1
|
Wang F, Ko CW, Qu J, Wu D, Zhu Q, Liu M, Tso P. Apolipoprotein A-IV-Deficient Mice in 129/SvJ Background Are Susceptible to Obesity and Glucose Intolerance. Nutrients 2023; 15:4840. [PMID: 38004234 PMCID: PMC10674380 DOI: 10.3390/nu15224840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Apolipoprotein A-IV (apoA-IV), synthesized by enterocytes, is potentially involved in regulating lipid absorption and metabolism, food intake, and glucose metabolism. In this study, we backcrossed apoA-IV knockout (apoA-IV-/-) mice onto the 129/SvJ background for eight generations. Compared to the wild-type (WT) mice, the 129/SvJ apoA-IV-/- mice gained more weight and exhibited delayed glucose clearance even on the chow diet. During a 16-week high-fat diet (20% by weight of fat) study, apoA-IV-/- mice were more obese than the WT mice, which was associated with their increased food intake as well as reduced energy expenditure and physical activity. In addition, apoA-IV-/- mice developed significant insulin resistance (indicated by HOMA-IR) with severe glucose intolerance even though their insulin levels were drastically higher than the WT mice. In conclusion, we have established a model of apoA-IV-/- mice onto the 129/SvJ background. Unlike in the C57BL/6J strain, apoA-IV-/- 129/SvJ mice become significantly more obese and insulin-resistant than WT mice. Our current investigations of apoA-IV in the 129/SvJ strain and our previous studies in the C57BL/6J strain underline the impact of genetic background on apoA-IV metabolic effects.
Collapse
Affiliation(s)
- Fei Wang
- Norton Healthcare, 4910 Chamberlain Lane, Louisville, KY 40202, USA;
| | - Chih-Wei Ko
- Chroma Medicine, 201 Brookine Ave, Suite 1101, Boston, MA 02215, USA;
| | - Jie Qu
- Medpace Reference Laboratories, LLC., 5365 Medpace Way, Cincinnati, OH 45227, USA;
| | - Dong Wu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China;
| | - Qi Zhu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| | - Min Liu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| |
Collapse
|
2
|
Vernardis SI, Demichev V, Lemke O, Grüning NM, Messner C, White M, Pietzner M, Peluso A, Collet TH, Henning E, Gille C, Campbell A, Hayward C, Porteous DJ, Marioni RE, Mülleder M, Zelezniak A, Wareham NJ, Langenberg C, Farooqi IS, Ralser M. The Impact of Acute Nutritional Interventions on the Plasma Proteome. J Clin Endocrinol Metab 2023; 108:2087-2098. [PMID: 36658456 PMCID: PMC10348471 DOI: 10.1210/clinem/dgad031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
CONTEXT Humans respond profoundly to changes in diet, while nutrition and environment have a great impact on population health. It is therefore important to deeply characterize the human nutritional responses. OBJECTIVE Endocrine parameters and the metabolome of human plasma are rapidly responding to acute nutritional interventions such as caloric restriction or a glucose challenge. It is less well understood whether the plasma proteome would be equally dynamic, and whether it could be a source of corresponding biomarkers. METHODS We used high-throughput mass spectrometry to determine changes in the plasma proteome of i) 10 healthy, young, male individuals in response to 2 days of acute caloric restriction followed by refeeding; ii) 200 individuals of the Ely epidemiological study before and after a glucose tolerance test at 4 time points (0, 30, 60, 120 minutes); and iii) 200 random individuals from the Generation Scotland study. We compared the proteomic changes detected with metabolome data and endocrine parameters. RESULTS Both caloric restriction and the glucose challenge substantially impacted the plasma proteome. Proteins responded across individuals or in an individual-specific manner. We identified nutrient-responsive plasma proteins that correlate with changes in the metabolome, as well as with endocrine parameters. In particular, our study highlights the role of apolipoprotein C1 (APOC1), a small, understudied apolipoprotein that was affected by caloric restriction and dominated the response to glucose consumption and differed in abundance between individuals with and without type 2 diabetes. CONCLUSION Our study identifies APOC1 as a dominant nutritional responder in humans and highlights the interdependency of acute nutritional response proteins and the endocrine system.
Collapse
Affiliation(s)
- Spyros I Vernardis
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
| | - Vadim Demichev
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Oliver Lemke
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Nana-Maria Grüning
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christoph Messner
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
| | - Matt White
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0SL, UK
- Computational Medicine, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Alina Peluso
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
| | - Tinh-Hai Collet
- Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
- Service of Endocrinology, Diabetology, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Elana Henning
- Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Christoph Gille
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael Mülleder
- Core Facility High Throughput Mass Spectrometry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Aleksej Zelezniak
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius SE-412 96, Lithuania
- Randall Centre for Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, SE1 1UL London, UK
| | | | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0SL, UK
- Computational Medicine, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, E1 1HH, UK
| | - I Sadaf Farooqi
- Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
3
|
Appetite regulating genes in zebrafish gut; a gene expression study. PLoS One 2022; 17:e0255201. [PMID: 35853004 PMCID: PMC9295983 DOI: 10.1371/journal.pone.0255201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
The underlying molecular pathophysiology of feeding disorders, particularly in peripheral organs, is still largely unknown. A range of molecular factors encoded by appetite-regulating genes are already described to control feeding behaviour in the brain. However, the important role of the gastrointestinal tract in the regulation of appetite and feeding in connection to the brain has gained more attention in the recent years. An example of such inter-organ connection can be the signals mediated by leptin, a key regulator of body weight, food intake and metabolism, with conserved anorexigenic effects in vertebrates. Leptin signals functions through its receptor (lepr) in multiple organs, including the brain and the gastrointestinal tract. So far, the regulatory connections between leptin signal and other appetite-regulating genes remain unclear, particularly in the gastrointestinal system. In this study, we used a zebrafish mutant with impaired function of leptin receptor to explore gut expression patterns of appetite-regulating genes, under different feeding conditions (normal feeding, 7-day fasting, 2 and 6-hours refeeding). We provide evidence that most appetite-regulating genes are expressed in the zebrafish gut. On one hand, we did not observed significant differences in the expression of orexigenic genes (except for hcrt) after changes in the feeding condition. On the other hand, we found 8 anorexigenic genes in wild-types (cart2, cart3, dbi, oxt, nmu, nucb2a, pacap and pomc), as well as 4 genes in lepr mutants (cart3, kiss1, kiss1r and nucb2a), to be differentially expressed in the zebrafish gut after changes in feeding conditions. Most of these genes also showed significant differences in their expression between wild-type and lepr mutant. Finally, we observed that impaired leptin signalling influences potential regulatory connections between anorexigenic genes in zebrafish gut. Altogether, these transcriptional changes propose a potential role of leptin signal in the regulation of feeding through changes in expression of certain anorexigenic genes in the gastrointestinal tract of zebrafish.
Collapse
|
4
|
Emerging role of HDL in brain cholesterol metabolism and neurodegenerative disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159123. [PMID: 35151900 DOI: 10.1016/j.bbalip.2022.159123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/07/2023]
Abstract
High-density lipoproteins (HDLs play a key role in cholesterol homeostasis maintenance in the central nervous system (CNS), by carrying newly synthesized cholesterol from astrocytes to neurons, to support their lipid-related physiological functions. As occurs for plasma HDLs, brain lipoproteins are assembled through the activity of membrane cholesterol transporters, undergo remodeling mediated by specific enzymes and transport proteins, and finally deliver cholesterol to neurons by a receptor-mediated internalization process. A growing number of evidences indicates a strong association between alterations of CNS cholesterol homeostasis and neurodegenerative disorders, in particular Alzheimer's disease (AD), and a possible role in this relationship may be played by defects in brain HDL metabolism. In the present review, we summarize and critically examine the current state of knowledge on major modifications of HDL and HDL-mediated brain cholesterol transport in AD, by taking into consideration the individual steps of this process. We also describe potential and encouraging HDL-based therapies that could represent new therapeutic strategies for AD treatment. Finally, we revise the main plasma and brain HDL modifications in other neurodegenerative disorders including Parkinson's disease (PD), Huntington's disease (HD), and frontotemporal dementia (FTD).
Collapse
|
5
|
Qu J, Fourman S, Fitzgerald M, Liu M, Nair S, Oses-Prieto J, Burlingame A, Morris JH, Davidson WS, Tso P, Bhargava A. Low-density lipoprotein receptor-related protein 1 (LRP1) is a novel receptor for apolipoprotein A4 (APOA4) in adipose tissue. Sci Rep 2021; 11:13289. [PMID: 34168225 PMCID: PMC8225859 DOI: 10.1038/s41598-021-92711-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/11/2021] [Indexed: 11/29/2022] Open
Abstract
Apolipoprotein A4 (APOA4) is one of the most abundant and versatile apolipoproteins facilitating lipid transport and metabolism. APOA4 is synthesized in the small intestine, packaged onto chylomicrons, secreted into intestinal lymph and transported via circulation to several tissues, including adipose. Since its discovery nearly 4 decades ago, to date, only platelet integrin αIIbβ3 has been identified as APOA4 receptor in the plasma. Using co-immunoprecipitation coupled with mass spectrometry, we probed the APOA4 interactome in mouse gonadal fat tissue, where ApoA4 gene is not transcribed but APOA4 protein is abundant. We demonstrate that lipoprotein receptor-related protein 1 (LRP1) is the cognate receptor for APOA4 in adipose tissue. LRP1 colocalized with APOA4 in adipocytes; it interacted with APOA4 under fasting condition and their interaction was enhanced during lipid feeding concomitant with increased APOA4 levels in plasma. In 3T3-L1 mature adipocytes, APOA4 promoted glucose uptake both in absence and presence of insulin in a dose-dependent manner. Knockdown of LRP1 abrogated APOA4-induced glucose uptake as well as activation of phosphatidylinositol 3 kinase (PI3K)-mediated protein kinase B (AKT). Taken together, we identified LRP1 as a novel receptor for APOA4 in promoting glucose uptake. Considering both APOA4 and LRP1 are multifunctional players in lipid and glucose metabolism, our finding opens up a door to better understand the molecular mechanisms along APOA4-LRP1 axis, whose dysregulation leads to obesity, cardiovascular disease, and diabetes.
Collapse
Affiliation(s)
- Jie Qu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Sarah Fourman
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Maureen Fitzgerald
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Supna Nair
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - Juan Oses-Prieto
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - Alma Burlingame
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - John H Morris
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, 513 Parnassus Avenue, Rm HSE1636, San Francisco, CA, 94143-0556, USA.
| |
Collapse
|
6
|
Li M, Yang X, Sun L, Qing Y, Hu X, Jiang J, Wang D, Cui G, Gao Y, Zhang E, Zhang J, Yang Y, Wan C. Decreased serum apolipoprotein A4 as a potential peripheral biomarker for patients with schizophrenia. J Psychiatr Res 2021; 137:14-21. [PMID: 33640722 DOI: 10.1016/j.jpsychires.2021.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/15/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Recent evidence supports an association between lipid metabolism dysfunction and the pathology of schizophrenia which has led to the search for peripheral blood-based biomarkers. The purpose of this study was to investigate the proteins involved in lipid metabolism (especially apolipoprotein) and to explore their potential as biomarkers for schizophrenia. Using multiple reaction monitoring mass spectrometry (MRM-MS), we quantified 22 proteins in serum samples of 109 healthy controls (HCs) and 111 patients with schizophrenia (SCZ), who were divided into discovery and validation sets. We found serum apolipoprotein A4 (ApoA4) to be significantly decreased in SCZ patients compared to HCs (p=1.61E-05). Moreover, the serum ApoA4 level served as an effective diagnostic tool, achieving area under the receiver operating characteristic curves (AUROC) of 0.840 in the discovery set and 0.791 in the validation set. Additionally, apolipoprotein F (ApoF), angiotensinogen (AGT), and alpha1-antichymotrypsin (ACT) levels were significantly higher in patients with schizophrenia than in healthy controls. These proteins combined with ApoA4, provided higher diagnostic accuracy for schizophrenia in the discovery set (AUROC=0.901) and in the validation set (AUROC=0.879). Our results suggest that the serum level of ApoA4 is a novel potential biomarker for schizophrenia. The proteins identified in this study expand the pool of biomarker candidates for schizophrenia and may be linked to the underlying mechanism of the disease.
Collapse
Affiliation(s)
- Minghui Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xuhan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Liya Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Gaoping Cui
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - En Zhang
- The Fourth People's Hospital of Wuhu, Wuhu, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Yang
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Soochow University, Suzhou, China.
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Montégut L, Lopez-Otin C, Magnan C, Kroemer G. Old Paradoxes and New Opportunities for Appetite Control in Obesity. Trends Endocrinol Metab 2021; 32:264-294. [PMID: 33707095 DOI: 10.1016/j.tem.2021.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Human obesity is accompanied by alterations in the blood concentrations of multiple circulating appetite regulators. Paradoxically, most of the appetite-inhibitory hormones are elevated in nonsyndromic obesity, while most of the appetite stimulatory hormones are reduced, perhaps reflecting vain attempts of regulation by inefficient feedback circuitries. In this context, it is important to understand which appetite regulators exhibit a convergent rather than paradoxical behavior and hence are likely to contribute to the maintenance of the obese state. Pharmacological interventions in obesity should preferentially consist of the supplementation of deficient appetite inhibitors or the neutralization of excessive appetite stimulators. Here, we critically analyze the current literature on appetite-regulatory peptide hormones. We propose a short-list of appetite modulators that may constitute the best candidates for therapeutic interventions.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR8251, Université Paris Diderot, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
Central Apolipoprotein A-IV Stimulates Thermogenesis in Brown Adipose Tissue. Int J Mol Sci 2021; 22:ijms22031221. [PMID: 33513710 PMCID: PMC7865537 DOI: 10.3390/ijms22031221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/22/2021] [Indexed: 12/30/2022] Open
Abstract
Stimulation of thermogenesis in brown adipose tissue (BAT) could have far-reaching health benefits in combatting obesity and obesity-related complications. Apolipoprotein A-IV (ApoA-IV), produced by the gut and the brain in the presence of dietary lipids, is a well-known short-term satiating protein. While our previous studies have demonstrated reduced diet-induced thermogenesis in ApoA-IV-deficient mice, it is unclear whether this reduction is due to a loss of peripheral or central effects of ApoA-IV. We hypothesized that central administration of ApoA-IV stimulates BAT thermogenesis and that sympathetic and sensory innervation is necessary for this action. To test this hypothesis, mice with unilateral denervation of interscapular BAT received central injections of recombinant ApoA-IV protein or artificial cerebrospinal fluid (CSF). The effects of central ApoA-IV on BAT temperature and thermogenesis in mice with unilateral denervation of the intrascapular BAT were monitored using transponder probe implantation, qPCR, and immunoblots. Relative to CSF, central administration of ApoA-IV significantly increased temperature and UCP expression in BAT. However, all of these effects were significantly attenuated or prevented in mice with unilateral denervation. Together, these results clearly demonstrate that ApoA-IV regulates BAT thermogenesis centrally, and this effect is mediated through sympathetic and sensory nerves.
Collapse
|
9
|
Kaykhaei MA, Ghezel A, Ansari-Moghaddam A, Sandoughi M, Sheikhi V, Heidari Z. Changes in serum levels of Apo AIV in patients with newly diagnosed hyperthyroidism and hypothyroidism: a preliminary study. Horm Mol Biol Clin Investig 2021; 42:175-181. [PMID: 33544467 DOI: 10.1515/hmbci-2020-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Apolipoprotein AIV has a role in chylomicrons and lipid secretion and catabolism. Also, Apo-AIV plays a role in the regulation of appetite and satiety. Previous studies on rats have shown that hyperthyroidism and hypothyroidism are associated with significant changes in Apo-AIV serum levels. There has been no research on serum Apo-AIV changes in hyper and hypothyroidism in humans. METHODS This case-control study was performed on new patients with hyper and hypothyroidism. Eighteen patients with hyperthyroidism and 18 patients with hypothyroidism enrolled in the study. After 12 weeks treatment blood samples were recruited. If euthyroidism was achieved, serum Apo-AIV level was measured. Eighteen euthyroid healthy individuals without thyroid disease were chosen as the control group from general population. RESULTS Serum levels of Apo-AIV before treatment in hypothyroidism, hyperthyroidism and in the control group were 85.61, 110.66 and 33.51 mg/dL respectively (p<0.001), which was significantly higher in hyperthyroid patients than hypothyroidism and control group. In patients with hyperthyroidism there was a significant decrease in serum levels of Apo-AIV after treatment (p=0.044). However in hypothyroidism a non-significant elevation in serum levels of Apo-AIV was observed (p=0.403). Furthermore, serum levels of Apo-AIV after treatment were significantly higher in both hyperthyroidism and hypothyroidism in comparison to control group (p<0.001). CONCLUSIONS The results of this study for the first time showed that the serum level of Apo-AIV is increased in patients with hyperthyroidism and is decreased in patients with hypothyroidism, and after treatment, there was a significant difference with the control group.
Collapse
Affiliation(s)
- Mahmoud Ali Kaykhaei
- Department of Endocrinology and Metabolism, Zahedan University of Medical Sciences, Zahedan, Iran.,Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Avadan Ghezel
- Department of Endocrinology and Metabolism, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Mahnaz Sandoughi
- Department of Rheumatology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Vahid Sheikhi
- Department of Pediatric Nephrology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Heidari
- Department of Endocrinology and Metabolism, Zahedan University of Medical Sciences, Zahedan, Iran.,Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
10
|
Liu M, Shen L, Xu M, Wang DQH, Tso P. Estradiol Enhances Anorectic Effect of Apolipoprotein A-IV through ERα-PI3K Pathway in the Nucleus Tractus Solitarius. Genes (Basel) 2020; 11:E1494. [PMID: 33322656 PMCID: PMC7764025 DOI: 10.3390/genes11121494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/09/2023] Open
Abstract
Estradiol (E2) enhances the anorectic action of apolipoprotein A-IV (apoA-IV), however, the intracellular mechanisms are largely unclear. Here we reported that the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway was significantly activated by E2 and apoA-IV, respectively, in primary neuronal cells isolated from rat embryonic brainstem. Importantly, the combination of E2 and apoA-IV at their subthreshold doses synergistically activated the PI3K/Akt signaling pathway. These effects, however, were significantly diminished by the pretreatment with LY294002, a selective PI3K inhibitor. E2-induced activation of the PI3K/Akt pathway was through membrane-associated ERα, because the phosphorylation of Akt was significantly increased by PPT, an ERα agonist, and by E2-BSA (E2 conjugated to bovine serum albumin) which activates estrogen receptor on the membrane. Centrally administered apoA-IV at a low dose (0.5 µg) significantly suppressed food intake and increased the phosphorylation of Akt in the nucleus tractus solitarius (NTS) of ovariectomized (OVX) rats treated with E2, but not in OVX rats treated with vehicle. These effects were blunted by pretreatment with LY294002. These results indicate that E2's regulatory role in apoA-IV's anorectic action is through the ERα-PI3K pathway in the NTS. Manipulation of the PI3K/Akt signaling activation in the NTS may provide a novel therapeutic approach for the prevention and the treatment of obesity-related disorders in females.
Collapse
Affiliation(s)
- Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (L.S.); (M.X.); (P.T.)
| | - Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (L.S.); (M.X.); (P.T.)
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (L.S.); (M.X.); (P.T.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (L.S.); (M.X.); (P.T.)
| |
Collapse
|
11
|
Temporal Dynamics of High-Density Lipoprotein Proteome in Diet-Controlled Subjects with Type 2 Diabetes. Biomolecules 2020; 10:biom10040520. [PMID: 32235466 PMCID: PMC7226298 DOI: 10.3390/biom10040520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/18/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
We examined the effect of mild hyperglycemia on high-density lipoprotein (HDL) metabolism and kinetics in diet-controlled subjects with type 2 diabetes (T2D). 2H2O-labeling coupled with mass spectrometry was applied to quantify HDL cholesterol turnover and HDL proteome dynamics in subjects with T2D (n = 9) and age- and BMI-matched healthy controls (n = 8). The activities of lecithin–cholesterol acyltransferase (LCAT), cholesterol ester transfer protein (CETP), and the proinflammatory index of HDL were quantified. Plasma adiponectin levels were reduced in subjects with T2D, which was directly associated with suppressed ABCA1-dependent cholesterol efflux capacity of HDL. The fractional catabolic rates of HDL cholesterol, apolipoprotein A-II (ApoA-II), ApoJ, ApoA-IV, transthyretin, complement C3, and vitamin D-binding protein (all p < 0.05) were increased in subjects with T2D. Despite increased HDL flux of acute-phase HDL proteins, there was no change in the proinflammatory index of HDL. Although LCAT and CETP activities were not affected in subjects with T2D, LCAT was inversely associated with blood glucose and CETP was inversely associated with plasma adiponectin. The degradation rates of ApoA-II and ApoA-IV were correlated with hemoglobin A1c. In conclusion, there were in vivo impairments in HDL proteome dynamics and HDL metabolism in diet-controlled patients with T2D.
Collapse
|
12
|
Ko CW, Qu J, Black DD, Tso P. Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 2020; 17:169-183. [PMID: 32015520 DOI: 10.1038/s41575-019-0250-7] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Lipids entering the gastrointestinal tract include dietary lipids (triacylglycerols, cholesteryl esters and phospholipids) and endogenous lipids from bile (phospholipids and cholesterol) and from shed intestinal epithelial cells (enterocytes). Here, we comprehensively review the digestion, uptake and intracellular re-synthesis of intestinal lipids as well as their packaging into pre-chylomicrons in the endoplasmic reticulum, their modification in the Golgi apparatus and the exocytosis of the chylomicrons into the lamina propria and subsequently to lymph. We also discuss other fates of intestinal lipids, including intestinal HDL and VLDL secretion, cytosolic lipid droplets and fatty acid oxidation. In addition, we highlight the applicability of these findings to human disease and the development of therapeutics targeting lipid metabolism. Finally, we explore the emerging role of the gut microbiota in modulating intestinal lipid metabolism and outline key questions for future research.
Collapse
Affiliation(s)
- Chih-Wei Ko
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jie Qu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Dennis D Black
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
13
|
Advanced Glycated apoA-IV Loses Its Ability to Prevent the LPS-Induced Reduction in Cholesterol Efflux-Related Gene Expression in Macrophages. Mediators Inflamm 2020; 2020:6515401. [PMID: 32410861 PMCID: PMC7201780 DOI: 10.1155/2020/6515401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
We addressed how advanced glycation (AGE) affects the ability of apoA-IV to impair inflammation and restore the expression of genes involved in cholesterol efflux in lipopolysaccharide- (LPS-) treated macrophages. Recombinant human apoA-IV was nonenzymatically glycated by incubation with glycolaldehyde (GAD), incubated with cholesterol-loaded bone marrow-derived macrophages (BMDMs), and then stimulated with LPS prior to measurement of proinflammatory cytokines by ELISA. Genes involved in cholesterol efflux were quantified by RT-qPCR, and cholesterol efflux was measured by liquid scintillation counting. Carboxymethyllysine (CML) and pyrraline (PYR) levels, determined by Liquid Chromatography-Mass Spectrometry (LC-MS/MS), were greater in AGE-modified apoA-IV (AGE-apoA-IV) compared to unmodified-apoA-IV. AGE-apoA-IV inhibited expression of interleukin 6 (Il6), TNF-alpha (Tnf), IL-1 beta (Il1b), toll-like receptor 4 (Tlr4), tumor necrosis factor receptor-associated factor 6 (Traf6), Janus kinase 2/signal transducer and activator of transcription 3 (Jak2/Stat3), nuclear factor kappa B (Nfkb), and AGE receptor 1 (Ddost) as well as IL-6 and TNF-alpha secretion. AGE-apoA-IV alone did not change cholesterol efflux or ABCA-1 levels but was unable to restore the LPS-induced reduction in expression of Abca1 and Abcg1. AGE-apoA-IV inhibited inflammation but lost its ability to counteract the LPS-induced changes in expression of genes involved in macrophage cholesterol efflux that may contribute to atherosclerosis.
Collapse
|
14
|
Chen P, Wang LX, Sui XJ, Li SM, Wang Y, Liu Q, Ni JZ. Comparative Serum Proteomic Analysis of the Effects of Sodium Selenate on a Mouse Model of Alzheimer's Disease. Biol Trace Elem Res 2019; 192:263-276. [PMID: 30790121 DOI: 10.1007/s12011-019-01676-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/12/2019] [Indexed: 11/25/2022]
Abstract
Selenium (Se), as a nutritionally essential trace element, has been shown to decrease with age and is closely related to Alzheimer's disease (AD). To probe the effects of Se on AD pathology, two-dimensional fluorescence difference gel electrophoresis was applied to the serum samples collected from the wild-type (WT) mice and the triple transgenic (PS1M146V/AβPPSwe/TauP301L) AD mice (3xTg-AD), treated with or without sodium selenate in drinking water for 4 months beginning at 2 months of age. Proteomics results revealed 17 differentially expressed proteins between WT and 3xTg-AD mice. It was found that the administration of selenate reversed the alterations of the differentially expressed serum proteins by up-regulating 13 proteins and down-regulating 2 proteins which were reported to be involved in the key pathogenesis of AD, including regulation of Aβ production, lipid metabolism regulation, and anti-inflammation. These results suggested that a dietary supplement with selenate is effective for prevention and treatment of AD, and the mechanism was maybe related to its role in Aβ regulation, lipid metabolism, and anti-inflammation. Moreover, we also presented that α-2 macroglobulin, transthyretin, haptoglobin, alpha-2-HS-glycoprotein, and alpha-1-antitrypsin in the serum can be used to evaluate the effect of selenate on AD pathology.
Collapse
Affiliation(s)
- Ping Chen
- Department of Biochemical Engineering, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 473004, China.
| | - Li-Xiang Wang
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, 518060, China
| | - Xiao-Jing Sui
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, 518060, China
| | - Shui-Ming Li
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, 518060, China
| | - Yong Wang
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, 518060, China
| | - Qiong Liu
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, 518060, China.
| | - Jia-Zuan Ni
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
15
|
Wang Z, Wang L, Zhang Z, Feng L, Song X, Wu J. Apolipoprotein A-IV involves in glucose and lipid metabolism of rat. Nutr Metab (Lond) 2019; 16:41. [PMID: 31303888 PMCID: PMC6604154 DOI: 10.1186/s12986-019-0367-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/06/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Apolipoprotein A-IV (ApoA-IV) exists in relatively high levels in the circulation systems of animals, but its roles are not fully elucidated. It is known that the Apoa4 gene resides in the cluster Apoa1/Apoc3/Apoa4. Because of a short intergenic sequence between Apoc3 and Apoa4, a previous ApoA-IV knockout mouse model by gene targeting had an accompanying deficiency in ApoC-III expression, which limited its application in investigating the precise roles of ApoA-IV. To solve this problem, we created a specific knockout of ApoA-IV in Sprague-Dawlay rats by TALEN approach. METHODS Age-matched knockout rats and their wild-type littermate controls maintained on a standard rodent diet were studied and blood metabolic parameters were measured. Glucose, insulin, olive oil, and intralipid tolerance tests were performed to study the glucose and lipid metabolism of rats. Quantitative real-time PCR and RNA-seq analysis in liver and inguinal white adipose tissue (iWAT) of rats at three ages (18 weeks, 45 weeks and 90 weeks) were performed to identify the genes altered by ApoA-IV knockout. RESULTS ApoA-IV knockout rats were apparently normal and fertile, but exhibited improved glucose clearance when challenged with glucose tolerance test. In addition, fasting-induced hepatic steatosis was more pronounced in ApoA-IV knockout rats. Further analysis identified that a set of hepatic genes involved in glycolysis, gluconeogenesis and de novo lipogenesis were altered in the absence of ApoA-IV, which induced enhanced glycolysis, attenuated gluconeogenesis and elevated de novo lipogenesis. And the RNA-seq results also confirmed that almost all the genes mentioned in the phenotyping section were highly consistent throughout the three studied ages. CONCLUSIONS ApoA-IV functions in an age-independent manner in the modulation of glucose and lipid metabolism of rats, and may serve as a potential linker between hepatic glucose and lipid metabolism.
Collapse
Affiliation(s)
- Zhenguo Wang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Lu Wang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Zhuzhen Zhang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Li Feng
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Xue Song
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210 China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210 China
| |
Collapse
|
16
|
Qu J, Ko CW, Tso P, Bhargava A. Apolipoprotein A-IV: A Multifunctional Protein Involved in Protection against Atherosclerosis and Diabetes. Cells 2019; 8:E319. [PMID: 30959835 PMCID: PMC6523623 DOI: 10.3390/cells8040319] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is a lipid-binding protein, which is primarily synthesized in the small intestine, packaged into chylomicrons, and secreted into intestinal lymph during fat absorption. In the circulation, apoA-IV is present on chylomicron remnants, high-density lipoproteins, and also in lipid-free form. ApoA-IV is involved in a myriad of physiological processes such as lipid absorption and metabolism, anti-atherosclerosis, platelet aggregation and thrombosis, glucose homeostasis, and food intake. ApoA-IV deficiency is associated with atherosclerosis and diabetes, which renders it as a potential therapeutic target for treatment of these diseases. While much has been learned about the physiological functions of apoA-IV using rodent models, the action of apoA-IV at the cellular and molecular levels is less understood, let alone apoA-IV-interacting partners. In this review, we will summarize the findings on the molecular function of apoA-IV and apoA-IV-interacting proteins. The information will shed light on the discovery of apoA-IV receptors and the understanding of the molecular mechanism underlying its mode of action.
Collapse
Affiliation(s)
- Jie Qu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Chih-Wei Ko
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Aditi Bhargava
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA.
| |
Collapse
|
17
|
Wang W, Zhang X, Qin J, Wei P, Jia Y, Wang J, Ru S. Long-term bisphenol S exposure induces fat accumulation in liver of adult male zebrafish (Danio rerio) and slows yolk lipid consumption in F1 offspring. CHEMOSPHERE 2019; 221:500-510. [PMID: 30660906 DOI: 10.1016/j.chemosphere.2019.01.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 05/27/2023]
Abstract
Bisphenol S (BPS), as a substitute for bisphenol A, was frequently detected in human urine and blood. It has been reported that BPS could disrupt fat metabolism in vivo and vitro although mechanisms remain unclear. Additionally, there is no study that the disruptive effect of BPS on parental fat metabolism indirectly interferes with the lipid metabolism of offspring. Here, after 120-d exposure to 1, 10, 100, and 1000 μg/L BPS, the transcription level of genes involved in lipid metabolism in liver and feeding regulation of brain-gut axis, as well as the hepatic triacylglycerol (TAG) and plasma lipid levels were investigated in both male and female zebrafish. Results showed that in male liver, fatty acid synthesis and degradation were inhibited by reducing transcription levels of srebp1 and pparα, and the synthesis of TAG was significantly increased using fatty acid as a precursor by elevating agpat4 and dgat2 mRNA expression levels. As a consequence, fat accumulation and the increased TAG levels were observed in male liver, and lipid levels were also elevated in male plasma. In female liver, there was no excessive fat accumulation and BPS exposure had a non-monotonic effect on the gene expression of fasn, dagt2, and pparα. Notably, the unexposed offspring showed a large amount of yolk lipid remain at 5 days post fertilization. This study obviously demonstrated that long-term BPS exposure increases the risk of non-alcoholic fatty liver disease in male zebrafish and life-cycle exposure hazard on offspring is noteworthy.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Penghao Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yi Jia
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
18
|
Anderson K, Kuo CY, Lu MW, Bar I, Elizur A. A transcriptomic investigation of digestive processes in orange-spotted grouper, Epinephelus coioides, before, during, and after metamorphic development. Gene 2018; 661:95-108. [DOI: 10.1016/j.gene.2018.03.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 11/26/2022]
|
19
|
CREBH Regulates Systemic Glucose and Lipid Metabolism. Int J Mol Sci 2018; 19:ijms19051396. [PMID: 29738435 PMCID: PMC5983805 DOI: 10.3390/ijms19051396] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 12/23/2022] Open
Abstract
The cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H (CREBH, encoded by CREB3L3) is a membrane-bound transcriptional factor that primarily localizes in the liver and small intestine. CREBH governs triglyceride metabolism in the liver, which mediates the changes in gene expression governing fatty acid oxidation, ketogenesis, and apolipoproteins related to lipoprotein lipase (LPL) activation. CREBH in the small intestine reduces cholesterol transporter gene Npc1l1 and suppresses cholesterol absorption from diet. A deficiency of CREBH in mice leads to severe hypertriglyceridemia, fatty liver, and atherosclerosis. CREBH, in synergy with peroxisome proliferator-activated receptor α (PPARα), has a crucial role in upregulating Fgf21 expression, which is implicated in metabolic homeostasis including glucose and lipid metabolism. CREBH binds to and functions as a co-activator for both PPARα and liver X receptor alpha (LXRα) in regulating gene expression of lipid metabolism. Therefore, CREBH has a crucial role in glucose and lipid metabolism in the liver and small intestine.
Collapse
|
20
|
Shen L, Liu Y, Tso P, Wang DQH, Davidson WS, Woods SC, Liu M. Silencing steroid receptor coactivator-1 in the nucleus of the solitary tract reduces estrogenic effects on feeding and apolipoprotein A-IV expression. J Biol Chem 2017; 293:2091-2101. [PMID: 29263093 DOI: 10.1074/jbc.ra117.000237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/08/2017] [Indexed: 01/05/2023] Open
Abstract
We previously found that 17β-estradiol (E2) stimulates apolipoprotein A-IV (apoA-IV) gene expression in the nucleus of the solitary tract (NTS) of lean ovariectomized (OVX) rodents. Here we report that in the NTS of high-fat diet-induced obese (DIO) rats, the apoA-IV mRNA level is significantly reduced and that the estrogenic effects on apoA-IV gene expression and food intake are impaired. E2 regulates apoA-IV gene expression through its nuclear receptor α (ERα), which requires co-activators, such as steroid receptor coactivator-1 (SRC-1), to facilitate the transcription of targeted genes. Interestingly, SRC-1 gene expression is significantly reduced in DIO OVX rats. SRC-1 is colocalized with apoA-IV in the cells of the NTS and E2 treatment enhances the recruitment of ERα and SRC-1 to the estrogen response element at the apoA-V promoter, implying the participation of SRC-1 in E2's stimulatory effect on apoA-IV gene expression. Using small hairpin RNA (shRNA), which was validated in cultured neuronal cells, we found that SRC-1 gene knockdown specifically in the NTS significantly diminished E2's anorectic action, leading to increased food intake and body weight. More importantly, the stimulatory effect of E2 on apoA-IV gene expression in the NTS was significantly attenuated in SRC-1 knockdown rats. These results collectively demonstrate the critical roles of NTS SRC-1 in mediating E2's actions on food intake and apoA-IV gene expression and suggest that reduced levels of endogenous SRC-1 and apoA-IV expression are responsible for the impaired E2's anorectic action in obese females.
Collapse
Affiliation(s)
- Ling Shen
- From the Departments of Pathology and Laboratory Medicine and
| | - Yin Liu
- From the Departments of Pathology and Laboratory Medicine and
| | - Patrick Tso
- From the Departments of Pathology and Laboratory Medicine and
| | - David Q-H Wang
- the Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | - W Sean Davidson
- From the Departments of Pathology and Laboratory Medicine and
| | - Stephen C Woods
- Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237 and
| | - Min Liu
- From the Departments of Pathology and Laboratory Medicine and
| |
Collapse
|
21
|
Shen L, Lo CC, Woollett LA, Liu M. Apolipoprotein A-IV exerts its anorectic action through a PI3K/Akt signaling pathway in the hypothalamus. Biochem Biophys Res Commun 2017; 494:152-157. [PMID: 29037812 DOI: 10.1016/j.bbrc.2017.10.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022]
Abstract
Apolipoprotein A-IV (apoA-IV) is a satiation factor that acts in the hypothalamus, however, the intracellular mechanisms responsible for this action are still largely unknown. Here we report that apoA-IV treatment elicited a rapid activation of the phosphatidylinositol-3-kinase (PI3K) signaling pathway in cultured primary hypothalamic neurons, and this effect was significantly attenuated by pretreatment with LY294002, an inhibitor of the PI3K pathway. To determine if the activation of PI3K is required for apoA-IV's inhibitory effect on food intake, apoA-IV was administered intracerebroventricularly. We found that apoA-IV significantly reduced food intake and activated PI3K signaling in the hypothalamus, and these effects were abolished by icv pre-treatment with LY294002. To identify the distinct brain sites where apoA-IV exerts its anorectic action, apoA-IV was administered into the ventromedial hypothalamus (VMH) through implanted bilateral cannula. At a low dose (0.5 μg), apoA-IV significantly inhibited food intake and activated PI3K signaling pathway in the VMH of lean rats, but not in high-fat diet-induced obese (DIO) rats. These results collectively demonstrate a critical role of the PI3K/Akt pathway in apoA-IV's anorectic action in lean rats and suggest a defective PI3K pathway in the VMH is responsible for the impaired apoA-IV's anorectic action in the DIO animals.
Collapse
Affiliation(s)
- Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chunmin C Lo
- Department of Biomedical Sciences and Diabetes Institute, Ohio University, Athens, OH, USA
| | - Laura A Woollett
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
22
|
Abstract
The maintenance of the body weight at a stable level is a major determinant in keeping the higher animals and mammals survive. Th e body weight depends on the balance between the energy intake and energy expenditure. Increased food intake over the energy expenditure of prolonged time period results in an obesity. Th e obesity has become an important worldwide health problem, even at low levels. The obesity has an evil effect on the health and is associated with a shorter life expectancy. A complex of central and peripheral physiological signals is involved in the control of the food intake. Centrally, the food intake is controlled by the hypothalamus, the brainstem, and endocannabinoids and peripherally by the satiety and adiposity signals. Comprehension of the signals that control food intake and energy balance may open a new therapeutic approaches directed against the obesity and its associated complications, as is the insulin resistance and others. In conclusion, the present review summarizes the current knowledge about the complex system of the peripheral and central regulatory mechanisms of food intake and their potential therapeutic implications in the treatment of obesity.
Collapse
|
23
|
Weng J, Lou D, Benoit SC, Coschigano N, Woods SC, Tso P, Lo CC. Energy homeostasis in apolipoprotein AIV and cholecystokinin-deficient mice. Am J Physiol Regul Integr Comp Physiol 2017; 313:R535-R548. [PMID: 28768657 DOI: 10.1152/ajpregu.00034.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
Abstract
Apolipoprotein AIV (ApoAIV) and cholecystokinin (CCK) are well-known satiating signals that are stimulated by fat consumption. Peripheral ApoAIV and CCK interact to prolong satiating signals. In the present study, we hypothesized that ApoAIV and CCK control energy homeostasis in response to high-fat diet feeding. To test this hypothesis, energy homeostasis in ApoAIV and CCK double knockout (ApoAIV/CCK-KO), ApoAIV knockout (ApoAIV-KO), and CCK knockout (CCK-KO) mice were monitored. When animals were maintained on a low-fat diet, ApoAIV/CCK-KO, ApoAIV-KO, and CCK-KO mice had comparable energy intake and expenditure, body weight, fat mass, fat absorption, and plasma parameters relative to the controls. In contrast, these KO mice exhibited impaired lipid transport to epididymal fat pads in response to intraduodenal infusion of dietary lipids. Furthermore, ApoAIV-KO mice had upregulated levels of CCK receptor 2 (CCK2R) in the small intestine while ApoAIV/CCK-KO mice had upregulated levels of CCK2R in the brown adipose tissue. After 20 wk of a high-fat diet, ApoAIV-KO and CCK-KO mice had comparable body weight and fat mass, as well as lower energy expenditure at some time points. However, ApoAIV/CCK-KO mice exhibited reduced body weight and adiposity relative to wild-type mice, despite having normal food intake. Furthermore, ApoAIV/CCK-KO mice displayed normal fat absorption and locomotor activity, as well as enhanced energy expenditure. These observations suggest that mice lacking ApoAIV and CCK have reduced body weight and adiposity, possibly due to impaired lipid transport and elevated energy expenditure.
Collapse
Affiliation(s)
- Jonathan Weng
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, and Diabetes Institute, Ohio University, Athens, Ohio.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NewYork
| | - Danwen Lou
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio; and
| | - Stephen C Benoit
- Department of Psychiatry, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - Natalie Coschigano
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, and Diabetes Institute, Ohio University, Athens, Ohio
| | - Stephen C Woods
- Department of Psychiatry, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio; and
| | - Chunmin C Lo
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, and Diabetes Institute, Ohio University, Athens, Ohio;
| |
Collapse
|
24
|
Abstract
This review discusses the regulation of the intestinal and hypothalamic apolipoprotein A-IV (apo A-IV) gene and protein expression. Apo A-IV is a glycoprotein secreted together with triglyceride-rich lipoproteins by the small intestine. Intestinal apo A-IV synthesis is stimulated by fat absorption, probably mediated by chylomicron formation. This stimulation of intestinal apo A-IV synthesis is attenuated by intravenous leptin infusion. Chronic ingestion of a high-fat diet blunts the intestinal apo A-IV in response to dietary lipid. Intestinal apo A-IV synthesis is also stimulated by members of the pancreatic polypeptide family, including peptide YY (PYY), neuropeptide Y (NPY), and pancreatic polypeptide (PP). Recently, apo A-IV was demonstrated to be present in the hypothalamus as well. Hypothalamic apo A-IV level was reduced by food deprivation and restored by lipid feeding. Intracerebroventricular administration of apo A-IV antiserum stimulated feeding and decreased the hypothalamic apo A-IV mRNA level, implying that feeding is intimately regulated by endogenous hypothalamic apo A-IV. Central administration of NPY significantly increased hypothalamic apo A-IV mRNA levels in a dose-dependent manner.
Collapse
Affiliation(s)
- Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical College, Cincinnati, Ohio 45267-0529, USA
| | | | | |
Collapse
|
25
|
Proteomic response of mouse pituitary gland under heat stress revealed active regulation of stress responsive proteins. J Therm Biol 2016; 61:82-90. [DOI: 10.1016/j.jtherbio.2016.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 11/22/2022]
|
26
|
Ramli NS, Ismail P, Rahmat A. Red pitaya juice supplementation ameliorates energy balance homeostasis by modulating obesity-related genes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:243. [PMID: 27456968 PMCID: PMC4960886 DOI: 10.1186/s12906-016-1200-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Red pitaya (Hylocereus polyrhizus) or known as buah naga merah in Malay belongs to the cactus family, Cactaceae. Red pitaya has been shown to give protection against liver damage and may reduce the stiffness of the heart. Besides, the beneficial effects of red pitaya against obesity have been reported; however, the mechanism of this protection is not clear. Therefore, in the present study, we have investigated the red pitaya-targeted genes in obesity using high-carbohydrate, high-fat diet-induced metabolic syndrome rat model. METHODS A total of four groups were tested: corn-starch (CS), corn-starch + red pitaya juice (CRP), high-carbohydrate, high-fat (HCHF) and high-carbohydrate, high-fat + red pitaya juice (HRP). The intervention with 5 % red pitaya juice was continued for 8 weeks after 8 weeks initiation of the diet. Retroperitoneal, epididymal and omental fat pads were collected and weighed. Plasma concentration of IL-6 and TNF-α were measured using commercial kits. Gene expression analysis was conducted using RNA extracted from liver samples. A total of eighty-four genes related to obesity were analyzed using PCR array. RESULTS The rats fed HCHF-diet for 16 weeks increased body weight, developed excess abdominal fat deposition and down-regulated the expression level of IL-1α, IL-1r1, and Cntfr as compared to the control group. Supplementation of red pitaya juice for 8 weeks increased omental and epididymal fat but no change in retroperitoneal fat was observed. Red pitaya juice reversed the changes in energy balance homeostasis in liver tissues by regulation of the expression levels of Pomc and Insr. The increased protein expression levels of IL-6 and TNF-α in HCHF group and red pitaya treated rats confirmed the results of gene expression. CONCLUSION Collectively, this study revealed the usefulness of this diet-induced rat model and the beneficial effects of red pitaya on energy balance homeostasis by modulating the anorectic, orexigenic and energy expenditure related genes.
Collapse
Affiliation(s)
- Nurul Shazini Ramli
- Department of Food Science, Universiti Putra Malaysia, Serdang, Selangor 43400 Malaysia
| | - Patimah Ismail
- Department of Biomedical Science, Universiti Putra Malaysia, Serdang, 43400 Malaysia
| | - Asmah Rahmat
- Department of Nutrition and Dietetics, Universiti Putra Malaysia, Serdang, 43400 Malaysia
| |
Collapse
|
27
|
Qin W, Li X, Xie L, Li S, Liu J, Jia L, Dong X, Ren X, Xiao J, Yang C, Zhou Y, Chen Z. A long non-coding RNA, APOA4-AS, regulates APOA4 expression depending on HuR in mice. Nucleic Acids Res 2016; 44:6423-33. [PMID: 27131369 PMCID: PMC5291254 DOI: 10.1093/nar/gkw341] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to be critical biomarkers or therapeutic targets for human diseases. However, only a small number of lncRNAs were screened and characterized. Here, we identified 15 lncRNAs, which are associated with fatty liver disease. Among them, APOA4-AS is shown to be a concordant regulator of Apolipoprotein A-IV (APOA4) expression. APOA4-AS has a similar expression pattern with APOA4 gene. The expressions of APOA4-AS and APOA4 are both abnormally elevated in the liver of ob/ob mice and patients with fatty liver disease. Knockdown of APOA4-AS reduces APOA4 expression both in vitro and in vivo and leads to decreased levels of plasma triglyceride and total cholesterol in ob/ob mice. Mechanistically, APOA4-AS directly interacts with mRNA stabilizing protein HuR and stabilizes APOA4 mRNA. Deletion of HuR dramatically reduces both APOA4-AS and APOA4 transcripts. This study uncovers an anti-sense lncRNA (APOA4-AS), which is co-expressed with APOA4, and concordantly and specifically regulates APOA4 expression both in vitro and in vivo with the involvement of HuR.
Collapse
Affiliation(s)
- Wangshu Qin
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xinzhi Li
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Liwei Xie
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai 200065, China
| | - Sha Li
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jianan Liu
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Linna Jia
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xue Dong
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiaomeng Ren
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Junjie Xiao
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Changqing Yang
- China and Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zheng Chen
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
28
|
Yan C, He Y, Xu Y, Shu G, Wang C, Yang Y, Saito K, Xu P, Hinton AO, Yan X, Yu L, Wu Q, Tso P, Tong Q, Xu Y. Apolipoprotein A-IV Inhibits AgRP/NPY Neurons and Activates Pro-Opiomelanocortin Neurons in the Arcuate Nucleus. Neuroendocrinology 2016; 103:476-488. [PMID: 26337236 PMCID: PMC4767704 DOI: 10.1159/000439436] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/16/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIMS Apolipoprotein A-IV (apoA-IV) in the brain potently suppresses food intake. However, the mechanisms underlying its anorexigenic effects remain to be identified. METHODS We first examined the effects of apoA-IV on cellular activities in hypothalamic neurons that co-express agouti-related peptide (AgRP) and neuropeptide Y (NPY) and in neurons that express pro-opiomelanocortin (POMC). We then compared anorexigenic effects of apoA-IV in wild-type mice and in mutant mice lacking melanocortin 4 receptors (MC4Rs; the receptors of AgRP and the POMC gene product). Finally, we examined expression of apoA-IV in mouse hypothalamus and quantified its protein levels at fed versus fasted states. RESULTS We demonstrate that apoA-IV inhibited the firing rate of AgRP/NPY neurons. The decreased firing was associated with hyperpolarized membrane potential and decreased miniature excitatory postsynaptic current. We further used c-fos immunoreactivity to show that intracerebroventricular (i.c.v.) injections of apoA-IV abolished the fasting-induced activation of AgRP/NPY neurons in mice. Further, we found that apoA-IV depolarized POMC neurons and increased their firing rate. In addition, genetic deletion of MC4Rs blocked anorexigenic effects of i.c.v. apoA-IV. Finally, we detected endogenous apoA-IV in multiple neural populations in the mouse hypothalamus, including AgRP/NPY neurons, and food deprivation suppressed hypothalamic apoA-IV protein levels. CONCLUSION Our findings support a model where central apoA-IV inhibits AgRP/NPY neurons and activates POMC neurons to activate MC4Rs, which in turn suppresses food intake.
Collapse
Affiliation(s)
- Chunling Yan
- Children’s Nutrition ReseARHh Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
- Medical College of Qingdao University, Qingdao, China 266020
| | - Yanlin He
- Children’s Nutrition ReseARHh Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Yuanzhong Xu
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Gang Shu
- Children’s Nutrition ReseARHh Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
- Department of Physiology, Institute of Animal Science, Southern China University of Agriculture, Guangzhou, China
| | - Chunmei Wang
- Children’s Nutrition ReseARHh Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Yongjie Yang
- Children’s Nutrition ReseARHh Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Kenji Saito
- Children’s Nutrition ReseARHh Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Pingwen Xu
- Children’s Nutrition ReseARHh Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Antentor Othrell Hinton
- Children’s Nutrition ReseARHh Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Xiaofeng Yan
- Children’s Nutrition ReseARHh Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Likai Yu
- Children’s Nutrition ReseARHh Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
- Department of Rheumatology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Wu
- Children’s Nutrition ReseARHh Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, OH, 45237
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030
- Correspondence should be addressed to: Yong Xu, 1100 Bates Street, Rm 8070, Houston, Texas 77030. , Telephone: (713)-798-7199, Fax: (713)-798-7187; Qingchun Tong, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030. , Telephone: (713)-500-0453, Fax: (713)-500-2208
| | - Yong Xu
- Children’s Nutrition ReseARHh Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Correspondence should be addressed to: Yong Xu, 1100 Bates Street, Rm 8070, Houston, Texas 77030. , Telephone: (713)-798-7199, Fax: (713)-798-7187; Qingchun Tong, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030. , Telephone: (713)-500-0453, Fax: (713)-500-2208
| |
Collapse
|
29
|
Roman-Padilla J, Rodríguez-Rua A, Claros MG, Hachero-Cruzado I, Manchado M. Genomic characterization and expression analysis of four apolipoprotein A-IV paralogs in Senegalese sole (Solea senegalensis Kaup). Comp Biochem Physiol B Biochem Mol Biol 2015; 191:84-98. [PMID: 26453798 DOI: 10.1016/j.cbpb.2015.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 01/21/2023]
Abstract
The apolipoprotein A-IV (ApoA-IV) plays a key role in lipid transport and feed intake regulation. In this work, four cDNA sequences encoding ApoA-IV paralogs were identified. Sequence analysis revealed conserved structural features including the common 33-codon block and nine repeated motifs. Gene structure analysis identified four exons and three introns except for apoA-IVAa1 (with only 3 exons). Synteny analysis showed that the four paralogs were structured into two clusters (cluster A containing apoA-IVAa1 and apoA-IVAa2 and cluster B with apoA-IVBa3 and apoA-IVBa4) linked to an apolipoprotein E. Phylogenetic analysis clearly separated the paralogs according to their cluster organization as well as revealed four subclades highly conserved in Acanthopterygii. Whole-mount analyses (WISH) in early larvae (0 and 1day post-hatch (dph)) showed that the four paralogs were mainly expressed in yolk syncytial layer surrounding the oil globules. Later, at 3 and 5dph, the four paralogs were mainly expressed in liver and intestine although with differences in their relative abundance and temporal expression patterns. Diet supply triggered the intensity of WISH signals in the intestine of the four paralogs. Quantification of mRNA abundance by qPCR using whole larvae only detected the induction by diet at 5dph. Moreover, transcript levels increased progressively with age except for apoA-IVAa2, which appeared as a low-expressed isoform. Expression analysis in juvenile tissues confirmed that the four paralogs were mainly expressed in liver and intestine and secondary in other tissues. The role of these ApoA-IV genes in lipid transport and the possible role of apoA-IVAa2 as a regulatory form are discussed.
Collapse
Affiliation(s)
- J Roman-Padilla
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - A Rodríguez-Rua
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - M G Claros
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
| | - I Hachero-Cruzado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - M Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
30
|
Kohan AB, Wang F, Lo CM, Liu M, Tso P. ApoA-IV: current and emerging roles in intestinal lipid metabolism, glucose homeostasis, and satiety. Am J Physiol Gastrointest Liver Physiol 2015; 308:G472-81. [PMID: 25591862 PMCID: PMC4360046 DOI: 10.1152/ajpgi.00098.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apolipoprotein A-IV (apoA-IV) is secreted by the small intestine on chylomicrons into intestinal lymph in response to fat absorption. Many physiological functions have been ascribed to apoA-IV, including a role in chylomicron assembly and lipid metabolism, a mediator of reverse-cholesterol transport, an acute satiety factor, a regulator of gastric function, and, finally, a modulator of blood glucose homeostasis. The purpose of this review is to update our current view of intestinal apoA-IV synthesis and secretion and the physiological roles of apoA-IV in lipid metabolism and energy homeostasis, and to underscore the potential for intestinal apoA-IV to serve as a therapeutic target for the treatment of diabetes and obesity-related disease.
Collapse
Affiliation(s)
- Alison B. Kohan
- 2Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut
| | - Fei Wang
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Chun-Min Lo
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Min Liu
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Patrick Tso
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| |
Collapse
|
31
|
Otis JP, Zeituni EM, Thierer JH, Anderson JL, Brown AC, Boehm ED, Cerchione DM, Ceasrine AM, Avraham-Davidi I, Tempelhof H, Yaniv K, Farber SA. Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake. Dis Model Mech 2015; 8:295-309. [PMID: 25633982 PMCID: PMC4348566 DOI: 10.1242/dmm.018754] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/22/2015] [Indexed: 12/31/2022] Open
Abstract
Improved understanding of lipoproteins, particles that transport lipids throughout the circulation, is vital to developing new treatments for the dyslipidemias associated with metabolic syndrome. Apolipoproteins are a key component of lipoproteins. Apolipoproteins are proteins that structure lipoproteins and regulate lipid metabolism through control of cellular lipid exchange. Constraints of cell culture and mouse models mean that there is a need for a complementary model that can replicate the complex in vivo milieu that regulates apolipoprotein and lipoprotein biology. Here, we further establish the utility of the genetically tractable and optically clear larval zebrafish as a model of apolipoprotein biology. Gene ancestry analyses were implemented to determine the closest human orthologs of the zebrafish apolipoprotein A-I (apoA-I), apoB, apoE and apoA-IV genes and therefore ensure that they have been correctly named. Their expression patterns throughout development were also analyzed, by whole-mount mRNA in situ hybridization (ISH). The ISH results emphasized the importance of apolipoproteins in transporting yolk and dietary lipids: mRNA expression of all apolipoproteins was observed in the yolk syncytial layer, and intestinal and liver expression was observed from 4-6 days post-fertilization (dpf). Furthermore, real-time PCR confirmed that transcription of three of the four zebrafish apoA-IV genes was increased 4 hours after the onset of a 1-hour high-fat feed. Therefore, we tested the hypothesis that zebrafish ApoA-IV performs a conserved role to that in rat in the regulation of food intake by transiently overexpressing ApoA-IVb.1 in transgenic larvae and quantifying ingestion of co-fed fluorescently labeled fatty acid during a high-fat meal as an indicator of food intake. Indeed, ApoA-IVb.1 overexpression decreased food intake by approximately one-third. This study comprehensively describes the expression and function of eleven zebrafish apolipoproteins and serves as a springboard for future investigations to elucidate their roles in development and disease in the larval zebrafish model.
Collapse
Affiliation(s)
- Jessica P Otis
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Erin M Zeituni
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - James H Thierer
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Jennifer L Anderson
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Alexandria C Brown
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Erica D Boehm
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Derek M Cerchione
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Alexis M Ceasrine
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Inbal Avraham-Davidi
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot 7610001, Israel
| | - Hanoch Tempelhof
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot 7610001, Israel
| | - Karina Yaniv
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot 7610001, Israel
| | - Steven A Farber
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| |
Collapse
|
32
|
Wang F, Kohan AB, Lo CM, Liu M, Howles P, Tso P. Apolipoprotein A-IV: a protein intimately involved in metabolism. J Lipid Res 2015; 56:1403-18. [PMID: 25640749 DOI: 10.1194/jlr.r052753] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
The purpose of this review is to summarize our current understanding of the physiological roles of apoA-IV in metabolism, and to underscore the potential for apoA-IV to be a focus for new therapies aimed at the treatment of diabetes and obesity-related disorders. ApoA-IV is primarily synthesized by the small intestine, attached to chylomicrons by enterocytes, and secreted into intestinal lymph during fat absorption. In circulation, apoA-IV is associated with HDL and chylomicron remnants, but a large portion is lipoprotein free. Due to its anti-oxidative and anti-inflammatory properties, and because it can mediate reverse-cholesterol transport, proposed functions of circulating apoA-IV have been related to protection from cardiovascular disease. This review, however, focuses primarily on several properties of apoA-IV that impact other metabolic functions related to food intake, obesity, and diabetes. In addition to participating in triglyceride absorption, apoA-IV can act as an acute satiation factor through both peripheral and central routes of action. It also modulates glucose homeostasis through incretin-like effects on insulin secretion, and by moderating hepatic glucose production. While apoA-IV receptors remain to be conclusively identified, the latter modes of action suggest that this protein holds therapeutic promise for treating metabolic disease.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut Advanced Technology Laboratory, Storrs, CT 06269
| | - Chun-Min Lo
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Philip Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
33
|
Pressler JW, Haller A, Sorrell J, Wang F, Seeley RJ, Tso P, Sandoval DA. Vertical sleeve gastrectomy restores glucose homeostasis in apolipoprotein A-IV KO mice. Diabetes 2015; 64:498-507. [PMID: 25157093 PMCID: PMC4303973 DOI: 10.2337/db14-0825] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bariatric surgery is the most successful strategy for treating obesity, yet the mechanisms for this success are not clearly understood. Clinical literature suggests that plasma levels of apolipoprotein A-IV (apoA-IV) rise with Roux-en-Y gastric bypass (RYGB). apoA-IV is secreted from the intestine postprandially and has demonstrated benefits for both glucose and lipid homeostasis. Because of the parallels in the metabolic improvements seen with surgery and the rise in apoA-IV levels, we hypothesized that apoA-IV was necessary for obtaining the metabolic benefits of bariatric surgery. To test this hypothesis, we performed vertical sleeve gastrectomy (VSG), a surgery with clinical efficacy very similar to that for RYGB, in whole-body apoA-IV knockout (KO) mice. We found that VSG reduced body mass and improved both glucose and lipid homeostasis similarly in wild-type mice compared with apoA-IV KO mice. In fact, VSG normalized the impairment in glucose tolerance and caused a significantly greater improvement in hepatic triglyceride storage in the apoA-IV KO mice. Last, independent of surgery, apoA-IV KO mice had a significantly reduced preference for a high-fat diet. Altogether, these data suggest that apoA-IV is not necessary for the metabolic improvements shown with VSG, but also suggest an interesting role for apoA-IV in regulating macronutrient preference and hepatic triglyceride levels. Future studies are necessary to determine whether this is the case for RYGB as well.
Collapse
Affiliation(s)
- Josh W Pressler
- Division of Endocrinology, University of Cincinnati, Cincinnati, OH
| | - April Haller
- Division of Endocrinology, University of Cincinnati, Cincinnati, OH
| | - Joyce Sorrell
- Division of Endocrinology, University of Cincinnati, Cincinnati, OH
| | - Fei Wang
- Department of Pathophysiology, University of Cincinnati, Cincinnati, OH
| | - Randy J Seeley
- Department of Surgery, North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Patrick Tso
- Department of Pathophysiology, University of Cincinnati, Cincinnati, OH
| | - Darleen A Sandoval
- Division of Endocrinology, University of Cincinnati, Cincinnati, OH Department of Surgery, North Campus Research Complex, University of Michigan, Ann Arbor, MI
| |
Collapse
|
34
|
Shen L, Liu Y, Wang DQH, Tso P, Woods SC, Liu M. Estradiol stimulates apolipoprotein A-IV gene expression in the nucleus of the solitary tract through estrogen receptor-α. Endocrinology 2014; 155:3882-90. [PMID: 25051443 PMCID: PMC5393319 DOI: 10.1210/en.2014-1239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although estrogens have been implicated in the regulation of apolipoprotein A-IV (apo A-IV) gene expression in the nucleus tractus solitarius, previous studies have not defined the molecular mechanism. The aim of this study was to examine the transcriptional mechanisms involved in regulation of apo A-IV gene expression. Using cultured primary neuronal cells from rat embryonic brainstems, we found that treatment with 10nM 17β-estradiol-3-benzoate (E2) or 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (an estrogen receptor [ER]α agonist), but not 2,3-bis(4-hydroxyphenyl)-propionitrile (an ERβ agonist), significantly increased apo A-IV gene expression, compared with vehicle treatment. This effect of E2 was abolished when the cells were incubated with E2 linked to BSA, which prevents E2 from entering cells, implying that a nongenomic mechanism of E2 is not involved. Two putative estrogen response elements were identified at the 5'-upstream region of the apo A-IV gene promoter, but only 1 of them was able to recruit ERα, leading to increased apo A-IV gene expression, as determined by chromatin immunoprecipitation assay and luciferase activity analysis. A cyclic regimen of E2 or 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol treatment for 8 cycles (4 d/cycle, mimicking the ovarian cycle of female rats) in ovariectomized female rats significantly reduced food intake and body weight gain and increased apo A-IV gene expression in the nucleus tractus solitarius, relative to vehicle. These data collectively demonstrate that nuclear ERα is the primary mediator of E2's action on apo A-IV gene expression and suggest that increased signaling of endogenous apo A-IV may at least partially mediate E2-induced inhibitory effect on feeding.
Collapse
Affiliation(s)
- Ling Shen
- Departments of Pathology and Laboratory Medicine (L.S., Y.L., P.T., M.L.) and Psychiatry and Behavioral Neuroscience (S.C.W.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45237-0507; and Department of Internal Medicine (D.Q.H.W.), St Louis University School of Medicine, St Louis, Missouri 63104-1008
| | | | | | | | | | | |
Collapse
|
35
|
Mansouri A, Langhans W. Enterocyte-afferent nerve interactions in dietary fat sensing. Diabetes Obes Metab 2014; 16 Suppl 1:61-7. [PMID: 25200298 DOI: 10.1111/dom.12339] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/07/2014] [Indexed: 12/15/2022]
Abstract
The central nervous system (CNS) constantly monitors nutrient availability in the body and, in particular, in the gastrointestinal (GI) tract to regulate nutrient and energy homeostasis. Extrinsic parasympathetic and sympathetic nerves are crucial for CNS nutrient sensing in the GI tract. These extrinsic afferent nerves detect the nature and amount of nutrients present in the GI tract and relay the information to the brain, which controls energy intake and expenditure accordingly. Dietary fat and fatty acids are sensed through various direct and indirect mechanisms. These sensing processes involve the binding of fatty acids to specific G protein-coupled receptors expressed either on the afferent nerve fibres or on the surface of enteroendocrine cells that release gut peptides, which themselves can modulate afferent nerve activity through their cognate receptors or have endocrine effects directly on the brain. Further dietary fat sensing mechanisms that are related to enterocyte fat handling and metabolism involve the release of several possible chemical mediators such as fatty acid ethanolamides or apolipoprotein A-IV. We here present evidence for yet another mechanism that may be based on ketone bodies resulting from enterocyte oxidation of dietary fat-derived fatty acids. The presently available evidence suggests that sympathetic rather than vagal afferents are involved, but further experiments are necessary to critically examine this concept.
Collapse
Affiliation(s)
- A Mansouri
- Physiology and Behaviour Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | | |
Collapse
|
36
|
Lu W, Wan X, Liu B, Rong X, Zhu L, Li P, Li J, Wang L, Cui L, Wang X. Specific changes of serum proteins in Parkinson's disease patients. PLoS One 2014; 9:e95684. [PMID: 24769800 PMCID: PMC4000217 DOI: 10.1371/journal.pone.0095684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/28/2014] [Indexed: 12/12/2022] Open
Abstract
The aim of this study is to identify and validate protein change in the serum from PD patients. We used serum samples from 21 PD patients and 20 age-matched normal people as control to conduct a comparative proteomic study. We performed 2-DE and analyzed the differentially expressed protein spots by LC-MS/MS. In PD group 13 spots were shown to be differentially expressed compared to control group. They were identified as 6 proteins. Among these, 3 proteins were confirmed by Western blot analysis. It showed that the frequency of fibrinogen γ-chain (FGG) appeared 70% in PD, which could not be detected in control group. The protein of inter-alpha-trypsin inhibitor heavy chain H4 (ITI-H4) was found to exist two forms in serum. The full size (120 kDa) of the protein was increased and the fragmented ITI-H4 (35 kDa) was decreased in PD group. The ratio of full size ITI-H4 to fragmented ITI-H4 in PD patients was 3.85±0.29-fold higher than in control group. Furthermore, fragmented Apo A-IV (∼26 kDa) was mainly detected in control group, while it was rare to be found in PD group. Above findings might be useful for diagnosis of PD. When the expressions of FGG and 120 kDa ITI-H4 are increase, as well as ∼26 kDa Apo A-IV disappear would provide strong evidence for PD.
Collapse
Affiliation(s)
- Wenwen Lu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinhua Wan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xianfang Rong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ling Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (LC); (XW)
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (LC); (XW)
| |
Collapse
|
37
|
Xu X, Park JG, So JS, Hur KY, Lee AH. Transcriptional regulation of apolipoprotein A-IV by the transcription factor CREBH. J Lipid Res 2014; 55:850-9. [PMID: 24598141 DOI: 10.1194/jlr.m045104] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
cAMP responsive element-binding protein H (CREBH) is an endoplasmic reticulum (ER) anchored transcription factor that is highly expressed in the liver and small intestine and implicated in nutrient metabolism and proinflammatory response. ApoA-IV is a glycoprotein secreted primarily by the intestine and to a lesser degree by the liver. ApoA-IV expression is suppressed in CREBH-deficient mice and strongly induced by enforced expression of the constitutively active form of CREBH, indicating that CREBH is the major transcription factor regulating Apoa4 gene expression. Here, we show that CREBH directly controls Apoa4 expression through two tandem CREBH binding sites (5'-CCACGTTG-3') located on the promoter, which are conserved between human and mouse. Chromatin immunoprecipitation and electrophoretic mobility-shift assays demonstrated specific association of CREBH with the CREBH binding sites. We also demonstrated that a substantial amount of CREBH protein was basally processed to the active nuclear form in normal mouse liver, which was further increased in steatosis induced by high-fat diet or fasting, increasing apoA-IV expression. However, we failed to find significant activation of CREBH in response to ER stress, arguing against the critical role of CREBH in ER stress response.
Collapse
Affiliation(s)
- Xu Xu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | | | | | | | | |
Collapse
|
38
|
Abstract
Individual meals are products of a complex interaction of signals related to both short-term and long-term availability of energy stores. In addition to maintaining the metabolic demands of the individual in the short term, levels of energy intake must also maintain and defend body weight over longer periods. To accomplish this, satiety pathways are regulated by a sophisticated network of endocrine and neuroendocrine pathways. Higher brain centers modulate meal size through descending inputs to caudal brainstem regions responsible for the motor pattern generators associated with ingestion. Gastric and intestinal signals interact with central nervous system pathways to terminate food intake. These inputs can be modified as a function of internal metabolic signals, external environmental influences, and learning to regulate meal size.
Collapse
|
39
|
Xu Q, Feng CY, Hori TS, Plouffe DA, Buchanan JT, Rise ML. Family-specific differences in growth rate and hepatic gene expression in juvenile triploid growth hormone (GH) transgenic Atlantic salmon (Salmo salar). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:317-33. [PMID: 24145116 DOI: 10.1016/j.cbd.2013.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 01/13/2023]
Abstract
Growth hormone transgenic (GHTg) Atlantic salmon (Salmo salar) have enhanced growth when compared to their non-transgenic counterparts, and this trait can be beneficial for aquaculture production. Biological confinement of GHTg Atlantic salmon may be achieved through the induction of triploidy (3N). The growth rates of triploid GH transgenic (3NGHTg) Atlantic salmon juveniles were found to significantly vary between families in the AquaBounty breeding program. In order to characterize gene expression associated with enhanced growth in juvenile 3NGHTg Atlantic salmon, a functional genomics approach (32K cDNA microarray hybridizations followed by QPCR) was used to identify and validate liver transcripts that were differentially expressed between two fast-growing 3NGHTg Atlantic salmon families (AS11, AS26) and a slow-growing 3NGHTg Atlantic salmon family (AS25); juvenile growth rate was evaluated over a 45-day period. Of 687 microarray-identified differentially expressed features, 143 (116 more highly expressed in fast-growing and 27 more highly expressed in slow-growing juveniles) were identified in the AS11 vs. AS25 microarray study, while 544 (442 more highly expressed in fast-growing and 102 more highly expressed in slow-growing juveniles) were identified in the AS26 vs. AS25 microarray study. Forty microarray features (39 putatively associated with fast growth and 1 putatively associated with slow growth) were present in both microarray experiment gene lists. The expression levels of 15 microarray-identified transcripts were studied using QPCR with individual RNA samples to validate microarray results and to study biological variability of transcript expression. The QPCR results agreed with the microarray results for 12 of 13 putative fast-growth associated transcripts, but QPCR did not validate the microarray results for 2 putative slow-growth associated transcripts. Many of the 39 microarray-identified genes putatively associated at the transcript expression level with fast-growing 3NGHTg salmon juveniles (including APOA1, APOA4, B2M, FADSD6, FTM, and GAPDH) are involved in metabolism, iron homeostasis and oxygen transport, and immune- or stress-related responses. The results of this study increase our knowledge of family-specific impacts on growth rate and hepatic gene expression in juvenile 3NGHTg Atlantic salmon. In addition, this study provides a suite of putative rapid growth rate-associated transcripts that may contribute to the development of molecular markers [e.g. intronic, exonic or regulatory region single nucleotide polymorphisms (SNPs)] for the selection of GHTg Atlantic salmon broodstock that can be utilized to produce sterile triploids of desired growth performance for future commercial applications.
Collapse
Affiliation(s)
- Qingheng Xu
- Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Many questions must be considered with regard to consuming food, including when to eat, what to eat and how much to eat. Although eating is often thought to be a homeostatic behaviour, little evidence exists to suggest that eating is an automatic response to an acute shortage of energy. Instead, food intake can be considered as an integrated response over a prolonged period of time that maintains the levels of energy stored in adipocytes. When we eat is generally determined by habit, convenience or opportunity rather than need, and meals are preceded by a neurally-controlled coordinated secretion of numerous hormones that prime the digestive system for the anticipated caloric load. How much we eat is determined by satiation hormones that are secreted in response to ingested nutrients, and these signals are in turn modified by adiposity hormones that indicate the fat content of the body. In addition, many nonhomeostatic factors, including stress, learning, palatability and social influences, interact with other controllers of food intake. If a choice of food is available, what we eat is based on pleasure and past experience. This article reviews the hormones that mediate and influence these processes.
Collapse
Affiliation(s)
- Denovan P Begg
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| | | |
Collapse
|
41
|
Wang F, Pearson KJ, Davidson WS, Tso P. Specific sequences in N termini of apolipoprotein A-IV modulate its anorectic effect. Physiol Behav 2013; 120:136-42. [PMID: 23911688 DOI: 10.1016/j.physbeh.2013.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/19/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Rodent apoA-IV is expressed predominantly in small intestine and also expressed to a small extent in liver and hypothalamus. ApoA-IV has been shown to inhibit food intake in rats when injected centrally. In the current study, we hypothesize that a specific sequence within rat apoA-IV is responsible for mediating the anorectic effect. We use a bacterial expression system to generate truncation mutants (Δ249-371, Δ117-371 and Δ1-61) of rat apoA-IV and assess the ability of various regions of the molecule to inhibit food intake. The results indicate that a responsible sequence exists within the N-terminal 61 amino acids of rat apoA-IV. Synthetic peptides (1-30 EVTSDQVANVMWDYFTQLSNNAKEAVEQLQ, 1-15 EVTSDQVANVMWDYF and 17-30 QLSNNAKEAVEQLQ) were used to specify the region in between residues 1 and 30. A 14-mer peptide (17-30) encompassing this sequence was capable of reducing food intake in a dose-dependent manner whereas a peptide designed on a more C-terminal region (211-232) of apoA-IV (QEKLNHQMEGLAFQMKKNAEEL) failed to exhibit the dose-dependent anorectic effect. The isolation of this sequence provides a valuable tool for future work directed at identifying apoA-IV binding proteins and is a key step for exploring the potential of therapeutic manipulation of food intake via this pathway.
Collapse
Affiliation(s)
- Fei Wang
- Departments of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
42
|
Chandra R, Wang Y, Shahid RA, Vigna SR, Freedman NJ, Liddle RA. Immunoglobulin-like domain containing receptor 1 mediates fat-stimulated cholecystokinin secretion. J Clin Invest 2013; 123:3343-52. [PMID: 23863714 DOI: 10.1172/jci68587] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/23/2013] [Indexed: 12/29/2022] Open
Abstract
Cholecystokinin (CCK) is a satiety hormone produced by discrete enteroendocrine cells scattered among absorptive cells of the small intestine. CCK is released into blood following a meal; however, the mechanisms inducing hormone secretion are largely unknown. Ingested fat is the major stimulant of CCK secretion. We recently identified a novel member of the lipoprotein remnant receptor family known as immunoglobulin-like domain containing receptor 1 (ILDR1) in intestinal CCK cells and postulated that this receptor conveyed the signal for fat-stimulated CCK secretion. In the intestine, ILDR1 is expressed exclusively in CCK cells. Orogastric administration of fatty acids elevated blood levels of CCK in wild-type mice but not Ildr1-deficient mice, although the CCK secretory response to trypsin inhibitor was retained. The uptake of fluorescently labeled lipoproteins in ILDR1-transfected CHO cells and release of CCK from isolated intestinal cells required a unique combination of fatty acid plus HDL. CCK secretion secondary to ILDR1 activation was associated with increased [Ca2+]i, consistent with regulated hormone release. These findings demonstrate that ILDR1 regulates CCK release through a mechanism dependent on fatty acids and lipoproteins and that absorbed fatty acids regulate gastrointestinal hormone secretion.
Collapse
Affiliation(s)
- Rashmi Chandra
- Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
43
|
van den Berg SAA, Heemskerk MM, Geerling JJ, van Klinken JB, Schaap FG, Bijland S, Berbée JFP, van Harmelen VJA, Pronk ACM, Schreurs M, Havekes LM, Rensen PCN, van Dijk KW. Apolipoprotein A5 deficiency aggravates high-fat diet-induced obesity due to impaired central regulation of food intake. FASEB J 2013; 27:3354-62. [PMID: 23650188 DOI: 10.1096/fj.12-225367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutations in apolipoprotein A5 (APOA5) have been associated with hypertriglyceridemia in humans and mice. This has been attributed to a stimulating role for APOA5 in lipoprotein lipase-mediated triglyceride hydrolysis and hepatic clearance of lipoprotein remnant particles. However, because of the low APOA5 plasma abundance, we investigated an additional signaling role for APOA5 in high-fat diet (HFD)-induced obesity. Wild-type (WT) and Apoa5(-/-) mice fed a chow diet showed no difference in body weight or 24-h food intake (Apoa5(-/-), 4.5±0.6 g; WT, 4.2±0.5 g), while Apoa5(-/-) mice fed an HFD ate more in 24 h (Apoa5(-/-), 2.8±0.4 g; WT, 2.5±0.3 g, P<0.05) and became more obese than WT mice. Also, intravenous injection of APOA5-loaded VLDL-like particles lowered food intake (VLDL control, 0.26±0.04 g; VLDL+APOA5, 0.11±0.07 g, P<0.01). In addition, the HFD-induced hyperphagia of Apoa5(-/-) mice was prevented by adenovirus-mediated hepatic overexpression of APOA5. Finally, intracerebroventricular injection of APOA5 reduced food intake compared to injection of the same mouse with artificial cerebral spinal fluid (0.40±0.11 g; APOA5, 0.23±0.08 g, P<0.01). These data indicate that the increased HFD-induced obesity of Apoa5(-/-) mice as compared to WT mice is at least partly explained by hyperphagia and that APOA5 plays a role in the central regulation of food intake.
Collapse
|
44
|
Oh YM, Ma TZ, Kwak YG, Eun JP. Proteomic evaluation to identify biomarkers for carpal tunnel syndrome: a comparative serum analysis. Connect Tissue Res 2012. [PMID: 23186247 DOI: 10.3109/03008207.2012.746320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carpal tunnel syndrome (CTS) is the most common peripheral nerve entrapment, causing pain, impairment, and disability. To identify proteins of CTS comprehensively, a comparative serum analysis of CTS patients and normal control subjects was performed. The two-dimensional electrophoresis patterns of serum obtained from six CTS patients and six normal control subjects were compared. We found 10 proteins that were significantly altered in the serum of CTS patients, among which four were upregulated and six were downregulated. The upregulated spots were identified as Chain A, heat shock 70-kDa protein, 42-kDa ATPase N-terminal domain; glutathione-insulin transhydrogenase (216AA); cAMP-dependent protein kinase inhibitor alpha; and mutant β-globin. The downregulated spots were identified as vitamin D-binding protein (VDBP), fibrinogen gamma chain, apolipoprotein A-IV (ApoA-IV), clusterin, heterogeneous nuclear ribonucleoprotein H1 (hnRNP H1), and one unidentified protein. The information obtained from this proteomic analysis will be very useful in understanding the pathophysiology of CTS and in finding suitable proteins that can serve as new diagnostic biomarkers of CTS.
Collapse
Affiliation(s)
- Young-Min Oh
- Department of Neurosurgery, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | | | | | | |
Collapse
|
45
|
Lo CC, Langhans W, Georgievsky M, Arnold M, Caldwell JL, Cheng S, Liu M, Woods SC, Tso P. Apolipoprotein AIV requires cholecystokinin and vagal nerves to suppress food intake. Endocrinology 2012; 153:5857-65. [PMID: 23027805 PMCID: PMC3512075 DOI: 10.1210/en.2012-1427] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are gastrointestinal satiation signals that are stimulated by fat consumption. Previous studies have demonstrated that peripheral apo AIV cannot cross the blood-brain barrier. In the present study, we hypothesized that peripheral apo AIV uses a CCK-dependent system and intact vagal nerves to relay its satiation signal to the hindbrain. To test this hypothesis, CCK-knockout (CCK-KO) mice and Long-Evan rats that had undergone subdiaphragmatic vagal deafferentation (SDA) were used. Intraperitoneal administration of apo AIV at 100 or 200 μg/kg suppressed food intake of wild-type (WT) mice at 30, 60, and 90 min. In contrast, the same dose did not reduce food intake in the CCK-KO mice. Blockade of the CCK 1 receptor by lorglumide, a CCK 1 receptor antagonist, attenuated apo AIV-induced satiation. Apo AIV at 100 μg/kg reduced food intake in SHAM rats but not in SDA rats. Furthermore, apo AIV elicited an increase in c-Fos-positive cells in the nucleus of the solitary tract (NTS), area postrema, dorsal motor nucleus of the vagus, and adjacent areas of WT mice but elicited only an attenuated increase in these same regions in CCK-KO mice. Apo AIV-induced c-Fos positive cells in the NTS and area postrema of WT mice were reduced by lorglumide. Lastly, apo AIV increased c-Fos positive cells in the NTS of SHAM rats but not in SDA rats. These observations imply that peripheral apo AIV requires an intact CCK system and vagal afferents to activate neurons in the hindbrain to reduce food intake.
Collapse
Affiliation(s)
- Chunmin C Lo
- Departments of Pathology and Laboratory Medicine, Cincinnati, OH 45237-0507, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Duka A, Fotakis P, Georgiadou D, Kateifides A, Tzavlaki K, von Eckardstein L, Stratikos E, Kardassis D, Zannis VI. ApoA-IV promotes the biogenesis of apoA-IV-containing HDL particles with the participation of ABCA1 and LCAT. J Lipid Res 2012; 54:107-15. [PMID: 23132909 DOI: 10.1194/jlr.m030114] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The objective of this study was to establish the role of apoA-IV, ABCA1, and LCAT in the biogenesis of apoA-IV-containing HDL (HDL-A-IV) using different mouse models. Adenovirus-mediated gene transfer of apoA-IV in apoA-I(-/-) mice did not change plasma lipid levels. ApoA-IV floated in the HDL2/HDL3 region, promoted the formation of spherical HDL particles as determined by electron microscopy, and generated mostly α- and a few pre-β-like HDL subpopulations. Gene transfer of apoA-IV in apoA-I(-/-) × apoE(-/-) mice increased plasma cholesterol and triglyceride levels, and 80% of the protein was distributed in the VLDL/IDL/LDL region. This treatment likewise generated α- and pre-β-like HDL subpopulations. Spherical and α-migrating HDL particles were not detectable following gene transfer of apoA-IV in ABCA1(-/-) or LCAT(-/-) mice. Coexpression of apoA-IV and LCAT in apoA-I(-/-) mice restored the formation of HDL-A-IV. Lipid-free apoA-IV and reconstituted HDL-A-IV promoted ABCA1 and scavenger receptor BI (SR-BI)-mediated cholesterol efflux, respectively, as efficiently as apoA-I and apoE. Our findings are consistent with a novel function of apoA-IV in the biogenesis of discrete HDL-A-IV particles with the participation of ABCA1 and LCAT, and may explain previously reported anti-inflammatory and atheroprotective properties of apoA-IV.
Collapse
Affiliation(s)
- Adelina Duka
- Molecular Genetics, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Guclu-Geyik F, Onat A, Coban N, Komurcu-Bayrak E, Sansoy V, Can G, Erginel-Unaltuna N. Minor allele of the APOA4 gene T347S polymorphism predisposes to obesity in postmenopausal Turkish women. Mol Biol Rep 2012; 39:10907-14. [DOI: 10.1007/s11033-012-1990-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/01/2012] [Indexed: 11/30/2022]
|
48
|
Steelman SM, Chowdhary BP. Plasma proteomics shows an elevation of the anti-inflammatory protein APOA-IV in chronic equine laminitis. BMC Vet Res 2012; 8:179. [PMID: 23016951 PMCID: PMC3511297 DOI: 10.1186/1746-6148-8-179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 07/10/2012] [Indexed: 12/11/2022] Open
Abstract
Background Equine laminitis is a devastating disease that causes severe pain in afflicted horses and places a major economic burden on the horse industry. In acute laminitis, the disintegration of the dermal-epidermal junction can cause the third phalanx to detach from the hoof wall, leaving the horse unable to bear weight on the affected limbs. Horses that survive the acute phase transition into a chronic form of laminitis, which is often termed “founder”. Some evidence suggests that chronic laminar inflammation might be associated with alterations in the endocrine and immune systems. We investigated this broad hypothesis by using DIGE to assess global differences in the plasma proteome between horses with chronic laminitis and controls. Results We identified 16 differentially expressed proteins; the majority of these were involved in the interrelated coagulation, clotting, and kininogen cascades. Clinical testing of functional coagulation parameters in foundered horses revealed a slight delay in prothrombin (PT) clotting time, although most other indices were within normal ranges. Upregulation of the intestinal apolipoprotein APOA-IV in horses with chronic laminitis was confirmed by western blot. Conclusions Our results support the hypothesis that localized laminar inflammation may be linked to systemic alterations in immune regulation, particularly in the gastrointestinal system. Gastrointestinal inflammation has been implicated in the development of acute laminitis but has not previously been associated with chronic laminitis.
Collapse
Affiliation(s)
- Samantha M Steelman
- Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77845-4458, USA
| | | |
Collapse
|
49
|
Lu C, Zhu W, Shen CL, Gao W. Green tea polyphenols reduce body weight in rats by modulating obesity-related genes. PLoS One 2012; 7:e38332. [PMID: 22715380 PMCID: PMC3371013 DOI: 10.1371/journal.pone.0038332] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/03/2012] [Indexed: 12/16/2022] Open
Abstract
Beneficial effects of green tea polyphenols (GTP) against obesity have been reported, however, the mechanism of this protection is not clear. Therefore, the objective of this study was to identify GTP-targeted genes in obesity using the high-fat-diet-induced obese rat model. A total of three groups (n = 12/group) of Sprague Dawley (SD) female rats were tested, including the control group (rats fed with low-fat diet), the HF group (rats fed with high-fat diet), and the HF+GTP group (rats fed with high-fat diet and GTP in drinking water). The HF group increased body weight as compared to the control group. Supplementation of GTP in the drinking water in the HF+GTP group reduced body weight as compared to the HF group. RNA from liver samples was extracted for gene expression analysis. A total of eighty-four genes related to obesity were analyzed using PCR array. Compared to the rats in the control group, the rats in the HF group had the expression levels of 12 genes with significant changes, including 3 orexigenic genes (Agrp, Ghrl, and Nr3c1); 7 anorectic genes (Apoa4, Cntf, Ghr, IL-1β, Ins1, Lepr, and Sort); and 2 genes that relate to energy expenditure (Adcyap1r1 and Adrb1). Intriguingly, the HF+GTP group restored the expression levels of these genes in the high-fat-induced obese rats. The protein expression levels of IL-1β and IL-6 in the serum samples from the control, HF, and HF+GTP groups confirmed the results of gene expression. Furthermore, the protein expression levels of superoxide dismutase-1 (SOD1) and catechol-O-methyltransferase (COMT) also showed GTP-regulated protective changes in this obese rat model. Collectively, this study revealed the beneficial effects of GTP on body weight via regulating obesity-related genes, anti-inflammation, anti-oxidant capacity, and estrogen-related actions in high-fat-induced obese rats.
Collapse
Affiliation(s)
- Chuanwen Lu
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Wenbin Zhu
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
50
|
Kohan AB, Wang F, Li X, Bradshaw S, Yang Q, Caldwell JL, Bullock TM, Tso P. Apolipoprotein A-IV regulates chylomicron metabolism-mechanism and function. Am J Physiol Gastrointest Liver Physiol 2012; 302:G628-36. [PMID: 22207575 PMCID: PMC3311309 DOI: 10.1152/ajpgi.00225.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dietary fat is an important mediator of atherosclerosis and obesity. Despite its importance in mediating metabolic disease, there is still much unknown about dietary fat absorption in the intestine and especially the detailed biological roles of intestinal apolipoproteins involved in that process. We were specifically interested in determining the physiological role of the intestinal apolipoprotein A-IV (A-IV) using A-IV knockout (KO) mice. A-IV is stimulated by fat absorption in the intestine and is secreted on nascent chylomicrons into intestinal lymph. We found that A-IV KO mice had reduced plasma triglyceride (TG) and cholesterol levels and that this hypolipidemia persisted on a high-fat diet. A-IV KO did not cause abnormal intestinal lipid absorption, food intake, or adiposity. Additionally, A-IV KO did not cause abnormal liver TG and cholesterol metabolism, as assessed by measuring hepatic lipid content, lipogenic and cholesterol synthetic gene expression, and in vivo VLDL secretion. Instead, A-IV KO resulted in the secretion of larger chylomicrons from the intestine into the lymph, and those chylomicrons were cleared from the plasma more slowly than wild-type chylomicrons. These data suggest that A-IV has a previously unknown role in mediating the metabolism of chylomicrons, and therefore may be important in regulating plasma lipid metabolism.
Collapse
Affiliation(s)
- Alison B. Kohan
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati; and
| | - Fei Wang
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati; and
| | - Xiaoming Li
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati; and
| | - Suzanne Bradshaw
- 2Department of Biology, University of Cincinnati, Blue Ash College, Cincinnati, Ohio
| | - Qing Yang
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati; and
| | - Jody L. Caldwell
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati; and
| | - Tera M. Bullock
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati; and
| | - Patrick Tso
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati; and
| |
Collapse
|