1
|
Jiang S, Ren Z, Yang Y, Liu Q, Zhou S, Xiao Y. The GPIHBP1-LPL complex and its role in plasma triglyceride metabolism: Insights into chylomicronemia. Biomed Pharmacother 2023; 169:115874. [PMID: 37951027 DOI: 10.1016/j.biopha.2023.115874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
GPIHBP1 is a protein found in the endothelial cells of capillaries that is anchored by glycosylphosphatidylinositol and binds to high-density lipoproteins. GPIHBP1 attaches to lipoprotein lipase (LPL), subsequently carrying the enzyme and anchoring it to the capillary lumen. Enabling lipid metabolism is essential for the marginalization of lipoproteins alongside capillaries. Studies underscore the significance of GPIHBP1 in transporting, stabilizing, and aiding in the marginalization of LPL. The intricate interplay between GPIHBP1 and LPL has provided novel insights into chylomicronemia in recent years. Mutations hindering the formation or reducing the efficiency of the GPIHBP1-LPL complex are central to the onset of chylomicronemia. This review delves into the structural nuances of the GPIHBP1-LPL interaction, the consequences of mutations in the complex leading to chylomicronemia, and cutting-edge advancements in chylomicronemia treatment.
Collapse
Affiliation(s)
- Shali Jiang
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zhuoqun Ren
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Yutao Yang
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
2
|
Rende U, Ahn SB, Adhikari S, Moh ESX, Pollock CA, Saad S, Guller A. Deciphering the Kidney Matrisome: Identification and Quantification of Renal Extracellular Matrix Proteins in Healthy Mice. Int J Mol Sci 2023; 24:ijms24032827. [PMID: 36769148 PMCID: PMC9917693 DOI: 10.3390/ijms24032827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Precise characterization of a tissue's extracellular matrix (ECM) protein composition (matrisome) is essential for biomedicine. However, ECM protein extraction that requires organ-specific optimization is still a major limiting factor in matrisome studies. In particular, the matrisome of mouse kidneys is still understudied, despite mouse models being crucial for renal research. Here, we comprehensively characterized the matrisome of kidneys in healthy C57BL/6 mice using two ECM extraction methods in combination with liquid chromatography tandem mass spectrometry (LC-MS/MS), protein identification, and label-free quantification (LFQ) using MaxQuant. We identified 113 matrisome proteins, including 22 proteins that have not been previously listed in the Matrisome Database. Depending on the extraction approach, the core matrisome (structural proteins) comprised 45% or 73% of kidney ECM proteins, and was dominated by glycoproteins, followed by collagens and proteoglycans. Among matrisome-associated proteins, ECM regulators had the highest LFQ intensities, followed by ECM-affiliated proteins and secreted factors. The identified kidney ECM proteins were primarily involved in cellular, developmental and metabolic processes, as well as in molecular binding and regulation of catalytic and structural molecules' activity. We also performed in silico comparative analysis of the kidney matrisome composition in humans and mice based on publicly available data. These results contribute to the first reference database for the mouse renal matrisome.
Collapse
Affiliation(s)
- Umut Rende
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Seong Beom Ahn
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Subash Adhikari
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Edward S. X. Moh
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia
| | - Carol A. Pollock
- Department of Medicine, Kolling Institute of Medical Research, University of Sydney, St. Leonards, NSW 2065, Australia
| | - Sonia Saad
- Department of Medicine, Kolling Institute of Medical Research, University of Sydney, St. Leonards, NSW 2065, Australia
| | - Anna Guller
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- Correspondence:
| |
Collapse
|
3
|
Luo J, Wang JK, Song BL. Lowering low-density lipoprotein cholesterol: from mechanisms to therapies. LIFE METABOLISM 2022; 1:25-38. [PMID: 39872686 PMCID: PMC11749099 DOI: 10.1093/lifemeta/loac004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 05/13/2022] [Indexed: 01/30/2025]
Abstract
Low-density lipoprotein (LDL) is the main carrier of cholesterol and cholesteryl ester in circulation. High plasma levels of LDL cholesterol (LDL-C) are a major risk factor of atherosclerotic cardiovascular disease (ASCVD). LDL-C lowering is recommended by many guidelines for the prevention and treatment of ASCVD. Statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 inhibitors are the mainstay of LDL-C-lowering therapy. Novel therapies are also emerging for patients who are intolerant to statins or respond poorly to standard treatments. Here, we review the most recent advances on LDL-C-lowering drugs, focusing on the mechanisms by which they act to reduce LDL-C levels. The article starts with the cornerstone therapies applicable to most patients at risk for ASCVD. Special treatments for those with little or no LDL receptor function then follow. The inhibitors of ATP-citrate lyase and cholesteryl ester transfer protein, which are recently approved and still under investigation for LDL-C lowering, respectively, are also included. Strategies targeting the stability of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and cholesterol catabolism can be novel regimens to reduce LDL-C levels and cardiovascular risk.
Collapse
Affiliation(s)
- Jie Luo
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Jin-Kai Wang
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Whitefield C, Hong N, Mitchell JA, Jackson CJ. Computational design and experimental characterisation of a stable human heparanase variant. RSC Chem Biol 2022; 3:341-349. [PMID: 35382258 PMCID: PMC8905545 DOI: 10.1039/d1cb00239b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Heparanase is the only human enzyme known to hydrolyse heparin sulfate and is involved in many important physiological processes. However, it is also unregulated in many disease states, such as cancer, diabetes and Covid-19. It is thus an important drug target, yet the heterologous production of heparanase is challenging and only possible in mammalian or insect expression systems, which limits the ability of many laboratories to study it. Here we describe the computational redesign of heparanase to allow high yield expression in Escherchia coli. This mutated form of heparanase exhibits essentially identical kinetics, inhibition, structure and protein dynamics to the wild type protein, despite the presence of 26 mutations. This variant will facilitate wider study of this important enzyme and contributes to a growing body of literature that shows evolutionarily conserved and functionally neutral mutations can have significant effects on protein folding and expression. A mutant heparanase that exhibits wild type structure and activity but can be heterologously produced in bacterial protein expression systems.![]()
Collapse
Affiliation(s)
- Cassidy Whitefield
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Nansook Hong
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Joshua A. Mitchell
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Colin J. Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Jin W, Zhang F, Linhardt RJ. Glycosaminoglycans in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:189-204. [PMID: 34495536 DOI: 10.1007/978-3-030-70115-4_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides that consist of alternating disaccharides sequences of uronic acids and/or galactose hexamino sugars most of which are sulfated. GAGs are ubiquitously expressed on the cell surface, in the intracellular milieu and in the extracellular matrix of all animal cells. Thus, GAGs exhibit many essential roles in a variety of physiological and pathological processes. The targets of GAGs are GAG-binding proteins and related proteins that are of significant interest to both the academic community and in the pharmaceutical industry. In this review, the structures of GAGs, their binding proteins, and analogs are presented that further the development of GAGs and their analogs for the treatment of neurodegenerative diseases agents.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA. .,Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
6
|
Li D, Zhang K, Pan Z, Yu M, Lu Y, Wang G, Wu J, Zhang J, Zhang K, Du W. Antibiotics promote abdominal fat accumulation in broilers. Anim Sci J 2020; 91:e13326. [PMID: 32219924 DOI: 10.1111/asj.13326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/16/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics stimulate the growth of animals but result in drug residues and bacterial resistance. In this study, the negative effect of antibiotics on abdominal fat deposition was evaluated in broilers. The results showed that adding both chlortetracycline (50 g/1,000 kg) and tylosin (50 g/1,000 kg) significantly increased abdominal fat weight, abdominal fat percentage (p < .05), and triglyceride and cholesterol levels (p < .05) in blood. Also, both products synchronously stimulated intestinal absorption and synthesis of liver fat. The expression levels of the peroxisome proliferator-activated receptor γ (PPARγ), diacylgycerol acyltransferase 2 (DGAT2), lipoprotein lipase (LPL), and fatty acid-binding protein (FABP4) genes in abdominal fat tissue significantly increased (p < .05 or 0.01) when antibiotics were added to the feed. However, no significant difference was found in expression of the fatty acid synthesis (FAS) or acetyl CoA carboxylase (ACC) genes. Further in vitro study results revealed that antibiotics had no effect on fat content or the related gene expression levels in preadipocytes. In summary, the antibiotics induced fat deposition in adipose tissues by activating extracellular absorption of fatty acids from intestinal absorption and synthesis of liver fat. However, it shows no direct regulation by adipose tissue.
Collapse
Affiliation(s)
- Dongfeng Li
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Kun Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Zaixu Pan
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Minli Yu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yinglin Lu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Guiying Wang
- Animal Husbandry Research Institute, Beijing Sanyuan Breeding Technology Co, Ltd, China
| | - Junfeng Wu
- Jiangsu Lihua Animal Husbandry Co., Ltd. Changzhou, Jiangsu, China
| | - Jin Zhang
- Jiangsu Lihua Animal Husbandry Co., Ltd. Changzhou, Jiangsu, China
| | - Kangning Zhang
- Jiangsu Lihua Animal Husbandry Co., Ltd. Changzhou, Jiangsu, China
| | - Wenxing Du
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Interaction of arterial proteoglycans with low density lipoproteins (LDLs): From theory to promising therapeutic approaches. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2019. [DOI: 10.1016/j.medntd.2019.100016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
8
|
Li B, Fang J, He T, Yin S, Yang M, Cui H, Ma X, Deng J, Ren Z, Hu Y, Ye G, Zhang M, Geng Y, Gou L, Zuo Z. Resistin up-regulates LPL expression through the PPARγ-dependent PI3K/AKT signaling pathway impacting lipid accumulation in RAW264.7 macrophages. Cytokine 2019; 119:168-174. [PMID: 30925325 DOI: 10.1016/j.cyto.2019.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Abstract
Resistin is a cysteine-rich cytokine, which has been indicated as a mediator of insulin resistance and inflammation. Previous studies demonstrated that lipoprotein lipase (LPL) was an important enzyme that could mediate lipid accumulation in macrophages. Additionally, the intracellular molecules phosphatidylinositol 3-kinase (PI3K)/serine-threonine protein kinase (AKT)/peroxisome proliferator-activated receptor (PPARγ) were supposed to be involved in the lipid accumulation process in cells. However, it remains unclear whether resistin was correlated with the dysregulation of lipid metabolism in macrophages. The present study investigated that resistin could up-regulate the expression of LPL and increase the contents of intracellular triglyceride (TG) and total cholesterol (TC) in RAW264.7 macrophages. In addition, intracellular molecules PI3K, AKT and PPARγ were significantly up-regulated and activated in resitin-stimulated RAW264.7 macrophages (P < 0.05). In contrast, the effects of resistin on RAW264.7 macrophages could be abrogated by specific inhibitors for LPL (LPL-siRNA) and PI3K/AKT signaling pathway (LY294002). All together, this study demonstrated that resistin could up-regulate the expression of LPL and induce lipid accumulation in RAW264.7 macrophages. More importantly, the PPARγ-dependent PI3K/AKT signaling pathway was relevant to the lipid accumulation process in resistin-stimulated macrophages.
Collapse
Affiliation(s)
- Bi Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Tingting He
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Sirui Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Mingxian Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081, China
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Gang Ye
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Ming Zhang
- College of Animal Science & Technology, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China.
| |
Collapse
|
9
|
Gadek KE, Wang H, Hall MN, Sungello M, Libby A, MacLaskey D, Eckel RH, Olwin BB. Striated muscle gene therapy for the treatment of lipoprotein lipase deficiency. PLoS One 2018; 13:e0190963. [PMID: 29304082 PMCID: PMC5755938 DOI: 10.1371/journal.pone.0190963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/22/2017] [Indexed: 11/19/2022] Open
Abstract
Excessive circulating triglycerides due to reduction or loss of lipoprotein lipase activity contribute to hypertriglyceridemia and increased risk for pancreatitis. The only gene therapy treatment for lipoprotein lipase deficiency decreases pancreatitis but minimally reduces hypertriglyceridemia. Synthesized in multiple tissues including striated muscle and adipose tissue, lipoprotein lipase is trafficked to blood vessel endothelial cells where it is anchored at the plasma membrane and hydrolyzes triglycerides into free fatty acids. We conditionally knocked out lipoprotein lipase in differentiated striated muscle tissue lowering striated muscle lipoprotein lipase activity causing hypertriglyceridemia. We then crossed lipoprotein lipase striated muscle knockout mice with mice possessing a conditional avian retroviral receptor gene and injected mice with either a human lipoprotein lipase retrovirus or an mCherry control retrovirus. Post-heparin plasma lipoprotein lipase activity increased for three weeks following human lipoprotein lipase retroviral infection compared to mCherry infected mice. Human lipoprotein lipase infected mice had significantly lower blood triglycerides compared to mCherry controls and were comparable to wild-type blood triglyceride levels. Thus, targeted delivery of human lipoprotein lipase into striated muscle tissue identifies a potential therapeutic target for lipoprotein lipase deficiency.
Collapse
Affiliation(s)
- Katherine E. Gadek
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado United States of America
| | - Hong Wang
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado United States of America
| | - Monica N. Hall
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado United States of America
| | - Mitchell Sungello
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado United States of America
| | - Andrew Libby
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado United States of America
| | - Drew MacLaskey
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado United States of America
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado United States of America
- * E-mail: (BBO); (RHE)
| | - Bradley B. Olwin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado United States of America
- * E-mail: (BBO); (RHE)
| |
Collapse
|
10
|
Abstract
Heparin and heparan sulfate glycosaminoglycans are long, linear polysaccharides that are made up of alternating dissacharide sequences of sulfated uronic acid and amino sugars. Unlike heparin, which is only found in mast cells, heparan sulfate is ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These negatively-charged glycans play essential roles in important cellular functions such as cell growth, adhesion, angiogenesis, and blood coagulation. These biomolecules are also involved in pathophysiological conditions such as pathogen infection and human disease. This review discusses past and current methods for targeting these complex biomolecules as a novel therapeutic strategy to treating disorders such as cancer, neurodegenerative diseases, and infection.
Collapse
Affiliation(s)
- Ryan J Weiss
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA.
| |
Collapse
|
11
|
Liu G, Xu JN, Liu D, Ding Q, Liu MN, Chen R, Fan M, Zhang Y, Zheng C, Zou DJ, Lyu J, Zhang WJ. Regulation of plasma lipid homeostasis by hepatic lipoprotein lipase in adult mice. J Lipid Res 2016; 57:1155-61. [PMID: 27234787 PMCID: PMC4918845 DOI: 10.1194/jlr.m065011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Indexed: 02/06/2023] Open
Abstract
LPL is a pivotal rate-limiting enzyme to catalyze the hydrolysis of TG in circulation, and plays a critical role in regulating lipid metabolism. However, little attention has been paid to LPL in the adult liver due to its relatively low expression. Here we show that endogenous hepatic LPL plays an important physiological role in plasma lipid homeostasis in adult mice. We generated a mouse model with the Lpl gene specifically ablated in hepatocytes with the Cre/LoxP approach, and found that specific deletion of hepatic Lpl resulted in a significant decrease in plasma LPL contents and activity. As a result, the postprandial TG clearance was markedly impaired, and plasma TG and cholesterol levels were significantly elevated. However, deficiency of hepatic Lpl did not change the liver TG and cholesterol contents or glucose homeostasis. Taken together, our study reveals that hepatic LPL is involved in the regulation of plasma LPL activity and lipid homeostasis.
Collapse
Affiliation(s)
- Gan Liu
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China
| | - Jun-Nan Xu
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China
| | - Dong Liu
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenchou Medical University School of Laboratory Medicine and Life Sciences, Wenchou, Zhejiang 325035, China
| | - Qingli Ding
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China
| | - Meng-Na Liu
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenchou Medical University School of Laboratory Medicine and Life Sciences, Wenchou, Zhejiang 325035, China
| | - Rong Chen
- Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China Department of Endocrinology, Changhai Hospital, Shanghai 200433, China
| | - Mengdi Fan
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Department of Endocrinology, Second Affiliated Hospital, Wenchou Medical University, Wenchou, Zhejiang 325000, China
| | - Ye Zhang
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China
| | - Chao Zheng
- Department of Endocrinology, Second Affiliated Hospital, Wenchou Medical University, Wenchou, Zhejiang 325000, China
| | - Da-Jin Zou
- Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China Department of Endocrinology, Changhai Hospital, Shanghai 200433, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenchou Medical University School of Laboratory Medicine and Life Sciences, Wenchou, Zhejiang 325035, China
| | - Weiping J Zhang
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
12
|
Postprandial lipids accelerate and redirect nitric oxide consumption in plasma. Nitric Oxide 2016; 55-56:70-81. [PMID: 27021272 DOI: 10.1016/j.niox.2016.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 02/03/2023]
Abstract
Nitric oxide (NO) and O2 are both three-to four-fold more soluble in biological lipids than in aqueous solutions. Their higher concentration within plasma lipids accelerates NO autoxidation to an extent that may be of importance to overall NO bioactivity. This study was undertaken to test the hypothesis that increased plasma lipids after a high-fat meal appreciably accelerate NO metabolism and alter the byproducts formed. We found that plasma collected from subjects after consumption of a single high-fat meal had a higher capacity for NO consumption and consumed NO more rapidly compared to fasting plasma. This increased NO consumption showed a direct correlation with plasma triglyceride concentrations (p = 0.006). The accelerated NO consumption in postprandial plasma was reversed by removal of the lipids from the plasma, was mimicked by the addition of hydrophobic micelles to aqueous buffer, and could not be explained by the presence of either free hemoglobin or ceruloplasmin. The products of NO consumption were shifted in postprandial plasma, with 55% more nitrite (n = 12, p = 0.002) but 50% less SNO (n = 12, p = 0.03) production compared to matched fasted plasma. Modeling calculations indicated that NO autoxidation was accelerated by about 48-fold in the presence of plasma lipids. We conclude that postprandial triglyceride-rich lipoproteins exert a significant influence on NO metabolism in plasma.
Collapse
|
13
|
Morita SY. Metabolism and Modification of Apolipoprotein B-Containing Lipoproteins Involved in Dyslipidemia and Atherosclerosis. Biol Pharm Bull 2016; 39:1-24. [DOI: 10.1248/bpb.b15-00716] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital
| |
Collapse
|
14
|
Libby AE, Wang H, Mittal R, Sungelo M, Potma E, Eckel RH. Lipoprotein lipase is an important modulator of lipid uptake and storage in hypothalamic neurons. Biochem Biophys Res Commun 2015; 465:287-92. [PMID: 26265042 DOI: 10.1016/j.bbrc.2015.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/06/2015] [Indexed: 11/28/2022]
Abstract
LPL is the rate-limiting enzyme for uptake of TG-derived FFA in peripheral tissues, and the enzyme is expressed in the brain and CNS. We previously created a mouse which lacks neuronal LPL. This animal becomes obese on a standard chow, and we observed reduced lipid uptake in the hypothalamus at 3 months preceding obesity. In our present study, we replicated the animal phenotype in an immortalized mouse hypothalamic cell line (N41) to examine how LPL affects expression of AgRP as well as entry and storage of lipids into neurons. We show that LPL is able to modulate levels of the orexigenic peptide AgRP. LPL also exerts effects on lipid uptake into culture neurons, and that uptake of neutral lipid can be enhanced even by mutant LPL lacking catalytic activity. N41 cells also accumulate neutral lipid in droplets, and this is at least in part regulated by LPL. These data in addition to those published in mice with neuron-specific deletion of LPL suggest that neuronal LPL is an important regulator of lipid homeostasis in neurons and that alterations in LPL levels may have important effects on systemic metabolism and neuronal lipid biology.
Collapse
Affiliation(s)
- Andrew E Libby
- Division of Endocrinology, Metabolism, & Diabetes, University of Colorado at Denver, USA.
| | - Hong Wang
- Division of Endocrinology, Metabolism, & Diabetes, University of Colorado at Denver, USA
| | - Richa Mittal
- Beckman Laser Institute, University of California, Irvine, USA
| | - Mitchell Sungelo
- Division of Endocrinology, Metabolism, & Diabetes, University of Colorado at Denver, USA
| | - Eric Potma
- Beckman Laser Institute, University of California, Irvine, USA
| | - Robert H Eckel
- Division of Endocrinology, Metabolism, & Diabetes, University of Colorado at Denver, USA
| |
Collapse
|
15
|
Boss M, Kemmerer M, Brüne B, Namgaladze D. FABP4 inhibition suppresses PPARγ activity and VLDL-induced foam cell formation in IL-4-polarized human macrophages. Atherosclerosis 2015; 240:424-30. [PMID: 25897794 DOI: 10.1016/j.atherosclerosis.2015.03.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/26/2015] [Accepted: 03/30/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Macrophages, converted to lipid-loaded foam cells, accumulate in atherosclerotic lesions. Macrophage lipid metabolism is transcriptionally regulated by peroxisome proliferator-activated receptor gamma (PPARγ), and its target gene fatty acid binding protein 4 (FABP4) accelerates the progression of atherosclerosis in mouse models. Since expression of PPARγ and FABP4 is increased upon interleukin-4 (IL-4)-induced macrophage polarization, we aimed to investigate the role of FABP4 in human IL-4-polarized macrophages. METHODS AND RESULTS We investigated the impact of FABP4 on PPARγ-dependent gene expression in primary human monocytes differentiated to macrophages in the presence of IL-4. IL-4 increased PPARγ and its target genes lipoprotein lipase (LPL) and FABP4 compared to non-polarized or LPS/interferon γ-stimulated macrophages. LPL expression correlated with increased very low density lipoprotein (VLDL)-induced triglyceride accumulation in IL-4-polarized macrophages, which was sensitive to inhibition of lipolysis or PPARγ antagonism. Inhibition of FABP4 during differentiation using chemical inhibitors BMS309403 and HTS01037 or FABP4 siRNA decreased the expression of FABP4 and LPL, and reduced lipid accumulation in macrophages treated with VLDL. FABP4 or LPL inhibition also reduced the expression of inflammatory mediators chemokine (C-C motif) ligand 2 (CCL2) and IL-1β in response to VLDL in IL-4-polarized macrophages. PPARγ luciferase reporter assays confirmed that FABP4 supports fatty acid-induced PPARγ activation. CONCLUSION Our findings suggest that IL-4 induces a lipid-accumulating macrophage phenotype by activating PPARγ and subsequent LPL expression. Inhibition of FABP4 decreases VLDL-induced foam cell formation, indicating that anti-atherosclerotic effects achieved by FABP4 inhibition in mouse models may be feasible in the human system as well.
Collapse
Affiliation(s)
- Marcel Boss
- Institute of Biochemistry 1, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marina Kemmerer
- Institute of Biochemistry 1, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry 1, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Dmitry Namgaladze
- Institute of Biochemistry 1, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
16
|
Determination of serum lipoprotein lipase using a latex particle-enhanced turbidimetric immunoassay with an automated analyzer. Clin Chim Acta 2015; 442:130-5. [DOI: 10.1016/j.cca.2015.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/18/2015] [Accepted: 01/20/2015] [Indexed: 11/22/2022]
|
17
|
Comparison of the effect of post-heparin and pre-heparin lipoprotein lipase and hepatic triglyceride lipase on remnant lipoprotein metabolism. Clin Chim Acta 2015; 440:193-200. [DOI: 10.1016/j.cca.2014.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/27/2014] [Accepted: 07/17/2014] [Indexed: 11/21/2022]
|
18
|
Shirakawa T, Nakajima K, Yatsuzuka SI, Shimomura Y, Kobayashi J, Machida T, Sumino H, Murakami M. The role of circulating lipoprotein lipase and adiponectin on the particle size of remnant lipoproteins in patients with diabetes mellitus and metabolic syndrome. Clin Chim Acta 2015; 440:123-32. [DOI: 10.1016/j.cca.2014.10.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/18/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
19
|
Li Y, He PP, Zhang DW, Zheng XL, Cayabyab FS, Yin WD, Tang CK. Lipoprotein lipase: from gene to atherosclerosis. Atherosclerosis 2014; 237:597-608. [PMID: 25463094 DOI: 10.1016/j.atherosclerosis.2014.10.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/13/2014] [Accepted: 10/13/2014] [Indexed: 01/21/2023]
Abstract
Lipoprotein lipase (LPL) is a key enzyme in lipid metabolism and responsible for catalyzing lipolysis of triglycerides in lipoproteins. LPL is produced mainly in adipose tissue, skeletal and heart muscle, as well as in macrophage and other tissues. After synthesized, it is secreted and translocated to the vascular lumen. LPL expression and activity are regulated by a variety of factors, such as transcription factors, interactive proteins and nutritional state through complicated mechanisms. LPL with different distributions may exert distinct functions and have diverse roles in human health and disease with close association with atherosclerosis. It may pose a pro-atherogenic or an anti-atherogenic effect depending on its locations. In this review, we will discuss its gene, protein, synthesis, transportation and biological functions, and then focus on its regulation and relationship with atherosclerosis and potential underlying mechanisms. The goal of this review is to provide basic information and novel insight for further studies and therapeutic targets.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China; School of Nursing, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Fracisco S Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wei-Dong Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
20
|
Frolova EG, Drazba J, Krukovets I, Kostenko V, Blech L, Harry C, Vasanji A, Drumm C, Sul P, Jenniskens GJ, Plow EF, Stenina-Adognravi O. Control of organization and function of muscle and tendon by thrombospondin-4. Matrix Biol 2014; 37:35-48. [PMID: 24589453 DOI: 10.1016/j.matbio.2014.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/01/2014] [Accepted: 02/01/2014] [Indexed: 01/28/2023]
Abstract
Thrombospondins (TSPs) are multifunctional proteins that are deposited in the extracellular matrix where they directly affect the function of vascular and other cell types. TSP-4, one of the 5 TSP family members, is expressed abundantly in tendon and muscle. We have examined the effect of TSP-4 deficiency on tendon collagen and skeletal muscle morphology and function. In Thbs4(-/-) mice, tendon collagen fibrils are significantly larger than in wild-type mice, and there is no compensatory over-expression of TSP-3 and TSP-5, the two TSPs most highly homologous to TSP-4, in the deficient mice. TSP-4 is expressed in skeletal muscle, and higher levels of TSP-4 protein are associated with the microvasculature of red skeletal muscle with high oxidative metabolism. Lack of TSP-4 in medial soleus, red skeletal muscle with predominant oxidative metabolism, is associated with decreased levels of several specific glycosaminoglycan modifications, decreased expression of a TGFβ receptor beta-glycan, decreased activity of lipoprotein lipase, which associates with vascular cell surfaces by binding to glycosaminoglycans, and decreased uptake of VLDL. The soleus muscle is smaller and hind- and fore-limb grip strength is reduced in Thbs4(-/-) mice compared to wild-type mice. These observations suggest that TSP-4 regulates the composition of the ECM at major sites of its deposition, tendon and muscle, and the absence of TSP-4 alters the organization, composition and physiological functions of these tissues.
Collapse
Affiliation(s)
- Ella G Frolova
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Judith Drazba
- Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Irene Krukovets
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Volodymyr Kostenko
- Department of Neurology, Neuromuscular Section, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Lauren Blech
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Christy Harry
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Amit Vasanji
- Biomedical Imaging and Analysis Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Carla Drumm
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Pavel Sul
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Guido J Jenniskens
- Department of Biochemistry 194, University Medical Center, NCMLS, Nijmegen, The Netherlands; ModiQuest Research BV, Nijmegen, The Netherlands
| | - Edward F Plow
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Olga Stenina-Adognravi
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States.
| |
Collapse
|
21
|
Gong H, Dong W, Rostad SW, Marcovina SM, Albers JJ, Brunzell JD, Vuletic S. Lipoprotein lipase (LPL) is associated with neurite pathology and its levels are markedly reduced in the dentate gyrus of Alzheimer's disease brains. J Histochem Cytochem 2013; 61:857-68. [PMID: 24004859 PMCID: PMC3840745 DOI: 10.1369/0022155413505601] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Lipoprotein lipase (LPL) is involved in regulation of fatty acid metabolism, and facilitates cellular uptake of lipoproteins, lipids and lipid-soluble vitamins. We evaluated LPL distribution in healthy and Alzheimer’s disease (AD) brain tissue and its relative levels in cerebrospinal fluid. LPL immunostaining is widely present in different neuronal subgroups, microglia, astrocytes and oligodendroglia throughout cerebrum, cerebellum and spinal cord. LPL immunoreactivity is also present in leptomeninges, small blood vessels, choroid plexus and ependymal cells, Schwann cells associated with cranial nerves, and in anterior and posterior pituitary. In vitro studies have shown presence of secreted LPL in conditioned media of human cortical neuronal cell line (HCN2) and neuroblastoma cells (SK-N-SH), but not in media of cultured primary human astrocytes. LPL was present in cytoplasmic and nuclear fractions of neuronal cells and astrocytes in vitro. LPL immunoreactivity strongly associates with AD-related pathology, staining diffuse plaques, dystrophic and swollen neurites, possible Hirano bodies and activated glial cells. We observed no staining associated with neurofibrillary tangles or granulovacuolar degeneration. Granule cells of the dentate gyrus and the associated synaptic network showed significantly reduced staining in AD compared to control tissue. LPL was also reduced in AD CSF samples relative to those in controls.
Collapse
Affiliation(s)
- Huilin Gong
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Department of Medicine, School of Medicine, University of Washington, Seattle, WA (HG, WD, SMM, JJA, SV)
| | | | | | | | | | | | | |
Collapse
|
22
|
Overgaard M, Brasen CL, Svaneby D, Feddersen S, Nybo M. Familial lipoprotein lipase deficiency: a case of compound heterozygosity of a novel duplication (R44Kfs*4) and a common mutation (N291S) in the lipoprotein lipase gene. Ann Clin Biochem 2013; 50:374-9. [DOI: 10.1177/0004563213477393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Familial lipoprotein lipase (LPL) deficiency (FLLD) is a rare autosomal recessive genetic disorder caused by homozygous or compound heterozygous mutations in the LPL gene. FLLD individuals usually express an impaired or non-functional LPL enzyme with low or absent triglyceride (TG) hydrolysis activity causing severe hypertriglyceridaemia. Here we report a case of FLLD in a 29-year-old man, who initially presented with eruptive cutaneous xanthomata, elevated plasma TG concentration but no other co-morbidities. Subsequent genetic testing of the patient revealed compound heterozygosity of a novel duplication (p.R44Kfs*4) leading to a premature stop codon in exon 2 and a known mutation (N291S) in exon 5 of the LPL gene. Further biochemical analysis of the patient's postheparin plasma confirmed a reduction of total lipase activity compared with his heterozygous father carrying the common N291S mutation and to a healthy control. Also the patient showed increased (1.85-fold) activity of hepatic lipase (HL), indicating a functional link between HL and LPL. In summary, we report a case of FLLD caused by compound heterozygosity of a new duplication and a common mutation in the LPL gene, resulting in residual LPL activity. With such mutations, individuals may not receive a diagnosis before classical FLLD symptoms appear later in adulthood. Nevertheless, early diagnosis and lipid-lowering treatment may favour a reduced risk of premature cardiovascular disease or acute pancreatitis in such individuals.
Collapse
Affiliation(s)
- Martin Overgaard
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Claus Lohman Brasen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Dea Svaneby
- Department of Clinical Genetics, Vejle Sygehus, Vejle, Denmark
| | - Søren Feddersen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Mads Nybo
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
23
|
Gonzales JC, Gordts PLSM, Foley EM, Esko JD. Apolipoproteins E and AV mediate lipoprotein clearance by hepatic proteoglycans. J Clin Invest 2013; 123:2742-51. [PMID: 23676495 DOI: 10.1172/jci67398] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/14/2013] [Indexed: 11/17/2022] Open
Abstract
The heparan sulfate proteoglycan (HSPG) syndecan-1 (SDC1) acts as a major receptor for triglyceride-rich lipoprotein (TRL) clearance in the liver. We sought to identify the relevant apolipoproteins on TRLs that mediate binding to SDC1 and determine their clinical relevance. Evidence supporting ApoE as a major determinant arose from its enrichment in TRLs from mice defective in hepatic heparan sulfate (Ndst1f/fAlbCre⁺ mice), decreased binding of ApoE-deficient TRLs to HSPGs on human hepatoma cells, and decreased clearance of ApoE-deficient [³H]TRLs in vivo. Evidence for a second ligand was suggested by the faster clearance of ApoE-deficient TRLs after injection into WT Ndst1f/fAlbCre⁻ versus mutant Ndst1f/fAlbCre⁺ mice and elevated fasting and postprandial plasma triglycerides in compound Apoe⁻/⁻Ndst1f/fAlbCre⁺ mice compared with either single mutant. ApoAV emerged as a candidate based on 6-fold enrichment of ApoAV in TRLs accumulating in Ndst1f/fAlbCre⁺ mice, decreased binding of TRLs to proteoglycans after depletion of ApoAV or addition of anti-ApoAV mAb, and decreased heparan sulfate-dependent binding of ApoAV-deficient particles to hepatocytes. Importantly, disruption of hepatic heparan sulfate-mediated clearance increased atherosclerosis. We conclude that clearance of TRLs by hepatic HSPGs is atheroprotective and mediated by multivalent binding to ApoE and ApoAV.
Collapse
Affiliation(s)
- Jon C Gonzales
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, UCSD, La Jolla, California 92093-0687, USA
| | | | | | | |
Collapse
|
24
|
Ryu YW, Tanaka R, Kasahara A, Ito Y, Hiramatsu N, Todo T, Sullivan CV, Hara A. Molecular Cloning and Transcript Expression of Genes Encoding Two Types of Lipoprotein Lipase in the Ovary of Cutthroat Trout,Oncorhynchus clarki. Zoolog Sci 2013; 30:224-37. [DOI: 10.2108/zsj.30.224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Nilsson SK, Anderson F, Ericsson M, Larsson M, Makoveichuk E, Lookene A, Heeren J, Olivecrona G. Triacylglycerol-rich lipoproteins protect lipoprotein lipase from inactivation by ANGPTL3 and ANGPTL4. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1370-8. [PMID: 22732211 DOI: 10.1016/j.bbalip.2012.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/13/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Lipoprotein lipase (LPL) is important for clearance of triacylglycerols (TG) from plasma both as an enzyme and as a bridging factor between lipoproteins and receptors for endocytosis. The amount of LPL at the luminal side of the capillary endothelium determines to what extent lipids are taken up. Mechanisms to control both the activity of LPL and its transport to the endothelial sites are regulated, but poorly understood. Angiopoietin-like proteins (ANGPTLs) 3 and 4 are potential control proteins for LPL, but plasma concentrations of ANGPTLs do not correlate with plasma TG levels. We investigated the effects of recombinant human N-terminal (NT) ANGPTLs3 and 4 on LPL-mediated bridging of TG-rich lipoproteins to primary mouse hepatocytes and found that the NT-ANGPTLs, in concentrations sufficient to cause inactivation of LPL in vitro, were unable to prevent LPL-mediated lipoprotein uptake. We therefore investigated the effects of lipoproteins (chylomicrons, VLDL and LDL) on the inactivation of LPL in vitro by NT-ANGPTLs3 and 4 and found that LPL activity was protected by TG-rich lipoproteins. In vivo, postprandial TG protected LPL from inactivation by recombinant NT-ANGPTL4 injected to mice. We conclude that lipoprotein-bound LPL is stabilized against inactivation by ANGPTLs. The levels of ANGPTLs found in blood may not be sufficient to overcome this stabilization. Therefore it is likely that the prime site of action of ANGPTLs on LPL is in subendothelial compartments where TG-rich lipoprotein concentration is lower than in blood. This could explain why the plasma levels of TG and ANGPTLs do not correlate.
Collapse
Affiliation(s)
- Stefan K Nilsson
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Lipoprotein lipase (LPL) is rate limiting in the provision of triglyceride-rich lipoprotein-derived lipids into tissues. LPL is also present in the brain, where its function has remained elusive. Recent evidence implicates a role of LPL in the brain in two processes: (a) the regulation of energy balance and body weight and (b) cognition. Mice with neuron-specific deletion of LPL have increases in food intake that lead to obesity, and then reductions in energy expenditure that further contribute to and sustain the phenotype. In other mice with LPL deficiency rescued from neonatal lethality by somatic gene transfer wherein LPL in the brain remains absent, altered cognition ensues. Taking into consideration data that associate LPL mutations with Alzheimer's disease, a role for LPL in learning and memory seems likely. Overall, the time is ripe for new insights into how LPL-mediated lipoprotein metabolism in the brain impacts CNS processes and systems biology.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | |
Collapse
|
27
|
Ooi EMM, Russell BS, Olson E, Sun SZ, Diffenderfer MR, Lichtenstein AH, Keilson L, Barrett PHR, Schaefer EJ, Sprecher DL. Apolipoprotein B-100-containing lipoprotein metabolism in subjects with lipoprotein lipase gene mutations. Arterioscler Thromb Vasc Biol 2012; 32:459-66. [PMID: 22095987 PMCID: PMC4729373 DOI: 10.1161/atvbaha.111.238493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/03/2011] [Indexed: 12/18/2022]
Abstract
OBJECTIVE We investigated the impact of lipoprotein lipase (LPL) gene mutations on apolipoprotein B (apoB)-100 metabolism. METHODS AND RESULTS We studied 3 subjects with familial LPL deficiency; 14 subjects heterozygous for the LPL gene mutations Gly188Glu, Trp64Stop, and Ile194Thr; and 10 control subjects. Very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL)-apoB-100 kinetics were determined in the fed state using stable isotope methods and compartmental modeling. Compared with controls, familial LPL deficiency had markedly elevated plasma triglycerides and lower VLDL-apoB-100 fractional catabolic rate (FCR), IDL-apoB-100 FCR, VLDL-to-IDL conversion, and VLDL-apoB-100 production rate (P<0.01). Compared with controls, Gly188Glu had higher plasma triglyceride and VLDL- and IDL-apoB-100 concentrations and lower VLDL- and IDL-apoB-100 FCR (P<0.05). Plasma triglycerides were not different, but IDL-apoB-100 concentration and production rate and VLDL-to-IDL conversion were lower in Trp64Stop compared with controls (P<0.05). No differences between controls and Ile194Thr were observed. CONCLUSIONS Our results confirm that hypertriglyceridemia is a key feature of familial LPL deficiency. This is due to impaired VLDL- and IDL-apoB-100 catabolism and VLDL-to-IDL conversion. Single-allele mutations of the LPL gene result in modest to elevated plasma triglycerides. The changes in plasma triglycerides and apoB-100 kinetics are attributable to the effects of the LPL genotype.
Collapse
Affiliation(s)
- Esther M M Ooi
- Discovery Medicine CVU CEDD, GlaxoSmithKline, Department of Discovery Medicine, 709 Swedeland Rd, UW2301, King of Prussia, PA 19406, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis 2011; 219:15-21. [DOI: 10.1016/j.atherosclerosis.2011.07.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/03/2011] [Accepted: 07/04/2011] [Indexed: 11/21/2022]
|
29
|
Nishitsuji K, Hosono T, Uchimura K, Michikawa M. Lipoprotein lipase is a novel amyloid beta (Abeta)-binding protein that promotes glycosaminoglycan-dependent cellular uptake of Abeta in astrocytes. J Biol Chem 2010; 286:6393-401. [PMID: 21177248 DOI: 10.1074/jbc.m110.172106] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoprotein lipase (LPL) is a member of a lipase family known to hydrolyze triglyceride molecules in plasma lipoprotein particles. LPL also plays a role in the binding of lipoprotein particles to cell-surface molecules, including sulfated glycosaminoglycans (GAGs). LPL is predominantly expressed in adipose and muscle but is also highly expressed in the brain where its specific roles are unknown. It has been shown that LPL is colocalized with senile plaques in Alzheimer disease (AD) brains, and its mutations are associated with the severity of AD pathophysiological features. In this study, we identified a novel function of LPL; that is, LPL binds to amyloid β protein (Aβ) and promotes cell-surface association and uptake of Aβ in mouse primary astrocytes. The internalized Aβ was degraded within 12 h, mainly in a lysosomal pathway. We also found that sulfated GAGs were involved in the LPL-mediated cellular uptake of Aβ. Apolipoprotein E was dispensable in the LPL-mediated uptake of Aβ. Our findings indicate that LPL is a novel Aβ-binding protein promoting cellular uptake and subsequent degradation of Aβ.
Collapse
Affiliation(s)
- Kazuchika Nishitsuji
- Section of Pathophysiology and Neurobiology, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | | | | | | |
Collapse
|
30
|
Foley EM, Esko JD. Hepatic heparan sulfate proteoglycans and endocytic clearance of triglyceride-rich lipoproteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:213-33. [PMID: 20807647 DOI: 10.1016/s1877-1173(10)93010-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypertriglyceridemia, characterized by the accumulation of triglyceride-rich lipoproteins in the blood, affects 10-20% of the population in western countries and increases the risk of atherosclerosis, coronary artery disease, and pancreatitis. The etiology of hypertriglyceridemia is complex, and much interest exists in identifying and characterizing the biological and environmental factors that affect the synthesis and turnover of plasma triglycerides. Genetic studies in mice have recently identified that heparan sulfate proteoglycans are a class of receptors that mediate the clearance of triglyceride-rich lipoproteins in the liver. Heparan sulfate proteoglycans are expressed by endothelial cells that line the hepatic sinusoids and the underlying hepatocytes, and are present in the perisinusoidal space (space of Disse). This chapter discusses the dependence of lipoprotein binding on heparan sulfate structure and the identification of hepatocyte syndecan-1 as the primary proteoglycan that mediates triglyceride-rich lipoprotein clearance.
Collapse
Affiliation(s)
- Erin M Foley
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
31
|
Nielsen JE, Lindegaard ML, Friis-Hansen L, Almstrup K, Leffers H, Nielsen LB, Rajpert-De Meyts E. Lipoprotein lipase and endothelial lipase in human testis and in germ cell neoplasms. ACTA ACUST UNITED AC 2009; 33:e207-15. [DOI: 10.1111/j.1365-2605.2009.00988.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Abstract
Lipoprotein lipase (LPL) is a multifunctional enzyme produced by many tissues, including adipose tissue, cardiac and skeletal muscle, islets, and macrophages. LPL is the rate-limiting enzyme for the hydrolysis of the triglyceride (TG) core of circulating TG-rich lipoproteins, chylomicrons, and very low-density lipoproteins (VLDL). LPL-catalyzed reaction products, fatty acids, and monoacylglycerol are in part taken up by the tissues locally and processed differentially; e.g., they are stored as neutral lipids in adipose tissue, oxidized, or stored in skeletal and cardiac muscle or as cholesteryl ester and TG in macrophages. LPL is regulated at transcriptional, posttranscriptional, and posttranslational levels in a tissue-specific manner. Nutrient states and hormonal levels all have divergent effects on the regulation of LPL, and a variety of proteins that interact with LPL to regulate its tissue-specific activity have also been identified. To examine this divergent regulation further, transgenic and knockout murine models of tissue-specific LPL expression have been developed. Mice with overexpression of LPL in skeletal muscle accumulate TG in muscle, develop insulin resistance, are protected from excessive weight gain, and increase their metabolic rate in the cold. Mice with LPL deletion in skeletal muscle have reduced TG accumulation and increased insulin action on glucose transport in muscle. Ultimately, this leads to increased lipid partitioning to other tissues, insulin resistance, and obesity. Mice with LPL deletion in the heart develop hypertriglyceridemia and cardiac dysfunction. The fact that the heart depends increasingly on glucose implies that free fatty acids are not a sufficient fuel for optimal cardiac function. Overall, LPL is a fascinating enzyme that contributes in a pronounced way to normal lipoprotein metabolism, tissue-specific substrate delivery and utilization, and the many aspects of obesity and other metabolic disorders that relate to energy balance, insulin action, and body weight regulation.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | |
Collapse
|
33
|
Chang CL, Seo T, Matsuzaki M, Worgall TS, Deckelbaum RJ. n-3 fatty acids reduce arterial LDL-cholesterol delivery and arterial lipoprotein lipase levels and lipase distribution. Arterioscler Thromb Vasc Biol 2009; 29:555-61. [PMID: 19201689 DOI: 10.1161/atvbaha.108.182287] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE We previously reported that saturated fat (SAT)-enriched diets increase arterial cholesteryl ester (CE) deposition, especially from LDL-selective uptake (SU), and this was associated with increased arterial lipoprotein lipase (LpL). We now question how n-3 fatty acid rich diets influence arterial cholesterol delivery and arterial LpL levels. METHODS AND RESULTS C57BL/6 mice were fed chow or eucaloric high-fat diets enriched in SAT or fish oil (n-3) for 12 weeks, and then injected with double radiolabeled or fluorescent-labeled human LDL to separately trace LDL-CE and LDL-apoB uptake. SAT and n-3 diets increased plasma cholesterol levels similarly; n-3 diets lowered plasma triglyceride concentrations. SAT increased arterial LDL-SU with significantly higher CE infiltration into aortic media. In contrast, n-3 markedly reduced total LDL uptake and CE deposition and abolished SU with LDL localized only in aortic intima. Disparate patterns of CE deposition between diets were consistent with distribution of arterial LpL-SAT diets induced higher LpL levels throughout the aorta; n-3 diets decreased LpL levels and limited LpL expression to the aortic intima. CONCLUSIONS n-3 rich diets decrease arterial total LDL delivery and abrogate LDL-SU in parallel with changing arterial wall LpL expression and distribution.
Collapse
Affiliation(s)
- Chuchun L Chang
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
34
|
Hu L, van der Hoogt CC, Espirito Santo SMS, Out R, Kypreos KE, van Vlijmen BJM, Van Berkel TJC, Romijn JA, Havekes LM, van Dijk KW, Rensen PCN. The hepatic uptake of VLDL in lrp-ldlr-/-vldlr-/- mice is regulated by LPL activity and involves proteoglycans and SR-BI. J Lipid Res 2008; 49:1553-61. [PMID: 18367731 DOI: 10.1194/jlr.m800130-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LPL activity plays an important role in preceding the VLDL remnant clearance via the three major apolipoprotein E (apoE)-recognizing receptors: the LDL receptor (LDLr), LDL receptor-related protein (LRP), and VLDL receptor (VLDLr). The aim of this study was to determine whether LPL activity is also important for VLDL remnant clearance irrespective of these receptors and to determine the mechanisms involved in the hepatic remnant uptake. Administration of an adenovirus expressing LPL (AdLPL) into lrp(-)ldlr(-/-)vldlr(-/-) mice reduced both VLDL-triglyceride (TG) and VLDL-total cholesterol (TC) levels. Conversely, inhibition of LPL by AdAPOC1 increased plasma VLDL-TG and VLDL-TC levels. Metabolic studies with radiolabeled VLDL-like emulsion particles showed that the clearance and hepatic association of their remnants positively correlated with LPL activity. This hepatic association was independent of the bridging function of LPL and HL, since heparin did not reduce the liver association. In vitro studies demonstrated that VLDL-like emulsion particles avidly bound to the cell surface of primary hepatocytes from lrp(-)ldlr(-/-)vldlr(-/-) mice, followed by slow internalization, and involved heparin-releaseable cell surface proteins as well as scavenger receptor class B type I (SR-BI). Collectively, we conclude that hepatic VLDL remnant uptake in the absence of the three classical apoE-recognizing receptors is regulated by LPL activity and involves heparan sulfate proteoglycans and SR-BI.
Collapse
Affiliation(s)
- Lihui Hu
- Netherlands Organization for Applied Scientific Research-Quality of Life, Gaubius Laboratory, 2301 CE Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Spillmann D, Lookene A, Olivecrona G. Isolation and characterization of low sulfated heparan sulfate sequences with affinity for lipoprotein lipase. J Biol Chem 2006; 281:23405-13. [PMID: 16782967 DOI: 10.1074/jbc.m604702200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Lipoprotein lipase (LPL), which is an important enzyme in lipid metabolism, binds to heparan sulfate (HS) proteoglycans. This interaction is crucial for several aspects of LPL function, such as intracellular/extracellular transport and high capacity attachment to cell surfaces. Retention of LPL on the capillary walls, and elsewhere, via HS chains is most likely affected by the quality and quantity of HS present. Earlier studies have demonstrated that LPL interacts with highly sulfated HS and heparin oligosaccharides. Since such structures are relatively rare in endothelial HS, we have re-addressed the question of physiological ligand structures for LPL by affinity purification of end-labeled oligosaccharides originating from heparin and HS on immobilized LPL. By a combination of chemical modification and fragmentation of the bound material we identified that the bound fraction contained modestly sulfated oligosaccharides with an average sulfation of one O-sulfate per disaccharide unit and tolerates N-acetylated glucosamine residues. Therefore LPL, containing several clusters of positive charges on each subunit, may constitute an ideal structure for a protein that needs to bind with reasonable affinity to a variety of modestly sulfated sequences of the type that is abundant in HS chains.
Collapse
Affiliation(s)
- Dorothe Spillmann
- Department of Medical Biochemistry and Microbiology, University of Uppsala, SE-751 23 Uppsala, Sweden.
| | | | | |
Collapse
|
36
|
Huang KS, Holmgren J, Reik L, Lucas-McGady D, Roberts J, Liu CM, Levin W. High-throughput methods for measuring heparanase activity and screening potential antimetastatic and anti-inflammatory agents. Anal Biochem 2005; 333:389-98. [PMID: 15450817 DOI: 10.1016/j.ab.2004.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Indexed: 11/28/2022]
Abstract
Heparanase plays an important role in the degradation of the extracellular matrix. It is implicated in inflammation, tumor angiogenesis and metastasis. We have developed two high-throughput methods for measuring heparanase activity and screening potential inhibitors. The first method involves coating fibroblast growth factor (FGF) on microtiter plates and capturing fluorescein isothiocyanate (FITC)-labeled heparin sulfate (HS), which is used as a substrate for heparanase digestion. Labeled HS fragments are released into the medium and quantitated by fluorescence intensity measurement. We have implemented this assay method into a Zeiss uHTS system and screened compound libraries for heparanase inhibitors. The second method involves labeling HS with biotin followed by FITC to generate a dual-labeled HS. The labeled material is bound to streptavidin-coated plates and used as a substrate for heparanase digestion. Both methods are sensitive and easily applicable to robotic systems. In addition, we have labeled both HS and biotin-HS with Eu-chelate, a fluorophore that exhibits long decay fluorescence. Assays using Eu-labeled HS and Eu-labeled biotin-HS have been developed and show higher sensitivity than those using FITC-labeled material. Furthermore, assays using Eu-chelate HS (or biotin-HS) should eliminate the interference of fluorescence compounds.
Collapse
Affiliation(s)
- Kuo-Sen Huang
- Department of Discovery Technologies, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Makoveichuk E, Castel S, Vilaró S, Olivecrona G. Lipoprotein lipase-dependent binding and uptake of low density lipoproteins by THP-1 monocytes and macrophages: possible involvement of lipid rafts. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1686:37-49. [PMID: 15522821 DOI: 10.1016/j.bbalip.2004.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 07/13/2004] [Accepted: 08/03/2004] [Indexed: 11/18/2022]
Abstract
Lipoprotein lipase (LPL) is produced by cells in the artery wall and can mediate binding of lipoproteins to cell surface heparan sulfate proteoglycans (HSPG), resulting in endocytosis (the bridging function). Active, dimeric LPL may dissociate to inactive monomers, the main form found in plasma. We have studied binding/internalization of human low density lipoprotein (LDL), mediated by bovine LPL, using THP-1 monocytes and macrophages. Uptake of (125)I-LDL was similar in monocytes and macrophages and was not affected by the LDL-receptor family antagonist receptor-associated protein (RAP) or by the phagocytosis inhibitor cytochalasin D. In contrast, uptake depended on HSPG and on membrane cholesterol. Incubation in the presence of dexamethasone increased the endogenous production of LPL by the cells and also increased LPL-mediated binding of LDL to the cell surfaces. Monomeric LPL was bound to the cells mostly in a heparin-resistant fashion. We conclude that the uptake of LDL mediated by LPL dimers is receptor-independent and involves cholesterol-enriched membrane areas (lipid rafts). Dimeric and monomeric LPL differ in their ability to mediate binding/uptake of LDL, probably due to different mechanisms for binding/internalization.
Collapse
Affiliation(s)
- Elena Makoveichuk
- Department of Medical Biosciences, Physiological Chemistry, Bldg 6M, 3rd floor, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
38
|
Lindegaard MLS, Nielsen JE, Hannibal J, Nielsen LB. Expression of the endothelial lipase gene in murine embryos and reproductive organs. J Lipid Res 2004; 46:439-44. [PMID: 15576837 DOI: 10.1194/jlr.m400417-jlr200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endothelial lipase (EL) is a recently discovered member of the triglyceride-lipase family that is involved in plasma HDL metabolism. In this study, we investigated the putative role of EL in mouse reproduction by studying EL gene expression in mouse embryos and adult reproductive organs. PCR analysis revealed that EL mRNA is expressed in mouse embryos on embryonic day 8.5 (E8.5) to E11.5, but not later in development. In situ hybridization studies on E10.5 whole embryos and embryonic sections showed expression of EL mRNA in multiple tissues, although of varying intensity. High expression was found in the neuroepithelium of the brain and the neural tube, the mesenchymal cells between organs, the optic lens and cup, and the otocyst. In adult mice, EL mRNA expression was high in ovaries from pregnant mice but low in ovaries from nonpregnant mice. EL mRNA was also highly expressed in placenta and testes. In situ hybridization studies demonstrated intense EL mRNA staining of lutein cells in corpora lutei in ovaries, of spermatocytes in the late pachytene and diplotene stages in testes, and of principal cells in epididymis. These results suggest that EL, in addition to its effects on plasma lipoprotein metabolism, plays a role in murine reproduction.
Collapse
Affiliation(s)
- Marie L S Lindegaard
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
39
|
Kojma Y, Hirata KI, Ishida T, Shimokawa Y, Inoue N, Kawashima S, Quertermous T, Yokoyama M. Endothelial Lipase Modulates Monocyte Adhesion to the Vessel Wall. J Biol Chem 2004; 279:54032-8. [PMID: 15485805 DOI: 10.1074/jbc.m411112200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial lipase (EL), a new member of the lipoprotein lipase gene family, plays a central role in high density lipoprotein metabolism. Previous studies indicated that EL is expressed in endothelial cells, macrophages, and smooth muscle cells in atherosclerotic lesions in human coronary arteries. However, the functional role of EL in the local vessel wall remains obscure. In this study, we evaluated the ability of EL to modulate monocyte adhesion to the endothelial cell surface. EL mRNA and protein levels were markedly increased in tissues of the mouse model of inflammation induced by lipopolysaccharide injection. Adhesion assays in vitro revealed that overexpression of EL in COS7 or Pro5 cells enhanced monocyte bindings to the EL-expression cells. Heparin or heparinase treatment inhibited EL-mediated increases of monocyte adhesion in a dose-dependent manner. Moreover, ex vivo adhesion assays revealed that the number of adherent monocytes on aortic strips was significantly increased in EL transgenic mice and decreased in EL knock-out mice as compared with wild-type mice. These results suggest that EL on the endothelial cell surface can promote monocyte adhesion to the vascular endothelium through the interaction with heparan sulfate proteoglycans. Thus, the up-regulation of EL by inflammatory stimuli may be involved in the progression of inflammation.
Collapse
Affiliation(s)
- Yoko Kojma
- Division of Cardiovascular and Respiratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ross CJD, Twisk J, Meulenberg JM, Liu G, van den Oever K, Moraal E, Hermens WT, Rip J, Kastelein JJP, Kuivenhoven JA, Hayden MR. Long-term correction of murine lipoprotein lipase deficiency with AAV1-mediated gene transfer of the naturally occurring LPL(S447X) beneficial mutation. Hum Gene Ther 2004; 15:906-19. [PMID: 15353045 DOI: 10.1089/hum.2004.15.906] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human lipoprotein lipase (LPL) deficiency causes profound hypertriglyceridemia and life-threatening pancreatitis. We recently developed an adult murine model for LPL deficiency: LPL -/- mice display grossly elevated plasma triglyceride (TG) levels (>200-fold) and very low high-density lipoprotein cholesterol (HDL-C < 10% of normal). We used this animal model to test the efficacy of adeno-associated virus-mediated expression of hLPL(S447X) (AAV1-LPL(S447X)) in muscle for the treatment of LPL deficiency. Intramuscular administration of AAV1-LPL(S447X) resulted in dose-dependent expression of hLPL protein and LPL activity (up to 33% of normal murine levels) in postheparin plasma. Remarkably, visible hyperlipidemia was resolved within 1 week; plasma TG was reduced to near-normal levels (from 99.0 to 1.8 mmol/L), and plasma HDL-C was increased 6-fold (from 0.2 to 1.1 mmol/L). At 8 months after administration of AAV1-LPL(S447X), an intravenous lipid challenge showed efficient, near-normal clearance of plasma TG. Histologic analyses of injected muscle further indicated that abnormal muscle morphology observed in LPL -/- mice was reversed after treatment. Expression of therapeutic levels of LPL(S447X), and the subsequent beneficial effect on plasma lipid levels, has lasted for more than 1 year. We therefore conclude that AAV1-mediated transfer of LPL(S447X) into murine skeletal muscle results in long-term near-correction of dyslipidemia associated with LPL deficiency.
Collapse
Affiliation(s)
- Colin J D Ross
- Department of Medical Genetics, University of British Columbia (UBC), Centre for Molecular Medicine and Therapeutics, Vancouver, B.C., Canada, V5Z-4H4
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Verseyden C, Meijssen S, Cabezas MC. Effects of atorvastatin on fasting plasma and marginated apolipoproteins B48 and B100 in large, triglyceride-rich lipoproteins in familial combined hyperlipidemia. J Clin Endocrinol Metab 2004; 89:5021-9. [PMID: 15472200 DOI: 10.1210/jc.2003-032171] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Large triglyceride (TG)-rich lipoproteins (TRLs) circulate in the blood, but they may also be present in a marginated pool, probably attached to the endothelium. It is unknown whether statins can influence this marginated pool in vivo in humans. Intravenous fat tests were performed in familial combined hyperlipidemia (FCHL) subjects before and after atorvastatin treatment and in controls to investigate whether acute increases in apoB in TRL fractions would occur, potentially reflecting the release of this TRL from a marginated pool. After a 12-h fast, a bolus injection of 10% Intralipid was given to 12 FCHL patients before and after 16-wk treatment with atorvastatin. Twelve carefully matched controls were included. For 60 min postinjection, apoB48, apoB100, and lipids were measured in TRLs. Fasting apoB100 in all TRL fractions were 2- to 3-fold higher in untreated FCHL compared with controls. ApoB48 concentrations in chylomicron fractions increased significantly within 10 min in FCHL before and after treatment, but not in controls. ApoB100 increased significantly in the chylomicron fractions in untreated FCHL and in controls, but not in FCHL after treatment. In very low density lipoprotein 1, apoB100 increased only in untreated FCHL. In very low density lipoprotein 2, apoB100 did not change in any group. These data show that increasing the number of circulating TRLs by chylomicron-like particles, results in increased plasma apoB-TRLs, probably by acute release from a marginated pool. This is a physiological process occurring in FCHL and in healthy normolipidemic subjects, but it is more pronounced in the former. Decreased marginated TRL particles in FCHL is a novel antiatherogenic property of atorvastatin.
Collapse
Affiliation(s)
- C Verseyden
- Department of Internal Medicine, University Medical Center Utrecht, The Netherlands
| | | | | |
Collapse
|
42
|
Broedl UC, Jin W, Fuki IV, Glick JM, Rader DJ. Structural basis of endothelial lipase tropism for HDL. FASEB J 2004; 18:1891-3. [PMID: 15456739 DOI: 10.1096/fj.03-1307fje] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lipoprotein lipase (LPL) and endothelial lipase (EL), the most closely related enzymes among the members of the triglyceride lipase gene family with regard to primary sequence, have distinct lipolytic properties (triglyceride lipase vs. phospholipase) as well as different preferences for specific types of lipoproteins [triglyceride-rich lipoproteins vs. high density lipoprotein (HDL)] Lipid substrate specificity is believed to be conferred by the lid region located in the amino-terminal domain of the enzymes, whereas surprisingly little work has been done to identify the region mediating lipoprotein substrate specificity. To determine the domain responsible for lipoprotein preference within each enzyme, we generated the domain chimeric enzyme LPL-EL. The heterologous carboxy-terminal (C terminal) domain did not change lipid substrate preference (triglyceride vs. phospholipase) as determined by using artificial substrates. The EL C-terminal domain, however, enabled LPL-EL to bridge HDL particles like wild-type EL, whereas LPL only mediated binding of very low density lipoprotein. Unlike wild-type LPL, LPL-EL had substantial ability to hydrolyze HDL lipids similar to that of wild-type EL. Overexpression of LPL-EL in wild-type mice resulted in significantly reduced levels of HDL cholesterol and phospholipids by 93 and 85%, respectively, similar to the extent seen in EL-expressing mice, whereas no reduction of these parameters was observed in LPL-expressing mice. We conclude that the C-terminal domain of EL is crucial for the ability of EL to bind and to hydrolyze HDL and converts LPL to an enzyme fully capable of hydrolyzing HDL, highlighting the importance of the C-terminal lipase domain in lipoprotein substrate preference.
Collapse
Affiliation(s)
- Uli C Broedl
- Department of Medicine and Center for Experimental Therapeutics, University of Pennsylvania School of Medicine Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
43
|
Beauchamp MC, Michaud SE, Li L, Sartippour MR, Renier G. Advanced glycation end products potentiate the stimulatory effect of glucose on macrophage lipoprotein lipase expression. J Lipid Res 2004; 45:1749-57. [PMID: 15210847 DOI: 10.1194/jlr.m400169-jlr200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipoprotein lipase (LPL) secreted by macrophages in the arterial wall promotes atherosclerosis. We have shown that macrophages of patients with type 2 diabetes overproduce LPL and that metabolic factors, including glucose, stimulate macrophage LPL secretion. In this study, we determined the effect of advanced glycation end products (AGEs) on LPL expression by macrophages cultured in a high-glucose environment and the molecular mechanisms underlying this effect. Our results demonstrate that AGEs potentiate the stimulatory effect of high glucose on murine and human macrophage LPL gene expression and secretion. Induction of macrophage LPL mRNA levels by AGEs was identical to that elicited by physiologically relevant modified albumin and was inhibited by anti-AGE receptor as well as by antioxidants. Treatment of macrophages with AGEs resulted in protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) activation. Inhibition of these kinases abolished the effect of AGEs on LPL mRNA levels. Finally, exposure of macrophages to AGEs increased the binding of nuclear proteins to the activated protein-1 consensus sequence of the LPL promoter. This effect was inhibited by PKC and MAPK inhibitors. These results demonstrate for the first time that AGEs potentiate the stimulatory effect of high glucose on macrophage LPL expression. This effect appears to involve oxidative stress and PKC/MAPK activation.
Collapse
Affiliation(s)
- Marie-Claude Beauchamp
- Centre Hospitalier de l'Université de Montréal Research Centre, Notre-Dame Hospital, Department of Nutrition, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
44
|
Park Y, Jones PG, Harris WS. Triacylglycerol-rich lipoprotein margination: a potential surrogate for whole-body lipoprotein lipase activity and effects of eicosapentaenoic and docosahexaenoic acids. Am J Clin Nutr 2004; 80:45-50. [PMID: 15213026 DOI: 10.1093/ajcn/80.1.45] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Margination occurs when blood borne particles attach to the vessel wall. Triacylglycerol-rich lipoprotein (TRL) particles marginate when they bind to endothelial lipoprotein lipase (LpL). OBJECTIVE This study was undertaken to determine whether TRL margination reflects in vivo LpL activity and whether n-3 fatty acids affect fasting and fed TRL margination. DESIGN Healthy subjects (n = 33) began with a 4-wk, placebo (olive oil; 4 g/d) run-in period and were then randomly assigned to 4 wk of treatment with 4 g/d of ethyl esters of either safflower oil (SAF; control), eicosapentaenoic acid (EPA), or docosahexaenoic acid (DHA). Margination volume (MV) was calculated by subtracting true from apparent plasma volume. RESULTS MVs were 3 times as great during the fasting state as during the fed state (P < 0.0001). In both the fasting and the fed states, MV was significantly correlated with plasma triacylglycerol and TRL half-lives. In the fed state, MV was also correlated with preheparin LpL, whereas in the fasting state it was not. There was no significant correlation between preheparin LpL and postheparin LpL in the fasting state. Relative to SAF, EPA and DHA supplementation resulted in higher MVs by 64% and 53% (both P < 0.001), respectively, in the fasting state, without significantly reducing fasting triacylglycerol concentrations. In the fed state, DHA doubled the MV (P < 0.05), whereas EPA had no significant effect. CONCLUSIONS The correlations between MV and TRL half-lives and preheparin LpL suggest that MV could be a reflection of whole-body LpL binding capacity. The increases in MVs with EPA and DHA supplementation suggest that these fatty acids may increase the amount of endothelial-bound LpL or its affinity for TRL.
Collapse
Affiliation(s)
- Yongsoon Park
- Lipid and Diabetes Research Center, Saint Luke's Hospital, and the University of Missouri-Kansas City School of Medicine, 64111, USA
| | | | | |
Collapse
|
45
|
Yu KCW, David C, Kadambi S, Stahl A, Hirata KI, Ishida T, Quertermous T, Cooper AD, Choi SY. Endothelial lipase is synthesized by hepatic and aorta endothelial cells and its expression is altered in apoE-deficient mice. J Lipid Res 2004; 45:1614-23. [PMID: 15175355 DOI: 10.1194/jlr.m400069-jlr200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both LPL and HL are synthesized in parenchymal cells, are secreted, and bind to endothelial cells. To learn where endothelial lipase (EL) is synthesized in adult animals, the localization of EL in mouse and rat liver was studied by immunohistochemical analysis. Furthermore, to test whether EL could play a role in atherogenesis, the expression of EL in the aorta and liver of apolipoprotein E knockout (EKO) mice was determined. EL in both mouse and rat liver was colocalized with vascular endothelial cells but not with hepatocytes. In contrast, HL was present in both hepatocytes and endothelial cells. By in situ hybridization, EL mRNA was present only in endothelial cells in liver sections. EL was also present at low levels in aorta of normal mice. We fed EKO mice and wild-type mice a variety of diets and determined EL expression in liver and aorta. EKO mice showed significant expression of EL in aorta. EL expression was lower in the liver of EKO mice than in normal mice. Cholesterol feeding decreased EL in liver of both types of mice. In the aorta, EL was higher in EKO than in wild-type mice, and cholesterol feeding had no effect. Together, these data suggest that EL may be upregulated at the site of atherosclerotic lesions and thus could supply lipids to the area.
Collapse
Affiliation(s)
- Kenneth C-W Yu
- School of Medicine, Stanford University, Palo Alto, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Blain JF, Paradis E, Gaudreault SB, Champagne D, Richard D, Poirier J. A role for lipoprotein lipase during synaptic remodeling in the adult mouse brain. Neurobiol Dis 2004; 15:510-9. [PMID: 15056458 DOI: 10.1016/j.nbd.2003.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 10/27/2003] [Accepted: 12/04/2003] [Indexed: 10/26/2022] Open
Abstract
Lipoprotein lipase (LPL) is a member of a lipase family known to hydrolyze triglyceride molecules found in lipoprotein particles. This particular lipase also has a role in the binding of lipoprotein particles to different cell-surface receptors. LPL has been identified in the brain but has no specific function yet. This study aimed at elucidating the role of LPL in the brain in response to injury. Mice were subjected to hippocampal deafferentation using the entorhinal cortex lesion and mRNA and protein expression were assessed over a time-course of degeneration/reinnervation. Hippocampal LPL levels peaked at 2 days post-lesion (DPL) both at the mRNA and protein levels. No change was observed for receptors of the LDL-receptor family or RAP at DPL 2 in the hippocampus but the glia-specific syndecan-4 was found to be significantly upregulated at DPL 2. These results suggest that LPL is involved in the recycling of cholesterol and lipids released from degenerating terminals after a lesion through a syndecan-4-dependent pathway.
Collapse
Affiliation(s)
- Jean-François Blain
- Department of Anatomy and Physiology, Faculty of Medicine, Laval University, Ste-Foy, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Zcharia E, Metzger S, Chajek-Shaul T, Aingorn H, Elkin M, Friedmann Y, Weinstein T, Li JP, Lindahl U, Vlodavsky I. Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J 2004; 18:252-63. [PMID: 14769819 DOI: 10.1096/fj.03-0572com] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have generated homozygous transgenic mice (hpa-tg) overexpressing human heparanase (endo-beta-D-glucuronidase) in all tissues and characterized the involvement of the enzyme in tissue morphogenesis, vascularization, and energy metabolism. Biochemical analysis of heparan sulfate (HS) isolated from newborn mice and adult tissues revealed a profound decrease in the size of HS chains derived from hpa-tg vs. control mice. Despite this, the mice appeared normal, were fertile, and exhibited a normal life span. A significant increase in the number of implanted embryos was noted in the hpa-tg vs. control mice. Overexpression of heparanase resulted in increased levels of urinary protein and creatinine, suggesting an effect on kidney function, reflected also by electron microscopy examination of the kidney tissue. The hpa-tg mice exhibited a reduced food consumption and body weight compared with control mice. The effect of heparanase on tissue remodeling and morphogenesis was best demonstrated by the phenotype of the hpa-tg mammary glands, showing excess branching and widening of ducts associated with enhanced neovascularization and disruption of the epithelial basement membrane. The hpa-tg mice exhibited an accelerated rate of hair growth, correlated with high expression of heparanase in hair follicle keratinocytes and increased vascularization. Altogether, characterization of the hpa-tg mice emphasizes the involvement of heparanase and HS in processes such as embryonic implantation, food consumption, tissue remodeling, and vascularization.
Collapse
Affiliation(s)
- Eyal Zcharia
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Saijo M, Kitazawa R, Nakajima M, Kurosaka M, Maeda S, Kitazawa S. Heparanase mRNA expression during fracture repair in mice. Histochem Cell Biol 2003; 120:493-503. [PMID: 14618334 DOI: 10.1007/s00418-003-0589-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2003] [Indexed: 10/26/2022]
Abstract
Bone fracture healing takes place through endochondral ossification where cartilaginous callus is replaced by bony callus. Vascular endothelial growth factor (VEGF) is a requisite for endochondral ossification, where blood vessel invasion of cartilaginous callus is crucial. Heparanase is an endoglucuronidase that degrades heparan sulfate proteoglycans (HSPG) and releases heparin-binding growth factors including VEGF as an active form. To investigate the role of heparanase in VEGF recruitment during fracture healing, the expression of heparanase mRNA and VEGF, and vessel formation were examined in mouse fractured bone. On days 5 and 7 after the fracture, when mesenchymal cells proliferated and differentiated into chondrocytes, heparanase mRNA was detected in osteo(chondro)clasts and their precursors, but not in the inflammatory phase (day 3). On day 10, both VEGF and HSPG were produced by hypertrophic chondrocytes of the cartilaginous callus and by osteoblasts of the bony callus; numerous osteo(chondro)clasts resorbing the cartilage expressed strong heparanase signals. Adjacent to the cartilage resorption sites, angiogenesis with CD31-positive endothelial cells and osteogenesis with osteonectin-positive osteoblasts were observed. On days 14 and 21, osteoclasts in the woven bone tissue expressed heparanase mRNA. These data suggest that by producing heparanase osteo(chondro)clasts contribute to the recruitment of the active form of VEGF. Thus osteo(chondro)clasts may promote local angiogenesis as well as callus resorption in endochondral ossification during fracture healing.
Collapse
Affiliation(s)
- Masamichi Saijo
- Division of Molecular Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017 Kobe, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Fuki IV, Blanchard N, Jin W, Marchadier DHL, Millar JS, Glick JM, Rader DJ. Endogenously produced endothelial lipase enhances binding and cellular processing of plasma lipoproteins via heparan sulfate proteoglycan-mediated pathway. J Biol Chem 2003; 278:34331-8. [PMID: 12810721 DOI: 10.1074/jbc.m302181200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial lipase (EL) is a new member of the triglyceride lipase gene family, which includes lipoprotein lipase (LpL) and hepatic lipase (HL). Enzymatic activity of EL has been studied before. Here we characterized the ability of EL to bridge lipoproteins to the cell surface. Expression of EL in wild-type Chinese hamster ovary (CHO)-K1 but not in heparan sulfate proteoglycan (HSPG)-deficient CHO-677 cells resulted in 3-4.4-fold increases of 125I-low density lipoprotein (LDL) and 125I-high density lipoprotein 3 binding (HDL3). Inhibition of proteoglycan sulfation by sodium chlorate or incubation of cells with labeled lipoproteins in the presence of heparin (100 microg/ml) abolished bridging effects of EL. An enzymatically inactive EL, EL-S149A, was equally effective in facilitating lipoprotein bridging as native EL. Processing of LDL and HDL differed notably after initial binding via EL to the cell surface. More than 90% of the surface-bound 125I-LDL was destined for internalization and degradation, whereas about 70% of the surface-bound 125I-HDL3 was released back into the medium. These differences were significantly attenuated after HDL clustering was promoted using antibody against apolipoprotein A-I. At equal protein concentration of added lipoproteins the ratio of HDL3 to VLDL bridging via EL was 0.092 compared with 0.174 via HL and 0.002 via LpL. In summary, EL mediates binding and uptake of plasma lipoproteins via a process that is independent of its enzymatic activity, requires cellular heparan sulfate proteoglycans, and is regulated by ligand clustering.
Collapse
Affiliation(s)
- Ilia V Fuki
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Yang YJ, Zhang YL, Li X, Dan HL, Lai ZS, Wang JD, Wang QY, Cui HH, Sun Y, Wang YD. Contribution of eIF-4E inhibition to the expression and activity of heparanase in human colon adenocarcinoma cell line: LS-174T. World J Gastroenterol 2003; 9:1707-12. [PMID: 12918105 PMCID: PMC4611528 DOI: 10.3748/wjg.v9.i8.1707] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Heparanase degrades heparan sulfate proteoglycans (HSPGs) and is a critical mediator of tumor metastasis and angiogenesis. Recently, it has been cloned as a single gene family and found to be a potential target for antimetastasis drugs. However, the molecular basis for the regulation of heparanase expression is still not quite clear. The aim of this study was to determine whether the expression of eukaryotic initiation factor 4E (eIF-4E) correlated with the heparanase level in tumor cells and to explore the correlation between heparanase expression and metastatic potential of LS-174T cells.
METHODS: A 20-mer antisense s-oligodeoxynucleotide (asODN) targeted against the translation start site of eIF-4E mRNA was introduced into LS-174T cells by lipid-mediated DNA-transfection. eIF-4E protein and mRNA levels were detected by Western blot analysis and RT-PCR, respectively. Heparanase activity was defined as the ability to degrade high molecular weight (40-100 kDa) radiolabeled HS (heparan sulfate) substrate into low molecular weight (5-15 kDa) HS fragments that could be differentiated by gel filtration chromatography. The invasive potential of tumor cell in vitro was observed by using a Matrigel invasion assay system.
RESULTS: The 20-mer asODN against eIF-4E specifically and significantly inhibited eIF-4E expression at both transcriptional and translational levels. As a result, the expression and activity of heparanase were effectively retarded and the decreased activity of heparanase resulted in the decreased invasive potential of LS-174T.
CONCLUSION: eIF-4E is involved in the regulation of heparanase production in colon adenocarcinoma cell line LS-174T, and its critical function makes it a particularly interesting target for heparanase regulation. This targeting strategy in antisense chemistry may have practical applications in experimental or clinical anti-metastatic gene therapy of human colorectal carcinoma.
Collapse
Affiliation(s)
- Yu-Jie Yang
- Chinese PLA Institute of Digestive Disease, Nanfang Hospital, First Military Medical University, Guangzhou 510515, Guangdong Province, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|