1
|
Wu LW, Jang SJ, Shapiro C, Fazlollahi L, Wang TC, Ryeom SW, Moy RH. Diffuse Gastric Cancer: A Comprehensive Review of Molecular Features and Emerging Therapeutics. Target Oncol 2024; 19:845-865. [PMID: 39271577 PMCID: PMC11557641 DOI: 10.1007/s11523-024-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Diffuse-type gastric cancer (DGC) accounts for approximately one-third of gastric cancer diagnoses but is a more clinically aggressive disease with peritoneal metastases and inferior survival compared with intestinal-type gastric cancer (IGC). The understanding of the pathogenesis of DGC has been relatively limited until recently. Multiomic studies, particularly by The Cancer Genome Atlas, have better characterized gastric adenocarcinoma into molecular subtypes. DGC has unique molecular features, including alterations in CDH1, RHOA, and CLDN18-ARHGAP26 fusions. Preclinical models of DGC characterized by these molecular alterations have generated insight into mechanisms of pathogenesis and signaling pathway abnormalities. The currently approved therapies for treatment of gastric cancer generally provide less clinical benefit in patients with DGC. Based on recent phase II/III clinical trials, there is excitement surrounding Claudin 18.2-based and FGFR2b-directed therapies, which capitalize on unique biomarkers that are enriched in the DGC populations. There are numerous therapies targeting Claudin 18.2 and FGFR2b in various stages of preclinical and clinical development. Additionally, there have been preclinical advancements in exploiting unique therapeutic vulnerabilities in several models of DGC through targeting of the focal adhesion kinase (FAK) and Hippo pathways. These preclinical and clinical advancements represent a promising future for the treatment of DGC.
Collapse
Affiliation(s)
- Lawrence W Wu
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, Room 956, New York, NY, 10032, USA
| | - Sung Joo Jang
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Cameron Shapiro
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Ladan Fazlollahi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra W Ryeom
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Ryan H Moy
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, Room 956, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Espina-Ordoñez M, Balderas-Martínez YI, Torres-Machorro AL, Herrera I, Maldonado M, Romero Y, Toscano-Marquez F, Pardo A, Selman M, Cisneros J. Mir-155-5p targets TP53INP1 to promote proliferative phenotype in hypersensitivity pneumonitis lung fibroblasts. Noncoding RNA Res 2024; 9:865-875. [PMID: 38586316 PMCID: PMC10997802 DOI: 10.1016/j.ncrna.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
Background Hypersensitivity pneumonitis (HP) is an inflammatory disorder affecting lung parenchyma and often evolves into fibrosis (fHP). The altered regulation of genes involved in the pathogenesis of the disease is not well comprehended, while the role of microRNAs in lung fibroblasts remains unexplored. Methods We used integrated bulk RNA-Seq and enrichment pathway bioinformatic analyses to identify differentially expressed (DE)-miRNAs and genes (DEGs) associated with HP lungs. In vitro, we evaluated the expression and potential role of miR-155-5p in the phenotype of fHP lung fibroblasts. Loss and gain assays were used to demonstrate the impact of miR-155-5p on fibroblast functions. In addition, mir-155-5p and its target TP53INP1 were analyzed after treatment with TGF-β, IL-4, and IL-17A. Results We found around 50 DEGs shared by several databases that differentiate HP from control and IPF lungs, constituting a unique HP lung transcriptional signature. Additionally, we reveal 18 DE-miRNAs that may regulate these DEGs. Among the candidates likely associated with HP pathogenesis was miR-155-5p. Our findings indicate that increased miR-155-5p in fHP fibroblasts coincides with reduced TP53INP1 expression, high proliferative capacity, and a lack of senescence markers compared to IPF fibroblasts. Induced overexpression of miR-155-5p in normal fibroblasts remarkably increases the proliferation rate and decreases TP53INP1 expression. Conversely, miR-155-5p inhibition reduces proliferation and increases senescence markers. TGF-β, IL-4, and IL-17A stimulated miR-155-5p overexpression in HP lung fibroblasts. Conclusion Our findings suggest a distinctive signature of 53 DEGs in HP, including CLDN18, EEF2, CXCL9, PLA2G2D, and ZNF683, as potential targets for future studies. Likewise, 18 miRNAs, including miR-155-5p, could be helpful to establish differences between these two pathologies. The overexpression of miR-155-5p and downregulation of TP53INP1 in fHP lung fibroblasts may be involved in his proliferative and profibrotic phenotype. These findings may help differentiate and characterize their pathogenic features and understand their role in the disease.
Collapse
Affiliation(s)
- Marco Espina-Ordoñez
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, 14080, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, Piso 1, Circuito de Posgrados, Ciudad Universidad, Coyoacán, C.P 04510, CDMX, Mexico
| | - Yalbi Itzel Balderas-Martínez
- Laboratorio de Biología Computacional, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, 14080, Mexico
| | - Ana Lilia Torres-Machorro
- Laboratorio de Biología Celular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, 14080, Mexico
| | - Iliana Herrera
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, 14080, Mexico
| | - Mariel Maldonado
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, 14080, Mexico
| | - Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Fernanda Toscano-Marquez
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, 14080, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Moisés Selman
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, 14080, Mexico
| | - José Cisneros
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, 14080, Mexico
| |
Collapse
|
3
|
Zeng Y, Lockhart AC, Jin RU. The preclinical discovery and development of zolbetuximab for the treatment of gastric cancer. Expert Opin Drug Discov 2024; 19:873-886. [PMID: 38919123 DOI: 10.1080/17460441.2024.2370332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Gastric cancer remains a formidable challenge in oncology with high mortality rates and few advancements in treatment. Claudin-18.2 (CLDN18.2) is a tight junction protein primarily expressed in the stomach and is frequently overexpressed in certain subsets of gastric cancers. Targeting CLDN18.2 with monoclonal antibodies, such as zolbetuximab (IMAB362), has shown promising efficacy results in combination with chemotherapy. AREAS COVERED The molecular cell biology of CLDN18.2 is discussed along with studies demonstrating the utility of CLDN18.2 expression as a biomarker and therapeutic target. Important clinical studies are reviewed, including Phase III trials, SPOTLIGHT and GLOW, which demonstrate the efficacy of zolbetuximab in combination with chemotherapy in patients with CLDN18.2-positive advanced gastric cancer. EXPERT OPINION CLDN18.2 is involved in gastric differentiation through maintenance of epithelial barrier function and coordination of signaling pathways, and its expression in gastric cancers reflects a 'gastric differentiation' program. Targeting Claudin-18.2 represents the first gastric cancer specific 'targeted' treatment. Further studies are needed to determine its role within current gastric cancer treatment sequencing, including HER2-targeted therapies and immunotherapies. Management strategies will also be needed to better mitigate zolbetuximab-related treatment side effects, including gastrointestinal (GI) toxicities.
Collapse
Affiliation(s)
- Yongji Zeng
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - A Craig Lockhart
- Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ramon U Jin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, USA
| |
Collapse
|
4
|
Jin WM, Zhu Y, Cai ZQ, He N, Yu ZQ, Li S, Yang JY. Progress of Clinical Studies Targeting Claudin18.2 for the Treatment of Gastric Cancer. Dig Dis Sci 2024; 69:2631-2647. [PMID: 38769225 DOI: 10.1007/s10620-024-08435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Claudin18.2 is a tight junction protein, highly selective, generally expressed only in normal gastric mucosal epithelial cells, which can effectively maintain the polarity of epithelial and endothelial cells, thus effectively regulating the permeability and conductance of the paracellular pathway. Abnormal expression of Claudin18.2 can occur in various primary malignant tumors, especially gastrointestinal tumors, and even in metastatic foci. It regulates its expression by activating the aPKC/MAPK/AP-1 pathway, and therefore, the Claudin18.2 protein is a pan-cancer target expressed in primary and metastatic lesions in human cancer types. Zolbetuximab (IMAB362), an antibody specific for Claudin18.2, has been successfully tested in a phase III clinical trial, and the results of the study showed that combining Zolbetuximab with chemotherapy notably extends patients' survival and is expected to be a potential first-line treatment for patients with Claudin18.2(+)/HER-2(-) gastric cancer. Here, we systematically describe the biological properties and oncogenic effects of Claudin18.2, centering on its clinical-pathological aspects and the progress of drug studies in gastric cancer, which can help to further explore its clinical value.
Collapse
Affiliation(s)
- Wu-Mei Jin
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Yan Zhu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Zhi-Qiang Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Na He
- Department of General, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Zhi-Qiong Yu
- Department of Respiratory, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Shuang Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Ji-Yuan Yang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China.
| |
Collapse
|
5
|
Kryvenko V, Vadász I. Modeling the Human Alveolar Epithelium: Promises and Challenges. Am J Respir Cell Mol Biol 2024; 70:329-330. [PMID: 38353673 PMCID: PMC11109586 DOI: 10.1165/rcmb.2023-0471ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine Justus Liebig University Giessen, Germany
- Universities of Giessen and Marburg Lung Center Member of the German Center for Lung Research Giessen, Germany
- The Cardio-Pulmonary Institute Giessen, Germany
- Institute for Lung Health Giessen, Germany
| | - István Vadász
- Department of Internal Medicine Justus Liebig University Giessen, Germany
- Universities of Giessen and Marburg Lung Center Member of the German Center for Lung Research Giessen, Germany
- The Cardio-Pulmonary Institute Giessen, Germany
- Institute for Lung Health Giessen, Germany
| |
Collapse
|
6
|
Herbst CJ, Lopez-Rodriguez E, Gluhovic V, Schulz S, Brandt R, Timm S, Abledu J, Falivene J, Pennitz P, Kirsten H, Nouailles G, Witzenrath M, Ochs M, Kuebler WM. Characterization of Commercially Available Human Primary Alveolar Epithelial Cells. Am J Respir Cell Mol Biol 2024; 70:339-350. [PMID: 38207121 DOI: 10.1165/rcmb.2023-0320ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024] Open
Abstract
In vitro lung research requires appropriate cell culture models that adequately mimic in vivo structure and function. Previously, researchers extensively used commercially available and easily expandable A549 and NCI-H441 cells, which replicate some but not all features of alveolar epithelial cells. Specifically, these cells are often restricted by terminally altered expression while lacking important alveolar epithelial characteristics. Of late, human primary alveolar epithelial cells (hPAEpCs) have become commercially available but are so far poorly specified. Here, we applied a comprehensive set of technologies to characterize their morphology, surface marker expression, transcriptomic profile, and functional properties. At optimized seeding numbers of 7,500 cells per square centimeter and growth at a gas-liquid interface, hPAEpCs formed regular monolayers with tight junctions and amiloride-sensitive transepithelial ion transport. Electron microscopy revealed lamellar body and microvilli formation characteristic for alveolar type II cells. Protein and single-cell transcriptomic analyses revealed expression of alveolar type I and type II cell markers; yet, transcriptomic data failed to detect NKX2-1, an important transcriptional regulator of alveolar cell differentiation. With increasing passage number, hPAEpCs transdifferentiated toward alveolar-basal intermediates characterized as SFTPC-, KRT8high, and KRT5- cells. In spite of marked changes in the transcriptome as a function of passaging, Uniform Manifold Approximation and Projection plots did not reveal major shifts in cell clusters, and epithelial permeability was unaffected. The present work delineates optimized culture conditions, cellular characteristics, and functional properties of commercially available hPAEpCs. hPAEpCs may provide a useful model system for studies on drug delivery, barrier function, and transepithelial ion transport in vitro.
Collapse
Affiliation(s)
- Christopher J Herbst
- Institute of Physiology
- German Center for Cardiovascular Research, Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Berlin, Germany
- German Center for Lung Research, Deutsches Zentrum für Lungenforschung (DZL), Berlin, Germany
| | | | | | | | | | - Sara Timm
- Core Facility Electron Microscopy, and
| | | | | | - Peter Pennitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany; and
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Ochs
- Institute of Functional Anatomy
- Core Facility Electron Microscopy, and
- German Center for Lung Research, Deutsches Zentrum für Lungenforschung (DZL), Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology
- German Center for Cardiovascular Research, Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Berlin, Germany
- German Center for Lung Research, Deutsches Zentrum für Lungenforschung (DZL), Berlin, Germany
- Keenan Research Centre, St. Michael's Hospital, and
- Departments of Surgery and
- Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Hana C, Thaw Dar NN, Galo Venegas M, Vulfovich M. Claudins in Cancer: A Current and Future Therapeutic Target. Int J Mol Sci 2024; 25:4634. [PMID: 38731853 PMCID: PMC11083183 DOI: 10.3390/ijms25094634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Claudins are a family of 27 proteins that have an important role in the formation of tight junctions. They also have an important function in ion exchange, cell mobility, and the epithelial-to-mesenchymal transition, the latter being very important in cancer invasion and metastasis. Therapeutic targeting of claudins has been investigated to improve cancer outcomes. Recent evidence shows improved outcomes when combining monoclonal antibodies against claudin 18.2 with chemotherapy for patients with gastroesophageal junction cancer. Currently, chimeric antigen receptor T-cells targeting claudin 18 are under investigation. In this review, we will discuss the major functions of claudins, their distribution in the normal as well as cancerous tissues, and their effect in cancer metastasis, with a special focus on the therapeutic targeting of claudins to improve cancer outcomes.
Collapse
Affiliation(s)
- Caroline Hana
- Hematology/Oncology Department, Memorial Healthcare System, Pembroke Pines, FL 33028, USA; (N.N.T.D.); (M.G.V.)
| | | | | | | |
Collapse
|
8
|
Niroomand A, Hirdman G, Bèchet N, Ghaidan H, Stenlo M, Kjellström S, Isaksson M, Broberg E, Pierre L, Hyllén S, Olm F, Lindstedt S. Proteomic Analysis of Primary Graft Dysfunction in Porcine Lung Transplantation Reveals Alveolar-Capillary Barrier Changes Underlying the High Particle Flow Rate in Exhaled Breath. Transpl Int 2024; 37:12298. [PMID: 38741700 PMCID: PMC11089893 DOI: 10.3389/ti.2024.12298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/19/2024] [Indexed: 05/16/2024]
Abstract
Primary graft dysfunction (PGD) remains a challenge for lung transplantation (LTx) recipients as a leading cause of poor early outcomes. New methods are needed for more detailed monitoring and understanding of the pathophysiology of PGD. The measurement of particle flow rate (PFR) in exhaled breath is a novel tool to monitor and understand the disease at the proteomic level. In total, 22 recipient pigs underwent orthotopic left LTx and were evaluated for PGD on postoperative day 3. Exhaled breath particles (EBPs) were evaluated by mass spectrometry and the proteome was compared to tissue biopsies and bronchoalveolar lavage fluid (BALF). Findings were confirmed in EBPs from 11 human transplant recipients. Recipients with PGD had significantly higher PFR [686.4 (449.7-8,824.0) particles per minute (ppm)] compared to recipients without PGD [116.6 (79.7-307.4) ppm, p = 0.0005]. Porcine and human EBP proteins recapitulated proteins found in the BAL, demonstrating its utility instead of more invasive techniques. Furthermore, adherens and tight junction proteins were underexpressed in PGD tissue. Histological and proteomic analysis found significant changes to the alveolar-capillary barrier explaining the high PFR in PGD. Exhaled breath measurement is proposed as a rapid and non-invasive bedside measurement of PGD.
Collapse
Affiliation(s)
- Anna Niroomand
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Rutgers Robert Wood Johnson University Hospital, New Brunswick, NJ, United States
| | - Gabriel Hirdman
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Nicholas Bèchet
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Haider Ghaidan
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transpantation, Skåne University Hospital, Lund, Sweden
| | - Martin Stenlo
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | | | - Marc Isaksson
- Department of Clinical Sciences, BioMS, Lund, Sweden
| | - Ellen Broberg
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Leif Pierre
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transpantation, Skåne University Hospital, Lund, Sweden
| | - Snejana Hyllén
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transpantation, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
9
|
Kato A, Pipil S, Ota C, Kusakabe M, Watanabe T, Nagashima A, Chen AP, Islam Z, Hayashi N, Wong MKS, Komada M, Romero MF, Takei Y. Convergent gene losses and pseudogenizations in multiple lineages of stomachless fishes. Commun Biol 2024; 7:408. [PMID: 38570609 PMCID: PMC10991444 DOI: 10.1038/s42003-024-06103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
The regressive evolution of independent lineages often results in convergent phenotypes. Several teleost groups display secondary loss of the stomach, and four gastric genes, atp4a, atp4b, pgc, and pga2 have been co-deleted in agastric (stomachless) fish. Analyses of genotypic convergence among agastric fishes showed that four genes, slc26a9, kcne2, cldn18a, and vsig1, were co-deleted or pseudogenized in most agastric fishes of the four major groups. kcne2 and vsig1 were also deleted or pseudogenized in the agastric monotreme echidna and platypus, respectively. In the stomachs of sticklebacks, these genes are expressed in gastric gland cells or surface epithelial cells. An ohnolog of cldn18 was retained in some agastric teleosts but exhibited an increased non-synonymous substitution when compared with gastric species. These results revealed novel convergent gene losses at multiple loci among the four major groups of agastric fish, as well as a single gene loss in the echidna and platypus.
Collapse
Affiliation(s)
- Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan.
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan.
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, MN, USA.
| | - Supriya Pipil
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Chihiro Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Makoto Kusakabe
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
- Department of Biological Sciences, Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Taro Watanabe
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Ayumi Nagashima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - An-Ping Chen
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, MN, USA
| | - Zinia Islam
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Naoko Hayashi
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Marty Kwok-Shing Wong
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
- Department of Biomolecular Science, Toho University, Funabashi, Japan
| | - Masayuki Komada
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Michael F Romero
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, MN, USA
- Department of Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, Rochester, MN, USA
| | - Yoshio Takei
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
10
|
Angerilli V, Ghelardi F, Nappo F, Grillo F, Parente P, Lonardi S, Luchini C, Pietrantonio F, Ugolini C, Vanoli A, Fassan M. Claudin-18.2 testing and its impact in the therapeutic management of patients with gastric and gastroesophageal adenocarcinomas: A literature review with expert opinion. Pathol Res Pract 2024; 254:155145. [PMID: 38277741 DOI: 10.1016/j.prp.2024.155145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Claudin-18.2 (CLDN18.2) is a member of the tight junction protein family and is a highly selective biomarker with frequent abnormal expression during the occurrence and development of various primary malignant tumors, including gastric cancer (GC) and esophago-gastric junction adenocarcinomas (EGJA). For these reasons, CLDN18.2 has been investigated as a therapeutic target for GC/EGJA malignancies. Recently, zolbetuximab has been proposed as a new standard of care for patients with CLDN18.2-positive, HER2-negative, locally advanced and metastatic GC/EGJA. The use of CLDN18 IHC assays to select patients who might benefit from anti-CLDN18.2 therapy is currently entering clinical practice. In this setting, pathologists play a central role in therapeutic decision-making. Accurate biomarker assessment is essential to ensure the best therapeutic option for patients. In the present review, we provide a comprehensive overview of available evidence on CLDN18.2 testing and its impact on the therapeutic management of patients with GC/EGJA, as well as some practical suggestions for CLDN18.2 staining interpretation and potential pitfalls in the real-world setting.
Collapse
Affiliation(s)
- Valentina Angerilli
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Filippo Ghelardi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Floriana Nappo
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Federica Grillo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Italy.
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy.
| | - Sara Lonardi
- Medical Oncology 3, Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Clara Ugolini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Alessandro Vanoli
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy; Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| |
Collapse
|
11
|
Tao D, Guan B, Li H, Zhou C. Expression patterns of claudins in cancer. Heliyon 2023; 9:e21338. [PMID: 37954388 PMCID: PMC10637965 DOI: 10.1016/j.heliyon.2023.e21338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Claudins are four-transmembrane proteins, which were found in tight junctions. They maintain cell barriers and regulate cell differentiation and proliferation. They are involved in maintaining cellular polarity and normal functions. Different claudins show different expression patterns. The expression level and localization of claudins are altered in various cancers. They promote or inhibit proliferation, invasion, and migration of cancer cells through multiple signaling pathways. Therefore, claudins may serve as diagnostic markers, novel therapeutic targets, and prognostic risk factors. The important roles of claudins in cancer aroused our great interest. In the present review, we provide a summary of insights into expression patterns of claudins in cancer, which is more comprehensive and provides new ideas for further research.
Collapse
Affiliation(s)
- Daoyu Tao
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Hui Li
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
12
|
Dong S, Liu S, Gao Q, Shi J, Song K, Wu Y, Liu H, Guo C, Huang Y, Du S, Li X, Ge L, Yu J. Interleukin-17D produced by alveolar epithelial type II cells alleviates LPS-induced acute lung injury via the Nrf2 pathway. Clin Sci (Lond) 2023; 137:1499-1512. [PMID: 37708335 DOI: 10.1042/cs20230354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Sepsis engenders an imbalance in the body's inflammatory response, with cytokines assuming a pivotal role in its progression. A relatively recent addition to the interleukin-17 family, denominated interleukin-17D (IL-17D), is notably abundant within pulmonary confines. Nevertheless, its implication in sepsis remains somewhat enigmatic. The present study endeavors to scrutinize the participation of IL-17D in sepsis-induced acute lung injury (ALI). METHODS The levels of IL-17D in the serum and bronchoalveolar lavage fluid (BALF) of both healthy cohorts and septic patients were ascertained through an ELISA protocol. For the creation of a sepsis-induced ALI model, intraperitoneal lipopolysaccharide (LPS) injections were administered to male C57/BL6 mice. Subsequently, we examined the fluctuations and repercussions associated with IL-17D in sepsis-induced ALI, probing its interrelation with nuclear factor erythroid 2-related factor 2 (Nrf2), alveolar epithelial permeability, and heme oxygenase-1. RESULTS IL-17D levels exhibited significant reduction both in the serum and BALF of septic patients (P<0.001). Similar observations manifested in mice subjected to LPS-induced acute lung injury (ALI) (P=0.002). Intraperitoneal administration of recombinant interleukin 17D protein (rIL-17D) prompted increased expression of claudin 18 and concomitant enhancement of alveolar epithelial permeability, thus, culminating in improved lung injury (P<0.001). Alveolar epithelial type II (ATII) cells were identified as the source of IL-17D, regulated by Nrf2. Furthermore, a deficiency in HO-1 yielded elevated IL-17D levels (P=0.004), albeit administration of rIL-17D ameliorated the exacerbated pulmonary damage resulting from HO-1 deficiency. CONCLUSION Nrf2 fosters IL-17D production within AT II cells, thereby conferring a protective role in sepsis-induced ALI.
Collapse
Affiliation(s)
- Shuan Dong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shasha Liu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Qiaoying Gao
- Department of Clinical Laboratory, Tianjin Nankai Hospital, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Kai Song
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Ya Wu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Huayang Liu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Chenxu Guo
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yan Huang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shihan Du
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Lixiu Ge
- Department of Clinical Laboratory, Tianjin Nankai Hospital, Tianjin, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Chen J, Xu Z, Hu C, Zhang S, Zi M, Yuan L, Cheng X. Targeting CLDN18.2 in cancers of the gastrointestinal tract: New drugs and new indications. Front Oncol 2023; 13:1132319. [PMID: 36969060 PMCID: PMC10036590 DOI: 10.3389/fonc.2023.1132319] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Cancers of the gastrointestinal (GI) tract greatly contribute to the global cancer burden and cancer-related death. Claudin-18.2(CLDN18.2), a transmembrane protein, is a major component of tight junctions and plays an important role in the maintenance of barrier function. Its characteristic widespread expression in tumour tissues and its exposed extracellular loops make it an ideal target for researchers to develop targeted strategies and immunotherapies for cancers of the GI tract. In the present review, we focus on the expression pattern of CLDN18.2 and its clinical significance in GI cancer. We also discuss the tumour-promoting and/or tumour-inhibiting functions of CLDN18.2, the mechanisms regulating its expression, and the current progress regarding the development of drugs targeting CLDN18.2 in clinical research.
Collapse
Affiliation(s)
- Jinxia Chen
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Can Hu
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Mengli Zi
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Li Yuan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- *Correspondence: Li Yuan, ; Xiangdong Cheng,
| | - Xiangdong Cheng
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- *Correspondence: Li Yuan, ; Xiangdong Cheng,
| |
Collapse
|
14
|
Shrine N, Izquierdo AG, Chen J, Packer R, Hall RJ, Guyatt AL, Batini C, Thompson RJ, Pavuluri C, Malik V, Hobbs BD, Moll M, Kim W, Tal-Singer R, Bakke P, Fawcett KA, John C, Coley K, Piga NN, Pozarickij A, Lin K, Millwood IY, Chen Z, Li L, Wijnant SRA, Lahousse L, Brusselle G, Uitterlinden AG, Manichaikul A, Oelsner EC, Rich SS, Barr RG, Kerr SM, Vitart V, Brown MR, Wielscher M, Imboden M, Jeong A, Bartz TM, Gharib SA, Flexeder C, Karrasch S, Gieger C, Peters A, Stubbe B, Hu X, Ortega VE, Meyers DA, Bleecker ER, Gabriel SB, Gupta N, Smith AV, Luan J, Zhao JH, Hansen AF, Langhammer A, Willer C, Bhatta L, Porteous D, Smith BH, Campbell A, Sofer T, Lee J, Daviglus ML, Yu B, Lim E, Xu H, O'Connor GT, Thareja G, Albagha OME, Suhre K, Granell R, Faquih TO, Hiemstra PS, Slats AM, Mullin BH, Hui J, James A, Beilby J, Patasova K, Hysi P, Koskela JT, Wyss AB, Jin J, Sikdar S, Lee M, May-Wilson S, Pirastu N, Kentistou KA, Joshi PK, Timmers PRHJ, Williams AT, Free RC, Wang X, Morrison JL, Gilliland FD, Chen Z, Wang CA, Foong RE, Harris SE, Taylor A, Redmond P, Cook JP, Mahajan A, Lind L, Palviainen T, Lehtimäki T, Raitakari OT, Kaprio J, Rantanen T, Pietiläinen KH, Cox SR, Pennell CE, Hall GL, Gauderman WJ, Brightling C, Wilson JF, Vasankari T, Laitinen T, Salomaa V, Mook-Kanamori DO, Timpson NJ, Zeggini E, Dupuis J, Hayward C, Brumpton B, Langenberg C, Weiss S, Homuth G, Schmidt CO, Probst-Hensch N, Jarvelin MR, Morrison AC, Polasek O, Rudan I, Lee JH, Sayers I, Rawlins EL, Dudbridge F, Silverman EK, Strachan DP, Walters RG, Morris AP, London SJ, Cho MH, Wain LV, Hall IP, Tobin MD. Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk. Nat Genet 2023; 55:410-422. [PMID: 36914875 PMCID: PMC10011137 DOI: 10.1038/s41588-023-01314-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies.
Collapse
Affiliation(s)
- Nick Shrine
- Department of Population Health Sciences, University of Leicester, Leicester, UK.
| | - Abril G Izquierdo
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Jing Chen
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Richard Packer
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Robert J Hall
- Division of Respiratory Medicine and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Anna L Guyatt
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Chiara Batini
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Leicester National Institute for Health and Care Research, Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Rebecca J Thompson
- Division of Respiratory Medicine and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Chandan Pavuluri
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Vidhi Malik
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Matthew Moll
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Wonji Kim
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Per Bakke
- Department of Clinical Science, Unversity of Bergen, Bergen, Norway
| | - Katherine A Fawcett
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Catherine John
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Leicester National Institute for Health and Care Research, Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Kayesha Coley
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Noemi Nicole Piga
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Alfred Pozarickij
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Sara R A Wijnant
- Department of Respiratory Diseases, Ghent Universital Hospital, Ghent, Belgium
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Department of Epidemiology, Eramus Medical Center, Rotterdam, The Netherlands
| | - Lies Lahousse
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Department of Epidemiology, Eramus Medical Center, Rotterdam, The Netherlands
| | - Guy Brusselle
- Department of Respiratory Diseases, Ghent Universital Hospital, Ghent, Belgium
- Department of Epidemiology, Eramus Medical Center, Rotterdam, The Netherlands
| | - Andre G Uitterlinden
- Department of Internal Medicine, Eramus Medical Center, Rotterdam, The Netherlands
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Shona M Kerr
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Matthias Wielscher
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Medea Imboden
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Department of Public Health, University of Basel, Basel, Switzerland
| | - Ayoung Jeong
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Department of Public Health, University of Basel, Basel, Switzerland
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Claudia Flexeder
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Karrasch
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig Maximilian University, Munich, Germany
| | - Beate Stubbe
- Department of Internal Medicine B-Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, Greifswald, Germany
| | - Xiaowei Hu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Victor E Ortega
- Division of Respiratory Medicine, Department of Internal Medicine, Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | | - Namrata Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Albert Vernon Smith
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Jing-Hua Zhao
- Department of Public and Primary Care, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Ailin F Hansen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnulf Langhammer
- HUNT Research Centre, Department of Public Health and Nursing, NTNU Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Cristen Willer
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Laxmi Bhatta
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - David Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elise Lim
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Hanfei Xu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - George T O'Connor
- Pulmonary Center, School of Medicine, Boston University, Boston, MA, USA
| | - Gaurav Thareja
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Omar M E Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Center for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Biophysics and Physiology, Weill Cornell Medicine, New York, NY, USA
| | - Raquel Granell
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tariq O Faquih
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annelies M Slats
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin H Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Jennie Hui
- Busselton Population Medical Research Institute, QEII Medical Centre, Nedlands, Western Australia, Australia
- School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia
- PathWest Laboratory Medicine of WA, Nedlands, Western Australia, Australia
| | - Alan James
- Busselton Population Medical Research Institute, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - John Beilby
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Busselton Population Medical Research Institute, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Karina Patasova
- Department of Twin Research and Genetic Epidemiology, King's College London School of Medicine, London, UK
- Division of Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Pirro Hysi
- Department of Twin Research and Genetic Epidemiology, King's College London School of Medicine, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Jukka T Koskela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Annah B Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | | | - Sinjini Sikdar
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
- Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA, USA
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Sebastian May-Wilson
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Nicola Pirastu
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Katherine A Kentistou
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Paul R H J Timmers
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Alexander T Williams
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Robert C Free
- Leicester National Institute for Health and Care Research, Biomedical Research Centre, Glenfield Hospital, Leicester, UK
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Xueyang Wang
- Leicester National Institute for Health and Care Research, Biomedical Research Centre, Glenfield Hospital, Leicester, UK
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - John L Morrison
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carol A Wang
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Rachel E Foong
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- School of Allied Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Sarah E Harris
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Adele Taylor
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Paul Redmond
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - James P Cook
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland-FIMM, University of Helsinki, Helsinki, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland-FIMM, University of Helsinki, Helsinki, Finland
| | - Taina Rantanen
- Faculty of Sport and Health Sciences, University of Jyvaskyla, Jyvaskyla, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Obesity and Abdominal Centers, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Simon R Cox
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Craig E Pennell
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Graham L Hall
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- School of Allied Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - W James Gauderman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chris Brightling
- Leicester National Institute for Health and Care Research, Biomedical Research Centre, Glenfield Hospital, Leicester, UK
- Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, UK
| | - James F Wilson
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Tuula Vasankari
- FILHA-Finnish Lung Health Association, Helsinki, Finland
- Department of Respiratory Diseases and Allergology, University of Turku, Turku, Finland
| | - Tarja Laitinen
- Administration Center, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- ALSPAC, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Eleftheria Zeggini
- Wellcome Sanger Institute, Cambridge, UK
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich, Germany
| | - Josée Dupuis
- Department of Epidemiology, Biostatistics, and Occupational Health, School of Population and Global Health, McGill University, Montreal, Quebec, Canada
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ben Brumpton
- HUNT Research Centre, Department of Public Health and Nursing, NTNU Norwegian University of Science and Technology, Levanger, Norway
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
- Computational Medicine, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Carsten Oliver Schmidt
- Institute for Community Medicine, SHIP-Clinical Epidemiological Research, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Probst-Hensch
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Department of Public Health, University of Basel, Basel, Switzerland
| | - Marjo-Riitta Jarvelin
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ozren Polasek
- School of Medicine, University of Split, Split, Croatia
| | - Igor Rudan
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Joo-Hyeon Lee
- Jeffrey Cheah Biomedical Centre, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ian Sayers
- Division of Respiratory Medicine and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Emma L Rawlins
- Wellcome Trust-CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Frank Dudbridge
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Edwin K Silverman
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - David P Strachan
- Population Health Research Institute, St George's University of London, London, UK
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Louise V Wain
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Leicester National Institute for Health and Care Research, Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ian P Hall
- Division of Respiratory Medicine and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Martin D Tobin
- Department of Population Health Sciences, University of Leicester, Leicester, UK.
- Leicester National Institute for Health and Care Research, Biomedical Research Centre, Glenfield Hospital, Leicester, UK.
| |
Collapse
|
15
|
Liu Y, Xu J, Shi J, Zhang Y, Ma Y, Zhang Q, Su Z, Zhang Y, Hong S, Hu G, Chen Z, Jia G. Effects of short-term high-concentration exposure to PM 2.5 on pulmonary tissue damage and repair ability as well as innate immune events. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121055. [PMID: 36632972 DOI: 10.1016/j.envpol.2023.121055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Short-term heavy air pollution still occurs frequently worldwide, especially during the winter heating period in some developing countries, which is usually accompanied by the temporary explosive growth of PM2.5. The pulmonary damage caused by PM2.5 exposure has been determined, but there have been few studies on the repair ability after the cessation of exposure and the important role of innate immune events. This study established a short-term (30 days) high-concentration (15 mg/kg body weight) PM2.5 exposure and recovery (15 days of exposure cessation) model by intratracheal instillation. The results showed that short-term PM2.5 exposure increased the content of collagen fiber in rat lung tissue, which was significantly repaired after recovery by 15 days of exposure cessation. Meanwhile, exposure to PM2.5 also caused changes in lung epithelial function, macrophage polarization and cell autophagy function. Most of these changes could be restored or reversed to a certain extent after recovery. However, there were also some biomarkers, including CLDN18.1, SP-A, SP-D, iNOS, CD206, Beclin1, p62 and LC3B, that were still significantly different between the exposure and control groups after recovery, suggesting that some toxic effects, especially epithelial function damage, were not completely repaired. In addition, there was a significant correlation between pulmonary fibrosis and innate immunity. The present study demonstrated that short-term high-concentration exposure to PM2.5 could cause temporary lung tissue damage and related innate immune events in rats, and the repair ability existed after the cessation of exposure, but part of the damage that required special attention still persisted.
Collapse
Affiliation(s)
- Yu Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Jiayu Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Qiaojian Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Shiyi Hong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Guiping Hu
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| |
Collapse
|
16
|
Tilston-Lunel AM, Varelas X. Polarity in respiratory development, homeostasis and disease. Curr Top Dev Biol 2023; 154:285-315. [PMID: 37100521 DOI: 10.1016/bs.ctdb.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The respiratory system is composed of a multitude of cells that organize to form complex branched airways that end in alveoli, which respectively function to guide air flow and mediate gas exchange with the bloodstream. The organization of the respiratory sytem relies on distinct forms of cell polarity, which guide lung morphogenesis and patterning in development and provide homeostatic barrier protection from microbes and toxins. The stability of lung alveoli, the luminal secretion of surfactants and mucus in the airways, and the coordinated motion of multiciliated cells that generate proximal fluid flow, are all critical functions regulated by cell polarity, with defects in polarity contributing to respiratory disease etiology. Here, we summarize the current knowledge of cell polarity in lung development and homeostasis, highlighting key roles for polarity in alveolar and airway epithelial function and outlining relationships with microbial infections and diseases, such as cancer.
Collapse
|
17
|
Wang DW, Zhang WH, Danil G, Yang K, Hu JK. The role and mechanism of claudins in cancer. Front Oncol 2022; 12:1051497. [PMID: 36620607 PMCID: PMC9818346 DOI: 10.3389/fonc.2022.1051497] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Claudins are a tetraspan membrane protein multigene family that plays a structural and functional role in constructing tight junctions. Claudins perform crucial roles in maintaining cell polarity in epithelial and endothelial cell sheets and controlling paracellular permeability. In the last two decades, increasing evidence indicates that claudin proteins play a major role in controlling paracellular permeability and signaling inside cells. Several types of claudins are dysregulated in various cancers. Depending on where the tumor originated, claudin overexpression or underexpression has been shown to regulate cell proliferation, cell growth, metabolism, metastasis and cell stemness. Epithelial-to-mesenchymal transition is one of the most important functions of claudin proteins in disease progression. However, the exact molecular mechanisms and signaling pathways that explain why claudin proteins are so important to tumorigenesis and progression have not been determined. In addition, claudins are currently being investigated as possible diagnostic and treatment targets. Here, we discuss how claudin-related signaling pathways affect tumorigenesis, tumor progression, and treatment sensitivity.
Collapse
Affiliation(s)
- De-Wen Wang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Galiullin Danil
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Kun Yang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Kun Hu
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jian-Kun Hu,
| |
Collapse
|
18
|
Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury. Inflammation 2022; 45:2142-2162. [PMID: 35779195 PMCID: PMC9649847 DOI: 10.1007/s10753-022-01708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.
Collapse
Affiliation(s)
- Nachiket M Godbole
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Neha Chataut
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
19
|
Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics 2022; 14:2619. [PMID: 36559113 PMCID: PMC9786141 DOI: 10.3390/pharmaceutics14122619] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Intercellular contacts between epithelial cells are established and maintained by the apical junctional complexes (AJCs). AJCs conserve cell polarity and build epithelial barriers to pathogens, inhaled allergens, and environmental particles in the respiratory tract. AJCs consist of tight junctions (TJs) and adherens junctions (AJs), which play a key role in maintaining the integrity of the airway barrier. Emerging evidence has shown that different microorganisms cause airway barrier dysfunction by targeting TJ and AJ proteins. This review discusses the pathophysiologic mechanisms by which several microorganisms (bacteria and viruses) lead to the disruption of AJCs in airway epithelial cells. We present recent progress in understanding signaling pathways involved in the formation and regulation of cell junctions. We also summarize the potential chemical inhibitors and pharmacological approaches to restore the integrity of the airway epithelial barrier. Understanding the AJCs-pathogen interactions and mechanisms by which microorganisms target the AJC and impair barrier function may further help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
20
|
S1PR1 serves as a viable drug target against pulmonary fibrosis by increasing the integrity of the endothelial barrier of the lung. Acta Pharm Sin B 2022; 13:1110-1127. [PMID: 36970190 PMCID: PMC10031262 DOI: 10.1016/j.apsb.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with unclear etiology and limited treatment options. The median survival time for IPF patients is approximately 2-3 years and there is no effective intervention to treat IPF other than lung transplantation. As important components of lung tissue, endothelial cells (ECs) are associated with pulmonary diseases. However, the role of endothelial dysfunction in pulmonary fibrosis (PF) is incompletely understood. Sphingosine-1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor highly expressed in lung ECs. Its expression is markedly reduced in patients with IPF. Herein, we generated an endothelial-conditional S1pr1 knockout mouse model which exhibited inflammation and fibrosis with or without bleomycin (BLM) challenge. Selective activation of S1PR1 with an S1PR1 agonist, IMMH002, exerted a potent therapeutic effect in mice with bleomycin-induced fibrosis by protecting the integrity of the endothelial barrier. These results suggest that S1PR1 might be a promising drug target for IPF therapy.
Collapse
|
21
|
Plaunt AJ, Nguyen TL, Corboz MR, Malinin VS, Cipolla DC. Strategies to Overcome Biological Barriers Associated with Pulmonary Drug Delivery. Pharmaceutics 2022; 14:302. [PMID: 35214039 PMCID: PMC8880668 DOI: 10.3390/pharmaceutics14020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 02/01/2023] Open
Abstract
While the inhalation route has been used for millennia for pharmacologic effect, the biological barriers to treating lung disease created real challenges for the pharmaceutical industry until sophisticated device and formulation technologies emerged over the past fifty years. There are now several inhaled device technologies that enable delivery of therapeutics at high efficiency to the lung and avoid excessive deposition in the oropharyngeal region. Chemistry and formulation technologies have also emerged to prolong retention of drug at the active site by overcoming degradation and clearance mechanisms, or by reducing the rate of systemic absorption. These technologies have also been utilized to improve tolerability or to facilitate uptake within cells when there are intracellular targets. This paper describes the biological barriers and provides recent examples utilizing formulation technologies or drug chemistry modifications to overcome those barriers.
Collapse
Affiliation(s)
- Adam J. Plaunt
- Insmed Incorporated, Bridgewater, NJ 08807, USA; (T.L.N.); (M.R.C.); (V.S.M.); (D.C.C.)
| | | | | | | | | |
Collapse
|
22
|
Liu J, Dean DA. Gene Therapy for Acute Respiratory Distress Syndrome. Front Physiol 2022; 12:786255. [PMID: 35111077 PMCID: PMC8801611 DOI: 10.3389/fphys.2021.786255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome that leads to acute respiratory failure and accounts for over 70,000 deaths per year in the United States alone, even prior to the COVID-19 pandemic. While its molecular details have been teased apart and its pathophysiology largely established over the past 30 years, relatively few pharmacological advances in treatment have been made based on this knowledge. Indeed, mortality remains very close to what it was 30 years ago. As an alternative to traditional pharmacological approaches, gene therapy offers a highly controlled and targeted strategy to treat the disease at the molecular level. Although there is no single gene or combination of genes responsible for ARDS, there are a number of genes that can be targeted for upregulation or downregulation that could alleviate many of the symptoms and address the underlying mechanisms of this syndrome. This review will focus on the pathophysiology of ARDS and how gene therapy has been used for prevention and treatment. Strategies for gene delivery to the lung, such as barriers encountered during gene transfer, specific classes of genes that have been targeted, and the outcomes of these approaches on ARDS pathogenesis and resolution will be discussed.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - David A. Dean
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
23
|
Kyuno D, Takasawa A, Takasawa K, Ono Y, Aoyama T, Magara K, Nakamori Y, Takemasa I, Osanai M. Claudin-18.2 as a therapeutic target in cancers: cumulative findings from basic research and clinical trials. Tissue Barriers 2022; 10:1967080. [PMID: 34486479 PMCID: PMC8794250 DOI: 10.1080/21688370.2021.1967080] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/25/2022] Open
Abstract
Claudins are major components of tight junctions that maintain cell polarity and intercellular adhesion. The dynamics of claudins in cancer cells have attracted attention as a therapeutic target. During carcinogenesis, claudin expression is generally downregulated; however, overexpression of claudin-18.2 has been observed in several types of cancers. Upregulated and mislocalized claudin-18.2 expression in cancer cells has been suggested as a therapeutic target. Research on claudin-18.2 has revealed its involvement in carcinogenesis. Clinical trials using zolbetuximab, a monoclonal antibody targeting claudin-18.2, for patients with advanced cancer yielded positive results with few high-grade adverse events; thus, it is expected to be a novel and effective therapeutic. Here, we review current insights into the role that claudin-18.2 plays in basic cancer research and clinical applications. A better understanding of these roles will facilitate the development of new treatment strategies for cancer patients with poor prognoses.
Collapse
Affiliation(s)
- Daisuke Kyuno
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Kumi Takasawa
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Yusuke Ono
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Tomoyuki Aoyama
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Kazufumi Magara
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Yuna Nakamori
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University, Sapporo, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
24
|
Zuo J, Tong Y, Yang Y, Wang Y, Yue D. Claudin-18 expression under hyperoxia in neonatal lungs of bronchopulmonary dysplasia model rats. Front Pediatr 2022; 10:916716. [PMID: 36299696 PMCID: PMC9589239 DOI: 10.3389/fped.2022.916716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is characterized by impaired alveolar and microvascular development. Claudin-18 is the only known lung-specific tight junction protein affecting the development and transdifferentiation of alveolar epithelium. OBJECTIVE We aimed to explore the changes in the expression of claudin-18, podoplanin, SFTPC, and the canonical WNT pathway, in a rat model of hyperoxia-induced BPD, and to verify the regulatory relationship between claudin-18 and the canonical WNT pathway by cell experiments. METHODS A neonatal rat and cell model of BPD was established by exposing to hyperoxia (85%). Hematoxylin and eosin (HE) staining was used to confirm the establishment of the BPD model. The mRNA levels were assessed using quantitative real-time polymerase chain reaction(qRT-PCR). Protein expression levels were determined using western blotting, immunohistochemical staining, and immunofluorescence. RESULTS As confirmed by HE staining, the neonatal rat model of BPD was successfully established. Compared to that in the control group, claudin-18 and claudin-4 expression decreased in the hyperoxia group. Expression of β-catenin in the WNT signaling pathway decreased, whereas that of p-GSK-3β increased. Expression of the AEC II marker SFTPC initially decreased and then increased, whereas that of the AEC I marker podoplanin increased on day 14 (P < 0.05). Similarly, claudin-18, claudin-4, SFTPC and β-catenin were decreased but podoplanin was increased when AEC line RLE-6TN exposed to 85% hyperoxia. And the expression of SFTPC was increased, the podoplanin was decreased, and the WNT pathway was upregulated when claudin-18 was overexpressed. CONCLUSIONS Claudin-18 downregulation during hyperoxia might affect lung development and maturation, thereby resulting in hyperoxia-induced BPD. Additionally, claudin-18 is associated with the canonical WNT pathway and AECs transdifferentiation.
Collapse
Affiliation(s)
- Jingye Zuo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yajie Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuting Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yirui Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Pausder A, Fricke J, Schughart K, Schreiber J, Strowig T, Bruder D, Boehme JD. Exogenous and Endogenous Triggers Differentially Stimulate Pigr Expression and Antibacterial Secretory Immunity in the Murine Respiratory Tract. Lung 2021; 200:119-128. [PMID: 34825965 PMCID: PMC8881272 DOI: 10.1007/s00408-021-00498-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/15/2021] [Indexed: 10/25/2022]
Abstract
PURPOSE Transport of secretory immunoglobulin A (SIgA) through the airway epithelial cell barrier into the mucosal lumen by the polymeric immunoglobulin receptor (pIgR) is an important mechanism of respiratory mucosal host defense. Identification of immunomodulating substances that regulate secretory immunity might have therapeutic implications with regard to an improved immune exclusion. Thus, we sought to analyze secretory immunity under homeostatic and immunomodulating conditions in different compartments of the murine upper and lower respiratory tract (URT&LRT). METHODS Pigr gene expression in lung, trachea, and nasal-associated lymphoid tissue (NALT) of germ-free mice, specific pathogen-free mice, mice with an undefined microbiome, as well as LPS- and IFN-γ-treated mice was determined by quantitative real-time PCR. IgA levels in bronchoalveolar lavage (BAL), nasal lavage (NAL), and serum were determined by ELISA. LPS- and IFN-γ-treated mice were colonized with Streptococcus pneumoniae and bacterial CFUs were determined in URT and LRT. RESULTS Respiratory Pigr expression and IgA levels were dependent on the degree of exposure to environmental microbial stimuli. While immunostimulation with LPS and IFN-γ differentially impacts respiratory Pigr expression and IgA in URT vs. LRT, only prophylactic IFN-γ treatment reduces nasal colonization with S. pneumoniae. CONCLUSION Airway-associated secretory immunity can be partly modulated by exposure to microbial ligands and proinflammatory stimuli. Prophylactic IFN-γ-treatment modestly improves antibacterial immunity in the URT, but this does not appear to be mediated by SIgA or pIgR.
Collapse
Affiliation(s)
- Alexander Pausder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University, Leipziger Strasse 44, 39120, Magdeburg, Germany.,Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,ESF Graduate School ABINEP, Magdeburg, Germany
| | - Jennifer Fricke
- Research Group Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Current Address: Research Group Nanoinfection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Research Group Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,University of Veterinary Medicine, Hannover, Germany.,University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jens Schreiber
- Experimental Pneumology, Health Campus Immunology, Infectiology and Inflammation, University Hospital for Pneumology, Otto-Von-Guericke-University, Magdeburg, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dunja Bruder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University, Leipziger Strasse 44, 39120, Magdeburg, Germany.,Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Julia D Boehme
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University, Leipziger Strasse 44, 39120, Magdeburg, Germany. .,Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
26
|
Sato K, Matsumoto I, Suzuki K, Tamura A, Shiraishi A, Kiyonari H, Kasamatsu J, Yamamoto H, Miyasaka T, Tanno D, Miyahara A, Zong T, Kagesawa T, Oniyama A, Kawamura K, Kitai Y, Umeki A, Kanno E, Tanno H, Ishii K, Tsukita S, Kawakami K. Deficiency of lung-specific claudin-18 leads to aggravated infection with Cryptococcus deneoformans through dysregulation of the microenvironment in lungs. Sci Rep 2021; 11:21110. [PMID: 34702961 PMCID: PMC8548597 DOI: 10.1038/s41598-021-00708-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/15/2021] [Indexed: 12/25/2022] Open
Abstract
Cryptococcus deneoformans is an opportunistic fungal pathogen that infects the lungs via airborne transmission and frequently causes fatal meningoencephalitis. Claudins (Cldns), a family of proteins with 27 members found in mammals, form the tight junctions within epithelial cell sheets. Cldn-4 and 18 are highly expressed in airway tissues, yet the roles of these claudins in respiratory infections have not been clarified. In the present study, we analyzed the roles of Cldn-4 and lung-specific Cldn-18 (luCldn-18) in host defense against C. deneoformans infection. luCldn-18-deficient mice exhibited increased susceptibility to pulmonary infection, while Cldn-4-deficient mice had normal fungal clearance. In luCldn-18-deficient mice, production of cytokines including IFN-γ was significantly decreased compared to wild-type mice, although infiltration of inflammatory cells including CD4+ T cells into the alveolar space was significantly increased. In addition, luCldn-18 deficiency led to high K+ ion concentrations in bronchoalveolar lavage fluids and also to alveolus acidification. The fungal replication was significantly enhanced both in acidic culture conditions and in the alveolar spaces of luCldn-18-deficient mice, compared with physiological pH conditions and those of wild-type mice, respectively. These results suggest that luCldn-18 may affect the clinical course of cryptococcal infection indirectly through dysregulation of the alveolar space microenvironment.
Collapse
Affiliation(s)
- Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan. .,Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Ikumi Matsumoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Koya Suzuki
- Laboratory of Biological Science and Laboratory of Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,Research Institute for Diseases of Old Age and Department of Clinical Laboratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Atsushi Tamura
- Laboratory of Biological Science and Laboratory of Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Aki Shiraishi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Center for Transdisciplinary Research, Institute of Research Promotion, Niigata University, Niigata, Japan
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Daiki Tanno
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Clinical Laboratory, Fukushima Medical University, Fukushima, Japan
| | - Anna Miyahara
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tong Zong
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takafumi Kagesawa
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akiho Oniyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kotone Kawamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Aya Umeki
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science and Laboratory of Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Kazuyoshi Kawakami
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
27
|
Increased In Vitro Intercellular Barrier Function of Lung Epithelial Cells Using Adipose-Derived Mesenchymal Stem/Stromal Cells. Pharmaceutics 2021; 13:pharmaceutics13081264. [PMID: 34452225 PMCID: PMC8401152 DOI: 10.3390/pharmaceutics13081264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
With the emergence of coronavirus disease-2019, researchers have gained interest in the therapeutic efficacy of mesenchymal stem/stromal cells (MSCs) in acute respiratory distress syndrome; however, the mechanisms of the therapeutic effects of MSCs are unclear. We have previously reported that adipose-derived MSCs (AD-MSCs) strengthen the barrier function of the pulmonary vessels in scaffold-based bioengineered rat lungs. In this study, we evaluated whether AD-MSCs could enhance the intercellular barrier function of lung epithelial cells in vitro using a transwell coculture system. Transepithelial electrical resistance (TEER) measurements revealed that the peak TEER value was significantly higher in the AD-MSC coculture group than in the AD-MSC non-coculture group. Similarly, the permeability coefficient was significantly decreased in the AD-MSC coculture group compared to that in the AD-MSC non-coculture group. Immunostaining of insert membranes showed that zonula occuldens-1 expression was significantly high at cell junctions in the AD-MSC coculture group. Moreover, cell junction-related gene profiling showed that the expression of some claudin genes, including claudin-4, was upregulated in the AD-MSC coculture group. Taken together, these results showed that AD-MSCs enhanced the barrier function between lung epithelial cells, suggesting that both direct adhesion and indirect paracrine effects strengthened the barrier function of lung alveolar epithelium in vitro.
Collapse
|
28
|
Smyth T, Georas SN. Effects of ozone and particulate matter on airway epithelial barrier structure and function: a review of in vitro and in vivo studies. Inhal Toxicol 2021; 33:177-192. [PMID: 34346824 DOI: 10.1080/08958378.2021.1956021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The airway epithelium represents a crucial line of defense against the spread of inhaled pathogens. As the epithelium is the first part of the body to be exposed to the inhaled environment, it must act as both a barrier to and sentinel against any inhaled agents. Despite its vital role in limiting the spread of inhaled pathogens, the airway epithelium is also regularly exposed to air pollutants which disrupt its normal function. Here we review the current understanding of the structure and composition of the airway epithelial barrier, as well as the impact of inhaled pollutants, including the reactive gas ozone and particulate matter, on epithelial function. We discuss the current in vitro, rodent model, and human exposure findings surrounding the impact of various inhaled pollutants on epithelial barrier function, mucus production, and mucociliary clearance. Detailed information on how inhaled pollutants impact epithelial structure and function will further our understanding of the adverse health effects of air pollution exposure.
Collapse
Affiliation(s)
- Timothy Smyth
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Steve N Georas
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
29
|
Lynn KS, Easley KF, Martinez FJ, Reed RC, Schlingmann B, Koval M. Asymmetric distribution of dynamin-2 and β-catenin relative to tight junction spikes in alveolar epithelial cells. Tissue Barriers 2021; 9:1929786. [PMID: 34107845 DOI: 10.1080/21688370.2021.1929786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Tight junctions between lung alveolar epithelial cells maintain an air-liquid barrier necessary for healthy lung function. Previously, we found that rearrangement of tight junctions from a linear, cortical orientation into perpendicular protrusions (tight junction spikes) is associated with a decrease in alveolar barrier function, especially in alcoholic lung syndrome. Using quantitative super-resolution microscopy, we found that spikes in control cells were enriched for claudin-18 as compared with alcohol-exposed cells. Moreover, using an in situ method to measure barrier function, tight junction spikes were not associated with localized increases in permeability. This suggests that tight junction spikes have a regulatory role as opposed to causing a physical weakening of the epithelial barrier. We found that tight junction spikes form at cell-cell junctions oriented away from pools of β-catenin associated with actin filaments, suggesting that adherens junctions determine the directionality of tight junction spikes. Dynamin-2 was associated with junctional claudin-18 and ZO-1, but showed little localization with β-catenin and tight junction spikes. Treatment with Dynasore decreased the number of tight junction spikes/cell, increased tight junction spike length, and stimulated actin to redistribute to cortical tight junctions. By contrast, Dynole 34-2 and MiTMAB altered β-catenin localization, and reduced tight junction spike length. These data suggest a novel role for dynamin-2 in tight junction spike formation by reorienting junction-associated actin. Moreover, the greater spatial separation of adherens and tight junctions in squamous alveolar epithelial cells as compared with columnar epithelial cells facilitates analysis of molecular regulation of the apical junctional complex.
Collapse
Affiliation(s)
- K Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Kristen F Easley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Francisco J Martinez
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Ryan C Reed
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Barbara Schlingmann
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA.,Department of Cell Biology, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|
30
|
Tyler MA, Lam K, Marino MJ, Yao WC, Schmale I, Citardi MJ, Luong AU. Revisiting the controversy: The role of fungi in chronic rhinosinusitis. Int Forum Allergy Rhinol 2021; 11:1577-1587. [PMID: 34076362 DOI: 10.1002/alr.22826] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 05/09/2021] [Indexed: 12/19/2022]
Abstract
In the last two decades, the development of culture-independent genomic techniques has facilitated an increased appreciation of the microbiota-immunity interactions and their role in a multitude of chronic inflammatory diseases such as chronic rhinosinusitis (CRS), asthma, inflammatory bowel disease and dermatitis. While the pathologic role of bacteria in chronic inflammatory diseases is generally accepted, the understanding of the role of fungi remains controversial. Chronic rhinosinusitis, specifically the phenotype linked to nasal polyps, represents a spectrum of chronic inflammatory diseases typically characterized by a type 2 immune response. Studies on the microbiota within sinus cavities from healthy and diseased patients have focused on the bacterial community, mainly highlighting the loss of diversity associated with sinus inflammation. Within the various CRS with nasal polyps (CRSwNP) phenotypes, allergic fungal rhinosinusitis presents an opportunity to investigate the role of fungi in chronic type 2 immune responses as well as the antifungal immune pathways designed to prevent invasive fungal diseases. In this review, we examine the spectrum of fungi-associated sinus diseases highlighting the interaction between fungal species and host immune status on disease presentation. With a focus on fungi and type 2 immune response, we highlight the current knowledge and its limitations of the sinus mycobiota along with cellular interactions and activated molecular pathways linked to fungi.
Collapse
Affiliation(s)
- Matthew A Tyler
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota School of Medicine, Minnesota, Minneapolis, USA
| | - Kent Lam
- Department of Otolaryngology-Head and Neck Surgery, Eastern Virginia Medical School, Virginia, Norfolk, USA
| | - Michael J Marino
- Department of Otorhinolaryngology, Mayo Clinic, Phoenix, Arizona, USA
| | - William C Yao
- Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Isaac Schmale
- Department of Otolaryngology-Head and Neck Surgery, University of Rochester, Rochester, New York, USA
| | - Martin J Citardi
- Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Amber U Luong
- Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
31
|
Looi K, Kicic A, Noble PB, Wang KCW. Intrauterine growth restriction predisposes to airway inflammation without disruption of epithelial integrity in postnatal male mice. J Dev Orig Health Dis 2021; 12:496-504. [PMID: 32799948 DOI: 10.1017/s2040174420000744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Evidence from animal models demonstrate that intrauterine growth restriction (IUGR) alters airway structure and function which may affect susceptibility to disease. Airway inflammation and dysregulated epithelial barrier properties are features of asthma which have not been examined in the context of IUGR. This study used a maternal hypoxia-induced IUGR mouse model to assess lung-specific and systemic inflammation and airway epithelial tight junctions (TJs) protein expression. Pregnant BALB/c mice were housed under hypoxic conditions (10.5% O2) from gestational day (GD) 11 to 17.5 (IUGR group; term, GD 21). Following hypoxic exposure, mice were returned to a normoxic environment (21% O2). A Control group was housed under normoxic conditions throughout pregnancy. Offspring weights were recorded at 2 and 8 weeks of age and euthanized for bronchoalveolar lavage (BAL) and peritoneal cavity fluid collection for inflammatory cells counts. From a separate group of mice, right lungs were collected for Western blotting of TJs proteins. IUGR offspring had greater inflammatory cells in the BAL fluid but not in peritoneal fluid compared with Controls. At 8 weeks of age, interleukin (IL)-2, IL-13, and eotaxin concentrations were higher in male IUGR compared with male Control offspring but not in females. IUGR had no effect on TJs protein expression. Maternal hypoxia-induced IUGR increases inflammatory cells in the BAL fluid of IUGR offspring with no difference in TJs protein expression. Increased cytokine release, specific to the lungs of IUGR male offspring, indicates that both IUGR and sex can influence susceptibility to airway disease.
Collapse
Affiliation(s)
- Kevin Looi
- Telethon Kids Institute, The University of Western Australia, Crawley, WA6009, Australia
- School of Public Health, Curtin University, Bentley, WA6102, Australia
| | - Anthony Kicic
- Telethon Kids Institute, The University of Western Australia, Crawley, WA6009, Australia
- School of Public Health, Curtin University, Bentley, WA6102, Australia
- Faculty of Health and Medical Science, The University of Western Australia, Crawley, WA6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Crawley, WA6009, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, WA6009, Australia
| | - Kimberley C W Wang
- Telethon Kids Institute, The University of Western Australia, Crawley, WA6009, Australia
- School of Human Sciences, The University of Western Australia, Crawley, WA6009, Australia
| |
Collapse
|
32
|
Planté-Bordeneuve T, Pilette C, Froidure A. The Epithelial-Immune Crosstalk in Pulmonary Fibrosis. Front Immunol 2021; 12:631235. [PMID: 34093523 PMCID: PMC8170303 DOI: 10.3389/fimmu.2021.631235] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions between the lung epithelium and the immune system involve a tight regulation to prevent inappropriate reactions and have been connected to several pulmonary diseases. Although the distal lung epithelium and local immunity have been implicated in the pathogenesis and disease course of idiopathic pulmonary fibrosis (IPF), consequences of their abnormal interplay remain less well known. Recent data suggests a two-way process, as illustrated by the influence of epithelial-derived periplakin on the immune landscape or the effect of macrophage-derived IL-17B on epithelial cells. Additionally, damage associated molecular patterns (DAMPs), released by damaged or dying (epithelial) cells, are augmented in IPF. Next to “sterile inflammation”, pathogen-associated molecular patterns (PAMPs) are increased in IPF and have been linked with lung fibrosis, while outer membrane vesicles from bacteria are able to influence epithelial-macrophage crosstalk. Finally, the advent of high-throughput technologies such as microbiome-sequencing has allowed for the identification of a disease-specific microbial environment. In this review, we propose to discuss how the interplays between the altered distal airway and alveolar epithelium, the lung microbiome and immune cells may shape a pro-fibrotic environment. More specifically, it will highlight DAMPs-PAMPs pathways and the specificities of the IPF lung microbiome while discussing recent elements suggesting abnormal mucosal immunity in pulmonary fibrosis.
Collapse
Affiliation(s)
- Thomas Planté-Bordeneuve
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
| | - Charles Pilette
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| | - Antoine Froidure
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| |
Collapse
|
33
|
Zuo JY, Tong YJ, Yue DM. [A review on the effect of Claudin-18 on bronchopulmonary dysplasia in preterm infants]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:542-547. [PMID: 34020748 PMCID: PMC8140329 DOI: 10.7499/j.issn.1008-8830.2101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Bronchopulmonary dysplasia (BPD) has the main manifestations of pulmonary edema in the early stage and characteristic alveolar obstruction and microvascular dysplasia in the late stage, which may be caused by structural and functional destruction of the lung epithelial barrier. The Claudin family is the main component of tight junction and plays an important role in regulating the permeability of paracellular ions and solutes. Claudin-18 is the only known tight junction protein solely expressed in the lung. The lack of Claudin-18 can lead to barrier dysfunction and impaired alveolar development, and the knockout of Claudin-18 can cause characteristic histopathological changes of BPD. This article elaborates on the important role of Claudin-18 in the development and progression of BPD from the aspects of lung epithelial permeability, alveolar development, and progenitor cell homeostasis, so as to provide new ideas for the pathogenesis and clinical treatment of BPD.
Collapse
Affiliation(s)
- Jing-Ye Zuo
- Department of Neonatology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Ya-Jie Tong
- Department of Neonatology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Dong-Mei Yue
- Department of Neonatology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| |
Collapse
|
34
|
New insights into the Hippo/YAP pathway in idiopathic pulmonary fibrosis. Pharmacol Res 2021; 169:105635. [PMID: 33930530 DOI: 10.1016/j.phrs.2021.105635] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterised by an inexorable decline in lung function. The development of IPF involves multiple positive feedback loops; and a strong support role of the Hippo/YAP signalling pathway, which is essential for regulating cell proliferation and organ size, in IPF pathogenesis has been unveiled recently in cell and animal models. YAP/TAZ contributes to both pulmonary fibrosis and alveolar regeneration via the conventional Hippo/YAP signalling pathway, G protein-coupled receptor signalling, and mechanotransduction. Selectively inhibiting YAP/TAZ in lung fibroblasts may inhibit fibroblast proliferation and extracellular matrix deposition, while activating YAP/TAZ in alveolar epithelial cells may promote alveolar regeneration. In this review, we explore, for the first time, the bidirectional and cell-specific regulation of the Hippo/YAP pathway in IPF pathogenesis and discuss recent research progress and future prospects of IPF treatment based on Hippo/YAP signalling, thus providing a basis for the development of new therapeutic strategies to alleviate or even reverse IPF.
Collapse
|
35
|
Page LK, Staples KJ, Spalluto CM, Watson A, Wilkinson TMA. Influence of Hypoxia on the Epithelial-Pathogen Interactions in the Lung: Implications for Respiratory Disease. Front Immunol 2021; 12:653969. [PMID: 33868294 PMCID: PMC8044850 DOI: 10.3389/fimmu.2021.653969] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Under normal physiological conditions, the lung remains an oxygen rich environment. However, prominent regions of hypoxia are a common feature of infected and inflamed tissues and many chronic inflammatory respiratory diseases are associated with mucosal and systemic hypoxia. The airway epithelium represents a key interface with the external environment and is the first line of defense against potentially harmful agents including respiratory pathogens. The protective arsenal of the airway epithelium is provided in the form of physical barriers, and the production of an array of antimicrobial host defense molecules, proinflammatory cytokines and chemokines, in response to activation by receptors. Dysregulation of the airway epithelial innate immune response is associated with a compromised immunity and chronic inflammation of the lung. An increasing body of evidence indicates a distinct role for hypoxia in the dysfunction of the airway epithelium and in the responses of both innate immunity and of respiratory pathogens. Here we review the current evidence around the role of tissue hypoxia in modulating the host-pathogen interaction at the airway epithelium. Furthermore, we highlight the work needed to delineate the role of tissue hypoxia in the pathophysiology of chronic inflammatory lung diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease in addition to novel respiratory diseases such as COVID-19. Elucidating the molecular mechanisms underlying the epithelial-pathogen interactions in the setting of hypoxia will enable better understanding of persistent infections and complex disease processes in chronic inflammatory lung diseases and may aid the identification of novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Lee K. Page
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - C. Mirella Spalluto
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
- Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
36
|
Bai H, Zhou R, Barravecchia M, Norman R, Friedman A, Yu D, Lin X, Young JL, Dean DA. The Na+, K+-ATPase β1 subunit regulates epithelial tight junctions via MRCKα. JCI Insight 2021; 6:134881. [PMID: 33507884 PMCID: PMC7934944 DOI: 10.1172/jci.insight.134881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
An intact lung epithelial barrier is essential for lung homeostasis. The Na+, K+-ATPase (NKA), primarily serving as an ion transporter, also regulates epithelial barrier function via modulation of tight junctions. However, the underlying mechanism is not well understood. Here, we show that overexpression of the NKA β1 subunit upregulates the expression of tight junction proteins, leading to increased alveolar epithelial barrier function by an ion transport–independent mechanism. Using IP and mass spectrometry, we identified a number of unknown protein interactions of the β1 subunit, including a top candidate, myotonic dystrophy kinase–related cdc42-binding kinase α (MRCKα), which is a protein kinase known to regulate peripheral actin formation. Using a doxycycline-inducible gene expression system, we demonstrated that MRCKα and its downstream activation of myosin light chain is required for the regulation of alveolar barrier function by the NKA β1 subunit. Importantly, MRCKα is expressed in both human airways and alveoli and has reduced expression in patients with acute respiratory distress syndrome (ARDS), a lung illness that can be caused by multiple direct and indirect insults, including the infection of influenza virus and SARS-CoV-2. Our results have elucidated a potentially novel mechanism by which NKA regulates epithelial tight junctions and have identified potential drug targets for treating ARDS and other pulmonary diseases that are caused by barrier dysfunction.
Collapse
Affiliation(s)
- Haiqing Bai
- Department of Pediatrics and.,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | | | | | | | - Alan Friedman
- Department of Pediatrics and.,Department of Materials Design and Innovation, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Xin Lin
- Department of Pediatrics and
| | | | | |
Collapse
|
37
|
Hekman RM, Hume AJ, Goel RK, Abo KM, Huang J, Blum BC, Werder RB, Suder EL, Paul I, Phanse S, Youssef A, Alysandratos KD, Padhorny D, Ojha S, Mora-Martin A, Kretov D, Ash PEA, Verma M, Zhao J, Patten JJ, Villacorta-Martin C, Bolzan D, Perea-Resa C, Bullitt E, Hinds A, Tilston-Lunel A, Varelas X, Farhangmehr S, Braunschweig U, Kwan JH, McComb M, Basu A, Saeed M, Perissi V, Burks EJ, Layne MD, Connor JH, Davey R, Cheng JX, Wolozin BL, Blencowe BJ, Wuchty S, Lyons SM, Kozakov D, Cifuentes D, Blower M, Kotton DN, Wilson AA, Mühlberger E, Emili A. Actionable Cytopathogenic Host Responses of Human Alveolar Type 2 Cells to SARS-CoV-2. Mol Cell 2020; 80:1104-1122.e9. [PMID: 33259812 PMCID: PMC7674017 DOI: 10.1016/j.molcel.2020.11.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
Abstract
Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system.
Collapse
Affiliation(s)
- Ryan M Hekman
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Raghuveera Kumar Goel
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Kristine M Abo
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin C Blum
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ellen L Suder
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Indranil Paul
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Sadhna Phanse
- Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Ahmed Youssef
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Bioinformatics Program, Boston University, Boston, MA, USA
| | - Konstantinos D Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Sandeep Ojha
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | | - Dmitry Kretov
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Peter E A Ash
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, USA
| | - Mamta Verma
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, USA
| | - Jian Zhao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - J J Patten
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Dante Bolzan
- Department of Computer Science, University of Miami, Miami, FL, USA
| | - Carlos Perea-Resa
- Department of Molecular Biology, Harvard Medical School, Boston, MA, USA
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University, Boston, MA, USA
| | - Anne Hinds
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Andrew Tilston-Lunel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Shaghayegh Farhangmehr
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Julian H Kwan
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Mark McComb
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | - Avik Basu
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Mohsan Saeed
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Valentina Perissi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Eric J Burks
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - John H Connor
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Robert Davey
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Benjamin L Wolozin
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Miami, FL, USA; Department of Biology, University of Miami, Miami, FL, USA; Miami Institute of Data Science and Computing, Miami, FL, USA
| | - Shawn M Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Michael Blower
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Molecular Biology, Harvard Medical School, Boston, MA, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA.
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
38
|
Signaling Pathways Involved in the Development of Bronchopulmonary Dysplasia and Pulmonary Hypertension. CHILDREN-BASEL 2020; 7:children7080100. [PMID: 32824651 PMCID: PMC7465273 DOI: 10.3390/children7080100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/31/2022]
Abstract
The alveolar and vascular developmental arrest in the premature infants poses a major problem in the management of these infants. Although, with the current management, the survival rate has improved in these infants, but bronchopulmonary dysplasia (BPD) is a serious complication associated with a high mortality rate. During the neonatal developmental period, these infants are vulnerable to stress. Hypoxia, hyperoxia, and ventilation injury lead to oxidative and inflammatory stress, which induce further damage in the lung alveoli and vasculature. Development of pulmonary hypertension (PH) in infants with BPD worsens the prognosis. Despite considerable progress in the management of premature infants, therapy to prevent BPD is not yet available. Animal experiments have shown deregulation of multiple signaling factors such as transforming growth factorβ (TGFβ), connective tissue growth factor (CTGF), fibroblast growth factor 10 (FGF10), vascular endothelial growth factor (VEGF), caveolin-1, wingless & Int-1 (WNT)/β-catenin, and elastin in the pathogenesis of BPD. This article reviews the signaling pathways entailed in the pathogenesis of BPD associated with PH and the possible management.
Collapse
|
39
|
Lee-Thacker S, Jeon H, Choi Y, Taniuchi I, Takarada T, Yoneda Y, Ko C, Jo M. Core Binding Factors are essential for ovulation, luteinization, and female fertility in mice. Sci Rep 2020; 10:9921. [PMID: 32555437 PMCID: PMC7303197 DOI: 10.1038/s41598-020-64257-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
Core Binding Factors (CBFs) are a small group of heterodimeric transcription factor complexes composed of DNA binding proteins, RUNXs, and a non-DNA binding protein, CBFB. The LH surge increases the expression of Runx1 and Runx2 in ovulatory follicles, while Cbfb is constitutively expressed. To investigate the physiological significance of CBFs, we generated a conditional mutant mouse model in which granulosa cell expression of Runx2 and Cbfb was deleted by the Esr2Cre. Female Cbfbflox/flox;Esr2cre/+;Runx2flox/flox mice were infertile; follicles developed to the preovulatory follicle stage but failed to ovulate. RNA-seq analysis of mutant mouse ovaries collected at 11 h post-hCG unveiled numerous CBFs-downstream genes that are associated with inflammation, matrix remodeling, wnt signaling, and steroid metabolism. Mutant mice also failed to develop corpora lutea, as evident by the lack of luteal marker gene expression, marked reduction of vascularization, and excessive apoptotic staining in unruptured poorly luteinized follicles, consistent with dramatic reduction of progesterone by 24 h after hCG administration. The present study provides in vivo evidence that CBFs act as essential transcriptional regulators of both ovulation and luteinization by regulating the expression of key genes that are involved in inflammation, matrix remodeling, cell differentiation, vascularization, and steroid metabolisms in mice.
Collapse
Affiliation(s)
- Somang Lee-Thacker
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY, 40536-0298, USA
| | - Hayce Jeon
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY, 40536-0298, USA
| | - Yohan Choi
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY, 40536-0298, USA
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yukio Yoneda
- Section of Prophylactic Pharmacology, Kanazawa University, Venture Business Laboratory 402, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, 2001 South Lincoln Avenue, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61802, USA
| | - Misung Jo
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY, 40536-0298, USA.
| |
Collapse
|
40
|
Zou J, Li Y, Yu J, Dong L, Husain AN, Shen L, Weber CR. Idiopathic pulmonary fibrosis is associated with tight junction protein alterations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183205. [DOI: 10.1016/j.bbamem.2020.183205] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/07/2020] [Accepted: 01/18/2020] [Indexed: 02/07/2023]
|
41
|
Kolosov D, Bui P, Wilkie MP, Kelly SP. Claudins of sea lamprey (Petromyzon marinus) - organ-specific expression and transcriptional responses to water of varying ion content. JOURNAL OF FISH BIOLOGY 2020; 96:768-781. [PMID: 32017083 DOI: 10.1111/jfb.14274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The role of lamprey epithelium tight junctions (TJs) in the regulation of salt and water balance is poorly understood. This study reported on claudin (Cldn) TJ protein transcripts of pre-metamorphic larval and post-metamorphic juvenile sea lamprey (Petromyzon marinus) and the transcriptional response of genes encoding Cldns to changed environmental ion levels. Transcripts encoding Cldn-3b, -4, -5, -10, -14, -18 and -19 were identified, and mRNA expression profiles revealed the organ-specific presence of cldn-5 and -14, broad expression of cldn-3b, -4, -10, -18 and -19 and spatial differences in the mRNA abundance of cldn-4, -3b and -14 along the ammocoete intestine. Expression profiles were qualitatively similar in ammocoetes and juvenile fishes. Transcript abundance of genes encoding Cldns in osmoregulatory organs (gill, kidney, intestine and skin) was subsequently investigated after exposure of ammocoetes to ion-poor water (IPW) and juveniles to hyperosmotic conditions [60% sea water (SW)]. IPW-acclimated ammocoetes increased mRNA abundance of nearly all cldns in the gill. Simultaneously, cldn-10 abundance increased in the skin, whereas cldn-4, -14 and -18 decreased in the kidney. Ammocoete cldn mRNA abundance in the intestine was altered in a region-specific manner. In contrast, cldn transcript abundance was mostly downregulated in osmoregulatory organs of juvenile fish acclimated to SW - cldn-3b, -10 and -19 in the gill; cldn-3b, -4, -10 and -19 in the skin; cldn-3b in the kidney; and cldn-3b and -14 in the intestine. Data support the idea that Cldn TJ proteins play an important role in the osmoregulatory physiology of pre- and post-metamorphic sea lamprey and that Cldn participation can occur across organs, in an organ-specific manner, as well as differ spatially within organs, which contributes to the regulation of salt and water balance in these fishes.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, York University, Toronto, Ontario, Canada
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Phuong Bui
- Department of Biology, York University, Toronto, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Mike P Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Sugita K, Kabashima K. Tight junctions in the development of asthma, chronic rhinosinusitis, atopic dermatitis, eosinophilic esophagitis, and inflammatory bowel diseases. J Leukoc Biol 2020; 107:749-762. [PMID: 32108379 DOI: 10.1002/jlb.5mr0120-230r] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/12/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
This review focuses on recent developments related to asthma, chronic rhinosinusitis, atopic dermatitis (AD), eosinophilic esophagitis, and inflammatory bowel diseases (IBD), with a particular focus on tight junctions (TJs) and their role in the pathogenetic mechanisms of these diseases. Lung, skin, and intestinal surfaces are lined by epithelial cells that interact with environmental factors and immune cells. Therefore, together with the cellular immune system, the epithelium performs a pivotal role as the first line physical barrier against external antigens. Paracellular space is almost exclusively sealed by TJs and is maintained by complex protein-protein interactions. Thus, TJ dysfunction increases paracellular permeability, resulting in enhanced flux across TJs. Epithelial TJ dysfunction also causes immune cell activation and contributes to the pathogenesis of chronic lung, skin, and intestinal inflammation. Characterization of TJ protein alteration is one of the key factors for enhancing our understanding of allergic diseases as well as IBDs. Furthermore, TJ-based epithelial disturbance can promote immune cell behaviors, such as those in dendritic cells, Th2 cells, Th17 cells, and innate lymphoid cells (ILCs), thereby offering new insights into TJ-based targets. The purpose of this review is to illustrate how TJ dysfunction can lead to the disruption of the immune homeostasis in barrier tissues and subsequent inflammation. This review also highlights the various TJ barrier dysfunctions across different organ sites, which would help to develop future drugs to target allergic diseases and IBD.
Collapse
Affiliation(s)
- Kazunari Sugita
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
43
|
The IL1β-HER2-CLDN18/CLDN4 axis mediates lung barrier damage in ARDS. Aging (Albany NY) 2020; 12:3249-3265. [PMID: 32065780 PMCID: PMC7066891 DOI: 10.18632/aging.102804] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/19/2020] [Indexed: 12/17/2022]
Abstract
Objective: The high mortality rate associated with acute respiratory distress syndrome (ARDS) is a major challenge for intensive care units. In the present study, we applied bioinformatics and animal models to identify core genes and potential corresponding pathways in ARDS. Results: Using bioinformatics analysis, IL-1β was identified as the core gene of ARDS. Cell experiments showed that up-regulation of IL-1β downregulates claudin18 to promote lung barrier function damage by regulating the IL-1β-HER2/HER3 axis, further promoting the development of ARDS. This was validated in the animal models. Conclusion: IL-1β promotes the development of ARDS by regulating the IL-1β-HER2/HER3 axis. These findings deepen the understanding of the pathological mechanisms of ARDS. Methods: Transcription data sets related to ARDS were subjected to differential expression gene analysis, functional enrichment analysis, and receiver operating characteristic curve analysis and, so as to identify core genes in ARDS. Cell experiments were used to further explore the effects of core genes on lung barrier function damage. Animal models were applied to validate the effects of core gene in mediating biological signal pathways in ARDS.
Collapse
|
44
|
Plosa EJ, Benjamin JT, Sucre JM, Gulleman PM, Gleaves LA, Han W, Kook S, Polosukhin VV, Haake SM, Guttentag SH, Young LR, Pozzi A, Blackwell TS, Zent R. β1 Integrin regulates adult lung alveolar epithelial cell inflammation. JCI Insight 2020; 5:129259. [PMID: 31873073 PMCID: PMC7098727 DOI: 10.1172/jci.insight.129259] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/12/2019] [Indexed: 01/04/2023] Open
Abstract
Integrins, the extracellular matrix receptors that facilitate cell adhesion and migration, are necessary for organ morphogenesis; however, their role in maintaining adult tissue homeostasis is poorly understood. To define the functional importance of β1 integrin in adult mouse lung, we deleted it after completion of development in type 2 alveolar epithelial cells (AECs). Aged β1 integrin-deficient mice exhibited chronic obstructive pulmonary disease-like (COPD-like) pathology characterized by emphysema, lymphoid aggregates, and increased macrophage infiltration. These histopathological abnormalities were preceded by β1 integrin-deficient AEC dysfunction such as excessive ROS production and upregulation of NF-κB-dependent chemokines, including CCL2. Genetic deletion of the CCL2 receptor, Ccr2, in mice with β1 integrin-deficient type 2 AECs impaired recruitment of monocyte-derived macrophages and resulted in accelerated inflammation and severe premature emphysematous destruction. The lungs exhibited reduced AEC efferocytosis and excessive numbers of inflamed type 2 AECs, demonstrating the requirement for recruited monocytes/macrophages in limiting lung injury and remodeling in the setting of a chronically inflamed epithelium. These studies support a critical role for β1 integrin in alveolar homeostasis in the adult lung.
Collapse
Affiliation(s)
| | | | | | | | - Linda A. Gleaves
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Wei Han
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | | | - Vasiliy V. Polosukhin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Scott M. Haake
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | | | - Lisa R. Young
- Division of Pulmonary Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ambra Pozzi
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA.,Division of Nephrology and Hypertension, Department of Medicine,,Department of Molecular Physiology and Biophysics, and
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and,Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roy Zent
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA.,Division of Nephrology and Hypertension, Department of Medicine,,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
45
|
Machado MG, Tavares LP, Souza GVS, Queiroz-Junior CM, Ascenção FR, Lopes ME, Garcia CC, Menezes GB, Perretti M, Russo RC, Teixeira MM, Sousa LP. The Annexin A1/FPR2 pathway controls the inflammatory response and bacterial dissemination in experimental pneumococcal pneumonia. FASEB J 2019; 34:2749-2764. [PMID: 31908042 DOI: 10.1096/fj.201902172r] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 01/10/2023]
Abstract
Streptococcus pneumoniae is a major cause of community-acquired pneumonia leading to high mortality rates. Inflammation triggered by pneumococcal infection is necessary for bacterial clearance but must be spatially and temporally regulated to prevent further tissue damage and bacterial dissemination. Annexin A1 (AnxA1) mainly acts through Formyl Peptide Receptor 2 (FPR2) inducing the resolution of inflammation. Here, we have evaluated the role of AnxA1 and FPR2 during pneumococcal pneumonia in mice. For that, AnxA1, Fpr2/3 knockout (KO) mice and wild-type (WT) controls were infected intranasally with S pneumoniae. AnxA1 and Fpr2/3 KO mice were highly susceptible to infection, displaying uncontrolled inflammation, increased bacterial dissemination, and pulmonary dysfunction compared to WT animals. Mechanistically, the absence of AnxA1 resulted in the loss of lung barrier integrity and increased neutrophil activation upon S pneumoniae stimulation. Importantly, treatment of WT or AnxA1 KO-infected mice with Ac2-26 decreased inflammation, lung damage, and bacterial burden in the airways by increasing macrophage phagocytosis. Conversely, Ac2-26 peptide was ineffective to afford protection in Fpr2/3 KO mice during infection. Altogether, these findings show that AnxA1, via FPR2, controls inflammation and bacterial dissemination during pneumococcal pneumonia by promoting host defenses, suggesting AnxA1-based peptides as a novel therapeutic strategy to control pneumococcal pneumonia.
Collapse
Affiliation(s)
- Marina Gomes Machado
- Laboratório de sinalização na inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Pádua Tavares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanna V Santos Souza
- Laboratório de sinalização na inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Roque Ascenção
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mateus Eustáquio Lopes
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana Couto Garcia
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Gustavo Batista Menezes
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Remo Castro Russo
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia Pires Sousa
- Laboratório de sinalização na inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
46
|
Kage H, Flodby P, Zhou B, Borok Z. Dichotomous roles of claudins as tumor promoters or suppressors: lessons from knockout mice. Cell Mol Life Sci 2019; 76:4663-4672. [PMID: 31332482 PMCID: PMC6858953 DOI: 10.1007/s00018-019-03238-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/29/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
Claudins are a family of integral tight junction proteins that regulate paracellular permeability in polarized epithelia. Overexpression or reduction of claudins can both promote and limit cancer progression, revealing complex dichotomous roles for claudins depending on cellular context. In contrast, recent studies demonstrating tumor formation in claudin knockout mouse models indicate a role for several claudin family members in suppressing tumor initiation. For example, intestine-specific claudin-7 knockout mice spontaneously develop atypical hyperplasia and intestinal adenomas, while claudin-18 knockout mice develop carcinomas in the lung and stomach. Claudin-4, -11, and -15 knockout mice show increased cell proliferation and/or hyperplasia in urothelium, Sertoli cells, and small intestinal crypts, respectively, possibly a precursor to cancer development. Pathways implicated in both cell proliferation and tumorigenesis include Yap/Taz and insulin-like growth factor-1 receptor (IGF-1R)/Akt pathways, among others. Consistent with the tumor suppressive role of claudins shown in mice, in humans, claudin-low breast cancer has been described as a distinct entity with a poor prognosis, and claudin-18-Rho GTPase activating protein 26 (CLDN18-ARHGAP26) fusion protein as a driver gene aberration in diffuse-type gastric cancer due to effects on RhoA. Paradoxically, claudins have also garnered interest as targets for therapy, as they are sometimes aberrantly expressed in cancer cells, which may or may not promote cancer progression. For example, a chimeric monoclonal antibody which targets cells expressing claudin-18.2 through antibody-dependent cell-mediated cytotoxicity has shown promise in multiple phase II studies. In this review, we focus on new findings supporting a tumor suppressive role for claudins during cancer initiation.
Collapse
Affiliation(s)
- Hidenori Kage
- Department of Respiratory Medicine, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Per Flodby
- Division of Pulmonary, Critical Care and Sleep Medicine and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, IRD 620, M/C 9520, Los Angeles, CA, 90089-9520, USA
| | - Beiyun Zhou
- Division of Pulmonary, Critical Care and Sleep Medicine and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, IRD 620, M/C 9520, Los Angeles, CA, 90089-9520, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, IRD 620, M/C 9520, Los Angeles, CA, 90089-9520, USA.
| |
Collapse
|
47
|
Plataki M, Fan L, Sanchez E, Huang Z, Torres LK, Imamura M, Zhu Y, Cohen DE, Cloonan SM, Choi AM. Fatty acid synthase downregulation contributes to acute lung injury in murine diet-induced obesity. JCI Insight 2019; 5:127823. [PMID: 31287803 DOI: 10.1172/jci.insight.127823] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The prevalence of obesity is rising worldwide and obese patients comprise a specific population in the intensive care unit. Acute respiratory distress syndrome (ARDS) incidence is increased in obese patients. Exposure of rodents to hyperoxia mimics many of the features of ARDS. In this report, we demonstrate that high fat diet induced obesity increases the severity of hyperoxic acute lung injury in mice in part by altering fatty acid synthase (FASN) levels in the lung. Obese mice exposed to hyperoxia had significantly reduced survival and increased lung damage. Transcriptomic analysis of lung homogenates identified Fasn as one of the most significantly altered mitochondrial associated genes in mice receiving 60% compared to 10% fat diet. FASN protein levels in the lung of high fat diet mice were lower by immunoblotting and immunohistochemistry. Depletion of FASN in type II alveolar epithelial cells resulted in altered mitochondrial bioenergetics and more severe lung injury with hyperoxic exposure, even upon the administration of a 60% fat diet. This is the first study to show that a high fat diet leads to altered FASN expression in the lung and that both a high fat diet and reduced FASN expression in alveolar epithelial cells promote lung injury.
Collapse
Affiliation(s)
- Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA.,NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - LiChao Fan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Elizabeth Sanchez
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Ziling Huang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Lisa K Torres
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Mitsuru Imamura
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Yizhang Zhu
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Augustine Mk Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA.,NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| |
Collapse
|
48
|
Weber B, Mendler MR, Lackner I, von Zelewski A, Höfler S, Baur M, Braun CK, Hummler H, Schwarz S, Pressmar J, Kalbitz M. Lung injury after asphyxia and hemorrhagic shock in newborn piglets: Analysis of structural and inflammatory changes. PLoS One 2019; 14:e0219211. [PMID: 31276543 PMCID: PMC6611609 DOI: 10.1371/journal.pone.0219211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Asphyxia of newborns is a severe and frequent challenge of the peri- and postnatal period. The purpose of this study was to study early morphological, immunological and structural alterations in lung tissue after asphyxia and hemorrhage (AH). METHODS 44 neonatal piglets (age 32 hrs) underwent asphyxia and hemorrhage (AH) and were treated according to the international liaison committee of resuscitation (ILCOR) guidelines. For this study, 15 piglets (blood transfusion (RBC) n = 9; NaCl n = 6, mean age 31 hrs) were randomly picked. 4 hours after ROSC (return of spontaneous circulation), lung tissue and blood samples were collected. RESULTS An elevation of myeloperoxidase (MPO) activity was observed 4 hrs after AH accompanied by an increase of surfactant D after RBC treatment. After AH tight junction proteins Claudin 18 and junctional adhesion molecule 1 (JAM1) were down-regulated, whereas Occludin was increased. Furthermore, after AH and RBC treatment dephosphorylated active form of Connexin 43 was increased. CONCLUSIONS AH in neonatal pigs is associated with early lung injury, inflammation and alterations of tight junctions (Claudin, Occludin, JAM-1) and gap junctions (Connexin 43) in lung tissue, which contributes to the development of lung edema and impaired function.
Collapse
Affiliation(s)
- Birte Weber
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Marc Robin Mendler
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Alexander von Zelewski
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Severin Höfler
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Meike Baur
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Baden-Württemberg, Germany
| | - Helmut Hummler
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Baden-Württemberg, Germany
- Division of Neonatology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Stephan Schwarz
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Jochen Pressmar
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Baden-Württemberg, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Baden-Württemberg, Germany
- * E-mail:
| |
Collapse
|
49
|
Tan HTT, Hagner S, Ruchti F, Radzikowska U, Tan G, Altunbulakli C, Eljaszewicz A, Moniuszko M, Akdis M, Akdis CA, Garn H, Sokolowska M. Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice. Allergy 2019; 74:294-307. [PMID: 30267575 DOI: 10.1111/all.13619] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/16/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Asthma is a chronic respiratory disease with marked clinical and pathophysiological heterogeneity. Specific pathways are thought to be involved in the pathomechanisms of different inflammatory phenotypes of asthma; however, direct in vivo comparison has not been performed. METHODS We developed mouse models representing three different phenotypes of allergic airway inflammation-eosinophilic, mixed, and neutrophilic asthma via different methods of house dust mite sensitization and challenge. Transcriptomic analysis of the lungs, followed by the RT-PCR, western blot, and confocal microscopy, was performed. Primary human bronchial epithelial cells cultured in air-liquid interface were used to study the mechanisms revealed in the in vivo models. RESULTS By whole-genome transcriptome profiling of the lung, we found that airway tight junction (TJ), mucin, and inflammasome-related genes are differentially expressed in these distinct phenotypes. Further analysis of proteins from these families revealed that Zo-1 and Cldn18 were downregulated in all phenotypes, while increased Cldn4 expression was characteristic for neutrophilic airway inflammation. Mucins Clca1 (Gob5) and Muc5ac were upregulated in eosinophilic and even more in neutrophilic phenotype. Increased expression of inflammasome-related molecules such as Nlrp3, Nlrc4, Casp-1, and IL-1β was characteristic for neutrophilic asthma. In addition, we showed that inflammasome/Th17/neutrophilic axis cytokine-IL-1β-may transiently impair epithelial barrier function, while IL-1β and IL-17 increase mucin expressions in primary human bronchial epithelial cells. CONCLUSION Our findings suggest that differential expression of TJ, mucin, and inflammasome-related molecules in distinct inflammatory phenotypes of asthma may be linked to pathophysiology and might reflect the differences observed in the clinic.
Collapse
Affiliation(s)
- Hern-Tze Tina Tan
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education; Davos Switzerland
- Department of Immunology; School of Medical Sciences; Universiti Sains Malaysia; Kubang Kerian Malaysia
| | - Stefanie Hagner
- Institute of Laboratory Medicine and Pathobiochemistry; Molecular Diagnostics; Marburg Germany
- Member of the German Center for Lung Research; Marburg Germany
| | - Fiorella Ruchti
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education; Davos Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education; Davos Switzerland
- Department of Regenerative Medicine and Immune Regulation; Medical University of Bialystok; Bialystok Poland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education; Davos Switzerland
- Functional Genomics Center Zurich; ETH Zurich/University of Zurich; Zurich Switzerland
| | - Can Altunbulakli
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education; Davos Switzerland
| | - Andrzej Eljaszewicz
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education; Davos Switzerland
- Department of Regenerative Medicine and Immune Regulation; Medical University of Bialystok; Bialystok Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation; Medical University of Bialystok; Bialystok Poland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education; Davos Switzerland
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education; Davos Switzerland
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry; Molecular Diagnostics; Marburg Germany
- Member of the German Center for Lung Research; Marburg Germany
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education; Davos Switzerland
| |
Collapse
|
50
|
Tsukita S, Tanaka H, Tamura A. The Claudins: From Tight Junctions to Biological Systems. Trends Biochem Sci 2019; 44:141-152. [DOI: 10.1016/j.tibs.2018.09.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 01/04/2023]
|