1
|
Yang JY. miR-574-5p in epigenetic regulation and Toll-like receptor signaling. Cell Commun Signal 2024; 22:567. [PMID: 39593070 PMCID: PMC11600836 DOI: 10.1186/s12964-024-01934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
miR-574-5p is an unusual microRNA (miRNA) that is often upregulated or downregulated following exposure to irradiation or toxic chemicals; bacterial, parasitic or viral infection; and a variety of other disease conditions. Canonically, miR-574-5p epigenetically regulates the expression of many messenger RNAs (mRNAs) through miRNA-mediated posttranscriptional regulation, thereby affecting cellular physiology or pathophysiology and contributing to the pathogenesis or progression of a variety of diseases. However, recent studies have established that in addition to serving as a fine-tuning repressor of gene expression, miR-574-5p also stimulates gene expression as an endogenous ligand for Toll-like receptor-8/7 (TLR8/7). Indeed, the binding of miR-574-5p to TLR8/7 triggers the TLR signaling pathway, leading to the induction of interferons, inflammatory cytokines and autoimmune signaling. These findings suggest that miR-574-5p is not only an important epigenetic regulator of gene expression, but also an important regulator of immune and inflammatory responses. Abnormal miR-574-5p-TLR8/7 signaling has been shown to be tightly associated with inflammation-related cancers and a number of autoimmune disorders. miR-574-5p can serve as a potential biomarker for many diseases. Most importantly, miR-574-5p is a promising therapeutic target for the treatment or prevention of human disorders, especially infectious diseases, cancers and autoimmune diseases.
Collapse
Affiliation(s)
- James Y Yang
- Kidney Health Institute, Health Science Center, East China Normal University, Minhang, Shanghai, 200241, China.
- Wuhu Hospital of East China Normal University, Wuhu, 241000, Anhui, China.
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China.
| |
Collapse
|
2
|
Deng W, Citu C, Liu A, Zhao Z. Dynamic dysregulation of retrotransposons in neurodegenerative diseases at the single-cell level. Genome Res 2024; 34:1687-1699. [PMID: 39424325 PMCID: PMC11529867 DOI: 10.1101/gr.279363.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Retrotransposable elements (RTEs) are common mobile genetic elements comprising ∼42% of the human genome. RTEs play critical roles in gene regulation and function, but how they are specifically involved in complex diseases is largely unknown. Here, we investigate the cellular heterogeneity of RTEs using 12 single-cell transcriptome profiles covering three neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease, and multiple sclerosis. We identify cell type marker RTEs in neurons, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells that are related to these diseases. The differential expression analysis reveals the landscape of dysregulated RTE expression, especially L1s, in excitatory neurons of multiple neurodegenerative diseases. Machine learning algorithms for predicting cell disease stage using a combination of RTE and gene expression features suggests dynamic regulation of RTEs in AD. Furthermore, we construct a single-cell atlas of retrotransposable elements in neurodegenerative disease (scARE) using these data sets and features. scARE has six feature analysis modules to explore RTE dynamics in a user-defined condition. To our knowledge, scARE represents the first systematic investigation of RTE dynamics at the single-cell level within the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Wankun Deng
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Citu Citu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Andi Liu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA;
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| |
Collapse
|
3
|
Tovo PA, Ribaldone DG, Galliano I, Caviglia GP, Dini M, Veglio V, Calvi C, Montanari P, Pitoni D, Frara S, Tribocco E, Poshnjari A, Bergallo M. Enhanced Transcription of Human Endogenous Retroviruses and TRIM28 Downregulation in Patients with Inflammatory Bowel Disease. Viruses 2024; 16:1570. [PMID: 39459904 PMCID: PMC11512322 DOI: 10.3390/v16101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) includes patients affected by Crohn's disease or ulcerative colitis. IBD is thought to be a chronic immune-mediated disease, but its origin remains elusive, and this limits new therapeutic approaches. Human endogenous retroviruses (HERVs) originate from ancestral infections and represent 8% of the human genome. HERVs are no longer infectious, but some retroviral sequences can be activated, and their aberrant expressions have been implicated in inflammatory and autoimmune disorders. HERV transcription is regulated by TRIM28 and SETDB1, which are also directly involved in epigenetic processes and modulation of the immune response. Using a PCR real-time Taqman amplification assay, we assessed, for the first time, the transcription levels of pol genes of HERV-H, -K, and -W families of env genes of syncytin 1 (SYN1), SYN2, and HERV-W, as well as of TRIM28 and SETDB1 in the whole blood of 48 patients with Crohn's disease (CD), 20 with ulcerative colitis (UC), and in healthy controls (HC) of comparable age. The transcriptional levels of HERV-H-pol (p = 0.0003) and HERV-K-pol (p = 0.001) were significantly higher in IBD patients compared with HC, with no differences between patients with CD and UC. No significant differences were found for the remaining HERVs between IBD patients and HC. The transcript levels of TRIM28 were significantly downregulated in IBD patients (p < 0.001), without differences between CD and UC, while the SETDB1 levels were preserved. The enhanced transcription of HERV-H-pol and HERV-K-pol, as well as the impaired activation of TRIM28, were not influenced by clinical disease activity and type of treatment. The overexpression of HERVs and impaired transcription of TRIM28 in patients affected by CD or UC suggest that they might be the main actors in the pathophysiology of IBD, opening the way to innovative targeted interventions.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Public Health and Pediatric Sciences, University of Turin, Piazza Polonia 94, 10126 Turin, Italy;
| | - Davide Giuseppe Ribaldone
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, 10123 Turin, Italy; (D.G.R.); (G.P.C.); (V.V.); (D.P.); (S.F.); (E.T.); (A.P.)
| | - Ilaria Galliano
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (M.D.); (C.C.); (P.M.); (M.B.)
| | - Gian Paolo Caviglia
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, 10123 Turin, Italy; (D.G.R.); (G.P.C.); (V.V.); (D.P.); (S.F.); (E.T.); (A.P.)
| | - Maddalena Dini
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (M.D.); (C.C.); (P.M.); (M.B.)
| | - Valentina Veglio
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, 10123 Turin, Italy; (D.G.R.); (G.P.C.); (V.V.); (D.P.); (S.F.); (E.T.); (A.P.)
| | - Cristina Calvi
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (M.D.); (C.C.); (P.M.); (M.B.)
| | - Paola Montanari
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (M.D.); (C.C.); (P.M.); (M.B.)
| | - Demis Pitoni
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, 10123 Turin, Italy; (D.G.R.); (G.P.C.); (V.V.); (D.P.); (S.F.); (E.T.); (A.P.)
| | - Simone Frara
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, 10123 Turin, Italy; (D.G.R.); (G.P.C.); (V.V.); (D.P.); (S.F.); (E.T.); (A.P.)
| | - Elisa Tribocco
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, 10123 Turin, Italy; (D.G.R.); (G.P.C.); (V.V.); (D.P.); (S.F.); (E.T.); (A.P.)
| | - Anxhela Poshnjari
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, 10123 Turin, Italy; (D.G.R.); (G.P.C.); (V.V.); (D.P.); (S.F.); (E.T.); (A.P.)
| | - Massimiliano Bergallo
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (M.D.); (C.C.); (P.M.); (M.B.)
| |
Collapse
|
4
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
5
|
Pizzioli E, Minutolo A, Balestrieri E, Matteucci C, Magiorkinis G, Horvat B. Crosstalk between human endogenous retroviruses and exogenous viruses. Microbes Infect 2024:105427. [PMID: 39349096 DOI: 10.1016/j.micinf.2024.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections of human germ-line cells, which are mostly silenced during evolution, but could be de-repressed and play a pathological role. Infection with some exogenous viruses, including herpesviruses, HIV-1 and SARS-CoV-2, was demonstrated to induce the expression of HERV RNAs and proteins.
Collapse
Affiliation(s)
- Edoardo Pizzioli
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
6
|
Zhang R, Wu M, Xiang D, Zhu J, Zhang Q, Zhong H, Peng Y, Wang Z, Ma G, Li G, Liu F, Ye W, Shi R, Zhou X, Babarinde IA, Su H, Chen J, Zhang X, Qin D, Hutchins AP, Pei D, Li D. A primate-specific endogenous retroviral envelope protein sequesters SFRP2 to regulate human cardiomyocyte development. Cell Stem Cell 2024; 31:1298-1314.e8. [PMID: 39146934 DOI: 10.1016/j.stem.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Endogenous retroviruses (ERVs) occupy a significant part of the human genome, with some encoding proteins that influence the immune system or regulate cell-cell fusion in early extra-embryonic development. However, whether ERV-derived proteins regulate somatic development is unknown. Here, we report a somatic developmental function for the primate-specific ERVH48-1 (SUPYN/Suppressyn). ERVH48-1 encodes a fragment of a viral envelope that is expressed during early embryonic development. Loss of ERVH48-1 led to impaired mesoderm and cardiomyocyte commitment and diverted cells to an ectoderm-like fate. Mechanistically, ERVH48-1 is localized to sub-cellular membrane compartments through a functional N-terminal signal peptide and binds to the WNT antagonist SFRP2 to promote its polyubiquitination and degradation, thus limiting SFRP2 secretion and blocking repression of WNT/β-catenin signaling. Knockdown of SFRP2 or expression of a chimeric SFRP2 with the ERVH48-1 signal peptide rescued cardiomyocyte differentiation. This study demonstrates how ERVH48-1 modulates WNT/β-catenin signaling and cell type commitment in somatic development.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Menghua Wu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Dan Xiang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieying Zhu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Qi Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Hui Zhong
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Yuling Peng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Zhenhua Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guihuan Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Fengping Liu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Weipeng Ye
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Ruona Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuemeng Zhou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Xiaofei Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
| |
Collapse
|
7
|
Frost B, Dubnau J. The Role of Retrotransposons and Endogenous Retroviruses in Age-Dependent Neurodegenerative Disorders. Annu Rev Neurosci 2024; 47:123-143. [PMID: 38663088 DOI: 10.1146/annurev-neuro-082823-020615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Over 40% of the human genome is composed of retrotransposons, DNA species that hold the potential to replicate via an RNA intermediate and are evolutionarily related to retroviruses. Retrotransposons are most studied for their ability to jump within a genome, which can cause DNA damage and novel insertional mutations. Retrotransposon-encoded products, including viral-like proteins, double-stranded RNAs, and extrachromosomal circular DNAs, can also be potent activators of the innate immune system. A growing body of evidence suggests that retrotransposons are activated in age-related neurodegenerative disorders and that such activation causally contributes to neurotoxicity. Here we provide an overview of retrotransposon biology and outline evidence of retrotransposon activation in age-related neurodegenerative disorders, with an emphasis on those involving TAR-DNA binding protein-43 (TDP-43) and tau. Studies to date provide the basis for ongoing clinical trials and hold promise for innovative strategies to ameliorate the adverse effects of retrotransposon dysregulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Bess Frost
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, and Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA;
| | - Josh Dubnau
- Department of Anesthesiology and Department of Neurobiology and Behavior, Stony Brook School of Medicine, Stony Brook, New York, USA;
| |
Collapse
|
8
|
Adler GL, Le K, Fu Y, Kim WS. Human Endogenous Retroviruses in Neurodegenerative Diseases. Genes (Basel) 2024; 15:745. [PMID: 38927681 PMCID: PMC11202925 DOI: 10.3390/genes15060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are DNA transposable elements that have integrated into the human genome via an ancestral germline infection. The potential importance of HERVs is underscored by the fact that they comprise approximately 8% of the human genome. HERVs have been implicated in the pathogenesis of neurodegenerative diseases, a group of CNS diseases characterized by a progressive loss of structure and function of neurons, resulting in cell death and multiple physiological dysfunctions. Much evidence indicates that HERVs are initiators or drivers of neurodegenerative processes in multiple sclerosis and amyotrophic lateral sclerosis, and clinical trials have been designed to target HERVs. In recent years, the role of HERVs has been explored in other major neurodegenerative diseases, including frontotemporal dementia, Alzheimer's disease and Parkinson's disease, with some interesting discoveries. This review summarizes and evaluates the past and current research on HERVs in neurodegenerative diseases. It discusses the potential role of HERVs in disease manifestation and neurodegeneration. It critically reviews antiretroviral strategies used in the therapeutic intervention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gabrielle L. Adler
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kelvin Le
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - YuHong Fu
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Radrizzani S, Kudla G, Izsvák Z, Hurst LD. Selection on synonymous sites: the unwanted transcript hypothesis. Nat Rev Genet 2024; 25:431-448. [PMID: 38297070 DOI: 10.1038/s41576-023-00686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 02/02/2024]
Abstract
Although translational selection to favour codons that match the most abundant tRNAs is not readily observed in humans, there is nonetheless selection in humans on synonymous mutations. We hypothesize that much of this synonymous site selection can be explained in terms of protection against unwanted RNAs - spurious transcripts, mis-spliced forms or RNAs derived from transposable elements or viruses. We propose not only that selection on synonymous sites functions to reduce the rate of creation of unwanted transcripts (for example, through selection on exonic splice enhancers and cryptic splice sites) but also that high-GC content (but low-CpG content), together with intron presence and position, is both particular to functional native mRNAs and used to recognize transcripts as native. In support of this hypothesis, transcription, nuclear export, liquid phase condensation and RNA degradation have all recently been shown to promote GC-rich transcripts and suppress AU/CpG-rich ones. With such 'traps' being set against AU/CpG-rich transcripts, the codon usage of native genes has, in turn, evolved to avoid such suppression. That parallel filters against AU/CpG-rich transcripts also affect the endosomal import of RNAs further supports the unwanted transcript hypothesis of synonymous site selection and explains the similar design rules that have enabled the successful use of transgenes and RNA vaccines.
Collapse
Affiliation(s)
- Sofia Radrizzani
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute for Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Laurence D Hurst
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK.
| |
Collapse
|
10
|
Evans TA, Feltrin AS, Benjamin KJ, Katipalli T, Hyde T, Kleinman JE, Weinberger DR, Paquola AC, Erwin JA. Lifespan analysis of repeat expression reveals age-dependent upregulation of HERV-K in the neurotypical human brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307184. [PMID: 38798538 PMCID: PMC11118647 DOI: 10.1101/2024.05.17.24307184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
DNA repetitive sequences (or repeats) comprise over 50% of the human genome and have a crucial regulatory role, specifically regulating transcription machinery. The human brain is the tissue with the highest detectable repeat expression and dysregulations on the repeat activity are related to several neurological and neurodegenerative disorders, as repeat-derived products can stimulate a pro-inflammatory response. Even so, it is unclear how repeat expression acts on the aging neurotypical brain. Here, we leverage a large postmortem transcriptome cohort spanning the human lifespan to assess global repeat expression in the neurotypical brain. We identified 21,696 differentially expressed repeats (DERs) that varied across seven age bins (Prenatal; 0-15; 16-29; 30-39; 40-49; 50-59; 60+) across the caudate nucleus (n=271), dorsolateral prefrontal cortex (n=304), and hippocampus (n=310). Interestingly, we found that long interspersed nuclear elements and long terminal repeats (LTRs) DERs were the most abundant repeat families when comparing infants to early adolescence (0-15) with older adults (60+). Of these differentially regulated LTRs, we identified 17 shared across all brain regions, including increased expression of HERV-K-int in older adult brains (60+). Co-expression analysis from each of the three brain regions also showed repeats from the HERV subfamily were intramodular hubs in its subnetworks. While we do not observe a strong global relationship between repeat expression and age, we identified HERV-K as a repeat signature associated with the aging neurotypical brain. Our study is the first global assessment of repeat expression in the neurotypical brain.
Collapse
|
11
|
Sun C, Guo R, Ye X, Tang S, Chen M, Zhou P, Yang M, Liao C, Li H, Lin B, Zang C, Qi Y, Han D, Sun Y, Li N, Zhu D, Xu K, Hu H. Wybutosine hypomodification of tRNAphe activates HERVK and impairs neuronal differentiation. iScience 2024; 27:109748. [PMID: 38706838 PMCID: PMC11066470 DOI: 10.1016/j.isci.2024.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
We previously reported that loss of function of TYW1 led to cerebral palsy with severe intellectual disability through reduced neural proliferation. However, whether TYW1 loss affects neural differentiation is unknown. In this study, we first demonstrated that TYW1 loss blocked the formation of OHyW in tRNAphe and therefore affected the translation efficiency of UUU codon. Using the brain organoid model, we showed impaired neuron differentiation when TYW1 was depleted. Interestingly, retrotransposons were differentially regulated in TYW1-/- hESCs (human embryonic stem cells). In particular, one kind of human-specific endogenous retrovirus-K (HERVK/HML2), whose reactivation impaired human neurodevelopment, was significantly up-regulated in TYW1-/- hESCs. Consistently, a UUU codon-enriched protein, SMARCAD1, which was a key factor in controlling endogenous retroviruses, was reduced. Taken together, TYW1 loss leads to up-regulation of HERVK in hESCs by down-regulated SMARCAD1, thus impairing neuron differentiation.
Collapse
Affiliation(s)
- Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ruirui Guo
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
- School of Basic Medical Science, Gansu Medical College, Pingliang 744000, Gansu, China
| | - Xiangyan Ye
- Laboratory of Medical Systems Biology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Shiyi Tang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Manqi Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Pei Zhou
- Laboratory of Medical Systems Biology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Miaomiao Yang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Caihua Liao
- Laboratory of Medical Systems Biology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Bing Lin
- Laboratory of Medical Systems Biology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Congwen Zang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yifei Qi
- Laboratory of Medical Systems Biology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Dingding Han
- Laboratory of Medical Systems Biology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yi Sun
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province 510180, China
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Dengna Zhu
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
12
|
Pawar K, Kawamura T, Kirino Y. The tRNA Val half: A strong endogenous Toll-like receptor 7 ligand with a 5'-terminal universal sequence signature. Proc Natl Acad Sci U S A 2024; 121:e2319569121. [PMID: 38683985 PMCID: PMC11087793 DOI: 10.1073/pnas.2319569121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/24/2024] [Indexed: 05/02/2024] Open
Abstract
Toll-like receptors (TLRs) are crucial components of the innate immune system. Endosomal TLR7 recognizes single-stranded RNAs, yet its endogenous ssRNA ligands are not fully understood. We previously showed that extracellular (ex-) 5'-half molecules of tRNAHisGUG (the 5'-tRNAHisGUG half) in extracellular vesicles (EVs) of human macrophages activate TLR7 when delivered into endosomes of recipient macrophages. Here, we fully explored immunostimulatory ex-5'-tRNA half molecules and identified the 5'-tRNAValCAC/AAC half, the most abundant tRNA-derived RNA in macrophage EVs, as another 5'-tRNA half molecule with strong TLR7 activation capacity. Levels of the ex-5'-tRNAValCAC/AAC half were highly up-regulated in macrophage EVs upon exposure to lipopolysaccharide and in the plasma of patients infected with Mycobacterium tuberculosis. The 5'-tRNAValCAC/AAC half-mediated activation of TLR7 effectively eradicated bacteria infected in macrophages. Mutation analyses of the 5'-tRNAValCAC/AAC half identified the terminal GUUU sequence as a determinant for TLR7 activation. We confirmed that GUUU is the optimal ratio of guanosine and uridine for TLR7 activation; microRNAs or other RNAs with the terminal GUUU motif can indeed stimulate TLR7, establishing the motif as a universal signature for TLR7 activation. These results advance our understanding of endogenous ssRNA ligands of TLR7 and offer insights into diverse TLR7-involved pathologies and their therapeutic strategies.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
- Department of Life Sciences, School of Natural Science, Shiv Nadar Institution of Eminence Deemed to be University, Delhi National Capital Region, Greater Noida201314, India
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
13
|
Dorrity TJ, Shin H, Gertie JA, Chung H. The Sixth Sense: Self-nucleic acid sensing in the brain. Adv Immunol 2024; 161:53-83. [PMID: 38763702 PMCID: PMC11186578 DOI: 10.1016/bs.ai.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Our innate immune system uses pattern recognition receptors (PRRs) as a first line of defense to detect microbial ligands and initiate an immune response. Viral nucleic acids are key ligands for the activation of many PRRs and the induction of downstream inflammatory and antiviral effects. Initially it was thought that endogenous (self) nucleic acids rarely activated these PRRs, however emerging evidence indicates that endogenous nucleic acids are able to activate host PRRs in homeostasis and disease. In fact, many regulatory mechanisms are in place to finely control and regulate sensing of self-nucleic acids by PRRs. Sensing of self-nucleic acids is particularly important in the brain, as perturbations to nucleic acid sensing commonly leads to neuropathology. This review will highlight the role of nucleic acid sensors in the brain, both in disease and homeostasis. We also indicate the source of endogenous stimulatory nucleic acids where known and summarize future directions for the study of this growing field.
Collapse
Key Words
- Brain
- DNA sensing PRRs: cGAS, AIM2, TLR9
- Neurodegeneration: Aicardi-Goutieres syndrome (AGS), Alzheimer's disease, Amyotrophic lateral sclerosis, Stroke, Traumatic brain injury
- Neurodevelopment
- Neuroinflammation
- Nuecleic acid immunity
- Pattern recognition receptors (PRRs)
- RNA sensing PRRs: MDA5, RIG-I, PKR, TLR3, TLR7/8
Collapse
Affiliation(s)
- Tyler J Dorrity
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Heegwon Shin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Jake A Gertie
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States; Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Hachung Chung
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
14
|
da Silva AL, Guedes BLM, Santos SN, Correa GF, Nardy A, Nali LHDS, Bachi ALL, Romano CM. Beyond pathogens: the intriguing genetic legacy of endogenous retroviruses in host physiology. Front Cell Infect Microbiol 2024; 14:1379962. [PMID: 38655281 PMCID: PMC11035796 DOI: 10.3389/fcimb.2024.1379962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The notion that viruses played a crucial role in the evolution of life is not a new concept. However, more recent insights suggest that this perception might be even more expansive, highlighting the ongoing impact of viruses on host evolution. Endogenous retroviruses (ERVs) are considered genomic remnants of ancient viral infections acquired throughout vertebrate evolution. Their exogenous counterparts once infected the host's germline cells, eventually leading to the permanent endogenization of their respective proviruses. The success of ERV colonization is evident so that it constitutes 8% of the human genome. Emerging genomic studies indicate that endogenous retroviruses are not merely remnants of past infections but rather play a corollary role, despite not fully understood, in host genetic regulation. This review presents some evidence supporting the crucial role of endogenous retroviruses in regulating host genetics. We explore the involvement of human ERVs (HERVs) in key physiological processes, from their precise and orchestrated activities during cellular differentiation and pluripotency to their contributions to aging and cellular senescence. Additionally, we discuss the costs associated with hosting a substantial amount of preserved viral genetic material.
Collapse
Affiliation(s)
- Amanda Lopes da Silva
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Luiz Miranda Guedes
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Samuel Nascimento Santos
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Giovanna Francisco Correa
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ariane Nardy
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | | | - Andre Luis Lacerda Bachi
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Camila Malta Romano
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Wang T, Song D, Li X, Luo Y, Yang D, Liu X, Kong X, Xing Y, Bi S, Zhang Y, Hu T, Zhang Y, Dai S, Shao Z, Chen D, Hou J, Ballestar E, Cai J, Zheng F, Yang JY. MiR-574-5p activates human TLR8 to promote autoimmune signaling and lupus. Cell Commun Signal 2024; 22:220. [PMID: 38589923 PMCID: PMC11000404 DOI: 10.1186/s12964-024-01601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Endosomal single-stranded RNA-sensing Toll-like receptor-7/8 (TLR7/8) plays a pivotal role in inflammation and immune responses and autoimmune diseases. However, the mechanisms underlying the initiation of the TLR7/8-mediated autoimmune signaling remain to be fully elucidated. Here, we demonstrate that miR-574-5p is aberrantly upregulated in tissues of lupus prone mice and in the plasma of lupus patients, with its expression levels correlating with the disease activity. miR-574-5p binds to and activates human hTLR8 or its murine ortholog mTlr7 to elicit a series of MyD88-dependent immune and inflammatory responses. These responses include the overproduction of cytokines and interferons, the activation of STAT1 signaling and B lymphocytes, and the production of autoantigens. In a transgenic mouse model, the induction of miR-574-5p overexpression is associated with increased secretion of antinuclear and anti-dsDNA antibodies, increased IgG and C3 deposit in the kidney, elevated expression of inflammatory genes in the spleen. In lupus-prone mice, lentivirus-mediated silencing of miR-574-5p significantly ameliorates major symptoms associated with lupus and lupus nephritis. Collectively, these results suggest that the miR-574-5p-hTLR8/mTlr7 signaling is an important axis of immune and inflammatory responses, contributing significantly to the development of lupus and lupus nephritis.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Dan Song
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Xuejuan Li
- Wuhu Hospital of East China Normal University, Wuhu, Anhui, 241000, China
- Kidney Health Institute, Health Science Center, East China Normal University, Minhang, Shanghai, 200241, China
- Department of Nephrology, The Second Hospital, Dalian Medical University, Dalian, 116144, China
| | - Yu Luo
- School of Nursing, The Third Military Medical University, Chongqing, 400038, China
| | - Dianqiang Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Xiaoyan Liu
- Department of Nephrology, The Second Hospital, Dalian Medical University, Dalian, 116144, China
| | - Xiaodan Kong
- Department of Rheumatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yida Xing
- Department of Rheumatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Shulin Bi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Yan Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Tao Hu
- College of Medicine, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Yunyun Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Shuang Dai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Zhiqiang Shao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Dahan Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Jinpao Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Esteban Ballestar
- Wuhu Hospital of East China Normal University, Wuhu, Anhui, 241000, China
- Kidney Health Institute, Health Science Center, East China Normal University, Minhang, Shanghai, 200241, China
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, 08916, Spain
| | - Jianchun Cai
- Department of Gastrointestinal Surgery, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, Fujian, 361005, China.
| | - Feng Zheng
- Wuhu Hospital of East China Normal University, Wuhu, Anhui, 241000, China.
- Kidney Health Institute, Health Science Center, East China Normal University, Minhang, Shanghai, 200241, China.
- Department of Nephrology, The Second Hospital, Dalian Medical University, Dalian, 116144, China.
- The Advanced Institute for Molecular Medicine, Dalian Medical University, Dalian, 116144, China.
| | - James Y Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China.
- Wuhu Hospital of East China Normal University, Wuhu, Anhui, 241000, China.
- Kidney Health Institute, Health Science Center, East China Normal University, Minhang, Shanghai, 200241, China.
| |
Collapse
|
16
|
Wang J, Lu X, Zhang W, Liu GH. Endogenous retroviruses in development and health. Trends Microbiol 2024; 32:342-354. [PMID: 37802660 DOI: 10.1016/j.tim.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Endogenous retroviruses (ERVs) are evolutionary remnants of retroviral infections in which the viral genome became embedded as a dormant regulatory element within the host germline. When ERVs become activated, they comprehensively rewire genomic regulatory networks of the host and facilitate critical developmental events, such as preimplantation development and placentation, in a manner specific to species, developmental stage, and tissues. However, accumulating evidence suggests that aberrant ERV transcription compromises genome stability and has been implicated in cellular senescence and various pathogenic processes, underscoring the significance of host genomic surveillance mechanisms. Here, we revisit the prominent functions of ERVs in early development and highlight their emerging roles in mammalian post-implantation development and organogenesis. We also discuss their implications for aging and pathological processes such as microbial infection, immune response. Furthermore, we discuss recent advances in stem-cell-based models, single-cell omics, and genome editing technologies, which serve as beacons illuminating the versatile nature of ERVs in mammalian development and health.
Collapse
Affiliation(s)
- Jichang Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China.
| |
Collapse
|
17
|
Dopkins N, Nixon DF. Activation of human endogenous retroviruses and its physiological consequences. Nat Rev Mol Cell Biol 2024; 25:212-222. [PMID: 37872387 DOI: 10.1038/s41580-023-00674-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Human endogenous retroviruses (HERVs) are abundant sequences that persist within the human genome as remnants of ancient retroviral infections. These sequences became fixed and accumulate mutations or deletions over time. HERVs have affected human evolution and physiology by providing a unique repertoire of coding and non-coding sequences to the genome. In healthy individuals, HERVs participate in immune responses, formation of syncytiotrophoblasts and cell-fate specification. In this Review, we discuss how endogenized retroviral motifs and regulatory sequences have been co-opted into human physiology and how they are tightly regulated. Infections and mutations can derail this regulation, leading to differential HERV expression, which may contribute to pathologies including neurodegeneration, pathological inflammation and oncogenesis. Emerging evidence demonstrates that HERVs are crucial to human health and represent an understudied facet of many diseases, and we therefore argue that investigating their fundamental properties could improve existing therapies and help develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Le Breton A, Bettencourt MP, Gendrel AV. Navigating the brain and aging: exploring the impact of transposable elements from health to disease. Front Cell Dev Biol 2024; 12:1357576. [PMID: 38476259 PMCID: PMC10927736 DOI: 10.3389/fcell.2024.1357576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that constitute on average 45% of mammalian genomes. Their presence and activity in genomes represent a major source of genetic variability. While this is an important driver of genome evolution, TEs can also have deleterious effects on their hosts. A growing number of studies have focused on the role of TEs in the brain, both in physiological and pathological contexts. In the brain, their activity is believed to be important for neuronal plasticity. In neurological and age-related disorders, aberrant activity of TEs may contribute to disease etiology, although this remains unclear. After providing a comprehensive overview of transposable elements and their interactions with the host, this review summarizes the current understanding of TE activity within the brain, during the aging process, and in the context of neurological and age-related conditions.
Collapse
Affiliation(s)
| | | | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Takahashi Ueda M. Retrotransposon-derived transcripts and their functions in immunity and disease. Genes Genet Syst 2024; 98:305-319. [PMID: 38199240 DOI: 10.1266/ggs.23-00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Retrotransposons, which account for approximately 42% of the human genome, have been increasingly recognized as "non-self" pathogen-associated molecular patterns (PAMPs) due to their virus-like sequences. In abnormal conditions such as cancer and viral infections, retrotransposons that are aberrantly expressed due to impaired epigenetic suppression display PAMPs, leading to their recognition by pattern recognition receptors (PRRs) of the innate immune system and triggering inflammation. This viral mimicry mechanism has been observed in various human diseases, including aging and autoimmune disorders. However, recent evidence suggests that retrotransposons possess highly regulated immune reactivity and play important roles in the development and function of the immune system. In this review, I discuss a wide range of retrotransposon-derived transcripts, their role as targets in immune recognition, and the diseases associated with retrotransposon activity. Furthermore, I explore the implications of chimeric transcripts formed between retrotransposons and known gene mRNAs, which have been previously underestimated, for the increase of immune-related gene isoforms and their influence on immune function. Retrotransposon-derived transcripts have profound and multifaceted effects on immune system function. The aim of this comprehensive review is to provide a better understanding of the complex relationship between retrotransposon transcripts and immune defense.
Collapse
Affiliation(s)
- Mahoko Takahashi Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University
| |
Collapse
|
20
|
Singh S, Borkar MR, Bhatt LK. Transposable Elements: Emerging Therapeutic Targets in Neurodegenerative Diseases. Neurotox Res 2024; 42:9. [PMID: 38270797 DOI: 10.1007/s12640-024-00688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by the progressive loss of neuronal function and structure. While several genetic and environmental factors have been implicated in the pathogenesis of these disorders, emerging evidence suggests that transposable elements (TEs), once considered "junk DNA," play a significant role in their development and progression. TEs are mobile genetic elements capable of moving within the genome, and their dysregulation has been associated with genomic instability, altered gene expression, and neuroinflammation. This review provides an overview of TEs, including long interspersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs), and endogenous retroviruses (ERVs), mechanisms of repression and derepression, and their potential impact on neurodegeneration. The evidence linking TEs to AD, PD, and ALS by shedding light on the complex interactions between TEs and neurodegeneration has been discussed. Furthermore, the therapeutic potential of targeting TEs in neurodegenerative diseases has been explored. Understanding the role of TEs in neurodegeneration holds promise for developing novel therapeutic strategies aimed at mitigating disease progression and preserving neuronal health.
Collapse
Affiliation(s)
- Shrishti Singh
- Department of Pharmacology, Bhanuben Nanavati College of Pharmacy, SVKM's DrVile Parle (W), Mumbai, India
| | - Maheshkumar R Borkar
- Department of Pharmaceutical Chemistry, SVKM's Dr, Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, Bhanuben Nanavati College of Pharmacy, SVKM's DrVile Parle (W), Mumbai, India.
| |
Collapse
|
21
|
Li C, Qian Q, Yan C, Lu M, Li L, Li P, Fan Z, Lei W, Shang K, Wang P, Wang J, Lu T, Huang Y, Yang H, Wei H, Han J, Xiao J, Chen F. HervD Atlas: a curated knowledgebase of associations between human endogenous retroviruses and diseases. Nucleic Acids Res 2024; 52:D1315-D1326. [PMID: 37870452 PMCID: PMC10767980 DOI: 10.1093/nar/gkad904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Human endogenous retroviruses (HERVs), as remnants of ancient exogenous retrovirus infected and integrated into germ cells, comprise ∼8% of the human genome. These HERVs have been implicated in numerous diseases, and extensive research has been conducted to uncover their specific roles. Despite these efforts, a comprehensive source of HERV-disease association still needs to be added. To address this gap, we introduce the HervD Atlas (https://ngdc.cncb.ac.cn/hervd/), an integrated knowledgebase of HERV-disease associations manually curated from all related published literature. In the current version, HervD Atlas collects 60 726 HERV-disease associations from 254 publications (out of 4692 screened literature), covering 21 790 HERVs (21 049 HERV-Terms and 741 HERV-Elements) belonging to six types, 149 diseases and 610 related/affected genes. Notably, an interactive knowledge graph that systematically integrates all the HERV-disease associations and corresponding affected genes into a comprehensive network provides a powerful tool to uncover and deduce the complex interplay between HERVs and diseases. The HervD Atlas also features a user-friendly web interface that allows efficient browsing, searching, and downloading of all association information, research metadata, and annotation information. Overall, the HervD Atlas is an essential resource for comprehensive, up-to-date knowledge on HERV-disease research, potentially facilitating the development of novel HERV-associated diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Cuidan Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Qiheng Qian
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghao Yan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Lu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Pan Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojing Fan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Wenyan Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Shang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peihan Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Lu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Huang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hongwei Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haobin Wei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwan Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing100101, China
| |
Collapse
|
22
|
Luqman-Fatah A, Nishimori K, Amano S, Fumoto Y, Miyoshi T. Retrotransposon life cycle and its impacts on cellular responses. RNA Biol 2024; 21:11-27. [PMID: 39396200 PMCID: PMC11485995 DOI: 10.1080/15476286.2024.2409607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024] Open
Abstract
Approximately 45% of the human genome is comprised of transposable elements (TEs), also known as mobile genetic elements. However, their biological function remains largely unknown. Among them, retrotransposons are particularly abundant, and some of the copies are still capable of mobilization within the genome through RNA intermediates. This review focuses on the life cycle of human retrotransposons and summarizes their regulatory mechanisms and impacts on cellular processes. Retrotransposons are generally epigenetically silenced in somatic cells, but are transcriptionally reactivated under certain conditions, such as tumorigenesis, development, stress, and ageing, potentially leading to genetic instability. We explored the dual nature of retrotransposons as genomic parasites and regulatory elements, focusing on their roles in genetic diversity and innate immunity. Furthermore, we discuss how host factors regulate retrotransposon RNA and cDNA intermediates through their binding, modification, and degradation. The interplay between retrotransposons and the host machinery provides insight into the complex regulation of retrotransposons and the potential for retrotransposon dysregulation to cause aberrant responses leading to inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kei Nishimori
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shota Amano
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yukiko Fumoto
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomoichiro Miyoshi
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Shin W, Mun S, Han K. Human Endogenous Retrovirus-K (HML-2)-Related Genetic Variation: Human Genome Diversity and Disease. Genes (Basel) 2023; 14:2150. [PMID: 38136972 PMCID: PMC10742618 DOI: 10.3390/genes14122150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Human endogenous retroviruses (HERVs) comprise a significant portion of the human genome, making up roughly 8%, a notable comparison to the 2-3% represented by coding sequences. Numerous studies have underscored the critical role and importance of HERVs, highlighting their diverse and extensive influence on the evolution of the human genome and establishing their complex correlation with various diseases. Among HERVs, the HERV-K (HML-2) subfamily has recently attracted significant attention, integrating into the human genome after the divergence between humans and chimpanzees. Its insertion in the human genome has received considerable attention due to its structural and functional characteristics and the time of insertion. Originating from ancient exogenous retroviruses, these elements succeeded in infecting germ cells, enabling vertical transmission and existing as proviruses within the genome. Remarkably, these sequences have retained the capacity to form complete viral sequences, exhibiting activity in transcription and translation. The HERV-K (HML-2) subfamily is the subject of active debate about its potential positive or negative effects on human genome evolution and various pathologies. This review summarizes the variation, regulation, and diseases in human genome evolution arising from the influence of HERV-K (HML-2).
Collapse
Affiliation(s)
- Wonseok Shin
- NGS Clinical Laboratory, Division of Cancer Research, Dankook University Hospital, Cheonan 31116, Republic of Korea;
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
| | - Seyoung Mun
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyudong Han
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Republic of Korea
- R&D Center, HuNBiome Co., Ltd., Seoul 08507, Republic of Korea
| |
Collapse
|
24
|
Nevalainen T, Autio A, Hurme M. Human endogenous retroviruses of the HERV-K (HML-2) family are expressed in the brain of healthy individuals and modify the composition of the brain-infiltrating immune cells. Heliyon 2023; 9:e21283. [PMID: 37920490 PMCID: PMC10618496 DOI: 10.1016/j.heliyon.2023.e21283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/10/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections in the human genome. RNA expression of individual HERVs has frequently been observed in various pathologic conditions, but some activity can also be seen in healthy individuals, e.g. in the blood. To quantitate the basal expression levels of HERVs in the brain, we now used high-throughput sequencing-based metagenomic analysis to characterize the expression profiles of the HERV-K (HML-2) family proviruses in different brain regions of healthy brain tissue. To this end, RNA-seq data from the Genotype-Tissue Expression (GTEx) project was used. The GTEx project is a public resource to study tissue-specific gene expression and regulation, consisting of a large selection of sequenced samples from different tissues. The GTEx data used in this study consisted of 378 samples taken from 13 brain regions from 55 individuals. The data demonstrated that out of 99 intact proviruses in the family 58 were expressed, but the expression profiles were highly divergent and there were no significant differences in the expression profiles between the various anatomic regions of the brain. It is known that the brain contains a variety of infiltrating immune cells, which are probably of great importance both in the normal defense mechanisms as well as in the various pathogenic processes. Digital cytometry (CIBERSORTx) was used to quantify the proportions of the infiltrating immune cells in the same brain samples. Six most abundant (>5 % of the total population) cell types were observed to be CD4 memory resting T cells, M0 macrophages, plasma cells, CD8 T cells, CD4 memory activated T cells, and monocytes. Analysis of the correlations between the individual HERVs and infiltrating cell types indicated that a cluster of 6 HERVs had a notable correlation signature between T cell type infiltrating cell proportions and HERV RNA expression intensity. The correlations between inflammatory type infiltrating cells were negative or weak. Taken together, these data indicate that the expression of HERVs is associated with a T cell type immunity.
Collapse
Affiliation(s)
- Tapio Nevalainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Gerontology Research Center (GEREC), Tampere, Finland
- Tampere University Hospital, Finland
| | - Arttu Autio
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Gerontology Research Center (GEREC), Tampere, Finland
| | - Mikko Hurme
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Gerontology Research Center (GEREC), Tampere, Finland
- Tampere University Hospital, Finland
| |
Collapse
|
25
|
Ko EJ, Kim MH, Kim DY, An H, Leem SH, Choi YH, Kim HS, Cha HJ. The Role of Human Endogenous Retrovirus (HERV)-K119 env in THP-1 Monocytic Cell Differentiation. Int J Mol Sci 2023; 24:15566. [PMID: 37958549 PMCID: PMC10648273 DOI: 10.3390/ijms242115566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Human endogenous retrovirus (HERV)-K was reportedly inserted into the human genome millions of years ago and is closely related to various diseases, including cancer and immune regulation. In our previous studies, CRISPR-Cas9-enabled knockout (KO) of the HERV-K env gene was found to potentially reduce cell proliferation, cell migration, and invasion in colorectal and ovarian cancer cell lines. The immune response involves the migration and invasion of cells and is similar to cancer; however, in certain ways, it is completely unlike cancer. Therefore, we induced HERV-K119 env gene KO in THP-1, a monocytic cell that can be differentiated into a macrophage, to investigate the role of HERV-K119 env in immune regulation. Cell migration and invasion were noted to be significantly increased in HERV-K119 env KO THP-1 cells than in MOCK, and these results were contrary to those of cancer cells. To identify the underlying mechanism of HERV-K119 env KO in THP-1 cells, transcriptome analysis and cytokine array analysis were conducted. Semaphorin7A (SEMA7A), which induces the production of cytokines in macrophages and monocytic cells and plays an important role in immune effector cell activation during an inflammatory immune response, was significantly increased in HERV-K119 env KO THP-1 cells. We also found that HERV-K119 env KO THP-1 cells expressed various macrophage-specific surface markers, suggesting that KO of HERV-K119 env triggers the differentiation of THP-1 cells from monocytic cells into macrophages. In addition, analysis of the expression of M1 and M2 macrophage markers showed that M1 macrophage marker cluster of differentiation 32 (CD32) was significantly increased in HERV-K119 env KO cells. These results suggest that HERV-K119 env is implicated in the differentiation of monocytic cells into M1 macrophages and plays important roles in the immune response.
Collapse
Affiliation(s)
- Eun-Ji Ko
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea; (E.-J.K.); (M.-H.K.); (D.-Y.K.); (H.A.)
| | - Min-Hye Kim
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea; (E.-J.K.); (M.-H.K.); (D.-Y.K.); (H.A.)
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea;
| | - Do-Ye Kim
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea; (E.-J.K.); (M.-H.K.); (D.-Y.K.); (H.A.)
| | - Hyojin An
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea; (E.-J.K.); (M.-H.K.); (D.-Y.K.); (H.A.)
| | - Sun-Hee Leem
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 47227, Republic of Korea;
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 49241, Republic of Korea;
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea; (E.-J.K.); (M.-H.K.); (D.-Y.K.); (H.A.)
- Institute for Medical Science, Kosin University College of Medicine, Busan 49267, Republic of Korea
| |
Collapse
|
26
|
Jeremic D, Jiménez-Díaz L, Navarro-López JD. Targeting epigenetics: A novel promise for Alzheimer's disease treatment. Ageing Res Rev 2023; 90:102003. [PMID: 37422087 DOI: 10.1016/j.arr.2023.102003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
So far, the search for a cure for Alzheimer Disease (AD) has been unsuccessful. The only approved drugs attenuate some symptoms, but do not halt the progress of this disease, which affects 50 million people worldwide and will increase its incidence in the coming decades. Such scenario demands new therapeutic approaches to fight against this devastating dementia. In recent years, multi-omics research and the analysis of differential epigenetic marks in AD subjects have contributed to our understanding of AD; however, the impact of epigenetic research is yet to be seen. This review integrates the most recent data on pathological processes and epigenetic changes relevant for aging and AD, as well as current therapies targeting epigenetic machinery in clinical trials. Evidence shows that epigenetic modifications play a key role in gene expression, which could provide multi-target preventative and therapeutic approaches in AD. Both novel and repurposed drugs are employed in AD clinical trials due to their epigenetic effects, as well as increasing number of natural compounds. Given the reversible nature of epigenetic modifications and the complexity of gene-environment interactions, the combination of epigenetic-based therapies with environmental strategies and drugs with multiple targets might be needed to properly help AD patients.
Collapse
Affiliation(s)
- Danko Jeremic
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain
| | - Lydia Jiménez-Díaz
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain.
| | - Juan D Navarro-López
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain.
| |
Collapse
|
27
|
Liu S, Heumüller SE, Hossinger A, Müller SA, Buravlova O, Lichtenthaler SF, Denner P, Vorberg IM. Reactivated endogenous retroviruses promote protein aggregate spreading. Nat Commun 2023; 14:5034. [PMID: 37596282 PMCID: PMC10439213 DOI: 10.1038/s41467-023-40632-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2023] [Indexed: 08/20/2023] Open
Abstract
Prion-like spreading of protein misfolding is a characteristic of neurodegenerative diseases, but the exact mechanisms of intercellular protein aggregate dissemination remain unresolved. Evidence accumulates that endogenous retroviruses, remnants of viral germline infections that are normally epigenetically silenced, become upregulated in neurodegenerative diseases such as amyotrophic lateral sclerosis and tauopathies. Here we uncover that activation of endogenous retroviruses affects prion-like spreading of proteopathic seeds. We show that upregulation of endogenous retroviruses drastically increases the dissemination of protein aggregates between cells in culture, a process that can be inhibited by targeting the viral envelope protein or viral protein processing. Human endogenous retrovirus envelopes of four different clades also elevate intercellular spreading of proteopathic seeds, including pathological Tau. Our data support a role of endogenous retroviruses in protein misfolding diseases and suggest that antiviral drugs could represent promising candidates for inhibiting protein aggregate spreading.
Collapse
Affiliation(s)
- Shu Liu
- German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127, Bonn, Germany
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | | | - André Hossinger
- German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127, Bonn, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Oleksandra Buravlova
- German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127, Bonn, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Philip Denner
- German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127, Bonn, Germany
| | - Ina M Vorberg
- German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127, Bonn, Germany.
- Department of Neurology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
28
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Holloway K, Neherin K, Dam KU, Zhang H. Cellular senescence and neurodegeneration. Hum Genet 2023; 142:1247-1262. [PMID: 37115318 DOI: 10.1007/s00439-023-02565-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Advancing age is a major risk factor of Alzheimer's disease (AD). The worldwide prevalence of AD is approximately 50 million people, and this number is projected to increase substantially. The molecular mechanisms underlying the aging-associated susceptibility to cognitive impairment in AD are largely unknown. As a hallmark of aging, cellular senescence is a significant contributor to aging and age-related diseases including AD. Senescent neurons and glial cells have been detected to accumulate in the brains of AD patients and mouse models. Importantly, selective elimination of senescent cells ameliorates amyloid beta and tau pathologies and improves cognition in AD mouse models, indicating a critical role of cellular senescence in AD pathogenesis. Nonetheless, the mechanisms underlying when and how cellular senescence contributes to AD pathogenesis remain unclear. This review provides an overview of cellular senescence and discusses recent advances in the understanding of the impact of cellular senescence on AD pathogenesis, with brief discussions of the possible role of cellular senescence in other neurodegenerative diseases including Down syndrome, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kristopher Holloway
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kashfia Neherin
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kha Uyen Dam
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Hong Zhang
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
30
|
Tovo PA, Galliano I, Parodi E, Calvi C, Gambarino S, Licciardi F, Dini M, Montanari P, Branca M, Ramenghi U, Bergallo M. Children with Chronic Immune Thrombocytopenia Exhibit High Expression of Human Endogenous Retroviruses TRIM28 and SETDB1. Genes (Basel) 2023; 14:1569. [PMID: 37628621 PMCID: PMC10454145 DOI: 10.3390/genes14081569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic immune thrombocytopenia (CITP) is an autoimmune disease whose underlying biologic mechanisms remain elusive. Human endogenous retroviruses (HERVs) derive from ancestral infections and constitute about 8% of our genome. A wealth of clinical and experimental studies highlights their pivotal pathogenetic role in autoimmune diseases. Epigenetic mechanisms, such as those modulated by TRIM28 and SETDB1, are involved in HERV activation and regulation of immune response. We assessed, through a polymerase chain reaction real-time Taqman amplification assay, the transcription levels of pol genes of HERV-H, HERV-K, and HERV-W; env genes of Syncytin (SYN)1, SYN2, and HERV-W; as well as TRIM28 and SETDB1 in whole blood from 34 children with CITP and age-matched healthy controls (HC). The transcriptional levels of all HERV sequences, with the exception of HERV-W-env, were significantly enhanced in children with CITP as compared to HC. Patients on eltrombopag treatment exhibited lower expression of SYN1, SYN2, and HERV-W-env as compared to untreated patients. The mRNA concentrations of TRIM28 and SETDB1 were significantly higher and were positively correlated with those of HERVs in CITP patients. The over-expressions of HERVs and TRIM28/SETDB1 and their positive correlations in patients with CITP are suggestive clues of their contribution to the pathogenesis of the disease and support innovative interventions to inhibit HERV and TRIM28/SETDB1 expressions in patients unresponsive to standard therapies.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Public Health and Pediatric Sciences, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (P.-A.T.); (U.R.)
| | - Ilaria Galliano
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| | - Emilia Parodi
- Pediatric and Neonatology Unit, Ordine Mauriziano Hospital, Largo Filippo Turati 62, 10128 Turin, Italy;
| | - Cristina Calvi
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| | - Stefano Gambarino
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| | - Francesco Licciardi
- Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy;
| | - Maddalena Dini
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| | - Paola Montanari
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| | - Margherita Branca
- Postgraduate School of Pediatrics, University of Turin, Piazza Polonia 94, 10126 Turin, Italy;
| | - Ugo Ramenghi
- Department of Public Health and Pediatric Sciences, University of Turin, Piazza Polonia 94, 10126 Turin, Italy; (P.-A.T.); (U.R.)
- Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy;
- Postgraduate School of Pediatrics, University of Turin, Piazza Polonia 94, 10126 Turin, Italy;
| | - Massimiliano Bergallo
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospitalno, Piazza Polonia 94, 10126 Turin, Italy; (I.G.); (C.C.); (S.G.); (M.D.); (P.M.)
| |
Collapse
|
31
|
Dawson T, Rentia U, Sanford J, Cruchaga C, Kauwe JSK, Crandall KA. Locus specific endogenous retroviral expression associated with Alzheimer's disease. Front Aging Neurosci 2023; 15:1186470. [PMID: 37484691 PMCID: PMC10359044 DOI: 10.3389/fnagi.2023.1186470] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Human endogenous retroviruses (HERVs) are transcriptionally-active remnants of ancient retroviral infections that may play a role in Alzheimer's disease. Methods We combined two, publicly available RNA-Seq datasets with a third, novel dataset for a total cohort of 103 patients with Alzheimer's disease and 45 healthy controls. We use telescope to perform HERV quantification for these samples and simultaneously perform gene expression analysis. Results We identify differentially expressed genes and differentially expressed HERVs in Alzheimer's disease patients. Differentially expressed HERVs are scattered throughout the genome; many of them are members of the HERV-K superfamily. A number of HERVs are correlated with the expression of dysregulated genes in Alzheimer's and are physically proximal to genes which drive disease pathways. Discussion Dysregulated expression of ancient retroviral insertions in the human genome are present in Alzheimer's disease and show localization patterns that may explain how these elements drive pathogenic gene expression.
Collapse
Affiliation(s)
- Tyson Dawson
- Computational Biology Institute, The George Washington University, Washington, DC, United States
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Uzma Rentia
- Computational Biology Institute, The George Washington University, Washington, DC, United States
| | - Jessie Sanford
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - John S. K. Kauwe
- Department of Biology, Brigham Young University, Provo, UT, United States
| | - Keith A. Crandall
- Computational Biology Institute, The George Washington University, Washington, DC, United States
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| |
Collapse
|
32
|
Liu J, Ke P, Guo H, Gu J, Liu Y, Tian X, Wang X, Xiao F. Activation of TLR7-mediated autophagy increases epileptic susceptibility via reduced KIF5A-dependent GABA A receptor transport in a murine model. Exp Mol Med 2023; 55:1159-1173. [PMID: 37258573 PMCID: PMC10317981 DOI: 10.1038/s12276-023-01000-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/02/2023] Open
Abstract
The pathophysiological mechanisms underlying epileptogenesis are poorly understood but are considered to actively involve an imbalance between excitatory and inhibitory synaptic transmission. Excessive activation of autophagy, a cellular pathway that leads to the removal of proteins, is known to aggravate the disease. Toll-like receptor (TLR) 7 is an innate immune receptor that regulates autophagy in infectious and noninfectious diseases. However, the relationship between TLR7, autophagy, and synaptic transmission during epileptogenesis remains unclear. We found that TLR7 was activated in neurons in the early stage of epileptogenesis. TLR7 knockout significantly suppressed seizure susceptibility and neuronal excitability. Furthermore, activation of TLR7 induced autophagy and decreased the expression of kinesin family member 5 A (KIF5A), which influenced interactions with γ-aminobutyric acid type A receptor (GABAAR)-associated protein and GABAARβ2/3, thus producing abnormal GABAAR-mediated postsynaptic transmission. Our results indicated that TLR7 is an important factor in regulating epileptogenesis, suggesting a possible therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
- Department of Neurology, Chongqing University Three Gorges Hospital, 165 Xincheng Road, Chongqing, 404100, China
| | - Pingyang Ke
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Haokun Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Juan Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
- Institute for Brain Science and Disease of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
33
|
Wahl D, Smith ME, McEntee CM, Cavalier AN, Osburn SC, Burke SD, Grant RA, Nerguizian D, Lark DS, Link CD, LaRocca TJ. The reverse transcriptase inhibitor 3TC protects against age-related cognitive dysfunction. Aging Cell 2023; 22:e13798. [PMID: 36949552 PMCID: PMC10186603 DOI: 10.1111/acel.13798] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 03/24/2023] Open
Abstract
Aging is the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease. Major hallmarks of brain aging include neuroinflammation/immune activation and reduced neuronal health/function. These processes contribute to cognitive dysfunction (a key risk factor for Alzheimer's disease), but their upstream causes are incompletely understood. Age-related increases in transposable element (TE) transcripts might contribute to reduced cognitive function with brain aging, as the reverse transcriptase inhibitor 3TC reduces inflammation in peripheral tissues and TE transcripts have been linked with tau pathology in Alzheimer's disease. However, the effects of 3TC on cognitive function with aging have not been investigated. Here, in support of a role for TE transcripts in brain aging/cognitive decline, we show that 3TC: (a) improves cognitive function and reduces neuroinflammation in old wild-type mice; (b) preserves neuronal health with aging in mice and Caenorhabditis elegans; and (c) enhances cognitive function in a mouse model of tauopathy. We also provide insight on potential underlying mechanisms, as well as evidence of translational relevance for these observations by showing that TE transcripts accumulate with brain aging in humans, and that these age-related increases intersect with those observed in Alzheimer's disease. Collectively, our results suggest that TE transcript accumulation during aging may contribute to cognitive decline and neurodegeneration, and that targeting these events with reverse transcriptase inhibitors like 3TC could be a viable therapeutic strategy.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Meghan E. Smith
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Cali M. McEntee
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Alyssa N. Cavalier
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Shelby C. Osburn
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Samuel D. Burke
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - Randy A. Grant
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| | - David Nerguizian
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Daniel S. Lark
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Christopher D. Link
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Thomas J. LaRocca
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
- Center for Healthy AgingColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
34
|
Abstract
Our defenses against infection rely on the ability of the immune system to distinguish invading pathogens from self. This task is exceptionally challenging, if not seemingly impossible, in the case of retroviruses that have integrated almost seamlessly into the host. This review examines the limits of innate and adaptive immune responses elicited by endogenous retroviruses and other retroelements, the targets of immune recognition, and the consequences for host health and disease. Contrary to theoretical expectation, endogenous retroelements retain substantial immunogenicity, which manifests most profoundly when their epigenetic repression is compromised, contributing to autoinflammatory and autoimmune disease and age-related inflammation. Nevertheless, recent evidence suggests that regulated immune reactivity to endogenous retroelements is integral to immune system development and function, underpinning cancer immunosurveillance, resistance to infection, and responses to the microbiota. Elucidation of the interaction points with endogenous retroelements will therefore deepen our understanding of immune system function and contribution to disease.
Collapse
Affiliation(s)
- George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom;
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
35
|
Hamann MV, Adiba M, Lange UC. Confounding factors in profiling of locus-specific human endogenous retrovirus (HERV) transcript signatures in primary T cells using multi-study-derived datasets. BMC Med Genomics 2023; 16:68. [PMID: 37013607 PMCID: PMC10068191 DOI: 10.1186/s12920-023-01486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERV) are repetitive sequence elements and a substantial part of the human genome. Their role in development has been well documented and there is now mounting evidence that dysregulated HERV expression also contributes to various human diseases. While research on HERV elements has in the past been hampered by their high sequence similarity, advanced sequencing technology and analytical tools have empowered the field. For the first time, we are now able to undertake locus-specific HERV analysis, deciphering expression patterns, regulatory networks and biological functions of these elements. To do so, we inevitable rely on omics datasets available through the public domain. However, technical parameters inevitably differ, making inter-study analysis challenging. We here address the issue of confounding factors for profiling locus-specific HERV transcriptomes using datasets from multiple sources. METHODS We collected RNAseq datasets of CD4 and CD8 primary T cells and extracted HERV expression profiles for 3220 elements, resembling most intact, near full-length proviruses. Looking at sequencing parameters and batch effects, we compared HERV signatures across datasets and determined permissive features for HERV expression analysis from multiple-source data. RESULTS We could demonstrate that considering sequencing parameters, sequencing-depth is most influential on HERV signature outcome. Sequencing samples deeper broadens the spectrum of expressed HERV elements. Sequencing mode and read length are secondary parameters. Nevertheless, we find that HERV signatures from smaller RNAseq datasets do reliably reveal most abundantly expressed HERV elements. Overall, HERV signatures between samples and studies overlap substantially, indicating a robust HERV transcript signature in CD4 and CD8 T cells. Moreover, we find that measures of batch effect reduction are critical to uncover genic and HERV expression differences between cell types. After doing so, differences in the HERV transcriptome between ontologically closely related CD4 and CD8 T cells became apparent. CONCLUSION In our systematic approach to determine sequencing and analysis parameters for detection of locus-specific HERV expression, we provide evidence that analysis of RNAseq datasets from multiple studies can aid confidence of biological findings. When generating de novo HERV expression datasets we recommend increased sequence depth ( > = 100 mio reads) compared to standard genic transcriptome pipelines. Finally, batch effect reduction measures need to be implemented to allow for differential expression analysis.
Collapse
Affiliation(s)
| | - Maisha Adiba
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Ulrike C Lange
- Leibniz Institute of Virology (LIV), Hamburg, Germany.
- Institute for Infection Research and Vaccine Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
36
|
Tovo PA, Marozio L, Abbona G, Calvi C, Frezet F, Gambarino S, Dini M, Benedetto C, Galliano I, Bergallo M. Pregnancy Is Associated with Impaired Transcription of Human Endogenous Retroviruses and of TRIM28 and SETDB1, Particularly in Mothers Affected by Multiple Sclerosis. Viruses 2023; 15:v15030710. [PMID: 36992419 PMCID: PMC10051116 DOI: 10.3390/v15030710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Accumulating evidence highlights the pathogenetic role of human endogenous retroviruses (HERVs) in eliciting and maintaining multiple sclerosis (MS). Epigenetic mechanisms, such as those regulated by TRIM 28 and SETDB1, are implicated in HERV activation and in neuroinflammatory disorders, including MS. Pregnancy markedly improves the course of MS, but no study explored the expressions of HERVs and of TRIM28 and SETDB1 during gestation. Using a polymerase chain reaction real-time Taqman amplification assay, we assessed and compared the transcriptional levels of pol genes of HERV-H, HERV-K, HERV-W; of env genes of Syncytin (SYN)1, SYN2, and multiple sclerosis associated retrovirus (MSRV); and of TRIM28 and SETDB1 in peripheral blood and placenta from 20 mothers affected by MS; from 27 healthy mothers, in cord blood from their neonates; and in blood from healthy women of child-bearing age. The HERV mRNA levels were significantly lower in pregnant than in nonpregnant women. Expressions of all HERVs were downregulated in the chorion and in the decidua basalis of MS mothers compared to healthy mothers. The former also showed lower mRNA levels of HERV-K-pol and of SYN1, SYN2, and MSRV in peripheral blood. Significantly lower expressions of TRIM28 and SETDB1 also emerged in pregnant vs. nonpregnant women and in blood, chorion, and decidua of mothers with MS vs. healthy mothers. In contrast, HERV and TRIM28/SETDB1 expressions were comparable between their neonates. These results show that gestation is characterized by impaired expressions of HERVs and TRIM28/SETDB1, particularly in mothers with MS. Given the beneficial effects of pregnancy on MS and the wealth of data suggesting the putative contribution of HERVs and epigenetic processes in the pathogenesis of the disease, our findings may further support innovative therapeutic interventions to block HERV activation and to control aberrant epigenetic pathways in MS-affected patients.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: (P.-A.T.); (M.B.)
| | - Luca Marozio
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Giancarlo Abbona
- Pathology Unit, Department Laboratory Medicine, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Cristina Calvi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Federica Frezet
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Stefano Gambarino
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Maddalena Dini
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: (P.-A.T.); (M.B.)
| |
Collapse
|
37
|
Evering TH, Marston JL, Gan L, Nixon DF. Transposable elements and Alzheimer's disease pathogenesis. Trends Neurosci 2023; 46:170-172. [PMID: 36588011 DOI: 10.1016/j.tins.2022.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is characterized by the pathological accumulation of amyloid β (Aβ) plaques and neurofibrillary tangles composed of hyperphosphorylated tau. Microglia and astrocytes respond to the abnormal presence of tau protein with induced transposable element (TE) transcription. In this Forum, we discuss new data that link dysregulated TE expression to AD pathogenesis.
Collapse
Affiliation(s)
- Teresa H Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jez L Marston
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
38
|
Jin X, Li X, Guan F, Zhang J. Human Endogenous Retroviruses and Toll-Like Receptors. Viral Immunol 2023; 36:73-82. [PMID: 36251943 DOI: 10.1089/vim.2022.0090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are estimated to comprise ∼8% of the entire human genome, but the vast majority of them remain transcriptionally silent in most normal tissues due to accumulated mutations. However, HERVs can be frequently activated and detected in various tissues under certain conditions. Nucleic acids or proteins produced by HERVs can bind to pattern recognition receptors of immune cells or other cells and initiate an innate immune response, which may be involved in some pathogenesis of diseases, especially cancer and autoimmune diseases. In this review, we collect studies of the interaction between HERV elements and Toll-like receptors and attempt to provide an overview of their role in the immunopathological mechanisms of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Xinyi Jin
- Department of Laboratory Medicine, School of Medicine, Shaoxing University, Shaoxing, P.R. China
| | - Xueyuan Li
- Department of Laboratory Medicine, School of Medicine, Shaoxing University, Shaoxing, P.R. China
| | - Fang Guan
- Department of Laboratory Medicine, School of Medicine, Shaoxing University, Shaoxing, P.R. China
| | - Jianhua Zhang
- Department of Laboratory Medicine, School of Medicine, Shaoxing University, Shaoxing, P.R. China
| |
Collapse
|
39
|
Bao H, Yan J, Huang J, Deng W, Zhang C, Liu C, Huang A, Zhang Q, Xiong Y, Wang Q, Wu H, Hou L. Activation of endogenous retrovirus triggers microglial immuno-inflammation and contributes to negative emotional behaviors in mice with chronic stress. J Neuroinflammation 2023; 20:37. [PMID: 36793064 PMCID: PMC9933381 DOI: 10.1186/s12974-023-02724-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND The "missing" link of complex and multifaceted interplay among endogenous retroviruses (ERVs) transcription, chronic immuno-inflammation, and the development of psychiatric disorders is still far from being completely clarified. The present study was aimed to investigate the mechanism of protective role of inhibiting ERVs on reversing microglial immuno-inflammation in basolateral amygdala (BLA) in chronic stress-induced negative emotional behaviors in mice. METHODS Male C57BL/6 mice were exposed to chronic unpredictable mild stress (CUMS) for 6 w. Negative emotional behaviors were comprehensively investigated to identify the susceptible mice. Microglial morphology, ERVs transcription, intrinsic nucleic acids sensing response, and immuno-inflammation in BLA were assessed. RESULTS Mice with chronic stress were presented as obviously depressive- and anxiety-like behaviors, and accompanied with significant microglial morphological activation, murine ERVs genes MuERV-L, MusD, and IAP transcription, cGAS-IFI16-STING pathway activation, NF-κB signaling pathway priming, as well as NLRP3 inflammasome activation in BLA. Antiretroviral therapy, pharmacological inhibition of reverse transcriptases, as well as knocking-down the ERVs transcriptional regulation gene p53 significantly inhibited microglial ERVs transcription and immuno-inflammation in BLA, as well as improved the chronic stress-induced negative emotional behaviors. CONCLUSIONS Our results provided an innovative therapeutic approach that targeting ERVs-associated microglial immuno-inflammation may be beneficial to the patients with psychotic disorders.
Collapse
Affiliation(s)
- Han Bao
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Jinqi Yan
- grid.452438.c0000 0004 1760 8119Department of Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Jiancheng Huang
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Wenjuan Deng
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Ce Zhang
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Cong Liu
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Ailing Huang
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Qiao Zhang
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Ying Xiong
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Qiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West of Yanta Rd, Xi'an, 710061, China.
| | - Huanghui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China. .,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, No.1279, Sanmen Rd, Shanghai, 200434, China.
| | - Lichao Hou
- Department of Anesthesiology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang'an Rd, Xiamen, 361102, China.
| |
Collapse
|
40
|
Endogenous Retroviruses as Modulators of Innate Immunity. Pathogens 2023; 12:pathogens12020162. [PMID: 36839434 PMCID: PMC9963469 DOI: 10.3390/pathogens12020162] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Endogenous retroviruses (ERVs), or LTR retrotransposons, are a class of transposable elements that are highly represented in mammalian genomes. Human ERVs (HERVs) make up roughly 8.3% of the genome and over the course of evolution, HERV elements underwent positive selection and accrued mutations that rendered them non-infectious; thereby, the genome could co-opt them into constructive roles with important biological functions. In the past two decades, with the help of advances in sequencing technology, ERVs are increasingly considered to be important components of the innate immune response. While typically silenced, expression of HERVs can be induced in response to traumatic, toxic, or infection-related stress, leading to a buildup of viral transcripts and under certain circumstances, proteins, including functionally active reverse transcriptase and viral envelopes. The biological activity of HERVs in the context of the innate immune response can be based on the functional effect of four major viral components: (1) HERV LTRs, (2) HERV-derived RNAs, (3) HERV-derived RNA:DNA duplexes and cDNA, and (4) HERV-derived proteins and ribonucleoprotein complexes. In this review, we will discuss the implications of HERVs in all four contexts in relation to innate immunity and their association with various pathological disease states.
Collapse
|
41
|
Wallach T, Raden M, Hinkelmann L, Brehm M, Rabsch D, Weidling H, Krüger C, Kettenmann H, Backofen R, Lehnardt S. Distinct SARS-CoV-2 RNA fragments activate Toll-like receptors 7 and 8 and induce cytokine release from human macrophages and microglia. Front Immunol 2023; 13:1066456. [PMID: 36713399 PMCID: PMC9880480 DOI: 10.3389/fimmu.2022.1066456] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction The pandemic coronavirus disease 19 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is marked by thromboembolic events and an inflammatory response throughout the body, including the brain. Methods Employing the machine learning approach BrainDead we systematically screened for SARS-CoV-2 genome-derived single-stranded (ss) RNA fragments with high potential to activate the viral RNA-sensing innate immune receptors Toll-like receptor (TLR)7 and/or TLR8. Analyzing HEK TLR7/8 reporter cells we tested such RNA fragments with respect to their potential to induce activation of human TLR7 and TLR8 and to activate human macrophages, as well as iPSC-derived human microglia, the resident immune cells in the brain. Results We experimentally validated several sequence-specific RNA fragment candidates out of the SARS-CoV-2 RNA fragments predicted in silico as activators of human TLR7 and TLR8. Moreover, these SARS-CoV-2 ssRNAs induced cytokine release from human macrophages and iPSC-derived human microglia in a sequence- and species-specific fashion. Discussion Our findings determine TLR7 and TLR8 as key sensors of SARS-CoV-2-derived ssRNAs and may deepen our understanding of the mechanisms how this virus triggers, but also modulates an inflammatory response through innate immune signaling.
Collapse
Affiliation(s)
- Thomas Wallach
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martin Raden
- Bioinformatics, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Lukas Hinkelmann
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mariam Brehm
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dominik Rabsch
- Bioinformatics, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Hannah Weidling
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Cellular Neuroscience, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helmut Kettenmann
- Cellular Neuroscience, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Rolf Backofen
- Bioinformatics, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany,*Correspondence: Seija Lehnardt, ; Rolf Backofen,
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,*Correspondence: Seija Lehnardt, ; Rolf Backofen,
| |
Collapse
|
42
|
Chabukswar S, Grandi N, Tramontano E. Prolonged activity of HERV-K(HML2) in Old World Monkeys accounts for recent integrations and novel recombinant variants. Front Microbiol 2022; 13:1040792. [PMID: 36532485 PMCID: PMC9751479 DOI: 10.3389/fmicb.2022.1040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Around 8% of the human genome comprises Human Endogenous Retroviruses (HERVs) acquired over primate evolution. Some are specific to primates such as HERV-K, consisting of 10 HML subtypes and including the most recently acquired elements. Particularly, HML2 is the youngest clade, having some human-specific integrations, and while it has been widely described in humans its presence and distribution in non-human primates remain poorly characterized. To investigate HML2 distribution in non-human primates, the present study focused on the characterization of HML2 integrations in Macaca fascicularis and Macaca mulatta which are the most evolutionarily distant species related to humans in the Catarrhini parvorder. We identified overall 208 HML2 proviruses for M. fascicularis (77) and M. mulatta (131). Among them, 46 proviruses are shared by the two species while the others are species specific. Only 12 proviruses were shared with humans, confirming that the major wave of HML2 diffusion in humans occurred after macaques' divergence. Phylogenetic analysis confirmed structural variations between HML2 macaques' species-specific proviruses, and the ones shared between macaques and humans. The HML2 loci were characterized in terms of structure, focusing on potential residual open reading frames (ORFs) for gag, pol, and env genes for the latter being reported to be expressed in human pathological conditions. The analysis identified highly conserved gag and pol genes, while the env genes had a very divergent nature. Of the 208 HML2 proviral sequences present in Macaca species, 81 sequences form a cluster having a MER11A, a characteristic HML8 LTR sequence, insertion in the env region indicating a recombination event that occurred between the HML2 env gene and the HML8 LTR. This recombination event, which was shown to be present only in a subset of macaques' shared sequences and species-specific sequences, highlights a recent viral activity leading to the emergence of an env variant specific to the Old World Monkeys (OWMs). We performed an exhaustive analysis of HML2 in two species of OWMs, in terms of its evolutionary history, structural features, and potential residual coding capacity highlighting recent activity of HML2 in macaques that occurred after its split from the Catarrhini parvorder, leading to the emergence of viral variants, hence providing a better understanding of the endogenization and diffusion of HML2 along primate evolution.
Collapse
|
43
|
Cipriani C, Giudice M, Petrone V, Fanelli M, Minutolo A, Miele MT, Toschi N, Maracchioni C, Siracusano M, Benvenuto A, Coniglio A, Curatolo P, Mazzone L, Sandro G, Garaci E, Sinibaldi-Vallebona P, Matteucci C, Balestrieri E. Modulation of human endogenous retroviruses and cytokines expression in peripheral blood mononuclear cells from autistic children and their parents. Retrovirology 2022; 19:26. [PMID: 36451209 PMCID: PMC9709758 DOI: 10.1186/s12977-022-00603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Putative pathogenic effects mediated by human endogenous retroviruses (HERVs) in neurological and psychiatric disorders in humans have been extensively described. HERVs may alter the development of the brain by means of several mechanisms, including modulation of gene expression, alteration of DNA stability, and activation of immune system. We recently demonstrated that autistic children and their mothers share high expression levels of some HERVs and cytokines in peripheral blood mononuclear cells (PBMCs) ex vivo, suggesting a close mother-child association in Autism Spectrum Disorder (ASD). RESULTS In the present study, PBMCs from autistic children and their parents were exposed to stimulating factors (Interleukin-2/Phytohaemagglutinin) or drugs, as Valproic acid and Efavirenz. The results show that HERVs and cytokines expression can be modulated in vitro by different stimuli in PBMCs from autistic children and their mothers, while no significant changes were found in PBMCs ASD fathers or in controls individuals. In particular, in vitro exposure to interleukin-2/Phytohaemagglutinin or valproic acid induces the expression of several HERVs and cytokines while Efavirenz inhibits them. CONCLUSION Herein we show that autistic children and their mothers share an intrinsic responsiveness to in vitro microenvironmental changes in expressing HERVs and pro-inflammatory cytokines. Remarkably, the antiretroviral drug Efavirenz restores the expression of specific HERV families to values similar to those of the controls, also reducing the expression of proinflammatory cytokines but keeping the regulatory ones high. Our findings open new perspectives to study the role of HERVs in the biological mechanisms underlying Autism.
Collapse
Affiliation(s)
- Chiara Cipriani
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Martina Giudice
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Vita Petrone
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marialaura Fanelli
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Minutolo
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Martino T. Miele
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola Toschi
- grid.6530.00000 0001 2300 0941Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy ,grid.38142.3c000000041936754XMartinos Center for Biomedical Imaging and Harvard Medical School, Boston, USA
| | - Christian Maracchioni
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Martina Siracusano
- grid.6530.00000 0001 2300 0941Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Arianna Benvenuto
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Antonella Coniglio
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Paolo Curatolo
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Luigi Mazzone
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Grelli Sandro
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy ,Virology Unit, Policlinic of Tor Vergata, 00133 Rome, Italy
| | - Enrico Garaci
- University San Raffaele, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Pisana, 00133 Rome, Italy
| | - Paola Sinibaldi-Vallebona
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy ,grid.5326.20000 0001 1940 4177Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Claudia Matteucci
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Emanuela Balestrieri
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
44
|
Kabiljo R, Bowles H, Marriott H, Jones AR, Bouton CR, Dobson RJ, Quinn JP, Al Khleifat A, Swanson CM, Al-Chalabi A, Iacoangeli A. RetroSnake: A modular pipeline to detect human endogenous retroviruses in genome sequencing data. iScience 2022; 25:105289. [PMID: 36339261 PMCID: PMC9626663 DOI: 10.1016/j.isci.2022.105289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022] Open
Abstract
Human endogenous retroviruses (HERVs) integrated into the human genome as a result of ancient exogenous infections and currently comprise ∼8% of our genome. The members of the most recently acquired HERV family, HERV-Ks, still retain the potential to produce viral molecules and have been linked to a wide range of diseases including cancer and neurodegeneration. Although a range of tools for HERV detection in NGS data exist, most of them lack wet lab validation and they do not cover all steps of the analysis. Here, we describe RetroSnake, an end-to-end, modular, computationally efficient, and customizable pipeline for the discovery of HERVs in short-read NGS data. RetroSnake is based on an extensively wet-lab validated protocol, it covers all steps of the analysis from raw data to the generation of annotated results presented as an interactive html file, and it is easy to use by life scientists without substantial computational training. Availability and implementation: The Pipeline and an extensive documentation are available on GitHub.
Collapse
Affiliation(s)
- Renata Kabiljo
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Harry Bowles
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Heather Marriott
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Ashley R. Jones
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Clement R. Bouton
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - Richard J.B. Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust, London, UK
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Chad M. Swanson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London, UK
| |
Collapse
|
45
|
Alexopoulou L. Nucleic acid-sensing toll-like receptors: Important players in Sjögren’s syndrome. Front Immunol 2022; 13:980400. [PMID: 36389822 PMCID: PMC9659959 DOI: 10.3389/fimmu.2022.980400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Sjögren’s syndrome (SS) is a chronic systemic autoimmune disease that affects the salivary and lacrimal glands, as well as other organ systems like the lungs, kidneys and nervous system. SS can occur alone or in combination with another autoimmune disease, such as systemic lupus erythematosus (SLE) or rheumatoid arthritis. The etiology of SS is unknown but recent studies have revealed the implication of the activation of innate immune receptors, including Toll-like receptors (TLRs), mainly through the detection of endogenous nucleic acids, in the pathogenesis of systemic autoimmune diseases. Studies on SS mouse models suggest that TLRs and especially TLR7 that detects single-stranded RNA of microbial or endogenous origin can drive the development of SS and findings in SS patients corroborate those in mouse models. In this review, we will give an overview of the function and signaling of nucleic acid-sensing TLRs, the interplay of TLR7 with TLR8 and TLR9 in the context of autoimmunity, summarize the evidence for the critical role of TLR7 in the pathogenesis of SS and present a possible connection between SARS-CoV-2 and SS.
Collapse
|
46
|
Steiner JP, Bachani M, Malik N, DeMarino C, Li W, Sampson K, Lee M, Kowalak J, Bhaskar M, Doucet‐O'Hare T, Garcia‐Montojo M, Cowen M, Smith B, Reoma LB, Medina J, Brunel J, Pierquin J, Charvet B, Perron H, Nath A. Human Endogenous Retrovirus K Envelope in Spinal Fluid of Amyotrophic Lateral Sclerosis Is Toxic. Ann Neurol 2022; 92:545-561. [PMID: 35801347 PMCID: PMC9489628 DOI: 10.1002/ana.26452] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Human endogenous retroviruses have been implicated in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Expression of human endogenous retrovirus K (HERV-K) subtype HML-2 envelope (Env) in human neuronal cultures and in transgenic mice results in neurotoxicity and neurodegeneration, and mice expressing HML-2 Env display behavioral and neuromuscular characteristics resembling ALS. This study aims to characterize the neurotoxic properties of HML-2 Env. METHODS Env neurotoxicity was detected in ALS cerebrospinal fluid and confirmed using recombinant Env protein in a cell-based assay and a mouse model. The mechanism of neurotoxicity was assessed with immunoprecipitation followed by mass spectrometry and Western blot, and by screening a panel of inhibitors. RESULTS We observed that recombinant HML-2 Env protein caused neurotoxicity resulting in neuronal cell death, retraction of neurites, and decreased neuronal electrical activity. Injection of the Env protein into the brains of mice also resulted in neuronal cell death. HML-2 Env protein was also found in the cerebrospinal fluid of patients with sporadic ALS. The neurotoxic properties of the Env and the cerebrospinal fluid could be rescued with the anti-Env antibody. The Env was found to bind to CD98HC complexed to β1 integrin on the neuronal cell surface. Using a panel of compounds to screen for their ability to block Env-induced neurotoxicity, we found that several compounds were protective and are linked to the β1 integrin pathway. INTERPRETATION HERV-K Env is released extracellularly in ALS and causes neurotoxicity via a novel mechanism. Present results pave the way for new treatment strategies in sporadic ALS. ANN NEUROL 2022;92:545-561.
Collapse
Affiliation(s)
- Joseph P. Steiner
- NeuroTherapeutics Development Unit, Translational Neuroscience Center, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Muzna Bachani
- NeuroTherapeutics Development Unit, Translational Neuroscience Center, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Nasir Malik
- NeuroTherapeutics Development Unit, Translational Neuroscience Center, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Catherine DeMarino
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Wenxue Li
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Kevon Sampson
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Myoung‐Hwa Lee
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Jeffery Kowalak
- Clinical Proteomics Unit, Translational Neuroscience Center, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Manju Bhaskar
- NeuroTherapeutics Development Unit, Translational Neuroscience Center, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Tara Doucet‐O'Hare
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Marta Garcia‐Montojo
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Maria Cowen
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Bryan Smith
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Lauren Bowen Reoma
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | | | | | | | | | - Hervé Perron
- R&D divisionGeNeuro InnovationLyonFrance,GeNeuroPlan‐les‐OuatesSwitzerland
| | - Avindra Nath
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
47
|
Wen Q, Verheijen M, Wittens MMJ, Czuryło J, Engelborghs S, Hauser D, van Herwijnen MHM, Lundh T, Bergdahl IA, Kyrtopoulos SA, de Kok TM, Smeets HJM, Briedé JJ, Krauskopf J. Lead-exposure associated miRNAs in humans and Alzheimer's disease as potential biomarkers of the disease and disease processes. Sci Rep 2022; 12:15966. [PMID: 36153426 PMCID: PMC9509380 DOI: 10.1038/s41598-022-20305-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that eventually affects memory and behavior. The identification of biomarkers based on risk factors for AD provides insight into the disease since the exact cause of AD remains unknown. Several studies have proposed microRNAs (miRNAs) in blood as potential biomarkers for AD. Exposure to heavy metals is a potential risk factor for onset and development of AD. Blood cells of subjects that are exposed to lead detected in the circulatory system, potentially reflect molecular responses to this exposure that are similar to the response of neurons. In this study we analyzed blood cell-derived miRNAs derived from a general population as proxies of potentially AD-related mechanisms triggered by lead exposure. Subsequently, we analyzed these mechanisms in the brain tissue of AD subjects and controls. A total of four miRNAs were identified as lead exposure-associated with hsa-miR-3651, hsa-miR-150-5p and hsa-miR-664b-3p being negatively and hsa-miR-627 positively associated. In human brain derived from AD and AD control subjects all four miRNAs were detected. Moreover, two miRNAs (miR-3651, miR-664b-3p) showed significant differential expression in AD brains versus controls, in accordance with the change direction of lead exposure. The miRNAs' gene targets were validated for expression in the human brain and were found enriched in AD-relevant pathways such as axon guidance. Moreover, we identified several AD relevant transcription factors such as CREB1 associated with the identified miRNAs. These findings suggest that the identified miRNAs are involved in the development of AD and might be useful in the development of new, less invasive biomarkers for monitoring of novel therapies or of processes involved in AD development.
Collapse
Affiliation(s)
- Qingfeng Wen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Marcha Verheijen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Mandy Melissa Jane Wittens
- Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Neuroprotection and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
- Department of Neurology, and Brussels Integrated Center for Brain and Memory (Bru-BRAIN), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Julia Czuryło
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Neuroprotection and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
- Department of Neurology, and Brussels Integrated Center for Brain and Memory (Bru-BRAIN), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Duncan Hauser
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Marcel H M van Herwijnen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Lund University Hospital, Lund, Sweden
| | - Ingvar A Bergdahl
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Theo M de Kok
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Jacco Jan Briedé
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Julian Krauskopf
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
48
|
Zhang Q, Pan J, Cong Y, Mao J. Transcriptional Regulation of Endogenous Retroviruses and Their Misregulation in Human Diseases. Int J Mol Sci 2022; 23:ijms231710112. [PMID: 36077510 PMCID: PMC9456331 DOI: 10.3390/ijms231710112] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Endogenous retroviruses (ERVs), deriving from exogenous retroviral infections of germ line cells occurred millions of years ago, represent ~8% of human genome. Most ERVs are highly inactivated because of the accumulation of mutations, insertions, deletions, and/or truncations. However, it is becoming increasingly apparent that ERVs influence host biology through genetic and epigenetic mechanisms under particular physiological and pathological conditions, which provide both beneficial and deleterious effects for the host. For instance, certain ERVs expression is essential for human embryonic development. Whereas abnormal activation of ERVs was found to be involved in numbers of human diseases, such as cancer and neurodegenerative diseases. Therefore, understanding the mechanisms of regulation of ERVs would provide insights into the role of ERVs in health and diseases. Here, we provide an overview of mechanisms of transcriptional regulation of ERVs and their dysregulation in human diseases.
Collapse
|
49
|
Li W, Pandya D, Pasternack N, Garcia-Montojo M, Henderson L, Kozak CA, Nath A. Retroviral Elements in Pathophysiology and as Therapeutic Targets for Amyotrophic Lateral Sclerosis. Neurotherapeutics 2022; 19:1085-1101. [PMID: 35415778 PMCID: PMC9587200 DOI: 10.1007/s13311-022-01233-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 10/18/2022] Open
Abstract
The study of the role of retroviruses in amyotrophic lateral sclerosis (ALS) dates back to the 1960s shortly after transposable elements themselves were first discovered. It was quickly realized that in wild mice both horizontal and vertical transmissions of retroviral elements were key to the development of an ALS-like syndrome leading to the postulate that endogenous retroviruses (ERVs) contribute significantly to the pathogenicity of this disease. Subsequent studies identified retroviral reverse transcriptase activity in brains of individuals with ALS from Guam. However, except for a single study from the former Soviet Union, ALS could not be transmitted to rhesus macaques. The discovery of an ALS-like syndrome in human immunodeficiency virus (HIV) and human T cell leukemia virus infected individuals led to renewed interest in the field and reverse transcriptase activity was found in the blood and cerebrospinal fluid of individuals with sporadic ALS. However, exogenous retroviruses could not be found in individuals with ALS which further reinforced the possibility of involvement of a human ERV (HERV). The first demonstration of the involvement of a HERV was the discovery of the activation of human endogenous retrovirus-K subtype HML-2 in the brains of individuals with ALS. The envelope protein of HML-2 is neurotoxic and transgenic animals expressing the envelope protein develop an ALS-like syndrome. Activation of HML-2 occurs in the context of generalized transposable element activation and is not specific for ALS. Individuals with HIV-associated ALS show a remarkable response to antiretroviral therapy; however, antiretroviral trials in ALS down-regulate HML-2 without ameliorating the disease. This highlights the need for specific drugs to be developed against HML-2 as a novel therapeutic target for ALS. Other approaches might include antisense oligonucleotides, shRNA targeted against the envelope gene or antibodies that can target the extracellular envelope protein. Future clinical trials in ALS should consider combination therapies to control these ERVs.
Collapse
Affiliation(s)
- Wenxue Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Darshan Pandya
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Nicholas Pasternack
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Marta Garcia-Montojo
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Lisa Henderson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Christine A Kozak
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
50
|
Di Giorgio E, Xodo LE. Endogenous Retroviruses (ERVs): Does RLR (RIG-I-Like Receptors)-MAVS Pathway Directly Control Senescence and Aging as a Consequence of ERV De-Repression? Front Immunol 2022; 13:917998. [PMID: 35757716 PMCID: PMC9218063 DOI: 10.3389/fimmu.2022.917998] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Bi-directional transcription of Human Endogenous Retroviruses (hERVs) is a common feature of autoimmunity, neurodegeneration and cancer. Higher rates of cancer incidence, neurodegeneration and autoimmunity but a lower prevalence of autoimmune diseases characterize elderly people. Although the re-expression of hERVs is commonly observed in different cellular models of senescence as a result of the loss of their epigenetic transcriptional silencing, the hERVs modulation during aging is more complex, with a peak of activation in the sixties and a decline in the nineties. What is clearly accepted, instead, is the impact of the re-activation of dormant hERV on the maintenance of stemness and tissue self-renewing properties. An innate cellular immunity system, based on the RLR-MAVS circuit, controls the degradation of dsRNAs arising from the transcription of hERV elements, similarly to what happens for the accumulation of cytoplasmic DNA leading to the activation of cGAS/STING pathway. While agonists and inhibitors of the cGAS-STING pathway are considered promising immunomodulatory molecules, the effect of the RLR-MAVS pathway on innate immunity is still largely based on correlations and not on causality. Here we review the most recent evidence regarding the activation of MDA5-RIG1-MAVS pathway as a result of hERV de-repression during aging, immunosenescence, cancer and autoimmunity. We will also deal with the epigenetic mechanisms controlling hERV repression and with the strategies that can be adopted to modulate hERV expression in a therapeutic perspective. Finally, we will discuss if the RLR-MAVS signalling pathway actively modulates physiological and pathological conditions or if it is passively activated by them.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, University of Udine, Udine, Italy
| | - Luigi E Xodo
- Laboratory of Biochemistry, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|