed. Syndecan-4 (SDC4), identified as an exercise-responsive hepatokine, was overexpressed in the livers of mice using adeno-associated virus. Whole-body energy homeostasis was assessed by indirect calorimetry and skeletal muscle and liver metabolism was assessed using radiometric techniques. Results Proteomics analysis detected 2657 intracellular and 1593 secreted proteins from mouse hepatocytes. Exercise training remodelled the hepatocyte proteome, with differences in 137 intracellular and 35 secreted proteins. Bioinformatic analysis of hepatocyte secreted proteins revealed enrichment of tumour suppressive proteins and proteins involved in lipid metabolism and mitochondrial function, and suppression of oncogenes and regulators of oxidative stress. Hepatocyte secreted factors from exercise trained mice improved insulin action in skeletal muscle and increased hepatic fatty acid oxidation. Hepatocyte-specific overexpression of SDC4 reduced hepatic steatosis, which was associated with reduced hepatic fatty acid uptake, and blunted pro-inflammatory and pro-fibrotic gene expression. Treating hepatocytes with recombinant ectodomain of SDC4 (secreted form) recapitulated these effects with reduced fatty acid uptake, lipid storage and lipid droplet accumulation. Conclusions Remodelling of hepatokine secretion is an adaptation to regular exercise training that induces changes in metabolism in the liver and skeletal muscle. SDC4 is a novel exercise-responsive hepatokine that decreases fatty acid uptake and reduces steatosis in the liver. By understanding the proteomic changes in hepatocytes with exercise, these findings have potential for the discovery of new therapeutic targets for NAFLD. Exercise training remodels hepatokine secretion. Exercise regulated secreted factors improve insulin action in skeletal muscle. Syndecan-4 (SDC4) is a novel exercise-induced hepatokine. SDC4 reduces hepatic fatty acid uptake and hepatic steatosis.
Collapse
|
15
|
Coutinho FP, Green CR, Acosta ML, Rupenthal ID. Xentry-Gap19 inhibits Connexin43 hemichannel opening especially during hypoxic injury. Drug Deliv Transl Res 2021; 10:751-765. [PMID: 32318976 PMCID: PMC7223318 DOI: 10.1007/s13346-020-00763-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypoxic injury results in cell death, tissue damage and activation of inflammatory pathways. This is mediated by pathological Connexin43 (Cx43) hemichannel (HC) opening resulting in osmotic and ionic imbalances as well as cytokine production perpetuating the inflammatory environment. Gap19 is an intracellularly acting Cx43 mimetic peptide that blocks HC opening and thus promotes cell survival. However, native Gap19, which must enter the cell in order to function, exhibits low cell permeability. In this study, Gap19 was conjugated to the cell-penetrating peptide, Xentry, to investigate if cellular uptake could be improved while maintaining peptide function. Cellular uptake of Xentry-Gap19 (XG19) was much greater than that of native Gap19 even under normal cell culture conditions. Peptide function was maintained post uptake as shown by reduced ethidium homodimer influx and ATP release due to Cx43 HC block. While XG19 blocked pathologic HC opening though, normal gap junction communication required for cell repair and survival mechanisms was not affected as shown in a dye scrape-load assay. Under hypoxic conditions, increased expression of Syndecan-4, a plasma membrane proteoglycan targeted by Xentry, enabled even greater XG19 uptake leading to higher inhibition of ATP release and greater cell survival. This suggests that XG19, which is targeted specifically to hypoxic cells, can efficiently and safely block Cx43 HC and could therefore be a novel treatment for hypoxic and inflammatory diseases. Graphical abstract ![]()
Collapse
Affiliation(s)
- Frazer P Coutinho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Monica L Acosta
- School of Optometry and Vision Science, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
16
|
Gopal S, Arokiasamy S, Pataki C, Whiteford JR, Couchman JR. Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biol 2021; 11:200377. [PMID: 33561383 PMCID: PMC8061687 DOI: 10.1098/rsob.200377] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
The syndecans are the major family of transmembrane proteoglycans, usually bearing multiple heparan sulfate chains. They are present on virtually all nucleated cells of vertebrates and are also present in invertebrates, indicative of a long evolutionary history. Genetic models in both vertebrates and invertebrates have shown that syndecans link to the actin cytoskeleton and can fine-tune cell adhesion, migration, junction formation, polarity and differentiation. Although often associated as co-receptors with other classes of receptors (e.g. integrins, growth factor and morphogen receptors), syndecans can nonetheless signal to the cytoplasm in discrete ways. Syndecan expression levels are upregulated in development, tissue repair and an array of human diseases, which has led to the increased appreciation that they may be important in pathogenesis not only as diagnostic or prognostic agents, but also as potential targets. Here, their functions in development and inflammatory diseases are summarized, including their potential roles as conduits for viral pathogen entry into cells.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Samantha Arokiasamy
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Csilla Pataki
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - James R. Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - John R. Couchman
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
17
|
ADAMTS proteases and the tumor immune microenvironment: Lessons from substrates and pathologies. Matrix Biol Plus 2020; 9:100054. [PMID: 33718860 PMCID: PMC7930849 DOI: 10.1016/j.mbplus.2020.100054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
The relationship of ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteases with inflammatory processes was anticipated since their discovery. Although knowledge of these extracellular proteases in different contexts continues to grow, many questions remain unanswered. In this review, we summarize the most important studies of ADAMTSs and their substrates in inflammation and in the immune system of non-oncological disorders. In addition, we update the findings on cancer and highlight their emerging role in the tumor immune microenvironment. Although the overall functions of extracellular molecules are known to be modulated by proteolysis, specific activities attributed to intact proteins and cleaved fragments in the context of inflammation are still subject to debate. A better understanding of ADAMTS activities will help to elucidate their contribution to the immune phenotype and to open up new therapeutic and diagnostic possibilities.
Collapse
|
18
|
Brioudes E, Alibashe-Ahmed M, Lavallard V, Berney T, Bosco D. Syndecan-4 is regulated by IL-1β in β-cells and human islets. Mol Cell Endocrinol 2020; 510:110815. [PMID: 32315719 DOI: 10.1016/j.mce.2020.110815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
Syndecans (SDC) are important multifunctional components of the extracellular matrix mainly described in endothelial cells. We studied the expression and regulation of SDC in cultured MIN6B1 cells and pancreatic islets. qRT-PCR revealed that syndecan-4 (SDC4) was the predominant isoform expressed in MIN6B1 cells and islets compared to other forms of SDC. Immunofluorescence in mouse and human pancreas sections revealed that SDC4 is mainly expressed in β-cells compared to other pancreatic cells. Exposure of MIN6B1 and human islets to IL-1β dose-dependently induced a rapid and transient expression of SDC4 while SRC and STAT3 inhibitors decreased this effect. Exposure of human islets to Il-1β caused an increase of SDC4 shedding, however treatment with STAT3 and SRC inhibitors inhibited this effect. These results indicate that SDC4 is upregulated by IL-1β through the SRC-STAT3 pathway and this pathway is also involved in SDC4 shedding in islets.
Collapse
Affiliation(s)
- Estelle Brioudes
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211, Geneva 4, Geneva, Switzerland; Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva 4, Geneva, Switzerland.
| | - Mohamed Alibashe-Ahmed
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211, Geneva 4, Geneva, Switzerland; Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva 4, Geneva, Switzerland
| | - Vanessa Lavallard
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211, Geneva 4, Geneva, Switzerland; Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva 4, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211, Geneva 4, Geneva, Switzerland; Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva 4, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211, Geneva 4, Geneva, Switzerland; Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva 4, Geneva, Switzerland
| |
Collapse
|
19
|
Rajarathnam K, Desai UR. Structural Insights Into How Proteoglycans Determine Chemokine-CXCR1/CXCR2 Interactions: Progress and Challenges. Front Immunol 2020; 11:660. [PMID: 32391006 PMCID: PMC7193095 DOI: 10.3389/fimmu.2020.00660] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/23/2020] [Indexed: 01/01/2023] Open
Abstract
Proteoglycans (PGs), present in diverse environments, such as the cell membrane surface, extracellular milieu, and intracellular granules, are fundamental to life. Sulfated glycosaminoglycans (GAGs) are covalently attached to the core protein of proteoglycans. PGs are complex structures, and are diverse in terms of amino acid sequence, size, shape, and in the nature and number of attached GAG chains, and this diversity is further compounded by the phenomenal diversity in GAG structures. Chemokines play vital roles in human pathophysiology, from combating infection and cancer to leukocyte trafficking, immune surveillance, and neurobiology. Chemokines mediate their function by activating receptors that belong to the GPCR class, and receptor interactions are regulated by how, when, and where chemokines bind GAGs. GAGs fine-tune chemokine function by regulating monomer/dimer levels and chemotactic/haptotactic gradients, which are also coupled to how they are presented to their receptors. Despite their small size and similar structures, chemokines show a range of GAG-binding geometries, affinities, and specificities, indicating that chemokines have evolved to exploit the repertoire of chemical and structural features of GAGs. In this review, we summarize the current status of research on how GAG interactions regulate ELR-chemokine activation of CXCR1 and CXCR2 receptors, and discuss knowledge gaps that must be overcome to establish causal relationships governing the impact of GAG interactions on chemokine function in human health and disease.
Collapse
Affiliation(s)
- Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
20
|
Abstract
Syndecans are transmembrane proteoglycans with heparan and chondroitin sulfate chains attached to their extracellular domain. Like many proteoglycans, they interact with a large number of ligands, such as growth factors, adhesion receptors, soluble small molecules, proteinases, and other extracellular matrix proteins to initiate downstream signaling pathways. Syndecans play a major role in inflammation, mainly by regulating leukocyte extravasation and cytokine function. At the same time, syndecans can undergo cytokine mediated changes in their expression levels during inflammation. The function of syndecans during inflammation appears to depend on the stage of inflammation, sulfation of heparan/chondroitin sulfate chains, the rate of ectodomain shedding and the solubility of the ectodomains. From the current literature, it is clear that syndecans are not only involved in the initial recruitment of pro-inflammatory molecules but also in establishing a balanced progression of inflammation. This review will summarize how cell surface and soluble syndecans regulate multiple aspects of inflammation.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Saleh MAA, van de Garde EMW, van Hasselt JGC. Host-response biomarkers for the diagnosis of bacterial respiratory tract infections. Clin Chem Lab Med 2019; 57:442-451. [PMID: 30183665 DOI: 10.1515/cclm-2018-0682] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
Appropriate antibiotic treatment for respiratory tract infections (RTIs) necessitates rapid and accurate diagnosis of microbial etiology, which remains challenging despite recent innovations. Several host response-based biomarkers due to infection have been suggested to allow discrimination of bacterial and non-bacterial microbial RTI etiology. This review provides an overview of clinical studies that investigated the diagnostic performance of host-response proteomic biomarkers to identify RTI microbial etiology. Procalcitonin and C-reactive protein have been studied most extensively; whereof procalcitonin has demonstrated the strongest diagnostic performance compared to other biomarkers. Proadrenomedullin, soluble triggering receptor expressed on myeloid cells-1, neopterin and pentraxin-3 need more studies to confirm their diagnostic value. For syndecan-4 and lipocalin-2 currently insufficient evidence exists. Common limitations in several of the studies were the relatively small scale setting, heterogeneous patient population and the absence of statistical power calculation.
Collapse
Affiliation(s)
- Mohammed A A Saleh
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 Leiden, The Netherlands, Phone: +31 62 452 9116
| | - Ewoudt M W van de Garde
- Department of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - J G Coen van Hasselt
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 Leiden, The Netherlands, Phone: +31 71 527 3266
| |
Collapse
|
22
|
Syndecan-4 Inhibits the Development of Pulmonary Fibrosis by Attenuating TGF-β Signaling. Int J Mol Sci 2019; 20:ijms20204989. [PMID: 31600983 PMCID: PMC6834137 DOI: 10.3390/ijms20204989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
Syndecan-4 is a transmembrane heparan sulfate proteoglycan expressed in a variety of cells, and its heparan sulfate glycosaminoglycan side chains bind to several proteins exhibiting various biological roles. The authors have previously demonstrated syndecan-4′s critical roles in pulmonary inflammation. In the current study, however, its role in pulmonary fibrosis was evaluated. Wild-type and syndecan-4-deficient mice were injected with bleomycin, and several parameters of inflammation and fibrosis were analyzed. The mRNA expression of collagen and α-smooth muscle action (α-SMA) in lung tissues, as well as the histopathological lung fibrosis score and collagen content in lung tissues, were significantly higher in the syndecan-4-deficient mice. However, the total cell count and cell differentiation in bronchoalveolar lavage fluid were equivalent between the wild-type and syndecan-4-deficient mice. Although there was no difference in the TGF-β expression in lung tissues between the wild-type and syndecan-4-deficient mice, significantly more activation of Smad3 in lung tissues was observed in the syndecan-4-deficient mice compared to the wild-type mice. Furthermore, in the in vitro experiments using lung fibroblasts, the co-incubation of syndecan-4 significantly inhibited TGF-β-induced Smad3 activation, collagen and α-SMA upregulation. Moreover, syndecan-4 knock-down by siRNA increased TGF-β-induced Smad3 activation and upregulated collagen and α-SMA expression. These findings showed that syndecan-4 inhibits the development of pulmonary fibrosis, at least in part, through attenuating TGF-β signaling.
Collapse
|
23
|
Sepuru KM, Rajarathnam K. Structural basis of chemokine interactions with heparan sulfate, chondroitin sulfate, and dermatan sulfate. J Biol Chem 2019; 294:15650-15661. [PMID: 31455633 DOI: 10.1074/jbc.ra119.009879] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Indexed: 11/06/2022] Open
Abstract
Chemokines play diverse roles in human pathophysiology, ranging from trafficking leukocytes and immunosurveillance to the regulation of metabolism and neural function. Chemokine function is intimately coupled to binding tissue glycosaminoglycans (GAGs), heparan sulfate (HS), chondroitin sulfate (CS), and dermatan sulfate (DS). Currently, very little is known about how the structural features and sequences of a given chemokine, the structure and sulfation pattern of a given GAG, and structural differences among GAGs and among chemokines impact binding interactions. In this study, we used solution NMR spectroscopy to characterize the binding interactions of two related neutrophil-activating chemokines, CXCL1 and CXCL5, with HS, CS, and DS. For both chemokines, the dimer bound all three GAGs with higher affinity than did the monomer, and affinities of the chemokines for CS and DS were lower than for HS. NMR-based structural models reveal diverse binding geometries and show that the binding surfaces for each of the three GAGs were different between the two chemokines. However, a given chemokine had similar binding interactions with CS and DS that were different from HS. Considering the fact that CXCL1 and CXCL5 activate the same CXCR2 receptor, we conclude that GAG interactions play a role in determining the nature of chemokine gradients, levels of free chemokine available for receptor activation, how chemokines bind their receptors, and that differences in these interactions determine chemokine-specific function.
Collapse
Affiliation(s)
- Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1055.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1055
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1055 .,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1055.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1055
| |
Collapse
|
24
|
Eustace AD, McNaughton EF, King S, Kehoe O, Kungl A, Mattey D, Nobbs AH, Williams N, Middleton J. Soluble syndecan-3 binds chemokines, reduces leukocyte migration in vitro and ameliorates disease severity in models of rheumatoid arthritis. Arthritis Res Ther 2019; 21:172. [PMID: 31300004 PMCID: PMC6625118 DOI: 10.1186/s13075-019-1939-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/10/2019] [Indexed: 01/04/2023] Open
Abstract
Background Syndecans are heparan sulfate proteoglycans that occur in membrane-bound or soluble forms. Syndecan-3, the least well-characterised of the syndecan family, is highly expressed on synovial endothelial cells in rheumatoid arthritis patients. Here, it binds pro-inflammatory chemokines with evidence for a role in chemokine presentation and leukocyte trafficking into the joint, promoting the inflammatory response. In this study, we explored the role of soluble syndecan-3 as a binder of chemokines and as an anti-inflammatory and therapeutic molecule. Methods A human monocytic cell line and CD14+ PBMCs were utilised in both Boyden chamber and trans-endothelial migration assays. Soluble syndecan-3 was tested in antigen-induced and collagen-induced in vivo arthritis models in mice. ELISA and isothermal fluorescence titration assays assessed the binding affinities. Syndecan-3 expression was identified by flow cytometry and PCR, and levels of shedding by ELISA. Results Using in vitro and in vivo models, soluble syndecan-3 inhibited leukocyte migration in vitro in response to CCL7 and its administration in murine models of rheumatoid arthritis reduced histological disease severity. Using isothermal fluorescence titration, the binding affinity of soluble syndecan-3 to inflammatory chemokines CCL2, CCL7 and CXCL8 was determined, revealing little difference, with Kds in the low nM range. TNFα increased cell surface expression and shedding of syndecan-3 from cultured human endothelial cells. Furthermore, soluble syndecan-3 occurred naturally in the sera of patients with rheumatoid arthritis and periodontitis, and its levels correlated with syndecan-1. Conclusions This study shows that the addition of soluble syndecan-3 may represent an alternative therapeutic approach in inflammatory disease. Electronic supplementary material The online version of this article (10.1186/s13075-019-1939-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew D Eustace
- Bristol Dental School, University of Bristol, Lower Maudlin Street, BS1 2LY, Bristol, UK
| | - Emily F McNaughton
- Bristol Dental School, University of Bristol, Lower Maudlin Street, BS1 2LY, Bristol, UK
| | - Sophie King
- Bristol Dental School, University of Bristol, Lower Maudlin Street, BS1 2LY, Bristol, UK
| | - Oksana Kehoe
- Leopold Muller Arthritis Research Centre, Medical School, RJAH Orthopaedic Hospital, ISTM, Keele University, Oswestry, UK
| | - Andreas Kungl
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Humboldtstrasse 46, A-8010, Graz, Austria
| | - Derek Mattey
- Staffordshire Rheumatology Centre, Haywood Hospital, Stoke-on-Trent, UK
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Lower Maudlin Street, BS1 2LY, Bristol, UK.
| | - Neil Williams
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, BS8 1TD, Bristol, UK
| | - Jim Middleton
- Bristol Dental School, University of Bristol, Lower Maudlin Street, BS1 2LY, Bristol, UK
| |
Collapse
|
25
|
Biomarkers of Community-Acquired Pneumonia: A Key to Disease Diagnosis and Management. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1701276. [PMID: 31183362 PMCID: PMC6515150 DOI: 10.1155/2019/1701276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/26/2019] [Accepted: 04/11/2019] [Indexed: 01/23/2023]
Abstract
Community-acquired pneumonia (CAP) is a dangerous disease caused by a spectrum of bacterial and viral pathogens. The choice of specific therapy and the need for hospitalization or transfer to the intensive care unit are determined by the causative agent and disease severity. The microbiological analysis of sputum largely depends on the quality of the material obtained. The prediction of severity and the duration of therapy are determined individually, and existing prognostic scales are used generally. This review examines the possibilities of using specific serological biomarkers to detect the bacterial or viral aetiology of CAP and to assess disease severity. Particular emphasis is placed on the use of biomarker signatures and the discovery of biomarker candidates for a single multiplex analysis.
Collapse
|
26
|
Furini G, Verderio EAM. Spotlight on the Transglutaminase 2-Heparan Sulfate Interaction. Med Sci (Basel) 2019; 7:E5. [PMID: 30621228 PMCID: PMC6359630 DOI: 10.3390/medsci7010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs), syndecan-4 (Sdc4) especially, have been suggested as potential partners of transglutaminase-2 (TG2) in kidney and cardiac fibrosis, metastatic cancer, neurodegeneration and coeliac disease. The proposed role for HSPGs in the trafficking of TG2 at the cell surface and in the extracellular matrix (ECM) has been linked to the fibrogenic action of TG2 in experimental models of kidney fibrosis. As the TG2-HSPG interaction is largely mediated by the heparan sulfate (HS) chains of proteoglycans, in the past few years a number of studies have investigated the affinity of TG2 for HS, and the TG2 heparin binding site has been mapped with alternative outlooks. In this review, we aim to provide a compendium of the main literature available on the interaction of TG2 with HS, with reference to the pathological processes in which extracellular TG2 plays a role.
Collapse
Affiliation(s)
- Giulia Furini
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | - Elisabetta A M Verderio
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
- BiGeA, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
27
|
Fröhling M, Tepasse P, Intemann J, Sambale M, Sherwood J, Paruzel P, Tiemeyer NM, Nowacki TM, Brückner M, Mennigen R, Lügering A, Echtermeyer F, Pap T, Stratis A, Bettenworth D. Syndecan-4 Modulates Epithelial Gut Barrier Function and Epithelial Regeneration in Experimental Colitis. Inflamm Bowel Dis 2018; 24:2579-2589. [PMID: 30053064 DOI: 10.1093/ibd/izy248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND The transmembrane heparan sulfate proteoglycan Syndecan-4 (Sdc4) plays an important role in the regulation of various inflammatory disorders. However, the involvement of Sdc4 in intestinal inflammation remains unknown. Therefore, we assessed the impact of Sdc4 deficiency on experimental colitis and epithelial wound healing in vitro and in vivo. METHODS Dextran sulfate sodium (DSS)-induced colitis was monitored in wild type and Sdc4-deficient (Sdc4-/-) mice by assessment of body weight, histology, inflammatory cellular infiltration, and colon length. Syndecan-4 expression was measured by immunohistochemistry, Western blot, and quantitative real-time PCR. Epithelial permeability was evaluated by Evans blue measurements, Western blot, and immunohistological analysis of tight junction protein expression. Impact of Sdc4 on epithelial wound healing was determined by scratch assay in vitro and by colonoscopy following mechanical wounding in vivo. RESULTS In Sdc4-/- mice, colitis-like symptoms including severe weight loss, shortened colon length, histological damage, and invasion of macrophages and granulocytes were markedly aggravated compared with wild type (WT) animals. Moreover, colonic epithelial permeability in Sdc4-/- mice was enhanced, while tight junction protein expression decreased. Furthermore, Sdc4-/- colonic epithelial cells had lower cell proliferation and migration rates which presented in vivo as a prolonged intestinal wound healing phenotype. Strikingly, in WT animals, Sdc4 expression was reduced during colitis and was elevated during recovery. CONCLUSIONS The loss of Sdc4 aggravates the course of experimental colitis, potentially through impaired epithelial cell integrity and regeneration. In view of the development of current treatment approaches involving Sdc4 inhibition for inflammatory disorders like arthritis, particular caution should be taken in case of adverse gastrointestinal side-effects.
Collapse
Affiliation(s)
- Mareike Fröhling
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Phil Tepasse
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Johanna Intemann
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Meike Sambale
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Joanna Sherwood
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Peter Paruzel
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Nina-Marie Tiemeyer
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Tobias M Nowacki
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Markus Brückner
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Rudolf Mennigen
- Department of General Surgery, University Hospital Münster, Münster, Germany
| | | | - Frank Echtermeyer
- Department of Anesthesiology and Intensive Care Medicine, Medical University Hannover, Hannover, Germany
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Athanasios Stratis
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| |
Collapse
|
28
|
Luo Q, Ning P, Zheng Y, Shang Y, Zhou B, Gao Z. Serum suPAR and syndecan-4 levels predict severity of community-acquired pneumonia: a prospective, multi-centre study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:15. [PMID: 29368632 PMCID: PMC5784729 DOI: 10.1186/s13054-018-1943-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022]
Abstract
Background Community-acquired pneumonia (CAP) is a major cause of death worldwide and occurs with variable severity. There are few studies focused on the expression of soluble urokinase-type plasminogen activator receptor (suPAR) and syndecan-4 in patients with CAP. Methods A prospective, multi-centre study was conducted between January 2014 and December 2016. A total of 103 patients with severe CAP (SCAP), 149 patients with non-SCAP, and 30 healthy individuals were enrolled. Clinical data were recorded for all enrolled patients. Serum suPAR and syndecan-4 levels were determined by quantitative enzyme-linked immunosorbent assay. The t test and Mann–Whitney U test were used to compare between two groups; one-way analysis of variance and the Kruskal–Wallis test were used to compare multiple groups. Correlations were assessed using Pearson and Spearman tests. Area under the curve (AUCs), optimal threshold values, sensitivity, and specificity were calculated. Survival curves were constructed and compared by log-rank test. Regression analyses assessed the effect of multiple variables on 30-day survival. Results suPAR levels increased in all patients with CAP, especially in severe cases. Syndecan-4 levels decreased in patients with CAP, especially in non-survivors. suPAR and syndecan-4 levels were positively and negatively correlated with severity scores, respectively. suPAR exhibited high accuracy in predicting SCAP among patients with CAP with an AUC of 0.835 (p < 0.001). In contrast, syndecan-4 exhibited poor diagnostic value for predicting SCAP (AUC 0.550, p = 0.187). The AUC for predicting mortality in patients with SCAP was 0.772 and 0.744 for suPAR and syndecan-4, respectively; the respective prediction threshold values were 10.22 ng/mL and 6.68 ng/mL. Addition of both suPAR and syndecan-4 to the Pneumonia Severity Index significantly improved their prognostic accuracy, with an AUC of 0.885. Regression analysis showed that suPAR ≥10.22 ng/mL and syndecan-4 ≤ 6.68 ng/mL were reliable independent markers for prediction of 30-day survival. Conclusion suPAR exhibits high accuracy for both diagnosis and prognosis of SCAP. Syndecan-4 can reliably predict mortality in patients with SCAP. Addition of both suPAR and syndecan-4 to a clinical scoring method could improve prognostic accuracy. Trial registration ClinicalTrials.gov, NCT03093220. Registered on 28 March 2017 (retrospectively registered).
Collapse
Affiliation(s)
- Qiongzhen Luo
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| | - Pu Ning
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| | - Yali Zheng
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| | - Ying Shang
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| | - Bing Zhou
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| | - Zhancheng Gao
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing, People's Republic of China.
| |
Collapse
|
29
|
Kang I, Chang MY, Wight TN, Frevert CW. Proteoglycans as Immunomodulators of the Innate Immune Response to Lung Infection. J Histochem Cytochem 2018; 66:241-259. [PMID: 29328866 DOI: 10.1369/0022155417751880] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Proteoglycans (PGs) are complex, multifaceted molecules that participate in diverse interactions vital for physiological and pathological processes. As structural components, they provide a scaffold for cells and structural organization that helps define tissue architecture. Through interactions with water, PGs enable molecular and cellular movement through tissues. Through selective ionic interactions with growth factors, chemokines, cytokines, and proteases, PGs facilitate the ability of these soluble ligands to regulate intracellular signaling events and to influence the inflammatory response. In addition, recent findings now demonstrate that PGs can activate danger-associated molecular patterns (DAMPs) and other signaling pathways to influence production of many of these soluble ligands, indicating a more direct role for PGs in influencing the immune response and tissue inflammation. This review will focus on PGs that are selectively expressed during lung inflammation and will examine the novel emerging concept of PGs as immunomodulatory regulators of the innate immune responses in lungs.
Collapse
Affiliation(s)
- Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Mary Y Chang
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, Division of Pulmonary/Critical Care Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
30
|
Smart L, Macdonald SP, Burrows S, Bosio E, Arendts G, Fatovich DM. Endothelial glycocalyx biomarkers increase in patients with infection during Emergency Department treatment. J Crit Care 2017; 42:304-309. [DOI: 10.1016/j.jcrc.2017.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/17/2017] [Accepted: 07/01/2017] [Indexed: 12/12/2022]
|
31
|
Chang MY, Kang I, Gale M, Manicone AM, Kinsella MG, Braun KR, Wigmosta T, Parks WC, Altemeier WA, Wight TN, Frevert CW. Versican is produced by Trif- and type I interferon-dependent signaling in macrophages and contributes to fine control of innate immunity in lungs. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1069-L1086. [PMID: 28912382 PMCID: PMC5814701 DOI: 10.1152/ajplung.00353.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023] Open
Abstract
Growing evidence suggests that versican is important in the innate immune response to lung infection. Our goal was to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. We first defined the signaling events that regulate versican expression, using bone marrow-derived macrophages (BMDMs) from mice lacking specific Toll-like receptors (TLRs), TLR adaptor molecules, or the type I interferon receptor (IFNAR1). We show that LPS and polyinosinic-polycytidylic acid [poly(I:C)] trigger a signaling cascade involving TLR3 or TLR4, the Trif adaptor, type I interferons, and IFNAR1, leading to increased expression of versican by macrophages and implicating versican as an interferon-stimulated gene. The signaling events regulating versican are distinct from those for hyaluronan synthase 1 (HAS1) and syndecan-4 in macrophages. HAS1 expression requires TLR2 and MyD88. Syndecan-4 requires TLR2, TLR3, or TLR4 and both MyD88 and Trif. Neither HAS1 nor syndecan-4 is dependent on type I interferons. The importance of macrophage-derived versican in lungs was determined with LysM/Vcan-/- mice. These studies show increased recovery of inflammatory cells in the bronchoalveolar lavage fluid of poly(I:C)-treated LysM/Vcan-/- mice compared with control mice. IFN-β and IL-10, two important anti-inflammatory molecules, are significantly decreased in both poly(I:C)-treated BMDMs from LysM/Vcan-/- mice and bronchoalveolar lavage fluid from poly(I:C)-treated LysM/Vcan-/- mice compared with control mice. In short, type I interferon signaling regulates versican expression, and versican is necessary for type I interferon production. These findings suggest that macrophage-derived versican is an immunomodulatory molecule with anti-inflammatory properties in acute pulmonary inflammation.
Collapse
Affiliation(s)
- Mary Y Chang
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington
| | - Anne M Manicone
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington; and
| | - Michael G Kinsella
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Kathleen R Braun
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Tara Wigmosta
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington
| | - William C Parks
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington; and
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - William A Altemeier
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington; and
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Charles W Frevert
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington;
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington; and
| |
Collapse
|
32
|
Recent Advances in ADAM17 Research: A Promising Target for Cancer and Inflammation. Mediators Inflamm 2017; 2017:9673537. [PMID: 29230082 PMCID: PMC5688260 DOI: 10.1155/2017/9673537] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/15/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
Since its discovery, ADAM17, also known as TNFα converting enzyme or TACE, is now known to process over 80 different substrates. Many of these substrates are mediators of cancer and inflammation. The field of ADAM metalloproteinases is at a crossroad with many of the new potential therapeutic agents for ADAM17 advancing into the clinic. Researchers have now developed potential drugs for ADAM17 that are selective and do not have the side effects which were seen in earlier chemical entities that targeted this enzyme. ADAM17 inhibitors have broad therapeutic potential, with properties ranging from tumor immunosurveillance and overcoming drug and radiation resistance in cancer, as treatments for cardiac hypertrophy and inflammatory conditions such as inflammatory bowel disease and rheumatoid arthritis. This review focuses on substrates and inhibitors identified more recently for ADAM17 and their role in cancer and inflammation.
Collapse
|
33
|
Baseline serum syndecan-4 predicts prognosis after the onset of acute exacerbation of idiopathic interstitial pneumonia. PLoS One 2017; 12:e0176789. [PMID: 28467516 PMCID: PMC5415114 DOI: 10.1371/journal.pone.0176789] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/17/2017] [Indexed: 11/19/2022] Open
Abstract
Background Patients with idiopathic interstitial pneumonia can experience acute respiratory worsening, also known as acute exacerbation, with a large deterioration on prognosis. The precise mechanism remains unclear; however, syndecan-4 may be involved. Syndecan-4, a transmembrane heparan sulfate proteoglycan expressed in a variety of cells (e.g., epithelial cells, macrophages, fibroblasts, etc.), performs various biological roles by binding to several proteins through its heparan sulfate glycosaminoglycan side chains. The goal of this study was to clarify the role of syndecan-4 in acute exacerbation of idiopathic interstitial pneumonia. Methods Patients with idiopathic interstitial pneumonia who had been sequentially admitted to our hospital due to acute exacerbation were retrospectively analyzed. First, serum syndecan-4 levels in the acute exacerbation and clinically stable phases were compared. Second, the relationship between serum syndecan-4 levels and clinical parameters was analyzed. Third, the relationship between serum syndecan-4 levels and prognosis was evaluated. Results Serum syndecan-4 levels were significantly lower in patients with acute exacerbation of idiopathic interstitial pneumonia than in patients in the clinically stable phase. Serum syndecan-4 levels also showed a significant positive correlation with white blood cell count and a weak positive tendency with KL-6 and baseline %VC. Prognosis was significantly worse in patients with idiopathic interstitial pneumonia with high baseline serum syndecan-4 levels than with low baseline levels. Multiple logistic analysis indicated baseline serum syndecan-4 level as the only prognostic predictor following acute exacerbation. Conclusions Baseline serum syndecan-4 is a possible prognostic biomarker after the onset of acute exacerbation of idiopathic interstitial pneumonia.
Collapse
|
34
|
Hara T, Yoshida E, Fujiwara Y, Yamamoto C, Kaji T. Transforming Growth Factor-β 1 Modulates the Expression of Syndecan-4 in Cultured Vascular Endothelial Cells in a Biphasic Manner. J Cell Biochem 2017; 118:2009-2017. [PMID: 28019669 PMCID: PMC5485002 DOI: 10.1002/jcb.25861] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/22/2016] [Indexed: 01/06/2023]
Abstract
Proteoglycans are macromolecules that consist of a core protein and one or more glycosaminoglycan side chains. Previously, we reported that transforming growth factor‐β1 (TGF‐β1) regulates the synthesis of a large heparan sulfate proteoglycan, perlecan, and a small leucine‐rich dermatan sulfate proteoglycan, biglycan, in vascular endothelial cells depending on cell density. Recently, we found that TGF‐β1 first upregulates and then downregulates the expression of syndecan‐4, a transmembrane heparan sulfate proteoglycan, via the TGF‐β receptor ALK5 in the cells. In order to identify the intracellular signal transduction pathway that mediates this modulation, bovine aortic endothelial cells were cultured and treated with TGF‐β1. Involvement of the downstream signaling pathways of ALK5—the Smad and MAPK pathways—in syndecan‐4 expression was examined using specific siRNAs and inhibitors. The data indicate that the Smad3–p38 MAPK pathway mediates the early upregulation of syndecan‐4 by TGF‐β1, whereas the late downregulation is mediated by the Smad2/3 pathway. Multiple modulations of proteoglycan synthesis may be involved in the regulation of vascular endothelial cell functions by TGF‐β1. J. Cell. Biochem. 118: 2009–2017,2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Takato Hara
- Faculty of Pharmaceutical SciencesDepartment of Environmental HealthTokyo University of ScienceNoda 278‐8510Japan
| | - Eiko Yoshida
- Faculty of Pharmaceutical SciencesDepartment of Environmental HealthTokyo University of ScienceNoda 278‐8510Japan
| | - Yasuyuki Fujiwara
- Department of Environmental HealthSchool of PharmacyTokyo University of Pharmacy and Life SciencesHachioji 192‐0392Japan
| | - Chika Yamamoto
- Faculty of Pharmaceutical SciencesDepartment of Environmental HealthToho UniversityFunabashi 274‐8510Japan
| | - Toshiyuki Kaji
- Faculty of Pharmaceutical SciencesDepartment of Environmental HealthTokyo University of ScienceNoda 278‐8510Japan
| |
Collapse
|
35
|
Wight TN, Frevert CW, Debley JS, Reeves SR, Parks WC, Ziegler SF. Interplay of extracellular matrix and leukocytes in lung inflammation. Cell Immunol 2017; 312:1-14. [PMID: 28077237 PMCID: PMC5290208 DOI: 10.1016/j.cellimm.2016.12.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
During inflammation, leukocytes influx into lung compartments and interact with extracellular matrix (ECM). Two ECM components, versican and hyaluronan, increase in a range of lung diseases. The interaction of leukocytes with these ECM components controls leukocyte retention and accumulation, proliferation, migration, differentiation, and activation as part of the inflammatory phase of lung disease. In addition, bronchial epithelial cells from asthmatic children co-cultured with human lung fibroblasts generate an ECM that is adherent for monocytes/macrophages. Macrophages are present in both early and late lung inflammation. Matrix metalloproteinase 10 (MMP10) is induced in alveolar macrophages with injury and infection and modulates macrophage phenotype and their ability to degrade collagenous ECM components. Collectively, studies outlined in this review highlight the importance of specific ECM components in the regulation of inflammatory events in lung disease. The widespread involvement of these ECM components in the pathogenesis of lung inflammation make them attractive candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
36
|
Abstract
In the United States trauma is the leading cause of mortality among those under the age of 45, claiming approximately 192,000 lives each year. Significant personal disability, lost productivity, and long-term healthcare needs are common and contribute 580 billion dollars in economic impact each year. Improving resuscitation strategies and the early acute care of trauma patients has the potential to reduce the pathological sequelae of combined exuberant inflammation and immune suppression that can co-exist, or occur temporally, and adversely affect outcomes. The endothelial and epithelial glycocalyx has emerged as an important participant in both inflammation and immunomodulation. Constituents of the glycocalyx have been used as biomarkers of injury severity and have the potential to be target(s) for therapeutic interventions aimed at immune modulation. In this review, we provide a contemporary understanding of the physiologic structure and function of the glycocalyx and its role in traumatic injury with a particular emphasis on lung injury.
Collapse
|
37
|
Xie J, Li R, Wu H, Chen J, Li G, Chen Q, Wei Z, He G, Wang L, Ferro A, Xu B. Advanced Glycation Endproducts Impair Endothelial Progenitor Cell Migration and Homing via Syndecan 4 Shedding. Stem Cells 2016; 35:522-531. [PMID: 27662820 DOI: 10.1002/stem.2506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 07/13/2016] [Indexed: 11/07/2022]
Abstract
Endothelial progenitor cells (EPCs) are a subtype of bone marrow-derived progenitor cells. Stromal cell-derived factor 1 (SDF-1)-mediated EPC mobilization from bone marrow to areas of ischemia plays an important role in angiogenesis. Previous studies have reported that advanced glycation endproducts (AGEs), which are important mediators of diabetes-related vascular pathology, may impair EPC migration and homing, but the mechanism is unclear. Syndecan-4 (synd4) is a ubiquitous heparan sulfate proteoglycan receptor on the cell surface, involved in SDF-1-dependent cell migration. The extracellular domain of synd4 (ext-synd4) is shed in the context of acute inflammation, but the shedding of ext-synd4 in response to AGEs is undefined. Here we investigated changes in ext-synd4 on EPCs in response to AGEs, focusing on the influence of impaired synd4 signaling on EPC migration and homing. We found decreased full length and increased residue of synd4 in cells incubated with AGEs, with concomitant increase in the soluble fragment of ext-synd4 in the cell medium. EPCs from patients with type 2 diabetes expressed less ext-synd4 as assessed by Western blotting. Flow cytometry analysis showed less ext-synd4 on circulating CD34+ peripheral blood mononuclear cells, of which EPCs form a subgroup. We then explored the role of synd4 in EPC migration and homing. Impaired migration of synd4-deficient EPCs was observed by a 2D-chemotaxis slide. Furthermore, poor homing of synd4-/- EPCs was observed in a mouse model of lower limb ischemia. This study demonstrates that the shedding of synd4 from EPCs plays a key role in AGE-mediated dysfunction of EPC migration and homing. Stem Cells 2017;35:522-531.
Collapse
Affiliation(s)
- Jun Xie
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ran Li
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Han Wu
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Jianzhou Chen
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Guannan Li
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Qinhua Chen
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Zhonghai Wei
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Guixin He
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Lian Wang
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Albert Ferro
- Department of Clinical Pharmacology, Cardiovascular Division, King's College London, London, United Kingdom
| | - Biao Xu
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
38
|
Targeting of CCL2-CCR2-Glycosaminoglycan Axis Using a CCL2 Decoy Protein Attenuates Metastasis through Inhibition of Tumor Cell Seeding. Neoplasia 2016; 18:49-59. [PMID: 26806351 PMCID: PMC4735630 DOI: 10.1016/j.neo.2015.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 12/23/2022] Open
Abstract
The CCL2-CCR2 chemokine axis has an important role in cancer progression where it contributes to metastatic dissemination of several cancer types (e.g., colon, breast, prostate). Tumor cell–derived CCL2 was shown to promote the recruitment of CCR2+/Ly6Chi monocytes and to induce vascular permeability of CCR2+ endothelial cells in the lungs. Here we describe a novel decoy protein consisting of a CCL2 mutant protein fused to human serum albumin (dnCCL2-HSA chimera) with enhanced binding affinity to glycosaminoglycans that was tested in vivo. The monocyte-mediated tumor cell transendothelial migration was strongly reduced upon unfused dnCCL2 mutant treatment in vitro. dnCCL2-HSA chimera had an extended serum half-life and thus a prolonged exposure in vivo compared with the dnCCL2 mutant. dnCCL2-HSA chimera bound to the lung vasculature but caused minimal alterations in the leukocyte recruitment to the lungs. However, dnCCL2-HSA chimera treatment strongly reduced both lung vascular permeability and tumor cell seeding. Metastasis of MC-38GFP, 3LL, and LLC1 cells was significantly attenuated upon dnCCL2-HSA chimera treatment. Tumor cell seeding to the lungs resulted in enhanced expression of a proteoglycan syndecan-4 by endothelial cells that correlated with accumulation of the dnCCL2-HSA chimera in the vicinity of tumor cells. These findings demonstrate that the CCL2-based decoy protein effectively binds to the activated endothelium in lungs and blocks tumor cell extravasation through inhibition of vascular permeability.
Collapse
|
39
|
Syndecan-4 as a biomarker to predict clinical outcome for glioblastoma multiforme treated with WT1 peptide vaccine. Future Sci OA 2016; 2:FSO96. [PMID: 28116121 PMCID: PMC5241910 DOI: 10.4155/fsoa-2015-0008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022] Open
Abstract
AIM In cancer immunotherapy, biomarkers are important for identification of responsive patients. This study was aimed to find biomarkers that predict clinical outcome of WT1 peptide vaccination. MATERIALS & METHODS Candidate genes that were expressed differentially between long- and short-term survivors were identified by cDNA microarray analysis of peripheral blood mononuclear cells that were extracted from 30 glioblastoma patients (discovery set) prior to vaccination and validated by quantitative RT-PCR using discovery set and different 23 patients (validation set). RESULTS SDC-4 mRNA expression levels distinguished between the long- and short-term survivors: 1-year survival rates were 64.0 and 18.5% in SDC4-low and -high patients, respectively. CONCLUSION SDC-4 is a novel predictive biomarker for the efficacy of WT1 peptide vaccine.
Collapse
|
40
|
Esposito S, Bianchini S, Gambino M, Madini B, Di Pietro G, Umbrello G, Presicce ML, Ruggiero L, Terranova L, Principi N. Measurement of lipocalin-2 and syndecan-4 levels to differentiate bacterial from viral infection in children with community-acquired pneumonia. BMC Pulm Med 2016; 16:103. [PMID: 27439403 PMCID: PMC4955239 DOI: 10.1186/s12890-016-0267-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/14/2016] [Indexed: 11/09/2022] Open
Abstract
Background In this study, we evaluated the lipocalin-2 (LIP2) and syndecan-4 (SYN4) levels in children who were hospitalized for radiologically confirmed CAP in order to differentiate bacterial from viral infection. The results regarding the LIP2 and SYN4 diagnostic outcomes were compared with the white blood cell (WBC) count and C reactive protein (CRP) levels. Methods A total of 110 children <14 years old who were hospitalized for radiologically confirmed CAP were enrolled. Serum samples were obtained upon admission and on day 5 to measure the levels of LIP2, SYN4, and CRP as well as the WBC. Polymerase chain reaction of the respiratory secretions and tests on blood samples were performed to detect respiratory viruses, Streptococcus pneumoniae, and Mycoplasma pneumoniae. Results CAP was considered to be due to a probable bacterial infection in 74 children (67.3 %) and due to a probable viral infection in 16 children (14.5 %). Overall, 84 children (76.4 %) were diagnosed with severe CAP. The mean values of the WBC count and the LIP2 and SYN4 levels did not differ among the probable bacterial, probable viral, and undetermined cases. However, the CRP serum concentrations were significantly higher in children with probable bacterial CAP than in those with probable viral disease (32.2 ± 55.5 mg/L vs 9.4 ± 17.0 mg/L, p < 0.05). The WBC count was the best predictor of severe CAP, but the differences among the studied variables were marginal. The WBC count was significantly lower on day 5 in children with probable bacterial CAP (p < 0.01) and in those with an undetermined etiology (p < 0.01). The CRP and LIP2 levels were significantly lower 5 days after enrollment in all of the studied groups, independent of the supposed etiology of CAP (p < 0.01 for all comparisons). No statistically significant variation was observed for SYN4. Conclusions Measuring the LIP2 and SYN4 levels does not appear to solve the problem of the poor reliability of routine laboratory tests in defining the etiology and severity of pediatric CAP. Currently, the CRP levels and WBC, when combined with evaluation of clinical data, can be used to limit the overuse of antibiotics as much as possible and to provide the best treatment to the patient.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy.
| | - Sonia Bianchini
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Monia Gambino
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Barbara Madini
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Giada Di Pietro
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Giulia Umbrello
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Maria Lory Presicce
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Luca Ruggiero
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Leonardo Terranova
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Nicola Principi
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| |
Collapse
|
41
|
Haeger SM, Yang Y, Schmidt EP. Heparan Sulfate in the Developing, Healthy, and Injured Lung. Am J Respir Cell Mol Biol 2016; 55:5-11. [PMID: 26982577 PMCID: PMC4942210 DOI: 10.1165/rcmb.2016-0043tr] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/11/2016] [Indexed: 11/24/2022] Open
Abstract
Remarkable progress has been achieved in understanding the regulation of gene expression and protein translation, and how aberrancies in these template-driven processes contribute to disease pathogenesis. However, much of cellular physiology is controlled by non-DNA, nonprotein mediators, such as glycans. The focus of this Translational Review is to highlight the importance of a specific glycan polymer-the glycosaminoglycan heparan sulfate (HS)-on lung health and disease. We demonstrate how HS contributes to lung physiology and pathophysiology via its actions as both a structural constituent of the lung parenchyma as well as a regulator of cellular signaling. By highlighting current uncertainties in HS biology, we identify opportunities for future high-impact pulmonary and critical care translational investigations.
Collapse
Affiliation(s)
- Sarah M. Haeger
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Yimu Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Eric P. Schmidt
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; and
- Department of Medicine, Denver Health Medical Center, Denver, Colorado
| |
Collapse
|
42
|
Lin W, Zhang J, Lin H, Li Z, Sun X, Xin D, Yang M, Sun L, Li L, Wang H, Chen D, Sun Q. Syndecan-4 negatively regulates antiviral signalling by mediating RIG-I deubiquitination via CYLD. Nat Commun 2016; 7:11848. [PMID: 27279133 PMCID: PMC4906230 DOI: 10.1038/ncomms11848] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/05/2016] [Indexed: 12/25/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) plays important roles in pathogen recognition and antiviral signalling transduction. Here we show that syndecan-4 (SDC4) is a RIG-I-interacting partner identified in a yeast two-hybrid screen. We find that SDC4 negatively regulates the RIG-I-mediated antiviral signalling in a feedback-loop control manner. The genetic evidence obtained by using knockout mice further emphasizes this biological role of SDC4 in antiviral signalling. Mechanistically, we show that SDC4 interacts with both RIG-I and deubiquitinase CYLD via its carboxyl-terminal intracellular region. SDC4 likely promotes redistribution of RIG-I and CYLD in a perinuclear pattern post viral infection, and thus enhances the RIG-I-CYLD interaction and potentiates the K63-linked deubiquitination of RIG-I. Collectively, our findings uncover a mechanism by which SDC4 antagonizes the activation of RIG-I in a CYLD-mediated deubiquitination-dependent process, thereby balancing antiviral signalling to avoid deleterious effects on host cells.
Collapse
Affiliation(s)
- Wei Lin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Jing Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Haiyan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Zexing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Xiaofeng Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Di Xin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Meng Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Liwei Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Lin Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Dahua Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
43
|
Marki A, Esko JD, Pries AR, Ley K. Role of the endothelial surface layer in neutrophil recruitment. J Leukoc Biol 2015; 98:503-15. [PMID: 25979432 DOI: 10.1189/jlb.3mr0115-011r] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/25/2015] [Indexed: 12/15/2022] Open
Abstract
Neutrophil recruitment in most tissues is limited to postcapillary venules, where E- and P-selectins are inducibly expressed by venular endothelial cells. These molecules support neutrophil rolling via binding of PSGL-1 and other ligands on neutrophils. Selectins extend ≤ 38 nm above the endothelial plasma membrane, and PSGL-1 extends to 50 nm above the neutrophil plasma membrane. However, endothelial cells are covered with an ESL composed of glycosaminoglycans that is ≥ 500 nm thick and has measurable resistance against compression. The neutrophil surface is also covered with a surface layer. These surface layers would be expected to completely shield adhesion molecules; thus, neutrophils should not be able to roll and adhere. However, in the cremaster muscle and in many other models investigated using intravital microscopy, neutrophils clearly roll, and their rolling is easily and quickly induced. This conundrum was thought to be resolved by the observation that the induction of selectins is accompanied by ESL shedding; however, ESL shedding only partially reduces the ESL thickness (to 200 nm) and thus is insufficient to expose adhesion molecules. In addition to its antiadhesive functions, the ESL also presents neutrophil arrest-inducing chemokines. ESL heparan sulfate can also bind L-selectin expressed by the neutrophils, which contributes to rolling and arrest. We conclude that ESL has both proadhesive and antiadhesive functions. However, most previous studies considered either only the proadhesive or only the antiadhesive effects of the ESL. An integrated model for the role of the ESL in neutrophil rolling, arrest, and transmigration is needed.
Collapse
Affiliation(s)
- Alex Marki
- *Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; and Department of Physiology and Center for Cardiovascular Research, Charite, Berlin, Germany
| | - Jeffrey D Esko
- *Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; and Department of Physiology and Center for Cardiovascular Research, Charite, Berlin, Germany
| | - Axel R Pries
- *Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; and Department of Physiology and Center for Cardiovascular Research, Charite, Berlin, Germany
| | - Klaus Ley
- *Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; and Department of Physiology and Center for Cardiovascular Research, Charite, Berlin, Germany
| |
Collapse
|
44
|
Nikaido T, Tanino Y, Wang X, Sato S, Misa K, Fukuhara N, Sato Y, Fukuhara A, Uematsu M, Suzuki Y, Kojima T, Tanino M, Endo Y, Tsuchiya K, Kawamura I, Frevert CW, Munakata M. Serum Syndecan-4 as a Possible Biomarker in Patients With Acute Pneumonia. J Infect Dis 2015; 212:1500-8. [PMID: 25895983 DOI: 10.1093/infdis/jiv234] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/10/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Syndecan-4 is a transmembrane heparan sulfate proteoglycan expressed in a variety of cells, and glycosaminoglycan side chains of syndecan-4 bind to several proteins, suggesting several biological functions. However, the role of syndecan-4 in acute bacterial pneumonia has not yet been elucidated. METHODS Serum syndecan-4 levels were measured in patients with acute pneumonia, and the relationships between serum syndecan-4 levels and clinical parameters were analyzed. Next, we treated wild-type and syndecan-4-deficient mice with Streptococcus pneumoniae intranasally and analyzed the phenotype of syndecan-4-deficient mice. RESULTS In the patients with acute pneumonia, serum syndecan-4 levels were significantly higher than in the healthy volunteers and correlated negatively with the pneumonia severity score. In addition, in patients who improved with short-term antibiotic therapy, serum syndecan-4 levels were higher on admission and gradually increased during antibiotic therapy. Furthermore, in syndecan-4-deficient mice, the survival rate was significantly worse, and total neutrophil counts in bronchoalveolar lavage fluid, bacterial counts in blood, and plasma levels of inflammatory cytokines were significantly higher than in wild-type mice. CONCLUSIONS These results suggest that syndecan-4 has an anti-inflammatory function in acute pneumonia and could serve as a useful biomarker in these patients.
Collapse
Affiliation(s)
- Takefumi Nikaido
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima
| | - Yoshinori Tanino
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima
| | - Xintao Wang
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima
| | - Suguru Sato
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima
| | - Kenichi Misa
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima
| | - Naoko Fukuhara
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima
| | - Yuki Sato
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima
| | - Atsuro Fukuhara
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima
| | - Manabu Uematsu
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima
| | - Yasuhito Suzuki
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima
| | - Tetsuhito Kojima
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya
| | - Mishie Tanino
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo
| | - Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima
| | - Kohsuke Tsuchiya
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ikuo Kawamura
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Charles W Frevert
- Division of Pulmonary/Critical Care Medicine, Department of Medicine Comparative Pathology Program, Department of Comparative Medicine Center of Lung Biology, University of Washington School of Medicine, Seattle
| | - Mitsuru Munakata
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima
| |
Collapse
|
45
|
Vuong TT, Reine TM, Sudworth A, Jenssen TG, Kolset SO. Syndecan-4 is a major syndecan in primary human endothelial cells in vitro, modulated by inflammatory stimuli and involved in wound healing. J Histochem Cytochem 2015; 63:280-92. [PMID: 25575567 DOI: 10.1369/0022155415568995] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Syndecans are important cell surface proteoglycans with many functions; yet, they have not been studied to a very large extent in primary human endothelial cells. The purpose of this study was to investigate syndecan-4 expression in cultured human umbilical vein endothelial cells (HUVECs) and assess its role in inflammatory reactions and experimental wound healing. qRT-PCR analysis revealed that syndecan-3 and syndecan-4 were highly expressed in HUVECs, whereas the expression of syndecan-1 and -2 was low. HUVECs were cultured with the inflammatory mediators lipopolysaccharide (LPS) and interleukin 1β (IL-1β). As a result, syndecan-4 expression showed a rapid and strong increase. Syndecan-1 and -2 expressions decreased, whereas syndecan-3 was unaffected. Knockdown of syndecan-4 using siRNA resulted in changes in cellular morphology and focal adhesion sites, delayed wound healing and tube formation, and increased secretion of the pro-inflammatory and angiogenic chemokine, CXCL8. These data suggest functions for syndecan-4 in inflammatory reactions, wound healing and angiogenesis in primary human endothelial cells.
Collapse
Affiliation(s)
- Tram Thu Vuong
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway (TTV, TMR, SOK)
| | - Trine M Reine
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway (TTV, TMR, SOK)
| | - Amanda Sudworth
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway (AS)
| | - Trond G Jenssen
- Department of Transplant Medicine, Section of Nephrology, Oslo University Hospital, Oslo, Norway (TGJ),Renal and Metabolic Research Group, Department of Clinical Medicine, UIT The Arctic University of Norway, Tromsø, Norway (TGJ)
| | - Svein O Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway (TTV, TMR, SOK)
| |
Collapse
|
46
|
Couchman JR, Gopal S, Lim HC, Nørgaard S, Multhaupt HAB. Fell-Muir Lecture: Syndecans: from peripheral coreceptors to mainstream regulators of cell behaviour. Int J Exp Pathol 2014; 96:1-10. [PMID: 25546317 DOI: 10.1111/iep.12112] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/01/2014] [Indexed: 12/11/2022] Open
Abstract
In the 25 years, as the first of the syndecan family was cloned, interest in these transmembrane proteoglycans has steadily increased. While four distinct members are present in mammals, one is present in invertebrates, including C. elegans that is such a powerful genetic model. The syndecans, therefore, have a long evolutionary history, indicative of important roles. However, these roles have been elusive. The knockout in the worm has a developmental neuronal phenotype, while knockouts of the syndecans in the mouse are mild and mostly limited to post-natal rather than developmental effects. Moreover, their association with high-affinity receptors, such as integrins, growth factor receptors, frizzled and slit/robo, have led to the notion that syndecans are coreceptors, with minor roles. Given that their heparan sulphate chains can gather many different protein ligands, this gave credence to views that the importance of syndecans lay with their ability to concentrate ligands and that only the extracellular polysaccharide was of significance. Syndecans are increasingly identified with roles in the pathogenesis of many diseases, including tumour progression, vascular disease, arthritis and inflammation. This has provided impetus to understanding syndecan roles in more detail. It emerges that while the cytoplasmic domains of syndecans are small, they have clear interactive capabilities, most notably with the actin cytoskeleton. Moreover, through the binding and activation of signalling molecules, it is likely that syndecans are important receptors in their own right. Here, an overview of syndecan structure and function is provided, with some prospects for the future.
Collapse
Affiliation(s)
- John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
47
|
Inokoshi Y, Tanino Y, Wang X, Sato S, Fukuhara N, Nikaido T, Fukuhara A, Saito J, Frevert CW, Munakata M. Clinical significance of serum hyaluronan in chronic fibrotic interstitial pneumonia. Respirology 2014; 18:1236-43. [PMID: 23795990 DOI: 10.1111/resp.12144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/20/2013] [Accepted: 04/22/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Hyaluronan is an important constituent of the extracellular matrix in lungs, and growing evidence demonstrates its important biological properties in the lung. However, its role in interstitial pneumonia remains to be fully clarified. The goal of this study was to clarify the role of hyaluronan in interstitial pneumonia. METHODS Hyaluronan in serum and bronchoalveolar lavage (BAL) fluid of chronic interstitial pneumonia (CIP) patients was measured, and the correlation with clinical parameters was determined. In addition, the correlation between hyaluronan in serum and clinical parameters was analysed in patients with acute exacerbation of interstitial pneumonia (IP-AE). RESULTS When compared with healthy controls, serum hyaluronan was significantly greater in patients with CIP and was positively correlated with serum biomarkers of inflammation and fibrosis, such as C-reactive protein and surfactant protein-D. In BAL fluid, the amount of hyaluronan was positively correlated with the percentage of inflammatory cells and the amount of CXCL8. When compared with CIP patients, patients with IP-AE had significantly greater amounts of serum hyaluronan, and patients with the highest serum hyaluronan had the worst 60-day outcomes. CONCLUSIONS This work suggests that serum hyaluronan may be a clinically useful biomarker of interstitial pneumonia and suggests the possibility that hyaluronan is involved in the pathogenesis of interstitial pneumonia by recruiting inflammatory cells into the lungs.
Collapse
Affiliation(s)
- Yayoi Inokoshi
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Secretoglobin 3A2 Attenuates Lipopolysaccharide-Induced Inflammation Through Inhibition of ERK and JNK Pathways in Bronchial Epithelial Cells. Inflammation 2014; 38:828-34. [DOI: 10.1007/s10753-014-9992-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Syndecan-3 is selectively pro-inflammatory in the joint and contributes to antigen-induced arthritis in mice. Arthritis Res Ther 2014; 16:R148. [PMID: 25015005 PMCID: PMC4227035 DOI: 10.1186/ar4610] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/24/2014] [Indexed: 01/09/2023] Open
Abstract
Introduction Syndecans are heparan sulphate proteoglycans expressed by endothelial cells. Syndecan-3 is expressed by synovial endothelial cells of rheumatoid arthritis (RA) patients where it binds chemokines, suggesting a role in leukocyte trafficking. The objective of the current study was to examine the function of syndecan-3 in joint inflammation by genetic deletion in mice and compare with other tissues. Methods Chemokine C-X-C ligand 1 (CXCL1) was injected in the joints of syndecan-3−/−and wild-type mice and antigen-induced arthritis performed. For comparison chemokine was administered in the skin and cremaster muscle. Intravital microscopy was performed in the cremaster muscle. Results Administration of CXCL1 in knee joints of syndecan-3−/−mice resulted in reduced neutrophil accumulation compared to wild type. This was associated with diminished presence of CXCL1 at the luminal surface of synovial endothelial cells where this chemokine clustered and bound to heparan sulphate. Furthermore, in the arthritis model syndecan-3 deletion led to reduced joint swelling, leukocyte accumulation, cartilage degradation and overall disease severity. Conversely, CXCL1 administration in the skin of syndecan-3 null mice provoked increased neutrophil recruitment and was associated with elevated luminal expression of E-selectin by dermal endothelial cells. Similarly in the cremaster, intravital microscopy showed increased numbers of leukocytes adhering and rolling in venules in syndecan-3−/−mice in response to CXCL1 or tumour necrosis factor alpha. Conclusions This study shows a novel role for syndecan-3 in inflammation. In the joint it is selectively pro-inflammatory, functioning in endothelial chemokine presentation and leukocyte recruitment and cartilage damage in an RA model. Conversely, in skin and cremaster it is anti-inflammatory.
Collapse
|
50
|
Chang MY, Tanino Y, Vidova V, Kinsella MG, Chan CK, Johnson PY, Wight TN, Frevert CW. Reprint of: A rapid increase in macrophage-derived versican and hyaluronan in infectious lung disease. Matrix Biol 2014; 35:162-73. [PMID: 24727035 PMCID: PMC4096977 DOI: 10.1016/j.matbio.2014.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 01/08/2023]
Abstract
The goals of this study were to characterize the changes in chondroitin sulfate proteoglycans and hyaluronan in lungs in acute response to gram-negative bacterial infection and to identify cellular components responsible for these changes. Mice were treated with intratracheal (IT) live Escherichia coli, E. coli lipopolysaccharide (LPS), or PBS. Both E. coli and LPS caused rapid selective increases in mRNA expression of versican and hyaluronan synthase (Has) isoforms 1 and 2 associated with increased immunohistochemical and histochemical staining for versican and hyaluronan in the lungs. Versican was associated with a subset of alveolar macrophages. To examine whether macrophages contribute to versican and hyaluronan accumulation, in vitro studies with primary cultures of bone marrow-derived and alveolar macrophages were performed. Unstimulated macrophages expressed very low levels of versican and hyaluronan synthase mRNA, with no detectible versican protein or hyaluronan product. Stimulation with LPS caused rapid increases in versican mRNA and protein, a rapid increase in Has1 mRNA, and concomitant inhibition of hyaluronidases 1 and 2, the major hyaluronan degrading enzymes. Hyaluronan could be detected following chloroquine pre-treatment, indicating rapid turnover and degradation of hyaluronan by macrophages. In addition, the effects of LPS, the M1 macrophage classical activation agonist, were compared to those of IL-4/IL-13 or IL-10, the M2a and M2c alternative activation agonists, respectively. Versican and Has1 increased only in response to M1 activation. Finally, the up-regulation of versican and Has1 in the whole lungs of wild-type mice following IT LPS was completely abrogated in TLR-4(-/-) mice. These findings suggest that versican and hyaluronan synthesis may play an important role in the innate immune response to gram-negative lung infection.
Collapse
Affiliation(s)
- Mary Y Chang
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, United States.
| | - Yoshinori Tanino
- Fukushima Medical University School of Medicine, Department of Pulmonary Medicine, Fukushima, Japan
| | - Veronika Vidova
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Michael G Kinsella
- Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Christina K Chan
- Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Pamela Y Johnson
- Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Thomas N Wight
- Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Charles W Frevert
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, United States; Division of Pulmonary/Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|