1
|
Hernández-Saavedra D, Hinkley JM, Baer LA, Pinckard KM, Vidal P, Nirengi S, Brennan AM, Chen EY, Narain NR, Bussberg V, Tolstikov VV, Kiebish MA, Markunas C, Ilkayeva O, Goodpaster BH, Newgard CB, Goodyear LJ, Coen PM, Stanford KI. Chronic exercise improves hepatic acylcarnitine handling. iScience 2024; 27:109083. [PMID: 38361627 PMCID: PMC10867450 DOI: 10.1016/j.isci.2024.109083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 02/17/2024] Open
Abstract
Exercise mediates tissue metabolic function through direct and indirect adaptations to acylcarnitine (AC) metabolism, but the exact mechanisms are unclear. We found that circulating medium-chain acylcarnitines (AC) (C12-C16) are lower in active/endurance trained human subjects compared to sedentary controls, and this is correlated with elevated cardiorespiratory fitness and reduced adiposity. In mice, exercise reduced serum AC and increased liver AC, and this was accompanied by a marked increase in expression of genes involved in hepatic AC metabolism and mitochondrial β-oxidation. Primary hepatocytes from high-fat fed, exercise trained mice had increased basal respiration compared to hepatocytes from high-fat fed sedentary mice, which may be attributed to increased Ca2+ cycling and lipid uptake into mitochondria. The addition of specific medium- and long-chain AC to sedentary hepatocytes increased mitochondrial respiration, mirroring the exercise phenotype. These data indicate that AC redistribution is an exercise-induced mechanism to improve hepatic function and metabolism.
Collapse
Affiliation(s)
- Diego Hernández-Saavedra
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - J. Matthew Hinkley
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lisa A. Baer
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kelsey M. Pinckard
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Pablo Vidal
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shinsuke Nirengi
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Andrea M. Brennan
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | | | | | | | | | - Christina Markunas
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Durham, NC 27701, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Durham, NC 27701, USA
| | - Bret H. Goodpaster
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Durham, NC 27701, USA
| | - Laurie J. Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Paul M. Coen
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Kristin I. Stanford
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
2
|
Gopal K, Abdualkader AM, Li X, Greenwell AA, Karwi QG, Altamimi TR, Saed C, Uddin GM, Darwesh AM, Jamieson KL, Kim R, Eaton F, Seubert JM, Lopaschuk GD, Ussher JR, Al Batran R. Loss of muscle PDH induces lactic acidosis and adaptive anaplerotic compensation via pyruvate-alanine cycling and glutaminolysis. J Biol Chem 2023; 299:105375. [PMID: 37865313 PMCID: PMC10692893 DOI: 10.1016/j.jbc.2023.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation that links glycolysis-derived pyruvate with the tricarboxylic acid (TCA) cycle. Although skeletal muscle is a significant site for glucose oxidation and is closely linked with metabolic flexibility, the importance of muscle PDH during rest and exercise has yet to be fully elucidated. Here, we demonstrate that mice with muscle-specific deletion of PDH exhibit rapid weight loss and suffer from severe lactic acidosis, ultimately leading to early mortality under low-fat diet provision. Furthermore, loss of muscle PDH induces adaptive anaplerotic compensation by increasing pyruvate-alanine cycling and glutaminolysis. Interestingly, high-fat diet supplementation effectively abolishes early mortality and rescues the overt metabolic phenotype induced by muscle PDH deficiency. Despite increased reliance on fatty acid oxidation during high-fat diet provision, loss of muscle PDH worsens exercise performance and induces lactic acidosis. These observations illustrate the importance of muscle PDH in maintaining metabolic flexibility and preventing the development of metabolic disorders.
Collapse
Affiliation(s)
- Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Abdualrahman Mohammed Abdualkader
- Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada; Montreal Diabetes Research Center, Montréal, Quebec, Canada; Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, Quebec, Canada
| | - Xiaobei Li
- Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada; Montreal Diabetes Research Center, Montréal, Quebec, Canada; Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, Quebec, Canada
| | - Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qutuba G Karwi
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, Canada
| | - Tariq R Altamimi
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Christina Saed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Golam M Uddin
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - K Lockhart Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ryekjang Kim
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Rami Al Batran
- Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada; Montreal Diabetes Research Center, Montréal, Quebec, Canada; Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, Quebec, Canada.
| |
Collapse
|
3
|
Zapata Bustos R, Coletta DK, Galons JP, Davidson LB, Langlais PR, Funk JL, Willis WT, Mandarino LJ. Nonequilibrium thermodynamics and mitochondrial protein content predict insulin sensitivity and fuel selection during exercise in human skeletal muscle. Front Physiol 2023; 14:1208186. [PMID: 37485059 PMCID: PMC10361819 DOI: 10.3389/fphys.2023.1208186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: Many investigators have attempted to define the molecular nature of changes responsible for insulin resistance in muscle, but a molecular approach may not consider the overall physiological context of muscle. Because the energetic state of ATP (ΔGATP) could affect the rate of insulin-stimulated, energy-consuming processes, the present study was undertaken to determine whether the thermodynamic state of skeletal muscle can partially explain insulin sensitivity and fuel selection independently of molecular changes. Methods: 31P-MRS was used with glucose clamps, exercise studies, muscle biopsies and proteomics to measure insulin sensitivity, thermodynamic variables, mitochondrial protein content, and aerobic capacity in 16 volunteers. Results: After showing calibrated 31P-MRS measurements conformed to a linear electrical circuit model of muscle nonequilibrium thermodynamics, we used these measurements in multiple stepwise regression against rates of insulin-stimulated glucose disposal and fuel oxidation. Multiple linear regression analyses showed 53% of the variance in insulin sensitivity was explained by 1) VO2max (p = 0.001) and the 2) slope of the relationship of ΔGATP with the rate of oxidative phosphorylation (p = 0.007). This slope represents conductance in the linear model (functional content of mitochondria). Mitochondrial protein content from proteomics was an independent predictor of fractional fat oxidation during mild exercise (R2 = 0.55, p = 0.001). Conclusion: Higher mitochondrial functional content is related to the ability of skeletal muscle to maintain a greater ΔGATP, which may lead to faster rates of insulin-stimulated processes. Mitochondrial protein content per se can explain fractional fat oxidation during mild exercise.
Collapse
Affiliation(s)
- Rocio Zapata Bustos
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Dawn K. Coletta
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
- Department of Physiology, The University of Arizona, Tucson, AZ, United States
| | - Jean-Philippe Galons
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States
| | - Lisa B. Davidson
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Paul R. Langlais
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Janet L. Funk
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Wayne T. Willis
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Lawrence J. Mandarino
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
4
|
Barakati N, Bustos RZ, Coletta DK, Langlais PR, Kohler LN, Luo M, Funk JL, Willis WT, Mandarino LJ. Fuel Selection in Skeletal Muscle Exercising at Low Intensity; Reliance on Carbohydrate in Very Sedentary Individuals. Metab Syndr Relat Disord 2023; 21:16-24. [PMID: 36318809 PMCID: PMC9969886 DOI: 10.1089/met.2022.0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Resting skeletal muscle in insulin resistance prefers to oxidize carbohydrate rather than lipid, exhibiting metabolic inflexibility. Although this is established in resting muscle, complexities involved in directly measuring fuel oxidation using indirect calorimetry across a muscle bed have limited studies of this phenomenon in working skeletal muscle. During mild exercise and at rest, whole-body indirect calorimetry imperfectly estimates muscle fuel oxidation. We provide evidence that a method termed "ΔRER" can reasonably estimate fuel oxidation in skeletal muscle activated by exercise. Methods: Completely sedentary volunteers (n = 20, age 31 ± 2 years, V̇O2peak 24.4 ± 1.5 mL O2 per min/kg) underwent glucose clamps to determine insulin sensitivity and graded exercise consisting of three periods of mild steady-state cycle ergometry (15, 30, 45 watts, or 10%, 20%, and 30% of maximum power) with measurements of whole-body gas exchange. ΔRER, the RER in working muscle, was calculated as (V̇CO2exercise -V̇CO2rest)/(V̇O2exercise - V̇O2rest), from which the fraction of fuel accounted for by lipid was estimated. Results: Lactate levels were low and stable during steady-state exercise. Muscle biopsies were used to estimate mitochondrial content. The rise of V̇O2 at onset of exercise followed a monoexponential function, with a time constant of 51 ± 7 sec, typical of skeletal muscle; the average O2 cost of work was about 12 mL O2/watt/min, representing a mechanical efficiency of about 24%. At work rates of 30 or 45 watts, active muscle relied predominantly on carbohydrate, independent of insulin sensitivity within this group of very sedentary volunteers. Conclusions: The fraction of muscle fuel oxidation from fat was predicted by power output (P < 0.001) and citrate synthase activity (P < 0.05), indicating that low mitochondrial content may be the main driver of fuel choice in sedentary people, independent of insulin sensitivity.
Collapse
Affiliation(s)
- Neusha Barakati
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, Arizona, USA
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Health Sciences, Tucson, Arizona, USA
| | - Rocio Zapata Bustos
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, Arizona, USA
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Health Sciences, Tucson, Arizona, USA
| | - Dawn K. Coletta
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, Arizona, USA
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Health Sciences, Tucson, Arizona, USA
- Department of Physiology, The University of Arizona, Tucson, Arizona, USA
| | - Paul R. Langlais
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, Arizona, USA
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Health Sciences, Tucson, Arizona, USA
| | - Lindsay N. Kohler
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Health Sciences, Tucson, Arizona, USA
- Department of Health Promotion Sciences, Epidemiology and Biostatistics and The University of Arizona, Tucson, Arizona, USA
- Department of Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona, USA
| | - Moulun Luo
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, Arizona, USA
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Health Sciences, Tucson, Arizona, USA
| | - Janet L. Funk
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Wayne T. Willis
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, Arizona, USA
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Health Sciences, Tucson, Arizona, USA
| | - Lawrence J. Mandarino
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, Arizona, USA
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Health Sciences, Tucson, Arizona, USA
| |
Collapse
|
5
|
Osborne T, Wall B, Edgar DW, Fairchild T, Wood F. Current understanding of the chronic stress response to burn injury from human studies. BURNS & TRAUMA 2023; 11:tkad007. [PMID: 36926636 PMCID: PMC10013650 DOI: 10.1093/burnst/tkad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 03/15/2023]
Abstract
There is a marked inflammatory and hypermetabolic response following a burn injury. The interlinked responses are more pronounced than for other forms of trauma and can persist for ≥3 years post-injury in burned patients. After a burn, patients have an increased risk of diseases of ageing including cancer, diabetes and cardiovascular disease, highlighting the need for effective long-term strategies to ameliorate the stress response post-burn. Current therapeutic strategies for post-burn recovery include removal of damaged tissue with surgical excision and wound repair, nutritional supplementation and rehabilitative exercise. These strategies aim to minimize the hypermetabolic and inflammatory responses, as well as reducing the loss of lean body mass. This review briefly summarises the inflammatory and hypermetabolic responses and provides an update on the current therapeutic strategies for burned patients. The review examines the persistent nutritional challenge of ensuring sufficient energy intake of each macronutrient to fuel the hypermetabolic and counteract the catabolic response of burn injury, whilst reducing periods of hyperglycaemia and hypertriglyceridemia. Patients require individualized treatment options tailored to unique systemic responses following a burn, facilitated by a precision medicine approach to improve clinical and physiological outcomes in burned patients. Thus, this review discusses the utility of metabolic flexibility assessment to aid clinical decision making and prescription relating to nutritional supplementation and rehabilitative exercise in the burned patient.
Collapse
Affiliation(s)
- Tyler Osborne
- Discipline of Exercise Science, Murdoch University, Murdoch 6150, Western Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch 6150, Western Australia
| | - Bradley Wall
- Discipline of Exercise Science, Murdoch University, Murdoch 6150, Western Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch 6150, Western Australia
| | - Dale W Edgar
- State Adult Burns Unit, Government of Western Australia South Metropolitan Health Service, Fiona Stanley Hospital, Murdoch 6150, Western Australia.,Fiona Wood Foundation, Fiona Stanley Hospital, Murdoch 6150, Western Australia.,Burn Injury Research Node, Institute for Health Research, The University of Notre Dame Australia, Murdoch 6160, Western Australia.,Burn Injury Research Unit, University of Western Australia, Murdoch 6009, Western Australia
| | - Timothy Fairchild
- Discipline of Exercise Science, Murdoch University, Murdoch 6150, Western Australia.,The Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch 6150, Western Australia
| | - Fiona Wood
- State Adult Burns Unit, Government of Western Australia South Metropolitan Health Service, Fiona Stanley Hospital, Murdoch 6150, Western Australia.,Fiona Wood Foundation, Fiona Stanley Hospital, Murdoch 6150, Western Australia.,Burn Injury Research Unit, University of Western Australia, Murdoch 6009, Western Australia
| |
Collapse
|
6
|
Dotzert MS, McDonald MW, Olver TD, Sammut MJ, Melling CWJ. The influence of exercise training versus intensive insulin therapy on insulin resistance development in type 1 diabetes. J Diabetes Complications 2023; 37:108365. [PMID: 36463707 DOI: 10.1016/j.jdiacomp.2022.108365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The etiology of insulin resistance (IR) in Type 1 Diabetes (T1D) is unclear; however, intramyocellular lipids (IMCL) are likely contributors. While exercise lessens IR and IMCL content; T1D patients elevate glycemia to offset exercise-induced hypoglycemic risk. The preferred treatment for T1D patients is tight glucose management through intensive insulin therapy (IIT); however, IIT is accompanied with a sedentary lifestyle. The purpose of this study was to examine IR development and IMCL in combined exercise (DARE; aerobic/resistance) and IIT-treated T1D animals. 76 rats were divided into control sedentary (C), diabetic sedentary (CD), diabetes sedentary intensive insulin therapy (DIT) and DARE groups. Following streptozotocin (STZ), glycemia was maintained at either 9-15 mM (CD, DARE) or 5-9 mM (DIT) using insulin. DARE alternated between running and weighted climbing for 12 weeks. Results demonstrate that DARE exhibited reduced onset of IR compared with C, DIT and CD, indicated by increased glucose infusion rate (hyperinsulinemic-euglycemic-clamp). A shift in lipid metabolism was evident whereby diacylglycerol was elevated in DIT compared to DARE, while triacylglycerol was elevated in DARE. These findings indicate enhanced IMCL metabolism and the sequestration of fat as neutral triacylglycerol leads to reduced IR in DARE. In contrast, IIT and sedentary behavior leads to diacylglycerol accumulation and IR.
Collapse
Affiliation(s)
- Michelle S Dotzert
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - Matthew W McDonald
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - T Dylan Olver
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mitchell J Sammut
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - C W James Melling
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
7
|
Olenick AA, Pearson RC, Shaker N, Blankenship MM, Tinius RA, Winchester LJ, Oregon E, Maples JM. African American Females Are Less Metabolically Flexible Compared with Caucasian American Females following a Single High-Fat Meal: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12913. [PMID: 36232212 PMCID: PMC9566281 DOI: 10.3390/ijerph191912913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The relationship between metabolic flexibility (MF) and components of metabolic disease has not been well-studied among African American (AA) females and may play a role in the higher incidence of chronic disease among them compared with Caucasian American (CA) females. This pilot study aimed to compare the metabolic response of AA and CA females after a high-fat meal. Eleven AA (25.6 (5.6) y, 27.2 (6.0) kg/m2, 27.5 (9.7) % body fat) and twelve CA (26.5 (1.5) y, 25.7 (5.3) kg/m2, 25.0 (7.4) % body fat) women free of cardiovascular and metabolic disease and underwent a high-fat meal challenge (55.9% fat). Lipid oxidation, insulin, glucose, and interleukin (IL)-8 were measured fasted, 2 and 4 h postprandial. AA females had a significantly lower increase in lipid oxidation from baseline to 2 h postprandial (p = 0.022), and trended lower at 4 h postprandial (p = 0.081) compared with CA females, indicating worse MF. No group differences in insulin, glucose or HOMA-IR were detected. IL-8 was significantly higher in AA females compared with CA females at 2 and 4 h postprandial (p = 0.016 and p = 0.015, respectively). These findings provide evidence of metabolic and inflammatory disparities among AA females compared with CA females that could serve as a predictor of chronic disease in individuals with a disproportionately higher risk of development.
Collapse
Affiliation(s)
- Alyssa A. Olenick
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Regis C. Pearson
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nuha Shaker
- Department of Pathology and Lab Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Maire M. Blankenship
- School of Nursing and Allied Health, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Rachel A. Tinius
- School of Kinesiology, Recreation, and Sport, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Lee J. Winchester
- Department of Kinesiology, College of Education, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Evie Oregon
- School of Kinesiology, Recreation, and Sport, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Jill M. Maples
- Department of Obstetrics and Gynecology, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA
| |
Collapse
|
8
|
Fernández-Verdejo R, Malo-Vintimilla L, Gutiérrez-Pino J, López-Fuenzalida A, Olmos P, Irarrazaval P, Galgani JE. Similar Metabolic Health in Overweight/Obese Individuals With Contrasting Metabolic Flexibility to an Oral Glucose Tolerance Test. Front Nutr 2021; 8:745907. [PMID: 34869522 PMCID: PMC8637191 DOI: 10.3389/fnut.2021.745907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/13/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Low metabolic flexibility (MetF) may be an underlying factor for metabolic health impairment. Individuals with low MetF are thus expected to have worse metabolic health than subjects with high MetF. Therefore, we aimed to compare metabolic health in individuals with contrasting MetF to an oral glucose tolerance test (OGTT). Methods: In individuals with excess body weight, we measured MetF as the change in respiratory quotient (RQ) from fasting to 1 h after ingestion of a 75-g glucose load (i.e., OGTT). Individuals were then grouped into low and high MetF (Low-MetF n = 12; High-MetF n = 13). The groups had similar body mass index, body fat, sex, age, and maximum oxygen uptake. Metabolic health markers (clinical markers, insulin sensitivity/resistance, abdominal fat, and intrahepatic fat) were compared between groups. Results: Fasting glucose, triglycerides (TG), and high-density lipoprotein (HDL) were similar between groups. So were insulin sensitivity/resistance, visceral, and intrahepatic fat. Nevertheless, High-MetF individuals had higher diastolic blood pressure, a larger drop in TG concentration during the OGTT, and a borderline significant (P = 0.05) higher Subcutaneous Adipose Tissue (SAT). Further, compared to Low-MetF, High-MetF individuals had an about 2-fold steeper slope for the relationship between SAT and fat mass index. Conclusion: Individuals with contrasting MetF to an OGTT had similar metabolic health. Yet High-MetF appears related to enhanced circulating TG clearance and enlarged subcutaneous fat.
Collapse
Affiliation(s)
- Rodrigo Fernández-Verdejo
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Lorena Malo-Vintimilla
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Gutiérrez-Pino
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonio López-Fuenzalida
- Carrera de Kinesiología, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Disciplinary Department of Kinesiology, Faculty of Health Science, Universidad de Playa Ancha, Valparaíso, Chile
| | - Pablo Olmos
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Irarrazaval
- Departamento de Ingeniería Eléctrica e Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jose E Galgani
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Ghzaiel I, Zarrouk A, Nury T, Libergoli M, Florio F, Hammouda S, Ménétrier F, Avoscan L, Yammine A, Samadi M, Latruffe N, Biressi S, Levy D, Bydlowski SP, Hammami S, Vejux A, Hammami M, Lizard G. Antioxidant Properties and Cytoprotective Effect of Pistacia lentiscus L. Seed Oil against 7β-Hydroxycholesterol-Induced Toxicity in C2C12 Myoblasts: Reduction in Oxidative Stress, Mitochondrial and Peroxisomal Dysfunctions and Attenuation of Cell Death. Antioxidants (Basel) 2021; 10:antiox10111772. [PMID: 34829643 PMCID: PMC8615043 DOI: 10.3390/antiox10111772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/18/2023] Open
Abstract
Aging is characterized by a progressive increase in oxidative stress, which favors lipid peroxidation and the formation of cholesterol oxide derivatives, including 7β-hydroxycholesterol (7β-OHC). This oxysterol, which is known to trigger oxidative stress, inflammation, and cell death, could contribute to the aging process and age-related diseases, such as sarcopenia. Identifying molecules or mixtures of molecules preventing the toxicity of 7β-OHC is therefore an important issue. This study consists of determining the chemical composition of Tunisian Pistacia lentiscus L. seed oil (PLSO) used in the Tunisian diet and evaluating its ability to counteract the cytotoxic effects induced by 7β-OHC in murine C2C12 myoblasts. The effects of 7β-OHC (50 µM; 24 h), associated or not with PLSO, were studied on cell viability, oxidative stress, and on mitochondrial and peroxisomal damages induction. α-Tocopherol (400 µM) was used as the positive control for cytoprotection. Our data show that PLSO is rich in bioactive compounds; it contains polyunsaturated fatty acids, and several nutrients with antioxidant properties: phytosterols, α-tocopherol, carotenoids, flavonoids, and phenolic compounds. When associated with PLSO (100 µg/mL), the 7β-OHC-induced cytotoxic effects were strongly attenuated. The cytoprotection was in the range of those observed with α-tocopherol. This cytoprotective effect was characterized by prevention of cell death and organelle dysfunction (restoration of cell adhesion, cell viability, and plasma membrane integrity; prevention of mitochondrial and peroxisomal damage) and attenuation of oxidative stress (reduction in reactive oxygen species overproduction in whole cells and at the mitochondrial level; decrease in lipid and protein oxidation products formation; and normalization of antioxidant enzyme activities: glutathione peroxidase (GPx) and superoxide dismutase (SOD)). These results provide evidence that PLSO has similar antioxidant properties than α-tocopherol used at high concentration and contains a mixture of molecules capable to attenuate 7β-OHC-induced cytotoxic effects in C2C12 myoblasts. These data reinforce the interest in edible oils associated with the Mediterranean diet, such as PLSO, in the prevention of age-related diseases, such as sarcopenia.
Collapse
Affiliation(s)
- Imen Ghzaiel
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
- Faculty of Sciences of Tunis, University Tunis-El Manar, Tunis 2092, Tunisia
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
- Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
- Correspondence: (A.Z.); (G.L.); Tel.: +216-94-837-999 or +1-212-241 9304 (A.Z.); +33-380-396-256 (G.L.)
| | - Thomas Nury
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
| | - Michela Libergoli
- Department of Cellular, Computational and Integrative Biology (CIBio) and Dulbecco Telethon Institute, University of Trento, 38123 Trento, Italy; (M.L.); (F.F.); (S.B.)
| | - Francesca Florio
- Department of Cellular, Computational and Integrative Biology (CIBio) and Dulbecco Telethon Institute, University of Trento, 38123 Trento, Italy; (M.L.); (F.F.); (S.B.)
| | - Souha Hammouda
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
| | - Franck Ménétrier
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21065 Dijon, France;
| | - Laure Avoscan
- Agroécologie, AgroSup Dijon, CNRS, INRAE, University Bourgogne Franche-Comté, Plateforme DimaCell, 21000 Dijon, France;
| | - Aline Yammine
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Department of Chemistry, University Lorraine, Metz Technopôle, 57070 Metz, France;
| | - Norbert Latruffe
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
| | - Stefano Biressi
- Department of Cellular, Computational and Integrative Biology (CIBio) and Dulbecco Telethon Institute, University of Trento, 38123 Trento, Italy; (M.L.); (F.F.); (S.B.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil; (D.L.); (S.P.B.)
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil; (D.L.); (S.P.B.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, Brazil
| | - Sonia Hammami
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
| | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
| | - Mohamed Hammami
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
- Correspondence: (A.Z.); (G.L.); Tel.: +216-94-837-999 or +1-212-241 9304 (A.Z.); +33-380-396-256 (G.L.)
| |
Collapse
|
10
|
Abstract
Known as metabolic flexibility, oxidized substrate is selected in response to changes in the nutritional state. Sleep imposes an extended duration of fasting, and oxidized substrates during sleep were assumed to progressively shift from carbohydrate to fat, thereby gradually decreasing the respiratory quotient (RQ). Contrary to this assumption, whole-room indirect calorimetry with improved time resolution revealed that RQ re-ascended prior to awakening, and nadir of RQ in non-obese young adults occurred earlier in women than men after bedtime. The transient decrease in RQ during sleep was blunted in metabolically inflexible men with smaller amplitude of diurnal rhythm in RQ. Similarly, the effect of 10 years difference in age on RQ became significant during sleep; the decrease in RQ during sleep was blunted in older subjects. Inter-individual difference in RQ become apparent during sleep, and it might serve as a window to gain insight into the early-stage pathogenesis of metabolic inflexibility.
Collapse
|
11
|
Zhao M, Shen L, Ouyang Z, Li M, Deng G, Yang C, Zheng W, Kong L, Wu X, Wu X, Guo W, Yin Y, Xu Q, Sun Y. Loss of hnRNP A1 in murine skeletal muscle exacerbates high-fat diet-induced onset of insulin resistance and hepatic steatosis. J Mol Cell Biol 2021; 12:277-290. [PMID: 31169879 PMCID: PMC7232127 DOI: 10.1093/jmcb/mjz050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/14/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Impairment of glucose (Glu) uptake and storage by skeletal muscle is a prime risk factor for the development of metabolic diseases. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a highly abundant RNA-binding protein that has been implicated in diverse cellular functions. The aim of this study was to investigate the function of hnRNP A1 on muscle tissue insulin sensitivity and systemic Glu homeostasis. Our results showed that conditional deletion of hnRNP A1 in the muscle gave rise to a severe insulin resistance phenotype in mice fed a high-fat diet (HFD). Conditional knockout mice fed a HFD showed exacerbated obesity, insulin resistance, and hepatic steatosis. In vitro interference of hnRNP A1 in C2C12 myotubes impaired insulin signal transduction and inhibited Glu uptake, whereas hnRNP A1 overexpression in C2C12 myotubes protected against insulin resistance induced by supraphysiological concentrations of insulin. The expression and stability of glycogen synthase (gys1) mRNA were also decreased in the absence of hnRNP A1. Mechanistically, hnRNP A1 interacted with gys1 and stabilized its mRNA, thereby promoting glycogen synthesis and maintaining the insulin sensitivity in muscle tissue. Taken together, our findings are the first to show that reduced expression of hnRNP A1 in skeletal muscle affects the metabolic properties and systemic insulin sensitivity by inhibiting glycogen synthesis.
Collapse
Affiliation(s)
- Mingxia Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lihong Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zijun Ouyang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Manru Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Guoliang Deng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chenxi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ye Yin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
12
|
White MF, Kahn CR. Insulin action at a molecular level - 100 years of progress. Mol Metab 2021; 52:101304. [PMID: 34274528 PMCID: PMC8551477 DOI: 10.1016/j.molmet.2021.101304] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
The discovery of insulin 100 years ago and its application to the treatment of human disease in the years since have marked a major turning point in the history of medicine. The availability of purified insulin allowed for the establishment of its physiological role in the regulation of blood glucose and ketones, the determination of its amino acid sequence, and the solving of its structure. Over the last 50 years, the function of insulin has been applied into the discovery of the insulin receptor and its signaling cascade to reveal the role of impaired insulin signaling-or resistance-in the progression of type 2 diabetes. It has also become clear that insulin signaling can impact not only classical insulin-sensitive tissues, but all tissues of the body, and that in many of these tissues the insulin signaling cascade regulates unexpected physiological functions. Despite these remarkable advances, much remains to be learned about both insulin signaling and how to use this molecular knowledge to advance the treatment of type 2 diabetes and other insulin-resistant states.
Collapse
Affiliation(s)
- Morris F White
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02215, USA.
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
13
|
Galgani JE, Fernández-Verdejo R. Pathophysiological role of metabolic flexibility on metabolic health. Obes Rev 2021; 22:e13131. [PMID: 32815226 DOI: 10.1111/obr.13131] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Glucose, fatty acids, and amino acids among others are oxidized to generate adenosine triphosphate (ATP). These fuels are supplied from the environment (through food intake) and internal depots (through lipolysis, glycogenolysis, and proteolysis) at different rates throughout the day. Complex adaptive systems permit to accommodate fuel oxidation according to fuel availability. This capacity of a cell, tissue, or organism to adapt fuel oxidation to fuel availability is defined as metabolic flexibility (MetF). There are conditions, such as insulin resistance, diabetes, and obesity, in which MetF seems to be impaired. The observation that those conditions are accompanied by mitochondrial dysfunction has set the basis to propose a link between mitochondrial dysfunction, metabolic inflexibility, and metabolic health. We here highlight the evidence about the notion that MetF influences metabolic health.
Collapse
Affiliation(s)
- Jose E Galgani
- Department of Health Sciences, Nutrition and Dietetics Career, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Nutrition, Diabetes and Metabolism, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Fernández-Verdejo
- Department of Health Sciences, Nutrition and Dietetics Career, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Zou K, Turner K, Zheng D, Hinkley JM, Kugler BA, Hornby PJ, Lenhard J, Jones TE, Pories WJ, Dohm GL, Houmard JA. Impaired glucose partitioning in primary myotubes from severely obese women with type 2 diabetes. Am J Physiol Cell Physiol 2020; 319:C1011-C1019. [PMID: 32966127 DOI: 10.1152/ajpcell.00157.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to determine whether intramyocellular glucose partitioning was altered in primary human myotubes derived from severely obese women with type 2 diabetes. Human skeletal muscle cells were obtained from lean nondiabetic and severely obese Caucasian females with type 2 diabetes [body mass index (BMI): 23.6 ± 2.6 vs. 48.8 ± 1.9 kg/m2, fasting glucose: 86.9 ± 1.6 vs. 135.6 ± 12.0 mg/dL, n = 9/group]. 1-[14C]-Glucose metabolism (glycogen synthesis, glucose oxidation, and nonoxidized glycolysis) and 1- and 2-[14C]-pyruvate oxidation were examined in fully differentiated myotubes under basal and insulin-stimulated conditions. Tricarboxylic acid cycle intermediates were determined via targeted metabolomics. Myotubes derived from severely obese individuals with type 2 diabetes exhibited impaired insulin-mediated glucose partitioning with reduced rates of glycogen synthesis and glucose oxidation and increased rates of nonoxidized glycolytic products, when compared with myotubes derived from the nondiabetic individuals (P < 0.05). Both 1- and 2-[14C]-pyruvate oxidation rates were significantly blunted in myotubes from severely obese women with type 2 diabetes compared with myotubes from the nondiabetic controls. Lastly, concentrations of tricarboxylic acid cycle intermediates, namely, citrate (P < 0.05), cis-aconitic acid (P = 0.07), and α-ketoglutarate (P < 0.05), were lower in myotubes from severely obese women with type 2 diabetes. These data suggest that intramyocellular insulin-mediated glucose partitioning is intrinsically altered in the skeletal muscle of severely obese women with type 2 diabetes in a manner that favors the production of glycolytic end products. Defects in pyruvate dehydrogenase and tricarboxylic acid cycle may be responsible for this metabolic derangement associated with type 2 diabetes.
Collapse
Affiliation(s)
- Kai Zou
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, Massachusetts
| | - Kristen Turner
- Department of Kinesiology, East Carolina University, Greenville, North Carolina.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Donghai Zheng
- Department of Kinesiology, East Carolina University, Greenville, North Carolina.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina.,Department of Physiology, East Carolina University, Greenville, North Carolina
| | - J Matthew Hinkley
- Department of Kinesiology, East Carolina University, Greenville, North Carolina.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Benjamin A Kugler
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, Massachusetts
| | - Pamela J Hornby
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - James Lenhard
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - Terry E Jones
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina
| | - Walter J Pories
- Department of Surgery, East Carolina University, Greenville, North Carolina.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - G Lynis Dohm
- Department of Physiology, East Carolina University, Greenville, North Carolina.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Joseph A Houmard
- Department of Kinesiology, East Carolina University, Greenville, North Carolina.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| |
Collapse
|
15
|
López-Palau NE, Olais-Govea JM. Mathematical model of blood glucose dynamics by emulating the pathophysiology of glucose metabolism in type 2 diabetes mellitus. Sci Rep 2020; 10:12697. [PMID: 32728136 PMCID: PMC7391357 DOI: 10.1038/s41598-020-69629-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
Mathematical modelling has established itself as a theoretical tool to understand fundamental aspects of a variety of medical-biological phenomena. The predictive power of mathematical models on some chronic conditions has been helpful in its proper prevention, diagnosis, and treatment. Such is the case of the modelling of glycaemic dynamics in type 2 diabetes mellitus (T2DM), whose physiology-based mathematical models have captured the metabolic abnormalities of this disease. Through a physiology-based pharmacokinetic-pharmacodynamic approach, this work addresses a mathematical model whose structure starts from a model of blood glucose dynamics in healthy humans. This proposal is capable of emulating the pathophysiology of T2DM metabolism, including the effect of gastric emptying and insulin enhancing effect due to incretin hormones. The incorporation of these effects lies in the implemented methodology since the mathematical functions that represent metabolic rates, with a relevant contribution to hyperglycaemia, are adjusting individually to the clinical data of patients with T2DM. Numerically, the resulting model successfully simulates a scheduled graded intravenous glucose test and oral glucose tolerance tests at different doses. The comparison between simulations and clinical data shows an acceptable description of the blood glucose dynamics in T2DM. It opens the possibility of using this model to develop model-based controllers for the regulation of blood glucose in T2DM.
Collapse
Affiliation(s)
- Nelida Elizabeth López-Palau
- División de Matemáticas Aplicadas, IPICyT, Camino a la Presa San José No. 2055, Lomas Cuarta Sección, 78216, San Luis Potosí, SLP, Mexico.,Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 300, 78211, San Luis Potosí, SLP, Mexico
| | - José Manuel Olais-Govea
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 300, 78211, San Luis Potosí, SLP, Mexico. .,Tecnologico de Monterrey, Writing Lab, TecLab, Vicerrectoría de Investigación y Transferencia de Tecnología, 64849, Monterrey, NL, Mexico.
| |
Collapse
|
16
|
Fernández-Verdejo R, Castro-Sepulveda M, Gutiérrez-Pino J, Malo-Vintimilla L, López-Fuenzalida A, Olmos P, Santos JL, Galgani JE. Direct Relationship Between Metabolic Flexibility Measured During Glucose Clamp and Prolonged Fast in Men. Obesity (Silver Spring) 2020; 28:1110-1116. [PMID: 32369268 DOI: 10.1002/oby.22783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/06/2020] [Accepted: 02/25/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVE This study aimed to determine the relationship between metabolic flexibility (MetFlex) measured during a euglycemic-hyperinsulinemic clamp and a prolonged fast. This study also analyzed the association between MetFlex and metabolic health. METHODS Eighteen healthy men (mean [SD]: 22 [2] years old; BMI: 22 [1] kg/m2 ) performed two sessions: (1) euglycemic-hyperinsulinemic clamp (2 mIU/kg of insulin per minute) and (2) ~20-hour fast. Clamp MetFlex corresponded to the change in (Δ) respiratory quotient (RQ) (ΔRQ = postchallenge RQ - prechallenge RQ) adjusted for M value and prechallenge RQ. Prolonged fast MetFlex corresponded to the ΔRQ adjusted for the Δβ-hydroxybutyrate and prechallenge RQ. RESULTS MetFlex during the clamp related directly with MetFlex during prolonged fast (r = 0.59, P = 0.014). Using the median of MetFlex for each challenge, this study split participants into high or low MetFlex. Participants with high or low MetFlex to both challenges were identified. Participants with high MetFlex had 3% lower serum low-density lipoprotein cholesterol than participants with low MetFlex (P = 0.021). CONCLUSIONS Measuring MetFlex during a clamp or a prolonged fast produces similar results, despite challenging the oxidation of different substrates. An impaired MetFlex in response to these challenges may be an early event in the development of abnormal lipid metabolism.
Collapse
Affiliation(s)
- Rodrigo Fernández-Verdejo
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Castro-Sepulveda
- Laboratorio de Ciencias del Ejercicio, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Juan Gutiérrez-Pino
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena Malo-Vintimilla
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonio López-Fuenzalida
- Carrera de Kinesiología, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Olmos
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José L Santos
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José E Galgani
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Baugh ME, Bowser SM, McMillan RP, Davy BM, Essenmacher LA, Neilson AP, Hulver MW, Davy KP. Postprandial skeletal muscle metabolism following a high-fat diet in sedentary and endurance-trained males. J Appl Physiol (1985) 2020; 128:872-883. [PMID: 32163335 DOI: 10.1152/japplphysiol.00576.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Our objective was to determine the influence of a high-fat diet (HFD) on fasting and postprandial skeletal muscle substrate metabolism in endurance-trained (ET) compared with sedentary (SED) humans. SED (n = 17) and ET (n = 7) males were control-fed a 10-day moderate-fat diet followed by a 5-day isocaloric HFD (55% fat, 30% carbohydrate). Skeletal muscle biopsies were taken in the fasted condition and 4 h after a high-fat meal (820 kcals; 63% fat and 25% carbohydrate). Palmitate-induced suppression of pyruvate oxidation, an indication of substrate preference, and oxidation of fat and glucose were measured in homogenized skeletal muscle in fasted and fed states. Postprandial responses were calculated as percent changes from fasting to fed states. Postprandial suppression of pyruvate oxidation was maintained after the HFD in ET, but not SED skeletal muscle, suggesting greater adaptability to dietary intake changes in the former. Fasting total fat oxidation increased due to the HFD in ET skeletal muscle (P = 0.006), which was driven by incomplete fat oxidation (P = 0.008). Fasting fat oxidation remained unchanged in skeletal muscle of SED individuals. Yet, postprandial fat oxidation was similar between groups. Fasting glucose oxidation was elevated after the HFD in ET (P = 0.036), but not SED, skeletal muscle. Postprandial glucose oxidation was reduced due to the HFD in SED (P = 0.002), but not ET, skeletal muscle. These findings provide insight into differing substrate metabolism responses between SED and ET individuals and highlight the role that the prevailing diet may play in modulating fasting and postprandial metabolic responses in skeletal muscle.NEW & NOTEWORTHY The relationship between high dietary fat intake and physical activity level and their combined effect on skeletal muscle substrate metabolism remains unclear. We assessed the influence of the prevailing diet in modulating substrate oxidation in skeletal muscle of endurance-trained compared with sedentary humans during a high-fat challenge meal. Collectively, our findings demonstrate the adaptability of skeletal muscle in endurance-trained individuals to high dietary fat intake.
Collapse
Affiliation(s)
- Mary Elizabeth Baugh
- Section on Gerontology and Geriatric Medicine, Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Suzanne M Bowser
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ryan P McMillan
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia.,Metabolic Phenotyping Core, Virginia Tech, Blacksburg, Virginia
| | - Brenda M Davy
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia.,Translational Obesity Research Interdisciplinary Graduate Education Program, Virginia Tech, Blacksburg, Virginia
| | | | - Andrew P Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Kannapolis, North Carolina
| | - Matthew W Hulver
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia.,Metabolic Phenotyping Core, Virginia Tech, Blacksburg, Virginia.,Translational Obesity Research Interdisciplinary Graduate Education Program, Virginia Tech, Blacksburg, Virginia
| | - Kevin P Davy
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia.,Metabolic Phenotyping Core, Virginia Tech, Blacksburg, Virginia.,Translational Obesity Research Interdisciplinary Graduate Education Program, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
18
|
Fechner E, Bilet L, Peters HPF, Hiemstra H, Jacobs DM, Op 't Eyndt C, Kornips E, Mensink RP, Schrauwen P. Effects of a whole diet approach on metabolic flexibility, insulin sensitivity and postprandial glucose responses in overweight and obese adults - A randomized controlled trial. Clin Nutr 2019; 39:2734-2742. [PMID: 31899037 DOI: 10.1016/j.clnu.2019.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/13/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Metabolic flexibility is the ability to adapt fuel oxidation to fuel availability. Metabolic inflexibility has been associated with obesity, the metabolic syndrome and insulin resistance, and can be improved by exercise or weight loss. Dietary changes can modulate metabolic flexibility; however, the effect of a whole diet approach on metabolic flexibility has never been studied. Therefore, our objective was to assess the effect of a healthy diet (HD), as compared to a typical Western diet (WD), on several fasting and postprandial markers of metabolic flexibility and insulin sensitivity. METHODS In this parallel randomized trial, overweight or obese men and women (50-70 years; BMI 25-35 kg/m2) consumed a healthy diet (HD; high in fruits and vegetables, pulses, fibers, nuts, fatty fish, and low in high-glycemic carbohydrates; n = 19) or a typical Western diet (WD; n = 21) for six weeks, following a two-week run-in period. The change in respiratory quotient upon insulin stimulation (ΔRQ), and insulin sensitivity, expressed as the M-value, were both determined with a hyperinsulinemic euglycemic clamp. Additionally, other fasting and postprandial markers of metabolic flexibility were assessed during a 5-h high-fat high-glycemic mixed meal challenge. RESULTS ΔRQ (p = 0.730) and insulin sensitivity (p = 0.802) were not significantly affected by diet. Postprandial RQ did also not show significant differences (p = 0.610), whereas postprandial glucose excursions were significantly higher in the HD group at T30 (p = 0.014) and T45 (p = 0.026) after mixed meal ingestion (p = 0.037). Fasting glucose (p = 0.530) and HbA1c (p = 0.124) remained unchanged, whereas decreases in fasting insulin (p = 0.038) and the HOMA-IR (p = 0.050) were significantly more pronounced with the HD. CONCLUSION A healthy diet for six weeks, without further life-style changes, did not improve metabolic flexibility and whole-body insulin sensitivity, when compared to a Western-style diet. It remains to be determined whether the short time increase in postprandial glucose is physiologically relevant or detrimental to metabolic health. This trial was registered at clinicaltrials.gov as NCT02519127.
Collapse
Affiliation(s)
- Eva Fechner
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - Lena Bilet
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | | | - Harry Hiemstra
- Unilever Food Innovation Center, Wageningen, the Netherlands
| | - Doris M Jacobs
- Unilever Food Innovation Center, Wageningen, the Netherlands
| | - Cara Op 't Eyndt
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Esther Kornips
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
19
|
Bauckneht M, Cossu V, Castellani P, Piccioli P, Orengo AM, Emionite L, Di Giulio F, Donegani MI, Miceli A, Raffa S, Borra A, Capitanio S, Morbelli S, Caviglia G, Bruno S, Ravera S, Maggi D, Sambuceti G, Marini C. FDG uptake tracks the oxidative damage in diabetic skeletal muscle: An experimental study. Mol Metab 2019; 31:98-108. [PMID: 31918925 PMCID: PMC6920267 DOI: 10.1016/j.molmet.2019.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/29/2019] [Accepted: 11/03/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES The present study aims to verify the relationship between glucose consumption and uptake of 18F-2-deoxy-glucose (FDG) in the skeletal muscle (SM) of experimental models of streptozotocin-induced diabetes mellitus (STZ-DM). METHODS The study included 36 Balb/c mice. Two weeks after intraperitoneal administration of saline (control group, n = 18) or 150 mg streptozotocin (STZ-DM group, n = 18), the two cohorts were submitted to an oral glucose tolerance test and were further subdivided into three groups (n = 6 each): untreated and treated with metformin (MTF) at low or high doses (10 or 750 mg/kg daily, respectively). Two weeks thereafter, all mice were submitted to dynamic micro-positron emission tomography (PET) imaging after prolonged fasting. After sacrifice, enzymatic pathways and response to oxidative stress were evaluated in harvested SM. RESULTS On PET imaging, the FDG uptake rate in hindlimb SM was significantly lower in nondiabetic mice as compared with STZ-DM-untreated mice. MTF had no significant effect on SM FDG uptake in untreated mice; however, its high dose induced a significant decrease in STZ-DM animals. Upon conventional analysis, the SM standard uptake value was higher in STZ-DM mice, while MTF was virtually ineffective in either control or STZ-DM models. This metabolic reprogramming was not explained by any change in cytosolic glucose metabolism. By contrast, it closely agreed with the catalytic function of hexose-6P-dehydrogenase (H6PD; i.e., the trigger of a specific pentose phosphate pathway selectively located within the endoplasmic reticulum). In agreement with this role, the H6PD enzymatic response to both STZ-DM and MTF matched the activation of the NADPH-dependent antioxidant responses to the increased generation of reactive oxygen species caused by chronic hyperglycemia. Ex vivo analysis of tracer kinetics confirmed that the enhanced SM avidity for FDG occurred despite a significant reduction in glucose consumption, while it was associated with increased radioactivity transfer to the endoplasmic reticulum. CONCLUSIONS These data challenge the current dogma linking FDG uptake to the glycolytic rate. They instead introduce a new model considering a strict link between the uptake of this glucose analog, H6PD reticular activity, and oxidative damage in diabetes, at least under fasting condition.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy; Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - Vanessa Cossu
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy; Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - Patrizia Castellani
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy
| | - Patrizia Piccioli
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy
| | - Anna Maria Orengo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy
| | - Francesco Di Giulio
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy
| | | | - Alberto Miceli
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - Stefano Raffa
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - Anna Borra
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - Selene Capitanio
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy; Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - Giacomo Caviglia
- Department Experimental Medicine, University of Genoa, Len Battista Alberti 2, 16132 Genoa, Italy
| | - Silvia Bruno
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| | - Silvia Ravera
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| | - Davide Maggi
- Diabetes Unit, IRCCS Ospedale Policlinico San Martino Genoa, Largo Benzi 10, 16132 Genoa, Italy; Department of Mathematics (DIMA), University of Genoa, Via Dodecaneso 35, 16146 Genoa, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy; Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genoa, Italy; CNR Institute of Molecular Bioimaging and Physiology (IBFM), Via Fratelli Cervi 93, 20090 Segrate (MI), Italy.
| |
Collapse
|
20
|
Soares RN, Colosio AL, Murias JM, Pogliaghi S. Noninvasive and in vivo assessment of upper and lower limb skeletal muscle oxidative metabolism activity and microvascular responses to glucose ingestion in humans. Appl Physiol Nutr Metab 2019; 44:1105-1111. [DOI: 10.1139/apnm-2018-0866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study investigated changes in muscle oxidative metabolism and microvascular responsiveness induced by glucose ingestion in the upper and lower limbs using near-infrared spectroscopy (NIRS). Fourteen individuals (aged 27 ± 1.4 years) underwent 5 vascular occlusion tests (VOT) (pre-intervention (Pre), 30 min, 60 min, 90 min, and 120 min after glucose challenge). NIRS-derived oxygen saturation (StO2) was measured on the forearm and leg muscle at each VOT. Muscle oxidative metabolism was determined by the StO2 downslope during cuff inflation (deoxygenation slope); microvascular responsiveness was estimated by the StO2 upslope (reperfusion slope) following cuff deflation. There was a significant increase in arm (p < 0.05; 1-β = 0.860) and leg (p < 0.05; 1-β = 1.000) oxidative metabolism activity as represented by the faster deoxygenation slope at 60, 90, and 120 min (0.08 ± 0.03, 0.08 ± 0.03, 0.08 ± 0.02%·s–1, respectively) (leg) and at 90 min (0.16 ± 0.08%·s−1) (arm) observed after glucose ingestion when compared with their respective Pre values (leg = 0.06 ± 0.02; arm = 0.11 ± 0.04%·s−1). There was a significant increase in arm (p < 0.05; 1-β = 0.880) and leg (p < 0.05; 1-β = 0.983) reperfusion slope at 60 min (arm = 3.63 ± 2.1%·s−1; leg = 1.56 ± 0.6%·s−1), 90 min (arm = 3.91 ± 2.1%·s−1; leg = 1.60 ± 0.6%·s−1), and 120 min (arm = 3.91 ± 1.6%·s−1; leg = 1.54 ± 0.6%·s−1) when compared with their Pre values (arm = 2.79 ± 1.7%·s−1; leg = 1.26 ± 0.5%·s−1). Our findings showed that NIRS–VOT technique is capable of detecting postprandial changes in muscle oxidative metabolism activity and microvascular reactivity in the upper and lower limb. Novelty NIRS-VOT is a promising noninvasive clinical approach that may help in the early, limb-specific detection of impairments in glucose oxidation and microvascular function.
Collapse
Affiliation(s)
- Rogério Nogueira Soares
- Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Alessandro L. Colosio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati, 43, 37131, Verona, VR, Italy
| | - Juan Manuel Murias
- Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Silvia Pogliaghi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati, 43, 37131, Verona, VR, Italy
| |
Collapse
|
21
|
Mynatt RL, Noland RC, Elks CM, Vandanmagsar B, Bayless DS, Stone AC, Ghosh S, Ravussin E, Warfel JD. The RNA binding protein HuR influences skeletal muscle metabolic flexibility in rodents and humans. Metabolism 2019; 97:40-49. [PMID: 31129047 PMCID: PMC6624076 DOI: 10.1016/j.metabol.2019.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/04/2019] [Accepted: 05/21/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Metabolic flexibility can be assessed by changes in respiratory exchange ratio (RER) following feeding. Though metabolic flexibility (difference in RER between fasted and fed state) is often impaired in individuals with obesity or type 2 diabetes, the cellular processes contributing to this impairment are unclear. MATERIALS AND METHODS From several clinical studies we identified the 16 most and 14 least metabolically flexible male and female subjects out of >100 participants based on differences between 24-hour and sleep RER measured in a whole-room indirect calorimeter. Global skeletal muscle gene expression profiles revealed that, in metabolically flexible subjects, transcripts regulated by the RNA binding protein, HuR, are enriched. We generated and characterized mice with a skeletal muscle-specific knockout of the HuR encoding gene, Elavl1 (HuRm-/-). RESULTS Male, but not female, HuRm-/- mice exhibit metabolic inflexibility, with mild obesity, impaired glucose tolerance, impaired fat oxidation and decreased in vitro palmitate oxidation compared to HuRfl/fl littermates. Expression levels of genes involved in mitochondrial fatty acid oxidation and oxidative phosphorylation are decreased in both mouse and human muscle when HuR is inhibited. CONCLUSIONS HuR inhibition results in impaired metabolic flexibility and decreased lipid oxidation, suggesting a role for HuR as an important regulator of skeletal muscle metabolism.
Collapse
Affiliation(s)
- Randall L Mynatt
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Robert C Noland
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Carrie M Elks
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Bolormaa Vandanmagsar
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - David S Bayless
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Allison C Stone
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Sujoy Ghosh
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America; Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eric Ravussin
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Jaycob D Warfel
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America.
| |
Collapse
|
22
|
Zitting KM, Vujovic N, Yuan RK, Isherwood CM, Medina JE, Wang W, Buxton OM, Williams JS, Czeisler CA, Duffy JF. Human Resting Energy Expenditure Varies with Circadian Phase. Curr Biol 2018; 28:3685-3690.e3. [PMID: 30416064 PMCID: PMC6300153 DOI: 10.1016/j.cub.2018.10.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/05/2018] [Accepted: 10/01/2018] [Indexed: 10/27/2022]
Abstract
There is emerging evidence that circadian misalignment may alter energy expenditure, leading to obesity risk among those with irregular schedules [1-5]. It has been reported that energy expenditure is affected by the timing of sleep, exercise, and meals [6]. However, it is unclear whether the circadian system also modulates energy expenditure, independent of behavioral state and food intake. Here, we used a forced desynchrony protocol to examine whether fasted resting energy expenditure (REE) varies with circadian phase in seven participants. This protocol allowed us to uncouple sleep-wake and activity-related effects from the endogenous circadian rhythm, demonstrating that REE varies by circadian phase. REE is lowest at circadian phase ∼0°, corresponding to the endogenous core body temperature (CBT) nadir in the late biological night, and highest at circadian phase ∼180° in the biological afternoon and evening. Furthermore, we found that respiratory quotient (RQ), reflecting macronutrient utilization, also varies by circadian phase. RQ is lowest at circadian phase ∼240° and highest at circadian phase ∼60°, which corresponds to biological morning. This is the first characterization of a circadian profile in fasted resting energy expenditure and fasted respiratory quotient (with rhythmic profiles in both carbohydrate and lipid oxidation), decoupled from effects of activity, sleep-wake cycle, and diet in humans. The rhythm in energy expenditure and macronutrient metabolism may contribute to greater weight gain in shift workers and others with irregular schedules.
Collapse
Affiliation(s)
- Kirsi-Marja Zitting
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Nina Vujovic
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Robin K Yuan
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Cheryl M Isherwood
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Jacob E Medina
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Wei Wang
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Orfeu M Buxton
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA; Division of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA; Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Jonathan S Williams
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Rudwill F, O’Gorman D, Lefai E, Chery I, Zahariev A, Normand S, Pagano AF, Chopard A, Damiot A, Laurens C, Hodson L, Canet-Soulas E, Heer M, Meuthen PF, Buehlmeier J, Baecker N, Meiller L, Gauquelin-Koch G, Blanc S, Simon C, Bergouignan A. Metabolic Inflexibility Is an Early Marker of Bed-Rest-Induced Glucose Intolerance Even When Fat Mass Is Stable. J Clin Endocrinol Metab 2018; 103:1910-1920. [PMID: 29546280 PMCID: PMC7263792 DOI: 10.1210/jc.2017-02267] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/07/2018] [Indexed: 12/13/2022]
Abstract
Context The effects of energy-balanced bed rest on metabolic flexibility have not been thoroughly examined. Objective We investigated the effects of 21 days of bed rest, with and without whey protein supplementation, on metabolic flexibility while maintaining energy balance. We hypothesized that protein supplementation mitigates metabolic inflexibility by preventing muscle atrophy. Design and Setting Randomized crossover longitudinal study conducted at the German Aerospace Center, Cologne, Germany. Participants and Interventions Ten healthy men were randomly assigned to dietary countermeasure or isocaloric control diet during a 21-day bed rest. Outcome Measures Before and at the end of the bed rest, metabolic flexibility was assessed during a meal test. Secondary outcomes were glucose tolerance by oral glucose tolerance test, body composition by dual energy X-ray absorptiometry, ectopic fat storage by magnetic resonance imaging, and inflammation and oxidative stress markers. Results Bed rest decreased the ability to switch from fat to carbohydrate oxidation when transitioning from fasted to fed states (i.e., metabolic inflexibility), antioxidant capacity, fat-free mass (FFM), and muscle insulin sensitivity along with greater fat deposition in muscle (P < 0.05 for all). Changes in fasting insulin and inflammation were not observed. However, glucose tolerance was reduced during acute overfeeding. Protein supplementation did not prevent FFM loss and metabolic alterations. Conclusions Physical inactivity triggers metabolic inflexibility, even when energy balance is maintained. Although reduced insulin sensitivity and increased fat deposition were observed at the muscle level, systemic glucose intolerance was detected only in response to a moderately high-fat meal. This finding supports the role of physical inactivity in metabolic inflexibility and suggests that metabolic inflexibility precedes systemic glucose intolerance.
Collapse
Affiliation(s)
- Floriane Rudwill
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Donal O’Gorman
- 3U Diabetes Consortium, Dublin City University, Dublin, Ireland
- National Institute for Cellular Biotechnology & School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Etienne Lefai
- Carmen INSERM U1060, University of Lyon, INRA U1235, Lyon, France
| | - Isabelle Chery
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | | | - Sylvie Normand
- Human Nutrition Research Centre of Rhône-Alpes, Hospices Civils de Lyon, Lyon, France
| | - Allan F Pagano
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Angèle Chopard
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Anthony Damiot
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Claire Laurens
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | | | - Martina Heer
- Institute of Nutritional and Food Sciences, Human Nutrition, University of Bonn, Bonn, Germany
| | - Petra Frings Meuthen
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Judith Buehlmeier
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- University of Duisburg-Essen, Department of Child and Adolescent Psychiatry, Essen, Germany
| | - Natalie Baecker
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Laure Meiller
- Carmen INSERM U1060, University of Lyon, INRA U1235, Lyon, France
- Human Nutrition Research Centre of Rhône-Alpes, Hospices Civils de Lyon, Lyon, France
| | | | - Stéphane Blanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Chantal Simon
- Carmen INSERM U1060, University of Lyon, INRA U1235, Lyon, France
- Human Nutrition Research Centre of Rhône-Alpes, Hospices Civils de Lyon, Lyon, France
| | - Audrey Bergouignan
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Anschutz Health and Wellness Center, Anschutz Medical Campus, Aurora, Colorado
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
24
|
Soares RN, Reimer RA, Doyle-Baker PK, Murias JM. Metabolic inflexibility in individuals with obesity assessed by near-infrared spectroscopy. Diab Vasc Dis Res 2017; 14:502-509. [PMID: 28825331 DOI: 10.1177/1479164117725478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To non-invasively evaluate differences in oxidative metabolism in individuals with obesity compared to normal weight using the near-infrared spectroscopy and vascular occlusion technique during hyperglycaemia. METHODS In all, 16 normal-weight individuals (body mass index: 21.3 ± 1.7 kg/m2) and 13 individuals with obesity (body mass index: 34.4 ± 2.0 kg/m2) had five vascular occlusion tests (pre, 30, 60, 90 and 120 min after glucose ingestion). Oxygen utilization was estimated from the area under the curve of the deoxyhemoglobin [HHb] signal during occlusion. Muscle reperfusion was derived from the area above the curve after cuff release. RESULTS The deoxyhemoglobin area under the curve during occlusion of the normal-weight individuals increased from 15,732 ± 2344 (% . s) at pre to 18,930 ± 3226 (% . s) ( p < 0.05) at 90 min after glucose ingestion. The deoxyhemoglobin area under the curve during occlusion decreased significantly from 14,695 ± 3341 (% . s) at pre to 11,273 ± 1825 (% . s) ( p < 0.05) and 11,360 ± 1750 (% . s) ( p < 0.05) at 30 and 60 min, respectively, after glucose ingestion. The area above the curve of deoxyhemoglobin during reperfusion decreased significantly from 6450 ± 765 (% . s) at pre to 4830 ± 963 (% . s) ( p < 0.05) at 60 min and to 4210 ± 595 (% . s) ( p < 0.01) at 90 min in normal-weight individuals after glucose ingestion, with no changes observed in individuals with obesity. CONCLUSION This study confirmed in vivo and non-invasively the metabolic inflexibility of skeletal muscle in individuals with obesity during hyperglycaemia.
Collapse
Affiliation(s)
| | - Raylene A Reimer
- 1 Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- 2 Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patricia K Doyle-Baker
- 1 Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- 3 Faculty of Environmental Design, University of Calgary, Calgary, AB, Canada
| | - Juan M Murias
- 1 Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
25
|
Rynders CA, Blanc S, DeJong N, Bessesen DH, Bergouignan A. Sedentary behaviour is a key determinant of metabolic inflexibility. J Physiol 2017; 596:1319-1330. [PMID: 28543022 DOI: 10.1113/jp273282] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/22/2017] [Indexed: 01/14/2023] Open
Abstract
Metabolic flexibility is defined as the ability to adapt substrate oxidation rates in response to changes in fuel availability. The inability to switch between the oxidation of lipid and carbohydrate appears to be an important feature of chronic disorders such as obesity and type 2 diabetes. Laboratory assessment of metabolic flexibility has traditionally involved measurement of the respiratory quotient (RQ) by indirect calorimetry during the fasted to fed transition (e.g. mixed meal challenge) or during a hyperinsulinaemic-euglycaemic clamp. Under these controlled experimental conditions, 'metabolic inflexibility' is characterized by lower fasting fat oxidation (higher fasting RQ) and/or an impaired ability to oxidize carbohydrate during feeding or insulin-stimulated conditions (lower postprandial or clamp RQ). This experimental paradigm has provided fundamental information regarding the role of substrate oxidation in the development of obesity and insulin resistance. However, the key determinants of metabolic flexibility among relevant clinical populations remain unclear. Herein, we propose that habitual physical activity levels are a primary determinant of metabolic flexibility. We present evidence demonstrating that high levels of physical activity predict metabolic flexibility, while physical inactivity and sedentary behaviours trigger a state of metabolic 'inflexibility', even among individuals who meet physical activity recommendations. Furthermore, we describe alternative experimental approaches to studying the concept of metabolic flexibility across a range of activity and inactivity. Finally, we address the promising use of strategies that aim to reduce sedentary behaviours as therapy to improve metabolic flexibility and reduce weight gain risk.
Collapse
Affiliation(s)
- Corey A Rynders
- Division of Geriatric Medicine, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Stephane Blanc
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, CNRS, Strasbourg, France.,UMR 7178 Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
| | - Nathan DeJong
- Division of Endocrinology, Metabolism and Diabetes and Anschutz Health and Wellness Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Daniel H Bessesen
- Division of Endocrinology, Metabolism and Diabetes and Anschutz Health and Wellness Center, University of Colorado, School of Medicine, Aurora, CO, USA.,Denver Health Medical Center, Denver, CO, USA
| | - Audrey Bergouignan
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, CNRS, Strasbourg, France.,UMR 7178 Centre National de la Recherche Scientifique (CNRS), Strasbourg, France.,Division of Endocrinology, Metabolism and Diabetes and Anschutz Health and Wellness Center, University of Colorado, School of Medicine, Aurora, CO, USA
| |
Collapse
|
26
|
Goodpaster BH, Sparks LM. Metabolic Flexibility in Health and Disease. Cell Metab 2017; 25:1027-1036. [PMID: 28467922 PMCID: PMC5513193 DOI: 10.1016/j.cmet.2017.04.015] [Citation(s) in RCA: 555] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
Metabolic flexibility is the ability to respond or adapt to conditional changes in metabolic demand. This broad concept has been propagated to explain insulin resistance and mechanisms governing fuel selection between glucose and fatty acids, highlighting the metabolic inflexibility of obesity and type 2 diabetes. In parallel, contemporary exercise physiology research has helped to identify potential mechanisms underlying altered fuel metabolism in obesity and diabetes. Advances in "omics" technologies have further stimulated additional basic and clinical-translational research to further interrogate mechanisms for improved metabolic flexibility in skeletal muscle and adipose tissue with the goal of preventing and treating metabolic disease.
Collapse
Affiliation(s)
- Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford Burnham Prebys Medical Discovery Institute, 301 East Princeton Street, Orlando, FL 32804, USA.
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford Burnham Prebys Medical Discovery Institute, 301 East Princeton Street, Orlando, FL 32804, USA
| |
Collapse
|
27
|
Peterson CM, Zhang B, Johannsen DL, Ravussin E. Eight weeks of overfeeding alters substrate partitioning without affecting metabolic flexibility in men. Int J Obes (Lond) 2017; 41:887-893. [PMID: 28262678 PMCID: PMC5461218 DOI: 10.1038/ijo.2017.58] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 01/24/2017] [Accepted: 02/18/2017] [Indexed: 01/07/2023]
Abstract
Background/Objective Impairments in metabolic flexibility and substrate handling are associated with metabolic syndrome. However, it is unknown whether metabolic inflexibility causes insulin resistance. We therefore measured metabolic flexibility and substrate handling before and after 8 weeks of overfeeding in initially healthy adults, as a model of the early stages of insulin resistance. Subjects/Methods Twenty-nine healthy men (27 ± 5 years old; BMI 25.5 ± 2.3 kg/m2) were overfed by 40% above baseline energy requirements for 8 weeks and gained 7.6 ± 2.1 kg of weight. Before and after overfeeding, energy expenditure, substrate oxidation, and metabolic flexibility were measured in 2 ways: a) during 1 day of eucaloric feeding in a whole-room indirect calorimeter, and b) during a two-step hyperinsulinemic-euglycemic clamp. Results Eight weeks of overfeeding decreased insulin sensitivity at low and high doses of insulin (p=0.001 and p=0.06, respectively). This was accompanied by decreases in the respiratory quotient (RQ) while sleeping (0.877 ± 0.020 to 0.864 ± 0.026; p=0.05) and at low insulin levels during the clamp (0.927 ± 0.047 to 0.907 ± 0.032; p=0.01). Overfeeding did not affect metabolic flexibility as measured during a clamp (p≥0.17), but it tended to increase 24-hour metabolic flexibility (awake – sleep RQ) as measured by chamber by 0.010 ± 0.028 (p=0.08). In terms of substrate oxidation, overfeeding increased protein oxidation (13 ± 23 g/day; p=0.003) and tended to increase fat oxidation (6 ± 16 g/day; p=0.07), but did not affect carbohydrate oxidation (p=0.64). Individuals with greater metabolic adaptation to overfeeding had higher carbohydrate oxidation rates (r=0.66, p=8×10−5) but not fat oxidation rates (p=0.09). Conclusions The early stages of insulin resistance are accompanied by modest declines in the RQs during sleep and during a clamp, with no changes in fasting RQ or signs of metabolic inflexibility. Our data therefore suggest that metabolic inflexibility does not cause insulin resistance.
Collapse
Affiliation(s)
- C M Peterson
- Human Translational Physiology, Pennington Biomedical Research Center, Baton Rouge, LA, USA.,Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - B Zhang
- Human Translational Physiology, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - D L Johannsen
- Human Translational Physiology, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - E Ravussin
- Human Translational Physiology, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
28
|
Lactate, a Neglected Factor for Diabetes and Cancer Interaction. Mediators Inflamm 2016; 2016:6456018. [PMID: 28077918 PMCID: PMC5203906 DOI: 10.1155/2016/6456018] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 12/23/2022] Open
Abstract
Increasing body of evidence suggests that there exists a connection between diabetes and cancer. Nevertheless, to date, the potential reasons for this association are still poorly understood and currently there is no clinical evidence available to direct the proper management of patients presenting with these two diseases concomitantly. Both cancer and diabetes have been associated with abnormal lactate metabolism and high level of lactate production is the key biological property of these diseases. Conversely, high lactate contribute to a higher insulin resistant status and a more malignant phenotype of cancer cells, promoting diabetes and cancer development and progression. In view of associations between diabetes and cancers, the role of high lactate production in diabetes and cancer interaction should not be neglected. Here, we review the available evidence of lactate's role in different biological characteristics of diabetes and cancer and interactive relationship between them. Understanding the molecular mechanisms behind metabolic remodeling of diabetes- and cancer-related signaling would endow novel preventive and therapeutic approaches for diabetes and cancer treatment.
Collapse
|
29
|
Abstract
Recent discoveries suggest that adipose tissue can synthesise and secrete mediators that contribute to the pathogenesis of type 2 diabetes mellitus and cardiovascular disease, leading to the concept of `adipose tissue as an endocrine organ'. These mediators include tumour necrosis factor-α, interleukin-6, adiponectin, resistin, plasminogen activator inhibitor type 1 and angiotensin II. They modify the activity of regulatory enzymes in adipocyte metabolism, alter the release of non-esterified fatty acids and affect glucose uptake. They may also have direct actions on the vascular endothelium. The diverse effects of these mediators support the notion that inflammation plays a role in metabolic and vascular disease, at least in part via adipocyte-derived cytokines.
Collapse
Affiliation(s)
- Colin Perry
- University Departments of Medicine, Glasgow Royal Infirmary, Glasgow, G31 2ER
| | - Naveed Sattar
- Pathological Biochemistry, Glasgow Royal Infirmary, Glasgow, G31 2ER
| | - John Petrie
- University Departments of Medicine, Glasgow Royal Infirmary, Glasgow, G31 2ER,
| |
Collapse
|
30
|
Johnson ML, Distelmaier K, Lanza IR, Irving BA, Robinson MM, Konopka AR, Shulman GI, Nair KS. Mechanism by Which Caloric Restriction Improves Insulin Sensitivity in Sedentary Obese Adults. Diabetes 2016; 65:74-84. [PMID: 26324180 PMCID: PMC4686951 DOI: 10.2337/db15-0675] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/26/2015] [Indexed: 12/12/2022]
Abstract
Caloric restriction (CR) improves insulin sensitivity and reduces the incidence of diabetes in obese individuals. The underlying mechanisms whereby CR improves insulin sensitivity are not clear. We evaluated the effect of 16 weeks of CR on whole-body insulin sensitivity by pancreatic clamp before and after CR in 11 obese participants (BMI = 35 kg/m(2)) compared with 9 matched control subjects (BMI = 34 kg/m(2)). Compared with the control subjects, CR increased the glucose infusion rate needed to maintain euglycemia during hyperinsulinemia, indicating enhancement of peripheral insulin sensitivity. This improvement in insulin sensitivity was not accompanied by changes in skeletal muscle mitochondrial oxidative capacity or oxidant emissions, nor were there changes in skeletal muscle ceramide, diacylglycerol, or amino acid metabolite levels. However, CR lowered insulin-stimulated thioredoxin-interacting protein (TXNIP) levels and enhanced nonoxidative glucose disposal. These results support a role for TXNIP in mediating the improvement in peripheral insulin sensitivity after CR.
Collapse
Affiliation(s)
- Matthew L Johnson
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN
| | - Klaus Distelmaier
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN
| | - Ian R Lanza
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN
| | - Brian A Irving
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN
| | - Matthew M Robinson
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN
| | - Adam R Konopka
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN
| | - Gerald I Shulman
- Howard Hughes Medical Institute and the Departments of Medicine and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT
| | - K Sreekumaran Nair
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
31
|
Diurnal variation in skeletal muscle and liver glycogen in humans with normal health and Type 2 diabetes. Clin Sci (Lond) 2015; 128:707-13. [PMID: 25583442 DOI: 10.1042/cs20140681] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In health, food carbohydrate is stored as glycogen in muscle and liver, preventing a deleterious rise in osmotically active plasma glucose after eating. Glycogen concentrations increase sequentially after each meal to peak in the evening, and fall to fasting levels thereafter. Skeletal muscle accounts for the larger part of this diurnal buffering capacity with liver also contributing. The effectiveness of this diurnal mechanism has not been previously studied in Type 2 diabetes. We have quantified the changes in muscle and liver glycogen concentration with 13C magnetic resonance spectroscopy at 3.0 T before and after three meals consumed at 4 h intervals. We studied 40 (25 males; 15 females) well-controlled Type 2 diabetes subjects on metformin only (HbA1c (glycated haemoglobin) 6.4±0.07% or 47±0.8 mmol/mol) and 14 (8 males; 6 females) glucose-tolerant controls matched for age, weight and body mass index (BMI). Muscle glycogen concentration increased by 17% after day-long eating in the control group (68.1±4.8 to 79.7±4.2 mmol/l; P=0.006), and this change inversely correlated with homoeostatic model assessment of insulin resistance [HOMA-IR] (r=-0.56; P=0.02). There was no change in muscle glycogen in the Type 2 diabetes group after day-long eating (68.3±2.6 to 67.1±2.0 mmol/mol; P=0.62). Liver glycogen rose similarly in normal control (325.9±25.0 to 388.1±30.3 mmol/l; P=0.005) and Type 2 diabetes groups (296.1±16.0 to 350.5±6.7 mmol/l; P<0.0001). In early Type 2 diabetes, the major physiological mechanism for skeletal muscle postprandial glycogen storage is completely inactive. This is directly related to insulin resistance, although liver glycogen storage is normal.
Collapse
|
32
|
Kowalski GM, Bruce CR. The regulation of glucose metabolism: implications and considerations for the assessment of glucose homeostasis in rodents. Am J Physiol Endocrinol Metab 2014; 307:E859-71. [PMID: 25205823 DOI: 10.1152/ajpendo.00165.2014] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of insulin resistance and type 2 diabetes (T2D) is increasing at alarming rates. In the quest to understand the underlying causes of and to identify novel therapeutic targets to treat T2D, scientists have become increasingly reliant on the use of rodent models. Here, we provide a discussion on the regulation of rodent glucose metabolism, highlighting key differences and similarities that exist between rodents and humans. In addition, some of the issues and considerations associated with assessing glucose homeostasis and insulin action are outlined. We also discuss the role of the liver vs. skeletal muscle in regulating whole body glucose metabolism in rodents, emphasizing the importance of defective hepatic glucose metabolism in the development of impaired glucose tolerance, insulin resistance, and T2D.
Collapse
Affiliation(s)
- Greg M Kowalski
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Clinton R Bruce
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
33
|
Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, Rodríguez-Seijas J. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014; 17:76-100. [PMID: 24929216 DOI: 10.1016/j.mito.2014.05.007] [Citation(s) in RCA: 365] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/19/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023]
Abstract
Metabolic pathways involved in lactate metabolism are important to understand the physiological response to exercise and the pathogenesis of prevalent diseases such as diabetes and cancer. Monocarboxylate transporters are being investigated as potential targets for diagnosis and therapy of these and other disorders. Glucose and alanine produce pyruvate which is reduced to lactate by lactate dehydrogenase in the cytoplasm without oxygen consumption. Lactate removal takes place via its oxidation to pyruvate by lactate dehydrogenase. Pyruvate may be either oxidized to carbon dioxide producing energy or transformed into glucose. Pyruvate oxidation requires oxygen supply and the cooperation of pyruvate dehydrogenase, the tricarboxylic acid cycle, and the mitochondrial respiratory chain. Enzymes of the gluconeogenesis pathway sequentially convert pyruvate into glucose. Congenital or acquired deficiency on gluconeogenesis or pyruvate oxidation, including tissue hypoxia, may induce lactate accumulation. Both obese individuals and patients with diabetes show elevated plasma lactate concentration compared to healthy subjects, but there is no conclusive evidence of hyperlactatemia causing insulin resistance. Available evidence suggests an association between defective mitochondrial oxidative capacity in the pancreatic β-cells and diminished insulin secretion that may trigger the development of diabetes in patients already affected with insulin resistance. Several mutations in the mitochondrial DNA are associated with diabetes mellitus, although the pathogenesis remains unsettled. Mitochondrial DNA mutations have been detected in a number of human cancers. d-lactate is a lactate enantiomer normally formed during glycolysis. Excess d-lactate is generated in diabetes, particularly during diabetic ketoacidosis. d-lactic acidosis is typically associated with small bowel resection.
Collapse
Affiliation(s)
- M Adeva-Andany
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain.
| | - M López-Ojén
- Internal Medicine Division, Policlínica Assistens, c/Federico García, 4-planta baja, 15009 La Coruña, Spain
| | - R Funcasta-Calderón
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| | - E Ameneiros-Rodríguez
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| | - C Donapetry-García
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| | - M Vila-Altesor
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| | - J Rodríguez-Seijas
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| |
Collapse
|
34
|
Teodoro JS, Varela AT, Rolo AP, Palmeira CM. High-fat and obesogenic diets: current and future strategies to fight obesity and diabetes. GENES AND NUTRITION 2014; 9:406. [PMID: 24842072 DOI: 10.1007/s12263-014-0406-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 05/06/2014] [Indexed: 12/14/2022]
Abstract
Obesity, diabetes and their associated diseases are some of the greatest challenges that the world health care systems already face and with prospects of overburdening their capacities and funding. Due to decreased energetic expenditure and increased caloric intake, particularly in saturated fats, the number of people afflicted by said conditions is increasing by the day. Due to the failure, to this day, to effectively and ubiquity prevent and revert these diseases, the research into new compounds and therapeutic strategies is vital. In this review, we explain the most common dietary models of obesity and diabetes and the novel avenues of research we believe will be taken in the next few years in obesity and diabetes research. We primarily focus on the role of mitochondria and how the modulation of mitochondrial function and number as well as several promising therapeutic strategies involving metabolic regulators can positively affect the obese and diabetic status.
Collapse
Affiliation(s)
- João S Teodoro
- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal
| | | | | | | |
Collapse
|
35
|
Nellemann B, Vendelbo MH, Nielsen TS, Bak AM, Høgild M, Pedersen SB, Biensø RS, Pilegaard H, Møller N, Jessen N, Jørgensen JOL. Growth hormone-induced insulin resistance in human subjects involves reduced pyruvate dehydrogenase activity. Acta Physiol (Oxf) 2014; 210:392-402. [PMID: 24148194 DOI: 10.1111/apha.12183] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/09/2013] [Accepted: 10/17/2013] [Indexed: 12/15/2022]
Abstract
AIM Insulin resistance induced by growth hormone (GH) is linked to promotion of lipolysis by unknown mechanisms. We hypothesized that suppression of the activity of pyruvate dehydrogenase in the active form (PDHa) underlies GH-induced insulin resistance similar to what is observed during fasting. METHODS Eight healthy male subjects were studied four times in a randomized, single-blinded parallel design: Control, GH, Fasting (36 h) and GH + Fasting. GH (30 ng × kg(-1) × min(-1)) or saline was infused throughout the metabolic study day. Substrate metabolism and insulin sensitivity were assessed by indirect calorimetry and isotopically determined rates of glucose turnover before and after a hyperinsulinemic euglycemic clamp. PDHa activity, PDH-E1α phosphorylation, PDK4 expression and activation of insulin signalling proteins were assessed in skeletal muscle. RESULTS Both fasting and GH promoted lipolysis, which was associated with ≈50% reduction in insulin sensitivity compared with the control day. PDHa activity was significantly reduced by GH as well as fasting. This was associated with increased inhibitory PDH-E1α phosphorylation on site 1 (Ser(293)) and 2 (Ser(300)) and up-regulation of PDK4 mRNA, while canonical insulin signalling to glucose transport was unaffected. CONCLUSION Competition between intermediates of glucose and fatty acids seems to play a causal role in insulin resistance induced by GH in human subjects.
Collapse
Affiliation(s)
- B. Nellemann
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - M. H. Vendelbo
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - T. S. Nielsen
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - A. M. Bak
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - M. Høgild
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - S. B. Pedersen
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - R. S. Biensø
- Centre of Inflammation and Metabolism & August Krogh Centre; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - H. Pilegaard
- Centre of Inflammation and Metabolism & August Krogh Centre; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - N. Møller
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - N. Jessen
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - J. O. L. Jørgensen
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| |
Collapse
|
36
|
Tangen SE, Tsinajinnie D, Nuñez M, Shaibi GQ, Mandarino LJ, Coletta DK. Whole blood gene expression profiles in insulin resistant Latinos with the metabolic syndrome. PLoS One 2013; 8:e84002. [PMID: 24358323 PMCID: PMC3866261 DOI: 10.1371/journal.pone.0084002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/11/2013] [Indexed: 01/02/2023] Open
Abstract
Although insulin resistance in skeletal muscle is well-characterized, the role of circulating whole blood in the metabolic syndrome phenotype is not well understood. We set out to test the hypothesis that genes involved in inflammation, insulin signaling and mitochondrial function would be altered in expression in the whole blood of individuals with metabolic syndrome. We further wanted to examine whether similar relationships that we have found previously in skeletal muscle exist in peripheral whole blood cells. All subjects (n=184) were Latino descent from the Arizona Insulin Resistance registry. Subjects were classified based on the metabolic syndrome phenotype according to the National Cholesterol Education Program’s Adult Treatment Panel III. Of the 184 Latino subjects in the study, 74 were classified with the metabolic syndrome and 110 were without. Whole blood gene expression profiling was performed using the Agilent 4x44K Whole Human Genome Microarray. Whole blood microarray analysis identified 1,432 probes that were altered in expression ≥1.2 fold and P<0.05 after Benjamini-Hochberg in the metabolic syndrome subjects. KEGG pathway analysis revealed significant enrichment for pathways including ribosome, oxidative phosphorylation and MAPK signaling (all Benjamini-Hochberg P<0.05). Whole blood mRNA expression changes observed in the microarray data were confirmed by quantitative RT-PCR. Transcription factor binding motif enrichment analysis revealed E2F1, ELK1, NF-kappaB, STAT1 and STAT3 significantly enriched after Bonferroni correction (all P<0.05). The results of the present study demonstrate that whole blood is a useful tissue for studying the metabolic syndrome and its underlying insulin resistance although the relationship between blood and skeletal muscle differs.
Collapse
Affiliation(s)
- Samantha E. Tangen
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Darwin Tsinajinnie
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Martha Nuñez
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Gabriel Q. Shaibi
- College of Nursing & Health Innovation, Arizona State University, Tempe, Arizona, United States of America
- Mayo Clinic in Arizona, Scottsdale, Arizona, United States of America
| | - Lawrence J. Mandarino
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Mayo Clinic in Arizona, Scottsdale, Arizona, United States of America
| | - Dawn K. Coletta
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Mayo Clinic in Arizona, Scottsdale, Arizona, United States of America
- Department of Basic Medical Sciences, University of Arizona College of Medicine – Phoenix, Phoenix, Arizona
- * E-mail:
| |
Collapse
|
37
|
Abstract
The specific cellular underpinnings or mechanisms of insulin resistance (IR) are not clear. Here I present evidence to support a causal association between mitochondrial energetics and IR. A large body of literature indicates that mitochondrial capacity for oxidative metabolism is lower in human obesity and type 2 diabetes. Whether or not mitochondria play a causal role in IR is hotly debated. First, IR can be caused by many factors, many of which may or may not involve mitochondria. These include lipid overload, oxidative stress, and inflammation. Thus the first tenet of an argument supporting a role for mitochondria in IR is that mitochondria derangements can cause IR, but IR does not have to involve mitochondria. The second tenet of this argument is that animal models in which oxidative metabolism are completely abolished are not always physiologically or pathologically relevant to human IR, in which small metabolic perturbations can have profound effects over a prolonged period. Lastly, mitochondria are complex organelles, with diverse functions, including links with cell signaling, oxidative stress, and inflammation, which in turn can be connected with IR. In summary, mitochondrial "deficiency" is not merely a reduced energy generation or low fatty acid oxidation; this concept should be expanded to numerous additional important functions, many of which can cause IR if perturbed.
Collapse
Affiliation(s)
- Bret H Goodpaster
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
38
|
Coomans CP, van den Berg SAA, Lucassen EA, Houben T, Pronk ACM, van der Spek RD, Kalsbeek A, Biermasz NR, Willems van Dijk K, Romijn JA, Meijer JH. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes 2013; 62:1102-8. [PMID: 23274903 PMCID: PMC3609590 DOI: 10.2337/db12-0507] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Disturbances in the circadian system are associated with the development of type 2 diabetes mellitus. Here, we studied the direct contribution of the suprachiasmatic nucleus (SCN), the central pacemaker in the circadian system, in the development of insulin resistance. Exclusive bilateral SCN lesions in male C57Bl/6J mice, as verified by immunochemistry, showed a small but significant increase in body weight (+17%), which was accounted for by an increase in fat mass. In contrast, mice with collateral damage to the ventromedial hypothalamus and paraventricular nucleus showed severe obesity and insulin resistance. Mice with exclusive SCN ablation revealed a loss of circadian rhythm in activity, oxygen consumption, and food intake. Hyperinsulinemic-euglycemic clamp analysis 8 weeks after lesioning showed that the glucose infusion rate was significantly lower in SCN lesioned mice compared with sham-operated mice (-63%). Although insulin potently inhibited endogenous glucose production (-84%), this was greatly reduced in SCN lesioned mice (-7%), indicating severe hepatic insulin resistance. Our data show that SCN malfunctioning plays an important role in the disturbance of energy balance and suggest that an absence of central clock activity, in a genetically intact animal, may lead to the development of insulin resistance.
Collapse
Affiliation(s)
- Claudia P Coomans
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Teodoro JS, Rolo AP, Palmeira CM. The NAD ratio redox paradox: why does too much reductive power cause oxidative stress? Toxicol Mech Methods 2013; 23:297-302. [PMID: 23256455 DOI: 10.3109/15376516.2012.759305] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The reductive power provided by nicotinamide adenine dinucleotides is invaluable for several cellular processes. It drives metabolic reactions, enzymatic activity, regulates genetic expression and allows for the maintenance of a normal cell redox status. Therefore, the balance between the oxidized (NAD(+)) and the reduced (NADH) forms is critical for the cell's proper function and ultimately, for its survival. Being intimately associated with the cells' metabolism, it is expected that alterations to the NAD(+)/NADH ratio are to be found in situations of metabolic diseases, as is the case of diabetes. NAD(+) is a necessary cofactor for several enzymes' activity, many of which are related to metabolism. Therefore, a decrease in the NAD(+)/NADH ratio causes these enzymes to decrease in activity (reductive stress), resulting in an altered metabolic situation that might be the first insult toward several pathologies, such as diabetes. Here, we review the importance of nicotinamide adenine dinucleotides in the liver cell and its fluctuations in a state of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- João Soeiro Teodoro
- Center for Neurosciences and Cell Biology, Department of Life Sciences of the University of Coimbra , Coimbra , Portugal
| | | | | |
Collapse
|
40
|
Kleinert M, Sylow L, Richter EA. Regulation of glycogen synthase in muscle and its role in Type 2 diabetes. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/dmt.12.54] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Barrett EJ, Rattigan S. Muscle perfusion: its measurement and role in metabolic regulation. Diabetes 2012; 61:2661-8. [PMID: 23093655 PMCID: PMC3478558 DOI: 10.2337/db12-0271] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/02/2012] [Indexed: 01/04/2023]
Affiliation(s)
- Eugene J Barrett
- Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| | | |
Collapse
|
42
|
Abstract
Magnetic resonance spectroscopy (MRS) methods offer a potentially valuable window into cellular metabolism. Measurement of flux between inorganic phosphate (Pi) and ATP using (31)P MRS magnetization transfer has been used in resting muscle to assess what is claimed to be mitochondrial ATP synthesis and has been particularly popular in the study of insulin effects and insulin resistance. However, the measured Pi→ATP flux in resting skeletal muscle is far higher than the true rate of oxidative ATP synthesis, being dominated by a glycolytically mediated Pi↔ATP exchange reaction that is unrelated to mitochondrial function. Furthermore, even if measured accurately, the ATP production rate in resting muscle has no simple relationship to mitochondrial capacity as measured either ex vivo or in vivo. We summarize the published measurements of Pi→ATP flux, concentrating on work relevant to diabetes and insulin, relate it to current understanding of the physiology of mitochondrial ATP synthesis and glycolytic Pi↔ATP exchange, and discuss some possible implications of recently reported correlations between Pi→ATP flux and other physiological measures.
Collapse
Affiliation(s)
- Graham J Kemp
- Department of Musculoskeletal Biology and Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
43
|
Vind BF, Birk JB, Vienberg SG, Andersen B, Beck-Nielsen H, Wojtaszewski JFP, Højlund K. Hyperglycaemia normalises insulin action on glucose metabolism but not the impaired activation of AKT and glycogen synthase in the skeletal muscle of patients with type 2 diabetes. Diabetologia 2012; 55:1435-45. [PMID: 22322917 DOI: 10.1007/s00125-012-2482-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
AIMS/HYPOTHESIS In type 2 diabetes, reduced insulin-stimulated glucose disposal, primarily glycogen synthesis, is associated with defective insulin activation of glycogen synthase (GS) in skeletal muscle. Hyperglycaemia may compensate for these defects, but to what extent it involves improved insulin signalling to glycogen synthesis remains to be clarified. METHODS Whole-body glucose metabolism was studied in 12 patients with type 2 diabetes, and 10 lean and 10 obese non-diabetic controls by means of indirect calorimetry and tracers during a euglycaemic-hyperinsulinaemic clamp. The diabetic patients underwent a second isoglycaemic-hyperinsulinaemic clamp maintaining fasting hyperglycaemia. Muscle biopsies from m. vastus lateralis were obtained before and after the clamp for examination of GS and relevant insulin signalling components. RESULTS During euglycaemia, insulin-stimulated glucose disposal, glucose oxidation and non-oxidative glucose metabolism were reduced in the diabetic group compared with both control groups (p < 0.05). This was associated with impaired insulin-stimulated GS and AKT2 activity, deficient dephosphorylation at GS sites 2 + 2a, and reduced Thr308 and Ser473 phosphorylation of AKT. When studied under hyperglycaemia, all variables of insulin-stimulated glucose metabolism were normalised compared with the weight-matched controls. However, insulin activation and dephosphorylation (site 2 + 2a) of GS as well as activation of AKT2 and phosphorylation at Thr308 and Ser473 remained impaired (p < 0.05). CONCLUSIONS/INTERPRETATIONS These data confirm that hyperglycaemia compensates for decreased whole-body glucose disposal in type 2 diabetes. In contrast to previous less well-controlled studies, we provide evidence that the compensatory effect of hyperglycaemia in patients with type 2 diabetes does not involve normalisation of insulin action on GS or upstream signalling in skeletal muscle.
Collapse
Affiliation(s)
- B F Vind
- Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | | | | | | | | | | | | |
Collapse
|
44
|
Jensen J, Rustad PI, Kolnes AJ, Lai YC. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol 2011; 2:112. [PMID: 22232606 PMCID: PMC3248697 DOI: 10.3389/fphys.2011.00112] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 12/09/2011] [Indexed: 12/12/2022] Open
Abstract
Glycogen is the storage form of carbohydrates in mammals. In humans the majority of glycogen is stored in skeletal muscles (∼500 g) and the liver (∼100 g). Food is supplied in larger meals, but the blood glucose concentration has to be kept within narrow limits to survive and stay healthy. Therefore, the body has to cope with periods of excess carbohydrates and periods without supplementation. Healthy persons remove blood glucose rapidly when glucose is in excess, but insulin-stimulated glucose disposal is reduced in insulin resistant and type 2 diabetic subjects. During a hyperinsulinemic euglycemic clamp, 70-90% of glucose disposal will be stored as muscle glycogen in healthy subjects. The glycogen stores in skeletal muscles are limited because an efficient feedback-mediated inhibition of glycogen synthase prevents accumulation. De novo lipid synthesis can contribute to glucose disposal when glycogen stores are filled. Exercise physiologists normally consider glycogen's main function as energy substrate. Glycogen is the main energy substrate during exercise intensity above 70% of maximal oxygen uptake ([Formula: see text]) and fatigue develops when the glycogen stores are depleted in the active muscles. After exercise, the rate of glycogen synthesis is increased to replete glycogen stores, and blood glucose is the substrate. Indeed insulin-stimulated glucose uptake and glycogen synthesis is elevated after exercise, which, from an evolutional point of view, will favor glycogen repletion and preparation for new "fight or flight" events. In the modern society, the reduced glycogen stores in skeletal muscles after exercise allows carbohydrates to be stored as muscle glycogen and prevents that glucose is channeled to de novo lipid synthesis, which over time will causes ectopic fat accumulation and insulin resistance. The reduction of skeletal muscle glycogen after exercise allows a healthy storage of carbohydrates after meals and prevents development of type 2 diabetes.
Collapse
Affiliation(s)
- Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences Oslo, Norway
| | | | | | | |
Collapse
|
45
|
Coletta DK, Mandarino LJ. Mitochondrial dysfunction and insulin resistance from the outside in: extracellular matrix, the cytoskeleton, and mitochondria. Am J Physiol Endocrinol Metab 2011; 301:E749-55. [PMID: 21862724 PMCID: PMC3214002 DOI: 10.1152/ajpendo.00363.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Insulin resistance in skeletal muscle is a prominent feature of obesity and type 2 diabetes. The association between mitochondrial changes and insulin resistance is well known. More recently, there is growing evidence of a relationship between inflammation, extracellular remodeling, and insulin resistance. The intent of this review is to propose a potentially novel mechanism for the development of insulin resistance, focusing on the underappreciated connections among inflammation, extracellular remodeling, cytoskeletal interactions, mitochondrial function, and insulin resistance in human skeletal muscle. Several sources of inflammation, including expansion of adipose tissue resulting in increased lipolysis and alterations in pro- and anti-inflammatory cytokines, contribute to the insulin resistance observed in obesity and type 2 diabetes. In the experimental model of lipid oversupply, an inflammatory response in skeletal muscle leads to altered expression extracellular matrix-related genes as well as nuclear encoded mitochondrial genes. A similar pattern also is observed in "naturally" occurring insulin resistance in muscle of obese nondiabetic individuals and patients with type 2 diabetes mellitus. More recently, alterations in proteins (including α-actinin-2, desmin, proteasomes, and chaperones) involved in muscle structure and function have been observed in insulin-resistant muscle. Some of these cytoskeletal proteins are mechanosignal transducers that allow muscle fibers to sense contractile activity and respond appropriately. The ensuing alterations in expression of genes coding for mitochondrial proteins and cytoskeletal proteins may contribute to the mitochondrial changes observed in insulin-resistant muscle. These changes in turn may lead to a reduction in fat oxidation and an increase in intramyocellular lipid, which contributes to the defects in insulin signaling in insulin resistance.
Collapse
Affiliation(s)
- Dawn K Coletta
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona 85287-3704, USA
| | | |
Collapse
|
46
|
Kim MS, Wang Y, Rodrigues B. Lipoprotein lipase mediated fatty acid delivery and its impact in diabetic cardiomyopathy. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:800-8. [PMID: 22024251 DOI: 10.1016/j.bbalip.2011.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 09/15/2011] [Accepted: 10/03/2011] [Indexed: 01/29/2023]
Abstract
Although cardiovascular disease is the leading cause of diabetes-related death, its etiology is still not understood. The immediate change that occurs in the diabetic heart is altered energy metabolism where in the presence of impaired glucose uptake, glycolysis, and pyruvate oxidation, the heart switches to exclusively using fatty acids (FA) for energy supply. It does this by rapidly amplifying its lipoprotein lipase (LPL-a key enzyme, which hydrolyzes circulating lipoprotein-triglyceride to release FA) activity at the coronary lumen. An abnormally high capillary LPL could provide excess fats to the heart, leading to a number of metabolic, morphological, and mechanical changes, and eventually to cardiac disease. Unlike the initial response, chronic severe diabetes "turns off" LPL, this is also detrimental to cardiac function. In this review, we describe a number of post-translational mechanisms that influence LPL vesicle formation, actin cytoskeleton rearrangement, and transfer of LPL from cardiomyocytes to the vascular lumen to hydrolyze lipoprotein-triglyceride following diabetes. Appreciating the mechanism of how the heart regulates its LPL following diabetes should allow the identification of novel targets for therapeutic intervention, to prevent heart failure. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.
Collapse
Affiliation(s)
- Min Suk Kim
- Molecular and Cellular Pharmacology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
47
|
Guiducci L, Liistro T, Burchielli S, Panetta D, Bonora D, Di Cecco P, Bucci M, Moehrs S, Del Guerra A, Salvadori PA, Iozzo P. Contribution of organ blood flow, intrinsic tissue clearance and glycaemia to the regulation of glucose use in obese and type 2 diabetic rats: a PET study. Nutr Metab Cardiovasc Dis 2011; 21:726-732. [PMID: 21427012 DOI: 10.1016/j.numecd.2010.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 11/17/2010] [Accepted: 11/21/2010] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS Chronic hyperglycaemia aggravates obesity and diabetes mellitus. The use of glucose by body organs depends on several factors. We sought to investigate the role of blood flow, intrinsic tissue glucose clearance and blood glucose levels in regulating tissue glucose uptake under fasting conditions (FCs) and in response to acute hyperglycaemia (AH) in obese and type 2 diabetic rats. METHODS AND RESULTS Thirty-six Zucker rats were studied by positron emission tomography to quantify perfusion and glucose uptake during FC and after AH in the liver, myocardium, skeletal muscle and subcutaneous adipose tissue. Progressively higher glucose uptake rates were observed from lean to obese (p < 0.05) and to diabetic rats (p < 0.05) in all tissues during both FC and AH. In FC, they were increased of 7-18 times in obese rats and 11-30 times in diabetic rats versus controls. Tissue glucose uptake was increased by over 10-fold during AH in controls; this response was severely blunted in diseased groups. AH tended to stimulate organ perfusion in control rats. Tissue glucose uptake was a function of intrinsic clearance and glycaemia (mass action) in healthy animals, but the latter component was lost in diseased animals. Differences in perfusion did not account for those in glucose uptake. CONCLUSIONS Each organ participates actively in the regulation of its glucose uptake, which is dependent on intrinsic tissue substrate extraction and extrinsic blood glucose delivery, but not on perfusion, and it is potently stimulated by AH. Obese and diabetic rats had an elevated organ glucose uptake but a blunted response to acute glucose intake.
Collapse
Affiliation(s)
- L Guiducci
- Institute of Clinical Physiology, National Research Council (CNR), via Moruzzi 1, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
High-intensity exercise and carbohydrate-reduced energy-restricted diet in obese individuals. Eur J Appl Physiol 2010; 110:893-903. [PMID: 20628884 DOI: 10.1007/s00421-010-1571-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
Abstract
Continuous high glycemic load and inactivity challenge glucose homeostasis and fat oxidation. Hyperglycemia and high intramuscular glucose levels mediate insulin resistance, a precursor state of type 2 diabetes. The aim was to investigate whether a carbohydrate (CHO)-reduced diet combined with high-intensity interval training (HIIT) enhances the beneficial effects of the diet alone on insulin sensitivity and fat oxidation in obese individuals. Nineteen obese subjects underwent 14 days of CHO-reduced and energy-restricted diet. Ten of them combined the diet with HIIT (4 min bouts at 90% VO(2peak) up to 10 times, 3 times a week). Oral glucose insulin sensitivity (OGIS) increased significantly in both groups; [diet-exercise (DE) group: pre 377 ± 70, post 396 ± 68 mL min(-1) m(-2); diet (D) group: pre 365 ± 91, post 404 ± 87 mL min(-1) m(-2); P < 0.001]. Fasting respiratory exchange ratio (RER) decreased significantly in both groups (DE group: pre 0.91 ± 0.06, post 0.88 ± 0.06; D group: pre 0.92 ± 0.07, post 0.86 ± 0.07; P = 0.002). VO(2peak) increased significantly in the DE group (pre 27 ± 5, post 32 ± 6 mL kg(-1) min(-1); P < 0.001), but not in the D group (pre 26 ± 9, post 26 ± 8 mL kg(-1) min(-1)). Lean mass and resistin were preserved only in the DE group (P < 0.05). Fourteen days of CHO-reduced diet improved OGIS and fat oxidation (RER) in obese subjects. The energy-balanced HIIT did not further enhance these parameters, but increased aerobic capacity (VO(2peak)) and preserved lean mass and resistin.
Collapse
|
49
|
Kiilerich K, Gudmundsson M, Birk JB, Lundby C, Taudorf S, Plomgaard P, Saltin B, Pedersen PA, Wojtaszewski JFP, Pilegaard H. Low muscle glycogen and elevated plasma free fatty acid modify but do not prevent exercise-induced PDH activation in human skeletal muscle. Diabetes 2010; 59:26-32. [PMID: 19833896 PMCID: PMC2797931 DOI: 10.2337/db09-1032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To test the hypothesis that free fatty acid (FFA) and muscle glycogen modify exercise-induced regulation of PDH (pyruvate dehydrogenase) in human skeletal muscle through regulation of PDK4 expression. RESEARCH DESIGN AND METHODS On two occasions, healthy male subjects lowered (by exercise) muscle glycogen in one leg (LOW) relative to the contra-lateral leg (CON) the day before the experimental day. On the experimental days, plasma FFA was ensured normal or remained elevated by consuming breakfast rich (low FFA) or poor (high FFA) in carbohydrate, 2 h before performing 20 min of two-legged knee extensor exercise. Vastus lateralis biopsies were obtained before and after exercise. RESULTS PDK4 protein content was approximately 2.2- and approximately 1.5-fold higher in LOW than CON leg in high FFA and low FFA, respectively, and the PDK4 protein content in the CON leg was approximately twofold higher in high FFA than in low FFA. In all conditions, exercise increased PDHa (PDH in the active form) activity, resulting in similar levels in LOW leg in both trials and CON leg in high FFA, but higher level in CON leg in low FFA. PDHa activity was closely associated with the PDH-E1alpha phosphorylation level. CONCLUSIONS Muscle glycogen and plasma FFA attenuate exercise-induced PDH regulation in human skeletal muscle in a nonadditive manner. This might be through regulation of PDK4 expression. The activation of PDH by exercise independent of changes in muscle glycogen or plasma FFA suggests that exercise overrules FFA-mediated inhibition of PDH (i.e., carbohydrate oxidation), and this may thus be one mechanism behind the health-promoting effects of exercise.
Collapse
Affiliation(s)
- Kristian Kiilerich
- Copenhagen Muscle Research Centre, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Højlund K, Birk JB, Klein DK, Levin K, Rose AJ, Hansen BF, Nielsen JN, Beck-Nielsen H, Wojtaszewski JFP. Dysregulation of glycogen synthase COOH- and NH2-terminal phosphorylation by insulin in obesity and type 2 diabetes mellitus. J Clin Endocrinol Metab 2009; 94:4547-56. [PMID: 19837931 DOI: 10.1210/jc.2009-0897] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Insulin-stimulated glucose disposal is impaired in obesity and type 2 diabetes mellitus (T2DM) and is tightly linked to impaired skeletal muscle glucose uptake and storage. Impaired activation of glycogen synthase (GS) by insulin is a well-established defect in both obesity and T2DM, but the underlying mechanisms remain unclear. DESIGN AND PARTICIPANTS Insulin action was investigated in a matched cohort of lean healthy, obese nondiabetic, and obese type 2 diabetic subjects by the euglycemic-hyperinsulinemic clamp technique combined with muscle biopsies. Activity, site-specific phosphorylation, and upstream signaling of GS were evaluated in skeletal muscle. RESULTS GS activity correlated inversely with phosphorylation of GS site 2+2a and 3a. Insulin significantly decreased 2+2a phosphorylation in lean subjects only and induced a larger dephosphorylation at site 3 in lean compared with obese subjects. The exaggerated insulin resistance in T2DM compared with obese subjects was not reflected by differences in site 3 phosphorylation but was accompanied by a significantly higher site 1b phosphorylation during insulin stimulation. Hyperphosphorylation of another Ca(2+)/calmodulin-dependent kinase-II target, phospholamban-Thr17, was also evident in T2DM. Dephosphorylation of GS by phosphatase treatment fully restored GS activity in all groups. CONCLUSIONS Dysregulation of GS phosphorylation plays a major role in impaired insulin regulation of GS in obesity and T2DM. In obesity, independent of T2DM, this is associated with impaired regulation of site 2+2a and likely site 3, whereas the exaggerated insulin resistance to activate GS in T2DM is linked to hyperphosphorylation of at least site 1b. Thus, T2DM per se seems unrelated to defects in the glycogen synthase kinase-3 regulation of GS.
Collapse
Affiliation(s)
- Kurt Højlund
- Department of Exercise and Sport Sciences, Section of Human Physiology, University ofCopenhagen, Copenhagen Muscle Research Centre, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|