1
|
Al-Shalabi E, Sunoqrot S, Al-Zuhd T, Alshehada RS, Ibrahim AIM, Hammad AM. Exploring the Antioxidant and Anti-Inflammatory Effects of Rhoifolin Isolated from Teucrium Polium on Rats' Lungs Exposed to Tobacco Smoke. Chem Biodivers 2024; 21:e202400958. [PMID: 39001681 DOI: 10.1002/cbdv.202400958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/12/2024] [Indexed: 10/16/2024]
Abstract
Cigarette smoking exacerbates respiratory diseases, while plant-derived polyphenols offer antioxidant and anti-inflammatory benefits. This study exploresd the effects of Rhoifolin (ROF), a polyphenol from Jordanian Teucrium polium, on lung health in rats exposed to tobacco smoke. Male rats were divided into two groups: one exposed to cigarette smoke (CS), and the other to ROF treatment alongside smoke exposure (CS/ROF). ROF was administered orally for 21 days before smoke exposure. Results showed smoke-induced lung inflammation and oxidative stress, mitigated by ROF treatment. Histological examination revealed smoke-related morphological changes in lung tissue. ROF treatment reduced oxidative stress and inflammation, as evidenced by decreased proinflammatory cytokines. In silico docking demonstrated ROF's potential as an inhibitor of proinflammatory cytokines. This study demonstrates the therapeutic potential of ROF and similar polyphenols in mitigating the harmful effects of cigarette smoke on lung health.
Collapse
Affiliation(s)
- Eveen Al-Shalabi
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Thanaa Al-Zuhd
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Rahaf S Alshehada
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Ali I M Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Alaa M Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| |
Collapse
|
2
|
Boedijono FS, Bood V, Eichhorn IA, Hansbro PM, Slebos DJ, van den Berge M, Faiz A, Pouwels SD. Identification of Genetic Factors Associated With DAMP Release in COPD Patients. Arch Bronconeumol 2024:S0300-2896(24)00245-X. [PMID: 39034199 DOI: 10.1016/j.arbres.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024]
Affiliation(s)
- Fia Sabrina Boedijono
- Respiratory Bioinformatics and Molecular Biology Group, University of Technology Sydney, Australia; Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Verena Bood
- Department of Pulmonary Diseases, University Medical Center Groningen, The Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Ilse A Eichhorn
- Department of Pulmonary Diseases, University Medical Center Groningen, The Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Dirk-Jan Slebos
- Department of Pulmonary Diseases, University Medical Center Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University Medical Center Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Alen Faiz
- Respiratory Bioinformatics and Molecular Biology Group, University of Technology Sydney, Australia
| | - Simon D Pouwels
- Department of Pulmonary Diseases, University Medical Center Groningen, The Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Roodenburg SA, Hartman JE, Eichhorn IA, Slebos DJ, Pouwels SD. Low serum double-stranded DNA levels are associated with higher survival rates in severe COPD patients. ERJ Open Res 2024; 10:00240-2024. [PMID: 39010886 PMCID: PMC11247366 DOI: 10.1183/23120541.00240-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Damage-associated molecular patterns (DAMPs) are endogenous danger signals that alert and activate the immune system upon cellular damage or death. It has previously been shown that DAMP release is increased in patients with COPD, leading to higher levels in extracellular fluids such as serum. In the current study we investigated whether the serum levels of DAMPs were associated with survival rates in COPD patients. Methods A panel of seven DAMPs, consisting of HMGB1, fibrinogen, α-defensin, heat shock protein 70, S100A8, galectin-9 and double-stranded DNA (dsDNA), was measured in serum of 949 severe COPD patients. Maximally selected rank statistics was used to define cut-off values and a Cox proportional hazards model was used to evaluate the effect of high or low DAMP levels on 4-year survival. For DAMPs that were found to affect survival significantly, baseline characteristics were compared between the two DAMP groups. Results Out of the seven DAMPs, only dsDNA was significantly associated with 4-year survival. Patients with elevated serum level of dsDNA had higher 4-year mortality rates, lower FEV1 % predicted values and higher emphysema scores. Discussion In conclusion, in a clinical cohort of 949 patients with moderate-to-severe COPD, elevated serum levels of dsDNA were associated with a higher risk of death. This study further illustrates the potential role of circulating DAMPs, such as dsDNA, in the progression of COPD. Together, the results of this study suggest that levels of circulating dsDNA might serve as an additional prognostic biomarker for survival in COPD patients.
Collapse
Affiliation(s)
- Sharyn A Roodenburg
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Jorine E Hartman
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Ilse A Eichhorn
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Dirk-Jan Slebos
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Simon D Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| |
Collapse
|
4
|
Shen Y, Chen L, Chen J, Qin J, Wang T, Wen F. Mitochondrial damage-associated molecular patterns in chronic obstructive pulmonary disease: Pathogenetic mechanism and therapeutic target. J Transl Int Med 2023; 11:330-340. [PMID: 38130648 PMCID: PMC10732348 DOI: 10.2478/jtim-2022-0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common inflammatory airway disease characterized by enhanced inflammation. Recent studies suggest that mitochondrial damage-associated molecular patterns (DAMPs) may play an important role in the regulation of inflammation and are involved in a serial of inflammatory diseases, and they may also be involved in COPD. This review highlights the potential role of mitochondrial DAMPs during COPD pathogenesis and discusses the therapeutic potential of targeting mitochondrial DAMPs and their related signaling pathways and receptors for COPD. Research progress on mitochondrial DAMPs may enhance our understanding of COPD inflammation and provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Jun Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Jiangyue Qin
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| |
Collapse
|
5
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 129] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
6
|
Xue J, Li Z, Li X, Hua C, Shang P, Zhao J, Liu K, Xie F. Evaluation of cigarette smoke-induced oxidative stress and inflammation in BEAS-2B cells based on a lung microfluidic chip. Food Chem Toxicol 2023; 176:113787. [PMID: 37062330 DOI: 10.1016/j.fct.2023.113787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Oxidative stress and inflammation induced by cigarette smoking are associated with the pathology process of various chronic respiratory diseases, including asthma, emphysema, chronic obstructive pulmonary disease and cancer. Compared with conventional cell culture techniques, microfluidic chips can provide a continuous nutrient supply, mimic the in vivo physiological microenvironment of the cells, and conduct an integrated and flexible analysis of cell status and functions. Here, we designed and fabricated a bionic-lung chip, which was applied to perform cigarette smoke exposure of BEAS-2B cells cultured at the gas-liquid interface. The oxidative stress and inflammation in the cells exposed to cigarette smoke were investigated on chip. The results showed that cellular damage, oxidative stress and inflammatory response induced by cigarette smoke in the chip were dependent on smoke concentration and time after smoke exposure. N-Acetylcysteine (NAC) significantly inhibited these effects of cigarette smoke exposure on the cells at the gas-liquid interface within the chip.
Collapse
Affiliation(s)
- Jingxian Xue
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Zezhi Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China; Beijing Technology and Business University, Beijing, 100048, PR China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China.
| | - Chenfeng Hua
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Junwei Zhao
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Kejian Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China.
| |
Collapse
|
7
|
Tyrrell J, Ghosh A, Manzo ND, Randell SH, Tarran R. Evaluation of chronic cigarette smoke exposure in human bronchial epithelial cultures. J Appl Toxicol 2023; 43:862-873. [PMID: 36594405 DOI: 10.1002/jat.4430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Cigarette smoke (CS) exposure induces both cytotoxicity and inflammation, and often causes COPD, a growing cause of morbidity and mortality. CS also inhibits the CFTR Cl- channel, leading to airway surface liquid dehydration, which is predicated to impair clearance of inhaled pathogens and toxicants. Numerous in vitro studies have been performed that utilize acute (≤24 h) CS exposures. However, CS exposure is typically chronic. We evaluated the feasibility of using British-American Tobacco (BAT)-designed CS exposure chambers for chronically exposing human bronchial epithelial cultures (HBECs) to CS. HBECs are polarized and contain mucosal and serosal sides. In vivo, inhaled CS interacts with mucosal membranes, and BAT chambers are designed to direct CS to HBEC mucosal surfaces while keeping CS away from serosal surfaces via a perfusion system. We found that serosal perfusion was absolutely required to maintain HBEC viability over time following chronic CS exposure. Indeed, with this system, we found that CS increased inflammation and mucin levels, while decreasing CFTR function. Without this serosal perfusion, CS was extremely toxic within 24 h. We therefore propose that 5- and 10-day CS exposures with serosal perfusion are suitable for measuring chronic CS exposure and can be used for monitoring new and emerging tobacco products.
Collapse
Affiliation(s)
- Jean Tyrrell
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Arunava Ghosh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nicholas D Manzo
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Lin L, Li J, Song Q, Cheng W, Chen P. The role of HMGB1/RAGE/TLR4 signaling pathways in cigarette smoke-induced inflammation in chronic obstructive pulmonary disease. Immun Inflamm Dis 2022; 10:e711. [PMID: 36301039 PMCID: PMC9552978 DOI: 10.1002/iid3.711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease with irreversible and continuous progression. It has become the fifth most burdensome disease and the third most deadly disease globally. Therefore, the prevention and treatment of COPD are urgent, and it is also important to clarify the pathogenesis of it. Smoking is the main and most common risk factor for COPD. Cigarette smoke (CS) can cause lung inflammation and other pathological mechanisms in the airways and lung tissue. Airway inflammation is one of the important mechanisms leading to the pathogenesis of COPD. Recent studies have shown that high mobility group box 1 (HMGB1) is involved in the occurrence and development of respiratory diseases, including COPD. HMGB1 is a typical damage-associated molecular pattern (DAMP) protein, which mainly exerts its activity by binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4) and further participate in the process of airway inflammation. Studies have shown that the abnormal expression of HMGB1, RAGE, and TLR4 are related to inflammation in COPD. Herein, we discuss the roles of HMGB1, RAGE, and TLR4 in CS/cigarette smoke extract-induced inflammation in COPD, providing a new target for the diagnosis, treatment and prevention of COPD.
Collapse
Affiliation(s)
- Ling Lin
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| | - Jing Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Research Unit of Respiratory DiseaseCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| | - Qing Song
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Research Unit of Respiratory DiseaseCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| | - Wei Cheng
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Research Unit of Respiratory DiseaseCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Research Unit of Respiratory DiseaseCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| |
Collapse
|
9
|
Bikomeye JC, Terwoord JD, Santos JH, Beyer AM. Emerging mitochondrial signaling mechanisms in cardio-oncology: beyond oxidative stress. Am J Physiol Heart Circ Physiol 2022; 323:H702-H720. [PMID: 35930448 PMCID: PMC9529263 DOI: 10.1152/ajpheart.00231.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/27/2022]
Abstract
Many anticancer therapies (CTx) have cardiotoxic side effects that limit their therapeutic potential and cause long-term cardiovascular complications in cancer survivors. This has given rise to the field of cardio-oncology, which recognizes the need for basic, translational, and clinical research focused on understanding the complex signaling events that drive CTx-induced cardiovascular toxicity. Several CTx agents cause mitochondrial damage in the form of mitochondrial DNA deletions, mutations, and suppression of respiratory function and ATP production. In this review, we provide a brief overview of the cardiovascular complications of clinically used CTx agents and discuss current knowledge of local and systemic secondary signaling events that arise in response to mitochondrial stress/damage. Mitochondrial oxidative stress has long been recognized as a contributor to CTx-induced cardiotoxicity; thus, we focus on emerging roles for mitochondria in epigenetic regulation, innate immunity, and signaling via noncoding RNAs and mitochondrial hormones. Because data exploring mitochondrial secondary signaling in the context of cardio-oncology are limited, we also draw upon clinical and preclinical studies, which have examined these pathways in other relevant pathologies.
Collapse
Affiliation(s)
- Jean C Bikomeye
- Doctorate Program in Public and Community Health, Division of Epidemiology and Social Sciences, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Janée D Terwoord
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Sciences Department, Rocky Vista University, Ivins, Utah
| | - Janine H Santos
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Andreas M Beyer
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
10
|
Mengli Xu, Su J, Yue Z, Yu Y, Zhao X, Xie X. Inflammation and Limb Regeneration: The Role of the Chemokines. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Cutaneous Wound Healing: A Review about Innate Immune Response and Current Therapeutic Applications. Mediators Inflamm 2022; 2022:5344085. [PMID: 35509434 PMCID: PMC9061066 DOI: 10.1155/2022/5344085] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/22/2021] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
Skin wounds and compromised wound healing are major concerns for the public. Although skin wound healing has been studied for decades, the molecular and cellular mechanisms behind the process are still not completely clear. The systemic responses to trauma involve the body’s inflammatory and immunomodulatory cellular and humoral networks. Studies over the years provided essential insights into a complex and dynamic immunity during the cutaneous wound healing process. This review will focus on innate cell populations involved in the initial phase of this orchestrated process, including innate cells from both the skin and the immune system.
Collapse
|
12
|
Qian L, Mehrabi Nasab E, Athari SM, Athari SS. Mitochondria signaling pathways in allergic asthma. J Investig Med 2022; 70:863-882. [PMID: 35168999 PMCID: PMC9016245 DOI: 10.1136/jim-2021-002098] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria, as the powerhouse organelle of cells, are greatly involved in regulating cell signaling pathways, including those related to the innate and acquired immune systems, cellular differentiation, growth, death, apoptosis, and autophagy as well as hypoxic stress responses in various diseases. Asthma is a chronic complicated airway disease characterized by airway hyperresponsiveness, eosinophilic inflammation, mucus hypersecretion, and remodeling of airway. The asthma mortality and morbidity rates have increased worldwide, so understanding the molecular mechanisms underlying asthma progression is necessary for new anti-asthma drug development. The lung is an oxygen-rich organ, and mitochondria, by sensing and processing O2, contribute to the generation of ROS and activation of pro-inflammatory signaling pathways. Asthma pathophysiology has been tightly associated with mitochondrial dysfunction leading to reduced ATP synthase activity, increased oxidative stress, apoptosis induction, and abnormal calcium homeostasis. Defects of the mitochondrial play an essential role in the pro-remodeling mechanisms of lung fibrosis and airway cells' apoptosis. Identification of mitochondrial therapeutic targets can help repair mitochondrial biogenesis and dysfunction and reverse related pathological changes and lung structural remodeling in asthma. Therefore, we here overviewed the relationship between mitochondrial signaling pathways and asthma pathogenic mechanisms.
Collapse
Affiliation(s)
- Ling Qian
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai, China
| | - Entezar Mehrabi Nasab
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | | | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran (the Islamic Republic of)
| |
Collapse
|
13
|
Higham A, Beech A, Jackson N, Lea S, Singh D. Sputum cell counts in COPD patients who use electronic cigarettes. Eur Respir J 2022; 59:13993003.03016-2021. [PMID: 35210322 DOI: 10.1183/13993003.03016-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Andrew Higham
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Augusta Beech
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Natalie Jackson
- Medicines Evaluation Unit, , Manchester University NHS Foundation Trust, Manchester, UK
| | - Simon Lea
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Dave Singh
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK.,Medicines Evaluation Unit, , Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
14
|
Sunil AA, Skaria T. Novel regulators of airway epithelial barrier function during inflammation: potential targets for drug repurposing. Expert Opin Ther Targets 2022; 26:119-132. [PMID: 35085478 DOI: 10.1080/14728222.2022.2035720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Endogenous inflammatory signaling molecules resulting from deregulated immune responses, can impair airway epithelial barrier function and predispose individuals with airway inflammatory diseases to exacerbations and lung infections. Targeting the specific endogenous factors disrupting the airway barrier therefore has the potential to prevent disease exacerbations without affecting the protective immune responses. AREAS COVERED Here, we review the endogenous factors and specific mechanisms disrupting airway epithelial barrier during inflammation and reflect on whether these factors can be specifically targeted by repurposed existing drugs. Literature search was conducted using PubMed, drug database of US FDA and European Medicines Agency until and including September 2021. EXPERT OPINION IL-4 and IL-13 signaling are the major pathways disrupting the airway epithelial barrier during airway inflammation. However, blocking IL-4/IL-13 signaling may adversely affect protective immune responses and increase susceptibility of host to infections. An alternate approach to modulate airway epithelial barrier function involves targeting specific downstream component of IL-4/IL-13 signaling or different inflammatory mediators responsible for regulation of airway epithelial barrier. Airway epithelium-targeted therapy using inhibitors of HDAC, HSP90, MIF, mTOR, IL-17A and VEGF may be a potential strategy to prevent airway epithelial barrier dysfunction in airway inflammatory diseases.
Collapse
Affiliation(s)
- Ahsan Anjoom Sunil
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
15
|
Giordano L, Gregory AD, Pérez Verdaguer M, Ware SA, Harvey H, DeVallance E, Brzoska T, Sundd P, Zhang Y, Sciurba FC, Shapiro SD, Kaufman BA. Extracellular Release of Mitochondrial DNA: Triggered by Cigarette Smoke and Detected in COPD. Cells 2022; 11:369. [PMID: 35159179 PMCID: PMC8834490 DOI: 10.3390/cells11030369] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Cigarette smoke (CS) is the most common risk factor for chronic obstructive pulmonary disease (COPD). The present study aimed to elucidate whether mtDNA is released upon CS exposure and is detected in the plasma of former smokers affected by COPD as a possible consequence of airway damage. We measured cell-free mtDNA (cf-mtDNA) and nuclear DNA (cf-nDNA) in COPD patient plasma and mouse serum with CS-induced emphysema. The plasma of patients with COPD and serum of mice with CS-induced emphysema showed increased cf-mtDNA levels. In cell culture, exposure to a sublethal dose of CSE decreased mitochondrial membrane potential, increased oxidative stress, dysregulated mitochondrial dynamics, and triggered mtDNA release in extracellular vesicles (EVs). Mitochondrial DNA release into EVs occurred concomitantly with increased expression of markers that associate with DNA damage responses, including DNase III, DNA-sensing receptors (cGAS and NLRP3), proinflammatory cytokines (IL-1β, IL-6, IL-8, IL-18, and CXCL2), and markers of senescence (p16 and p21); the majority of the responses are also triggered by cytosolic DNA delivery in vitro. Exposure to a lethal CSE dose preferentially induced mtDNA and nDNA release in the cell debris. Collectively, the results of this study associate markers of mitochondrial stress, inflammation, and senescence with mtDNA release induced by CSE exposure. Because high cf-mtDNA is detected in the plasma of COPD patients and serum of mice with emphysema, our findings support the future study of cf-mtDNA as a marker of mitochondrial stress in response to CS exposure and COPD pathology.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.A.W.); (H.H.)
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.D.); (T.B.); (P.S.)
| | - Alyssa D. Gregory
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.D.G.); (Y.Z.); (F.C.S.); (S.D.S.)
| | - Mireia Pérez Verdaguer
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Sarah A. Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.A.W.); (H.H.)
| | - Hayley Harvey
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.A.W.); (H.H.)
| | - Evan DeVallance
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.D.); (T.B.); (P.S.)
| | - Tomasz Brzoska
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.D.); (T.B.); (P.S.)
- Division of Hematology/Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Prithu Sundd
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.D.); (T.B.); (P.S.)
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.D.G.); (Y.Z.); (F.C.S.); (S.D.S.)
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.D.G.); (Y.Z.); (F.C.S.); (S.D.S.)
| | - Frank C. Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.D.G.); (Y.Z.); (F.C.S.); (S.D.S.)
| | - Steven D. Shapiro
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.D.G.); (Y.Z.); (F.C.S.); (S.D.S.)
| | - Brett A. Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.A.W.); (H.H.)
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.D.); (T.B.); (P.S.)
| |
Collapse
|
16
|
Gärtner F, Gihring A, Roth A, Bischof J, Xu P, Elad L, Wabitsch M, Burster T, Knippschild U. Obesity Prolongs the Inflammatory Response in Mice After Severe Trauma and Attenuates the Splenic Response to the Inflammatory Reflex. Front Immunol 2021; 12:745132. [PMID: 34867969 PMCID: PMC8634681 DOI: 10.3389/fimmu.2021.745132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Thoracic traumas with extra-thoracic injuries result in an immediate, complex host response. The immune response requires tight regulation and can be influenced by additional risk factors such as obesity, which is considered a state of chronic inflammation. Utilizing high-dimensional mass and regular flow cytometry, we define key signatures of obesity-related alterations of the immune system during the response to the trauma. In this context, we report a modification in important components of the splenic response to the inflammatory reflex in obese mice. Furthermore, during the response to trauma, obese mice exhibit a prolonged increase of neutrophils and an early accumulation of inflammation associated CCR2+CD62L+Ly6Chi monocytes in the blood, contributing to a persistent inflammatory phase. Moreover, these mice exhibit differences in migration patterns of monocytes to the traumatized lung, resulting in decreased numbers of regenerative macrophages and an impaired M1/M2 switch in traumatized lungs. The findings presented in this study reveal an attenuation of the inflammatory reflex in obese mice, as well as a disturbance of the monocytic compartment contributing to a prolonged inflammation phase resulting in fewer phenotypically regenerative macrophages in the lung of obese mice.
Collapse
Affiliation(s)
- Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Adrian Gihring
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Aileen Roth
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Leonard Elad
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
17
|
Putnins EE, Goebeler V, Ostadkarampour M. Monoamine Oxidase-B Inhibitor Reduction in Pro-Inflammatory Cytokines Mediated by Inhibition of cAMP-PKA/EPAC Signaling. Front Pharmacol 2021; 12:741460. [PMID: 34867348 PMCID: PMC8635787 DOI: 10.3389/fphar.2021.741460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Mucosal epithelial cell integrity is an important component of innate immunity and it protects the host from an environment rich in microorganisms. Virulence factors from Gram-negative bacteria [e.g. lipopolysaccharide (LPS)] induce significant pro-inflammatory cytokine expression. Monoamine oxidase (MAO) inhibitors reduce cytokine expression in a variety of inflammatory models and may therefore have therapeutic potential for a number of inflammatory diseases. We tested the anti-inflammatory therapeutic potential of a recently developed reversible MAO-B inhibitor (RG0216) with reduced transport across the blood–brain barrier. In an epithelial cell culture model, RG0216 significantly decreased LPS-induced interleukin (IL)-6 and IL-1β gene and protein expression and was as effective as equimolar concentrations of deprenyl (an existing irreversible MAO-B inhibitor). Hydrogen peroxide and modulating dopamine receptor signaling had no effect on cytokine expression. We showed that LPS-induced expression of IL-6 and IL-1β was cAMP dependent, that IL-6 and IL-1β expression were induced by direct cAMP activation (forskolin) and that RG0216 and deprenyl effectively reduced cAMP-mediated cytokine expression. Targeted protein kinase A (PKA) and Exchange Protein Activated by cAMP (EPAC) activation regulated IL-6 and IL-1β expression, albeit in different ways, but both cytokines were effectively decreased with RG0216. RG0216 reduction of LPS-induced cytokine expression occurred by acting downstream of the cAMP-PKA/EPAC signaling cascade. This represents a novel mechanism by which MAO-B selective inhibitors regulate LPS-induced IL-6 and IL-1β expression.
Collapse
Affiliation(s)
- Edward E Putnins
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Verena Goebeler
- Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Mahyar Ostadkarampour
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Tajbakhsh A, Gheibihayat SM, Mortazavi D, Medhati P, Rostami B, Savardashtaki A, Momtazi-Borojeni AA. The Effect of Cigarette Smoke Exposure on Efferocytosis in Chronic Obstructive Pulmonary Disease; Molecular Mechanisms and Treatment Opportunities. COPD 2021; 18:723-736. [PMID: 34865568 DOI: 10.1080/15412555.2021.1978419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cigarette smoking-related inflammation, cellular stresses, and tissue destruction play a key role in lung disease, such as chronic obstructive pulmonary disease (COPD). Notably, augmented apoptosis and impaired clearance of apoptotic cells, efferocytosis, contribute to the chronic inflammatory response and tissue destruction in patients with COPD. Of note, exposure to cigarette smoke can impair alveolar macrophages efferocytosis activity, which leads to secondary necrosis formation and tissue inflammation. A better understanding of the processes behind the effect of cigarette smoke on efferocytosis concerning lung disorders can help to design more efficient treatment approaches and also delay the development of lung disease, such as COPD. To this end, we aimed to seek mechanisms underlying the impairing effect of cigarette smoke on macrophages-mediated efferocytosis in COPD. Further, available therapeutic opportunities for restoring efferocytosis activity and ameliorating respiratory tract inflammation in smokers with COPD were also discussed.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Deniz Mortazavi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Pourya Medhati
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrouz Rostami
- Health & Treatment Center of Rostam, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Iran's National Elites Foundation, Tehran, Iran
| |
Collapse
|
19
|
Ehnert S, Relja B, Schmidt-Bleek K, Fischer V, Ignatius A, Linnemann C, Rinderknecht H, Huber-Lang M, Kalbitz M, Histing T, Nussler AK. Effects of immune cells on mesenchymal stem cells during fracture healing. World J Stem Cells 2021; 13:1667-1695. [PMID: 34909117 PMCID: PMC8641016 DOI: 10.4252/wjsc.v13.i11.1667] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
In vertebrates, bone is considered an osteoimmune system which encompasses functions of a locomotive organ, a mineral reservoir, a hormonal organ, a stem cell pool and a cradle for immune cells. This osteoimmune system is based on cooperatively acting bone and immune cells, cohabitating within the bone marrow. They are highly interdependent, a fact that is confounded by shared progenitors, mediators, and signaling pathways. Successful fracture healing requires the participation of all the precursors, immune and bone cells found in the osteoimmune system. Recent evidence demonstrated that changes of the immune cell composition and function may negatively influence bone healing. In this review, first the interplay between different immune cell types and osteoprogenitor cells will be elaborated more closely. The separate paragraphs focus on the specific cell types, starting with the cells of the innate immune response followed by cells of the adaptive immune response, and the complement system as mediator between them. Finally, a brief overview on the challenges of preclinical testing of immune-based therapeutic strategies to support fracture healing will be given.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Berlin Institute of Health Center of Regenerative Therapies, Charité - University Medicine Berlin, Berlin 13353, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm 89091, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm 89091, Germany
| | - Caren Linnemann
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Helen Rinderknecht
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Ulm 89091, Germany
| | - Miriam Kalbitz
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Tina Histing
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Andreas K Nussler
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
20
|
Burgoyne RA, Fisher AJ, Borthwick LA. The Role of Epithelial Damage in the Pulmonary Immune Response. Cells 2021; 10:cells10102763. [PMID: 34685744 PMCID: PMC8534416 DOI: 10.3390/cells10102763] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.
Collapse
Affiliation(s)
- Rachel Ann Burgoyne
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Andrew John Fisher
- Regenerative Medicine, Stem Cells and Transplantation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Lee Anthony Borthwick
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: ; Tel.: +44-191-208-3112
| |
Collapse
|
21
|
Carlier FM, de Fays C, Pilette C. Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Front Physiol 2021; 12:691227. [PMID: 34248677 PMCID: PMC8264588 DOI: 10.3389/fphys.2021.691227] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces are lined by epithelial cells, which provide a complex and adaptive module that ensures first-line defense against external toxics, irritants, antigens, and pathogens. The underlying mechanisms of host protection encompass multiple physical, chemical, and immune pathways. In the lung, inhaled agents continually challenge the airway epithelial barrier, which is altered in chronic diseases such as chronic obstructive pulmonary disease, asthma, cystic fibrosis, or pulmonary fibrosis. In this review, we describe the epithelial barrier abnormalities that are observed in such disorders and summarize current knowledge on the mechanisms driving impaired barrier function, which could represent targets of future therapeutic approaches.
Collapse
Affiliation(s)
- François M. Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology and Lung Transplant, Centre Hospitalier Universitaire UCL Namur, Yvoir, Belgium
| | - Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
22
|
The Restorative Effect of Red Guava ( Psidium guajava L.) Fruit Extract on Pulmonary Tissue of Rats ( Rattus norvegicus) Exposed to Cigarette Smoke. Vet Med Int 2021; 2021:9931001. [PMID: 34123347 PMCID: PMC8189814 DOI: 10.1155/2021/9931001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023] Open
Abstract
Since the damage to alveolar tissue due to cigarette smoke exposure (CSE) is lipid peroxidation, antioxidant treatment is needed. The red guava (Psidium guajava L.) fruit contains antioxidants derived from quercetin, lycopene, and vitamin C. This study aimed to determine the effect of red guava fruit extract (RGFE) on the alveolar tissue of rats exposed to cigarette smoke. The 25 rats (Rattus norvegicus) were divided into five groups. The control and T0 groups were only administered placebo, while T1, T2, and T3 groups were orally administered RGFE of 18.9, 37.8, and 56.7 mg/kg body weight daily for 44 days. The CSE dose of 20 suctions daily was conducted on T0, T1, T2, and T3 groups on days 15–44. On day 45, all rats were sacrificed for serum collection and histopathological lung slides with eosin-nigrosin staining. The result showed that CSE caused an increase (p < 0.05) in malondialdehyde (MDA) levels, cell death, apoptosis, and necrosis percentages, congestion and thickening of alveolar septum tissue, and reduction in the alveolar diameter and alveolar number. Administration of RGFE suppressed those effects, and the highest dose of RGFE (T3) restored (p > 0.05) MDA levels, percentage of apoptotic and necrosis, alveolar septal thickening, and alveolar diameter. However, the percentages of cell death, alveolar congestion, and the alveolar number were still worse (p < 0.05) than in normal rats. It could be concluded that RGFE has proved relief and restoration of the alveolar tissue of rats exposed to cigarette smoke.
Collapse
|
23
|
Crawford L, Wyatt M, Bryers J, Ratner B. Biocompatibility Evolves: Phenomenology to Toxicology to Regeneration. Adv Healthc Mater 2021; 10:e2002153. [PMID: 33829678 PMCID: PMC8221530 DOI: 10.1002/adhm.202002153] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Indexed: 12/20/2022]
Abstract
The word "biocompatibility," is inconsistent with the observations of healing for so-called biocompatible biomaterials. The vast majority of the millions of medical implants in humans today, presumably "biocompatible," are walled off by a dense, avascular, crosslinked collagen capsule, hardly suggestive of life or compatibility. In contrast, one is now seeing examples of implant biomaterials that lead to a vascularized reconstruction of localized tissue, a biological reaction different from traditional biocompatible materials that generate a foreign body capsule. Both the encapsulated biomaterials and the reconstructive biomaterials qualify as "biocompatible" by present day measurements of biocompatibility. Yet, this new generation of materials would seem to heal "compatibly" with the living organism, where older biomaterials are isolated from the living organism by the dense capsule. This review/perspective article will explore this biocompatibility etymological conundrum by reviewing the history of the concepts around biocompatibility, today's standard methods for assessing biocompatibility, a contemporary view of the foreign body reaction and finally, a compendium of new biomaterials that heal without the foreign body capsule. A new definition of biocompatibility is offered here to address advances in biomaterials design leading to biomaterials that heal into the body in a facile manner.
Collapse
Affiliation(s)
- Lars Crawford
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Meghan Wyatt
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - James Bryers
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Buddy Ratner
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
24
|
Götz P, Braumandl A, Kübler M, Kumaraswami K, Ishikawa-Ankerhold H, Lasch M, Deindl E. C3 Deficiency Leads to Increased Angiogenesis and Elevated Pro-Angiogenic Leukocyte Recruitment in Ischemic Muscle Tissue. Int J Mol Sci 2021; 22:5800. [PMID: 34071589 PMCID: PMC8198161 DOI: 10.3390/ijms22115800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
The complement system is a potent inflammatory trigger, activator, and chemoattractant for leukocytes, which play a crucial role in promoting angiogenesis. However, little information is available about the influence of the complement system on angiogenesis in ischemic muscle tissue. To address this topic and analyze the impact of the complement system on angiogenesis, we induced muscle ischemia in complement factor C3 deficient (C3-/-) and wildtype control mice by femoral artery ligation (FAL). At 24 h and 7 days after FAL, we isolated the ischemic gastrocnemius muscles and investigated them by means of (immuno-)histological analyses. C3-/- mice showed elevated ischemic damage 7 days after FAL, as evidenced by H&E staining. In addition, angiogenesis was increased in C3-/- mice, as demonstrated by increased capillary/muscle fiber ratio and increased proliferating endothelial cells (CD31+/BrdU+). Moreover, our results showed that the total number of leukocytes (CD45+) was increased in C3-/- mice, which was based on an increased number of neutrophils (MPO+), neutrophil extracellular trap formation (MPO+/CitH3+), and macrophages (CD68+) displaying a shift toward an anti-inflammatory and pro-angiogenic M2-like polarized phenotype (CD68+/MRC1+). In summary, we show that the deficiency of complement factor C3 increased neutrophil and M2-like polarized macrophage accumulation in ischemic muscle tissue, contributing to angiogenesis.
Collapse
Affiliation(s)
- Philipp Götz
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Anna Braumandl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Matthias Kübler
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Konda Kumaraswami
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Hellen Ishikawa-Ankerhold
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Department of Internal Medicine I, Faculty of Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Manuel Lasch
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (P.G.); (A.B.); (M.K.); (K.K.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
25
|
Zhang WZ, Hoffman KL, Schiffer KT, Oromendia C, Rice MC, Barjaktarevic I, Peters SP, Putcha N, Bowler RP, Wells JM, Couper DJ, Labaki WW, Curtis JL, Han MK, Paine R, Woodruff PG, Criner GJ, Hansel NN, Diaz I, Ballman KV, Nakahira K, Choi ME, Martinez FJ, Choi AMK, Cloonan SM. Association of plasma mitochondrial DNA with COPD severity and progression in the SPIROMICS cohort. Respir Res 2021; 22:126. [PMID: 33902556 PMCID: PMC8074408 DOI: 10.1186/s12931-021-01707-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is a lack of mechanism-driven, clinically relevant biomarkers in chronic obstructive pulmonary disease (COPD). Mitochondrial dysfunction, a proposed disease mechanism in COPD, is associated with the release of mitochondrial DNA (mtDNA), but plasma cell-free mtDNA has not been previously examined prospectively for associations with clinical COPD measures. METHODS P-mtDNA, defined as copy number of mitochondrially-encoded NADH dehydrogenase-1 (MT-ND1) gene, was measured by real-time quantitative PCR in 700 plasma samples from participants enrolled in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) cohort. Associations between p-mtDNA and clinical disease parameters were examined, adjusting for age, sex, smoking status, and for informative loss to follow-up. RESULTS P-mtDNA levels were higher in participants with mild or moderate COPD, compared to smokers without airflow obstruction, and to participants with severe COPD. Baseline increased p-mtDNA levels were associated with better CAT scores in female smokers without airflow obstruction and female participants with mild or moderate COPD on 1-year follow-up, but worse 6MWD in females with severe COPD. Higher p-mtDNA levels were associated with better 6MWD in male participants with severe COPD. These associations were no longer significant after adjusting for informative loss to follow-up. CONCLUSION In this study, p-mtDNA levels associated with baseline COPD status but not future changes in clinical COPD measures after accounting for informative loss to follow-up. To better characterize mitochondrial dysfunction as a potential COPD endotype, these results should be confirmed and validated in future studies. TRIAL REGISTRATION ClinicalTrials.gov NCT01969344 (SPIROMICS).
Collapse
Affiliation(s)
- William Z Zhang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Katherine L Hoffman
- Department of Population Health Science, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, USA
| | - Kristen T Schiffer
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Clara Oromendia
- Department of Population Health Science, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, USA
| | - Michelle C Rice
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, University of California Los Angeles Medical Center, Los Angeles, CA, USA
| | - Stephen P Peters
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nirupama Putcha
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell P Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | | | - David J Couper
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Meilan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Robert Paine
- Section of Pulmonary and Critical Care Medicine, Salt Lake City Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | | | - Gerard J Criner
- Department of Pulmonary & Critical Care Medicine, Temple University, Philadelphia, PA, USA
| | - Nadia N Hansel
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivan Diaz
- Department of Population Health Science, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, USA
| | - Karla V Ballman
- Department of Population Health Science, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, USA
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mary E Choi
- Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland and Tallaght University Hospital, Dublin, Ireland.
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
26
|
Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases. Acta Biomater 2021; 123:1-30. [PMID: 33484912 DOI: 10.1016/j.actbio.2021.01.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/05/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The degree of tissue injuries such as the level of scarring or organ dysfunction, and the immune response against them primarily determine the outcome and speed of healing process. The successful regeneration of functional tissues requires proper modulation of inflammation-producing immune cells and bioactive factors existing in the damaged microenvironment. In the tissue repair and regeneration processes, different types of biomaterials are implanted either alone or by combined with other bioactive factors, which will interact with the immune systems including immune cells, cytokines and chemokines etc. to achieve different results highly depending on this interplay. In this review article, the influences of different types of biomaterials such as nanoparticles, hydrogels and scaffolds on the immune cells and the modification of immune-responsive factors such as reactive oxygen species (ROS), cytokines, chemokines, enzymes, and metalloproteinases in tissue microenvironment are summarized. In addition, the recent advances of immune-responsive biomaterials in therapy of inflammation-associated diseases such as myocardial infarction, spinal cord injury, osteoarthritis, inflammatory bowel disease and diabetic ulcer are discussed.
Collapse
|
27
|
Trivedi A, Khan MA, Bade G, Talwar A. Orchestration of Neutrophil Extracellular Traps (Nets), a Unique Innate Immune Function during Chronic Obstructive Pulmonary Disease (COPD) Development. Biomedicines 2021; 9:53. [PMID: 33435568 PMCID: PMC7826777 DOI: 10.3390/biomedicines9010053] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
Morbidity, mortality and economic burden caused by chronic obstructive pulmonary disease (COPD) is a significant global concern. Surprisingly, COPD is already the third leading cause of death worldwide, something that WHO had not predicted to occur until 2030. It is characterized by persistent respiratory symptoms and airway limitation due to airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles of gases. Neutrophil is one of the key infiltrated innate immune cells in the lung during the pathogenesis of COPD. Neutrophils during pathogenic attack or injury decide to undergo for a suicidal death by releasing decondensed chromatin entangled with antimicrobial peptides to trap and ensnare pathogens. Casting neutrophil extracellular traps (NETs) has been widely demonstrated to be an effective mechanism against invading microorganisms thus controlling overwhelming infections. However, aberrant and massive NETs formation has been reported in several pulmonary diseases, including chronic obstructive pulmonary disease. Moreover, NETs can directly induce epithelial and endothelial cell death resulting in impairing pulmonary function and accelerating the progression of the disease. Therefore, understanding the regulatory mechanism of NET formation is the need of the hour in order to use NETs for beneficial purpose and controlling their involvement in disease exacerbation. For example, DNA neutralization of NET proteins using protease inhibitors and disintegration with recombinant human DNase would be helpful in controlling excess NETs. Targeting CXC chemokine receptor 2 (CXCR2) would also reduce neutrophilic inflammation, mucus production and neutrophil-proteinase mediated tissue destruction in lung. In this review, we discuss the interplay of NETs in the development and pathophysiology of COPD and how these NETs associated therapies could be leveraged to disrupt NETopathic inflammation as observed in COPD, for better management of the disease.
Collapse
Affiliation(s)
- Anjali Trivedi
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| | - Meraj A. Khan
- Translational Medicine, SickKids Research Institute, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Geetanjali Bade
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| | - Anjana Talwar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| |
Collapse
|
28
|
Caldeira DDAF, Mesquita FM, Pinheiro FG, Oliveira DF, Oliveira LFS, Nascimento JHM, Takiya CM, Maciel L, Zin WA. Acute exposure to C60 fullerene damages pulmonary mitochondrial function and mechanics. Nanotoxicology 2020; 15:352-365. [PMID: 33370539 DOI: 10.1080/17435390.2020.1863498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
C60 fullerene (C60) nanoparticles, a nanomaterial widely used in technology, can offer risks to humans, overcome biological barriers, and deposit onto the lungs. However, data on its putative pulmonary burden are scanty. Recently, the C60 interaction with mitochondria has been described in vitro and in vivo. We hypothesized that C60 impairs lung mechanics and mitochondrial function. Thirty-five male BALB/c mice were randomly divided into two groups intratracheally instilled with vehicle (0.9% NaCl + 1% Tween 80, CTRL) or C60 (1.0 mg/kg, FUL). Twenty-four hours after exposure, 15 FUL and 8 CTRL mice were anesthetized, paralyzed, and mechanically ventilated for the determination of lung mechanics. After euthanasia, the lungs were removed en bloc at end-expiration for histological processing. Lung tissue elastance and viscance were augmented in FUL group. Increased inflammatory cell number, alveolar collapse, septal thickening, and pulmonary edema were detected. In other six FUL and six CTRL mice, mitochondria expressed reduction in state 1 respiration [FUL = 3.0 ± 1.14 vs. CTRL = 4.46 ± 0.9 (SEM) nmol O2/min/mg protein, p = 0.0210], ATP production (FUL = 122.6 ± 18 vs. CTRL = 154.5 ± 14 μmol/100 μg protein, p = 0.0340), and higher oxygen consumption in state 4 [FUL = 12.56 ± 0.9 vs. CTRL = 8.26 ± 0.6], generation of reactive oxygen species (FUL 733.1 ± 169.32 vs. CTRL = 486.39 ± 73.1 nmol/100 μg protein, p = 0.0313) and reason ROS/ATP [FUL = 8.73 ± 2.3 vs. CTRL = 2.99 ± 0.3]. In conclusion, exposure to fullerene C60 impaired pulmonary mechanics and mitochondrial function, increased ROS concentration, and decrease ATP production.
Collapse
Affiliation(s)
- Dayene de Assis Fernandes Caldeira
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia Muniz Mesquita
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Gomes Pinheiro
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dahienne Ferreira Oliveira
- Laboratory of Proteins and Amyloidosis, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Felipe Silva Oliveira
- Department of Civil and Environmental Engineering, Universidad de la Costa, Barranquilha, Colombia.,Departamento de Ingeniería Civil y Arquitectura, Universidad de Lima, Santiago de Surco, Peru
| | - Jose Hamilton Matheus Nascimento
- Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Laboratory of Immunopathology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Maciel
- Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Walter Araujo Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Taha HR, Al-Sawalha NA, Alzoubi KH, Khabour OF. Effect of E-Cigarette aerosol exposure on airway inflammation in a murine model of asthma. Inhal Toxicol 2020; 32:503-511. [PMID: 33297792 DOI: 10.1080/08958378.2020.1856238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The popularity of electronic cigarettes (E-Cigs) smoking is increasing worldwide including patients with asthma. In this study, the effects of E-Cigs aerosol exposure on airway inflammation in an allergen-driven murine model of asthma were investigated. MATERIALS AND METHODS Balb/c mice were randomly assigned to; control group (received fresh air, Ovalbumin (Ova) sensitization and saline challenge), E-Cig group (received E-Cig aerosol, Ova sensitization, and saline challenge), Ova S/C group (received fresh air, Ova sensitization and Ova challenge) and E-Cig + Ova S/C group. Bronchoalveolar lavage fluid (BALF) and lung tissue were evaluated for inflammatory cells and inflammatory mediators, respectively. RESULTS Exposure to E-Cig aerosol significantly increased the number of all types of inflammatory cells in BALF (p < 0.05). Further, E-Cig aerosol reduced levels of transforming growth factor (TGF)-β1 and matrix metalloproteinase (MMP)-2 in lung tissue homogenate (p < 0.05). Combined E-Cig aerosol and Ova S/C increased the airway recruitment of inflammatory cells, especially neutrophils, eosinophils, and lymphocytes (p < 0.05), increased the level of interleukin (IL)-13, and reduced the level of TGF-β1 (p < 0.05). CONCLUSIONS E-Cig aerosol exposure induced airway inflammation in both control mice and allergen-driven murine model of asthma. The inflammatory response induced by E-Cig was slightly higher in allergen-driven murine model of asthma than in healthy animals.
Collapse
Affiliation(s)
- Huda R Taha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid Jordan
| | - Nour A Al-Sawalha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid Jordan
| | - Omar F Khabour
- Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
30
|
Graff S, Bricmont N, Moermans C, Henket M, Paulus V, Guissard F, Louis R, Schleich F. Clinical and biological factors associated with irreversible airway obstruction in adult asthma. Respir Med 2020; 175:106202. [PMID: 33202369 DOI: 10.1016/j.rmed.2020.106202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Airway remodeling, as many other factors, may lead to lung function decline and irreversible airflow obstruction (IRAO) in asthma. This study was undertaken in order to highlight predictors of incomplete reversibility of airflow obstruction in adult asthmatics to identify patients with poorer prognosis and improve their care, and decrease morbidity. METHODS A retrospective study was conducted in 973 asthmatics recruited from the University Asthma Clinic of Liege. Patients with IRAO (post-BD FEV1/FVC<0.7 & FEV1<80% predicted) were compared to patients with reversible airway obstruction (RAO) (post-BD FEV1/FVC≥0.7 & FEV1≥80% predicted). TGF-β was measured in sputum supernatant of 85 patients. RESULTS Seventeen percent of asthmatics presented with IRAO. These patients were significantly older, more smokers, with a lower proportion of female, a longer disease duration, were more poorly controlled with a lower quality of life. This sub-population of asthmatics also showed more often elevated blood and sputum eosinophils and neutrophils, and higher exacerbation and hospitalisation rates in the previous year. The multivariable analysis revealed male gender, longer disease duration, cigarette smoking, ACQ score, sputum eosinophils and neutrophils, ICS dose and OCS maintenance, BMI, and asthma onset as variables independently linked to IRAO. Total TGF-β levels appeared higher in patients with IRAO (n = 38) compared to patients with RAO (n = 47). CONCLUSION These data show that risk factors for IRAO are male gender, smoking, a longer disease duration, uncontrolled asthma, eosinophilic or neutrophilic airway inflammation, lower BMI, and later asthma onset. Moreover, TGF-β levels are higher in IRAO.
Collapse
Affiliation(s)
- Sophie Graff
- Department of Respiratory Medicine, CHU Liege, GIGA I(3) Research Group, University of Liege, Belgium.
| | - Noëmie Bricmont
- Department of Pediatrics, division of respirology, CHU Liege, GIGA I(3) Research Group, University of Liege, Belgium
| | - Catherine Moermans
- Department of Respiratory Medicine, CHU Liege, GIGA I(3) Research Group, University of Liege, Belgium
| | - Monique Henket
- Department of Respiratory Medicine, CHU Liege, GIGA I(3) Research Group, University of Liege, Belgium
| | - Virginie Paulus
- Department of Respiratory Medicine, CHU Liege, GIGA I(3) Research Group, University of Liege, Belgium
| | - Françoise Guissard
- Department of Respiratory Medicine, CHU Liege, GIGA I(3) Research Group, University of Liege, Belgium
| | - Renaud Louis
- Department of Respiratory Medicine, CHU Liege, GIGA I(3) Research Group, University of Liege, Belgium
| | - Florence Schleich
- Department of Respiratory Medicine, CHU Liege, GIGA I(3) Research Group, University of Liege, Belgium
| |
Collapse
|
31
|
Lidani KCF, Sandri TL, Castillo-Neyra R, Andrade FA, Guimarães CM, Marques EN, Beltrame MH, Gilman RH, de Messias-Reason I. Clinical and epidemiological aspects of chronic Chagas disease from Southern Brazil. Rev Soc Bras Med Trop 2020; 53:e20200225. [PMID: 33111908 PMCID: PMC7580281 DOI: 10.1590/0037-8682-0225-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/31/2020] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Patients with Chagas disease (CD), caused by Trypanosoma cruzi, present a higher risk of developing other chronic diseases, which may contribute to CD severity. Since CD is underreported in the southern state of Paraná, Brazil, we aimed to characterize clinical and epidemiological aspects of individuals chronically infected with T. cruzi in Southern Brazil. METHODS A community hospital-based study was performed, recording clinical/demographic characteristics of 237 patients with CD from Southern Brazil. To estimate the association between different forms of CD and sociodemographic and clinical variables, multiple logistic regression models were built using the Akaike information criterion. RESULTS Mean age was 57.5 years and 59% were females. Most patients' (60%) place of origin/birth was within Paraná and they were admitted to the CD outpatient clinic after presenting with cardiac/digestive symptoms (64%). The predominant form of CD was cardiac (53%), followed by indeterminate (36%), and digestive (11%). The main electrocardiographic changes were in the right bundle branch block (39%) and left anterior fascicular block (32%). The average number of comorbidities per patient was 3.9±2.3; systemic arterial hypertension was most common (64%), followed by dyslipidemia (34%) and diabetes (19%); overlapping comorbidities were counted separately. Male sex was associated with symptomatic cardiac CD (OR=2.92; 95%CI: 1.05-8.12; p=0.040). CONCLUSIONS This study provided greater understanding of the distribution and clinical profile of CD patients in Southern Brazil, indicating a high prevalence of comorbidities among these patients who are a vulnerable group due to advanced age and substantial risk of morbidity.
Collapse
Affiliation(s)
| | - Thaisa Lucas Sandri
- University of Tübingen, Institute of Tropical Medicine, Tübingen,
BW, Germany
| | - Ricardo Castillo-Neyra
- University of Pennsylvania, Perelman School of Medicine, Department
of Biostatistics, Epidemiology & Informatics, Philadelphia, PA, USA
| | - Fabiana Antunes Andrade
- Universidade Federal do Paraná, Departamento de Patologia Médica,
Hospital de Clínicas, Curitiba, PR, Brasil
| | - Cesar Maistro Guimarães
- Universidade Federal do Paraná, Hospital de Clínicas, Unidade de
Terapia Intensiva, Curitiba, PR, Brasil
| | - Eduardo Nunes Marques
- Universidade Federal do Paraná, Departamento de Patologia Médica,
Hospital de Clínicas, Curitiba, PR, Brasil
| | - Marcia Holsbach Beltrame
- Universidade Federal do Paraná, Departamento de Genética,
Laboratório de Genética Molecular Humana, Curitiba, PR, Brasil
| | - Robert Hugh Gilman
- Johns Hopkins Bloomberg School of Public Health, Department of
International Health, Baltimore, MD, USA
| | - Iara de Messias-Reason
- Universidade Federal do Paraná, Departamento de Patologia Médica,
Hospital de Clínicas, Curitiba, PR, Brasil
| |
Collapse
|
32
|
Salhi L, Albert A, Seidel L, Lambert F. Respective Effects of Oral Hygiene Instructions and Periodontal Nonsurgical Treatment (Debridement) on Clinical Parameters and Patient-Reported Outcome Measures with Respect to Smoking. J Clin Med 2020; 9:E2491. [PMID: 32756385 PMCID: PMC7464916 DOI: 10.3390/jcm9082491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Oral hygiene instructions (OHI) and periodontal nonsurgical treatment (PNST) play pivotal roles in the management of periodontitis. The study aims to discern their respective effects on periodontal clinical parameters and patient-reported outcome measures (PROMs). METHODS Ninety-one patients were included, 34 non-smokers (NS), 25 former smokers (FS) and 32 current smoker (CS). Clinical parameters such as probing depth (PD) and bleeding on probing (BOP) were collected, and the periodontal inflamed tissue area (PISA) was calculated. Clinical parameters and PROMs were recorded before and after receiving OHI, with electronic tooth brush and interdental brushes, as well as 3 months after debridement. RESULTS Smokers presented a significantly higher proportion of severe periodontitis (64.7%) with generalized extension (76.5%) and with a rapid rate of progression (97.1%) compared to NS and FS. OHI led to a significant decrease of PD, BOP, and PISA (p < 0.0001) only in NS and FS. Debridement reduced PD and the percentage of PD >6 mm in all groups (p < 0.0001). OHI induced significant improvement of oral hygiene, frequency of interdental cleaning, and PROMs (p < 0.0001). Further debridement induced significant additional improvement PROMs in FS and NS (p < 0.0001). CONCLUSION OHI and debridement improved periodontal clinical parameters and PROMs in both NS and FS. Former smokers had comparable outcomes to non-smokers, suggesting that smoking cessation should be encouraged.
Collapse
Affiliation(s)
- Leila Salhi
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liège, 4000 Liège, Belgium
| | - Adelin Albert
- Department of Public Health Sciences, University of Liège, 4000 Liège, Belgium;
| | - Laurence Seidel
- Department of Biostatistics and Medico-economic information, University of Liège, 4000 Liège, Belgium;
| | - France Lambert
- Dental Biomaterials Research Unit, Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liège, 4000 Liège, Belgium;
| |
Collapse
|
33
|
Metabolomic analysis of lung cancer patients with chronic obstructive pulmonary disease using gas chromatography-mass spectrometry. J Pharm Biomed Anal 2020; 190:113524. [PMID: 32795777 DOI: 10.1016/j.jpba.2020.113524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/08/2023]
Abstract
Chronic obstructive pulmonary disease (COPD), characterized by intermittent exacerbations and clinical subphenotypes like emphysema and chronic bronchitis, poses a significant risk of lung cancer (LC) development. Metabolomic studies of COPD are scarce, and those of LC patients with COPD subphenotypes have not been investigated. To study metabolite profile alteration in LC patients with different COPD subphenotypes, lung paracancer tissue from 10 LC (CON) patients, 10 LC patients with emphysema (E), and 9 LC patients with chronic bronchitis (CB) were analyzed using gas chromatography-mass spectrometry. Multivariate analysis indicated a distinct separation between LC patients with COPD subphenotypes and LC patients. Overall, 60, 55, 33 and 63 differential metabolites (DM) were identified in comparisons between CB vs CON, E vs CON, CB vs E, and CB + E vs CON, respectively, and of these, 8 DM were shared in all comparisons. Among the high altered metabolites, E samples showed higher 'acetol' than CON samples, and lower 'azelaic acid', '3-methylglutaric acid' and 'allose'. CB samples showed higher 'turanose' and 'o-phosphoserine' and lower 'anandamide' than CON and E samples. In CB and E samples, 'galactonic acid', '2-mercaptoethanesulfonic acid', 'D-alanyl-D-alanine' '3-methylglutaric acid', 'glycine', 'L-4-Hydroxyphenylglycine' and 'O-phosphonothreonine' had common alteration trends compared with those of CON samples. 'Glycine', 'L-4-Hydroxyphenylglycine' and 'O-phosphonothreonine' were significantly enriched in glycine, serine and threonine metabolism pathways. The total differential metabolites detected were remarkably altered in pyrimidine, beta-alanine and purine metabolism. Our study provided altered DM patterns of lung paracancer tissue, the key metabolites and their enriched metabolic pathways in LC patients with different COPD subphenotypes.
Collapse
|
34
|
Minagawa S, Yoshida M, Araya J, Hara H, Imai H, Kuwano K. Regulated Necrosis in Pulmonary Disease. A Focus on Necroptosis and Ferroptosis. Am J Respir Cell Mol Biol 2020; 62:554-562. [PMID: 32017592 DOI: 10.1165/rcmb.2019-0337tr] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To date, increasing evidence suggests the possible involvement of various types of cell death in lung diseases. The recognized regulated cell death includes necrotic cell death that is immunogenic, releasing damage-associated molecular patterns and driving tissue inflammation. Necroptosis is a well-understood form of regulated necrosis that is executed by RIPK3 (receptor-interacting protein kinase 3) and the pseudokinase MLKL (mixed lineage kinase domain-like protein). Ferroptosis is a newly described caspase-independent form of regulated necrosis that is characterized by the increase of detrimental lipid reactive oxygen species produced via iron-dependent lipid peroxidation. The role of these two cell death pathways differs depending on the disease, cell type, and microenvironment. Moreover, some experimental cell death models have demonstrated shared ferroptotic and necroptotic cell death and the synergistic effect of simultaneous inhibition. This review examines the role of regulated necrotic cell death, particularly necroptosis and ferroptosis, in lung disease pathogenesis in the context of recent insights into the roles of the key effector molecules of these two cell death pathways.
Collapse
Affiliation(s)
- Shunsuke Minagawa
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan; and
| | - Masahiro Yoshida
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan; and
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan; and
| | - Hiromichi Hara
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan; and
| | - Hirotaka Imai
- Laboratory of Hygienic Chemistry and Medicinal Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan; and
| |
Collapse
|
35
|
Manevski M, Muthumalage T, Devadoss D, Sundar IK, Wang Q, Singh KP, Unwalla HJ, Chand HS, Rahman I. Cellular stress responses and dysfunctional Mitochondrial-cellular senescence, and therapeutics in chronic respiratory diseases. Redox Biol 2020; 33:101443. [PMID: 32037306 PMCID: PMC7251248 DOI: 10.1016/j.redox.2020.101443] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
The abnormal inflammatory responses due to the lung tissue damage and ineffective repair/resolution in response to the inhaled toxicants result in the pathological changes associated with chronic respiratory diseases. Investigation of such pathophysiological mechanisms provides the opportunity to develop the molecular phenotype-specific diagnostic assays and could help in designing the personalized medicine-based therapeutic approaches against these prevalent diseases. As the central hubs of cell metabolism and energetics, mitochondria integrate cellular responses and interorganellar signaling pathways to maintain cellular and extracellular redox status and the cellular senescence that dictate the lung tissue responses. Specifically, as observed in chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis, the mitochondria-endoplasmic reticulum (ER) crosstalk is disrupted by the inhaled toxicants such as the combustible and emerging electronic nicotine-delivery system (ENDS) tobacco products. Thus, the recent research efforts have focused on understanding how the mitochondria-ER dysfunctions and oxidative stress responses can be targeted to improve inflammatory and cellular dysfunctions associated with these pathologic illnesses that are exacerbated by viral infections. The present review assesses the importance of these redox signaling and cellular senescence pathways that describe the role of mitochondria and ER on the development and function of lung epithelial responses, highlighting the cause and effect associations that reflect the disease pathogenesis and possible intervention strategies.
Collapse
Affiliation(s)
- Marko Manevski
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dinesh Devadoss
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kameshwar P Singh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hoshang J Unwalla
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Hitendra S Chand
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
36
|
Peerboom S, Graff S, Seidel L, Paulus V, Henket M, Sanchez C, Guissard F, Moermans C, Louis R, Schleich F. Predictors of a good response to inhaled corticosteroids in obesity-associated asthma. Biochem Pharmacol 2020; 179:113994. [PMID: 32335139 DOI: 10.1016/j.bcp.2020.113994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/21/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Asthma in obese subjects is poorly understood. According to GINA guidelines, pulmonologists increase ICS in case of poor asthma control but lung volume restriction may also worsen respiratory symptoms in obese asthmatics leading to overtreatment in this subpopulation. METHODS We conducted a retrospective study on 1217 asthmatics recruited from University Hospital of Liege. 92 patients with a BMI ≥30 came at least two times at the asthma clinic (mean interval: 335 days). In this obese population, we identified predictors of good (decrease in ACQ ≥0.5) versus poor response (rise in ACQ ≥0.5) to ICS step-up therapy. RESULTS Obese asthmatics had a poorer asthma control and quality of life as compared to non-obese and exhibited reduced FVC, higher levels of blood leucocytes and markers of systemic inflammation. The proportion of asthma inflammatory phenotypes was similar to that observed in a general population of asthmatics. Among uncontrolled obese asthmatics receiving ICS step-up therapy, 53% improved their asthma control while 31% had a worsening of their asthma. Uncontrolled obese asthmatics showing a good response to increase in ICS had higher ACQ, lower CRP levels, higher sputum eosinophil counts and higher FeNO levels at visit 1. Uncontrolled obese asthmatics that worsened after increasing the dose of ICS had lower FVC, lower sputum eosinophil counts and higher sputum neutrophil counts. CONCLUSION We observed poorer asthma control in obese asthmatics despite similar bronchial inflammation. Managing obese asthmatics according to ACQ alone seems to underestimate asthma control and the contribution of restriction to dyspnea. Increasing the dose of ICS in the absence of sputum eosinophilic inflammation or in the presence of restriction or bronchial neutrophilia led to poorer asthma control. In those patients, management of obesity should be the first choice.
Collapse
Affiliation(s)
- S Peerboom
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium
| | - S Graff
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium
| | - L Seidel
- Medical Informatics and Biostatistics, University of Liege, Belgium
| | - V Paulus
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium
| | - M Henket
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium
| | - C Sanchez
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium
| | - F Guissard
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium
| | - C Moermans
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium
| | - R Louis
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium
| | - F Schleich
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, I(3) GIGA Research Group, University of Liege, Belgium.
| |
Collapse
|
37
|
Guan X, Yuan Y, Wang G, Zheng R, Zhang J, Dong B, Ran N, Hsu ACY, Wang C, Wang F. Ginsenoside Rg3 ameliorates acute exacerbation of COPD by suppressing neutrophil migration. Int Immunopharmacol 2020; 83:106449. [PMID: 32278128 DOI: 10.1016/j.intimp.2020.106449] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) is an irreversible inflammatory airways disease responsible for global health burden, involved with a complex condition of immunological change. Exacerbation-mediated neutrophilia is an important factor in the pathogenesis of cigarette smoke-induced AECOPD. Ginsenoside Rg3, a red-ginseng-derived compound, has multiple pharmacological properties such as anti-inflammatory and antitumor activities. Here, we investigated a protective role of Rg3 against AECOPD, focusing on neutrophilia. 14-week-cigarette smoke (CS) exposure and non-typeable Haemophilus inflenzae (NTHi) infection were used to establish the AECOPD murine model. Rg3 (10, 20, 40 mg/kg) was administered intragastrically from the 12th week of CS exposure before infection, and this led to improved lung function and lung morphology, and reduced neutrophilic inflammation, indicating a suppressive effect on neutrophil infiltration by Rg3. Further investigations on the mechanism of Rg3 on neutrophils were carried out using bronchial epithelial cell (BEAS-2B) and neutrophil co-culture and transepithelial migration model. Pre-treatment of neutrophils with Rg3 reduced neutrophil migration, which seemed to be the result of inhibition of phosphatidylinositol (PtdIns) 3-kinases (PI3K) activation within neutrophils. Thus, Rg3 could inhibit exacerbation-induced neutrophilia in COPD by negatively regulating PI3K activities in neutrophils. This study provides a potential natural drug against AECOPD neutrophil inflammation.
Collapse
Affiliation(s)
- Xuewa Guan
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yuze Yuan
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ruipeng Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Invasive Technology, First Hospital of Jilin University, Changchun 130021, China
| | - Jing Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Intensive Care Unit, First Hospital of Jilin University, Changchun 130021, China
| | - Bing Dong
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Nan Ran
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute and the University of Newcastle, NSW, Australia
| | - Cuizhu Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Key laboratory of Zoonosis Research Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
38
|
Zhang WZ, Rice MC, Hoffman KL, Oromendia C, Barjaktarevic IZ, Wells JM, Hastie AT, Labaki WW, Cooper CB, Comellas AP, Criner GJ, Krishnan JA, Paine R, Hansel NN, Bowler RP, Barr RG, Peters SP, Woodruff PG, Curtis JL, Han MK, Ballman KV, Martinez FJ, Choi AM, Nakahira K, Cloonan SM, Choi ME. Association of urine mitochondrial DNA with clinical measures of COPD in the SPIROMICS cohort. JCI Insight 2020; 5:133984. [PMID: 31895696 DOI: 10.1172/jci.insight.133984] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUNDMitochondrial dysfunction, a proposed mechanism of chronic obstructive pulmonary disease (COPD) pathogenesis, is associated with the leakage of mitochondrial DNA (mtDNA), which may be detected extracellularly in various bodily fluids. Despite evidence for the increased prevalence of chronic kidney disease in COPD subjects and for mitochondrial dysfunction in the kidneys of murine COPD models, whether urine mtDNA (u-mtDNA) associates with measures of disease severity in COPD is unknown.METHODSCell-free u-mtDNA, defined as copy number of mitochondrially encoded NADH dehydrogenase-1 (MTND1) gene, was measured by quantitative PCR and normalized to urine creatinine in cell-free urine samples from participants in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) cohort. Urine albumin/creatinine ratios (UACR) were measured in the same samples. Associations between u-mtDNA, UACR, and clinical disease parameters - including FEV1 % predicted, clinical measures of exercise tolerance, respiratory symptom burden, and chest CT measures of lung structure - were examined.RESULTSU-mtDNA and UACR levels were measured in never smokers (n = 64), smokers without airflow obstruction (n = 109), participants with mild/moderate COPD (n = 142), and participants with severe COPD (n = 168). U-mtDNA was associated with increased respiratory symptom burden, especially among smokers without COPD. Significant sex differences in u-mtDNA levels were observed, with females having higher u-mtDNA levels across all study subgroups. U-mtDNA associated with worse spirometry and CT emphysema in males only and with worse respiratory symptoms in females only. Similar associations were not found with UACR.CONCLUSIONU-mtDNA levels may help to identify distinct clinical phenotypes and underlying pathobiological differences in males versus females with COPD.TRIAL REGISTRATIONThis study has been registered at ClinicalTrials.gov ( NCT01969344).FUNDINGUS NIH, National Heart, Lung and Blood Institute, supplemented by contributions made through the Foundation for the NIH and the COPD Foundation from AstraZeneca/MedImmune, Bayer, Bellerophon Therapeutics, Boehringer-Ingelheim Pharmaceuticals Inc., Chiesi Farmaceutici S.p.A., Forest Research Institute Inc., GlaxoSmithKline, Grifols Therapeutics Inc., Ikaria Inc., Novartis Pharmaceuticals Corporation, Nycomed GmbH, ProterixBio, Regeneron Pharmaceuticals Inc., Sanofi, Sunovion, Takeda Pharmaceutical Company, and Theravance Biopharma and Mylan.
Collapse
Affiliation(s)
- William Z Zhang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Michelle C Rice
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, and
| | - Katherine L Hoffman
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Clara Oromendia
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Igor Z Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, UCLA Medical Center, Los Angeles, California, USA
| | - J Michael Wells
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Annette T Hastie
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Christopher B Cooper
- Division of Pulmonary and Critical Care Medicine, UCLA Medical Center, Los Angeles, California, USA
| | - Alejandro P Comellas
- Division of Pulmonary and Critical Care, University of Iowa, Iowa City, Iowa, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell P Bowler
- Division of Pulmonary, Critical Care Medicine, National Jewish Health, Denver, Colorado, USA
| | - R Graham Barr
- Columbia University Medical Center, New York, New York, USA
| | - Stephen P Peters
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Prescott G Woodruff
- Division of Pulmonary and Critical Care Medicine, UCSF, School of Medicine, San Francisco, California, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA.,Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Meilan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Karla V Ballman
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Augustine Mk Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA
| | - Mary E Choi
- New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA.,Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, and
| | | |
Collapse
|
39
|
Aghapour M, Remels AHV, Pouwels SD, Bruder D, Hiemstra PS, Cloonan SM, Heijink IH. Mitochondria: at the crossroads of regulating lung epithelial cell function in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2020; 318:L149-L164. [PMID: 31693390 PMCID: PMC6985875 DOI: 10.1152/ajplung.00329.2019] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Disturbances in mitochondrial structure and function in lung epithelial cells have been implicated in the pathogenesis of various lung diseases, including chronic obstructive pulmonary disease (COPD). Such disturbances affect not only cellular energy metabolism but also alter a range of indispensable cellular homeostatic functions in which mitochondria are known to be involved. These range from cellular differentiation, cell death pathways, and cellular remodeling to physical barrier function and innate immunity, all of which are known to be impacted by exposure to cigarette smoke and have been linked to COPD pathogenesis. Next to their well-established role as the first physical frontline against external insults, lung epithelial cells are immunologically active. Malfunctioning epithelial cells with defective mitochondria are unable to maintain homeostasis and respond adequately to further stress or injury, which may ultimately shape the phenotype of lung diseases. In this review, we provide a comprehensive overview of the impact of cigarette smoke on the development of mitochondrial dysfunction in the lung epithelium and highlight the consequences for cell function, innate immune responses, epithelial remodeling, and epithelial barrier function in COPD. We also discuss the applicability and potential therapeutic value of recently proposed strategies for the restoration of mitochondrial function in the treatment of COPD.
Collapse
Affiliation(s)
- Mahyar Aghapour
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control, and Prevention, Health Campus Immunology, Infectiology, and Inflammation, Otto-von-Guericke University, Magdeburg, Germany and Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Alexander H V Remels
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Simon D Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control, and Prevention, Health Campus Immunology, Infectiology, and Inflammation, Otto-von-Guericke University, Magdeburg, Germany and Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Stanford I, Weill Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| |
Collapse
|
40
|
Maremanda KP, Sundar IK, Rahman I. Protective role of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in cigarette smoke-induced mitochondrial dysfunction in mice. Toxicol Appl Pharmacol 2019; 385:114788. [PMID: 31678243 PMCID: PMC6894395 DOI: 10.1016/j.taap.2019.114788] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cigarette smoke (CS)-induced lung inflammation and Chronic Obstructive Pulmonary disease (COPD) involves mitochondrial dysfunction. Mesenchymal stem cells (MSC) and MSC-derived exosomes (EXO) are reported to show therapeutic effects in many animal models of inflammation and injury. In the present study, we determined the role of MSC and EXO intervention in CS-induced lung inflammation with a focus on mitochondrial dysfunction. METHODS EXO were characterized using Western blot for exosomal markers, tunable resistive pulse sensing by qNano and transmission electron microscopy (TEM). Mitochondrial reporter mice (mt-Keima and mito-QC) were exposed to air or CS for 10 days. mt-Keima mice were treated with intraperitoneal injections of MSC or EXO or MSC and EXO (MSC + EXO) for 10 days. Total cell counts, differential cell counts were performed using automated cell counter and flow cytometry respectively. Further, the levels of pro-inflammatory mediators in bronchoalveolar lavage (BAL) fluid were measured using ELISA. Western blot analysis, quantitative PCR, confocal microscopy were used in the current study to determine the effects in the lungs of CS exposed mice. Seahorse flux analyzer was used to measure the oxidative-phosphorylation (OXPHOS) in the BEAS2B cells and BEAS2B - mMSC co-culture experiments. RESULTS CS exposure increased the inflammatory cellular infiltrations in the lungs of the mt-Keima mice. MSC + EXO treatment showed protection compared to individual treatments (MSC or EXO alone). There were no changes in the mitophagy proteins like PINK1 and Parkin, which was also found using the mito-QC mice. CS exposure led to significant increase in the mitochondrial fission protein DRP1 and other DAMPs pathway mediators like S100A4 and S100A8, HMGB1, RAGE and AGE. MSC + EXO treatment increased the gene expression of (fusion genes) mfn1, mfn2 and opa1. Additionally, the rhot1 gene expression was increased in MSC + EXO treatment group compared to Air- and CS exposed groups. BEAS2B-mMSC co-cultures showed protective response against the CSE-altered mitochondrial respiration parameters, confirming the beneficial effect of MSC towards human bronchial lung epithelial cells. CONCLUSION CS affects some of early mitochondrial genes involved in the fission/fusion process, enhancing the damage response along with altered cytokine levels. MSC + EXO combination treatment showed their protective effects. MSC + EXO combination treatment may act against these early events caused by CS exposure owing to its anti-inflammatory and other mitochondrial transfer mechanisms.
Collapse
Affiliation(s)
- Krishna Prahlad Maremanda
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, USA
| | - Isaac Kirubakaran Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, USA.
| |
Collapse
|
41
|
Mitochondrial Dysfunction as a Pathogenic Mediator of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Ann Am Thorac Soc 2019; 15:S266-S272. [PMID: 30759019 DOI: 10.1513/annalsats.201808-585mg] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mechanisms underlying the pathogenesis of chronic lung diseases, including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis, remain incompletely understood. Mitochondria are vital cellular organelles crucial for energy generation, the maintenance of cellular metabolism, calcium homeostasis, intracellular signaling, and the regulation of cell death programs. Emerging evidence suggests that mitochondrial dysfunction plays a cardinal role in the initiation and progression of many human diseases, including chronic lung diseases. Upregulation of the autophagy program, a cellular adaptive mechanism for protein and organelle turnover, can occur in response to injury and may have a cell type-specific impact on the progression of disease. The selective autophagy subtype specific for mitochondria (mitophagy), regulated by PINK1 (phosphatase and tensin homolog-induced putative kinase 1), is a cellular response to accumulation of depolarized or injured mitochondria. Autophagy and mitophagy may be associated with either cellular protection or propagation of injury in a cell type-specific manner, and they may also be associated with modulation of cell death pathways. Genetic studies in mouse models have revealed opposing roles for PINK1 and/or mitophagy in the propagation of emphysema and fibrosis, whereas human studies have shown altered regulation of PINK1 in both idiopathic pulmonary fibrosis and COPD. We have also recently identified a role for mitophagy in regulating the cellular necroptosis program, with implications in COPD pathogenesis. Damage-associated molecular patterns released from injured mitochondria and/or necrotic cells may promote proinflammatory and profibrotic responses. In this review, we explore current experimental evidence for mitochondrial dysfunction as a key determinant in the pathogenesis of chronic lung diseases.
Collapse
|
42
|
Wang M, Gauthier A, Daley L, Dial K, Wu J, Woo J, Lin M, Ashby C, Mantell LL. The Role of HMGB1, a Nuclear Damage-Associated Molecular Pattern Molecule, in the Pathogenesis of Lung Diseases. Antioxid Redox Signal 2019; 31:954-993. [PMID: 31184204 PMCID: PMC6765066 DOI: 10.1089/ars.2019.7818] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Significance: High-mobility group protein box 1 (HMGB1), a ubiquitous nuclear protein, regulates chromatin structure and modulates the expression of many genes involved in the pathogenesis of lung cancer and many other lung diseases, including those that regulate cell cycle control, cell death, and DNA replication and repair. Extracellular HMGB1, whether passively released or actively secreted, is a danger signal that elicits proinflammatory responses, impairs macrophage phagocytosis and efferocytosis, and alters vascular remodeling. This can result in excessive pulmonary inflammation and compromised host defense against lung infections, causing a deleterious feedback cycle. Recent Advances: HMGB1 has been identified as a biomarker and mediator of the pathogenesis of numerous lung disorders. In addition, post-translational modifications of HMGB1, including acetylation, phosphorylation, and oxidation, have been postulated to affect its localization and physiological and pathophysiological effects, such as the initiation and progression of lung diseases. Critical Issues: The molecular mechanisms underlying how HMGB1 drives the pathogenesis of different lung diseases and novel therapeutic approaches targeting HMGB1 remain to be elucidated. Future Directions: Additional research is needed to identify the roles and functions of modified HMGB1 produced by different post-translational modifications and their significance in the pathogenesis of lung diseases. Such studies will provide information for novel approaches targeting HMGB1 as a treatment for lung diseases.
Collapse
Affiliation(s)
- Mao Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Alex Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - LeeAnne Daley
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Katelyn Dial
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Joanna Woo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Charles Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- Center for Inflammation and Immunology, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| |
Collapse
|
43
|
Erythromycin suppresses neutrophil extracellular traps in smoking-related chronic pulmonary inflammation. Cell Death Dis 2019; 10:678. [PMID: 31515489 PMCID: PMC6742640 DOI: 10.1038/s41419-019-1909-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022]
Abstract
Neutrophil extracellular traps (NETs) may play a critical role in smoking-related chronic airway inflammation. However, the mechanism by which NETs induced by cigarette smoke initiate the adaptive immunity in chronic obstructive pulmonary disease (COPD) is not fully understood. In this study, we explored the effects of NETs induced by cigarette smoke on the myeloid dendritic cells (mDCs) and Th1 and Th17 cells. Additionally, we observed the inhibitory effect of erythromycin on NETs induced by cigarette smoke. We found that elevated NET levels in the sputum of COPD patients were correlated with the circulating Th1 response, mDC activation and airflow limitation. NETs induced by cigarette smoke extract (CSE) could activate monocyte-derived mDCs and promote Th1 and Th17 differentiation in vitro. Erythromycin effectively inhibited NET formation induced by CSE. In vivo, erythromycin decreased NETs in the airway and ameliorated emphysema with Th1 and Th17 cell down-regulation and CD40+ and CD86+ mDCs suppression in mice chronically exposed to cigarette smoke. These findings provide direct evidence that NETs promote the differentiation of Th1 and Th17 and play a role in the adaptive immunity of smoking-related chronic lung inflammation. Erythromycin is a potential therapeutic strategy for NETs inhibition in COPD.
Collapse
|
44
|
Abstract
Introduction: Neutrophils are the most abundant inflammatory cells in the lungs of patients with chronic lung diseases, especially COPD, yet despite this, patients often experience repeated chest infections. Neutrophil function may be altered in disease, but the reasons are unclear. In chronic disease, sequential pro-inflammatory and pro-repair responses appear distorted. As understanding of neutrophil heterogeneity has expanded, it is suggested that different neutrophil phenotypes may impact on health and disease. Areas covered: In this review, the definition of cellular phenotype, the implication of neutrophil surface markers and functions in chronic lung disease and the complex influences of external, local and genetic factors on these changes are discussed. Literature was accessed up to the 19 July 2019 using: PubMed, US National Library of Medicine National Institutes of Health and the National Centre for Biotechnology Information. Expert opinion: As more is learned about neutrophils, the further we step from the classical view of neutrophils being unrefined killing machines to highly complex and finely tuned cells. Future therapeutics may aim to normalize neutrophil function, but to achieve this, knowledge of phenotypes in humans and how these relate to observed pathology and disease processes is required.
Collapse
Affiliation(s)
- Michael J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Robert Stockley
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| |
Collapse
|
45
|
Hulina-Tomašković A, Somborac-Bačura A, Grdić Rajković M, Bosnar M, Samaržija M, Rumora L. Effects of extracellular Hsp70 and cigarette smoke on differentiated THP-1 cells and human monocyte-derived macrophages. Mol Immunol 2019; 111:53-63. [PMID: 30981202 DOI: 10.1016/j.molimm.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/11/2019] [Accepted: 04/03/2019] [Indexed: 02/02/2023]
Abstract
Extracellular Hsp70 (eHsp70) can act as pro-inflammatory mediator and is elevated in blood of chronic obstructive pulmonary disease (COPD) patients. Most of those patients are smokers, and it was suggested previously that cigarette smoke might induce Hsp70 secretion from the circulating cells. Therefore, we aimed to explore inflammation-associated effects of cigarette smoke extract (CSE) and its combinations with eHsp70 in monocyte-derived macrophages (MDMs) and THP-1 cell line, used as systemic component models of COPD. We hypothesized that eHsp70 induces inflammation, but that it can also modulate cigarette smoke extract (CSE)-stimulated inflammatory responses. We assessed IL-8 secretion, TLR2, TLR4 and Hsp70 expressions, MAPKs and NF-κB activation, and cytotoxicity after treating the cells with CSE (2.5 and 5%) and its combinations with low-endotoxin recombinant human (rh) Hsp70, used to mimic eHsp70 effects. CSE induced IL-8 secretion from both cell types, but its combinations with rhHsp70 increased IL-8 release compared to CSE alone only from MDMs. In THP-1, combinations of rhHsp70 with 2.5% CSE induced TLR2 and TLR4 mRNA, while 5% CSE decreased TLR2 expression. In MDMs, CSE alone attenuated TLR2, while rhHsp70 increased TLR2 and lowered TLR4 gene expression. Hsp70 mRNA expression was suppressed in THP-1 with rhHsp70 and CSE; however, the same treatments increased its level in MDMs. CSE had cytotoxic effect only on MDMs, but cytotoxicity was reduced in co-treatments with rhHsp70, which also triggered apoptosis. CSE and rhHsp70 activated p38 and JNK, while ERK was activated only by rhHsp70 in MDMs. In THP-1, 2.5% CSE activated ERK, and 5% CSE activated p38. Inhibition of NF-κB and JNK in MDMs, and ERK and JNK in THP-1 cells, attenuated IL-8 release after rhHsp70 treatment. In conclusion, rhHsp70 provoked pro-inflammatory effects and could also modulate inflammatory response to CSE on protein and gene expression levels in THP-1 cells and MDMs, which suggests that eHsp70 might be implicated in systemic inflammation induced by cigarette smoke.
Collapse
Affiliation(s)
- Andrea Hulina-Tomašković
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, Zagreb, Croatia
| | - Anita Somborac-Bačura
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, Zagreb, Croatia
| | - Marija Grdić Rajković
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, Zagreb, Croatia
| | | | - Miroslav Samaržija
- University Hospital Centre Zagreb, Clinical Department for Lung Diseases Jordanovac, Zagreb, Croatia
| | - Lada Rumora
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, Zagreb, Croatia.
| |
Collapse
|
46
|
Pro-inflammatory effects of extracellular Hsp70 and cigarette smoke in primary airway epithelial cells from COPD patients. Biochimie 2019; 156:47-58. [DOI: 10.1016/j.biochi.2018.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/25/2018] [Indexed: 11/18/2022]
|
47
|
Zhao Y, Huang S, Liu J, Wu X, Zhou S, Dai K, Kou Y. Mitophagy Contributes to the Pathogenesis of Inflammatory Diseases. Inflammation 2018; 41:1590-1600. [DOI: 10.1007/s10753-018-0835-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Rashid K, Sundar IK, Gerloff J, Li D, Rahman I. Lung cellular senescence is independent of aging in a mouse model of COPD/emphysema. Sci Rep 2018; 8:9023. [PMID: 29899396 PMCID: PMC5998122 DOI: 10.1038/s41598-018-27209-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Cigarette smoke (CS) induces lung cellular senescence that plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). How aging influences cellular senescence and other molecular hallmarks, and increases the risk of CS-induced damage remains unknown. We hypothesized that aging-associated changes in lungs worsen the COPD/emphysema by CS exposure. Younger and older groups of C57BL/6J mice were exposed to chronic CS for 6 months with respective age-matched air-exposed controls. CS caused a decline in lung function and affected the lung structure of both groups of mice. No alterations were observed in the induction of inflammatory mediators between the air-exposed younger and older controls, but aging increased the severity of CS-induced lung inflammation. Aging per se increased lung cellular senescence and significant changes in damage-associated molecular patterns marker S100A8. Gene transcript analysis using the nanoString nCounter showed a significant upregulation of key pro-senescence targets by CS (Mmp12, Ccl2, Cdkn2a, Tert, Wrn, and Bub1b). Aging independently influenced lung function and structure, as well as increased susceptibility to CS-induced inflammation in emphysema, but had a negligible effect on cellular senescence. Thus, aging solely does not contribute to the induction of cellular senescence by CS in a mouse model of COPD/emphysema.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Janice Gerloff
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
49
|
McGrath JJC, Stampfli MR. The immune system as a victim and aggressor in chronic obstructive pulmonary disease. J Thorac Dis 2018; 10:S2011-S2017. [PMID: 30023106 DOI: 10.21037/jtd.2018.05.63] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Joshua J C McGrath
- Medical Sciences Graduate Program, Firestone Institute for Respiratory Health at St. Joseph's Health Care, McMaster University, Hamilton, ON, Canada
| | - Martin R Stampfli
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Firestone Institute for Respiratory Health at St. Joseph's Health Care, McMaster University, Hamilton, ON, Canada.,Department of Medicine, Firestone Institute for Respiratory Health at St. Joseph's Health Care, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
50
|
Cui W, Zhang Z, Zhang P, Qu J, Zheng C, Mo X, Zhou W, Xu L, Yao H, Gao J. Nrf2 attenuates inflammatory response in COPD/emphysema: Crosstalk with Wnt3a/β-catenin and AMPK pathways. J Cell Mol Med 2018; 22:3514-3525. [PMID: 29659176 PMCID: PMC6010849 DOI: 10.1111/jcmm.13628] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 03/09/2018] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow limitation and abnormal inflammatory response. Wnt/β-catenin and AMP-activated protein kinase (AMPK) have been shown to modulate lung inflammatory responses and injury. However, it remains elusive whether Wnt/β-catenin and AMPK modulate nuclear factor erythroid-2 related factor-2 (Nrf2)-mediated protective responses during the development of emphysema. Here we showed that treatment with a Wnt pathway activator (LiCl) reduced elastase-induced airspace enlargement and cigarette smoke extract (CSE)-induced lung inflammatory responses in WT mice, which was associated with increased activation of Nrf2 pathway. Interestingly, these effects of LiCl were not observed in Nrf2-/- mice exposed to elastase. In normal human bronchial epithelial (NHBE) cells, Wnt3a overexpression up-regulated, whereas Wnt3a knockdown further down-regulated the levels of Nrf2 and its target proteins heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) by CSE treatment. In contrast, Nrf2 deficiency did not have any effects on Wnt/β-catenin pathway in mouse lungs and NHBE cells. Both elastase and CSE exposures reduced AMPK phosphorylation. A specific AMPK activator metformin increased Wnt3a, β-catenin, Nrf2 phosphorylation and activation but reduced the levels of IL-6 and IL-8 in NHBE cells and mouse lungs exposed to CSE. Furthermore, Nrf2 deficiency abolished the protection of metformin against CSE-induced increase in IL-6 and IL-8 in NHBE cells. In conclusion, Nrf2 mediates the protective effects of both Wnt3a/β-catenin and AMPK on lung inflammatory responses during the development of COPD/emphysema. These findings provide potential therapeutic targets for the intervention of COPD/emphysema.
Collapse
Affiliation(s)
- Wenhui Cui
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,General Hospital of Datong Coal Mining Group, Datong, Shanxi, China
| | - Zhihui Zhang
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Panpan Zhang
- School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Jiao Qu
- School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Cheng Zheng
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaoting Mo
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wencheng Zhou
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liang Xu
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongwei Yao
- Department of Critical Care and Pulmonary Medicine, Shanxi Medical University Second Hospital, Taiyuan, Shanxi, China
| | - Jian Gao
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|